Digits Classification ExerciseΒΆ
A tutorial exercise regarding the use of classification techniques on the Digits dataset.
This exercise is used in the Classification part of the Supervised learning: predicting an output variable from high-dimensional observations section of the A tutorial on statistical-learning for scientific data processing.
print(__doc__)
from sklearn import datasets, neighbors, linear_model
digits = datasets.load_digits()
X_digits = digits.data
y_digits = digits.target
n_samples = len(X_digits)
X_train = X_digits[:.9 * n_samples]
y_train = y_digits[:.9 * n_samples]
X_test = X_digits[.9 * n_samples:]
y_test = y_digits[.9 * n_samples:]
knn = neighbors.KNeighborsClassifier()
logistic = linear_model.LogisticRegression()
print('KNN score: %f' % knn.fit(X_train, y_train).score(X_test, y_test))
print('LogisticRegression score: %f'
% logistic.fit(X_train, y_train).score(X_test, y_test))
Total running time of the script: (0 minutes 0.000 seconds)
Download Python source code:
digits_classification_exercise.py
Download IPython notebook:
digits_classification_exercise.ipynb