.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/linear_model/plot_lasso_lars_ic.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. or to run this example in your browser via JupyterLite or Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_linear_model_plot_lasso_lars_ic.py: ============================================== Lasso model selection via information criteria ============================================== This example reproduces the example of Fig. 2 of [ZHT2007]_. A :class:`~sklearn.linear_model.LassoLarsIC` estimator is fit on a diabetes dataset and the AIC and the BIC criteria are used to select the best model. .. note:: It is important to note that the optimization to find `alpha` with :class:`~sklearn.linear_model.LassoLarsIC` relies on the AIC or BIC criteria that are computed in-sample, thus on the training set directly. This approach differs from the cross-validation procedure. For a comparison of the two approaches, you can refer to the following example: :ref:`sphx_glr_auto_examples_linear_model_plot_lasso_model_selection.py`. .. rubric:: References .. [ZHT2007] :arxiv:`Zou, Hui, Trevor Hastie, and Robert Tibshirani. "On the degrees of freedom of the lasso." The Annals of Statistics 35.5 (2007): 2173-2192. <0712.0881>` .. GENERATED FROM PYTHON SOURCE LINES 26-30 .. code-block:: Python # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause .. GENERATED FROM PYTHON SOURCE LINES 31-32 We will use the diabetes dataset. .. GENERATED FROM PYTHON SOURCE LINES 32-38 .. code-block:: Python from sklearn.datasets import load_diabetes X, y = load_diabetes(return_X_y=True, as_frame=True) n_samples = X.shape[0] X.head() .. raw:: html
age sex bmi bp s1 s2 s3 s4 s5 s6
0 0.038076 0.050680 0.061696 0.021872 -0.044223 -0.034821 -0.043401 -0.002592 0.019907 -0.017646
1 -0.001882 -0.044642 -0.051474 -0.026328 -0.008449 -0.019163 0.074412 -0.039493 -0.068332 -0.092204
2 0.085299 0.050680 0.044451 -0.005670 -0.045599 -0.034194 -0.032356 -0.002592 0.002861 -0.025930
3 -0.089063 -0.044642 -0.011595 -0.036656 0.012191 0.024991 -0.036038 0.034309 0.022688 -0.009362
4 0.005383 -0.044642 -0.036385 0.021872 0.003935 0.015596 0.008142 -0.002592 -0.031988 -0.046641


.. GENERATED FROM PYTHON SOURCE LINES 39-47 Scikit-learn provides an estimator called :class:`~sklearn.linear_model.LassoLarsIC` that uses either Akaike's information criterion (AIC) or the Bayesian information criterion (BIC) to select the best model. Before fitting this model, we will scale the dataset. In the following, we are going to fit two models to compare the values reported by AIC and BIC. .. GENERATED FROM PYTHON SOURCE LINES 47-54 .. code-block:: Python from sklearn.linear_model import LassoLarsIC from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler lasso_lars_ic = make_pipeline(StandardScaler(), LassoLarsIC(criterion="aic")).fit(X, y) .. GENERATED FROM PYTHON SOURCE LINES 55-60 To be in line with the definition in [ZHT2007]_, we need to rescale the AIC and the BIC. Indeed, Zou et al. are ignoring some constant terms compared to the original definition of AIC derived from the maximum log-likelihood of a linear model. You can refer to :ref:`mathematical detail section for the User Guide `. .. GENERATED FROM PYTHON SOURCE LINES 60-65 .. code-block:: Python def zou_et_al_criterion_rescaling(criterion, n_samples, noise_variance): """Rescale the information criterion to follow the definition of Zou et al.""" return criterion - n_samples * np.log(2 * np.pi * noise_variance) - n_samples .. GENERATED FROM PYTHON SOURCE LINES 66-78 .. code-block:: Python import numpy as np aic_criterion = zou_et_al_criterion_rescaling( lasso_lars_ic[-1].criterion_, n_samples, lasso_lars_ic[-1].noise_variance_, ) index_alpha_path_aic = np.flatnonzero( lasso_lars_ic[-1].alphas_ == lasso_lars_ic[-1].alpha_ )[0] .. GENERATED FROM PYTHON SOURCE LINES 79-91 .. code-block:: Python lasso_lars_ic.set_params(lassolarsic__criterion="bic").fit(X, y) bic_criterion = zou_et_al_criterion_rescaling( lasso_lars_ic[-1].criterion_, n_samples, lasso_lars_ic[-1].noise_variance_, ) index_alpha_path_bic = np.flatnonzero( lasso_lars_ic[-1].alphas_ == lasso_lars_ic[-1].alpha_ )[0] .. GENERATED FROM PYTHON SOURCE LINES 92-95 Now that we collected the AIC and BIC, we can as well check that the minima of both criteria happen at the same alpha. Then, we can simplify the following plot. .. GENERATED FROM PYTHON SOURCE LINES 95-97 .. code-block:: Python index_alpha_path_aic == index_alpha_path_bic .. rst-class:: sphx-glr-script-out .. code-block:: none np.True_ .. GENERATED FROM PYTHON SOURCE LINES 98-100 Finally, we can plot the AIC and BIC criterion and the subsequent selected regularization parameter. .. GENERATED FROM PYTHON SOURCE LINES 100-116 .. code-block:: Python import matplotlib.pyplot as plt plt.plot(aic_criterion, color="tab:blue", marker="o", label="AIC criterion") plt.plot(bic_criterion, color="tab:orange", marker="o", label="BIC criterion") plt.vlines( index_alpha_path_bic, aic_criterion.min(), aic_criterion.max(), color="black", linestyle="--", label="Selected alpha", ) plt.legend() plt.ylabel("Information criterion") plt.xlabel("Lasso model sequence") _ = plt.title("Lasso model selection via AIC and BIC") .. image-sg:: /auto_examples/linear_model/images/sphx_glr_plot_lasso_lars_ic_001.png :alt: Lasso model selection via AIC and BIC :srcset: /auto_examples/linear_model/images/sphx_glr_plot_lasso_lars_ic_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.092 seconds) .. _sphx_glr_download_auto_examples_linear_model_plot_lasso_lars_ic.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/1.6.X?urlpath=lab/tree/notebooks/auto_examples/linear_model/plot_lasso_lars_ic.ipynb :alt: Launch binder :width: 150 px .. container:: lite-badge .. image:: images/jupyterlite_badge_logo.svg :target: ../../lite/lab/index.html?path=auto_examples/linear_model/plot_lasso_lars_ic.ipynb :alt: Launch JupyterLite :width: 150 px .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_lasso_lars_ic.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_lasso_lars_ic.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_lasso_lars_ic.zip ` .. include:: plot_lasso_lars_ic.recommendations .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_