.. _sphx_glr_auto_examples_linear_model: .. _linear_examples: Generalized Linear Models ------------------------- Examples concerning the :mod:`sklearn.linear_model` module. .. raw:: html <div class="sphx-glr-thumbnails"> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="This example compares two different bayesian regressors:"> .. only:: html .. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_ard_thumb.png :alt: :ref:`sphx_glr_auto_examples_linear_model_plot_ard.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Comparing Linear Bayesian Regressors</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="Comparing various online solvers"> .. only:: html .. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_sgd_comparison_thumb.png :alt: :ref:`sphx_glr_auto_examples_linear_model_plot_sgd_comparison.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Comparing various online solvers</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="Computes a Bayesian Ridge Regression of Sinusoids."> .. only:: html .. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_bayesian_ridge_curvefit_thumb.png :alt: :ref:`sphx_glr_auto_examples_linear_model_plot_bayesian_ridge_curvefit.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Curve Fitting with Bayesian Ridge Regression</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="Stochastic Gradient Descent is an optimization technique which minimizes a loss function in a s..."> .. only:: html .. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_sgd_early_stopping_thumb.png :alt: :ref:`sphx_glr_auto_examples_linear_model_plot_sgd_early_stopping.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Early stopping of Stochastic Gradient Descent</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="The following example shows how to precompute the gram matrix while using weighted samples with..."> .. only:: html .. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_elastic_net_precomputed_gram_matrix_with_weighted_samples_thumb.png :alt: :ref:`sphx_glr_auto_examples_linear_model_plot_elastic_net_precomputed_gram_matrix_with_weighted_samples.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Fitting an Elastic Net with a precomputed Gram Matrix and Weighted Samples</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="Fit Ridge and HuberRegressor on a dataset with outliers."> .. only:: html .. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_huber_vs_ridge_thumb.png :alt: :ref:`sphx_glr_auto_examples_linear_model_plot_huber_vs_ridge.py` .. raw:: html <div class="sphx-glr-thumbnail-title">HuberRegressor vs Ridge on dataset with strong outliers</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="The multi-task lasso allows to fit multiple regression problems jointly enforcing the selected ..."> .. only:: html .. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_multi_task_lasso_support_thumb.png :alt: :ref:`sphx_glr_auto_examples_linear_model_plot_multi_task_lasso_support.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Joint feature selection with multi-task Lasso</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="Comparison of the sparsity (percentage of zero coefficients) of solutions when L1, L2 and Elast..."> .. only:: html .. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_logistic_l1_l2_sparsity_thumb.png :alt: :ref:`sphx_glr_auto_examples_linear_model_plot_logistic_l1_l2_sparsity.py` .. raw:: html <div class="sphx-glr-thumbnail-title">L1 Penalty and Sparsity in Logistic Regression</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="The present example compares three l1-based regression models on a synthetic signal obtained fr..."> .. only:: html .. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_lasso_and_elasticnet_thumb.png :alt: :ref:`sphx_glr_auto_examples_linear_model_plot_lasso_and_elasticnet.py` .. raw:: html <div class="sphx-glr-thumbnail-title">L1-based models for Sparse Signals</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="Lasso and elastic net (L1 and L2 penalisation) implemented using a coordinate descent."> .. only:: html .. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_lasso_coordinate_descent_path_thumb.png :alt: :ref:`sphx_glr_auto_examples_linear_model_plot_lasso_coordinate_descent_path.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Lasso and Elastic Net</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="This example reproduces the example of Fig. 2 of [ZHT2007]_. A LassoLarsIC estimator is fit on ..."> .. only:: html .. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_lasso_lars_ic_thumb.png :alt: :ref:`sphx_glr_auto_examples_linear_model_plot_lasso_lars_ic.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Lasso model selection via information criteria</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="This example focuses on model selection for Lasso models that are linear models with an L1 pena..."> .. only:: html .. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_lasso_model_selection_thumb.png :alt: :ref:`sphx_glr_auto_examples_linear_model_plot_lasso_model_selection.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Lasso model selection: AIC-BIC / cross-validation</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="We show that linear_model.Lasso provides the same results for dense and sparse data and that in..."> .. only:: html .. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_lasso_dense_vs_sparse_data_thumb.png :alt: :ref:`sphx_glr_auto_examples_linear_model_plot_lasso_dense_vs_sparse_data.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Lasso on dense and sparse data</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="Computes Lasso Path along the regularization parameter using the LARS algorithm on the diabetes..."> .. only:: html .. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_lasso_lars_thumb.png :alt: :ref:`sphx_glr_auto_examples_linear_model_plot_lasso_lars.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Lasso path using LARS</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="The coefficients, residual sum of squares and the coefficient of determination are also calcula..."> .. only:: html .. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_ols_thumb.png :alt: :ref:`sphx_glr_auto_examples_linear_model_plot_ols.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Linear Regression Example</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="Show below is a logistic-regression classifiers decision boundaries on the first two dimensions..."> .. only:: html .. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_iris_logistic_thumb.png :alt: :ref:`sphx_glr_auto_examples_linear_model_plot_iris_logistic.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Logistic Regression 3-class Classifier</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="Shown in the plot is how the logistic regression would, in this synthetic dataset, classify val..."> .. only:: html .. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_logistic_thumb.png :alt: :ref:`sphx_glr_auto_examples_linear_model_plot_logistic.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Logistic function</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="Here we fit a multinomial logistic regression with L1 penalty on a subset of the MNIST digits c..."> .. only:: html .. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_sparse_logistic_regression_mnist_thumb.png :alt: :ref:`sphx_glr_auto_examples_linear_model_plot_sparse_logistic_regression_mnist.py` .. raw:: html <div class="sphx-glr-thumbnail-title">MNIST classification using multinomial logistic + L1</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="Comparison of multinomial logistic L1 vs one-versus-rest L1 logistic regression to classify doc..."> .. only:: html .. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_sparse_logistic_regression_20newsgroups_thumb.png :alt: :ref:`sphx_glr_auto_examples_linear_model_plot_sparse_logistic_regression_20newsgroups.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Multiclass sparse logistic regression on 20newgroups</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="In this example, we fit a linear model with positive constraints on the regression coefficients..."> .. only:: html .. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_nnls_thumb.png :alt: :ref:`sphx_glr_auto_examples_linear_model_plot_nnls.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Non-negative least squares</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="This example shows how to approximate the solution of sklearn.svm.OneClassSVM in the case of an..."> .. only:: html .. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_sgdocsvm_vs_ocsvm_thumb.png :alt: :ref:`sphx_glr_auto_examples_linear_model_plot_sgdocsvm_vs_ocsvm.py` .. raw:: html <div class="sphx-glr-thumbnail-title">One-Class SVM versus One-Class SVM using Stochastic Gradient Descent</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="Ridge regression is basically minimizing a penalised version of the least-squared function. The..."> .. only:: html .. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_ols_ridge_variance_thumb.png :alt: :ref:`sphx_glr_auto_examples_linear_model_plot_ols_ridge_variance.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Ordinary Least Squares and Ridge Regression Variance</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="Using orthogonal matching pursuit for recovering a sparse signal from a noisy measurement encod..."> .. only:: html .. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_omp_thumb.png :alt: :ref:`sphx_glr_auto_examples_linear_model_plot_omp.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Orthogonal Matching Pursuit</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="Shows the effect of collinearity in the coefficients of an estimator."> .. only:: html .. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_ridge_path_thumb.png :alt: :ref:`sphx_glr_auto_examples_linear_model_plot_ridge_path.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Plot Ridge coefficients as a function of the regularization</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="Plot decision surface of multi-class SGD on iris dataset. The hyperplanes corresponding to the ..."> .. only:: html .. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_sgd_iris_thumb.png :alt: :ref:`sphx_glr_auto_examples_linear_model_plot_sgd_iris.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Plot multi-class SGD on the iris dataset</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="Plot decision surface of multinomial and One-vs-Rest Logistic Regression. The hyperplanes corre..."> .. only:: html .. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_logistic_multinomial_thumb.png :alt: :ref:`sphx_glr_auto_examples_linear_model_plot_logistic_multinomial.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Plot multinomial and One-vs-Rest Logistic Regression</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="This example illustrates the use of log-linear Poisson regression on the French Motor Third-Par..."> .. only:: html .. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_poisson_regression_non_normal_loss_thumb.png :alt: :ref:`sphx_glr_auto_examples_linear_model_plot_poisson_regression_non_normal_loss.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Poisson regression and non-normal loss</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="This example demonstrates how to approximate a function with polynomials up to degree degree by..."> .. only:: html .. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_polynomial_interpolation_thumb.png :alt: :ref:`sphx_glr_auto_examples_linear_model_plot_polynomial_interpolation.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Polynomial and Spline interpolation</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="This example illustrates how quantile regression can predict non-trivial conditional quantiles."> .. only:: html .. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_quantile_regression_thumb.png :alt: :ref:`sphx_glr_auto_examples_linear_model_plot_quantile_regression.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Quantile regression</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip=" Train l1-penalized logistic regression models on a binary classification problem derived from ..."> .. only:: html .. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_logistic_path_thumb.png :alt: :ref:`sphx_glr_auto_examples_linear_model_plot_logistic_path.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Regularization path of L1- Logistic Regression</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="A model that overfits learns the training data too well, capturing both the underlying patterns..."> .. only:: html .. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_ridge_coeffs_thumb.png :alt: :ref:`sphx_glr_auto_examples_linear_model_plot_ridge_coeffs.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Ridge coefficients as a function of the L2 Regularization</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="Here a sine function is fit with a polynomial of order 3, for values close to zero."> .. only:: html .. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_robust_fit_thumb.png :alt: :ref:`sphx_glr_auto_examples_linear_model_plot_robust_fit.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Robust linear estimator fitting</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="In this example, we see how to robustly fit a linear model to faulty data using the ransac_regr..."> .. only:: html .. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_ransac_thumb.png :alt: :ref:`sphx_glr_auto_examples_linear_model_plot_ransac.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Robust linear model estimation using RANSAC</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="Plot the maximum margin separating hyperplane within a two-class separable dataset using a line..."> .. only:: html .. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_sgd_separating_hyperplane_thumb.png :alt: :ref:`sphx_glr_auto_examples_linear_model_plot_sgd_separating_hyperplane.py` .. raw:: html <div class="sphx-glr-thumbnail-title">SGD: Maximum margin separating hyperplane</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="Contours of where the penalty is equal to 1 for the three penalties L1, L2 and elastic-net."> .. only:: html .. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_sgd_penalties_thumb.png :alt: :ref:`sphx_glr_auto_examples_linear_model_plot_sgd_penalties.py` .. raw:: html <div class="sphx-glr-thumbnail-title">SGD: Penalties</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="Plot decision function of a weighted dataset, where the size of points is proportional to its w..."> .. only:: html .. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_sgd_weighted_samples_thumb.png :alt: :ref:`sphx_glr_auto_examples_linear_model_plot_sgd_weighted_samples.py` .. raw:: html <div class="sphx-glr-thumbnail-title">SGD: Weighted samples</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="A plot that compares the various convex loss functions supported by SGDClassifier ."> .. only:: html .. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_sgd_loss_functions_thumb.png :alt: :ref:`sphx_glr_auto_examples_linear_model_plot_sgd_loss_functions.py` .. raw:: html <div class="sphx-glr-thumbnail-title">SGD: convex loss functions</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="Features 1 and 2 of the diabetes-dataset are fitted and plotted below. It illustrates that alth..."> .. only:: html .. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_ols_3d_thumb.png :alt: :ref:`sphx_glr_auto_examples_linear_model_plot_ols_3d.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Sparsity Example: Fitting only features 1 and 2</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="Computes a Theil-Sen Regression on a synthetic dataset."> .. only:: html .. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_theilsen_thumb.png :alt: :ref:`sphx_glr_auto_examples_linear_model_plot_theilsen.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Theil-Sen Regression</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="This example illustrates the use of Poisson, Gamma and Tweedie regression on the French Motor T..."> .. only:: html .. image:: /auto_examples/linear_model/images/thumb/sphx_glr_plot_tweedie_regression_insurance_claims_thumb.png :alt: :ref:`sphx_glr_auto_examples_linear_model_plot_tweedie_regression_insurance_claims.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Tweedie regression on insurance claims</div> </div> .. raw:: html </div> .. toctree:: :hidden: /auto_examples/linear_model/plot_ard /auto_examples/linear_model/plot_sgd_comparison /auto_examples/linear_model/plot_bayesian_ridge_curvefit /auto_examples/linear_model/plot_sgd_early_stopping /auto_examples/linear_model/plot_elastic_net_precomputed_gram_matrix_with_weighted_samples /auto_examples/linear_model/plot_huber_vs_ridge /auto_examples/linear_model/plot_multi_task_lasso_support /auto_examples/linear_model/plot_logistic_l1_l2_sparsity /auto_examples/linear_model/plot_lasso_and_elasticnet /auto_examples/linear_model/plot_lasso_coordinate_descent_path /auto_examples/linear_model/plot_lasso_lars_ic /auto_examples/linear_model/plot_lasso_model_selection /auto_examples/linear_model/plot_lasso_dense_vs_sparse_data /auto_examples/linear_model/plot_lasso_lars /auto_examples/linear_model/plot_ols /auto_examples/linear_model/plot_iris_logistic /auto_examples/linear_model/plot_logistic /auto_examples/linear_model/plot_sparse_logistic_regression_mnist /auto_examples/linear_model/plot_sparse_logistic_regression_20newsgroups /auto_examples/linear_model/plot_nnls /auto_examples/linear_model/plot_sgdocsvm_vs_ocsvm /auto_examples/linear_model/plot_ols_ridge_variance /auto_examples/linear_model/plot_omp /auto_examples/linear_model/plot_ridge_path /auto_examples/linear_model/plot_sgd_iris /auto_examples/linear_model/plot_logistic_multinomial /auto_examples/linear_model/plot_poisson_regression_non_normal_loss /auto_examples/linear_model/plot_polynomial_interpolation /auto_examples/linear_model/plot_quantile_regression /auto_examples/linear_model/plot_logistic_path /auto_examples/linear_model/plot_ridge_coeffs /auto_examples/linear_model/plot_robust_fit /auto_examples/linear_model/plot_ransac /auto_examples/linear_model/plot_sgd_separating_hyperplane /auto_examples/linear_model/plot_sgd_penalties /auto_examples/linear_model/plot_sgd_weighted_samples /auto_examples/linear_model/plot_sgd_loss_functions /auto_examples/linear_model/plot_ols_3d /auto_examples/linear_model/plot_theilsen /auto_examples/linear_model/plot_tweedie_regression_insurance_claims