.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/preprocessing/plot_discretization.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. or to run this example in your browser via JupyterLite or Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_preprocessing_plot_discretization.py: ================================================================ Using KBinsDiscretizer to discretize continuous features ================================================================ The example compares prediction result of linear regression (linear model) and decision tree (tree based model) with and without discretization of real-valued features. As is shown in the result before discretization, linear model is fast to build and relatively straightforward to interpret, but can only model linear relationships, while decision tree can build a much more complex model of the data. One way to make linear model more powerful on continuous data is to use discretization (also known as binning). In the example, we discretize the feature and one-hot encode the transformed data. Note that if the bins are not reasonably wide, there would appear to be a substantially increased risk of overfitting, so the discretizer parameters should usually be tuned under cross validation. After discretization, linear regression and decision tree make exactly the same prediction. As features are constant within each bin, any model must predict the same value for all points within a bin. Compared with the result before discretization, linear model become much more flexible while decision tree gets much less flexible. Note that binning features generally has no beneficial effect for tree-based models, as these models can learn to split up the data anywhere. .. GENERATED FROM PYTHON SOURCE LINES 29-91 .. image-sg:: /auto_examples/preprocessing/images/sphx_glr_plot_discretization_001.png :alt: Result before discretization, Result after discretization :srcset: /auto_examples/preprocessing/images/sphx_glr_plot_discretization_001.png :class: sphx-glr-single-img .. code-block:: Python # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import LinearRegression from sklearn.preprocessing import KBinsDiscretizer from sklearn.tree import DecisionTreeRegressor # construct the dataset rnd = np.random.RandomState(42) X = rnd.uniform(-3, 3, size=100) y = np.sin(X) + rnd.normal(size=len(X)) / 3 X = X.reshape(-1, 1) # transform the dataset with KBinsDiscretizer enc = KBinsDiscretizer(n_bins=10, encode="onehot") X_binned = enc.fit_transform(X) # predict with original dataset fig, (ax1, ax2) = plt.subplots(ncols=2, sharey=True, figsize=(10, 4)) line = np.linspace(-3, 3, 1000, endpoint=False).reshape(-1, 1) reg = LinearRegression().fit(X, y) ax1.plot(line, reg.predict(line), linewidth=2, color="green", label="linear regression") reg = DecisionTreeRegressor(min_samples_split=3, random_state=0).fit(X, y) ax1.plot(line, reg.predict(line), linewidth=2, color="red", label="decision tree") ax1.plot(X[:, 0], y, "o", c="k") ax1.legend(loc="best") ax1.set_ylabel("Regression output") ax1.set_xlabel("Input feature") ax1.set_title("Result before discretization") # predict with transformed dataset line_binned = enc.transform(line) reg = LinearRegression().fit(X_binned, y) ax2.plot( line, reg.predict(line_binned), linewidth=2, color="green", linestyle="-", label="linear regression", ) reg = DecisionTreeRegressor(min_samples_split=3, random_state=0).fit(X_binned, y) ax2.plot( line, reg.predict(line_binned), linewidth=2, color="red", linestyle=":", label="decision tree", ) ax2.plot(X[:, 0], y, "o", c="k") ax2.vlines(enc.bin_edges_[0], *plt.gca().get_ylim(), linewidth=1, alpha=0.2) ax2.legend(loc="best") ax2.set_xlabel("Input feature") ax2.set_title("Result after discretization") plt.tight_layout() plt.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.212 seconds) .. _sphx_glr_download_auto_examples_preprocessing_plot_discretization.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/1.6.X?urlpath=lab/tree/notebooks/auto_examples/preprocessing/plot_discretization.ipynb :alt: Launch binder :width: 150 px .. container:: lite-badge .. image:: images/jupyterlite_badge_logo.svg :target: ../../lite/lab/index.html?path=auto_examples/preprocessing/plot_discretization.ipynb :alt: Launch JupyterLite :width: 150 px .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_discretization.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_discretization.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_discretization.zip ` .. include:: plot_discretization.recommendations .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_