.. currentmodule:: sklearn
.. _model_evaluation:
===========================================================
Metrics and scoring: quantifying the quality of predictions
===========================================================
There are 3 different APIs for evaluating the quality of a model's
predictions:
* **Estimator score method**: Estimators have a ``score`` method providing a
default evaluation criterion for the problem they are designed to solve.
This is not discussed on this page, but in each estimator's documentation.
* **Scoring parameter**: Model-evaluation tools using
:ref:`cross-validation ` (such as
:func:`model_selection.cross_val_score` and
:class:`model_selection.GridSearchCV`) rely on an internal *scoring* strategy.
This is discussed in the section :ref:`scoring_parameter`.
* **Metric functions**: The :mod:`sklearn.metrics` module implements functions
assessing prediction error for specific purposes. These metrics are detailed
in sections on :ref:`classification_metrics`,
:ref:`multilabel_ranking_metrics`, :ref:`regression_metrics` and
:ref:`clustering_metrics`.
Finally, :ref:`dummy_estimators` are useful to get a baseline
value of those metrics for random predictions.
.. seealso::
For "pairwise" metrics, between *samples* and not estimators or
predictions, see the :ref:`metrics` section.
.. _scoring_parameter:
The ``scoring`` parameter: defining model evaluation rules
==========================================================
Model selection and evaluation using tools, such as
:class:`model_selection.GridSearchCV` and
:func:`model_selection.cross_val_score`, take a ``scoring`` parameter that
controls what metric they apply to the estimators evaluated.
Common cases: predefined values
-------------------------------
For the most common use cases, you can designate a scorer object with the
``scoring`` parameter; the table below shows all possible values.
All scorer objects follow the convention that **higher return values are better
than lower return values**. Thus metrics which measure the distance between
the model and the data, like :func:`metrics.mean_squared_error`, are
available as neg_mean_squared_error which return the negated value
of the metric.
==================================== ============================================== ==================================
Scoring Function Comment
==================================== ============================================== ==================================
**Classification**
'accuracy' :func:`metrics.accuracy_score`
'balanced_accuracy' :func:`metrics.balanced_accuracy_score`
'top_k_accuracy' :func:`metrics.top_k_accuracy_score`
'average_precision' :func:`metrics.average_precision_score`
'neg_brier_score' :func:`metrics.brier_score_loss`
'f1' :func:`metrics.f1_score` for binary targets
'f1_micro' :func:`metrics.f1_score` micro-averaged
'f1_macro' :func:`metrics.f1_score` macro-averaged
'f1_weighted' :func:`metrics.f1_score` weighted average
'f1_samples' :func:`metrics.f1_score` by multilabel sample
'neg_log_loss' :func:`metrics.log_loss` requires ``predict_proba`` support
'precision' etc. :func:`metrics.precision_score` suffixes apply as with 'f1'
'recall' etc. :func:`metrics.recall_score` suffixes apply as with 'f1'
'jaccard' etc. :func:`metrics.jaccard_score` suffixes apply as with 'f1'
'roc_auc' :func:`metrics.roc_auc_score`
'roc_auc_ovr' :func:`metrics.roc_auc_score`
'roc_auc_ovo' :func:`metrics.roc_auc_score`
'roc_auc_ovr_weighted' :func:`metrics.roc_auc_score`
'roc_auc_ovo_weighted' :func:`metrics.roc_auc_score`
**Clustering**
'adjusted_mutual_info_score' :func:`metrics.adjusted_mutual_info_score`
'adjusted_rand_score' :func:`metrics.adjusted_rand_score`
'completeness_score' :func:`metrics.completeness_score`
'fowlkes_mallows_score' :func:`metrics.fowlkes_mallows_score`
'homogeneity_score' :func:`metrics.homogeneity_score`
'mutual_info_score' :func:`metrics.mutual_info_score`
'normalized_mutual_info_score' :func:`metrics.normalized_mutual_info_score`
'rand_score' :func:`metrics.rand_score`
'v_measure_score' :func:`metrics.v_measure_score`
**Regression**
'explained_variance' :func:`metrics.explained_variance_score`
'max_error' :func:`metrics.max_error`
'neg_mean_absolute_error' :func:`metrics.mean_absolute_error`
'neg_mean_squared_error' :func:`metrics.mean_squared_error`
'neg_root_mean_squared_error' :func:`metrics.mean_squared_error`
'neg_mean_squared_log_error' :func:`metrics.mean_squared_log_error`
'neg_median_absolute_error' :func:`metrics.median_absolute_error`
'r2' :func:`metrics.r2_score`
'neg_mean_poisson_deviance' :func:`metrics.mean_poisson_deviance`
'neg_mean_gamma_deviance' :func:`metrics.mean_gamma_deviance`
'neg_mean_absolute_percentage_error' :func:`metrics.mean_absolute_percentage_error`
==================================== ============================================== ==================================
Usage examples:
>>> from sklearn import svm, datasets
>>> from sklearn.model_selection import cross_val_score
>>> X, y = datasets.load_iris(return_X_y=True)
>>> clf = svm.SVC(random_state=0)
>>> cross_val_score(clf, X, y, cv=5, scoring='recall_macro')
array([0.96..., 0.96..., 0.96..., 0.93..., 1. ])
>>> model = svm.SVC()
>>> cross_val_score(model, X, y, cv=5, scoring='wrong_choice')
Traceback (most recent call last):
ValueError: 'wrong_choice' is not a valid scoring value. Use sorted(sklearn.metrics.SCORERS.keys()) to get valid options.
.. note::
The values listed by the ``ValueError`` exception correspond to the functions measuring
prediction accuracy described in the following sections.
The scorer objects for those functions are stored in the dictionary
``sklearn.metrics.SCORERS``.
.. currentmodule:: sklearn.metrics
.. _scoring:
Defining your scoring strategy from metric functions
-----------------------------------------------------
The module :mod:`sklearn.metrics` also exposes a set of simple functions
measuring a prediction error given ground truth and prediction:
- functions ending with ``_score`` return a value to
maximize, the higher the better.
- functions ending with ``_error`` or ``_loss`` return a
value to minimize, the lower the better. When converting
into a scorer object using :func:`make_scorer`, set
the ``greater_is_better`` parameter to ``False`` (``True`` by default; see the
parameter description below).
Metrics available for various machine learning tasks are detailed in sections
below.
Many metrics are not given names to be used as ``scoring`` values,
sometimes because they require additional parameters, such as
:func:`fbeta_score`. In such cases, you need to generate an appropriate
scoring object. The simplest way to generate a callable object for scoring
is by using :func:`make_scorer`. That function converts metrics
into callables that can be used for model evaluation.
One typical use case is to wrap an existing metric function from the library
with non-default values for its parameters, such as the ``beta`` parameter for
the :func:`fbeta_score` function::
>>> from sklearn.metrics import fbeta_score, make_scorer
>>> ftwo_scorer = make_scorer(fbeta_score, beta=2)
>>> from sklearn.model_selection import GridSearchCV
>>> from sklearn.svm import LinearSVC
>>> grid = GridSearchCV(LinearSVC(), param_grid={'C': [1, 10]},
... scoring=ftwo_scorer, cv=5)
The second use case is to build a completely custom scorer object
from a simple python function using :func:`make_scorer`, which can
take several parameters:
* the python function you want to use (``my_custom_loss_func``
in the example below)
* whether the python function returns a score (``greater_is_better=True``,
the default) or a loss (``greater_is_better=False``). If a loss, the output
of the python function is negated by the scorer object, conforming to
the cross validation convention that scorers return higher values for better models.
* for classification metrics only: whether the python function you provided requires continuous decision
certainties (``needs_threshold=True``). The default value is
False.
* any additional parameters, such as ``beta`` or ``labels`` in :func:`f1_score`.
Here is an example of building custom scorers, and of using the
``greater_is_better`` parameter::
>>> import numpy as np
>>> def my_custom_loss_func(y_true, y_pred):
... diff = np.abs(y_true - y_pred).max()
... return np.log1p(diff)
...
>>> # score will negate the return value of my_custom_loss_func,
>>> # which will be np.log(2), 0.693, given the values for X
>>> # and y defined below.
>>> score = make_scorer(my_custom_loss_func, greater_is_better=False)
>>> X = [[1], [1]]
>>> y = [0, 1]
>>> from sklearn.dummy import DummyClassifier
>>> clf = DummyClassifier(strategy='most_frequent', random_state=0)
>>> clf = clf.fit(X, y)
>>> my_custom_loss_func(y, clf.predict(X))
0.69...
>>> score(clf, X, y)
-0.69...
.. _diy_scoring:
Implementing your own scoring object
------------------------------------
You can generate even more flexible model scorers by constructing your own
scoring object from scratch, without using the :func:`make_scorer` factory.
For a callable to be a scorer, it needs to meet the protocol specified by
the following two rules:
- It can be called with parameters ``(estimator, X, y)``, where ``estimator``
is the model that should be evaluated, ``X`` is validation data, and ``y`` is
the ground truth target for ``X`` (in the supervised case) or ``None`` (in the
unsupervised case).
- It returns a floating point number that quantifies the
``estimator`` prediction quality on ``X``, with reference to ``y``.
Again, by convention higher numbers are better, so if your scorer
returns loss, that value should be negated.
.. note:: **Using custom scorers in functions where n_jobs > 1**
While defining the custom scoring function alongside the calling function
should work out of the box with the default joblib backend (loky),
importing it from another module will be a more robust approach and work
independently of the joblib backend.
For example, to use ``n_jobs`` greater than 1 in the example below,
``custom_scoring_function`` function is saved in a user-created module
(``custom_scorer_module.py``) and imported::
>>> from custom_scorer_module import custom_scoring_function # doctest: +SKIP
>>> cross_val_score(model,
... X_train,
... y_train,
... scoring=make_scorer(custom_scoring_function, greater_is_better=False),
... cv=5,
... n_jobs=-1) # doctest: +SKIP
.. _multimetric_scoring:
Using multiple metric evaluation
--------------------------------
Scikit-learn also permits evaluation of multiple metrics in ``GridSearchCV``,
``RandomizedSearchCV`` and ``cross_validate``.
There are three ways to specify multiple scoring metrics for the ``scoring``
parameter:
- As an iterable of string metrics::
>>> scoring = ['accuracy', 'precision']
- As a ``dict`` mapping the scorer name to the scoring function::
>>> from sklearn.metrics import accuracy_score
>>> from sklearn.metrics import make_scorer
>>> scoring = {'accuracy': make_scorer(accuracy_score),
... 'prec': 'precision'}
Note that the dict values can either be scorer functions or one of the
predefined metric strings.
- As a callable that returns a dictionary of scores::
>>> from sklearn.model_selection import cross_validate
>>> from sklearn.metrics import confusion_matrix
>>> # A sample toy binary classification dataset
>>> X, y = datasets.make_classification(n_classes=2, random_state=0)
>>> svm = LinearSVC(random_state=0)
>>> def confusion_matrix_scorer(clf, X, y):
... y_pred = clf.predict(X)
... cm = confusion_matrix(y, y_pred)
... return {'tn': cm[0, 0], 'fp': cm[0, 1],
... 'fn': cm[1, 0], 'tp': cm[1, 1]}
>>> cv_results = cross_validate(svm, X, y, cv=5,
... scoring=confusion_matrix_scorer)
>>> # Getting the test set true positive scores
>>> print(cv_results['test_tp'])
[10 9 8 7 8]
>>> # Getting the test set false negative scores
>>> print(cv_results['test_fn'])
[0 1 2 3 2]
.. _classification_metrics:
Classification metrics
=======================
.. currentmodule:: sklearn.metrics
The :mod:`sklearn.metrics` module implements several loss, score, and utility
functions to measure classification performance.
Some metrics might require probability estimates of the positive class,
confidence values, or binary decisions values.
Most implementations allow each sample to provide a weighted contribution
to the overall score, through the ``sample_weight`` parameter.
Some of these are restricted to the binary classification case:
.. autosummary::
precision_recall_curve
roc_curve
det_curve
Others also work in the multiclass case:
.. autosummary::
balanced_accuracy_score
cohen_kappa_score
confusion_matrix
hinge_loss
matthews_corrcoef
roc_auc_score
top_k_accuracy_score
Some also work in the multilabel case:
.. autosummary::
accuracy_score
classification_report
f1_score
fbeta_score
hamming_loss
jaccard_score
log_loss
multilabel_confusion_matrix
precision_recall_fscore_support
precision_score
recall_score
roc_auc_score
zero_one_loss
And some work with binary and multilabel (but not multiclass) problems:
.. autosummary::
average_precision_score
In the following sub-sections, we will describe each of those functions,
preceded by some notes on common API and metric definition.
.. _average:
From binary to multiclass and multilabel
----------------------------------------
Some metrics are essentially defined for binary classification tasks (e.g.
:func:`f1_score`, :func:`roc_auc_score`). In these cases, by default
only the positive label is evaluated, assuming by default that the positive
class is labelled ``1`` (though this may be configurable through the
``pos_label`` parameter).
In extending a binary metric to multiclass or multilabel problems, the data
is treated as a collection of binary problems, one for each class.
There are then a number of ways to average binary metric calculations across
the set of classes, each of which may be useful in some scenario.
Where available, you should select among these using the ``average`` parameter.
* ``"macro"`` simply calculates the mean of the binary metrics,
giving equal weight to each class. In problems where infrequent classes
are nonetheless important, macro-averaging may be a means of highlighting
their performance. On the other hand, the assumption that all classes are
equally important is often untrue, such that macro-averaging will
over-emphasize the typically low performance on an infrequent class.
* ``"weighted"`` accounts for class imbalance by computing the average of
binary metrics in which each class's score is weighted by its presence in the
true data sample.
* ``"micro"`` gives each sample-class pair an equal contribution to the overall
metric (except as a result of sample-weight). Rather than summing the
metric per class, this sums the dividends and divisors that make up the
per-class metrics to calculate an overall quotient.
Micro-averaging may be preferred in multilabel settings, including
multiclass classification where a majority class is to be ignored.
* ``"samples"`` applies only to multilabel problems. It does not calculate a
per-class measure, instead calculating the metric over the true and predicted
classes for each sample in the evaluation data, and returning their
(``sample_weight``-weighted) average.
* Selecting ``average=None`` will return an array with the score for each
class.
While multiclass data is provided to the metric, like binary targets, as an
array of class labels, multilabel data is specified as an indicator matrix,
in which cell ``[i, j]`` has value 1 if sample ``i`` has label ``j`` and value
0 otherwise.
.. _accuracy_score:
Accuracy score
--------------
The :func:`accuracy_score` function computes the
`accuracy `_, either the fraction
(default) or the count (normalize=False) of correct predictions.
In multilabel classification, the function returns the subset accuracy. If
the entire set of predicted labels for a sample strictly match with the true
set of labels, then the subset accuracy is 1.0; otherwise it is 0.0.
If :math:`\hat{y}_i` is the predicted value of
the :math:`i`-th sample and :math:`y_i` is the corresponding true value,
then the fraction of correct predictions over :math:`n_\text{samples}` is
defined as
.. math::
\texttt{accuracy}(y, \hat{y}) = \frac{1}{n_\text{samples}} \sum_{i=0}^{n_\text{samples}-1} 1(\hat{y}_i = y_i)
where :math:`1(x)` is the `indicator function
`_.
>>> import numpy as np
>>> from sklearn.metrics import accuracy_score
>>> y_pred = [0, 2, 1, 3]
>>> y_true = [0, 1, 2, 3]
>>> accuracy_score(y_true, y_pred)
0.5
>>> accuracy_score(y_true, y_pred, normalize=False)
2
In the multilabel case with binary label indicators::
>>> accuracy_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
0.5
.. topic:: Example:
* See :ref:`sphx_glr_auto_examples_model_selection_plot_permutation_tests_for_classification.py`
for an example of accuracy score usage using permutations of
the dataset.
.. _top_k_accuracy_score:
Top-k accuracy score
--------------------
The :func:`top_k_accuracy_score` function is a generalization of
:func:`accuracy_score`. The difference is that a prediction is considered
correct as long as the true label is associated with one of the ``k`` highest
predicted scores. :func:`accuracy_score` is the special case of `k = 1`.
The function covers the binary and multiclass classification cases but not the
multilabel case.
If :math:`\hat{f}_{i,j}` is the predicted class for the :math:`i`-th sample
corresponding to the :math:`j`-th largest predicted score and :math:`y_i` is the
corresponding true value, then the fraction of correct predictions over
:math:`n_\text{samples}` is defined as
.. math::
\texttt{top-k accuracy}(y, \hat{f}) = \frac{1}{n_\text{samples}} \sum_{i=0}^{n_\text{samples}-1} \sum_{j=1}^{k} 1(\hat{f}_{i,j} = y_i)
where :math:`k` is the number of guesses allowed and :math:`1(x)` is the
`indicator function `_.
>>> import numpy as np
>>> from sklearn.metrics import top_k_accuracy_score
>>> y_true = np.array([0, 1, 2, 2])
>>> y_score = np.array([[0.5, 0.2, 0.2],
... [0.3, 0.4, 0.2],
... [0.2, 0.4, 0.3],
... [0.7, 0.2, 0.1]])
>>> top_k_accuracy_score(y_true, y_score, k=2)
0.75
>>> # Not normalizing gives the number of "correctly" classified samples
>>> top_k_accuracy_score(y_true, y_score, k=2, normalize=False)
3
.. _balanced_accuracy_score:
Balanced accuracy score
-----------------------
The :func:`balanced_accuracy_score` function computes the `balanced accuracy
`_, which avoids inflated
performance estimates on imbalanced datasets. It is the macro-average of recall
scores per class or, equivalently, raw accuracy where each sample is weighted
according to the inverse prevalence of its true class.
Thus for balanced datasets, the score is equal to accuracy.
In the binary case, balanced accuracy is equal to the arithmetic mean of
`sensitivity `_
(true positive rate) and `specificity
`_ (true negative
rate), or the area under the ROC curve with binary predictions rather than
scores:
.. math::
\texttt{balanced-accuracy} = \frac{1}{2}\left( \frac{TP}{TP + FN} + \frac{TN}{TN + FP}\right )
If the classifier performs equally well on either class, this term reduces to
the conventional accuracy (i.e., the number of correct predictions divided by
the total number of predictions).
In contrast, if the conventional accuracy is above chance only because the
classifier takes advantage of an imbalanced test set, then the balanced
accuracy, as appropriate, will drop to :math:`\frac{1}{n\_classes}`.
The score ranges from 0 to 1, or when ``adjusted=True`` is used, it rescaled to
the range :math:`\frac{1}{1 - n\_classes}` to 1, inclusive, with
performance at random scoring 0.
If :math:`y_i` is the true value of the :math:`i`-th sample, and :math:`w_i`
is the corresponding sample weight, then we adjust the sample weight to:
.. math::
\hat{w}_i = \frac{w_i}{\sum_j{1(y_j = y_i) w_j}}
where :math:`1(x)` is the `indicator function `_.
Given predicted :math:`\hat{y}_i` for sample :math:`i`, balanced accuracy is
defined as:
.. math::
\texttt{balanced-accuracy}(y, \hat{y}, w) = \frac{1}{\sum{\hat{w}_i}} \sum_i 1(\hat{y}_i = y_i) \hat{w}_i
With ``adjusted=True``, balanced accuracy reports the relative increase from
:math:`\texttt{balanced-accuracy}(y, \mathbf{0}, w) =
\frac{1}{n\_classes}`. In the binary case, this is also known as
`*Youden's J statistic* `_,
or *informedness*.
.. note::
The multiclass definition here seems the most reasonable extension of the
metric used in binary classification, though there is no certain consensus
in the literature:
* Our definition: [Mosley2013]_, [Kelleher2015]_ and [Guyon2015]_, where
[Guyon2015]_ adopt the adjusted version to ensure that random predictions
have a score of :math:`0` and perfect predictions have a score of :math:`1`..
* Class balanced accuracy as described in [Mosley2013]_: the minimum between the precision
and the recall for each class is computed. Those values are then averaged over the total
number of classes to get the balanced accuracy.
* Balanced Accuracy as described in [Urbanowicz2015]_: the average of sensitivity and specificity
is computed for each class and then averaged over total number of classes.
.. topic:: References:
.. [Guyon2015] I. Guyon, K. Bennett, G. Cawley, H.J. Escalante, S. Escalera, T.K. Ho, N. Macià,
B. Ray, M. Saeed, A.R. Statnikov, E. Viegas, `Design of the 2015 ChaLearn AutoML Challenge
`_,
IJCNN 2015.
.. [Mosley2013] L. Mosley, `A balanced approach to the multi-class imbalance problem
`_,
IJCV 2010.
.. [Kelleher2015] John. D. Kelleher, Brian Mac Namee, Aoife D'Arcy, `Fundamentals of
Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples,
and Case Studies `_,
2015.
.. [Urbanowicz2015] Urbanowicz R.J., Moore, J.H. `ExSTraCS 2.0: description and evaluation of a scalable learning
classifier system `_, Evol. Intel. (2015) 8: 89.
.. _cohen_kappa:
Cohen's kappa
-------------
The function :func:`cohen_kappa_score` computes `Cohen's kappa
`_ statistic.
This measure is intended to compare labelings by different human annotators,
not a classifier versus a ground truth.
The kappa score (see docstring) is a number between -1 and 1.
Scores above .8 are generally considered good agreement;
zero or lower means no agreement (practically random labels).
Kappa scores can be computed for binary or multiclass problems,
but not for multilabel problems (except by manually computing a per-label score)
and not for more than two annotators.
>>> from sklearn.metrics import cohen_kappa_score
>>> y_true = [2, 0, 2, 2, 0, 1]
>>> y_pred = [0, 0, 2, 2, 0, 2]
>>> cohen_kappa_score(y_true, y_pred)
0.4285714285714286
.. _confusion_matrix:
Confusion matrix
----------------
The :func:`confusion_matrix` function evaluates
classification accuracy by computing the `confusion matrix
`_ with each row corresponding
to the true class (Wikipedia and other references may use different convention
for axes).
By definition, entry :math:`i, j` in a confusion matrix is
the number of observations actually in group :math:`i`, but
predicted to be in group :math:`j`. Here is an example::
>>> from sklearn.metrics import confusion_matrix
>>> y_true = [2, 0, 2, 2, 0, 1]
>>> y_pred = [0, 0, 2, 2, 0, 2]
>>> confusion_matrix(y_true, y_pred)
array([[2, 0, 0],
[0, 0, 1],
[1, 0, 2]])
:class:`ConfusionMatrixDisplay` can be used to visually represent a confusion
matrix as shown in the
:ref:`sphx_glr_auto_examples_model_selection_plot_confusion_matrix.py`
example, which creates the following figure:
.. image:: ../auto_examples/model_selection/images/sphx_glr_plot_confusion_matrix_001.png
:target: ../auto_examples/model_selection/plot_confusion_matrix.html
:scale: 75
:align: center
The parameter ``normalize`` allows to report ratios instead of counts. The
confusion matrix can be normalized in 3 different ways: ``'pred'``, ``'true'``,
and ``'all'`` which will divide the counts by the sum of each columns, rows, or
the entire matrix, respectively.
>>> y_true = [0, 0, 0, 1, 1, 1, 1, 1]
>>> y_pred = [0, 1, 0, 1, 0, 1, 0, 1]
>>> confusion_matrix(y_true, y_pred, normalize='all')
array([[0.25 , 0.125],
[0.25 , 0.375]])
For binary problems, we can get counts of true negatives, false positives,
false negatives and true positives as follows::
>>> y_true = [0, 0, 0, 1, 1, 1, 1, 1]
>>> y_pred = [0, 1, 0, 1, 0, 1, 0, 1]
>>> tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()
>>> tn, fp, fn, tp
(2, 1, 2, 3)
.. topic:: Example:
* See :ref:`sphx_glr_auto_examples_model_selection_plot_confusion_matrix.py`
for an example of using a confusion matrix to evaluate classifier output
quality.
* See :ref:`sphx_glr_auto_examples_classification_plot_digits_classification.py`
for an example of using a confusion matrix to classify
hand-written digits.
* See :ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py`
for an example of using a confusion matrix to classify text
documents.
.. _classification_report:
Classification report
----------------------
The :func:`classification_report` function builds a text report showing the
main classification metrics. Here is a small example with custom ``target_names``
and inferred labels::
>>> from sklearn.metrics import classification_report
>>> y_true = [0, 1, 2, 2, 0]
>>> y_pred = [0, 0, 2, 1, 0]
>>> target_names = ['class 0', 'class 1', 'class 2']
>>> print(classification_report(y_true, y_pred, target_names=target_names))
precision recall f1-score support
class 0 0.67 1.00 0.80 2
class 1 0.00 0.00 0.00 1
class 2 1.00 0.50 0.67 2
accuracy 0.60 5
macro avg 0.56 0.50 0.49 5
weighted avg 0.67 0.60 0.59 5
.. topic:: Example:
* See :ref:`sphx_glr_auto_examples_classification_plot_digits_classification.py`
for an example of classification report usage for
hand-written digits.
* See :ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py`
for an example of classification report usage for text
documents.
* See :ref:`sphx_glr_auto_examples_model_selection_plot_grid_search_digits.py`
for an example of classification report usage for
grid search with nested cross-validation.
.. _hamming_loss:
Hamming loss
-------------
The :func:`hamming_loss` computes the average Hamming loss or `Hamming
distance `_ between two sets
of samples.
If :math:`\hat{y}_j` is the predicted value for the :math:`j`-th label of
a given sample, :math:`y_j` is the corresponding true value, and
:math:`n_\text{labels}` is the number of classes or labels, then the
Hamming loss :math:`L_{Hamming}` between two samples is defined as:
.. math::
L_{Hamming}(y, \hat{y}) = \frac{1}{n_\text{labels}} \sum_{j=0}^{n_\text{labels} - 1} 1(\hat{y}_j \not= y_j)
where :math:`1(x)` is the `indicator function
`_. ::
>>> from sklearn.metrics import hamming_loss
>>> y_pred = [1, 2, 3, 4]
>>> y_true = [2, 2, 3, 4]
>>> hamming_loss(y_true, y_pred)
0.25
In the multilabel case with binary label indicators::
>>> hamming_loss(np.array([[0, 1], [1, 1]]), np.zeros((2, 2)))
0.75
.. note::
In multiclass classification, the Hamming loss corresponds to the Hamming
distance between ``y_true`` and ``y_pred`` which is similar to the
:ref:`zero_one_loss` function. However, while zero-one loss penalizes
prediction sets that do not strictly match true sets, the Hamming loss
penalizes individual labels. Thus the Hamming loss, upper bounded by the zero-one
loss, is always between zero and one, inclusive; and predicting a proper subset
or superset of the true labels will give a Hamming loss between
zero and one, exclusive.
.. _precision_recall_f_measure_metrics:
Precision, recall and F-measures
---------------------------------
Intuitively, `precision
`_ is the ability
of the classifier not to label as positive a sample that is negative, and
`recall `_ is the
ability of the classifier to find all the positive samples.
The `F-measure `_
(:math:`F_\beta` and :math:`F_1` measures) can be interpreted as a weighted
harmonic mean of the precision and recall. A
:math:`F_\beta` measure reaches its best value at 1 and its worst score at 0.
With :math:`\beta = 1`, :math:`F_\beta` and
:math:`F_1` are equivalent, and the recall and the precision are equally important.
The :func:`precision_recall_curve` computes a precision-recall curve
from the ground truth label and a score given by the classifier
by varying a decision threshold.
The :func:`average_precision_score` function computes the
`average precision `_
(AP) from prediction scores. The value is between 0 and 1 and higher is better.
AP is defined as
.. math::
\text{AP} = \sum_n (R_n - R_{n-1}) P_n
where :math:`P_n` and :math:`R_n` are the precision and recall at the
nth threshold. With random predictions, the AP is the fraction of positive
samples.
References [Manning2008]_ and [Everingham2010]_ present alternative variants of
AP that interpolate the precision-recall curve. Currently,
:func:`average_precision_score` does not implement any interpolated variant.
References [Davis2006]_ and [Flach2015]_ describe why a linear interpolation of
points on the precision-recall curve provides an overly-optimistic measure of
classifier performance. This linear interpolation is used when computing area
under the curve with the trapezoidal rule in :func:`auc`.
Several functions allow you to analyze the precision, recall and F-measures
score:
.. autosummary::
average_precision_score
f1_score
fbeta_score
precision_recall_curve
precision_recall_fscore_support
precision_score
recall_score
Note that the :func:`precision_recall_curve` function is restricted to the
binary case. The :func:`average_precision_score` function works only in
binary classification and multilabel indicator format.
The :func:`PredictionRecallDisplay.from_estimator` and
:func:`PredictionRecallDisplay.from_predictions` functions will plot the
precision-recall curve as follows.
.. image:: ../auto_examples/model_selection/images/sphx_glr_plot_precision_recall_001.png
:target: ../auto_examples/model_selection/plot_precision_recall.html#plot-the-precision-recall-curve
:scale: 75
:align: center
.. topic:: Examples:
* See :ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py`
for an example of :func:`f1_score` usage to classify text
documents.
* See :ref:`sphx_glr_auto_examples_model_selection_plot_grid_search_digits.py`
for an example of :func:`precision_score` and :func:`recall_score` usage
to estimate parameters using grid search with nested cross-validation.
* See :ref:`sphx_glr_auto_examples_model_selection_plot_precision_recall.py`
for an example of :func:`precision_recall_curve` usage to evaluate
classifier output quality.
.. topic:: References:
.. [Manning2008] C.D. Manning, P. Raghavan, H. Schütze, `Introduction to Information Retrieval
`_,
2008.
.. [Everingham2010] M. Everingham, L. Van Gool, C.K.I. Williams, J. Winn, A. Zisserman,
`The Pascal Visual Object Classes (VOC) Challenge
`_,
IJCV 2010.
.. [Davis2006] J. Davis, M. Goadrich, `The Relationship Between Precision-Recall and ROC Curves
`_,
ICML 2006.
.. [Flach2015] P.A. Flach, M. Kull, `Precision-Recall-Gain Curves: PR Analysis Done Right
`_,
NIPS 2015.
Binary classification
^^^^^^^^^^^^^^^^^^^^^
In a binary classification task, the terms ''positive'' and ''negative'' refer
to the classifier's prediction, and the terms ''true'' and ''false'' refer to
whether that prediction corresponds to the external judgment (sometimes known
as the ''observation''). Given these definitions, we can formulate the
following table:
+-------------------+------------------------------------------------+
| | Actual class (observation) |
+-------------------+---------------------+--------------------------+
| Predicted class | tp (true positive) | fp (false positive) |
| (expectation) | Correct result | Unexpected result |
| +---------------------+--------------------------+
| | fn (false negative) | tn (true negative) |
| | Missing result | Correct absence of result|
+-------------------+---------------------+--------------------------+
In this context, we can define the notions of precision, recall and F-measure:
.. math::
\text{precision} = \frac{tp}{tp + fp},
.. math::
\text{recall} = \frac{tp}{tp + fn},
.. math::
F_\beta = (1 + \beta^2) \frac{\text{precision} \times \text{recall}}{\beta^2 \text{precision} + \text{recall}}.
Here are some small examples in binary classification::
>>> from sklearn import metrics
>>> y_pred = [0, 1, 0, 0]
>>> y_true = [0, 1, 0, 1]
>>> metrics.precision_score(y_true, y_pred)
1.0
>>> metrics.recall_score(y_true, y_pred)
0.5
>>> metrics.f1_score(y_true, y_pred)
0.66...
>>> metrics.fbeta_score(y_true, y_pred, beta=0.5)
0.83...
>>> metrics.fbeta_score(y_true, y_pred, beta=1)
0.66...
>>> metrics.fbeta_score(y_true, y_pred, beta=2)
0.55...
>>> metrics.precision_recall_fscore_support(y_true, y_pred, beta=0.5)
(array([0.66..., 1. ]), array([1. , 0.5]), array([0.71..., 0.83...]), array([2, 2]))
>>> import numpy as np
>>> from sklearn.metrics import precision_recall_curve
>>> from sklearn.metrics import average_precision_score
>>> y_true = np.array([0, 0, 1, 1])
>>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> precision, recall, threshold = precision_recall_curve(y_true, y_scores)
>>> precision
array([0.66..., 0.5 , 1. , 1. ])
>>> recall
array([1. , 0.5, 0.5, 0. ])
>>> threshold
array([0.35, 0.4 , 0.8 ])
>>> average_precision_score(y_true, y_scores)
0.83...
Multiclass and multilabel classification
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In multiclass and multilabel classification task, the notions of precision,
recall, and F-measures can be applied to each label independently.
There are a few ways to combine results across labels,
specified by the ``average`` argument to the
:func:`average_precision_score` (multilabel only), :func:`f1_score`,
:func:`fbeta_score`, :func:`precision_recall_fscore_support`,
:func:`precision_score` and :func:`recall_score` functions, as described
:ref:`above `. Note that if all labels are included, "micro"-averaging
in a multiclass setting will produce precision, recall and :math:`F`
that are all identical to accuracy. Also note that "weighted" averaging may
produce an F-score that is not between precision and recall.
To make this more explicit, consider the following notation:
* :math:`y` the set of *predicted* :math:`(sample, label)` pairs
* :math:`\hat{y}` the set of *true* :math:`(sample, label)` pairs
* :math:`L` the set of labels
* :math:`S` the set of samples
* :math:`y_s` the subset of :math:`y` with sample :math:`s`,
i.e. :math:`y_s := \left\{(s', l) \in y | s' = s\right\}`
* :math:`y_l` the subset of :math:`y` with label :math:`l`
* similarly, :math:`\hat{y}_s` and :math:`\hat{y}_l` are subsets of
:math:`\hat{y}`
* :math:`P(A, B) := \frac{\left| A \cap B \right|}{\left|A\right|}` for some
sets :math:`A` and :math:`B`
* :math:`R(A, B) := \frac{\left| A \cap B \right|}{\left|B\right|}`
(Conventions vary on handling :math:`B = \emptyset`; this implementation uses
:math:`R(A, B):=0`, and similar for :math:`P`.)
* :math:`F_\beta(A, B) := \left(1 + \beta^2\right) \frac{P(A, B) \times R(A, B)}{\beta^2 P(A, B) + R(A, B)}`
Then the metrics are defined as:
+---------------+------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------+
|``average`` | Precision | Recall | F\_beta |
+===============+==================================================================================================================+==================================================================================================================+======================================================================================================================+
|``"micro"`` | :math:`P(y, \hat{y})` | :math:`R(y, \hat{y})` | :math:`F_\beta(y, \hat{y})` |
+---------------+------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------+
|``"samples"`` | :math:`\frac{1}{\left|S\right|} \sum_{s \in S} P(y_s, \hat{y}_s)` | :math:`\frac{1}{\left|S\right|} \sum_{s \in S} R(y_s, \hat{y}_s)` | :math:`\frac{1}{\left|S\right|} \sum_{s \in S} F_\beta(y_s, \hat{y}_s)` |
+---------------+------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------+
|``"macro"`` | :math:`\frac{1}{\left|L\right|} \sum_{l \in L} P(y_l, \hat{y}_l)` | :math:`\frac{1}{\left|L\right|} \sum_{l \in L} R(y_l, \hat{y}_l)` | :math:`\frac{1}{\left|L\right|} \sum_{l \in L} F_\beta(y_l, \hat{y}_l)` |
+---------------+------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------+
|``"weighted"`` | :math:`\frac{1}{\sum_{l \in L} \left|\hat{y}_l\right|} \sum_{l \in L} \left|\hat{y}_l\right| P(y_l, \hat{y}_l)` | :math:`\frac{1}{\sum_{l \in L} \left|\hat{y}_l\right|} \sum_{l \in L} \left|\hat{y}_l\right| R(y_l, \hat{y}_l)` | :math:`\frac{1}{\sum_{l \in L} \left|\hat{y}_l\right|} \sum_{l \in L} \left|\hat{y}_l\right| F_\beta(y_l, \hat{y}_l)`|
+---------------+------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------+
|``None`` | :math:`\langle P(y_l, \hat{y}_l) | l \in L \rangle` | :math:`\langle R(y_l, \hat{y}_l) | l \in L \rangle` | :math:`\langle F_\beta(y_l, \hat{y}_l) | l \in L \rangle` |
+---------------+------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------+
>>> from sklearn import metrics
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> metrics.precision_score(y_true, y_pred, average='macro')
0.22...
>>> metrics.recall_score(y_true, y_pred, average='micro')
0.33...
>>> metrics.f1_score(y_true, y_pred, average='weighted')
0.26...
>>> metrics.fbeta_score(y_true, y_pred, average='macro', beta=0.5)
0.23...
>>> metrics.precision_recall_fscore_support(y_true, y_pred, beta=0.5, average=None)
(array([0.66..., 0. , 0. ]), array([1., 0., 0.]), array([0.71..., 0. , 0. ]), array([2, 2, 2]...))
For multiclass classification with a "negative class", it is possible to exclude some labels:
>>> metrics.recall_score(y_true, y_pred, labels=[1, 2], average='micro')
... # excluding 0, no labels were correctly recalled
0.0
Similarly, labels not present in the data sample may be accounted for in macro-averaging.
>>> metrics.precision_score(y_true, y_pred, labels=[0, 1, 2, 3], average='macro')
0.166...
.. _jaccard_similarity_score:
Jaccard similarity coefficient score
-------------------------------------
The :func:`jaccard_score` function computes the average of `Jaccard similarity
coefficients `_, also called the
Jaccard index, between pairs of label sets.
The Jaccard similarity coefficient of the :math:`i`-th samples,
with a ground truth label set :math:`y_i` and predicted label set
:math:`\hat{y}_i`, is defined as
.. math::
J(y_i, \hat{y}_i) = \frac{|y_i \cap \hat{y}_i|}{|y_i \cup \hat{y}_i|}.
:func:`jaccard_score` works like :func:`precision_recall_fscore_support` as a
naively set-wise measure applying natively to binary targets, and extended to
apply to multilabel and multiclass through the use of `average` (see
:ref:`above `).
In the binary case::
>>> import numpy as np
>>> from sklearn.metrics import jaccard_score
>>> y_true = np.array([[0, 1, 1],
... [1, 1, 0]])
>>> y_pred = np.array([[1, 1, 1],
... [1, 0, 0]])
>>> jaccard_score(y_true[0], y_pred[0])
0.6666...
In the multilabel case with binary label indicators::
>>> jaccard_score(y_true, y_pred, average='samples')
0.5833...
>>> jaccard_score(y_true, y_pred, average='macro')
0.6666...
>>> jaccard_score(y_true, y_pred, average=None)
array([0.5, 0.5, 1. ])
Multiclass problems are binarized and treated like the corresponding
multilabel problem::
>>> y_pred = [0, 2, 1, 2]
>>> y_true = [0, 1, 2, 2]
>>> jaccard_score(y_true, y_pred, average=None)
array([1. , 0. , 0.33...])
>>> jaccard_score(y_true, y_pred, average='macro')
0.44...
>>> jaccard_score(y_true, y_pred, average='micro')
0.33...
.. _hinge_loss:
Hinge loss
----------
The :func:`hinge_loss` function computes the average distance between
the model and the data using
`hinge loss `_, a one-sided metric
that considers only prediction errors. (Hinge
loss is used in maximal margin classifiers such as support vector machines.)
If the labels are encoded with +1 and -1, :math:`y`: is the true
value, and :math:`w` is the predicted decisions as output by
``decision_function``, then the hinge loss is defined as:
.. math::
L_\text{Hinge}(y, w) = \max\left\{1 - wy, 0\right\} = \left|1 - wy\right|_+
If there are more than two labels, :func:`hinge_loss` uses a multiclass variant
due to Crammer & Singer.
`Here `_ is
the paper describing it.
If :math:`y_w` is the predicted decision for true label and :math:`y_t` is the
maximum of the predicted decisions for all other labels, where predicted
decisions are output by decision function, then multiclass hinge loss is defined
by:
.. math::
L_\text{Hinge}(y_w, y_t) = \max\left\{1 + y_t - y_w, 0\right\}
Here a small example demonstrating the use of the :func:`hinge_loss` function
with a svm classifier in a binary class problem::
>>> from sklearn import svm
>>> from sklearn.metrics import hinge_loss
>>> X = [[0], [1]]
>>> y = [-1, 1]
>>> est = svm.LinearSVC(random_state=0)
>>> est.fit(X, y)
LinearSVC(random_state=0)
>>> pred_decision = est.decision_function([[-2], [3], [0.5]])
>>> pred_decision
array([-2.18..., 2.36..., 0.09...])
>>> hinge_loss([-1, 1, 1], pred_decision)
0.3...
Here is an example demonstrating the use of the :func:`hinge_loss` function
with a svm classifier in a multiclass problem::
>>> X = np.array([[0], [1], [2], [3]])
>>> Y = np.array([0, 1, 2, 3])
>>> labels = np.array([0, 1, 2, 3])
>>> est = svm.LinearSVC()
>>> est.fit(X, Y)
LinearSVC()
>>> pred_decision = est.decision_function([[-1], [2], [3]])
>>> y_true = [0, 2, 3]
>>> hinge_loss(y_true, pred_decision, labels=labels)
0.56...
.. _log_loss:
Log loss
--------
Log loss, also called logistic regression loss or
cross-entropy loss, is defined on probability estimates. It is
commonly used in (multinomial) logistic regression and neural networks, as well
as in some variants of expectation-maximization, and can be used to evaluate the
probability outputs (``predict_proba``) of a classifier instead of its
discrete predictions.
For binary classification with a true label :math:`y \in \{0,1\}`
and a probability estimate :math:`p = \operatorname{Pr}(y = 1)`,
the log loss per sample is the negative log-likelihood
of the classifier given the true label:
.. math::
L_{\log}(y, p) = -\log \operatorname{Pr}(y|p) = -(y \log (p) + (1 - y) \log (1 - p))
This extends to the multiclass case as follows.
Let the true labels for a set of samples
be encoded as a 1-of-K binary indicator matrix :math:`Y`,
i.e., :math:`y_{i,k} = 1` if sample :math:`i` has label :math:`k`
taken from a set of :math:`K` labels.
Let :math:`P` be a matrix of probability estimates,
with :math:`p_{i,k} = \operatorname{Pr}(y_{i,k} = 1)`.
Then the log loss of the whole set is
.. math::
L_{\log}(Y, P) = -\log \operatorname{Pr}(Y|P) = - \frac{1}{N} \sum_{i=0}^{N-1} \sum_{k=0}^{K-1} y_{i,k} \log p_{i,k}
To see how this generalizes the binary log loss given above,
note that in the binary case,
:math:`p_{i,0} = 1 - p_{i,1}` and :math:`y_{i,0} = 1 - y_{i,1}`,
so expanding the inner sum over :math:`y_{i,k} \in \{0,1\}`
gives the binary log loss.
The :func:`log_loss` function computes log loss given a list of ground-truth
labels and a probability matrix, as returned by an estimator's ``predict_proba``
method.
>>> from sklearn.metrics import log_loss
>>> y_true = [0, 0, 1, 1]
>>> y_pred = [[.9, .1], [.8, .2], [.3, .7], [.01, .99]]
>>> log_loss(y_true, y_pred)
0.1738...
The first ``[.9, .1]`` in ``y_pred`` denotes 90% probability that the first
sample has label 0. The log loss is non-negative.
.. _matthews_corrcoef:
Matthews correlation coefficient
---------------------------------
The :func:`matthews_corrcoef` function computes the
`Matthew's correlation coefficient (MCC) `_
for binary classes. Quoting Wikipedia:
"The Matthews correlation coefficient is used in machine learning as a
measure of the quality of binary (two-class) classifications. It takes
into account true and false positives and negatives and is generally
regarded as a balanced measure which can be used even if the classes are
of very different sizes. The MCC is in essence a correlation coefficient
value between -1 and +1. A coefficient of +1 represents a perfect
prediction, 0 an average random prediction and -1 an inverse prediction.
The statistic is also known as the phi coefficient."
In the binary (two-class) case, :math:`tp`, :math:`tn`, :math:`fp` and
:math:`fn` are respectively the number of true positives, true negatives, false
positives and false negatives, the MCC is defined as
.. math::
MCC = \frac{tp \times tn - fp \times fn}{\sqrt{(tp + fp)(tp + fn)(tn + fp)(tn + fn)}}.
In the multiclass case, the Matthews correlation coefficient can be `defined
`_ in terms of a
:func:`confusion_matrix` :math:`C` for :math:`K` classes. To simplify the
definition consider the following intermediate variables:
* :math:`t_k=\sum_{i}^{K} C_{ik}` the number of times class :math:`k` truly occurred,
* :math:`p_k=\sum_{i}^{K} C_{ki}` the number of times class :math:`k` was predicted,
* :math:`c=\sum_{k}^{K} C_{kk}` the total number of samples correctly predicted,
* :math:`s=\sum_{i}^{K} \sum_{j}^{K} C_{ij}` the total number of samples.
Then the multiclass MCC is defined as:
.. math::
MCC = \frac{
c \times s - \sum_{k}^{K} p_k \times t_k
}{\sqrt{
(s^2 - \sum_{k}^{K} p_k^2) \times
(s^2 - \sum_{k}^{K} t_k^2)
}}
When there are more than two labels, the value of the MCC will no longer range
between -1 and +1. Instead the minimum value will be somewhere between -1 and 0
depending on the number and distribution of ground true labels. The maximum
value is always +1.
Here is a small example illustrating the usage of the :func:`matthews_corrcoef`
function:
>>> from sklearn.metrics import matthews_corrcoef
>>> y_true = [+1, +1, +1, -1]
>>> y_pred = [+1, -1, +1, +1]
>>> matthews_corrcoef(y_true, y_pred)
-0.33...
.. _multilabel_confusion_matrix:
Multi-label confusion matrix
----------------------------
The :func:`multilabel_confusion_matrix` function computes class-wise (default)
or sample-wise (samplewise=True) multilabel confusion matrix to evaluate
the accuracy of a classification. multilabel_confusion_matrix also treats
multiclass data as if it were multilabel, as this is a transformation commonly
applied to evaluate multiclass problems with binary classification metrics
(such as precision, recall, etc.).
When calculating class-wise multilabel confusion matrix :math:`C`, the
count of true negatives for class :math:`i` is :math:`C_{i,0,0}`, false
negatives is :math:`C_{i,1,0}`, true positives is :math:`C_{i,1,1}`
and false positives is :math:`C_{i,0,1}`.
Here is an example demonstrating the use of the
:func:`multilabel_confusion_matrix` function with
:term:`multilabel indicator matrix` input::
>>> import numpy as np
>>> from sklearn.metrics import multilabel_confusion_matrix
>>> y_true = np.array([[1, 0, 1],
... [0, 1, 0]])
>>> y_pred = np.array([[1, 0, 0],
... [0, 1, 1]])
>>> multilabel_confusion_matrix(y_true, y_pred)
array([[[1, 0],
[0, 1]],
[[1, 0],
[0, 1]],
[[0, 1],
[1, 0]]])
Or a confusion matrix can be constructed for each sample's labels:
>>> multilabel_confusion_matrix(y_true, y_pred, samplewise=True)
array([[[1, 0],
[1, 1]],
[[1, 1],
[0, 1]]])
Here is an example demonstrating the use of the
:func:`multilabel_confusion_matrix` function with
:term:`multiclass` input::
>>> y_true = ["cat", "ant", "cat", "cat", "ant", "bird"]
>>> y_pred = ["ant", "ant", "cat", "cat", "ant", "cat"]
>>> multilabel_confusion_matrix(y_true, y_pred,
... labels=["ant", "bird", "cat"])
array([[[3, 1],
[0, 2]],
[[5, 0],
[1, 0]],
[[2, 1],
[1, 2]]])
Here are some examples demonstrating the use of the
:func:`multilabel_confusion_matrix` function to calculate recall
(or sensitivity), specificity, fall out and miss rate for each class in a
problem with multilabel indicator matrix input.
Calculating
`recall `__
(also called the true positive rate or the sensitivity) for each class::
>>> y_true = np.array([[0, 0, 1],
... [0, 1, 0],
... [1, 1, 0]])
>>> y_pred = np.array([[0, 1, 0],
... [0, 0, 1],
... [1, 1, 0]])
>>> mcm = multilabel_confusion_matrix(y_true, y_pred)
>>> tn = mcm[:, 0, 0]
>>> tp = mcm[:, 1, 1]
>>> fn = mcm[:, 1, 0]
>>> fp = mcm[:, 0, 1]
>>> tp / (tp + fn)
array([1. , 0.5, 0. ])
Calculating
`specificity `__
(also called the true negative rate) for each class::
>>> tn / (tn + fp)
array([1. , 0. , 0.5])
Calculating `fall out `__
(also called the false positive rate) for each class::
>>> fp / (fp + tn)
array([0. , 1. , 0.5])
Calculating `miss rate
`__
(also called the false negative rate) for each class::
>>> fn / (fn + tp)
array([0. , 0.5, 1. ])
.. _roc_metrics:
Receiver operating characteristic (ROC)
---------------------------------------
The function :func:`roc_curve` computes the
`receiver operating characteristic curve, or ROC curve `_.
Quoting Wikipedia :
"A receiver operating characteristic (ROC), or simply ROC curve, is a
graphical plot which illustrates the performance of a binary classifier
system as its discrimination threshold is varied. It is created by plotting
the fraction of true positives out of the positives (TPR = true positive
rate) vs. the fraction of false positives out of the negatives (FPR = false
positive rate), at various threshold settings. TPR is also known as
sensitivity, and FPR is one minus the specificity or true negative rate."
This function requires the true binary
value and the target scores, which can either be probability estimates of the
positive class, confidence values, or binary decisions.
Here is a small example of how to use the :func:`roc_curve` function::
>>> import numpy as np
>>> from sklearn.metrics import roc_curve
>>> y = np.array([1, 1, 2, 2])
>>> scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> fpr, tpr, thresholds = roc_curve(y, scores, pos_label=2)
>>> fpr
array([0. , 0. , 0.5, 0.5, 1. ])
>>> tpr
array([0. , 0.5, 0.5, 1. , 1. ])
>>> thresholds
array([1.8 , 0.8 , 0.4 , 0.35, 0.1 ])
This figure shows an example of such an ROC curve:
.. image:: ../auto_examples/model_selection/images/sphx_glr_plot_roc_001.png
:target: ../auto_examples/model_selection/plot_roc.html
:scale: 75
:align: center
The :func:`roc_auc_score` function computes the area under the receiver
operating characteristic (ROC) curve, which is also denoted by
AUC or AUROC. By computing the
area under the roc curve, the curve information is summarized in one number.
For more information see the `Wikipedia article on AUC
`_.
Compared to metrics such as the subset accuracy, the Hamming loss, or the
F1 score, ROC doesn't require optimizing a threshold for each label.
.. _roc_auc_binary:
Binary case
^^^^^^^^^^^
In the **binary case**, you can either provide the probability estimates, using
the `classifier.predict_proba()` method, or the non-thresholded decision values
given by the `classifier.decision_function()` method. In the case of providing
the probability estimates, the probability of the class with the
"greater label" should be provided. The "greater label" corresponds to
`classifier.classes_[1]` and thus `classifier.predict_proba(X)[:, 1]`.
Therefore, the `y_score` parameter is of size (n_samples,).
>>> from sklearn.datasets import load_breast_cancer
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.metrics import roc_auc_score
>>> X, y = load_breast_cancer(return_X_y=True)
>>> clf = LogisticRegression(solver="liblinear").fit(X, y)
>>> clf.classes_
array([0, 1])
We can use the probability estimates corresponding to `clf.classes_[1]`.
>>> y_score = clf.predict_proba(X)[:, 1]
>>> roc_auc_score(y, y_score)
0.99...
Otherwise, we can use the non-thresholded decision values
>>> roc_auc_score(y, clf.decision_function(X))
0.99...
.. _roc_auc_multiclass:
Multi-class case
^^^^^^^^^^^^^^^^
The :func:`roc_auc_score` function can also be used in **multi-class
classification**. Two averaging strategies are currently supported: the
one-vs-one algorithm computes the average of the pairwise ROC AUC scores, and
the one-vs-rest algorithm computes the average of the ROC AUC scores for each
class against all other classes. In both cases, the predicted labels are
provided in an array with values from 0 to ``n_classes``, and the scores
correspond to the probability estimates that a sample belongs to a particular
class. The OvO and OvR algorithms support weighting uniformly
(``average='macro'``) and by prevalence (``average='weighted'``).
**One-vs-one Algorithm**: Computes the average AUC of all possible pairwise
combinations of classes. [HT2001]_ defines a multiclass AUC metric weighted
uniformly:
.. math::
\frac{1}{c(c-1)}\sum_{j=1}^{c}\sum_{k > j}^c (\text{AUC}(j | k) +
\text{AUC}(k | j))
where :math:`c` is the number of classes and :math:`\text{AUC}(j | k)` is the
AUC with class :math:`j` as the positive class and class :math:`k` as the
negative class. In general,
:math:`\text{AUC}(j | k) \neq \text{AUC}(k | j))` in the multiclass
case. This algorithm is used by setting the keyword argument ``multiclass``
to ``'ovo'`` and ``average`` to ``'macro'``.
The [HT2001]_ multiclass AUC metric can be extended to be weighted by the
prevalence:
.. math::
\frac{1}{c(c-1)}\sum_{j=1}^{c}\sum_{k > j}^c p(j \cup k)(
\text{AUC}(j | k) + \text{AUC}(k | j))
where :math:`c` is the number of classes. This algorithm is used by setting
the keyword argument ``multiclass`` to ``'ovo'`` and ``average`` to
``'weighted'``. The ``'weighted'`` option returns a prevalence-weighted average
as described in [FC2009]_.
**One-vs-rest Algorithm**: Computes the AUC of each class against the rest
[PD2000]_. The algorithm is functionally the same as the multilabel case. To
enable this algorithm set the keyword argument ``multiclass`` to ``'ovr'``.
Like OvO, OvR supports two types of averaging: ``'macro'`` [F2006]_ and
``'weighted'`` [F2001]_.
In applications where a high false positive rate is not tolerable the parameter
``max_fpr`` of :func:`roc_auc_score` can be used to summarize the ROC curve up
to the given limit.
.. image:: ../auto_examples/model_selection/images/sphx_glr_plot_roc_002.png
:target: ../auto_examples/model_selection/plot_roc.html
:scale: 75
:align: center
.. _roc_auc_multilabel:
Multi-label case
^^^^^^^^^^^^^^^^
In **multi-label classification**, the :func:`roc_auc_score` function is
extended by averaging over the labels as :ref:`above `. In this case,
you should provide a `y_score` of shape `(n_samples, n_classes)`. Thus, when
using the probability estimates, one needs to select the probability of the
class with the greater label for each output.
>>> from sklearn.datasets import make_multilabel_classification
>>> from sklearn.multioutput import MultiOutputClassifier
>>> X, y = make_multilabel_classification(random_state=0)
>>> inner_clf = LogisticRegression(solver="liblinear", random_state=0)
>>> clf = MultiOutputClassifier(inner_clf).fit(X, y)
>>> y_score = np.transpose([y_pred[:, 1] for y_pred in clf.predict_proba(X)])
>>> roc_auc_score(y, y_score, average=None)
array([0.82..., 0.86..., 0.94..., 0.85... , 0.94...])
And the decision values do not require such processing.
>>> from sklearn.linear_model import RidgeClassifierCV
>>> clf = RidgeClassifierCV().fit(X, y)
>>> y_score = clf.decision_function(X)
>>> roc_auc_score(y, y_score, average=None)
array([0.81..., 0.84... , 0.93..., 0.87..., 0.94...])
.. topic:: Examples:
* See :ref:`sphx_glr_auto_examples_model_selection_plot_roc.py`
for an example of using ROC to
evaluate the quality of the output of a classifier.
* See :ref:`sphx_glr_auto_examples_model_selection_plot_roc_crossval.py`
for an example of using ROC to
evaluate classifier output quality, using cross-validation.
* See :ref:`sphx_glr_auto_examples_applications_plot_species_distribution_modeling.py`
for an example of using ROC to
model species distribution.
.. topic:: References:
.. [HT2001] Hand, D.J. and Till, R.J., (2001). `A simple generalisation
of the area under the ROC curve for multiple class classification problems.
`_
Machine learning, 45(2), pp.171-186.
.. [FC2009] Ferri, Cèsar & Hernandez-Orallo, Jose & Modroiu, R. (2009).
`An Experimental Comparison of Performance Measures for Classification.
`_
Pattern Recognition Letters. 30. 27-38.
.. [PD2000] Provost, F., Domingos, P. (2000). Well-trained PETs: Improving
probability estimation trees (Section 6.2), CeDER Working Paper #IS-00-04,
Stern School of Business, New York University.
.. [F2006] Fawcett, T., 2006. `An introduction to ROC analysis.
`_
Pattern Recognition Letters, 27(8), pp. 861-874.
.. [F2001] Fawcett, T., 2001. `Using rule sets to maximize
ROC performance `_
In Data Mining, 2001.
Proceedings IEEE International Conference, pp. 131-138.
.. _det_curve:
Detection error tradeoff (DET)
------------------------------
The function :func:`det_curve` computes the
detection error tradeoff curve (DET) curve [WikipediaDET2017]_.
Quoting Wikipedia:
"A detection error tradeoff (DET) graph is a graphical plot of error rates
for binary classification systems, plotting false reject rate vs. false
accept rate. The x- and y-axes are scaled non-linearly by their standard
normal deviates (or just by logarithmic transformation), yielding tradeoff
curves that are more linear than ROC curves, and use most of the image area
to highlight the differences of importance in the critical operating region."
DET curves are a variation of receiver operating characteristic (ROC) curves
where False Negative Rate is plotted on the y-axis instead of True Positive
Rate.
DET curves are commonly plotted in normal deviate scale by transformation with
:math:`\phi^{-1}` (with :math:`\phi` being the cumulative distribution
function).
The resulting performance curves explicitly visualize the tradeoff of error
types for given classification algorithms.
See [Martin1997]_ for examples and further motivation.
This figure compares the ROC and DET curves of two example classifiers on the
same classification task:
.. image:: ../auto_examples/model_selection/images/sphx_glr_plot_det_001.png
:target: ../auto_examples/model_selection/plot_det.html
:scale: 75
:align: center
**Properties:**
* DET curves form a linear curve in normal deviate scale if the detection
scores are normally (or close-to normally) distributed.
It was shown by [Navratil2007]_ that the reverse it not necessarily true and
even more general distributions are able produce linear DET curves.
* The normal deviate scale transformation spreads out the points such that a
comparatively larger space of plot is occupied.
Therefore curves with similar classification performance might be easier to
distinguish on a DET plot.
* With False Negative Rate being "inverse" to True Positive Rate the point
of perfection for DET curves is the origin (in contrast to the top left
corner for ROC curves).
**Applications and limitations:**
DET curves are intuitive to read and hence allow quick visual assessment of a
classifier's performance.
Additionally DET curves can be consulted for threshold analysis and operating
point selection.
This is particularly helpful if a comparison of error types is required.
On the other hand DET curves do not provide their metric as a single number.
Therefore for either automated evaluation or comparison to other
classification tasks metrics like the derived area under ROC curve might be
better suited.
.. topic:: Examples:
* See :ref:`sphx_glr_auto_examples_model_selection_plot_det.py`
for an example comparison between receiver operating characteristic (ROC)
curves and Detection error tradeoff (DET) curves.
.. topic:: References:
.. [WikipediaDET2017] Wikipedia contributors. Detection error tradeoff.
Wikipedia, The Free Encyclopedia. September 4, 2017, 23:33 UTC.
Available at: https://en.wikipedia.org/w/index.php?title=Detection_error_tradeoff&oldid=798982054.
Accessed February 19, 2018.
.. [Martin1997] A. Martin, G. Doddington, T. Kamm, M. Ordowski, and M. Przybocki,
`The DET Curve in Assessment of Detection Task Performance
`_,
NIST 1997.
.. [Navratil2007] J. Navractil and D. Klusacek,
"`On Linear DETs,
`_"
2007 IEEE International Conference on Acoustics,
Speech and Signal Processing - ICASSP '07, Honolulu,
HI, 2007, pp. IV-229-IV-232.
.. _zero_one_loss:
Zero one loss
--------------
The :func:`zero_one_loss` function computes the sum or the average of the 0-1
classification loss (:math:`L_{0-1}`) over :math:`n_{\text{samples}}`. By
default, the function normalizes over the sample. To get the sum of the
:math:`L_{0-1}`, set ``normalize`` to ``False``.
In multilabel classification, the :func:`zero_one_loss` scores a subset as
one if its labels strictly match the predictions, and as a zero if there
are any errors. By default, the function returns the percentage of imperfectly
predicted subsets. To get the count of such subsets instead, set
``normalize`` to ``False``
If :math:`\hat{y}_i` is the predicted value of
the :math:`i`-th sample and :math:`y_i` is the corresponding true value,
then the 0-1 loss :math:`L_{0-1}` is defined as:
.. math::
L_{0-1}(y_i, \hat{y}_i) = 1(\hat{y}_i \not= y_i)
where :math:`1(x)` is the `indicator function
`_.
>>> from sklearn.metrics import zero_one_loss
>>> y_pred = [1, 2, 3, 4]
>>> y_true = [2, 2, 3, 4]
>>> zero_one_loss(y_true, y_pred)
0.25
>>> zero_one_loss(y_true, y_pred, normalize=False)
1
In the multilabel case with binary label indicators, where the first label
set [0,1] has an error::
>>> zero_one_loss(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
0.5
>>> zero_one_loss(np.array([[0, 1], [1, 1]]), np.ones((2, 2)), normalize=False)
1
.. topic:: Example:
* See :ref:`sphx_glr_auto_examples_feature_selection_plot_rfe_with_cross_validation.py`
for an example of zero one loss usage to perform recursive feature
elimination with cross-validation.
.. _brier_score_loss:
Brier score loss
----------------
The :func:`brier_score_loss` function computes the
`Brier score `_
for binary classes [Brier1950]_. Quoting Wikipedia:
"The Brier score is a proper score function that measures the accuracy of
probabilistic predictions. It is applicable to tasks in which predictions
must assign probabilities to a set of mutually exclusive discrete outcomes."
This function returns the mean squared error of the actual outcome
:math:`y \in \{0,1\}` and the predicted probability estimate
:math:`p = \operatorname{Pr}(y = 1)` (:term:`predict_proba`) as outputted by:
.. math::
BS = \frac{1}{n_{\text{samples}}} \sum_{i=0}^{n_{\text{samples}} - 1}(y_i - p_i)^2
The Brier score loss is also between 0 to 1 and the lower the value (the mean
square difference is smaller), the more accurate the prediction is.
Here is a small example of usage of this function::
>>> import numpy as np
>>> from sklearn.metrics import brier_score_loss
>>> y_true = np.array([0, 1, 1, 0])
>>> y_true_categorical = np.array(["spam", "ham", "ham", "spam"])
>>> y_prob = np.array([0.1, 0.9, 0.8, 0.4])
>>> y_pred = np.array([0, 1, 1, 0])
>>> brier_score_loss(y_true, y_prob)
0.055
>>> brier_score_loss(y_true, 1 - y_prob, pos_label=0)
0.055
>>> brier_score_loss(y_true_categorical, y_prob, pos_label="ham")
0.055
>>> brier_score_loss(y_true, y_prob > 0.5)
0.0
The Brier score can be used to assess how well a classifier is calibrated.
However, a lower Brier score loss does not always mean a better calibration.
This is because, by analogy with the bias-variance decomposition of the mean
squared error, the Brier score loss can be decomposed as the sum of calibration
loss and refinement loss [Bella2012]_. Calibration loss is defined as the mean
squared deviation from empirical probabilities derived from the slope of ROC
segments. Refinement loss can be defined as the expected optimal loss as
measured by the area under the optimal cost curve. Refinement loss can change
independently from calibration loss, thus a lower Brier score loss does not
necessarily mean a better calibrated model. "Only when refinement loss remains
the same does a lower Brier score loss always mean better calibration"
[Bella2012]_, [Flach2008]_.
.. topic:: Example:
* See :ref:`sphx_glr_auto_examples_calibration_plot_calibration.py`
for an example of Brier score loss usage to perform probability
calibration of classifiers.
.. topic:: References:
.. [Brier1950] G. Brier, `Verification of forecasts expressed in terms of
probability
`_,
Monthly weather review 78.1 (1950)
.. [Bella2012] Bella, Ferri, Hernández-Orallo, and Ramírez-Quintana
`"Calibration of Machine Learning Models"
`_
in Khosrow-Pour, M. "Machine learning: concepts, methodologies, tools
and applications." Hershey, PA: Information Science Reference (2012).
.. [Flach2008] Flach, Peter, and Edson Matsubara. `"On classification, ranking,
and probability estimation." `_
Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum fr Informatik (2008).
.. _multilabel_ranking_metrics:
Multilabel ranking metrics
==========================
.. currentmodule:: sklearn.metrics
In multilabel learning, each sample can have any number of ground truth labels
associated with it. The goal is to give high scores and better rank to
the ground truth labels.
.. _coverage_error:
Coverage error
--------------
The :func:`coverage_error` function computes the average number of labels that
have to be included in the final prediction such that all true labels
are predicted. This is useful if you want to know how many top-scored-labels
you have to predict in average without missing any true one. The best value
of this metrics is thus the average number of true labels.
.. note::
Our implementation's score is 1 greater than the one given in Tsoumakas
et al., 2010. This extends it to handle the degenerate case in which an
instance has 0 true labels.
Formally, given a binary indicator matrix of the ground truth labels
:math:`y \in \left\{0, 1\right\}^{n_\text{samples} \times n_\text{labels}}` and the
score associated with each label
:math:`\hat{f} \in \mathbb{R}^{n_\text{samples} \times n_\text{labels}}`,
the coverage is defined as
.. math::
coverage(y, \hat{f}) = \frac{1}{n_{\text{samples}}}
\sum_{i=0}^{n_{\text{samples}} - 1} \max_{j:y_{ij} = 1} \text{rank}_{ij}
with :math:`\text{rank}_{ij} = \left|\left\{k: \hat{f}_{ik} \geq \hat{f}_{ij} \right\}\right|`.
Given the rank definition, ties in ``y_scores`` are broken by giving the
maximal rank that would have been assigned to all tied values.
Here is a small example of usage of this function::
>>> import numpy as np
>>> from sklearn.metrics import coverage_error
>>> y_true = np.array([[1, 0, 0], [0, 0, 1]])
>>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]])
>>> coverage_error(y_true, y_score)
2.5
.. _label_ranking_average_precision:
Label ranking average precision
-------------------------------
The :func:`label_ranking_average_precision_score` function
implements label ranking average precision (LRAP). This metric is linked to
the :func:`average_precision_score` function, but is based on the notion of
label ranking instead of precision and recall.
Label ranking average precision (LRAP) averages over the samples the answer to
the following question: for each ground truth label, what fraction of
higher-ranked labels were true labels? This performance measure will be higher
if you are able to give better rank to the labels associated with each sample.
The obtained score is always strictly greater than 0, and the best value is 1.
If there is exactly one relevant label per sample, label ranking average
precision is equivalent to the `mean
reciprocal rank `_.
Formally, given a binary indicator matrix of the ground truth labels
:math:`y \in \left\{0, 1\right\}^{n_\text{samples} \times n_\text{labels}}`
and the score associated with each label
:math:`\hat{f} \in \mathbb{R}^{n_\text{samples} \times n_\text{labels}}`,
the average precision is defined as
.. math::
LRAP(y, \hat{f}) = \frac{1}{n_{\text{samples}}}
\sum_{i=0}^{n_{\text{samples}} - 1} \frac{1}{||y_i||_0}
\sum_{j:y_{ij} = 1} \frac{|\mathcal{L}_{ij}|}{\text{rank}_{ij}}
where
:math:`\mathcal{L}_{ij} = \left\{k: y_{ik} = 1, \hat{f}_{ik} \geq \hat{f}_{ij} \right\}`,
:math:`\text{rank}_{ij} = \left|\left\{k: \hat{f}_{ik} \geq \hat{f}_{ij} \right\}\right|`,
:math:`|\cdot|` computes the cardinality of the set (i.e., the number of
elements in the set), and :math:`||\cdot||_0` is the :math:`\ell_0` "norm"
(which computes the number of nonzero elements in a vector).
Here is a small example of usage of this function::
>>> import numpy as np
>>> from sklearn.metrics import label_ranking_average_precision_score
>>> y_true = np.array([[1, 0, 0], [0, 0, 1]])
>>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]])
>>> label_ranking_average_precision_score(y_true, y_score)
0.416...
.. _label_ranking_loss:
Ranking loss
------------
The :func:`label_ranking_loss` function computes the ranking loss which
averages over the samples the number of label pairs that are incorrectly
ordered, i.e. true labels have a lower score than false labels, weighted by
the inverse of the number of ordered pairs of false and true labels.
The lowest achievable ranking loss is zero.
Formally, given a binary indicator matrix of the ground truth labels
:math:`y \in \left\{0, 1\right\}^{n_\text{samples} \times n_\text{labels}}` and the
score associated with each label
:math:`\hat{f} \in \mathbb{R}^{n_\text{samples} \times n_\text{labels}}`,
the ranking loss is defined as
.. math::
ranking\_loss(y, \hat{f}) = \frac{1}{n_{\text{samples}}}
\sum_{i=0}^{n_{\text{samples}} - 1} \frac{1}{||y_i||_0(n_\text{labels} - ||y_i||_0)}
\left|\left\{(k, l): \hat{f}_{ik} \leq \hat{f}_{il}, y_{ik} = 1, y_{il} = 0 \right\}\right|
where :math:`|\cdot|` computes the cardinality of the set (i.e., the number of
elements in the set) and :math:`||\cdot||_0` is the :math:`\ell_0` "norm"
(which computes the number of nonzero elements in a vector).
Here is a small example of usage of this function::
>>> import numpy as np
>>> from sklearn.metrics import label_ranking_loss
>>> y_true = np.array([[1, 0, 0], [0, 0, 1]])
>>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]])
>>> label_ranking_loss(y_true, y_score)
0.75...
>>> # With the following prediction, we have perfect and minimal loss
>>> y_score = np.array([[1.0, 0.1, 0.2], [0.1, 0.2, 0.9]])
>>> label_ranking_loss(y_true, y_score)
0.0
.. topic:: References:
* Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010). Mining multi-label data. In
Data mining and knowledge discovery handbook (pp. 667-685). Springer US.
.. _ndcg:
Normalized Discounted Cumulative Gain
-------------------------------------
Discounted Cumulative Gain (DCG) and Normalized Discounted Cumulative Gain
(NDCG) are ranking metrics implemented in :func:`~sklearn.metrics.dcg_score`
and :func:`~sklearn.metrics.ndcg_score` ; they compare a predicted order to
ground-truth scores, such as the relevance of answers to a query.
From the Wikipedia page for Discounted Cumulative Gain:
"Discounted cumulative gain (DCG) is a measure of ranking quality. In
information retrieval, it is often used to measure effectiveness of web search
engine algorithms or related applications. Using a graded relevance scale of
documents in a search-engine result set, DCG measures the usefulness, or gain,
of a document based on its position in the result list. The gain is accumulated
from the top of the result list to the bottom, with the gain of each result
discounted at lower ranks"
DCG orders the true targets (e.g. relevance of query answers) in the predicted
order, then multiplies them by a logarithmic decay and sums the result. The sum
can be truncated after the first :math:`K` results, in which case we call it
DCG@K.
NDCG, or NDCG@K is DCG divided by the DCG obtained by a perfect prediction, so
that it is always between 0 and 1. Usually, NDCG is preferred to DCG.
Compared with the ranking loss, NDCG can take into account relevance scores,
rather than a ground-truth ranking. So if the ground-truth consists only of an
ordering, the ranking loss should be preferred; if the ground-truth consists of
actual usefulness scores (e.g. 0 for irrelevant, 1 for relevant, 2 for very
relevant), NDCG can be used.
For one sample, given the vector of continuous ground-truth values for each
target :math:`y \in \mathbb{R}^{M}`, where :math:`M` is the number of outputs, and
the prediction :math:`\hat{y}`, which induces the ranking function :math:`f`, the
DCG score is
.. math::
\sum_{r=1}^{\min(K, M)}\frac{y_{f(r)}}{\log(1 + r)}
and the NDCG score is the DCG score divided by the DCG score obtained for
:math:`y`.
.. topic:: References:
* `Wikipedia entry for Discounted Cumulative Gain
`_
* Jarvelin, K., & Kekalainen, J. (2002).
Cumulated gain-based evaluation of IR techniques. ACM Transactions on
Information Systems (TOIS), 20(4), 422-446.
* Wang, Y., Wang, L., Li, Y., He, D., Chen, W., & Liu, T. Y. (2013, May).
A theoretical analysis of NDCG ranking measures. In Proceedings of the 26th
Annual Conference on Learning Theory (COLT 2013)
* McSherry, F., & Najork, M. (2008, March). Computing information retrieval
performance measures efficiently in the presence of tied scores. In
European conference on information retrieval (pp. 414-421). Springer,
Berlin, Heidelberg.
.. _regression_metrics:
Regression metrics
===================
.. currentmodule:: sklearn.metrics
The :mod:`sklearn.metrics` module implements several loss, score, and utility
functions to measure regression performance. Some of those have been enhanced
to handle the multioutput case: :func:`mean_squared_error`,
:func:`mean_absolute_error`, :func:`explained_variance_score`,
:func:`r2_score` and :func:`mean_pinball_loss`.
These functions have an ``multioutput`` keyword argument which specifies the
way the scores or losses for each individual target should be averaged. The
default is ``'uniform_average'``, which specifies a uniformly weighted mean
over outputs. If an ``ndarray`` of shape ``(n_outputs,)`` is passed, then its
entries are interpreted as weights and an according weighted average is
returned. If ``multioutput`` is ``'raw_values'`` is specified, then all
unaltered individual scores or losses will be returned in an array of shape
``(n_outputs,)``.
The :func:`r2_score` and :func:`explained_variance_score` accept an additional
value ``'variance_weighted'`` for the ``multioutput`` parameter. This option
leads to a weighting of each individual score by the variance of the
corresponding target variable. This setting quantifies the globally captured
unscaled variance. If the target variables are of different scale, then this
score puts more importance on well explaining the higher variance variables.
``multioutput='variance_weighted'`` is the default value for :func:`r2_score`
for backward compatibility. This will be changed to ``uniform_average`` in the
future.
.. _explained_variance_score:
Explained variance score
-------------------------
The :func:`explained_variance_score` computes the `explained variance
regression score `_.
If :math:`\hat{y}` is the estimated target output, :math:`y` the corresponding
(correct) target output, and :math:`Var` is `Variance
`_, the square of the standard deviation,
then the explained variance is estimated as follow:
.. math::
explained\_{}variance(y, \hat{y}) = 1 - \frac{Var\{ y - \hat{y}\}}{Var\{y\}}
The best possible score is 1.0, lower values are worse.
Here is a small example of usage of the :func:`explained_variance_score`
function::
>>> from sklearn.metrics import explained_variance_score
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> explained_variance_score(y_true, y_pred)
0.957...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> explained_variance_score(y_true, y_pred, multioutput='raw_values')
array([0.967..., 1. ])
>>> explained_variance_score(y_true, y_pred, multioutput=[0.3, 0.7])
0.990...
.. _max_error:
Max error
-------------------
The :func:`max_error` function computes the maximum `residual error
`_ , a metric
that captures the worst case error between the predicted value and
the true value. In a perfectly fitted single output regression
model, ``max_error`` would be ``0`` on the training set and though this
would be highly unlikely in the real world, this metric shows the
extent of error that the model had when it was fitted.
If :math:`\hat{y}_i` is the predicted value of the :math:`i`-th sample,
and :math:`y_i` is the corresponding true value, then the max error is
defined as
.. math::
\text{Max Error}(y, \hat{y}) = max(| y_i - \hat{y}_i |)
Here is a small example of usage of the :func:`max_error` function::
>>> from sklearn.metrics import max_error
>>> y_true = [3, 2, 7, 1]
>>> y_pred = [9, 2, 7, 1]
>>> max_error(y_true, y_pred)
6
The :func:`max_error` does not support multioutput.
.. _mean_absolute_error:
Mean absolute error
-------------------
The :func:`mean_absolute_error` function computes `mean absolute
error `_, a risk
metric corresponding to the expected value of the absolute error loss or
:math:`l1`-norm loss.
If :math:`\hat{y}_i` is the predicted value of the :math:`i`-th sample,
and :math:`y_i` is the corresponding true value, then the mean absolute error
(MAE) estimated over :math:`n_{\text{samples}}` is defined as
.. math::
\text{MAE}(y, \hat{y}) = \frac{1}{n_{\text{samples}}} \sum_{i=0}^{n_{\text{samples}}-1} \left| y_i - \hat{y}_i \right|.
Here is a small example of usage of the :func:`mean_absolute_error` function::
>>> from sklearn.metrics import mean_absolute_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_absolute_error(y_true, y_pred)
0.5
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> mean_absolute_error(y_true, y_pred)
0.75
>>> mean_absolute_error(y_true, y_pred, multioutput='raw_values')
array([0.5, 1. ])
>>> mean_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7])
0.85...
.. _mean_squared_error:
Mean squared error
-------------------
The :func:`mean_squared_error` function computes `mean square
error `_, a risk
metric corresponding to the expected value of the squared (quadratic) error or
loss.
If :math:`\hat{y}_i` is the predicted value of the :math:`i`-th sample,
and :math:`y_i` is the corresponding true value, then the mean squared error
(MSE) estimated over :math:`n_{\text{samples}}` is defined as
.. math::
\text{MSE}(y, \hat{y}) = \frac{1}{n_\text{samples}} \sum_{i=0}^{n_\text{samples} - 1} (y_i - \hat{y}_i)^2.
Here is a small example of usage of the :func:`mean_squared_error`
function::
>>> from sklearn.metrics import mean_squared_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_squared_error(y_true, y_pred)
0.375
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> mean_squared_error(y_true, y_pred)
0.7083...
.. topic:: Examples:
* See :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_regression.py`
for an example of mean squared error usage to
evaluate gradient boosting regression.
.. _mean_squared_log_error:
Mean squared logarithmic error
------------------------------
The :func:`mean_squared_log_error` function computes a risk metric
corresponding to the expected value of the squared logarithmic (quadratic)
error or loss.
If :math:`\hat{y}_i` is the predicted value of the :math:`i`-th sample,
and :math:`y_i` is the corresponding true value, then the mean squared
logarithmic error (MSLE) estimated over :math:`n_{\text{samples}}` is
defined as
.. math::
\text{MSLE}(y, \hat{y}) = \frac{1}{n_\text{samples}} \sum_{i=0}^{n_\text{samples} - 1} (\log_e (1 + y_i) - \log_e (1 + \hat{y}_i) )^2.
Where :math:`\log_e (x)` means the natural logarithm of :math:`x`. This metric
is best to use when targets having exponential growth, such as population
counts, average sales of a commodity over a span of years etc. Note that this
metric penalizes an under-predicted estimate greater than an over-predicted
estimate.
Here is a small example of usage of the :func:`mean_squared_log_error`
function::
>>> from sklearn.metrics import mean_squared_log_error
>>> y_true = [3, 5, 2.5, 7]
>>> y_pred = [2.5, 5, 4, 8]
>>> mean_squared_log_error(y_true, y_pred)
0.039...
>>> y_true = [[0.5, 1], [1, 2], [7, 6]]
>>> y_pred = [[0.5, 2], [1, 2.5], [8, 8]]
>>> mean_squared_log_error(y_true, y_pred)
0.044...
.. _mean_absolute_percentage_error:
Mean absolute percentage error
------------------------------
The :func:`mean_absolute_percentage_error` (MAPE), also known as mean absolute
percentage deviation (MAPD), is an evaluation metric for regression problems.
The idea of this metric is to be sensitive to relative errors. It is for example
not changed by a global scaling of the target variable.
If :math:`\hat{y}_i` is the predicted value of the :math:`i`-th sample
and :math:`y_i` is the corresponding true value, then the mean absolute percentage
error (MAPE) estimated over :math:`n_{\text{samples}}` is defined as
.. math::
\text{MAPE}(y, \hat{y}) = \frac{1}{n_{\text{samples}}} \sum_{i=0}^{n_{\text{samples}}-1} \frac{{}\left| y_i - \hat{y}_i \right|}{max(\epsilon, \left| y_i \right|)}
where :math:`\epsilon` is an arbitrary small yet strictly positive number to
avoid undefined results when y is zero.
The :func:`mean_absolute_percentage_error` function supports multioutput.
Here is a small example of usage of the :func:`mean_absolute_percentage_error`
function::
>>> from sklearn.metrics import mean_absolute_percentage_error
>>> y_true = [1, 10, 1e6]
>>> y_pred = [0.9, 15, 1.2e6]
>>> mean_absolute_percentage_error(y_true, y_pred)
0.2666...
In above example, if we had used `mean_absolute_error`, it would have ignored
the small magnitude values and only reflected the error in prediction of highest
magnitude value. But that problem is resolved in case of MAPE because it calculates
relative percentage error with respect to actual output.
.. _median_absolute_error:
Median absolute error
---------------------
The :func:`median_absolute_error` is particularly interesting because it is
robust to outliers. The loss is calculated by taking the median of all absolute
differences between the target and the prediction.
If :math:`\hat{y}_i` is the predicted value of the :math:`i`-th sample
and :math:`y_i` is the corresponding true value, then the median absolute error
(MedAE) estimated over :math:`n_{\text{samples}}` is defined as
.. math::
\text{MedAE}(y, \hat{y}) = \text{median}(\mid y_1 - \hat{y}_1 \mid, \ldots, \mid y_n - \hat{y}_n \mid).
The :func:`median_absolute_error` does not support multioutput.
Here is a small example of usage of the :func:`median_absolute_error`
function::
>>> from sklearn.metrics import median_absolute_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> median_absolute_error(y_true, y_pred)
0.5
.. _r2_score:
R² score, the coefficient of determination
-------------------------------------------
The :func:`r2_score` function computes the `coefficient of
determination `_,
usually denoted as R².
It represents the proportion of variance (of y) that has been explained by the
independent variables in the model. It provides an indication of goodness of
fit and therefore a measure of how well unseen samples are likely to be
predicted by the model, through the proportion of explained variance.
As such variance is dataset dependent, R² may not be meaningfully comparable
across different datasets. Best possible score is 1.0 and it can be negative
(because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a
R² score of 0.0.
If :math:`\hat{y}_i` is the predicted value of the :math:`i`-th sample
and :math:`y_i` is the corresponding true value for total :math:`n` samples,
the estimated R² is defined as:
.. math::
R^2(y, \hat{y}) = 1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}
where :math:`\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i` and :math:`\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} \epsilon_i^2`.
Note that :func:`r2_score` calculates unadjusted R² without correcting for
bias in sample variance of y.
Here is a small example of usage of the :func:`r2_score` function::
>>> from sklearn.metrics import r2_score
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> r2_score(y_true, y_pred)
0.948...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> r2_score(y_true, y_pred, multioutput='variance_weighted')
0.938...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> r2_score(y_true, y_pred, multioutput='uniform_average')
0.936...
>>> r2_score(y_true, y_pred, multioutput='raw_values')
array([0.965..., 0.908...])
>>> r2_score(y_true, y_pred, multioutput=[0.3, 0.7])
0.925...
.. topic:: Example:
* See :ref:`sphx_glr_auto_examples_linear_model_plot_lasso_and_elasticnet.py`
for an example of R² score usage to
evaluate Lasso and Elastic Net on sparse signals.
.. _mean_tweedie_deviance:
Mean Poisson, Gamma, and Tweedie deviances
------------------------------------------
The :func:`mean_tweedie_deviance` function computes the `mean Tweedie
deviance error
`_
with a ``power`` parameter (:math:`p`). This is a metric that elicits
predicted expectation values of regression targets.
Following special cases exist,
- when ``power=0`` it is equivalent to :func:`mean_squared_error`.
- when ``power=1`` it is equivalent to :func:`mean_poisson_deviance`.
- when ``power=2`` it is equivalent to :func:`mean_gamma_deviance`.
If :math:`\hat{y}_i` is the predicted value of the :math:`i`-th sample,
and :math:`y_i` is the corresponding true value, then the mean Tweedie
deviance error (D) for power :math:`p`, estimated over :math:`n_{\text{samples}}`
is defined as
.. math::
\text{D}(y, \hat{y}) = \frac{1}{n_\text{samples}}
\sum_{i=0}^{n_\text{samples} - 1}
\begin{cases}
(y_i-\hat{y}_i)^2, & \text{for }p=0\text{ (Normal)}\\
2(y_i \log(y/\hat{y}_i) + \hat{y}_i - y_i), & \text{for}p=1\text{ (Poisson)}\\
2(\log(\hat{y}_i/y_i) + y_i/\hat{y}_i - 1), & \text{for}p=2\text{ (Gamma)}\\
2\left(\frac{\max(y_i,0)^{2-p}}{(1-p)(2-p)}-
\frac{y\,\hat{y}^{1-p}_i}{1-p}+\frac{\hat{y}^{2-p}_i}{2-p}\right),
& \text{otherwise}
\end{cases}
Tweedie deviance is a homogeneous function of degree ``2-power``.
Thus, Gamma distribution with ``power=2`` means that simultaneously scaling
``y_true`` and ``y_pred`` has no effect on the deviance. For Poisson
distribution ``power=1`` the deviance scales linearly, and for Normal
distribution (``power=0``), quadratically. In general, the higher
``power`` the less weight is given to extreme deviations between true
and predicted targets.
For instance, let's compare the two predictions 1.0 and 100 that are both
50% of their corresponding true value.
The mean squared error (``power=0``) is very sensitive to the
prediction difference of the second point,::
>>> from sklearn.metrics import mean_tweedie_deviance
>>> mean_tweedie_deviance([1.0], [1.5], power=0)
0.25
>>> mean_tweedie_deviance([100.], [150.], power=0)
2500.0
If we increase ``power`` to 1,::
>>> mean_tweedie_deviance([1.0], [1.5], power=1)
0.18...
>>> mean_tweedie_deviance([100.], [150.], power=1)
18.9...
the difference in errors decreases. Finally, by setting, ``power=2``::
>>> mean_tweedie_deviance([1.0], [1.5], power=2)
0.14...
>>> mean_tweedie_deviance([100.], [150.], power=2)
0.14...
we would get identical errors. The deviance when ``power=2`` is thus only
sensitive to relative errors.
.. _d2_tweedie_score:
D² score, the coefficient of determination
-------------------------------------------
The :func:`d2_tweedie_score` function computes the percentage of deviance
explained. It is a generalization of R², where the squared error is replaced by
the Tweedie deviance. D², also known as McFadden's likelihood ratio index, is
calculated as
.. math::
D^2(y, \hat{y}) = 1 - \frac{\text{D}(y, \hat{y})}{\text{D}(y, \bar{y})} \,.
The argument ``power`` defines the Tweedie power as for
:func:`mean_tweedie_deviance`. Note that for `power=0`,
:func:`d2_tweedie_score` equals :func:`r2_score` (for single targets).
Like R², the best possible score is 1.0 and it can be negative (because the
model can be arbitrarily worse). A constant model that always predicts the
expected value of y, disregarding the input features, would get a D² score
of 0.0.
A scorer object with a specific choice of ``power`` can be built by::
>>> from sklearn.metrics import d2_tweedie_score, make_scorer
>>> d2_tweedie_score_15 = make_scorer(d2_tweedie_score, power=1.5)
.. _pinball_loss:
Pinball loss
------------
The :func:`mean_pinball_loss` function is used to evaluate the predictive
performance of quantile regression models. The `pinball loss
`_ is equivalent
to :func:`mean_absolute_error` when the quantile parameter ``alpha`` is set to
0.5.
.. math::
\text{pinball}(y, \hat{y}) = \frac{1}{n_{\text{samples}}} \sum_{i=0}^{n_{\text{samples}}-1} \alpha \max(y_i - \hat{y}_i, 0) + (1 - \alpha) \max(\hat{y}_i - y_i, 0)
Here is a small example of usage of the :func:`mean_pinball_loss` function::
>>> from sklearn.metrics import mean_pinball_loss
>>> y_true = [1, 2, 3]
>>> mean_pinball_loss(y_true, [0, 2, 3], alpha=0.1)
0.03...
>>> mean_pinball_loss(y_true, [1, 2, 4], alpha=0.1)
0.3...
>>> mean_pinball_loss(y_true, [0, 2, 3], alpha=0.9)
0.3...
>>> mean_pinball_loss(y_true, [1, 2, 4], alpha=0.9)
0.03...
>>> mean_pinball_loss(y_true, y_true, alpha=0.1)
0.0
>>> mean_pinball_loss(y_true, y_true, alpha=0.9)
0.0
It is possible to build a scorer object with a specific choice of ``alpha``::
>>> from sklearn.metrics import make_scorer
>>> mean_pinball_loss_95p = make_scorer(mean_pinball_loss, alpha=0.95)
Such a scorer can be used to evaluate the generalization performance of a
quantile regressor via cross-validation:
>>> from sklearn.datasets import make_regression
>>> from sklearn.model_selection import cross_val_score
>>> from sklearn.ensemble import GradientBoostingRegressor
>>>
>>> X, y = make_regression(n_samples=100, random_state=0)
>>> estimator = GradientBoostingRegressor(
... loss="quantile",
... alpha=0.95,
... random_state=0,
... )
>>> cross_val_score(estimator, X, y, cv=5, scoring=mean_pinball_loss_95p)
array([13.6..., 9.7..., 23.3..., 9.5..., 10.4...])
It is also possible to build scorer objects for hyper-parameter tuning. The
sign of the loss must be switched to ensure that greater means better as
explained in the example linked below.
.. topic:: Example:
* See :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_quantile.py`
for an example of using a the pinball loss to evaluate and tune the
hyper-parameters of quantile regression models on data with non-symmetric
noise and outliers.
.. _clustering_metrics:
Clustering metrics
======================
.. currentmodule:: sklearn.metrics
The :mod:`sklearn.metrics` module implements several loss, score, and utility
functions. For more information see the :ref:`clustering_evaluation`
section for instance clustering, and :ref:`biclustering_evaluation` for
biclustering.
.. _dummy_estimators:
Dummy estimators
=================
.. currentmodule:: sklearn.dummy
When doing supervised learning, a simple sanity check consists of comparing
one's estimator against simple rules of thumb. :class:`DummyClassifier`
implements several such simple strategies for classification:
- ``stratified`` generates random predictions by respecting the training
set class distribution.
- ``most_frequent`` always predicts the most frequent label in the training set.
- ``prior`` always predicts the class that maximizes the class prior
(like ``most_frequent``) and ``predict_proba`` returns the class prior.
- ``uniform`` generates predictions uniformly at random.
- ``constant`` always predicts a constant label that is provided by the user.
A major motivation of this method is F1-scoring, when the positive class
is in the minority.
Note that with all these strategies, the ``predict`` method completely ignores
the input data!
To illustrate :class:`DummyClassifier`, first let's create an imbalanced
dataset::
>>> from sklearn.datasets import load_iris
>>> from sklearn.model_selection import train_test_split
>>> X, y = load_iris(return_X_y=True)
>>> y[y != 1] = -1
>>> X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
Next, let's compare the accuracy of ``SVC`` and ``most_frequent``::
>>> from sklearn.dummy import DummyClassifier
>>> from sklearn.svm import SVC
>>> clf = SVC(kernel='linear', C=1).fit(X_train, y_train)
>>> clf.score(X_test, y_test)
0.63...
>>> clf = DummyClassifier(strategy='most_frequent', random_state=0)
>>> clf.fit(X_train, y_train)
DummyClassifier(random_state=0, strategy='most_frequent')
>>> clf.score(X_test, y_test)
0.57...
We see that ``SVC`` doesn't do much better than a dummy classifier. Now, let's
change the kernel::
>>> clf = SVC(kernel='rbf', C=1).fit(X_train, y_train)
>>> clf.score(X_test, y_test)
0.94...
We see that the accuracy was boosted to almost 100%. A cross validation
strategy is recommended for a better estimate of the accuracy, if it
is not too CPU costly. For more information see the :ref:`cross_validation`
section. Moreover if you want to optimize over the parameter space, it is highly
recommended to use an appropriate methodology; see the :ref:`grid_search`
section for details.
More generally, when the accuracy of a classifier is too close to random, it
probably means that something went wrong: features are not helpful, a
hyperparameter is not correctly tuned, the classifier is suffering from class
imbalance, etc...
:class:`DummyRegressor` also implements four simple rules of thumb for regression:
- ``mean`` always predicts the mean of the training targets.
- ``median`` always predicts the median of the training targets.
- ``quantile`` always predicts a user provided quantile of the training targets.
- ``constant`` always predicts a constant value that is provided by the user.
In all these strategies, the ``predict`` method completely ignores
the input data.