.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/miscellaneous/plot_estimator_representation.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end <sphx_glr_download_auto_examples_miscellaneous_plot_estimator_representation.py>` to download the full example code or to run this example in your browser via JupyterLite or Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_miscellaneous_plot_estimator_representation.py: =========================================== Displaying estimators and complex pipelines =========================================== This example illustrates different ways estimators and pipelines can be displayed. .. GENERATED FROM PYTHON SOURCE LINES 9-16 .. code-block:: Python from sklearn.compose import make_column_transformer from sklearn.impute import SimpleImputer from sklearn.linear_model import LogisticRegression from sklearn.pipeline import make_pipeline from sklearn.preprocessing import OneHotEncoder, StandardScaler .. GENERATED FROM PYTHON SOURCE LINES 17-23 Compact text representation --------------------------- Estimators will only show the parameters that have been set to non-default values when displayed as a string. This reduces the visual noise and makes it easier to spot what the differences are when comparing instances. .. GENERATED FROM PYTHON SOURCE LINES 23-27 .. code-block:: Python lr = LogisticRegression(penalty="l1") print(lr) .. rst-class:: sphx-glr-script-out .. code-block:: none LogisticRegression(penalty='l1') .. GENERATED FROM PYTHON SOURCE LINES 28-36 Rich HTML representation ------------------------ In notebooks estimators and pipelines will use a rich HTML representation. This is particularly useful to summarise the structure of pipelines and other composite estimators, with interactivity to provide detail. Click on the example image below to expand Pipeline elements. See :ref:`visualizing_composite_estimators` for how you can use this feature. .. GENERATED FROM PYTHON SOURCE LINES 36-50 .. code-block:: Python num_proc = make_pipeline(SimpleImputer(strategy="median"), StandardScaler()) cat_proc = make_pipeline( SimpleImputer(strategy="constant", fill_value="missing"), OneHotEncoder(handle_unknown="ignore"), ) preprocessor = make_column_transformer( (num_proc, ("feat1", "feat3")), (cat_proc, ("feat0", "feat2")) ) clf = make_pipeline(preprocessor, LogisticRegression()) clf .. raw:: html <div class="output_subarea output_html rendered_html output_result"> <style>#sk-container-id-44 { /* Definition of color scheme common for light and dark mode */ --sklearn-color-text: black; --sklearn-color-line: gray; /* Definition of color scheme for unfitted estimators */ --sklearn-color-unfitted-level-0: #fff5e6; --sklearn-color-unfitted-level-1: #f6e4d2; --sklearn-color-unfitted-level-2: #ffe0b3; --sklearn-color-unfitted-level-3: chocolate; /* Definition of color scheme for fitted estimators */ --sklearn-color-fitted-level-0: #f0f8ff; --sklearn-color-fitted-level-1: #d4ebff; --sklearn-color-fitted-level-2: #b3dbfd; --sklearn-color-fitted-level-3: cornflowerblue; /* Specific color for light theme */ --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black))); --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white))); --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black))); --sklearn-color-icon: #696969; @media (prefers-color-scheme: dark) { /* Redefinition of color scheme for dark theme */ --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white))); --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111))); --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white))); --sklearn-color-icon: #878787; } } #sk-container-id-44 { color: var(--sklearn-color-text); } #sk-container-id-44 pre { padding: 0; } #sk-container-id-44 input.sk-hidden--visually { border: 0; clip: rect(1px 1px 1px 1px); clip: rect(1px, 1px, 1px, 1px); height: 1px; margin: -1px; overflow: hidden; padding: 0; position: absolute; width: 1px; } #sk-container-id-44 div.sk-dashed-wrapped { border: 1px dashed var(--sklearn-color-line); margin: 0 0.4em 0.5em 0.4em; box-sizing: border-box; padding-bottom: 0.4em; background-color: var(--sklearn-color-background); } #sk-container-id-44 div.sk-container { /* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */ display: inline-block !important; position: relative; } #sk-container-id-44 div.sk-text-repr-fallback { display: none; } div.sk-parallel-item, div.sk-serial, div.sk-item { /* draw centered vertical line to link estimators */ background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background)); background-size: 2px 100%; background-repeat: no-repeat; background-position: center center; } /* Parallel-specific style estimator block */ #sk-container-id-44 div.sk-parallel-item::after { content: ""; width: 100%; border-bottom: 2px solid var(--sklearn-color-text-on-default-background); flex-grow: 1; } #sk-container-id-44 div.sk-parallel { display: flex; align-items: stretch; justify-content: center; background-color: var(--sklearn-color-background); position: relative; } #sk-container-id-44 div.sk-parallel-item { display: flex; flex-direction: column; } #sk-container-id-44 div.sk-parallel-item:first-child::after { align-self: flex-end; width: 50%; } #sk-container-id-44 div.sk-parallel-item:last-child::after { align-self: flex-start; width: 50%; } #sk-container-id-44 div.sk-parallel-item:only-child::after { width: 0; } /* Serial-specific style estimator block */ #sk-container-id-44 div.sk-serial { display: flex; flex-direction: column; align-items: center; background-color: var(--sklearn-color-background); padding-right: 1em; padding-left: 1em; } /* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is clickable and can be expanded/collapsed. - Pipeline and ColumnTransformer use this feature and define the default style - Estimators will overwrite some part of the style using the `sk-estimator` class */ /* Pipeline and ColumnTransformer style (default) */ #sk-container-id-44 div.sk-toggleable { /* Default theme specific background. It is overwritten whether we have a specific estimator or a Pipeline/ColumnTransformer */ background-color: var(--sklearn-color-background); } /* Toggleable label */ #sk-container-id-44 label.sk-toggleable__label { cursor: pointer; display: block; width: 100%; margin-bottom: 0; padding: 0.5em; box-sizing: border-box; text-align: center; } #sk-container-id-44 label.sk-toggleable__label-arrow:before { /* Arrow on the left of the label */ content: "▸"; float: left; margin-right: 0.25em; color: var(--sklearn-color-icon); } #sk-container-id-44 label.sk-toggleable__label-arrow:hover:before { color: var(--sklearn-color-text); } /* Toggleable content - dropdown */ #sk-container-id-44 div.sk-toggleable__content { max-height: 0; max-width: 0; overflow: hidden; text-align: left; /* unfitted */ background-color: var(--sklearn-color-unfitted-level-0); } #sk-container-id-44 div.sk-toggleable__content.fitted { /* fitted */ background-color: var(--sklearn-color-fitted-level-0); } #sk-container-id-44 div.sk-toggleable__content pre { margin: 0.2em; border-radius: 0.25em; color: var(--sklearn-color-text); /* unfitted */ background-color: var(--sklearn-color-unfitted-level-0); } #sk-container-id-44 div.sk-toggleable__content.fitted pre { /* unfitted */ background-color: var(--sklearn-color-fitted-level-0); } #sk-container-id-44 input.sk-toggleable__control:checked~div.sk-toggleable__content { /* Expand drop-down */ max-height: 200px; max-width: 100%; overflow: auto; } #sk-container-id-44 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before { content: "▾"; } /* Pipeline/ColumnTransformer-specific style */ #sk-container-id-44 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label { color: var(--sklearn-color-text); background-color: var(--sklearn-color-unfitted-level-2); } #sk-container-id-44 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label { background-color: var(--sklearn-color-fitted-level-2); } /* Estimator-specific style */ /* Colorize estimator box */ #sk-container-id-44 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label { /* unfitted */ background-color: var(--sklearn-color-unfitted-level-2); } #sk-container-id-44 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label { /* fitted */ background-color: var(--sklearn-color-fitted-level-2); } #sk-container-id-44 div.sk-label label.sk-toggleable__label, #sk-container-id-44 div.sk-label label { /* The background is the default theme color */ color: var(--sklearn-color-text-on-default-background); } /* On hover, darken the color of the background */ #sk-container-id-44 div.sk-label:hover label.sk-toggleable__label { color: var(--sklearn-color-text); background-color: var(--sklearn-color-unfitted-level-2); } /* Label box, darken color on hover, fitted */ #sk-container-id-44 div.sk-label.fitted:hover label.sk-toggleable__label.fitted { color: var(--sklearn-color-text); background-color: var(--sklearn-color-fitted-level-2); } /* Estimator label */ #sk-container-id-44 div.sk-label label { font-family: monospace; font-weight: bold; display: inline-block; line-height: 1.2em; } #sk-container-id-44 div.sk-label-container { text-align: center; } /* Estimator-specific */ #sk-container-id-44 div.sk-estimator { font-family: monospace; border: 1px dotted var(--sklearn-color-border-box); border-radius: 0.25em; box-sizing: border-box; margin-bottom: 0.5em; /* unfitted */ background-color: var(--sklearn-color-unfitted-level-0); } #sk-container-id-44 div.sk-estimator.fitted { /* fitted */ background-color: var(--sklearn-color-fitted-level-0); } /* on hover */ #sk-container-id-44 div.sk-estimator:hover { /* unfitted */ background-color: var(--sklearn-color-unfitted-level-2); } #sk-container-id-44 div.sk-estimator.fitted:hover { /* fitted */ background-color: var(--sklearn-color-fitted-level-2); } /* Specification for estimator info (e.g. "i" and "?") */ /* Common style for "i" and "?" */ .sk-estimator-doc-link, a:link.sk-estimator-doc-link, a:visited.sk-estimator-doc-link { float: right; font-size: smaller; line-height: 1em; font-family: monospace; background-color: var(--sklearn-color-background); border-radius: 1em; height: 1em; width: 1em; text-decoration: none !important; margin-left: 1ex; /* unfitted */ border: var(--sklearn-color-unfitted-level-1) 1pt solid; color: var(--sklearn-color-unfitted-level-1); } .sk-estimator-doc-link.fitted, a:link.sk-estimator-doc-link.fitted, a:visited.sk-estimator-doc-link.fitted { /* fitted */ border: var(--sklearn-color-fitted-level-1) 1pt solid; color: var(--sklearn-color-fitted-level-1); } /* On hover */ div.sk-estimator:hover .sk-estimator-doc-link:hover, .sk-estimator-doc-link:hover, div.sk-label-container:hover .sk-estimator-doc-link:hover, .sk-estimator-doc-link:hover { /* unfitted */ background-color: var(--sklearn-color-unfitted-level-3); color: var(--sklearn-color-background); text-decoration: none; } div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover, .sk-estimator-doc-link.fitted:hover, div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover, .sk-estimator-doc-link.fitted:hover { /* fitted */ background-color: var(--sklearn-color-fitted-level-3); color: var(--sklearn-color-background); text-decoration: none; } /* Span, style for the box shown on hovering the info icon */ .sk-estimator-doc-link span { display: none; z-index: 9999; position: relative; font-weight: normal; right: .2ex; padding: .5ex; margin: .5ex; width: min-content; min-width: 20ex; max-width: 50ex; color: var(--sklearn-color-text); box-shadow: 2pt 2pt 4pt #999; /* unfitted */ background: var(--sklearn-color-unfitted-level-0); border: .5pt solid var(--sklearn-color-unfitted-level-3); } .sk-estimator-doc-link.fitted span { /* fitted */ background: var(--sklearn-color-fitted-level-0); border: var(--sklearn-color-fitted-level-3); } .sk-estimator-doc-link:hover span { display: block; } /* "?"-specific style due to the `<a>` HTML tag */ #sk-container-id-44 a.estimator_doc_link { float: right; font-size: 1rem; line-height: 1em; font-family: monospace; background-color: var(--sklearn-color-background); border-radius: 1rem; height: 1rem; width: 1rem; text-decoration: none; /* unfitted */ color: var(--sklearn-color-unfitted-level-1); border: var(--sklearn-color-unfitted-level-1) 1pt solid; } #sk-container-id-44 a.estimator_doc_link.fitted { /* fitted */ border: var(--sklearn-color-fitted-level-1) 1pt solid; color: var(--sklearn-color-fitted-level-1); } /* On hover */ #sk-container-id-44 a.estimator_doc_link:hover { /* unfitted */ background-color: var(--sklearn-color-unfitted-level-3); color: var(--sklearn-color-background); text-decoration: none; } #sk-container-id-44 a.estimator_doc_link.fitted:hover { /* fitted */ background-color: var(--sklearn-color-fitted-level-3); } </style><div id="sk-container-id-44" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[('columntransformer', ColumnTransformer(transformers=[('pipeline-1', Pipeline(steps=[('simpleimputer', SimpleImputer(strategy='median')), ('standardscaler', StandardScaler())]), ('feat1', 'feat3')), ('pipeline-2', Pipeline(steps=[('simpleimputer', SimpleImputer(fill_value='missing', strategy='constant')), ('onehotencoder', OneHotEncoder(handle_unknown='ignore'))]), ('feat0', 'feat2'))])), ('logisticregression', LogisticRegression())])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-197" type="checkbox" ><label for="sk-estimator-id-197" class="sk-toggleable__label sk-toggleable__label-arrow "> Pipeline<a class="sk-estimator-doc-link " rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.4/modules/generated/sklearn.pipeline.Pipeline.html">?<span>Documentation for Pipeline</span></a><span class="sk-estimator-doc-link ">i<span>Not fitted</span></span></label><div class="sk-toggleable__content "><pre>Pipeline(steps=[('columntransformer', ColumnTransformer(transformers=[('pipeline-1', Pipeline(steps=[('simpleimputer', SimpleImputer(strategy='median')), ('standardscaler', StandardScaler())]), ('feat1', 'feat3')), ('pipeline-2', Pipeline(steps=[('simpleimputer', SimpleImputer(fill_value='missing', strategy='constant')), ('onehotencoder', OneHotEncoder(handle_unknown='ignore'))]), ('feat0', 'feat2'))])), ('logisticregression', LogisticRegression())])</pre></div> </div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-198" type="checkbox" ><label for="sk-estimator-id-198" class="sk-toggleable__label sk-toggleable__label-arrow "> columntransformer: ColumnTransformer<a class="sk-estimator-doc-link " rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.4/modules/generated/sklearn.compose.ColumnTransformer.html">?<span>Documentation for columntransformer: ColumnTransformer</span></a></label><div class="sk-toggleable__content "><pre>ColumnTransformer(transformers=[('pipeline-1', Pipeline(steps=[('simpleimputer', SimpleImputer(strategy='median')), ('standardscaler', StandardScaler())]), ('feat1', 'feat3')), ('pipeline-2', Pipeline(steps=[('simpleimputer', SimpleImputer(fill_value='missing', strategy='constant')), ('onehotencoder', OneHotEncoder(handle_unknown='ignore'))]), ('feat0', 'feat2'))])</pre></div> </div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-199" type="checkbox" ><label for="sk-estimator-id-199" class="sk-toggleable__label sk-toggleable__label-arrow ">pipeline-1</label><div class="sk-toggleable__content "><pre>('feat1', 'feat3')</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-200" type="checkbox" ><label for="sk-estimator-id-200" class="sk-toggleable__label sk-toggleable__label-arrow "> SimpleImputer<a class="sk-estimator-doc-link " rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.4/modules/generated/sklearn.impute.SimpleImputer.html">?<span>Documentation for SimpleImputer</span></a></label><div class="sk-toggleable__content "><pre>SimpleImputer(strategy='median')</pre></div> </div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-201" type="checkbox" ><label for="sk-estimator-id-201" class="sk-toggleable__label sk-toggleable__label-arrow "> StandardScaler<a class="sk-estimator-doc-link " rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.4/modules/generated/sklearn.preprocessing.StandardScaler.html">?<span>Documentation for StandardScaler</span></a></label><div class="sk-toggleable__content "><pre>StandardScaler()</pre></div> </div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-202" type="checkbox" ><label for="sk-estimator-id-202" class="sk-toggleable__label sk-toggleable__label-arrow ">pipeline-2</label><div class="sk-toggleable__content "><pre>('feat0', 'feat2')</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-203" type="checkbox" ><label for="sk-estimator-id-203" class="sk-toggleable__label sk-toggleable__label-arrow "> SimpleImputer<a class="sk-estimator-doc-link " rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.4/modules/generated/sklearn.impute.SimpleImputer.html">?<span>Documentation for SimpleImputer</span></a></label><div class="sk-toggleable__content "><pre>SimpleImputer(fill_value='missing', strategy='constant')</pre></div> </div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-204" type="checkbox" ><label for="sk-estimator-id-204" class="sk-toggleable__label sk-toggleable__label-arrow "> OneHotEncoder<a class="sk-estimator-doc-link " rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.4/modules/generated/sklearn.preprocessing.OneHotEncoder.html">?<span>Documentation for OneHotEncoder</span></a></label><div class="sk-toggleable__content "><pre>OneHotEncoder(handle_unknown='ignore')</pre></div> </div></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-205" type="checkbox" ><label for="sk-estimator-id-205" class="sk-toggleable__label sk-toggleable__label-arrow "> LogisticRegression<a class="sk-estimator-doc-link " rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.4/modules/generated/sklearn.linear_model.LogisticRegression.html">?<span>Documentation for LogisticRegression</span></a></label><div class="sk-toggleable__content "><pre>LogisticRegression()</pre></div> </div></div></div></div></div></div> </div> <br /> <br /> .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.026 seconds) .. _sphx_glr_download_auto_examples_miscellaneous_plot_estimator_representation.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/1.4.X?urlpath=lab/tree/notebooks/auto_examples/miscellaneous/plot_estimator_representation.ipynb :alt: Launch binder :width: 150 px .. container:: lite-badge .. image:: images/jupyterlite_badge_logo.svg :target: ../../lite/lab/?path=auto_examples/miscellaneous/plot_estimator_representation.ipynb :alt: Launch JupyterLite :width: 150 px .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_estimator_representation.ipynb <plot_estimator_representation.ipynb>` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_estimator_representation.py <plot_estimator_representation.py>` .. include:: plot_estimator_representation.recommendations .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_