:orphan: .. _sphx_glr_sg_execution_times: Computation times ================= **24:46.763** total execution time for 293 files **from all galleries**: .. container:: .. raw:: html <style scoped> <link href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/5.3.0/css/bootstrap.min.css" rel="stylesheet" /> <link href="https://cdn.datatables.net/1.13.6/css/dataTables.bootstrap5.min.css" rel="stylesheet" /> </style> <script src="https://code.jquery.com/jquery-3.7.0.js"></script> <script src="https://cdn.datatables.net/1.13.6/js/jquery.dataTables.min.js"></script> <script src="https://cdn.datatables.net/1.13.6/js/dataTables.bootstrap5.min.js"></script> <script type="text/javascript" class="init"> $(document).ready( function () { $('table.sg-datatable').DataTable({order: [[1, 'desc']]}); } ); </script> .. list-table:: :header-rows: 1 :class: table table-striped sg-datatable * - Example - Time - Mem (MB) * - :ref:`sphx_glr_auto_examples_release_highlights_plot_release_highlights_0_24_0.py` (``../examples/release_highlights/plot_release_highlights_0_24_0.py``) - 01:16.647 - 0.0 * - :ref:`sphx_glr_auto_examples_miscellaneous_plot_outlier_detection_bench.py` (``../examples/miscellaneous/plot_outlier_detection_bench.py``) - 01:11.432 - 0.0 * - :ref:`sphx_glr_auto_examples_model_selection_plot_cost_sensitive_learning.py` (``../examples/model_selection/plot_cost_sensitive_learning.py``) - 01:10.994 - 0.0 * - :ref:`sphx_glr_auto_examples_ensemble_plot_forest_hist_grad_boosting_comparison.py` (``../examples/ensemble/plot_forest_hist_grad_boosting_comparison.py``) - 00:59.661 - 0.0 * - :ref:`sphx_glr_auto_examples_compose_plot_compare_reduction.py` (``../examples/compose/plot_compare_reduction.py``) - 00:43.397 - 0.0 * - :ref:`sphx_glr_auto_examples_linear_model_plot_sgd_early_stopping.py` (``../examples/linear_model/plot_sgd_early_stopping.py``) - 00:35.421 - 0.0 * - :ref:`sphx_glr_auto_examples_feature_selection_plot_select_from_model_diabetes.py` (``../examples/feature_selection/plot_select_from_model_diabetes.py``) - 00:34.068 - 0.0 * - :ref:`sphx_glr_auto_examples_model_selection_plot_tuned_decision_threshold.py` (``../examples/model_selection/plot_tuned_decision_threshold.py``) - 00:33.487 - 0.0 * - :ref:`sphx_glr_auto_examples_kernel_approximation_plot_scalable_poly_kernels.py` (``../examples/kernel_approximation/plot_scalable_poly_kernels.py``) - 00:33.011 - 0.0 * - :ref:`sphx_glr_auto_examples_preprocessing_plot_target_encoder.py` (``../examples/preprocessing/plot_target_encoder.py``) - 00:29.568 - 0.0 * - :ref:`sphx_glr_auto_examples_decomposition_plot_image_denoising.py` (``../examples/decomposition/plot_image_denoising.py``) - 00:29.329 - 0.0 * - :ref:`sphx_glr_auto_examples_model_selection_plot_grid_search_text_feature_extraction.py` (``../examples/model_selection/plot_grid_search_text_feature_extraction.py``) - 00:28.564 - 0.0 * - :ref:`sphx_glr_auto_examples_inspection_plot_partial_dependence.py` (``../examples/inspection/plot_partial_dependence.py``) - 00:26.039 - 0.0 * - :ref:`sphx_glr_auto_examples_linear_model_plot_poisson_regression_non_normal_loss.py` (``../examples/linear_model/plot_poisson_regression_non_normal_loss.py``) - 00:25.374 - 0.0 * - :ref:`sphx_glr_auto_examples_ensemble_plot_stack_predictors.py` (``../examples/ensemble/plot_stack_predictors.py``) - 00:25.247 - 0.0 * - :ref:`sphx_glr_auto_examples_model_selection_plot_learning_curve.py` (``../examples/model_selection/plot_learning_curve.py``) - 00:25.091 - 0.0 * - :ref:`sphx_glr_auto_examples_ensemble_plot_hgbt_regression.py` (``../examples/ensemble/plot_hgbt_regression.py``) - 00:23.797 - 0.0 * - :ref:`sphx_glr_auto_examples_applications_plot_face_recognition.py` (``../examples/applications/plot_face_recognition.py``) - 00:22.561 - 0.0 * - :ref:`sphx_glr_auto_examples_multiclass_plot_multiclass_overview.py` (``../examples/multiclass/plot_multiclass_overview.py``) - 00:20.856 - 0.0 * - :ref:`sphx_glr_auto_examples_applications_plot_model_complexity_influence.py` (``../examples/applications/plot_model_complexity_influence.py``) - 00:20.345 - 0.0 * - :ref:`sphx_glr_auto_examples_applications_plot_prediction_latency.py` (``../examples/applications/plot_prediction_latency.py``) - 00:18.536 - 0.0 * - :ref:`sphx_glr_auto_examples_manifold_plot_swissroll.py` (``../examples/manifold/plot_swissroll.py``) - 00:18.204 - 0.0 * - :ref:`sphx_glr_auto_examples_bicluster_plot_bicluster_newsgroups.py` (``../examples/bicluster/plot_bicluster_newsgroups.py``) - 00:17.022 - 0.0 * - :ref:`sphx_glr_auto_examples_svm_plot_svm_scale_c.py` (``../examples/svm/plot_svm_scale_c.py``) - 00:16.758 - 0.0 * - :ref:`sphx_glr_auto_examples_manifold_plot_lle_digits.py` (``../examples/manifold/plot_lle_digits.py``) - 00:16.434 - 0.0 * - :ref:`sphx_glr_auto_examples_inspection_plot_linear_model_coefficient_interpretation.py` (``../examples/inspection/plot_linear_model_coefficient_interpretation.py``) - 00:16.180 - 0.0 * - :ref:`sphx_glr_auto_examples_cluster_plot_hdbscan.py` (``../examples/cluster/plot_hdbscan.py``) - 00:15.043 - 0.0 * - :ref:`sphx_glr_auto_examples_applications_plot_cyclical_feature_engineering.py` (``../examples/applications/plot_cyclical_feature_engineering.py``) - 00:14.255 - 0.0 * - :ref:`sphx_glr_auto_examples_linear_model_plot_sparse_logistic_regression_mnist.py` (``../examples/linear_model/plot_sparse_logistic_regression_mnist.py``) - 00:14.123 - 0.0 * - :ref:`sphx_glr_auto_examples_applications_plot_species_distribution_modeling.py` (``../examples/applications/plot_species_distribution_modeling.py``) - 00:13.489 - 0.0 * - :ref:`sphx_glr_auto_examples_manifold_plot_compare_methods.py` (``../examples/manifold/plot_compare_methods.py``) - 00:13.179 - 0.0 * - :ref:`sphx_glr_auto_examples_applications_plot_time_series_lagged_features.py` (``../examples/applications/plot_time_series_lagged_features.py``) - 00:12.517 - 0.0 * - :ref:`sphx_glr_auto_examples_applications_plot_digits_denoising.py` (``../examples/applications/plot_digits_denoising.py``) - 00:12.346 - 0.0 * - :ref:`sphx_glr_auto_examples_applications_plot_topics_extraction_with_nmf_lda.py` (``../examples/applications/plot_topics_extraction_with_nmf_lda.py``) - 00:11.672 - 0.0 * - :ref:`sphx_glr_auto_examples_model_selection_plot_permutation_tests_for_classification.py` (``../examples/model_selection/plot_permutation_tests_for_classification.py``) - 00:11.587 - 0.0 * - :ref:`sphx_glr_auto_examples_applications_plot_out_of_core_classification.py` (``../examples/applications/plot_out_of_core_classification.py``) - 00:11.438 - 0.0 * - :ref:`sphx_glr_auto_examples_miscellaneous_plot_kernel_ridge_regression.py` (``../examples/miscellaneous/plot_kernel_ridge_regression.py``) - 00:10.750 - 0.0 * - :ref:`sphx_glr_auto_examples_miscellaneous_plot_johnson_lindenstrauss_bound.py` (``../examples/miscellaneous/plot_johnson_lindenstrauss_bound.py``) - 00:10.436 - 0.0 * - :ref:`sphx_glr_auto_examples_linear_model_plot_tweedie_regression_insurance_claims.py` (``../examples/linear_model/plot_tweedie_regression_insurance_claims.py``) - 00:10.216 - 0.0 * - :ref:`sphx_glr_auto_examples_neural_networks_plot_mnist_filters.py` (``../examples/neural_networks/plot_mnist_filters.py``) - 00:10.113 - 0.0 * - :ref:`sphx_glr_auto_examples_model_selection_plot_grid_search_digits.py` (``../examples/model_selection/plot_grid_search_digits.py``) - 00:10.106 - 0.0 * - :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_quantile.py` (``../examples/ensemble/plot_gradient_boosting_quantile.py``) - 00:09.952 - 0.0 * - :ref:`sphx_glr_auto_examples_applications_plot_tomography_l1_reconstruction.py` (``../examples/applications/plot_tomography_l1_reconstruction.py``) - 00:09.917 - 0.0 * - :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_oob.py` (``../examples/ensemble/plot_gradient_boosting_oob.py``) - 00:09.808 - 0.0 * - :ref:`sphx_glr_auto_examples_impute_plot_missing_values.py` (``../examples/impute/plot_missing_values.py``) - 00:08.730 - 0.0 * - :ref:`sphx_glr_auto_examples_linear_model_plot_sgd_comparison.py` (``../examples/linear_model/plot_sgd_comparison.py``) - 00:08.681 - 0.0 * - :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_regularization.py` (``../examples/ensemble/plot_gradient_boosting_regularization.py``) - 00:08.508 - 0.0 * - :ref:`sphx_glr_auto_examples_decomposition_plot_faces_decomposition.py` (``../examples/decomposition/plot_faces_decomposition.py``) - 00:08.489 - 0.0 * - :ref:`sphx_glr_auto_examples_preprocessing_plot_all_scaling.py` (``../examples/preprocessing/plot_all_scaling.py``) - 00:08.356 - 0.0 * - :ref:`sphx_glr_auto_examples_model_selection_plot_multi_metric_evaluation.py` (``../examples/model_selection/plot_multi_metric_evaluation.py``) - 00:08.272 - 0.0 * - :ref:`sphx_glr_auto_examples_classification_plot_lda.py` (``../examples/classification/plot_lda.py``) - 00:08.215 - 0.0 * - :ref:`sphx_glr_auto_examples_applications_plot_stock_market.py` (``../examples/applications/plot_stock_market.py``) - 00:07.963 - 0.0 * - :ref:`sphx_glr_auto_examples_gaussian_process_plot_gpc_iris.py` (``../examples/gaussian_process/plot_gpc_iris.py``) - 00:07.581 - 0.0 * - :ref:`sphx_glr_auto_examples_text_plot_document_clustering.py` (``../examples/text/plot_document_clustering.py``) - 00:07.287 - 0.0 * - :ref:`sphx_glr_auto_examples_model_selection_plot_successive_halving_heatmap.py` (``../examples/model_selection/plot_successive_halving_heatmap.py``) - 00:07.257 - 0.0 * - :ref:`sphx_glr_auto_examples_semi_supervised_plot_semi_supervised_newsgroups.py` (``../examples/semi_supervised/plot_semi_supervised_newsgroups.py``) - 00:07.218 - 0.0 * - :ref:`sphx_glr_auto_examples_cluster_plot_cluster_comparison.py` (``../examples/cluster/plot_cluster_comparison.py``) - 00:07.030 - 0.0 * - :ref:`sphx_glr_auto_examples_model_selection_plot_train_error_vs_test_error.py` (``../examples/model_selection/plot_train_error_vs_test_error.py``) - 00:06.803 - 0.0 * - :ref:`sphx_glr_auto_examples_release_highlights_plot_release_highlights_1_2_0.py` (``../examples/release_highlights/plot_release_highlights_1_2_0.py``) - 00:06.729 - 0.0 * - :ref:`sphx_glr_auto_examples_ensemble_plot_forest_iris.py` (``../examples/ensemble/plot_forest_iris.py``) - 00:06.647 - 0.0 * - :ref:`sphx_glr_auto_examples_linear_model_plot_sparse_logistic_regression_20newsgroups.py` (``../examples/linear_model/plot_sparse_logistic_regression_20newsgroups.py``) - 00:06.547 - 0.0 * - :ref:`sphx_glr_auto_examples_gaussian_process_plot_gpr_co2.py` (``../examples/gaussian_process/plot_gpr_co2.py``) - 00:06.406 - 0.0 * - :ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py` (``../examples/text/plot_document_classification_20newsgroups.py``) - 00:06.353 - 0.0 * - :ref:`sphx_glr_auto_examples_cluster_plot_coin_segmentation.py` (``../examples/cluster/plot_coin_segmentation.py``) - 00:06.245 - 0.0 * - :ref:`sphx_glr_auto_examples_model_selection_plot_nested_cross_validation_iris.py` (``../examples/model_selection/plot_nested_cross_validation_iris.py``) - 00:06.168 - 0.0 * - :ref:`sphx_glr_auto_examples_gaussian_process_plot_gpr_noisy.py` (``../examples/gaussian_process/plot_gpr_noisy.py``) - 00:06.129 - 0.0 * - :ref:`sphx_glr_auto_examples_mixture_plot_concentration_prior.py` (``../examples/mixture/plot_concentration_prior.py``) - 00:05.986 - 0.0 * - :ref:`sphx_glr_auto_examples_manifold_plot_manifold_sphere.py` (``../examples/manifold/plot_manifold_sphere.py``) - 00:05.889 - 0.0 * - :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_categorical.py` (``../examples/ensemble/plot_gradient_boosting_categorical.py``) - 00:05.822 - 0.0 * - :ref:`sphx_glr_auto_examples_impute_plot_iterative_imputer_variants_comparison.py` (``../examples/impute/plot_iterative_imputer_variants_comparison.py``) - 00:05.663 - 0.0 * - :ref:`sphx_glr_auto_examples_semi_supervised_plot_self_training_varying_threshold.py` (``../examples/semi_supervised/plot_self_training_varying_threshold.py``) - 00:05.543 - 0.0 * - :ref:`sphx_glr_auto_examples_exercises_plot_iris_exercise.py` (``../examples/exercises/plot_iris_exercise.py``) - 00:05.377 - 0.0 * - :ref:`sphx_glr_auto_examples_svm_plot_rbf_parameters.py` (``../examples/svm/plot_rbf_parameters.py``) - 00:05.306 - 0.0 * - :ref:`sphx_glr_auto_examples_text_plot_hashing_vs_dict_vectorizer.py` (``../examples/text/plot_hashing_vs_dict_vectorizer.py``) - 00:05.147 - 0.0 * - :ref:`sphx_glr_auto_examples_inspection_plot_permutation_importance.py` (``../examples/inspection/plot_permutation_importance.py``) - 00:05.087 - 0.0 * - :ref:`sphx_glr_auto_examples_gaussian_process_plot_compare_gpr_krr.py` (``../examples/gaussian_process/plot_compare_gpr_krr.py``) - 00:04.824 - 0.0 * - :ref:`sphx_glr_auto_examples_cluster_plot_inductive_clustering.py` (``../examples/cluster/plot_inductive_clustering.py``) - 00:04.779 - 0.0 * - :ref:`sphx_glr_auto_examples_inspection_plot_permutation_importance_multicollinear.py` (``../examples/inspection/plot_permutation_importance_multicollinear.py``) - 00:04.740 - 0.0 * - :ref:`sphx_glr_auto_examples_model_selection_plot_randomized_search.py` (``../examples/model_selection/plot_randomized_search.py``) - 00:04.697 - 0.0 * - :ref:`sphx_glr_auto_examples_multioutput_plot_classifier_chain_yeast.py` (``../examples/multioutput/plot_classifier_chain_yeast.py``) - 00:04.600 - 0.0 * - :ref:`sphx_glr_auto_examples_release_highlights_plot_release_highlights_1_4_0.py` (``../examples/release_highlights/plot_release_highlights_1_4_0.py``) - 00:04.586 - 0.0 * - :ref:`sphx_glr_auto_examples_model_selection_plot_successive_halving_iterations.py` (``../examples/model_selection/plot_successive_halving_iterations.py``) - 00:04.580 - 0.0 * - :ref:`sphx_glr_auto_examples_neighbors_plot_digits_kde_sampling.py` (``../examples/neighbors/plot_digits_kde_sampling.py``) - 00:04.576 - 0.0 * - :ref:`sphx_glr_auto_examples_ensemble_plot_adaboost_multiclass.py` (``../examples/ensemble/plot_adaboost_multiclass.py``) - 00:04.528 - 0.0 * - :ref:`sphx_glr_auto_examples_cluster_plot_birch_vs_minibatchkmeans.py` (``../examples/cluster/plot_birch_vs_minibatchkmeans.py``) - 00:04.327 - 0.0 * - :ref:`sphx_glr_auto_examples_ensemble_plot_ensemble_oob.py` (``../examples/ensemble/plot_ensemble_oob.py``) - 00:03.901 - 0.0 * - :ref:`sphx_glr_auto_examples_cluster_plot_dict_face_patches.py` (``../examples/cluster/plot_dict_face_patches.py``) - 00:03.591 - 0.0 * - :ref:`sphx_glr_auto_examples_neighbors_plot_species_kde.py` (``../examples/neighbors/plot_species_kde.py``) - 00:03.586 - 0.0 * - :ref:`sphx_glr_auto_examples_miscellaneous_plot_anomaly_comparison.py` (``../examples/miscellaneous/plot_anomaly_comparison.py``) - 00:03.541 - 0.0 * - :ref:`sphx_glr_auto_examples_feature_selection_plot_rfe_digits.py` (``../examples/feature_selection/plot_rfe_digits.py``) - 00:03.449 - 0.0 * - :ref:`sphx_glr_auto_examples_decomposition_plot_pca_vs_fa_model_selection.py` (``../examples/decomposition/plot_pca_vs_fa_model_selection.py``) - 00:03.435 - 0.0 * - :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_early_stopping.py` (``../examples/ensemble/plot_gradient_boosting_early_stopping.py``) - 00:03.425 - 0.0 * - :ref:`sphx_glr_auto_examples_preprocessing_plot_discretization_classification.py` (``../examples/preprocessing/plot_discretization_classification.py``) - 00:03.412 - 0.0 * - :ref:`sphx_glr_auto_examples_manifold_plot_t_sne_perplexity.py` (``../examples/manifold/plot_t_sne_perplexity.py``) - 00:03.171 - 0.0 * - :ref:`sphx_glr_auto_examples_neural_networks_plot_mlp_training_curves.py` (``../examples/neural_networks/plot_mlp_training_curves.py``) - 00:03.163 - 0.0 * - :ref:`sphx_glr_auto_examples_neural_networks_plot_rbm_logistic_classification.py` (``../examples/neural_networks/plot_rbm_logistic_classification.py``) - 00:03.147 - 0.0 * - :ref:`sphx_glr_auto_examples_covariance_plot_robust_vs_empirical_covariance.py` (``../examples/covariance/plot_robust_vs_empirical_covariance.py``) - 00:03.073 - 0.0 * - :ref:`sphx_glr_auto_examples_ensemble_plot_feature_transformation.py` (``../examples/ensemble/plot_feature_transformation.py``) - 00:03.001 - 0.0 * - :ref:`sphx_glr_auto_examples_inspection_plot_causal_interpretation.py` (``../examples/inspection/plot_causal_interpretation.py``) - 00:02.896 - 0.0 * - :ref:`sphx_glr_auto_examples_calibration_plot_compare_calibration.py` (``../examples/calibration/plot_compare_calibration.py``) - 00:02.870 - 0.0 * - :ref:`sphx_glr_auto_examples_miscellaneous_plot_partial_dependence_visualization_api.py` (``../examples/miscellaneous/plot_partial_dependence_visualization_api.py``) - 00:02.766 - 0.0 * - :ref:`sphx_glr_auto_examples_compose_plot_column_transformer.py` (``../examples/compose/plot_column_transformer.py``) - 00:02.539 - 0.0 * - :ref:`sphx_glr_auto_examples_cluster_plot_kmeans_digits.py` (``../examples/cluster/plot_kmeans_digits.py``) - 00:02.494 - 0.0 * - :ref:`sphx_glr_auto_examples_calibration_plot_calibration_curve.py` (``../examples/calibration/plot_calibration_curve.py``) - 00:02.472 - 0.0 * - :ref:`sphx_glr_auto_examples_covariance_plot_lw_vs_oas.py` (``../examples/covariance/plot_lw_vs_oas.py``) - 00:02.413 - 0.0 * - :ref:`sphx_glr_auto_examples_cluster_plot_face_compress.py` (``../examples/cluster/plot_face_compress.py``) - 00:02.400 - 0.0 * - :ref:`sphx_glr_auto_examples_gaussian_process_plot_gpc.py` (``../examples/gaussian_process/plot_gpc.py``) - 00:02.334 - 0.0 * - :ref:`sphx_glr_auto_examples_classification_plot_classification_probability.py` (``../examples/classification/plot_classification_probability.py``) - 00:02.314 - 0.0 * - :ref:`sphx_glr_auto_examples_classification_plot_classifier_comparison.py` (``../examples/classification/plot_classifier_comparison.py``) - 00:02.285 - 0.0 * - :ref:`sphx_glr_auto_examples_cluster_plot_agglomerative_clustering.py` (``../examples/cluster/plot_agglomerative_clustering.py``) - 00:02.275 - 0.0 * - :ref:`sphx_glr_auto_examples_cluster_plot_linkage_comparison.py` (``../examples/cluster/plot_linkage_comparison.py``) - 00:02.045 - 0.0 * - :ref:`sphx_glr_auto_examples_neighbors_plot_nca_dim_reduction.py` (``../examples/neighbors/plot_nca_dim_reduction.py``) - 00:01.976 - 0.0 * - :ref:`sphx_glr_auto_examples_preprocessing_plot_map_data_to_normal.py` (``../examples/preprocessing/plot_map_data_to_normal.py``) - 00:01.973 - 0.0 * - :ref:`sphx_glr_auto_examples_model_selection_plot_likelihood_ratios.py` (``../examples/model_selection/plot_likelihood_ratios.py``) - 00:01.958 - 0.0 * - :ref:`sphx_glr_auto_examples_neural_networks_plot_mlp_alpha.py` (``../examples/neural_networks/plot_mlp_alpha.py``) - 00:01.933 - 0.0 * - :ref:`sphx_glr_auto_examples_miscellaneous_plot_display_object_visualization.py` (``../examples/miscellaneous/plot_display_object_visualization.py``) - 00:01.923 - 0.0 * - :ref:`sphx_glr_auto_examples_linear_model_plot_robust_fit.py` (``../examples/linear_model/plot_robust_fit.py``) - 00:01.876 - 0.0 * - :ref:`sphx_glr_auto_examples_miscellaneous_plot_kernel_approximation.py` (``../examples/miscellaneous/plot_kernel_approximation.py``) - 00:01.874 - 0.0 * - :ref:`sphx_glr_auto_examples_miscellaneous_plot_multioutput_face_completion.py` (``../examples/miscellaneous/plot_multioutput_face_completion.py``) - 00:01.869 - 0.0 * - :ref:`sphx_glr_auto_examples_linear_model_plot_elastic_net_precomputed_gram_matrix_with_weighted_samples.py` (``../examples/linear_model/plot_elastic_net_precomputed_gram_matrix_with_weighted_samples.py``) - 00:01.784 - 0.0 * - :ref:`sphx_glr_auto_examples_gaussian_process_plot_gpr_prior_posterior.py` (``../examples/gaussian_process/plot_gpr_prior_posterior.py``) - 00:01.779 - 0.0 * - :ref:`sphx_glr_auto_examples_preprocessing_plot_scaling_importance.py` (``../examples/preprocessing/plot_scaling_importance.py``) - 00:01.757 - 0.0 * - :ref:`sphx_glr_auto_examples_cluster_plot_digits_linkage.py` (``../examples/cluster/plot_digits_linkage.py``) - 00:01.607 - 0.0 * - :ref:`sphx_glr_auto_examples_calibration_plot_calibration_multiclass.py` (``../examples/calibration/plot_calibration_multiclass.py``) - 00:01.589 - 0.0 * - :ref:`sphx_glr_auto_examples_compose_plot_transformed_target.py` (``../examples/compose/plot_transformed_target.py``) - 00:01.568 - 0.0 * - :ref:`sphx_glr_auto_examples_cluster_plot_optics.py` (``../examples/cluster/plot_optics.py``) - 00:01.540 - 0.0 * - :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_regression.py` (``../examples/ensemble/plot_gradient_boosting_regression.py``) - 00:01.513 - 0.0 * - :ref:`sphx_glr_auto_examples_model_selection_plot_grid_search_stats.py` (``../examples/model_selection/plot_grid_search_stats.py``) - 00:01.478 - 0.0 * - :ref:`sphx_glr_auto_examples_mixture_plot_gmm_selection.py` (``../examples/mixture/plot_gmm_selection.py``) - 00:01.468 - 0.0 * - :ref:`sphx_glr_auto_examples_cluster_plot_adjusted_for_chance_measures.py` (``../examples/cluster/plot_adjusted_for_chance_measures.py``) - 00:01.466 - 0.0 * - :ref:`sphx_glr_auto_examples_cluster_plot_kmeans_stability_low_dim_dense.py` (``../examples/cluster/plot_kmeans_stability_low_dim_dense.py``) - 00:01.408 - 0.0 * - :ref:`sphx_glr_auto_examples_release_highlights_plot_release_highlights_1_3_0.py` (``../examples/release_highlights/plot_release_highlights_1_3_0.py``) - 00:01.388 - 0.0 * - :ref:`sphx_glr_auto_examples_ensemble_plot_forest_importances_faces.py` (``../examples/ensemble/plot_forest_importances_faces.py``) - 00:01.352 - 0.0 * - :ref:`sphx_glr_auto_examples_neighbors_plot_caching_nearest_neighbors.py` (``../examples/neighbors/plot_caching_nearest_neighbors.py``) - 00:01.338 - 0.0 * - :ref:`sphx_glr_auto_examples_svm_plot_svm_kernels.py` (``../examples/svm/plot_svm_kernels.py``) - 00:01.315 - 0.0 * - :ref:`sphx_glr_auto_examples_linear_model_plot_lasso_dense_vs_sparse_data.py` (``../examples/linear_model/plot_lasso_dense_vs_sparse_data.py``) - 00:01.307 - 0.0 * - :ref:`sphx_glr_auto_examples_compose_plot_digits_pipe.py` (``../examples/compose/plot_digits_pipe.py``) - 00:01.307 - 0.0 * - :ref:`sphx_glr_auto_examples_ensemble_plot_bias_variance.py` (``../examples/ensemble/plot_bias_variance.py``) - 00:01.292 - 0.0 * - :ref:`sphx_glr_auto_examples_model_selection_plot_cv_indices.py` (``../examples/model_selection/plot_cv_indices.py``) - 00:01.268 - 0.0 * - :ref:`sphx_glr_auto_examples_cluster_plot_bisect_kmeans.py` (``../examples/cluster/plot_bisect_kmeans.py``) - 00:01.222 - 0.0 * - :ref:`sphx_glr_auto_examples_compose_plot_column_transformer_mixed_types.py` (``../examples/compose/plot_column_transformer_mixed_types.py``) - 00:01.219 - 0.0 * - :ref:`sphx_glr_auto_examples_cluster_plot_kmeans_assumptions.py` (``../examples/cluster/plot_kmeans_assumptions.py``) - 00:01.212 - 0.0 * - :ref:`sphx_glr_auto_examples_release_highlights_plot_release_highlights_0_22_0.py` (``../examples/release_highlights/plot_release_highlights_0_22_0.py``) - 00:01.211 - 0.0 * - :ref:`sphx_glr_auto_examples_cluster_plot_agglomerative_clustering_metrics.py` (``../examples/cluster/plot_agglomerative_clustering_metrics.py``) - 00:01.159 - 0.0 * - :ref:`sphx_glr_auto_examples_cluster_plot_kmeans_silhouette_analysis.py` (``../examples/cluster/plot_kmeans_silhouette_analysis.py``) - 00:01.141 - 0.0 * - :ref:`sphx_glr_auto_examples_model_selection_plot_grid_search_refit_callable.py` (``../examples/model_selection/plot_grid_search_refit_callable.py``) - 00:01.124 - 0.0 * - :ref:`sphx_glr_auto_examples_ensemble_plot_voting_regressor.py` (``../examples/ensemble/plot_voting_regressor.py``) - 00:01.090 - 0.0 * - :ref:`sphx_glr_auto_examples_linear_model_plot_lasso_model_selection.py` (``../examples/linear_model/plot_lasso_model_selection.py``) - 00:00.991 - 0.0 * - :ref:`sphx_glr_auto_examples_svm_plot_svm_tie_breaking.py` (``../examples/svm/plot_svm_tie_breaking.py``) - 00:00.950 - 0.0 * - :ref:`sphx_glr_auto_examples_ensemble_plot_forest_importances.py` (``../examples/ensemble/plot_forest_importances.py``) - 00:00.949 - 0.0 * - :ref:`sphx_glr_auto_examples_release_highlights_plot_release_highlights_1_1_0.py` (``../examples/release_highlights/plot_release_highlights_1_1_0.py``) - 00:00.937 - 0.0 * - :ref:`sphx_glr_auto_examples_semi_supervised_plot_semi_supervised_versus_svm_iris.py` (``../examples/semi_supervised/plot_semi_supervised_versus_svm_iris.py``) - 00:00.932 - 0.0 * - :ref:`sphx_glr_auto_examples_tree_plot_iris_dtc.py` (``../examples/tree/plot_iris_dtc.py``) - 00:00.863 - 0.0 * - :ref:`sphx_glr_auto_examples_neighbors_plot_nca_classification.py` (``../examples/neighbors/plot_nca_classification.py``) - 00:00.764 - 0.0 * - :ref:`sphx_glr_auto_examples_release_highlights_plot_release_highlights_1_5_0.py` (``../examples/release_highlights/plot_release_highlights_1_5_0.py``) - 00:00.762 - 0.0 * - :ref:`sphx_glr_auto_examples_linear_model_plot_ard.py` (``../examples/linear_model/plot_ard.py``) - 00:00.724 - 0.0 * - :ref:`sphx_glr_auto_examples_preprocessing_plot_discretization_strategies.py` (``../examples/preprocessing/plot_discretization_strategies.py``) - 00:00.720 - 0.0 * - :ref:`sphx_glr_auto_examples_linear_model_plot_ridge_coeffs.py` (``../examples/linear_model/plot_ridge_coeffs.py``) - 00:00.716 - 0.0 * - :ref:`sphx_glr_auto_examples_ensemble_plot_adaboost_twoclass.py` (``../examples/ensemble/plot_adaboost_twoclass.py``) - 00:00.697 - 0.0 * - :ref:`sphx_glr_auto_examples_model_selection_plot_roc.py` (``../examples/model_selection/plot_roc.py``) - 00:00.694 - 0.0 * - :ref:`sphx_glr_auto_examples_neighbors_plot_lof_novelty_detection.py` (``../examples/neighbors/plot_lof_novelty_detection.py``) - 00:00.672 - 0.0 * - :ref:`sphx_glr_auto_examples_model_selection_plot_validation_curve.py` (``../examples/model_selection/plot_validation_curve.py``) - 00:00.671 - 0.0 * - :ref:`sphx_glr_auto_examples_cluster_plot_color_quantization.py` (``../examples/cluster/plot_color_quantization.py``) - 00:00.668 - 0.0 * - :ref:`sphx_glr_auto_examples_ensemble_plot_voting_decision_regions.py` (``../examples/ensemble/plot_voting_decision_regions.py``) - 00:00.666 - 0.0 * - :ref:`sphx_glr_auto_examples_mixture_plot_gmm_init.py` (``../examples/mixture/plot_gmm_init.py``) - 00:00.660 - 0.0 * - :ref:`sphx_glr_auto_examples_neighbors_plot_classification.py` (``../examples/neighbors/plot_classification.py``) - 00:00.634 - 0.0 * - :ref:`sphx_glr_auto_examples_cross_decomposition_plot_pcr_vs_pls.py` (``../examples/cross_decomposition/plot_pcr_vs_pls.py``) - 00:00.616 - 0.0 * - :ref:`sphx_glr_auto_examples_neighbors_plot_kde_1d.py` (``../examples/neighbors/plot_kde_1d.py``) - 00:00.612 - 0.0 * - :ref:`sphx_glr_auto_examples_gaussian_process_plot_gpr_noisy_targets.py` (``../examples/gaussian_process/plot_gpr_noisy_targets.py``) - 00:00.597 - 0.0 * - :ref:`sphx_glr_auto_examples_linear_model_plot_theilsen.py` (``../examples/linear_model/plot_theilsen.py``) - 00:00.590 - 0.0 * - :ref:`sphx_glr_auto_examples_ensemble_plot_monotonic_constraints.py` (``../examples/ensemble/plot_monotonic_constraints.py``) - 00:00.578 - 0.0 * - :ref:`sphx_glr_auto_examples_decomposition_plot_kernel_pca.py` (``../examples/decomposition/plot_kernel_pca.py``) - 00:00.577 - 0.0 * - :ref:`sphx_glr_auto_examples_linear_model_plot_quantile_regression.py` (``../examples/linear_model/plot_quantile_regression.py``) - 00:00.574 - 0.0 * - :ref:`sphx_glr_auto_examples_cluster_plot_feature_agglomeration_vs_univariate_selection.py` (``../examples/cluster/plot_feature_agglomeration_vs_univariate_selection.py``) - 00:00.563 - 0.0 * - :ref:`sphx_glr_auto_examples_linear_model_plot_logistic_l1_l2_sparsity.py` (``../examples/linear_model/plot_logistic_l1_l2_sparsity.py``) - 00:00.559 - 0.0 * - :ref:`sphx_glr_auto_examples_mixture_plot_gmm_sin.py` (``../examples/mixture/plot_gmm_sin.py``) - 00:00.558 - 0.0 * - :ref:`sphx_glr_auto_examples_release_highlights_plot_release_highlights_0_23_0.py` (``../examples/release_highlights/plot_release_highlights_0_23_0.py``) - 00:00.553 - 0.0 * - :ref:`sphx_glr_auto_examples_exercises_plot_cv_diabetes.py` (``../examples/exercises/plot_cv_diabetes.py``) - 00:00.543 - 0.0 * - :ref:`sphx_glr_auto_examples_gaussian_process_plot_gpc_xor.py` (``../examples/gaussian_process/plot_gpc_xor.py``) - 00:00.537 - 0.0 * - :ref:`sphx_glr_auto_examples_linear_model_plot_lasso_coordinate_descent_path.py` (``../examples/linear_model/plot_lasso_coordinate_descent_path.py``) - 00:00.537 - 0.0 * - :ref:`sphx_glr_auto_examples_applications_plot_outlier_detection_wine.py` (``../examples/applications/plot_outlier_detection_wine.py``) - 00:00.530 - 0.0 * - :ref:`sphx_glr_auto_examples_ensemble_plot_random_forest_regression_multioutput.py` (``../examples/ensemble/plot_random_forest_regression_multioutput.py``) - 00:00.528 - 0.0 * - :ref:`sphx_glr_auto_examples_feature_selection_plot_rfe_with_cross_validation.py` (``../examples/feature_selection/plot_rfe_with_cross_validation.py``) - 00:00.526 - 0.0 * - :ref:`sphx_glr_auto_examples_semi_supervised_plot_label_propagation_digits_active_learning.py` (``../examples/semi_supervised/plot_label_propagation_digits_active_learning.py``) - 00:00.522 - 0.0 * - :ref:`sphx_glr_auto_examples_classification_plot_digits_classification.py` (``../examples/classification/plot_digits_classification.py``) - 00:00.514 - 0.0 * - :ref:`sphx_glr_auto_examples_linear_model_plot_sgdocsvm_vs_ocsvm.py` (``../examples/linear_model/plot_sgdocsvm_vs_ocsvm.py``) - 00:00.511 - 0.0 * - :ref:`sphx_glr_auto_examples_bicluster_plot_spectral_biclustering.py` (``../examples/bicluster/plot_spectral_biclustering.py``) - 00:00.509 - 0.0 * - :ref:`sphx_glr_auto_examples_cluster_plot_segmentation_toy.py` (``../examples/cluster/plot_segmentation_toy.py``) - 00:00.503 - 0.0 * - :ref:`sphx_glr_auto_examples_covariance_plot_sparse_cov.py` (``../examples/covariance/plot_sparse_cov.py``) - 00:00.497 - 0.0 * - :ref:`sphx_glr_auto_examples_svm_plot_weighted_samples.py` (``../examples/svm/plot_weighted_samples.py``) - 00:00.492 - 0.0 * - :ref:`sphx_glr_auto_examples_cluster_plot_mean_shift.py` (``../examples/cluster/plot_mean_shift.py``) - 00:00.465 - 0.0 * - :ref:`sphx_glr_auto_examples_linear_model_plot_polynomial_interpolation.py` (``../examples/linear_model/plot_polynomial_interpolation.py``) - 00:00.461 - 0.0 * - :ref:`sphx_glr_auto_examples_tree_plot_cost_complexity_pruning.py` (``../examples/tree/plot_cost_complexity_pruning.py``) - 00:00.459 - 0.0 * - :ref:`sphx_glr_auto_examples_ensemble_plot_adaboost_regression.py` (``../examples/ensemble/plot_adaboost_regression.py``) - 00:00.451 - 0.0 * - :ref:`sphx_glr_auto_examples_ensemble_plot_isolation_forest.py` (``../examples/ensemble/plot_isolation_forest.py``) - 00:00.451 - 0.0 * - :ref:`sphx_glr_auto_examples_linear_model_plot_lasso_and_elasticnet.py` (``../examples/linear_model/plot_lasso_and_elasticnet.py``) - 00:00.450 - 0.0 * - :ref:`sphx_glr_auto_examples_covariance_plot_covariance_estimation.py` (``../examples/covariance/plot_covariance_estimation.py``) - 00:00.447 - 0.0 * - :ref:`sphx_glr_auto_examples_classification_plot_lda_qda.py` (``../examples/classification/plot_lda_qda.py``) - 00:00.441 - 0.0 * - :ref:`sphx_glr_auto_examples_decomposition_plot_varimax_fa.py` (``../examples/decomposition/plot_varimax_fa.py``) - 00:00.435 - 0.0 * - :ref:`sphx_glr_auto_examples_compose_plot_feature_union.py` (``../examples/compose/plot_feature_union.py``) - 00:00.427 - 0.0 * - :ref:`sphx_glr_auto_examples_cluster_plot_ward_structured_vs_unstructured.py` (``../examples/cluster/plot_ward_structured_vs_unstructured.py``) - 00:00.416 - 0.0 * - :ref:`sphx_glr_auto_examples_svm_plot_svm_regression.py` (``../examples/svm/plot_svm_regression.py``) - 00:00.407 - 0.0 * - :ref:`sphx_glr_auto_examples_decomposition_plot_ica_vs_pca.py` (``../examples/decomposition/plot_ica_vs_pca.py``) - 00:00.404 - 0.0 * - :ref:`sphx_glr_auto_examples_cluster_plot_coin_ward_segmentation.py` (``../examples/cluster/plot_coin_ward_segmentation.py``) - 00:00.399 - 0.0 * - :ref:`sphx_glr_auto_examples_linear_model_plot_ridge_path.py` (``../examples/linear_model/plot_ridge_path.py``) - 00:00.394 - 0.0 * - :ref:`sphx_glr_auto_examples_decomposition_plot_ica_blind_source_separation.py` (``../examples/decomposition/plot_ica_blind_source_separation.py``) - 00:00.387 - 0.0 * - :ref:`sphx_glr_auto_examples_ensemble_plot_voting_probas.py` (``../examples/ensemble/plot_voting_probas.py``) - 00:00.378 - 0.0 * - :ref:`sphx_glr_auto_examples_model_selection_plot_precision_recall.py` (``../examples/model_selection/plot_precision_recall.py``) - 00:00.376 - 0.0 * - :ref:`sphx_glr_auto_examples_preprocessing_plot_target_encoder_cross_val.py` (``../examples/preprocessing/plot_target_encoder_cross_val.py``) - 00:00.357 - 0.0 * - :ref:`sphx_glr_auto_examples_calibration_plot_calibration.py` (``../examples/calibration/plot_calibration.py``) - 00:00.352 - 0.0 * - :ref:`sphx_glr_auto_examples_semi_supervised_plot_label_propagation_digits.py` (``../examples/semi_supervised/plot_label_propagation_digits.py``) - 00:00.340 - 0.0 * - :ref:`sphx_glr_auto_examples_ensemble_plot_random_forest_embedding.py` (``../examples/ensemble/plot_random_forest_embedding.py``) - 00:00.337 - 0.0 * - :ref:`sphx_glr_auto_examples_svm_plot_svm_anova.py` (``../examples/svm/plot_svm_anova.py``) - 00:00.334 - 0.0 * - :ref:`sphx_glr_auto_examples_bicluster_plot_spectral_coclustering.py` (``../examples/bicluster/plot_spectral_coclustering.py``) - 00:00.332 - 0.0 * - :ref:`sphx_glr_auto_examples_gaussian_process_plot_gpr_on_structured_data.py` (``../examples/gaussian_process/plot_gpr_on_structured_data.py``) - 00:00.323 - 0.0 * - :ref:`sphx_glr_auto_examples_cluster_plot_cluster_iris.py` (``../examples/cluster/plot_cluster_iris.py``) - 00:00.314 - 0.0 * - :ref:`sphx_glr_auto_examples_datasets_plot_random_dataset.py` (``../examples/datasets/plot_random_dataset.py``) - 00:00.314 - 0.0 * - :ref:`sphx_glr_auto_examples_linear_model_plot_bayesian_ridge_curvefit.py` (``../examples/linear_model/plot_bayesian_ridge_curvefit.py``) - 00:00.307 - 0.0 * - :ref:`sphx_glr_auto_examples_cluster_plot_affinity_propagation.py` (``../examples/cluster/plot_affinity_propagation.py``) - 00:00.298 - 0.0 * - :ref:`sphx_glr_auto_examples_linear_model_plot_sgd_penalties.py` (``../examples/linear_model/plot_sgd_penalties.py``) - 00:00.294 - 0.0 * - :ref:`sphx_glr_auto_examples_linear_model_plot_multi_task_lasso_support.py` (``../examples/linear_model/plot_multi_task_lasso_support.py``) - 00:00.283 - 0.0 * - :ref:`sphx_glr_auto_examples_covariance_plot_mahalanobis_distances.py` (``../examples/covariance/plot_mahalanobis_distances.py``) - 00:00.283 - 0.0 * - :ref:`sphx_glr_auto_examples_linear_model_plot_ols_ridge_variance.py` (``../examples/linear_model/plot_ols_ridge_variance.py``) - 00:00.280 - 0.0 * - :ref:`sphx_glr_auto_examples_feature_selection_plot_f_test_vs_mi.py` (``../examples/feature_selection/plot_f_test_vs_mi.py``) - 00:00.275 - 0.0 * - :ref:`sphx_glr_auto_examples_decomposition_plot_sparse_coding.py` (``../examples/decomposition/plot_sparse_coding.py``) - 00:00.269 - 0.0 * - :ref:`sphx_glr_auto_examples_decomposition_plot_incremental_pca.py` (``../examples/decomposition/plot_incremental_pca.py``) - 00:00.235 - 0.0 * - :ref:`sphx_glr_auto_examples_neighbors_plot_nearest_centroid.py` (``../examples/neighbors/plot_nearest_centroid.py``) - 00:00.235 - 0.0 * - :ref:`sphx_glr_auto_examples_neighbors_plot_regression.py` (``../examples/neighbors/plot_regression.py``) - 00:00.233 - 0.0 * - :ref:`sphx_glr_auto_examples_tree_plot_tree_regression_multioutput.py` (``../examples/tree/plot_tree_regression_multioutput.py``) - 00:00.233 - 0.0 * - :ref:`sphx_glr_auto_examples_linear_model_plot_omp.py` (``../examples/linear_model/plot_omp.py``) - 00:00.231 - 0.0 * - :ref:`sphx_glr_auto_examples_preprocessing_plot_discretization.py` (``../examples/preprocessing/plot_discretization.py``) - 00:00.231 - 0.0 * - :ref:`sphx_glr_auto_examples_cross_decomposition_plot_compare_cross_decomposition.py` (``../examples/cross_decomposition/plot_compare_cross_decomposition.py``) - 00:00.217 - 0.0 * - :ref:`sphx_glr_auto_examples_mixture_plot_gmm.py` (``../examples/mixture/plot_gmm.py``) - 00:00.215 - 0.0 * - :ref:`sphx_glr_auto_examples_mixture_plot_gmm_covariances.py` (``../examples/mixture/plot_gmm_covariances.py``) - 00:00.210 - 0.0 * - :ref:`sphx_glr_auto_examples_linear_model_plot_ols_3d.py` (``../examples/linear_model/plot_ols_3d.py``) - 00:00.206 - 0.0 * - :ref:`sphx_glr_auto_examples_decomposition_plot_pca_vs_lda.py` (``../examples/decomposition/plot_pca_vs_lda.py``) - 00:00.204 - 0.0 * - :ref:`sphx_glr_auto_examples_svm_plot_iris_svc.py` (``../examples/svm/plot_iris_svc.py``) - 00:00.203 - 0.0 * - :ref:`sphx_glr_auto_examples_model_selection_plot_underfitting_overfitting.py` (``../examples/model_selection/plot_underfitting_overfitting.py``) - 00:00.202 - 0.0 * - :ref:`sphx_glr_auto_examples_svm_plot_linearsvc_support_vectors.py` (``../examples/svm/plot_linearsvc_support_vectors.py``) - 00:00.200 - 0.0 * - :ref:`sphx_glr_auto_examples_feature_selection_plot_feature_selection.py` (``../examples/feature_selection/plot_feature_selection.py``) - 00:00.198 - 0.0 * - :ref:`sphx_glr_auto_examples_linear_model_plot_logistic_multinomial.py` (``../examples/linear_model/plot_logistic_multinomial.py``) - 00:00.197 - 0.0 * - :ref:`sphx_glr_auto_examples_model_selection_plot_cv_predict.py` (``../examples/model_selection/plot_cv_predict.py``) - 00:00.191 - 0.0 * - :ref:`sphx_glr_auto_examples_datasets_plot_iris_dataset.py` (``../examples/datasets/plot_iris_dataset.py``) - 00:00.191 - 0.0 * - :ref:`sphx_glr_auto_examples_miscellaneous_plot_multilabel.py` (``../examples/miscellaneous/plot_multilabel.py``) - 00:00.191 - 0.0 * - :ref:`sphx_glr_auto_examples_manifold_plot_mds.py` (``../examples/manifold/plot_mds.py``) - 00:00.189 - 0.0 * - :ref:`sphx_glr_auto_examples_model_selection_plot_det.py` (``../examples/model_selection/plot_det.py``) - 00:00.185 - 0.0 * - :ref:`sphx_glr_auto_examples_cluster_plot_mini_batch_kmeans.py` (``../examples/cluster/plot_mini_batch_kmeans.py``) - 00:00.185 - 0.0 * - :ref:`sphx_glr_auto_examples_model_selection_plot_roc_crossval.py` (``../examples/model_selection/plot_roc_crossval.py``) - 00:00.181 - 0.0 * - :ref:`sphx_glr_auto_examples_model_selection_plot_confusion_matrix.py` (``../examples/model_selection/plot_confusion_matrix.py``) - 00:00.176 - 0.0 * - :ref:`sphx_glr_auto_examples_cluster_plot_dbscan.py` (``../examples/cluster/plot_dbscan.py``) - 00:00.176 - 0.0 * - :ref:`sphx_glr_auto_examples_miscellaneous_plot_set_output.py` (``../examples/miscellaneous/plot_set_output.py``) - 00:00.171 - 0.0 * - :ref:`sphx_glr_auto_examples_svm_plot_separating_hyperplane_unbalanced.py` (``../examples/svm/plot_separating_hyperplane_unbalanced.py``) - 00:00.169 - 0.0 * - :ref:`sphx_glr_auto_examples_miscellaneous_plot_roc_curve_visualization_api.py` (``../examples/miscellaneous/plot_roc_curve_visualization_api.py``) - 00:00.160 - 0.0 * - :ref:`sphx_glr_auto_examples_cluster_plot_digits_agglomeration.py` (``../examples/cluster/plot_digits_agglomeration.py``) - 00:00.160 - 0.0 * - :ref:`sphx_glr_auto_examples_neighbors_plot_nca_illustration.py` (``../examples/neighbors/plot_nca_illustration.py``) - 00:00.156 - 0.0 * - :ref:`sphx_glr_auto_examples_semi_supervised_plot_label_propagation_structure.py` (``../examples/semi_supervised/plot_label_propagation_structure.py``) - 00:00.156 - 0.0 * - :ref:`sphx_glr_auto_examples_miscellaneous_plot_isotonic_regression.py` (``../examples/miscellaneous/plot_isotonic_regression.py``) - 00:00.156 - 0.0 * - :ref:`sphx_glr_auto_examples_svm_plot_oneclass.py` (``../examples/svm/plot_oneclass.py``) - 00:00.149 - 0.0 * - :ref:`sphx_glr_auto_examples_gaussian_process_plot_gpc_isoprobability.py` (``../examples/gaussian_process/plot_gpc_isoprobability.py``) - 00:00.144 - 0.0 * - :ref:`sphx_glr_auto_examples_datasets_plot_random_multilabel_dataset.py` (``../examples/datasets/plot_random_multilabel_dataset.py``) - 00:00.130 - 0.0 * - :ref:`sphx_glr_auto_examples_mixture_plot_gmm_pdf.py` (``../examples/mixture/plot_gmm_pdf.py``) - 00:00.129 - 0.0 * - :ref:`sphx_glr_auto_examples_miscellaneous_plot_pipeline_display.py` (``../examples/miscellaneous/plot_pipeline_display.py``) - 00:00.126 - 0.0 * - :ref:`sphx_glr_auto_examples_linear_model_plot_logistic.py` (``../examples/linear_model/plot_logistic.py``) - 00:00.116 - 0.0 * - :ref:`sphx_glr_auto_examples_linear_model_plot_logistic_path.py` (``../examples/linear_model/plot_logistic_path.py``) - 00:00.115 - 0.0 * - :ref:`sphx_glr_auto_examples_linear_model_plot_sgd_iris.py` (``../examples/linear_model/plot_sgd_iris.py``) - 00:00.114 - 0.0 * - :ref:`sphx_glr_auto_examples_linear_model_plot_huber_vs_ridge.py` (``../examples/linear_model/plot_huber_vs_ridge.py``) - 00:00.107 - 0.0 * - :ref:`sphx_glr_auto_examples_linear_model_plot_sgd_loss_functions.py` (``../examples/linear_model/plot_sgd_loss_functions.py``) - 00:00.107 - 0.0 * - :ref:`sphx_glr_auto_examples_linear_model_plot_lasso_lars_ic.py` (``../examples/linear_model/plot_lasso_lars_ic.py``) - 00:00.103 - 0.0 * - :ref:`sphx_glr_auto_examples_linear_model_plot_ransac.py` (``../examples/linear_model/plot_ransac.py``) - 00:00.100 - 0.0 * - :ref:`sphx_glr_auto_examples_cluster_plot_agglomerative_dendrogram.py` (``../examples/cluster/plot_agglomerative_dendrogram.py``) - 00:00.099 - 0.0 * - :ref:`sphx_glr_auto_examples_svm_plot_custom_kernel.py` (``../examples/svm/plot_custom_kernel.py``) - 00:00.098 - 0.0 * - :ref:`sphx_glr_auto_examples_cluster_plot_kmeans_plusplus.py` (``../examples/cluster/plot_kmeans_plusplus.py``) - 00:00.090 - 0.0 * - :ref:`sphx_glr_auto_examples_tree_plot_tree_regression.py` (``../examples/tree/plot_tree_regression.py``) - 00:00.089 - 0.0 * - :ref:`sphx_glr_auto_examples_decomposition_plot_pca_iris.py` (``../examples/decomposition/plot_pca_iris.py``) - 00:00.085 - 0.0 * - :ref:`sphx_glr_auto_examples_linear_model_plot_sgd_weighted_samples.py` (``../examples/linear_model/plot_sgd_weighted_samples.py``) - 00:00.084 - 0.0 * - :ref:`sphx_glr_auto_examples_neighbors_plot_lof_outlier_detection.py` (``../examples/neighbors/plot_lof_outlier_detection.py``) - 00:00.083 - 0.0 * - :ref:`sphx_glr_auto_examples_tree_plot_unveil_tree_structure.py` (``../examples/tree/plot_unveil_tree_structure.py``) - 00:00.083 - 0.0 * - :ref:`sphx_glr_auto_examples_linear_model_plot_lasso_lars.py` (``../examples/linear_model/plot_lasso_lars.py``) - 00:00.083 - 0.0 * - :ref:`sphx_glr_auto_examples_linear_model_plot_sgd_separating_hyperplane.py` (``../examples/linear_model/plot_sgd_separating_hyperplane.py``) - 00:00.076 - 0.0 * - :ref:`sphx_glr_auto_examples_svm_plot_svm_margin.py` (``../examples/svm/plot_svm_margin.py``) - 00:00.073 - 0.0 * - :ref:`sphx_glr_auto_examples_svm_plot_separating_hyperplane.py` (``../examples/svm/plot_separating_hyperplane.py``) - 00:00.072 - 0.0 * - :ref:`sphx_glr_auto_examples_exercises_plot_digits_classification_exercise.py` (``../examples/exercises/plot_digits_classification_exercise.py``) - 00:00.071 - 0.0 * - :ref:`sphx_glr_auto_examples_linear_model_plot_nnls.py` (``../examples/linear_model/plot_nnls.py``) - 00:00.068 - 0.0 * - :ref:`sphx_glr_auto_examples_miscellaneous_plot_metadata_routing.py` (``../examples/miscellaneous/plot_metadata_routing.py``) - 00:00.064 - 0.0 * - :ref:`sphx_glr_auto_examples_datasets_plot_digits_last_image.py` (``../examples/datasets/plot_digits_last_image.py``) - 00:00.057 - 0.0 * - :ref:`sphx_glr_auto_examples_linear_model_plot_iris_logistic.py` (``../examples/linear_model/plot_iris_logistic.py``) - 00:00.048 - 0.0 * - :ref:`sphx_glr_auto_examples_linear_model_plot_ols.py` (``../examples/linear_model/plot_ols.py``) - 00:00.038 - 0.0 * - :ref:`sphx_glr_auto_examples_miscellaneous_plot_estimator_representation.py` (``../examples/miscellaneous/plot_estimator_representation.py``) - 00:00.027 - 0.0 * - :ref:`sphx_glr_auto_examples_release_highlights_plot_release_highlights_1_0_0.py` (``../examples/release_highlights/plot_release_highlights_1_0_0.py``) - 00:00.015 - 0.0 * - :ref:`sphx_glr_auto_examples_feature_selection_plot_feature_selection_pipeline.py` (``../examples/feature_selection/plot_feature_selection_pipeline.py``) - 00:00.015 - 0.0 * - :ref:`sphx_glr_auto_examples_applications_wikipedia_principal_eigenvector.py` (``../examples/applications/wikipedia_principal_eigenvector.py``) - 00:00.000 - 0.0 * - :ref:`sphx_glr_auto_examples_developing_estimators_sklearn_is_fitted.py` (``../examples/developing_estimators/sklearn_is_fitted.py``) - 00:00.000 - 0.0 * - :ref:`sphx_glr_auto_examples_neighbors_approximate_nearest_neighbors.py` (``../examples/neighbors/approximate_nearest_neighbors.py``) - 00:00.000 - 0.0