.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/release_highlights/plot_release_highlights_0_22_0.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code or to run this example in your browser via JupyterLite or Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_release_highlights_plot_release_highlights_0_22_0.py: ======================================== Release Highlights for scikit-learn 0.22 ======================================== .. currentmodule:: sklearn We are pleased to announce the release of scikit-learn 0.22, which comes with many bug fixes and new features! We detail below a few of the major features of this release. For an exhaustive list of all the changes, please refer to the :ref:`release notes `. To install the latest version (with pip):: pip install --upgrade scikit-learn or with conda:: conda install -c conda-forge scikit-learn .. GENERATED FROM PYTHON SOURCE LINES 24-36 New plotting API ---------------- A new plotting API is available for creating visualizations. This new API allows for quickly adjusting the visuals of a plot without involving any recomputation. It is also possible to add different plots to the same figure. The following example illustrates `plot_roc_curve`, but other plots utilities are supported like `plot_partial_dependence`, `plot_precision_recall_curve`, and `plot_confusion_matrix`. Read more about this new API in the :ref:`User Guide `. .. GENERATED FROM PYTHON SOURCE LINES 36-64 .. code-block:: Python import matplotlib.pyplot as plt from sklearn.datasets import make_classification from sklearn.ensemble import RandomForestClassifier # from sklearn.metrics import plot_roc_curve from sklearn.metrics import RocCurveDisplay from sklearn.model_selection import train_test_split from sklearn.svm import SVC X, y = make_classification(random_state=0) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) svc = SVC(random_state=42) svc.fit(X_train, y_train) rfc = RandomForestClassifier(random_state=42) rfc.fit(X_train, y_train) # plot_roc_curve has been removed in version 1.2. From 1.2, use RocCurveDisplay instead. # svc_disp = plot_roc_curve(svc, X_test, y_test) # rfc_disp = plot_roc_curve(rfc, X_test, y_test, ax=svc_disp.ax_) svc_disp = RocCurveDisplay.from_estimator(svc, X_test, y_test) rfc_disp = RocCurveDisplay.from_estimator(rfc, X_test, y_test, ax=svc_disp.ax_) rfc_disp.figure_.suptitle("ROC curve comparison") plt.show() .. image-sg:: /auto_examples/release_highlights/images/sphx_glr_plot_release_highlights_0_22_0_001.png :alt: ROC curve comparison :srcset: /auto_examples/release_highlights/images/sphx_glr_plot_release_highlights_0_22_0_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 65-80 Stacking Classifier and Regressor --------------------------------- :class:`~ensemble.StackingClassifier` and :class:`~ensemble.StackingRegressor` allow you to have a stack of estimators with a final classifier or a regressor. Stacked generalization consists in stacking the output of individual estimators and use a classifier to compute the final prediction. Stacking allows to use the strength of each individual estimator by using their output as input of a final estimator. Base estimators are fitted on the full ``X`` while the final estimator is trained using cross-validated predictions of the base estimators using ``cross_val_predict``. Read more in the :ref:`User Guide `. .. GENERATED FROM PYTHON SOURCE LINES 80-98 .. code-block:: Python from sklearn.datasets import load_iris from sklearn.ensemble import StackingClassifier from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler from sklearn.svm import LinearSVC X, y = load_iris(return_X_y=True) estimators = [ ("rf", RandomForestClassifier(n_estimators=10, random_state=42)), ("svr", make_pipeline(StandardScaler(), LinearSVC(dual="auto", random_state=42))), ] clf = StackingClassifier(estimators=estimators, final_estimator=LogisticRegression()) X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=42) clf.fit(X_train, y_train).score(X_test, y_test) .. rst-class:: sphx-glr-script-out .. code-block:: none 0.9473684210526315 .. GENERATED FROM PYTHON SOURCE LINES 99-104 Permutation-based feature importance ------------------------------------ The :func:`inspection.permutation_importance` can be used to get an estimate of the importance of each feature, for any fitted estimator: .. GENERATED FROM PYTHON SOURCE LINES 104-128 .. code-block:: Python import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import make_classification from sklearn.ensemble import RandomForestClassifier from sklearn.inspection import permutation_importance X, y = make_classification(random_state=0, n_features=5, n_informative=3) feature_names = np.array([f"x_{i}" for i in range(X.shape[1])]) rf = RandomForestClassifier(random_state=0).fit(X, y) result = permutation_importance(rf, X, y, n_repeats=10, random_state=0, n_jobs=2) fig, ax = plt.subplots() sorted_idx = result.importances_mean.argsort() ax.boxplot( result.importances[sorted_idx].T, vert=False, labels=feature_names[sorted_idx] ) ax.set_title("Permutation Importance of each feature") ax.set_ylabel("Features") fig.tight_layout() plt.show() .. image-sg:: /auto_examples/release_highlights/images/sphx_glr_plot_release_highlights_0_22_0_002.png :alt: Permutation Importance of each feature :srcset: /auto_examples/release_highlights/images/sphx_glr_plot_release_highlights_0_22_0_002.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 129-136 Native support for missing values for gradient boosting ------------------------------------------------------- The :class:`ensemble.HistGradientBoostingClassifier` and :class:`ensemble.HistGradientBoostingRegressor` now have native support for missing values (NaNs). This means that there is no need for imputing data when training or predicting. .. GENERATED FROM PYTHON SOURCE LINES 136-145 .. code-block:: Python from sklearn.ensemble import HistGradientBoostingClassifier X = np.array([0, 1, 2, np.nan]).reshape(-1, 1) y = [0, 0, 1, 1] gbdt = HistGradientBoostingClassifier(min_samples_leaf=1).fit(X, y) print(gbdt.predict(X)) .. rst-class:: sphx-glr-script-out .. code-block:: none [0 0 1 1] .. GENERATED FROM PYTHON SOURCE LINES 146-157 Precomputed sparse nearest neighbors graph ------------------------------------------ Most estimators based on nearest neighbors graphs now accept precomputed sparse graphs as input, to reuse the same graph for multiple estimator fits. To use this feature in a pipeline, one can use the `memory` parameter, along with one of the two new transformers, :class:`neighbors.KNeighborsTransformer` and :class:`neighbors.RadiusNeighborsTransformer`. The precomputation can also be performed by custom estimators to use alternative implementations, such as approximate nearest neighbors methods. See more details in the :ref:`User Guide `. .. GENERATED FROM PYTHON SOURCE LINES 157-179 .. code-block:: Python from tempfile import TemporaryDirectory from sklearn.manifold import Isomap from sklearn.neighbors import KNeighborsTransformer from sklearn.pipeline import make_pipeline X, y = make_classification(random_state=0) with TemporaryDirectory(prefix="sklearn_cache_") as tmpdir: estimator = make_pipeline( KNeighborsTransformer(n_neighbors=10, mode="distance"), Isomap(n_neighbors=10, metric="precomputed"), memory=tmpdir, ) estimator.fit(X) # We can decrease the number of neighbors and the graph will not be # recomputed. estimator.set_params(isomap__n_neighbors=5) estimator.fit(X) .. GENERATED FROM PYTHON SOURCE LINES 180-194 KNN Based Imputation ------------------------------------ We now support imputation for completing missing values using k-Nearest Neighbors. Each sample's missing values are imputed using the mean value from ``n_neighbors`` nearest neighbors found in the training set. Two samples are close if the features that neither is missing are close. By default, a euclidean distance metric that supports missing values, :func:`~sklearn.metrics.pairwise.nan_euclidean_distances`, is used to find the nearest neighbors. Read more in the :ref:`User Guide `. .. GENERATED FROM PYTHON SOURCE LINES 194-201 .. code-block:: Python from sklearn.impute import KNNImputer X = [[1, 2, np.nan], [3, 4, 3], [np.nan, 6, 5], [8, 8, 7]] imputer = KNNImputer(n_neighbors=2) print(imputer.fit_transform(X)) .. rst-class:: sphx-glr-script-out .. code-block:: none [[1. 2. 4. ] [3. 4. 3. ] [5.5 6. 5. ] [8. 8. 7. ]] .. GENERATED FROM PYTHON SOURCE LINES 202-208 Tree pruning ------------ It is now possible to prune most tree-based estimators once the trees are built. The pruning is based on minimal cost-complexity. Read more in the :ref:`User Guide ` for details. .. GENERATED FROM PYTHON SOURCE LINES 208-225 .. code-block:: Python X, y = make_classification(random_state=0) rf = RandomForestClassifier(random_state=0, ccp_alpha=0).fit(X, y) print( "Average number of nodes without pruning {:.1f}".format( np.mean([e.tree_.node_count for e in rf.estimators_]) ) ) rf = RandomForestClassifier(random_state=0, ccp_alpha=0.05).fit(X, y) print( "Average number of nodes with pruning {:.1f}".format( np.mean([e.tree_.node_count for e in rf.estimators_]) ) ) .. rst-class:: sphx-glr-script-out .. code-block:: none Average number of nodes without pruning 22.3 Average number of nodes with pruning 6.4 .. GENERATED FROM PYTHON SOURCE LINES 226-230 Retrieve dataframes from OpenML ------------------------------- :func:`datasets.fetch_openml` can now return pandas dataframe and thus properly handle datasets with heterogeneous data: .. GENERATED FROM PYTHON SOURCE LINES 230-236 .. code-block:: Python from sklearn.datasets import fetch_openml titanic = fetch_openml("titanic", version=1, as_frame=True, parser="pandas") print(titanic.data.head()[["pclass", "embarked"]]) .. rst-class:: sphx-glr-script-out .. code-block:: none pclass embarked 0 1 S 1 1 S 2 1 S 3 1 S 4 1 S .. GENERATED FROM PYTHON SOURCE LINES 237-249 Checking scikit-learn compatibility of an estimator --------------------------------------------------- Developers can check the compatibility of their scikit-learn compatible estimators using :func:`~utils.estimator_checks.check_estimator`. For instance, the ``check_estimator(LinearSVC())`` passes. We now provide a ``pytest`` specific decorator which allows ``pytest`` to run all checks independently and report the checks that are failing. ..note:: This entry was slightly updated in version 0.24, where passing classes isn't supported anymore: pass instances instead. .. GENERATED FROM PYTHON SOURCE LINES 249-260 .. code-block:: Python from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeRegressor from sklearn.utils.estimator_checks import parametrize_with_checks @parametrize_with_checks([LogisticRegression(), DecisionTreeRegressor()]) def test_sklearn_compatible_estimator(estimator, check): check(estimator) .. GENERATED FROM PYTHON SOURCE LINES 261-274 ROC AUC now supports multiclass classification ---------------------------------------------- The :func:`~sklearn.metrics.roc_auc_score` function can also be used in multi-class classification. Two averaging strategies are currently supported: the one-vs-one algorithm computes the average of the pairwise ROC AUC scores, and the one-vs-rest algorithm computes the average of the ROC AUC scores for each class against all other classes. In both cases, the multiclass ROC AUC scores are computed from the probability estimates that a sample belongs to a particular class according to the model. The OvO and OvR algorithms support weighting uniformly (``average='macro'``) and weighting by the prevalence (``average='weighted'``). Read more in the :ref:`User Guide `. .. GENERATED FROM PYTHON SOURCE LINES 274-283 .. code-block:: Python from sklearn.datasets import make_classification from sklearn.metrics import roc_auc_score from sklearn.svm import SVC X, y = make_classification(n_classes=4, n_informative=16) clf = SVC(decision_function_shape="ovo", probability=True).fit(X, y) print(roc_auc_score(y, clf.predict_proba(X), multi_class="ovo")) .. rst-class:: sphx-glr-script-out .. code-block:: none 0.9919963675213674 .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 1.279 seconds) .. _sphx_glr_download_auto_examples_release_highlights_plot_release_highlights_0_22_0.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/main?urlpath=lab/tree/notebooks/auto_examples/release_highlights/plot_release_highlights_0_22_0.ipynb :alt: Launch binder :width: 150 px .. container:: lite-badge .. image:: images/jupyterlite_badge_logo.svg :target: ../../lite/lab/?path=auto_examples/release_highlights/plot_release_highlights_0_22_0.ipynb :alt: Launch JupyterLite :width: 150 px .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_release_highlights_0_22_0.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_release_highlights_0_22_0.py ` .. include:: plot_release_highlights_0_22_0.recommendations .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_