.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/miscellaneous/plot_roc_curve_visualization_api.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. or to run this example in your browser via JupyterLite or Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_miscellaneous_plot_roc_curve_visualization_api.py: ================================ ROC Curve with Visualization API ================================ Scikit-learn defines a simple API for creating visualizations for machine learning. The key features of this API is to allow for quick plotting and visual adjustments without recalculation. In this example, we will demonstrate how to use the visualization API by comparing ROC curves. .. GENERATED FROM PYTHON SOURCE LINES 11-15 .. code-block:: Python # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause .. GENERATED FROM PYTHON SOURCE LINES 16-20 Load Data and Train a SVC ------------------------- First, we load the wine dataset and convert it to a binary classification problem. Then, we train a support vector classifier on a training dataset. .. GENERATED FROM PYTHON SOURCE LINES 20-35 .. code-block:: Python import matplotlib.pyplot as plt from sklearn.datasets import load_wine from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import RocCurveDisplay from sklearn.model_selection import train_test_split from sklearn.svm import SVC X, y = load_wine(return_X_y=True) y = y == 2 X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) svc = SVC(random_state=42) svc.fit(X_train, y_train) .. raw:: html
SVC(random_state=42)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.


.. GENERATED FROM PYTHON SOURCE LINES 36-42 Plotting the ROC Curve ---------------------- Next, we plot the ROC curve with a single call to :func:`sklearn.metrics.RocCurveDisplay.from_estimator`. The returned `svc_disp` object allows us to continue using the already computed ROC curve for the SVC in future plots. .. GENERATED FROM PYTHON SOURCE LINES 42-45 .. code-block:: Python svc_disp = RocCurveDisplay.from_estimator(svc, X_test, y_test) plt.show() .. image-sg:: /auto_examples/miscellaneous/images/sphx_glr_plot_roc_curve_visualization_api_001.png :alt: plot roc curve visualization api :srcset: /auto_examples/miscellaneous/images/sphx_glr_plot_roc_curve_visualization_api_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 46-54 Training a Random Forest and Plotting the ROC Curve --------------------------------------------------- We train a random forest classifier and create a plot comparing it to the SVC ROC curve. Notice how `svc_disp` uses :func:`~sklearn.metrics.RocCurveDisplay.plot` to plot the SVC ROC curve without recomputing the values of the roc curve itself. Furthermore, we pass `alpha=0.8` to the plot functions to adjust the alpha values of the curves. .. GENERATED FROM PYTHON SOURCE LINES 54-60 .. code-block:: Python rfc = RandomForestClassifier(n_estimators=10, random_state=42) rfc.fit(X_train, y_train) ax = plt.gca() rfc_disp = RocCurveDisplay.from_estimator(rfc, X_test, y_test, ax=ax, alpha=0.8) svc_disp.plot(ax=ax, alpha=0.8) plt.show() .. image-sg:: /auto_examples/miscellaneous/images/sphx_glr_plot_roc_curve_visualization_api_002.png :alt: plot roc curve visualization api :srcset: /auto_examples/miscellaneous/images/sphx_glr_plot_roc_curve_visualization_api_002.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.147 seconds) .. _sphx_glr_download_auto_examples_miscellaneous_plot_roc_curve_visualization_api.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/1.6.X?urlpath=lab/tree/notebooks/auto_examples/miscellaneous/plot_roc_curve_visualization_api.ipynb :alt: Launch binder :width: 150 px .. container:: lite-badge .. image:: images/jupyterlite_badge_logo.svg :target: ../../lite/lab/index.html?path=auto_examples/miscellaneous/plot_roc_curve_visualization_api.ipynb :alt: Launch JupyterLite :width: 150 px .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_roc_curve_visualization_api.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_roc_curve_visualization_api.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_roc_curve_visualization_api.zip ` .. include:: plot_roc_curve_visualization_api.recommendations .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_