.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINXGALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "auto_examples/neural_networks/plot_mnist_filters.py"
.. LINE NUMBERS ARE GIVEN BELOW.
.. only:: html
.. note::
:class: sphxglrdownloadlinknote
Click :ref:`here `
to download the full example code or to run this example in your browser via Binder
.. rstclass:: sphxglrexampletitle
.. _sphx_glr_auto_examples_neural_networks_plot_mnist_filters.py:
=====================================
Visualization of MLP weights on MNIST
=====================================
Sometimes looking at the learned coefficients of a neural network can provide
insight into the learning behavior. For example if weights look unstructured,
maybe some were not used at all, or if very large coefficients exist, maybe
regularization was too low or the learning rate too high.
This example shows how to plot some of the first layer weights in a
MLPClassifier trained on the MNIST dataset.
The input data consists of 28x28 pixel handwritten digits, leading to 784
features in the dataset. Therefore the first layer weight matrix have the shape
(784, hidden_layer_sizes[0]). We can therefore visualize a single column of
the weight matrix as a 28x28 pixel image.
To make the example run faster, we use very few hidden units, and train only
for a very short time. Training longer would result in weights with a much
smoother spatial appearance. The example will throw a warning because it
doesn't converge, in this case this is what we want because of CI's time
constraints.
.. GENERATED FROM PYTHON SOURCE LINES 2567
.. image:: /auto_examples/neural_networks/images/sphx_glr_plot_mnist_filters_001.png
:alt: plot mnist filters
:class: sphxglrsingleimg
.. rstclass:: sphxglrscriptout
Out:
.. codeblock:: none
Iteration 1, loss = 0.32009978
Iteration 2, loss = 0.15347534
Iteration 3, loss = 0.11544755
Iteration 4, loss = 0.09279764
Iteration 5, loss = 0.07889367
Iteration 6, loss = 0.07170497
Iteration 7, loss = 0.06282111
Iteration 8, loss = 0.05530788
Iteration 9, loss = 0.04960484
Iteration 10, loss = 0.04645355
Training set score: 0.986800
Test set score: 0.970000

.. codeblock:: default
import warnings
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_openml
from sklearn.exceptions import ConvergenceWarning
from sklearn.neural_network import MLPClassifier
print(__doc__)
# Load data from https://www.openml.org/d/554
X, y = fetch_openml('mnist_784', version=1, return_X_y=True)
X = X / 255.
# rescale the data, use the traditional train/test split
X_train, X_test = X[:60000], X[60000:]
y_train, y_test = y[:60000], y[60000:]
mlp = MLPClassifier(hidden_layer_sizes=(50,), max_iter=10, alpha=1e4,
solver='sgd', verbose=10, random_state=1,
learning_rate_init=.1)
# this example won't converge because of CI's time constraints, so we catch the
# warning and are ignore it here
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=ConvergenceWarning,
module="sklearn")
mlp.fit(X_train, y_train)
print("Training set score: %f" % mlp.score(X_train, y_train))
print("Test set score: %f" % mlp.score(X_test, y_test))
fig, axes = plt.subplots(4, 4)
# use global min / max to ensure all weights are shown on the same scale
vmin, vmax = mlp.coefs_[0].min(), mlp.coefs_[0].max()
for coef, ax in zip(mlp.coefs_[0].T, axes.ravel()):
ax.matshow(coef.reshape(28, 28), cmap=plt.cm.gray, vmin=.5 * vmin,
vmax=.5 * vmax)
ax.set_xticks(())
ax.set_yticks(())
plt.show()
.. rstclass:: sphxglrtiming
**Total running time of the script:** ( 1 minutes 10.754 seconds)
.. _sphx_glr_download_auto_examples_neural_networks_plot_mnist_filters.py:
.. only :: html
.. container:: sphxglrfooter
:class: sphxglrfooterexample
.. container:: binderbadge
.. image:: images/binder_badge_logo.svg
:target: https://mybinder.org/v2/gh/scikitlearn/scikitlearn/0.24.X?urlpath=lab/tree/notebooks/auto_examples/neural_networks/plot_mnist_filters.ipynb
:alt: Launch binder
:width: 150 px
.. container:: sphxglrdownload sphxglrdownloadpython
:download:`Download Python source code: plot_mnist_filters.py `
.. container:: sphxglrdownload sphxglrdownloadjupyter
:download:`Download Jupyter notebook: plot_mnist_filters.ipynb `
.. only:: html
.. rstclass:: sphxglrsignature
`Gallery generated by SphinxGallery `_