.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/linear_model/plot_lasso_dense_vs_sparse_data.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. or to run this example in your browser via JupyterLite or Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_linear_model_plot_lasso_dense_vs_sparse_data.py: ============================== Lasso on dense and sparse data ============================== We show that linear_model.Lasso provides the same results for dense and sparse data and that in the case of sparse data the speed is improved. .. GENERATED FROM PYTHON SOURCE LINES 10-21 .. code-block:: Python # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause from time import time from scipy import linalg, sparse from sklearn.datasets import make_regression from sklearn.linear_model import Lasso .. GENERATED FROM PYTHON SOURCE LINES 22-32 Comparing the two Lasso implementations on Dense data ----------------------------------------------------- We create a linear regression problem that is suitable for the Lasso, that is to say, with more features than samples. We then store the data matrix in both dense (the usual) and sparse format, and train a Lasso on each. We compute the runtime of both and check that they learned the same model by computing the Euclidean norm of the difference between the coefficients they learned. Because the data is dense, we expect better runtime with a dense data format. .. GENERATED FROM PYTHON SOURCE LINES 32-54 .. code-block:: Python X, y = make_regression(n_samples=200, n_features=5000, random_state=0) # create a copy of X in sparse format X_sp = sparse.coo_matrix(X) alpha = 1 sparse_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=1000) dense_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=1000) t0 = time() sparse_lasso.fit(X_sp, y) print(f"Sparse Lasso done in {(time() - t0):.3f}s") t0 = time() dense_lasso.fit(X, y) print(f"Dense Lasso done in {(time() - t0):.3f}s") # compare the regression coefficients coeff_diff = linalg.norm(sparse_lasso.coef_ - dense_lasso.coef_) print(f"Distance between coefficients : {coeff_diff:.2e}") # .. rst-class:: sphx-glr-script-out .. code-block:: none Sparse Lasso done in 0.100s Dense Lasso done in 0.037s Distance between coefficients : 1.01e-13 .. GENERATED FROM PYTHON SOURCE LINES 55-61 Comparing the two Lasso implementations on Sparse data ------------------------------------------------------ We make the previous problem sparse by replacing all small values with 0 and run the same comparisons as above. Because the data is now sparse, we expect the implementation that uses the sparse data format to be faster. .. GENERATED FROM PYTHON SOURCE LINES 61-89 .. code-block:: Python # make a copy of the previous data Xs = X.copy() # make Xs sparse by replacing the values lower than 2.5 with 0s Xs[Xs < 2.5] = 0.0 # create a copy of Xs in sparse format Xs_sp = sparse.coo_matrix(Xs) Xs_sp = Xs_sp.tocsc() # compute the proportion of non-zero coefficient in the data matrix print(f"Matrix density : {(Xs_sp.nnz / float(X.size) * 100):.3f}%") alpha = 0.1 sparse_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=10000) dense_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=10000) t0 = time() sparse_lasso.fit(Xs_sp, y) print(f"Sparse Lasso done in {(time() - t0):.3f}s") t0 = time() dense_lasso.fit(Xs, y) print(f"Dense Lasso done in {(time() - t0):.3f}s") # compare the regression coefficients coeff_diff = linalg.norm(sparse_lasso.coef_ - dense_lasso.coef_) print(f"Distance between coefficients : {coeff_diff:.2e}") .. rst-class:: sphx-glr-script-out .. code-block:: none Matrix density : 0.626% Sparse Lasso done in 0.187s Dense Lasso done in 0.774s Distance between coefficients : 8.65e-12 .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 1.164 seconds) .. _sphx_glr_download_auto_examples_linear_model_plot_lasso_dense_vs_sparse_data.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/1.6.X?urlpath=lab/tree/notebooks/auto_examples/linear_model/plot_lasso_dense_vs_sparse_data.ipynb :alt: Launch binder :width: 150 px .. container:: lite-badge .. image:: images/jupyterlite_badge_logo.svg :target: ../../lite/lab/index.html?path=auto_examples/linear_model/plot_lasso_dense_vs_sparse_data.ipynb :alt: Launch JupyterLite :width: 150 px .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_lasso_dense_vs_sparse_data.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_lasso_dense_vs_sparse_data.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_lasso_dense_vs_sparse_data.zip ` .. include:: plot_lasso_dense_vs_sparse_data.recommendations .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_