.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "auto_examples/inspection/plot_partial_dependence.py"
.. LINE NUMBERS ARE GIVEN BELOW.

.. only:: html

    .. note::
        :class: sphx-glr-download-link-note

        :ref:`Go to the end <sphx_glr_download_auto_examples_inspection_plot_partial_dependence.py>`
        to download the full example code or to run this example in your browser via JupyterLite or Binder

.. rst-class:: sphx-glr-example-title

.. _sphx_glr_auto_examples_inspection_plot_partial_dependence.py:


===============================================================
Partial Dependence and Individual Conditional Expectation Plots
===============================================================

Partial dependence plots show the dependence between the target function [2]_
and a set of features of interest, marginalizing over the values of all other
features (the complement features). Due to the limits of human perception, the
size of the set of features of interest must be small (usually, one or two)
thus they are usually chosen among the most important features.

Similarly, an individual conditional expectation (ICE) plot [3]_
shows the dependence between the target function and a feature of interest.
However, unlike partial dependence plots, which show the average effect of the
features of interest, ICE plots visualize the dependence of the prediction on a
feature for each :term:`sample` separately, with one line per sample.
Only one feature of interest is supported for ICE plots.

This example shows how to obtain partial dependence and ICE plots from a
:class:`~sklearn.neural_network.MLPRegressor` and a
:class:`~sklearn.ensemble.HistGradientBoostingRegressor` trained on the
bike sharing dataset. The example is inspired by [1]_.

.. [1] `Molnar, Christoph. "Interpretable machine learning.
       A Guide for Making Black Box Models Explainable",
       2019. <https://christophm.github.io/interpretable-ml-book/>`_

.. [2] For classification you can think of it as the regression score before
       the link function.

.. [3] :arxiv:`Goldstein, A., Kapelner, A., Bleich, J., and Pitkin, E. (2015).
       "Peeking Inside the Black Box: Visualizing Statistical Learning With Plots of
       Individual Conditional Expectation". Journal of Computational and
       Graphical Statistics, 24(1): 44-65 <1309.6392>`

.. GENERATED FROM PYTHON SOURCE LINES 38-43

Bike sharing dataset preprocessing
----------------------------------

We will use the bike sharing dataset. The goal is to predict the number of bike
rentals using weather and season data as well as the datetime information.

.. GENERATED FROM PYTHON SOURCE LINES 43-53

.. code-block:: Python

    from sklearn.datasets import fetch_openml

    bikes = fetch_openml("Bike_Sharing_Demand", version=2, as_frame=True)
    # Make an explicit copy to avoid "SettingWithCopyWarning" from pandas
    X, y = bikes.data.copy(), bikes.target

    # We use only a subset of the data to speed up the example.
    X = X.iloc[::5, :]
    y = y[::5]








.. GENERATED FROM PYTHON SOURCE LINES 54-56

The feature `"weather"` has a particularity: the category `"heavy_rain"` is a rare
category.

.. GENERATED FROM PYTHON SOURCE LINES 56-58

.. code-block:: Python

    X["weather"].value_counts()





.. rst-class:: sphx-glr-script-out

 .. code-block:: none


    weather
    clear         2284
    misty          904
    rain           287
    heavy_rain       1
    Name: count, dtype: int64



.. GENERATED FROM PYTHON SOURCE LINES 59-60

Because of this rare category, we collapse it into `"rain"`.

.. GENERATED FROM PYTHON SOURCE LINES 60-67

.. code-block:: Python

    X["weather"] = (
        X["weather"]
        .astype(object)
        .replace(to_replace="heavy_rain", value="rain")
        .astype("category")
    )








.. GENERATED FROM PYTHON SOURCE LINES 68-69

We now have a closer look at the `"year"` feature:

.. GENERATED FROM PYTHON SOURCE LINES 69-71

.. code-block:: Python

    X["year"].value_counts()





.. rst-class:: sphx-glr-script-out

 .. code-block:: none


    year
    1    1747
    0    1729
    Name: count, dtype: int64



.. GENERATED FROM PYTHON SOURCE LINES 72-74

We see that we have data from two years. We use the first year to train the
model and the second year to test the model.

.. GENERATED FROM PYTHON SOURCE LINES 74-79

.. code-block:: Python

    mask_training = X["year"] == 0.0
    X = X.drop(columns=["year"])
    X_train, y_train = X[mask_training], y[mask_training]
    X_test, y_test = X[~mask_training], y[~mask_training]








.. GENERATED FROM PYTHON SOURCE LINES 80-82

We can check the dataset information to see that we have heterogeneous data types. We
have to preprocess the different columns accordingly.

.. GENERATED FROM PYTHON SOURCE LINES 82-84

.. code-block:: Python

    X_train.info()





.. rst-class:: sphx-glr-script-out

 .. code-block:: none

    <class 'pandas.core.frame.DataFrame'>
    Index: 1729 entries, 0 to 8640
    Data columns (total 11 columns):
     #   Column      Non-Null Count  Dtype   
    ---  ------      --------------  -----   
     0   season      1729 non-null   category
     1   month       1729 non-null   int64   
     2   hour        1729 non-null   int64   
     3   holiday     1729 non-null   category
     4   weekday     1729 non-null   int64   
     5   workingday  1729 non-null   category
     6   weather     1729 non-null   category
     7   temp        1729 non-null   float64 
     8   feel_temp   1729 non-null   float64 
     9   humidity    1729 non-null   float64 
     10  windspeed   1729 non-null   float64 
    dtypes: category(4), float64(4), int64(3)
    memory usage: 115.4 KB




.. GENERATED FROM PYTHON SOURCE LINES 85-91

From the previous information, we will consider the `category` columns as nominal
categorical features. In addition, we will consider the date and time information as
categorical features as well.

We manually define the columns containing numerical and categorical
features.

.. GENERATED FROM PYTHON SOURCE LINES 91-99

.. code-block:: Python

    numerical_features = [
        "temp",
        "feel_temp",
        "humidity",
        "windspeed",
    ]
    categorical_features = X_train.columns.drop(numerical_features)








.. GENERATED FROM PYTHON SOURCE LINES 100-107

Before we go into the details regarding the preprocessing of the different machine
learning pipelines, we will try to get some additional intuition regarding the dataset
that will be helpful to understand the model's statistical performance and results of
the partial dependence analysis.

We plot the average number of bike rentals by grouping the data by season and
by year.

.. GENERATED FROM PYTHON SOURCE LINES 107-142

.. code-block:: Python

    from itertools import product

    import matplotlib.pyplot as plt
    import numpy as np

    days = ("Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat")
    hours = tuple(range(24))
    xticklabels = [f"{day}\n{hour}:00" for day, hour in product(days, hours)]
    xtick_start, xtick_period = 6, 12

    fig, axs = plt.subplots(nrows=2, figsize=(8, 6), sharey=True, sharex=True)
    average_bike_rentals = bikes.frame.groupby(
        ["year", "season", "weekday", "hour"], observed=True
    ).mean(numeric_only=True)["count"]
    for ax, (idx, df) in zip(axs, average_bike_rentals.groupby("year")):
        df.groupby("season", observed=True).plot(ax=ax, legend=True)

        # decorate the plot
        ax.set_xticks(
            np.linspace(
                start=xtick_start,
                stop=len(xticklabels),
                num=len(xticklabels) // xtick_period,
            )
        )
        ax.set_xticklabels(xticklabels[xtick_start::xtick_period])
        ax.set_xlabel("")
        ax.set_ylabel("Average number of bike rentals")
        ax.set_title(
            f"Bike rental for {'2010 (train set)' if idx == 0.0 else '2011 (test set)'}"
        )
        ax.set_ylim(0, 1_000)
        ax.set_xlim(0, len(xticklabels))
        ax.legend(loc=2)




.. image-sg:: /auto_examples/inspection/images/sphx_glr_plot_partial_dependence_001.png
   :alt: Bike rental for 2010 (train set), Bike rental for 2011 (test set)
   :srcset: /auto_examples/inspection/images/sphx_glr_plot_partial_dependence_001.png
   :class: sphx-glr-single-img





.. GENERATED FROM PYTHON SOURCE LINES 143-165

The first striking difference between the train and test set is that the number of
bike rentals is higher in the test set. For this reason, it will not be surprising to
get a machine learning model that underestimates the number of bike rentals. We
also observe that the number of bike rentals is lower during the spring season. In
addition, we see that during working days, there is a specific pattern around 6-7
am and 5-6 pm with some peaks of bike rentals. We can keep in mind these different
insights and use them to understand the partial dependence plot.

Preprocessor for machine-learning models
----------------------------------------

Since we later use two different models, a
:class:`~sklearn.neural_network.MLPRegressor` and a
:class:`~sklearn.ensemble.HistGradientBoostingRegressor`, we create two different
preprocessors, specific for each model.

Preprocessor for the neural network model
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

We will use a :class:`~sklearn.preprocessing.QuantileTransformer` to scale the
numerical features and encode the categorical features with a
:class:`~sklearn.preprocessing.OneHotEncoder`.

.. GENERATED FROM PYTHON SOURCE LINES 165-176

.. code-block:: Python

    from sklearn.compose import ColumnTransformer
    from sklearn.preprocessing import OneHotEncoder, QuantileTransformer

    mlp_preprocessor = ColumnTransformer(
        transformers=[
            ("num", QuantileTransformer(n_quantiles=100), numerical_features),
            ("cat", OneHotEncoder(handle_unknown="ignore"), categorical_features),
        ]
    )
    mlp_preprocessor






.. raw:: html

    <div class="output_subarea output_html rendered_html output_result">
    <style>#sk-container-id-34 {
      /* Definition of color scheme common for light and dark mode */
      --sklearn-color-text: black;
      --sklearn-color-line: gray;
      /* Definition of color scheme for unfitted estimators */
      --sklearn-color-unfitted-level-0: #fff5e6;
      --sklearn-color-unfitted-level-1: #f6e4d2;
      --sklearn-color-unfitted-level-2: #ffe0b3;
      --sklearn-color-unfitted-level-3: chocolate;
      /* Definition of color scheme for fitted estimators */
      --sklearn-color-fitted-level-0: #f0f8ff;
      --sklearn-color-fitted-level-1: #d4ebff;
      --sklearn-color-fitted-level-2: #b3dbfd;
      --sklearn-color-fitted-level-3: cornflowerblue;

      /* Specific color for light theme */
      --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));
      --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));
      --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));
      --sklearn-color-icon: #696969;

      @media (prefers-color-scheme: dark) {
        /* Redefinition of color scheme for dark theme */
        --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));
        --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));
        --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));
        --sklearn-color-icon: #878787;
      }
    }

    #sk-container-id-34 {
      color: var(--sklearn-color-text);
    }

    #sk-container-id-34 pre {
      padding: 0;
    }

    #sk-container-id-34 input.sk-hidden--visually {
      border: 0;
      clip: rect(1px 1px 1px 1px);
      clip: rect(1px, 1px, 1px, 1px);
      height: 1px;
      margin: -1px;
      overflow: hidden;
      padding: 0;
      position: absolute;
      width: 1px;
    }

    #sk-container-id-34 div.sk-dashed-wrapped {
      border: 1px dashed var(--sklearn-color-line);
      margin: 0 0.4em 0.5em 0.4em;
      box-sizing: border-box;
      padding-bottom: 0.4em;
      background-color: var(--sklearn-color-background);
    }

    #sk-container-id-34 div.sk-container {
      /* jupyter's `normalize.less` sets `[hidden] { display: none; }`
         but bootstrap.min.css set `[hidden] { display: none !important; }`
         so we also need the `!important` here to be able to override the
         default hidden behavior on the sphinx rendered scikit-learn.org.
         See: https://github.com/scikit-learn/scikit-learn/issues/21755 */
      display: inline-block !important;
      position: relative;
    }

    #sk-container-id-34 div.sk-text-repr-fallback {
      display: none;
    }

    div.sk-parallel-item,
    div.sk-serial,
    div.sk-item {
      /* draw centered vertical line to link estimators */
      background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));
      background-size: 2px 100%;
      background-repeat: no-repeat;
      background-position: center center;
    }

    /* Parallel-specific style estimator block */

    #sk-container-id-34 div.sk-parallel-item::after {
      content: "";
      width: 100%;
      border-bottom: 2px solid var(--sklearn-color-text-on-default-background);
      flex-grow: 1;
    }

    #sk-container-id-34 div.sk-parallel {
      display: flex;
      align-items: stretch;
      justify-content: center;
      background-color: var(--sklearn-color-background);
      position: relative;
    }

    #sk-container-id-34 div.sk-parallel-item {
      display: flex;
      flex-direction: column;
    }

    #sk-container-id-34 div.sk-parallel-item:first-child::after {
      align-self: flex-end;
      width: 50%;
    }

    #sk-container-id-34 div.sk-parallel-item:last-child::after {
      align-self: flex-start;
      width: 50%;
    }

    #sk-container-id-34 div.sk-parallel-item:only-child::after {
      width: 0;
    }

    /* Serial-specific style estimator block */

    #sk-container-id-34 div.sk-serial {
      display: flex;
      flex-direction: column;
      align-items: center;
      background-color: var(--sklearn-color-background);
      padding-right: 1em;
      padding-left: 1em;
    }


    /* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is
    clickable and can be expanded/collapsed.
    - Pipeline and ColumnTransformer use this feature and define the default style
    - Estimators will overwrite some part of the style using the `sk-estimator` class
    */

    /* Pipeline and ColumnTransformer style (default) */

    #sk-container-id-34 div.sk-toggleable {
      /* Default theme specific background. It is overwritten whether we have a
      specific estimator or a Pipeline/ColumnTransformer */
      background-color: var(--sklearn-color-background);
    }

    /* Toggleable label */
    #sk-container-id-34 label.sk-toggleable__label {
      cursor: pointer;
      display: block;
      width: 100%;
      margin-bottom: 0;
      padding: 0.5em;
      box-sizing: border-box;
      text-align: center;
    }

    #sk-container-id-34 label.sk-toggleable__label-arrow:before {
      /* Arrow on the left of the label */
      content: "▸";
      float: left;
      margin-right: 0.25em;
      color: var(--sklearn-color-icon);
    }

    #sk-container-id-34 label.sk-toggleable__label-arrow:hover:before {
      color: var(--sklearn-color-text);
    }

    /* Toggleable content - dropdown */

    #sk-container-id-34 div.sk-toggleable__content {
      max-height: 0;
      max-width: 0;
      overflow: hidden;
      text-align: left;
      /* unfitted */
      background-color: var(--sklearn-color-unfitted-level-0);
    }

    #sk-container-id-34 div.sk-toggleable__content.fitted {
      /* fitted */
      background-color: var(--sklearn-color-fitted-level-0);
    }

    #sk-container-id-34 div.sk-toggleable__content pre {
      margin: 0.2em;
      border-radius: 0.25em;
      color: var(--sklearn-color-text);
      /* unfitted */
      background-color: var(--sklearn-color-unfitted-level-0);
    }

    #sk-container-id-34 div.sk-toggleable__content.fitted pre {
      /* unfitted */
      background-color: var(--sklearn-color-fitted-level-0);
    }

    #sk-container-id-34 input.sk-toggleable__control:checked~div.sk-toggleable__content {
      /* Expand drop-down */
      max-height: 200px;
      max-width: 100%;
      overflow: auto;
    }

    #sk-container-id-34 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {
      content: "▾";
    }

    /* Pipeline/ColumnTransformer-specific style */

    #sk-container-id-34 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {
      color: var(--sklearn-color-text);
      background-color: var(--sklearn-color-unfitted-level-2);
    }

    #sk-container-id-34 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {
      background-color: var(--sklearn-color-fitted-level-2);
    }

    /* Estimator-specific style */

    /* Colorize estimator box */
    #sk-container-id-34 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {
      /* unfitted */
      background-color: var(--sklearn-color-unfitted-level-2);
    }

    #sk-container-id-34 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {
      /* fitted */
      background-color: var(--sklearn-color-fitted-level-2);
    }

    #sk-container-id-34 div.sk-label label.sk-toggleable__label,
    #sk-container-id-34 div.sk-label label {
      /* The background is the default theme color */
      color: var(--sklearn-color-text-on-default-background);
    }

    /* On hover, darken the color of the background */
    #sk-container-id-34 div.sk-label:hover label.sk-toggleable__label {
      color: var(--sklearn-color-text);
      background-color: var(--sklearn-color-unfitted-level-2);
    }

    /* Label box, darken color on hover, fitted */
    #sk-container-id-34 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {
      color: var(--sklearn-color-text);
      background-color: var(--sklearn-color-fitted-level-2);
    }

    /* Estimator label */

    #sk-container-id-34 div.sk-label label {
      font-family: monospace;
      font-weight: bold;
      display: inline-block;
      line-height: 1.2em;
    }

    #sk-container-id-34 div.sk-label-container {
      text-align: center;
    }

    /* Estimator-specific */
    #sk-container-id-34 div.sk-estimator {
      font-family: monospace;
      border: 1px dotted var(--sklearn-color-border-box);
      border-radius: 0.25em;
      box-sizing: border-box;
      margin-bottom: 0.5em;
      /* unfitted */
      background-color: var(--sklearn-color-unfitted-level-0);
    }

    #sk-container-id-34 div.sk-estimator.fitted {
      /* fitted */
      background-color: var(--sklearn-color-fitted-level-0);
    }

    /* on hover */
    #sk-container-id-34 div.sk-estimator:hover {
      /* unfitted */
      background-color: var(--sklearn-color-unfitted-level-2);
    }

    #sk-container-id-34 div.sk-estimator.fitted:hover {
      /* fitted */
      background-color: var(--sklearn-color-fitted-level-2);
    }

    /* Specification for estimator info (e.g. "i" and "?") */

    /* Common style for "i" and "?" */

    .sk-estimator-doc-link,
    a:link.sk-estimator-doc-link,
    a:visited.sk-estimator-doc-link {
      float: right;
      font-size: smaller;
      line-height: 1em;
      font-family: monospace;
      background-color: var(--sklearn-color-background);
      border-radius: 1em;
      height: 1em;
      width: 1em;
      text-decoration: none !important;
      margin-left: 1ex;
      /* unfitted */
      border: var(--sklearn-color-unfitted-level-1) 1pt solid;
      color: var(--sklearn-color-unfitted-level-1);
    }

    .sk-estimator-doc-link.fitted,
    a:link.sk-estimator-doc-link.fitted,
    a:visited.sk-estimator-doc-link.fitted {
      /* fitted */
      border: var(--sklearn-color-fitted-level-1) 1pt solid;
      color: var(--sklearn-color-fitted-level-1);
    }

    /* On hover */
    div.sk-estimator:hover .sk-estimator-doc-link:hover,
    .sk-estimator-doc-link:hover,
    div.sk-label-container:hover .sk-estimator-doc-link:hover,
    .sk-estimator-doc-link:hover {
      /* unfitted */
      background-color: var(--sklearn-color-unfitted-level-3);
      color: var(--sklearn-color-background);
      text-decoration: none;
    }

    div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,
    .sk-estimator-doc-link.fitted:hover,
    div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,
    .sk-estimator-doc-link.fitted:hover {
      /* fitted */
      background-color: var(--sklearn-color-fitted-level-3);
      color: var(--sklearn-color-background);
      text-decoration: none;
    }

    /* Span, style for the box shown on hovering the info icon */
    .sk-estimator-doc-link span {
      display: none;
      z-index: 9999;
      position: relative;
      font-weight: normal;
      right: .2ex;
      padding: .5ex;
      margin: .5ex;
      width: min-content;
      min-width: 20ex;
      max-width: 50ex;
      color: var(--sklearn-color-text);
      box-shadow: 2pt 2pt 4pt #999;
      /* unfitted */
      background: var(--sklearn-color-unfitted-level-0);
      border: .5pt solid var(--sklearn-color-unfitted-level-3);
    }

    .sk-estimator-doc-link.fitted span {
      /* fitted */
      background: var(--sklearn-color-fitted-level-0);
      border: var(--sklearn-color-fitted-level-3);
    }

    .sk-estimator-doc-link:hover span {
      display: block;
    }

    /* "?"-specific style due to the `<a>` HTML tag */

    #sk-container-id-34 a.estimator_doc_link {
      float: right;
      font-size: 1rem;
      line-height: 1em;
      font-family: monospace;
      background-color: var(--sklearn-color-background);
      border-radius: 1rem;
      height: 1rem;
      width: 1rem;
      text-decoration: none;
      /* unfitted */
      color: var(--sklearn-color-unfitted-level-1);
      border: var(--sklearn-color-unfitted-level-1) 1pt solid;
    }

    #sk-container-id-34 a.estimator_doc_link.fitted {
      /* fitted */
      border: var(--sklearn-color-fitted-level-1) 1pt solid;
      color: var(--sklearn-color-fitted-level-1);
    }

    /* On hover */
    #sk-container-id-34 a.estimator_doc_link:hover {
      /* unfitted */
      background-color: var(--sklearn-color-unfitted-level-3);
      color: var(--sklearn-color-background);
      text-decoration: none;
    }

    #sk-container-id-34 a.estimator_doc_link.fitted:hover {
      /* fitted */
      background-color: var(--sklearn-color-fitted-level-3);
    }
    </style><div id="sk-container-id-34" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>ColumnTransformer(transformers=[(&#x27;num&#x27;, QuantileTransformer(n_quantiles=100),
                                     [&#x27;temp&#x27;, &#x27;feel_temp&#x27;, &#x27;humidity&#x27;,
                                      &#x27;windspeed&#x27;]),
                                    (&#x27;cat&#x27;, OneHotEncoder(handle_unknown=&#x27;ignore&#x27;),
                                     Index([&#x27;season&#x27;, &#x27;month&#x27;, &#x27;hour&#x27;, &#x27;holiday&#x27;, &#x27;weekday&#x27;, &#x27;workingday&#x27;,
           &#x27;weather&#x27;],
          dtype=&#x27;object&#x27;))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label  sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-141" type="checkbox" ><label for="sk-estimator-id-141" class="sk-toggleable__label  sk-toggleable__label-arrow ">&nbsp;&nbsp;ColumnTransformer<a class="sk-estimator-doc-link " rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.4/modules/generated/sklearn.compose.ColumnTransformer.html">?<span>Documentation for ColumnTransformer</span></a><span class="sk-estimator-doc-link ">i<span>Not fitted</span></span></label><div class="sk-toggleable__content "><pre>ColumnTransformer(transformers=[(&#x27;num&#x27;, QuantileTransformer(n_quantiles=100),
                                     [&#x27;temp&#x27;, &#x27;feel_temp&#x27;, &#x27;humidity&#x27;,
                                      &#x27;windspeed&#x27;]),
                                    (&#x27;cat&#x27;, OneHotEncoder(handle_unknown=&#x27;ignore&#x27;),
                                     Index([&#x27;season&#x27;, &#x27;month&#x27;, &#x27;hour&#x27;, &#x27;holiday&#x27;, &#x27;weekday&#x27;, &#x27;workingday&#x27;,
           &#x27;weather&#x27;],
          dtype=&#x27;object&#x27;))])</pre></div> </div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label  sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-142" type="checkbox" ><label for="sk-estimator-id-142" class="sk-toggleable__label  sk-toggleable__label-arrow ">num</label><div class="sk-toggleable__content "><pre>[&#x27;temp&#x27;, &#x27;feel_temp&#x27;, &#x27;humidity&#x27;, &#x27;windspeed&#x27;]</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator  sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-143" type="checkbox" ><label for="sk-estimator-id-143" class="sk-toggleable__label  sk-toggleable__label-arrow ">&nbsp;QuantileTransformer<a class="sk-estimator-doc-link " rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.4/modules/generated/sklearn.preprocessing.QuantileTransformer.html">?<span>Documentation for QuantileTransformer</span></a></label><div class="sk-toggleable__content "><pre>QuantileTransformer(n_quantiles=100)</pre></div> </div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label  sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-144" type="checkbox" ><label for="sk-estimator-id-144" class="sk-toggleable__label  sk-toggleable__label-arrow ">cat</label><div class="sk-toggleable__content "><pre>Index([&#x27;season&#x27;, &#x27;month&#x27;, &#x27;hour&#x27;, &#x27;holiday&#x27;, &#x27;weekday&#x27;, &#x27;workingday&#x27;,
           &#x27;weather&#x27;],
          dtype=&#x27;object&#x27;)</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator  sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-145" type="checkbox" ><label for="sk-estimator-id-145" class="sk-toggleable__label  sk-toggleable__label-arrow ">&nbsp;OneHotEncoder<a class="sk-estimator-doc-link " rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.4/modules/generated/sklearn.preprocessing.OneHotEncoder.html">?<span>Documentation for OneHotEncoder</span></a></label><div class="sk-toggleable__content "><pre>OneHotEncoder(handle_unknown=&#x27;ignore&#x27;)</pre></div> </div></div></div></div></div></div></div></div></div>
    </div>
    <br />
    <br />

.. GENERATED FROM PYTHON SOURCE LINES 177-183

Preprocessor for the gradient boosting model
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

For the gradient boosting model, we leave the numerical features as-is and only
encode the categorical features using a
:class:`~sklearn.preprocessing.OrdinalEncoder`.

.. GENERATED FROM PYTHON SOURCE LINES 183-195

.. code-block:: Python

    from sklearn.preprocessing import OrdinalEncoder

    hgbdt_preprocessor = ColumnTransformer(
        transformers=[
            ("cat", OrdinalEncoder(), categorical_features),
            ("num", "passthrough", numerical_features),
        ],
        sparse_threshold=1,
        verbose_feature_names_out=False,
    ).set_output(transform="pandas")
    hgbdt_preprocessor






.. raw:: html

    <div class="output_subarea output_html rendered_html output_result">
    <style>#sk-container-id-35 {
      /* Definition of color scheme common for light and dark mode */
      --sklearn-color-text: black;
      --sklearn-color-line: gray;
      /* Definition of color scheme for unfitted estimators */
      --sklearn-color-unfitted-level-0: #fff5e6;
      --sklearn-color-unfitted-level-1: #f6e4d2;
      --sklearn-color-unfitted-level-2: #ffe0b3;
      --sklearn-color-unfitted-level-3: chocolate;
      /* Definition of color scheme for fitted estimators */
      --sklearn-color-fitted-level-0: #f0f8ff;
      --sklearn-color-fitted-level-1: #d4ebff;
      --sklearn-color-fitted-level-2: #b3dbfd;
      --sklearn-color-fitted-level-3: cornflowerblue;

      /* Specific color for light theme */
      --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));
      --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));
      --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));
      --sklearn-color-icon: #696969;

      @media (prefers-color-scheme: dark) {
        /* Redefinition of color scheme for dark theme */
        --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));
        --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));
        --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));
        --sklearn-color-icon: #878787;
      }
    }

    #sk-container-id-35 {
      color: var(--sklearn-color-text);
    }

    #sk-container-id-35 pre {
      padding: 0;
    }

    #sk-container-id-35 input.sk-hidden--visually {
      border: 0;
      clip: rect(1px 1px 1px 1px);
      clip: rect(1px, 1px, 1px, 1px);
      height: 1px;
      margin: -1px;
      overflow: hidden;
      padding: 0;
      position: absolute;
      width: 1px;
    }

    #sk-container-id-35 div.sk-dashed-wrapped {
      border: 1px dashed var(--sklearn-color-line);
      margin: 0 0.4em 0.5em 0.4em;
      box-sizing: border-box;
      padding-bottom: 0.4em;
      background-color: var(--sklearn-color-background);
    }

    #sk-container-id-35 div.sk-container {
      /* jupyter's `normalize.less` sets `[hidden] { display: none; }`
         but bootstrap.min.css set `[hidden] { display: none !important; }`
         so we also need the `!important` here to be able to override the
         default hidden behavior on the sphinx rendered scikit-learn.org.
         See: https://github.com/scikit-learn/scikit-learn/issues/21755 */
      display: inline-block !important;
      position: relative;
    }

    #sk-container-id-35 div.sk-text-repr-fallback {
      display: none;
    }

    div.sk-parallel-item,
    div.sk-serial,
    div.sk-item {
      /* draw centered vertical line to link estimators */
      background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));
      background-size: 2px 100%;
      background-repeat: no-repeat;
      background-position: center center;
    }

    /* Parallel-specific style estimator block */

    #sk-container-id-35 div.sk-parallel-item::after {
      content: "";
      width: 100%;
      border-bottom: 2px solid var(--sklearn-color-text-on-default-background);
      flex-grow: 1;
    }

    #sk-container-id-35 div.sk-parallel {
      display: flex;
      align-items: stretch;
      justify-content: center;
      background-color: var(--sklearn-color-background);
      position: relative;
    }

    #sk-container-id-35 div.sk-parallel-item {
      display: flex;
      flex-direction: column;
    }

    #sk-container-id-35 div.sk-parallel-item:first-child::after {
      align-self: flex-end;
      width: 50%;
    }

    #sk-container-id-35 div.sk-parallel-item:last-child::after {
      align-self: flex-start;
      width: 50%;
    }

    #sk-container-id-35 div.sk-parallel-item:only-child::after {
      width: 0;
    }

    /* Serial-specific style estimator block */

    #sk-container-id-35 div.sk-serial {
      display: flex;
      flex-direction: column;
      align-items: center;
      background-color: var(--sklearn-color-background);
      padding-right: 1em;
      padding-left: 1em;
    }


    /* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is
    clickable and can be expanded/collapsed.
    - Pipeline and ColumnTransformer use this feature and define the default style
    - Estimators will overwrite some part of the style using the `sk-estimator` class
    */

    /* Pipeline and ColumnTransformer style (default) */

    #sk-container-id-35 div.sk-toggleable {
      /* Default theme specific background. It is overwritten whether we have a
      specific estimator or a Pipeline/ColumnTransformer */
      background-color: var(--sklearn-color-background);
    }

    /* Toggleable label */
    #sk-container-id-35 label.sk-toggleable__label {
      cursor: pointer;
      display: block;
      width: 100%;
      margin-bottom: 0;
      padding: 0.5em;
      box-sizing: border-box;
      text-align: center;
    }

    #sk-container-id-35 label.sk-toggleable__label-arrow:before {
      /* Arrow on the left of the label */
      content: "▸";
      float: left;
      margin-right: 0.25em;
      color: var(--sklearn-color-icon);
    }

    #sk-container-id-35 label.sk-toggleable__label-arrow:hover:before {
      color: var(--sklearn-color-text);
    }

    /* Toggleable content - dropdown */

    #sk-container-id-35 div.sk-toggleable__content {
      max-height: 0;
      max-width: 0;
      overflow: hidden;
      text-align: left;
      /* unfitted */
      background-color: var(--sklearn-color-unfitted-level-0);
    }

    #sk-container-id-35 div.sk-toggleable__content.fitted {
      /* fitted */
      background-color: var(--sklearn-color-fitted-level-0);
    }

    #sk-container-id-35 div.sk-toggleable__content pre {
      margin: 0.2em;
      border-radius: 0.25em;
      color: var(--sklearn-color-text);
      /* unfitted */
      background-color: var(--sklearn-color-unfitted-level-0);
    }

    #sk-container-id-35 div.sk-toggleable__content.fitted pre {
      /* unfitted */
      background-color: var(--sklearn-color-fitted-level-0);
    }

    #sk-container-id-35 input.sk-toggleable__control:checked~div.sk-toggleable__content {
      /* Expand drop-down */
      max-height: 200px;
      max-width: 100%;
      overflow: auto;
    }

    #sk-container-id-35 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {
      content: "▾";
    }

    /* Pipeline/ColumnTransformer-specific style */

    #sk-container-id-35 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {
      color: var(--sklearn-color-text);
      background-color: var(--sklearn-color-unfitted-level-2);
    }

    #sk-container-id-35 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {
      background-color: var(--sklearn-color-fitted-level-2);
    }

    /* Estimator-specific style */

    /* Colorize estimator box */
    #sk-container-id-35 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {
      /* unfitted */
      background-color: var(--sklearn-color-unfitted-level-2);
    }

    #sk-container-id-35 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {
      /* fitted */
      background-color: var(--sklearn-color-fitted-level-2);
    }

    #sk-container-id-35 div.sk-label label.sk-toggleable__label,
    #sk-container-id-35 div.sk-label label {
      /* The background is the default theme color */
      color: var(--sklearn-color-text-on-default-background);
    }

    /* On hover, darken the color of the background */
    #sk-container-id-35 div.sk-label:hover label.sk-toggleable__label {
      color: var(--sklearn-color-text);
      background-color: var(--sklearn-color-unfitted-level-2);
    }

    /* Label box, darken color on hover, fitted */
    #sk-container-id-35 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {
      color: var(--sklearn-color-text);
      background-color: var(--sklearn-color-fitted-level-2);
    }

    /* Estimator label */

    #sk-container-id-35 div.sk-label label {
      font-family: monospace;
      font-weight: bold;
      display: inline-block;
      line-height: 1.2em;
    }

    #sk-container-id-35 div.sk-label-container {
      text-align: center;
    }

    /* Estimator-specific */
    #sk-container-id-35 div.sk-estimator {
      font-family: monospace;
      border: 1px dotted var(--sklearn-color-border-box);
      border-radius: 0.25em;
      box-sizing: border-box;
      margin-bottom: 0.5em;
      /* unfitted */
      background-color: var(--sklearn-color-unfitted-level-0);
    }

    #sk-container-id-35 div.sk-estimator.fitted {
      /* fitted */
      background-color: var(--sklearn-color-fitted-level-0);
    }

    /* on hover */
    #sk-container-id-35 div.sk-estimator:hover {
      /* unfitted */
      background-color: var(--sklearn-color-unfitted-level-2);
    }

    #sk-container-id-35 div.sk-estimator.fitted:hover {
      /* fitted */
      background-color: var(--sklearn-color-fitted-level-2);
    }

    /* Specification for estimator info (e.g. "i" and "?") */

    /* Common style for "i" and "?" */

    .sk-estimator-doc-link,
    a:link.sk-estimator-doc-link,
    a:visited.sk-estimator-doc-link {
      float: right;
      font-size: smaller;
      line-height: 1em;
      font-family: monospace;
      background-color: var(--sklearn-color-background);
      border-radius: 1em;
      height: 1em;
      width: 1em;
      text-decoration: none !important;
      margin-left: 1ex;
      /* unfitted */
      border: var(--sklearn-color-unfitted-level-1) 1pt solid;
      color: var(--sklearn-color-unfitted-level-1);
    }

    .sk-estimator-doc-link.fitted,
    a:link.sk-estimator-doc-link.fitted,
    a:visited.sk-estimator-doc-link.fitted {
      /* fitted */
      border: var(--sklearn-color-fitted-level-1) 1pt solid;
      color: var(--sklearn-color-fitted-level-1);
    }

    /* On hover */
    div.sk-estimator:hover .sk-estimator-doc-link:hover,
    .sk-estimator-doc-link:hover,
    div.sk-label-container:hover .sk-estimator-doc-link:hover,
    .sk-estimator-doc-link:hover {
      /* unfitted */
      background-color: var(--sklearn-color-unfitted-level-3);
      color: var(--sklearn-color-background);
      text-decoration: none;
    }

    div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,
    .sk-estimator-doc-link.fitted:hover,
    div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,
    .sk-estimator-doc-link.fitted:hover {
      /* fitted */
      background-color: var(--sklearn-color-fitted-level-3);
      color: var(--sklearn-color-background);
      text-decoration: none;
    }

    /* Span, style for the box shown on hovering the info icon */
    .sk-estimator-doc-link span {
      display: none;
      z-index: 9999;
      position: relative;
      font-weight: normal;
      right: .2ex;
      padding: .5ex;
      margin: .5ex;
      width: min-content;
      min-width: 20ex;
      max-width: 50ex;
      color: var(--sklearn-color-text);
      box-shadow: 2pt 2pt 4pt #999;
      /* unfitted */
      background: var(--sklearn-color-unfitted-level-0);
      border: .5pt solid var(--sklearn-color-unfitted-level-3);
    }

    .sk-estimator-doc-link.fitted span {
      /* fitted */
      background: var(--sklearn-color-fitted-level-0);
      border: var(--sklearn-color-fitted-level-3);
    }

    .sk-estimator-doc-link:hover span {
      display: block;
    }

    /* "?"-specific style due to the `<a>` HTML tag */

    #sk-container-id-35 a.estimator_doc_link {
      float: right;
      font-size: 1rem;
      line-height: 1em;
      font-family: monospace;
      background-color: var(--sklearn-color-background);
      border-radius: 1rem;
      height: 1rem;
      width: 1rem;
      text-decoration: none;
      /* unfitted */
      color: var(--sklearn-color-unfitted-level-1);
      border: var(--sklearn-color-unfitted-level-1) 1pt solid;
    }

    #sk-container-id-35 a.estimator_doc_link.fitted {
      /* fitted */
      border: var(--sklearn-color-fitted-level-1) 1pt solid;
      color: var(--sklearn-color-fitted-level-1);
    }

    /* On hover */
    #sk-container-id-35 a.estimator_doc_link:hover {
      /* unfitted */
      background-color: var(--sklearn-color-unfitted-level-3);
      color: var(--sklearn-color-background);
      text-decoration: none;
    }

    #sk-container-id-35 a.estimator_doc_link.fitted:hover {
      /* fitted */
      background-color: var(--sklearn-color-fitted-level-3);
    }
    </style><div id="sk-container-id-35" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>ColumnTransformer(sparse_threshold=1,
                      transformers=[(&#x27;cat&#x27;, OrdinalEncoder(),
                                     Index([&#x27;season&#x27;, &#x27;month&#x27;, &#x27;hour&#x27;, &#x27;holiday&#x27;, &#x27;weekday&#x27;, &#x27;workingday&#x27;,
           &#x27;weather&#x27;],
          dtype=&#x27;object&#x27;)),
                                    (&#x27;num&#x27;, &#x27;passthrough&#x27;,
                                     [&#x27;temp&#x27;, &#x27;feel_temp&#x27;, &#x27;humidity&#x27;,
                                      &#x27;windspeed&#x27;])],
                      verbose_feature_names_out=False)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label  sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-146" type="checkbox" ><label for="sk-estimator-id-146" class="sk-toggleable__label  sk-toggleable__label-arrow ">&nbsp;&nbsp;ColumnTransformer<a class="sk-estimator-doc-link " rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.4/modules/generated/sklearn.compose.ColumnTransformer.html">?<span>Documentation for ColumnTransformer</span></a><span class="sk-estimator-doc-link ">i<span>Not fitted</span></span></label><div class="sk-toggleable__content "><pre>ColumnTransformer(sparse_threshold=1,
                      transformers=[(&#x27;cat&#x27;, OrdinalEncoder(),
                                     Index([&#x27;season&#x27;, &#x27;month&#x27;, &#x27;hour&#x27;, &#x27;holiday&#x27;, &#x27;weekday&#x27;, &#x27;workingday&#x27;,
           &#x27;weather&#x27;],
          dtype=&#x27;object&#x27;)),
                                    (&#x27;num&#x27;, &#x27;passthrough&#x27;,
                                     [&#x27;temp&#x27;, &#x27;feel_temp&#x27;, &#x27;humidity&#x27;,
                                      &#x27;windspeed&#x27;])],
                      verbose_feature_names_out=False)</pre></div> </div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label  sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-147" type="checkbox" ><label for="sk-estimator-id-147" class="sk-toggleable__label  sk-toggleable__label-arrow ">cat</label><div class="sk-toggleable__content "><pre>Index([&#x27;season&#x27;, &#x27;month&#x27;, &#x27;hour&#x27;, &#x27;holiday&#x27;, &#x27;weekday&#x27;, &#x27;workingday&#x27;,
           &#x27;weather&#x27;],
          dtype=&#x27;object&#x27;)</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator  sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-148" type="checkbox" ><label for="sk-estimator-id-148" class="sk-toggleable__label  sk-toggleable__label-arrow ">&nbsp;OrdinalEncoder<a class="sk-estimator-doc-link " rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.4/modules/generated/sklearn.preprocessing.OrdinalEncoder.html">?<span>Documentation for OrdinalEncoder</span></a></label><div class="sk-toggleable__content "><pre>OrdinalEncoder()</pre></div> </div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label  sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-149" type="checkbox" ><label for="sk-estimator-id-149" class="sk-toggleable__label  sk-toggleable__label-arrow ">num</label><div class="sk-toggleable__content "><pre>[&#x27;temp&#x27;, &#x27;feel_temp&#x27;, &#x27;humidity&#x27;, &#x27;windspeed&#x27;]</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator  sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-150" type="checkbox" ><label for="sk-estimator-id-150" class="sk-toggleable__label  sk-toggleable__label-arrow ">passthrough</label><div class="sk-toggleable__content "><pre>passthrough</pre></div> </div></div></div></div></div></div></div></div></div>
    </div>
    <br />
    <br />

.. GENERATED FROM PYTHON SOURCE LINES 196-210

1-way partial dependence with different models
----------------------------------------------

In this section, we will compute 1-way partial dependence with two different
machine-learning models: (i) a multi-layer perceptron and (ii) a
gradient-boosting model. With these two models, we illustrate how to compute and
interpret both partial dependence plot (PDP) for both numerical and categorical
features and individual conditional expectation (ICE).

Multi-layer perceptron
~~~~~~~~~~~~~~~~~~~~~~

Let's fit a :class:`~sklearn.neural_network.MLPRegressor` and compute
single-variable partial dependence plots.

.. GENERATED FROM PYTHON SOURCE LINES 210-230

.. code-block:: Python

    from time import time

    from sklearn.neural_network import MLPRegressor
    from sklearn.pipeline import make_pipeline

    print("Training MLPRegressor...")
    tic = time()
    mlp_model = make_pipeline(
        mlp_preprocessor,
        MLPRegressor(
            hidden_layer_sizes=(30, 15),
            learning_rate_init=0.01,
            early_stopping=True,
            random_state=0,
        ),
    )
    mlp_model.fit(X_train, y_train)
    print(f"done in {time() - tic:.3f}s")
    print(f"Test R2 score: {mlp_model.score(X_test, y_test):.2f}")





.. rst-class:: sphx-glr-script-out

 .. code-block:: none

    Training MLPRegressor...
    done in 0.605s
    Test R2 score: 0.61




.. GENERATED FROM PYTHON SOURCE LINES 231-250

We configured a pipeline using the preprocessor that we created specifically for the
neural network and tuned the neural network size and learning rate to get a reasonable
compromise between training time and predictive performance on a test set.

Importantly, this tabular dataset has very different dynamic ranges for its
features. Neural networks tend to be very sensitive to features with varying
scales and forgetting to preprocess the numeric feature would lead to a very
poor model.

It would be possible to get even higher predictive performance with a larger
neural network but the training would also be significantly more expensive.

Note that it is important to check that the model is accurate enough on a
test set before plotting the partial dependence since there would be little
use in explaining the impact of a given feature on the prediction function of
a model with poor predictive performance. In this regard, our MLP model works
reasonably well.

We will plot the averaged partial dependence.

.. GENERATED FROM PYTHON SOURCE LINES 250-288

.. code-block:: Python

    import matplotlib.pyplot as plt

    from sklearn.inspection import PartialDependenceDisplay

    common_params = {
        "subsample": 50,
        "n_jobs": 2,
        "grid_resolution": 20,
        "random_state": 0,
    }

    print("Computing partial dependence plots...")
    features_info = {
        # features of interest
        "features": ["temp", "humidity", "windspeed", "season", "weather", "hour"],
        # type of partial dependence plot
        "kind": "average",
        # information regarding categorical features
        "categorical_features": categorical_features,
    }
    tic = time()
    _, ax = plt.subplots(ncols=3, nrows=2, figsize=(9, 8), constrained_layout=True)
    display = PartialDependenceDisplay.from_estimator(
        mlp_model,
        X_train,
        **features_info,
        ax=ax,
        **common_params,
    )
    print(f"done in {time() - tic:.3f}s")
    _ = display.figure_.suptitle(
        (
            "Partial dependence of the number of bike rentals\n"
            "for the bike rental dataset with an MLPRegressor"
        ),
        fontsize=16,
    )




.. image-sg:: /auto_examples/inspection/images/sphx_glr_plot_partial_dependence_002.png
   :alt: Partial dependence of the number of bike rentals for the bike rental dataset with an MLPRegressor
   :srcset: /auto_examples/inspection/images/sphx_glr_plot_partial_dependence_002.png
   :class: sphx-glr-single-img


.. rst-class:: sphx-glr-script-out

 .. code-block:: none

    Computing partial dependence plots...
    done in 0.805s




.. GENERATED FROM PYTHON SOURCE LINES 289-295

Gradient boosting
~~~~~~~~~~~~~~~~~

Let's now fit a :class:`~sklearn.ensemble.HistGradientBoostingRegressor` and
compute the partial dependence on the same features. We also use the
specific preprocessor we created for this model.

.. GENERATED FROM PYTHON SOURCE LINES 295-311

.. code-block:: Python

    from sklearn.ensemble import HistGradientBoostingRegressor

    print("Training HistGradientBoostingRegressor...")
    tic = time()
    hgbdt_model = make_pipeline(
        hgbdt_preprocessor,
        HistGradientBoostingRegressor(
            categorical_features=categorical_features,
            random_state=0,
            max_iter=50,
        ),
    )
    hgbdt_model.fit(X_train, y_train)
    print(f"done in {time() - tic:.3f}s")
    print(f"Test R2 score: {hgbdt_model.score(X_test, y_test):.2f}")





.. rst-class:: sphx-glr-script-out

 .. code-block:: none

    Training HistGradientBoostingRegressor...
    done in 0.116s
    Test R2 score: 0.62




.. GENERATED FROM PYTHON SOURCE LINES 312-323

Here, we used the default hyperparameters for the gradient boosting model
without any preprocessing as tree-based models are naturally robust to
monotonic transformations of numerical features.

Note that on this tabular dataset, Gradient Boosting Machines are both
significantly faster to train and more accurate than neural networks. It is
also significantly cheaper to tune their hyperparameters (the defaults tend
to work well while this is not often the case for neural networks).

We will plot the partial dependence for some of the numerical and categorical
features.

.. GENERATED FROM PYTHON SOURCE LINES 323-342

.. code-block:: Python

    print("Computing partial dependence plots...")
    tic = time()
    _, ax = plt.subplots(ncols=3, nrows=2, figsize=(9, 8), constrained_layout=True)
    display = PartialDependenceDisplay.from_estimator(
        hgbdt_model,
        X_train,
        **features_info,
        ax=ax,
        **common_params,
    )
    print(f"done in {time() - tic:.3f}s")
    _ = display.figure_.suptitle(
        (
            "Partial dependence of the number of bike rentals\n"
            "for the bike rental dataset with a gradient boosting"
        ),
        fontsize=16,
    )




.. image-sg:: /auto_examples/inspection/images/sphx_glr_plot_partial_dependence_003.png
   :alt: Partial dependence of the number of bike rentals for the bike rental dataset with a gradient boosting
   :srcset: /auto_examples/inspection/images/sphx_glr_plot_partial_dependence_003.png
   :class: sphx-glr-single-img


.. rst-class:: sphx-glr-script-out

 .. code-block:: none

    Computing partial dependence plots...
    done in 0.986s




.. GENERATED FROM PYTHON SOURCE LINES 343-372

Analysis of the plots
~~~~~~~~~~~~~~~~~~~~~

We will first look at the PDPs for the numerical features. For both models, the
general trend of the PDP of the temperature is that the number of bike rentals is
increasing with temperature. We can make a similar analysis but with the opposite
trend for the humidity features. The number of bike rentals is decreasing when the
humidity increases. Finally, we see the same trend for the wind speed feature. The
number of bike rentals is decreasing when the wind speed is increasing for both
models. We also observe that :class:`~sklearn.neural_network.MLPRegressor` has much
smoother predictions than :class:`~sklearn.ensemble.HistGradientBoostingRegressor`.

Now, we will look at the partial dependence plots for the categorical features.

We observe that the spring season is the lowest bar for the season feature. With the
weather feature, the rain category is the lowest bar. Regarding the hour feature,
we see two peaks around the 7 am and 6 pm. These findings are in line with the
the observations we made earlier on the dataset.

However, it is worth noting that we are creating potential meaningless
synthetic samples if features are correlated.

ICE vs. PDP
~~~~~~~~~~~
PDP is an average of the marginal effects of the features. We are averaging the
response of all samples of the provided set. Thus, some effects could be hidden. In
this regard, it is possible to plot each individual response. This representation is
called the Individual Effect Plot (ICE). In the plot below, we plot 50 randomly
selected ICEs for the temperature and humidity features.

.. GENERATED FROM PYTHON SOURCE LINES 372-392

.. code-block:: Python

    print("Computing partial dependence plots and individual conditional expectation...")
    tic = time()
    _, ax = plt.subplots(ncols=2, figsize=(6, 4), sharey=True, constrained_layout=True)

    features_info = {
        "features": ["temp", "humidity"],
        "kind": "both",
        "centered": True,
    }

    display = PartialDependenceDisplay.from_estimator(
        hgbdt_model,
        X_train,
        **features_info,
        ax=ax,
        **common_params,
    )
    print(f"done in {time() - tic:.3f}s")
    _ = display.figure_.suptitle("ICE and PDP representations", fontsize=16)




.. image-sg:: /auto_examples/inspection/images/sphx_glr_plot_partial_dependence_004.png
   :alt: ICE and PDP representations
   :srcset: /auto_examples/inspection/images/sphx_glr_plot_partial_dependence_004.png
   :class: sphx-glr-single-img


.. rst-class:: sphx-glr-script-out

 .. code-block:: none

    Computing partial dependence plots and individual conditional expectation...
    done in 0.430s




.. GENERATED FROM PYTHON SOURCE LINES 393-403

We see that the ICE for the temperature feature gives us some additional information:
Some of the ICE lines are flat while some others show a decrease of the dependence
for temperature above 35 degrees Celsius. We observe a similar pattern for the
humidity feature: some of the ICEs lines show a sharp decrease when the humidity is
above 80%.

Not all ICE lines are parallel, this indicates that the model finds
interactions between features. We can repeat the experiment by constraining the
gradient boosting model to not use any interactions between features using the
parameter `interaction_cst`:

.. GENERATED FROM PYTHON SOURCE LINES 403-413

.. code-block:: Python

    from sklearn.base import clone

    interaction_cst = [[i] for i in range(X_train.shape[1])]
    hgbdt_model_without_interactions = (
        clone(hgbdt_model)
        .set_params(histgradientboostingregressor__interaction_cst=interaction_cst)
        .fit(X_train, y_train)
    )
    print(f"Test R2 score: {hgbdt_model_without_interactions.score(X_test, y_test):.2f}")





.. rst-class:: sphx-glr-script-out

 .. code-block:: none

    Test R2 score: 0.38




.. GENERATED FROM PYTHON SOURCE LINES 414-426

.. code-block:: Python

    _, ax = plt.subplots(ncols=2, figsize=(6, 4), sharey=True, constrained_layout=True)

    features_info["centered"] = False
    display = PartialDependenceDisplay.from_estimator(
        hgbdt_model_without_interactions,
        X_train,
        **features_info,
        ax=ax,
        **common_params,
    )
    _ = display.figure_.suptitle("ICE and PDP representations", fontsize=16)




.. image-sg:: /auto_examples/inspection/images/sphx_glr_plot_partial_dependence_005.png
   :alt: ICE and PDP representations
   :srcset: /auto_examples/inspection/images/sphx_glr_plot_partial_dependence_005.png
   :class: sphx-glr-single-img





.. GENERATED FROM PYTHON SOURCE LINES 427-435

2D interaction plots
--------------------

PDPs with two features of interest enable us to visualize interactions among them.
However, ICEs cannot be plotted in an easy manner and thus interpreted. We will show
the representation of available in
:meth:`~sklearn.inspection.PartialDependenceDisplay.from_estimator` that is a 2D
heatmap.

.. GENERATED FROM PYTHON SOURCE LINES 435-454

.. code-block:: Python

    print("Computing partial dependence plots...")
    features_info = {
        "features": ["temp", "humidity", ("temp", "humidity")],
        "kind": "average",
    }
    _, ax = plt.subplots(ncols=3, figsize=(10, 4), constrained_layout=True)
    tic = time()
    display = PartialDependenceDisplay.from_estimator(
        hgbdt_model,
        X_train,
        **features_info,
        ax=ax,
        **common_params,
    )
    print(f"done in {time() - tic:.3f}s")
    _ = display.figure_.suptitle(
        "1-way vs 2-way of numerical PDP using gradient boosting", fontsize=16
    )




.. image-sg:: /auto_examples/inspection/images/sphx_glr_plot_partial_dependence_006.png
   :alt: 1-way vs 2-way of numerical PDP using gradient boosting
   :srcset: /auto_examples/inspection/images/sphx_glr_plot_partial_dependence_006.png
   :class: sphx-glr-single-img


.. rst-class:: sphx-glr-script-out

 .. code-block:: none

    Computing partial dependence plots...
    done in 6.665s




.. GENERATED FROM PYTHON SOURCE LINES 455-471

The two-way partial dependence plot shows the dependence of the number of bike rentals
on joint values of temperature and humidity.
We clearly see an interaction between the two features. For a temperature higher than
20 degrees Celsius, the humidity has a impact on the number of bike rentals
that seems independent on the temperature.

On the other hand, for temperatures lower than 20 degrees Celsius, both the
temperature and humidity continuously impact the number of bike rentals.

Furthermore, the slope of the of the impact ridge of the 20 degrees Celsius
threshold is very dependent on the humidity level: the ridge is steep under
dry conditions but much smoother under wetter conditions above 70% of humidity.

We now contrast those results with the same plots computed for the model
constrained to learn a prediction function that does not depend on such
non-linear feature interactions.

.. GENERATED FROM PYTHON SOURCE LINES 471-490

.. code-block:: Python

    print("Computing partial dependence plots...")
    features_info = {
        "features": ["temp", "humidity", ("temp", "humidity")],
        "kind": "average",
    }
    _, ax = plt.subplots(ncols=3, figsize=(10, 4), constrained_layout=True)
    tic = time()
    display = PartialDependenceDisplay.from_estimator(
        hgbdt_model_without_interactions,
        X_train,
        **features_info,
        ax=ax,
        **common_params,
    )
    print(f"done in {time() - tic:.3f}s")
    _ = display.figure_.suptitle(
        "1-way vs 2-way of numerical PDP using gradient boosting", fontsize=16
    )




.. image-sg:: /auto_examples/inspection/images/sphx_glr_plot_partial_dependence_007.png
   :alt: 1-way vs 2-way of numerical PDP using gradient boosting
   :srcset: /auto_examples/inspection/images/sphx_glr_plot_partial_dependence_007.png
   :class: sphx-glr-single-img


.. rst-class:: sphx-glr-script-out

 .. code-block:: none

    Computing partial dependence plots...
    done in 6.018s




.. GENERATED FROM PYTHON SOURCE LINES 491-512

The 1D partial dependence plots for the model constrained to not model feature
interactions show local spikes for each features individually, in particular for
for the "humidity" feature. Those spikes might be reflecting a degraded behavior
of the model that attempts to somehow compensate for the forbidden interactions
by overfitting particular training points. Note that the predictive performance
of this model as measured on the test set is significantly worse than that of
the original, unconstrained model.

Also note that the number of local spikes visible on those plots is depends on
the grid resolution parameter of the PD plot itself.

Those local spikes result in a noisily gridded 2D PD plot. It is quite
challenging to tell whether or not there are no interaction between those
features because of the high frequency oscillations in the humidity feature.
However it can clearly be seen that the simple interaction effect observed when
the temperature crosses the 20 degrees boundary is no longer visible for this
model.

The partial dependence between categorical features will provide a discrete
representation that can be shown as a heatmap. For instance the interaction between
the season, the weather, and the target would be as follow:

.. GENERATED FROM PYTHON SOURCE LINES 512-533

.. code-block:: Python

    print("Computing partial dependence plots...")
    features_info = {
        "features": ["season", "weather", ("season", "weather")],
        "kind": "average",
        "categorical_features": categorical_features,
    }
    _, ax = plt.subplots(ncols=3, figsize=(14, 6), constrained_layout=True)
    tic = time()
    display = PartialDependenceDisplay.from_estimator(
        hgbdt_model,
        X_train,
        **features_info,
        ax=ax,
        **common_params,
    )

    print(f"done in {time() - tic:.3f}s")
    _ = display.figure_.suptitle(
        "1-way vs 2-way PDP of categorical features using gradient boosting", fontsize=16
    )




.. image-sg:: /auto_examples/inspection/images/sphx_glr_plot_partial_dependence_008.png
   :alt: 1-way vs 2-way PDP of categorical features using gradient boosting
   :srcset: /auto_examples/inspection/images/sphx_glr_plot_partial_dependence_008.png
   :class: sphx-glr-single-img


.. rst-class:: sphx-glr-script-out

 .. code-block:: none

    Computing partial dependence plots...
    done in 0.524s




.. GENERATED FROM PYTHON SOURCE LINES 534-540

3D representation
~~~~~~~~~~~~~~~~~

Let's make the same partial dependence plot for the 2 features interaction,
this time in 3 dimensions.
unused but required import for doing 3d projections with matplotlib < 3.2

.. GENERATED FROM PYTHON SOURCE LINES 540-569

.. code-block:: Python

    import mpl_toolkits.mplot3d  # noqa: F401
    import numpy as np

    from sklearn.inspection import partial_dependence

    fig = plt.figure(figsize=(5.5, 5))

    features = ("temp", "humidity")
    pdp = partial_dependence(
        hgbdt_model, X_train, features=features, kind="average", grid_resolution=10
    )
    XX, YY = np.meshgrid(pdp["grid_values"][0], pdp["grid_values"][1])
    Z = pdp.average[0].T
    ax = fig.add_subplot(projection="3d")
    fig.add_axes(ax)

    surf = ax.plot_surface(XX, YY, Z, rstride=1, cstride=1, cmap=plt.cm.BuPu, edgecolor="k")
    ax.set_xlabel(features[0])
    ax.set_ylabel(features[1])
    fig.suptitle(
        "PD of number of bike rentals on\nthe temperature and humidity GBDT model",
        fontsize=16,
    )
    # pretty init view
    ax.view_init(elev=22, azim=122)
    clb = plt.colorbar(surf, pad=0.08, shrink=0.6, aspect=10)
    clb.ax.set_title("Partial\ndependence")
    plt.show()




.. image-sg:: /auto_examples/inspection/images/sphx_glr_plot_partial_dependence_009.png
   :alt: PD of number of bike rentals on the temperature and humidity GBDT model, Partial dependence
   :srcset: /auto_examples/inspection/images/sphx_glr_plot_partial_dependence_009.png
   :class: sphx-glr-single-img






.. rst-class:: sphx-glr-timing

   **Total running time of the script:** (0 minutes 20.546 seconds)


.. _sphx_glr_download_auto_examples_inspection_plot_partial_dependence.py:

.. only:: html

  .. container:: sphx-glr-footer sphx-glr-footer-example

    .. container:: binder-badge

      .. image:: images/binder_badge_logo.svg
        :target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/1.4.X?urlpath=lab/tree/notebooks/auto_examples/inspection/plot_partial_dependence.ipynb
        :alt: Launch binder
        :width: 150 px

    .. container:: lite-badge

      .. image:: images/jupyterlite_badge_logo.svg
        :target: ../../lite/lab/?path=auto_examples/inspection/plot_partial_dependence.ipynb
        :alt: Launch JupyterLite
        :width: 150 px

    .. container:: sphx-glr-download sphx-glr-download-jupyter

      :download:`Download Jupyter notebook: plot_partial_dependence.ipynb <plot_partial_dependence.ipynb>`

    .. container:: sphx-glr-download sphx-glr-download-python

      :download:`Download Python source code: plot_partial_dependence.py <plot_partial_dependence.py>`


.. include:: plot_partial_dependence.recommendations


.. only:: html

 .. rst-class:: sphx-glr-signature

    `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_