.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/linear_model/plot_sgd_iris.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. or to run this example in your browser via JupyterLite or Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_linear_model_plot_sgd_iris.py: ======================================== Plot multi-class SGD on the iris dataset ======================================== Plot decision surface of multi-class SGD on iris dataset. The hyperplanes corresponding to the three one-versus-all (OVA) classifiers are represented by the dashed lines. .. GENERATED FROM PYTHON SOURCE LINES 11-88 .. image-sg:: /auto_examples/linear_model/images/sphx_glr_plot_sgd_iris_001.png :alt: Decision surface of multi-class SGD :srcset: /auto_examples/linear_model/images/sphx_glr_plot_sgd_iris_001.png :class: sphx-glr-single-img .. code-block:: Python # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import matplotlib.pyplot as plt import numpy as np from sklearn import datasets from sklearn.inspection import DecisionBoundaryDisplay from sklearn.linear_model import SGDClassifier # import some data to play with iris = datasets.load_iris() # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset X = iris.data[:, :2] y = iris.target colors = "bry" # shuffle idx = np.arange(X.shape[0]) np.random.seed(13) np.random.shuffle(idx) X = X[idx] y = y[idx] # standardize mean = X.mean(axis=0) std = X.std(axis=0) X = (X - mean) / std clf = SGDClassifier(alpha=0.001, max_iter=100).fit(X, y) ax = plt.gca() DecisionBoundaryDisplay.from_estimator( clf, X, cmap=plt.cm.Paired, ax=ax, response_method="predict", xlabel=iris.feature_names[0], ylabel=iris.feature_names[1], ) plt.axis("tight") # Plot also the training points for i, color in zip(clf.classes_, colors): idx = np.where(y == i) plt.scatter( X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i], edgecolor="black", s=20, ) plt.title("Decision surface of multi-class SGD") plt.axis("tight") # Plot the three one-against-all classifiers xmin, xmax = plt.xlim() ymin, ymax = plt.ylim() coef = clf.coef_ intercept = clf.intercept_ def plot_hyperplane(c, color): def line(x0): return (-(x0 * coef[c, 0]) - intercept[c]) / coef[c, 1] plt.plot([xmin, xmax], [line(xmin), line(xmax)], ls="--", color=color) for i, color in zip(clf.classes_, colors): plot_hyperplane(i, color) plt.legend() plt.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.108 seconds) .. _sphx_glr_download_auto_examples_linear_model_plot_sgd_iris.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/1.6.X?urlpath=lab/tree/notebooks/auto_examples/linear_model/plot_sgd_iris.ipynb :alt: Launch binder :width: 150 px .. container:: lite-badge .. image:: images/jupyterlite_badge_logo.svg :target: ../../lite/lab/index.html?path=auto_examples/linear_model/plot_sgd_iris.ipynb :alt: Launch JupyterLite :width: 150 px .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_sgd_iris.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_sgd_iris.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_sgd_iris.zip ` .. include:: plot_sgd_iris.recommendations .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_