.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/linear_model/plot_sgd_loss_functions.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. or to run this example in your browser via JupyterLite or Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_linear_model_plot_sgd_loss_functions.py: ========================== SGD: convex loss functions ========================== A plot that compares the various convex loss functions supported by :class:`~sklearn.linear_model.SGDClassifier` . .. GENERATED FROM PYTHON SOURCE LINES 10-53 .. image-sg:: /auto_examples/linear_model/images/sphx_glr_plot_sgd_loss_functions_001.png :alt: plot sgd loss functions :srcset: /auto_examples/linear_model/images/sphx_glr_plot_sgd_loss_functions_001.png :class: sphx-glr-single-img .. code-block:: Python # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import matplotlib.pyplot as plt import numpy as np def modified_huber_loss(y_true, y_pred): z = y_pred * y_true loss = -4 * z loss[z >= -1] = (1 - z[z >= -1]) ** 2 loss[z >= 1.0] = 0 return loss xmin, xmax = -4, 4 xx = np.linspace(xmin, xmax, 100) lw = 2 plt.plot([xmin, 0, 0, xmax], [1, 1, 0, 0], color="gold", lw=lw, label="Zero-one loss") plt.plot(xx, np.where(xx < 1, 1 - xx, 0), color="teal", lw=lw, label="Hinge loss") plt.plot(xx, -np.minimum(xx, 0), color="yellowgreen", lw=lw, label="Perceptron loss") plt.plot(xx, np.log2(1 + np.exp(-xx)), color="cornflowerblue", lw=lw, label="Log loss") plt.plot( xx, np.where(xx < 1, 1 - xx, 0) ** 2, color="orange", lw=lw, label="Squared hinge loss", ) plt.plot( xx, modified_huber_loss(xx, 1), color="darkorchid", lw=lw, linestyle="--", label="Modified Huber loss", ) plt.ylim((0, 8)) plt.legend(loc="upper right") plt.xlabel(r"Decision function $f(x)$") plt.ylabel("$L(y=1, f(x))$") plt.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.092 seconds) .. _sphx_glr_download_auto_examples_linear_model_plot_sgd_loss_functions.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/1.6.X?urlpath=lab/tree/notebooks/auto_examples/linear_model/plot_sgd_loss_functions.ipynb :alt: Launch binder :width: 150 px .. container:: lite-badge .. image:: images/jupyterlite_badge_logo.svg :target: ../../lite/lab/index.html?path=auto_examples/linear_model/plot_sgd_loss_functions.ipynb :alt: Launch JupyterLite :width: 150 px .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_sgd_loss_functions.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_sgd_loss_functions.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_sgd_loss_functions.zip ` .. include:: plot_sgd_loss_functions.recommendations .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_