3.2.4.1.9. sklearn.linear_model.RidgeCV¶
- 
class sklearn.linear_model.RidgeCV(alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, cv=None, gcv_mode=None, store_cv_values=False)[source]¶
- Ridge regression with built-in cross-validation. - By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-validation. - Read more in the User Guide. - Parameters: - alphas : numpy array of shape [n_alphas] - Array of alpha values to try. Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to - C^-1in other linear models such as LogisticRegression or LinearSVC.- fit_intercept : boolean - Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). - normalize : boolean, optional, default False - If True, the regressors X will be normalized before regression. - scoring : string, callable or None, optional, default: None - A string (see model evaluation documentation) or a scorer callable object / function with signature - scorer(estimator, X, y).- cv : int, cross-validation generator or an iterable, optional - Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the efficient Leave-One-Out cross-validation
- integer, to specify the number of folds.
- An object to be used as a cross-validation generator.
- An iterable yielding train/test splits.
 - For integer/None inputs, if - yis binary or multiclass,- StratifiedKFoldused, else,- KFoldis used.- Refer User Guide for the various cross-validation strategies that can be used here. - gcv_mode : {None, ‘auto’, ‘svd’, eigen’}, optional - Flag indicating which strategy to use when performing Generalized Cross-Validation. Options are: - 'auto' : use svd if n_samples > n_features or when X is a sparse matrix, otherwise use eigen 'svd' : force computation via singular value decomposition of X (does not work for sparse matrices) 'eigen' : force computation via eigendecomposition of X^T X- The ‘auto’ mode is the default and is intended to pick the cheaper option of the two depending upon the shape and format of the training data. - store_cv_values : boolean, default=False - Flag indicating if the cross-validation values corresponding to each alpha should be stored in the cv_values_ attribute (see below). This flag is only compatible with cv=None (i.e. using Generalized Cross-Validation). - Attributes: - cv_values_ : array, shape = [n_samples, n_alphas] or shape = [n_samples, n_targets, n_alphas], optional - Cross-validation values for each alpha (if store_cv_values=True and cv=None). After fit() has been called, this attribute will contain the mean squared errors (by default) or the values of the {loss,score}_func function (if provided in the constructor). - coef_ : array, shape = [n_features] or [n_targets, n_features] - Weight vector(s). - intercept_ : float | array, shape = (n_targets,) - Independent term in decision function. Set to 0.0 if - fit_intercept = False.- alpha_ : float - Estimated regularization parameter. - See also - Ridge
- Ridge regression
- RidgeClassifier
- Ridge classifier
- RidgeClassifierCV
- Ridge classifier with built-in cross validation
 - Methods - decision_function(*args, **kwargs)- DEPRECATED: and will be removed in 0.19. - fit(X, y[, sample_weight])- Fit Ridge regression model - get_params([deep])- Get parameters for this estimator. - predict(X)- Predict using the linear model - score(X, y[, sample_weight])- Returns the coefficient of determination R^2 of the prediction. - set_params(**params)- Set the parameters of this estimator. - 
__init__(alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, cv=None, gcv_mode=None, store_cv_values=False)[source]¶
 - 
decision_function(*args, **kwargs)[source]¶
- DEPRECATED: and will be removed in 0.19. - Decision function of the linear model. - Parameters: - X : {array-like, sparse matrix}, shape = (n_samples, n_features) - Samples. - Returns: - C : array, shape = (n_samples,) - Returns predicted values. 
 - 
fit(X, y, sample_weight=None)[source]¶
- Fit Ridge regression model - Parameters: - X : array-like, shape = [n_samples, n_features] - Training data - y : array-like, shape = [n_samples] or [n_samples, n_targets] - Target values - sample_weight : float or array-like of shape [n_samples] - Sample weight - Returns: - self : Returns self. 
 - 
get_params(deep=True)[source]¶
- Get parameters for this estimator. - Parameters: - deep: boolean, optional : - If True, will return the parameters for this estimator and contained subobjects that are estimators. - Returns: - params : mapping of string to any - Parameter names mapped to their values. 
 - 
predict(X)[source]¶
- Predict using the linear model - Parameters: - X : {array-like, sparse matrix}, shape = (n_samples, n_features) - Samples. - Returns: - C : array, shape = (n_samples,) - Returns predicted values. 
 - 
score(X, y, sample_weight=None)[source]¶
- Returns the coefficient of determination R^2 of the prediction. - The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) ** 2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0. - Parameters: - X : array-like, shape = (n_samples, n_features) - Test samples. - y : array-like, shape = (n_samples) or (n_samples, n_outputs) - True values for X. - sample_weight : array-like, shape = [n_samples], optional - Sample weights. - Returns: - score : float - R^2 of self.predict(X) wrt. y. 
 - 
set_params(**params)[source]¶
- Set the parameters of this estimator. - The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form - <component>__<parameter>so that it’s possible to update each component of a nested object.- Returns: - self : 
 
 
         
