.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "auto_examples/applications/plot_stock_market.py"
.. LINE NUMBERS ARE GIVEN BELOW.

.. only:: html

    .. note::
        :class: sphx-glr-download-link-note

        :ref:`Go to the end <sphx_glr_download_auto_examples_applications_plot_stock_market.py>`
        to download the full example code or to run this example in your browser via JupyterLite or Binder

.. rst-class:: sphx-glr-example-title

.. _sphx_glr_auto_examples_applications_plot_stock_market.py:


=======================================
Visualizing the stock market structure
=======================================

This example employs several unsupervised learning techniques to extract
the stock market structure from variations in historical quotes.

The quantity that we use is the daily variation in quote price: quotes
that are linked tend to fluctuate in relation to each other during a day.

.. GENERATED FROM PYTHON SOURCE LINES 12-16

.. code-block:: Python


    # Author: Gael Varoquaux gael.varoquaux@normalesup.org
    # License: BSD 3 clause








.. GENERATED FROM PYTHON SOURCE LINES 17-25

Retrieve the data from Internet
-------------------------------

The data is from 2003 - 2008. This is reasonably calm: (not too long ago so
that we get high-tech firms, and before the 2008 crash). This kind of
historical data can be obtained from APIs like the
`data.nasdaq.com <https://data.nasdaq.com/>`_ and
`alphavantage.co <https://www.alphavantage.co/>`_.

.. GENERATED FROM PYTHON SOURCE LINES 25-109

.. code-block:: Python


    import sys

    import numpy as np
    import pandas as pd

    symbol_dict = {
        "TOT": "Total",
        "XOM": "Exxon",
        "CVX": "Chevron",
        "COP": "ConocoPhillips",
        "VLO": "Valero Energy",
        "MSFT": "Microsoft",
        "IBM": "IBM",
        "TWX": "Time Warner",
        "CMCSA": "Comcast",
        "CVC": "Cablevision",
        "YHOO": "Yahoo",
        "DELL": "Dell",
        "HPQ": "HP",
        "AMZN": "Amazon",
        "TM": "Toyota",
        "CAJ": "Canon",
        "SNE": "Sony",
        "F": "Ford",
        "HMC": "Honda",
        "NAV": "Navistar",
        "NOC": "Northrop Grumman",
        "BA": "Boeing",
        "KO": "Coca Cola",
        "MMM": "3M",
        "MCD": "McDonald's",
        "PEP": "Pepsi",
        "K": "Kellogg",
        "UN": "Unilever",
        "MAR": "Marriott",
        "PG": "Procter Gamble",
        "CL": "Colgate-Palmolive",
        "GE": "General Electrics",
        "WFC": "Wells Fargo",
        "JPM": "JPMorgan Chase",
        "AIG": "AIG",
        "AXP": "American express",
        "BAC": "Bank of America",
        "GS": "Goldman Sachs",
        "AAPL": "Apple",
        "SAP": "SAP",
        "CSCO": "Cisco",
        "TXN": "Texas Instruments",
        "XRX": "Xerox",
        "WMT": "Wal-Mart",
        "HD": "Home Depot",
        "GSK": "GlaxoSmithKline",
        "PFE": "Pfizer",
        "SNY": "Sanofi-Aventis",
        "NVS": "Novartis",
        "KMB": "Kimberly-Clark",
        "R": "Ryder",
        "GD": "General Dynamics",
        "RTN": "Raytheon",
        "CVS": "CVS",
        "CAT": "Caterpillar",
        "DD": "DuPont de Nemours",
    }


    symbols, names = np.array(sorted(symbol_dict.items())).T

    quotes = []

    for symbol in symbols:
        print("Fetching quote history for %r" % symbol, file=sys.stderr)
        url = (
            "https://raw.githubusercontent.com/scikit-learn/examples-data/"
            "master/financial-data/{}.csv"
        )
        quotes.append(pd.read_csv(url.format(symbol)))

    close_prices = np.vstack([q["close"] for q in quotes])
    open_prices = np.vstack([q["open"] for q in quotes])

    # The daily variations of the quotes are what carry the most information
    variation = close_prices - open_prices





.. rst-class:: sphx-glr-script-out

 .. code-block:: none

    Fetching quote history for 'AAPL'
    Fetching quote history for 'AIG'
    Fetching quote history for 'AMZN'
    Fetching quote history for 'AXP'
    Fetching quote history for 'BA'
    Fetching quote history for 'BAC'
    Fetching quote history for 'CAJ'
    Fetching quote history for 'CAT'
    Fetching quote history for 'CL'
    Fetching quote history for 'CMCSA'
    Fetching quote history for 'COP'
    Fetching quote history for 'CSCO'
    Fetching quote history for 'CVC'
    Fetching quote history for 'CVS'
    Fetching quote history for 'CVX'
    Fetching quote history for 'DD'
    Fetching quote history for 'DELL'
    Fetching quote history for 'F'
    Fetching quote history for 'GD'
    Fetching quote history for 'GE'
    Fetching quote history for 'GS'
    Fetching quote history for 'GSK'
    Fetching quote history for 'HD'
    Fetching quote history for 'HMC'
    Fetching quote history for 'HPQ'
    Fetching quote history for 'IBM'
    Fetching quote history for 'JPM'
    Fetching quote history for 'K'
    Fetching quote history for 'KMB'
    Fetching quote history for 'KO'
    Fetching quote history for 'MAR'
    Fetching quote history for 'MCD'
    Fetching quote history for 'MMM'
    Fetching quote history for 'MSFT'
    Fetching quote history for 'NAV'
    Fetching quote history for 'NOC'
    Fetching quote history for 'NVS'
    Fetching quote history for 'PEP'
    Fetching quote history for 'PFE'
    Fetching quote history for 'PG'
    Fetching quote history for 'R'
    Fetching quote history for 'RTN'
    Fetching quote history for 'SAP'
    Fetching quote history for 'SNE'
    Fetching quote history for 'SNY'
    Fetching quote history for 'TM'
    Fetching quote history for 'TOT'
    Fetching quote history for 'TWX'
    Fetching quote history for 'TXN'
    Fetching quote history for 'UN'
    Fetching quote history for 'VLO'
    Fetching quote history for 'WFC'
    Fetching quote history for 'WMT'
    Fetching quote history for 'XOM'
    Fetching quote history for 'XRX'
    Fetching quote history for 'YHOO'




.. GENERATED FROM PYTHON SOURCE LINES 110-120

.. _stock_market:

Learning a graph structure
--------------------------

We use sparse inverse covariance estimation to find which quotes are
correlated conditionally on the others. Specifically, sparse inverse
covariance gives us a graph, that is a list of connections. For each
symbol, the symbols that it is connected to are those useful to explain
its fluctuations.

.. GENERATED FROM PYTHON SOURCE LINES 120-132

.. code-block:: Python


    from sklearn import covariance

    alphas = np.logspace(-1.5, 1, num=10)
    edge_model = covariance.GraphicalLassoCV(alphas=alphas)

    # standardize the time series: using correlations rather than covariance
    # former is more efficient for structure recovery
    X = variation.copy().T
    X /= X.std(axis=0)
    edge_model.fit(X)






.. raw:: html

    <div class="output_subarea output_html rendered_html output_result">
    <style>#sk-container-id-26 {
      /* Definition of color scheme common for light and dark mode */
      --sklearn-color-text: black;
      --sklearn-color-line: gray;
      /* Definition of color scheme for unfitted estimators */
      --sklearn-color-unfitted-level-0: #fff5e6;
      --sklearn-color-unfitted-level-1: #f6e4d2;
      --sklearn-color-unfitted-level-2: #ffe0b3;
      --sklearn-color-unfitted-level-3: chocolate;
      /* Definition of color scheme for fitted estimators */
      --sklearn-color-fitted-level-0: #f0f8ff;
      --sklearn-color-fitted-level-1: #d4ebff;
      --sklearn-color-fitted-level-2: #b3dbfd;
      --sklearn-color-fitted-level-3: cornflowerblue;

      /* Specific color for light theme */
      --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));
      --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));
      --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));
      --sklearn-color-icon: #696969;

      @media (prefers-color-scheme: dark) {
        /* Redefinition of color scheme for dark theme */
        --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));
        --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));
        --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));
        --sklearn-color-icon: #878787;
      }
    }

    #sk-container-id-26 {
      color: var(--sklearn-color-text);
    }

    #sk-container-id-26 pre {
      padding: 0;
    }

    #sk-container-id-26 input.sk-hidden--visually {
      border: 0;
      clip: rect(1px 1px 1px 1px);
      clip: rect(1px, 1px, 1px, 1px);
      height: 1px;
      margin: -1px;
      overflow: hidden;
      padding: 0;
      position: absolute;
      width: 1px;
    }

    #sk-container-id-26 div.sk-dashed-wrapped {
      border: 1px dashed var(--sklearn-color-line);
      margin: 0 0.4em 0.5em 0.4em;
      box-sizing: border-box;
      padding-bottom: 0.4em;
      background-color: var(--sklearn-color-background);
    }

    #sk-container-id-26 div.sk-container {
      /* jupyter's `normalize.less` sets `[hidden] { display: none; }`
         but bootstrap.min.css set `[hidden] { display: none !important; }`
         so we also need the `!important` here to be able to override the
         default hidden behavior on the sphinx rendered scikit-learn.org.
         See: https://github.com/scikit-learn/scikit-learn/issues/21755 */
      display: inline-block !important;
      position: relative;
    }

    #sk-container-id-26 div.sk-text-repr-fallback {
      display: none;
    }

    div.sk-parallel-item,
    div.sk-serial,
    div.sk-item {
      /* draw centered vertical line to link estimators */
      background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));
      background-size: 2px 100%;
      background-repeat: no-repeat;
      background-position: center center;
    }

    /* Parallel-specific style estimator block */

    #sk-container-id-26 div.sk-parallel-item::after {
      content: "";
      width: 100%;
      border-bottom: 2px solid var(--sklearn-color-text-on-default-background);
      flex-grow: 1;
    }

    #sk-container-id-26 div.sk-parallel {
      display: flex;
      align-items: stretch;
      justify-content: center;
      background-color: var(--sklearn-color-background);
      position: relative;
    }

    #sk-container-id-26 div.sk-parallel-item {
      display: flex;
      flex-direction: column;
    }

    #sk-container-id-26 div.sk-parallel-item:first-child::after {
      align-self: flex-end;
      width: 50%;
    }

    #sk-container-id-26 div.sk-parallel-item:last-child::after {
      align-self: flex-start;
      width: 50%;
    }

    #sk-container-id-26 div.sk-parallel-item:only-child::after {
      width: 0;
    }

    /* Serial-specific style estimator block */

    #sk-container-id-26 div.sk-serial {
      display: flex;
      flex-direction: column;
      align-items: center;
      background-color: var(--sklearn-color-background);
      padding-right: 1em;
      padding-left: 1em;
    }


    /* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is
    clickable and can be expanded/collapsed.
    - Pipeline and ColumnTransformer use this feature and define the default style
    - Estimators will overwrite some part of the style using the `sk-estimator` class
    */

    /* Pipeline and ColumnTransformer style (default) */

    #sk-container-id-26 div.sk-toggleable {
      /* Default theme specific background. It is overwritten whether we have a
      specific estimator or a Pipeline/ColumnTransformer */
      background-color: var(--sklearn-color-background);
    }

    /* Toggleable label */
    #sk-container-id-26 label.sk-toggleable__label {
      cursor: pointer;
      display: block;
      width: 100%;
      margin-bottom: 0;
      padding: 0.5em;
      box-sizing: border-box;
      text-align: center;
    }

    #sk-container-id-26 label.sk-toggleable__label-arrow:before {
      /* Arrow on the left of the label */
      content: "▸";
      float: left;
      margin-right: 0.25em;
      color: var(--sklearn-color-icon);
    }

    #sk-container-id-26 label.sk-toggleable__label-arrow:hover:before {
      color: var(--sklearn-color-text);
    }

    /* Toggleable content - dropdown */

    #sk-container-id-26 div.sk-toggleable__content {
      max-height: 0;
      max-width: 0;
      overflow: hidden;
      text-align: left;
      /* unfitted */
      background-color: var(--sklearn-color-unfitted-level-0);
    }

    #sk-container-id-26 div.sk-toggleable__content.fitted {
      /* fitted */
      background-color: var(--sklearn-color-fitted-level-0);
    }

    #sk-container-id-26 div.sk-toggleable__content pre {
      margin: 0.2em;
      border-radius: 0.25em;
      color: var(--sklearn-color-text);
      /* unfitted */
      background-color: var(--sklearn-color-unfitted-level-0);
    }

    #sk-container-id-26 div.sk-toggleable__content.fitted pre {
      /* unfitted */
      background-color: var(--sklearn-color-fitted-level-0);
    }

    #sk-container-id-26 input.sk-toggleable__control:checked~div.sk-toggleable__content {
      /* Expand drop-down */
      max-height: 200px;
      max-width: 100%;
      overflow: auto;
    }

    #sk-container-id-26 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {
      content: "▾";
    }

    /* Pipeline/ColumnTransformer-specific style */

    #sk-container-id-26 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {
      color: var(--sklearn-color-text);
      background-color: var(--sklearn-color-unfitted-level-2);
    }

    #sk-container-id-26 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {
      background-color: var(--sklearn-color-fitted-level-2);
    }

    /* Estimator-specific style */

    /* Colorize estimator box */
    #sk-container-id-26 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {
      /* unfitted */
      background-color: var(--sklearn-color-unfitted-level-2);
    }

    #sk-container-id-26 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {
      /* fitted */
      background-color: var(--sklearn-color-fitted-level-2);
    }

    #sk-container-id-26 div.sk-label label.sk-toggleable__label,
    #sk-container-id-26 div.sk-label label {
      /* The background is the default theme color */
      color: var(--sklearn-color-text-on-default-background);
    }

    /* On hover, darken the color of the background */
    #sk-container-id-26 div.sk-label:hover label.sk-toggleable__label {
      color: var(--sklearn-color-text);
      background-color: var(--sklearn-color-unfitted-level-2);
    }

    /* Label box, darken color on hover, fitted */
    #sk-container-id-26 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {
      color: var(--sklearn-color-text);
      background-color: var(--sklearn-color-fitted-level-2);
    }

    /* Estimator label */

    #sk-container-id-26 div.sk-label label {
      font-family: monospace;
      font-weight: bold;
      display: inline-block;
      line-height: 1.2em;
    }

    #sk-container-id-26 div.sk-label-container {
      text-align: center;
    }

    /* Estimator-specific */
    #sk-container-id-26 div.sk-estimator {
      font-family: monospace;
      border: 1px dotted var(--sklearn-color-border-box);
      border-radius: 0.25em;
      box-sizing: border-box;
      margin-bottom: 0.5em;
      /* unfitted */
      background-color: var(--sklearn-color-unfitted-level-0);
    }

    #sk-container-id-26 div.sk-estimator.fitted {
      /* fitted */
      background-color: var(--sklearn-color-fitted-level-0);
    }

    /* on hover */
    #sk-container-id-26 div.sk-estimator:hover {
      /* unfitted */
      background-color: var(--sklearn-color-unfitted-level-2);
    }

    #sk-container-id-26 div.sk-estimator.fitted:hover {
      /* fitted */
      background-color: var(--sklearn-color-fitted-level-2);
    }

    /* Specification for estimator info (e.g. "i" and "?") */

    /* Common style for "i" and "?" */

    .sk-estimator-doc-link,
    a:link.sk-estimator-doc-link,
    a:visited.sk-estimator-doc-link {
      float: right;
      font-size: smaller;
      line-height: 1em;
      font-family: monospace;
      background-color: var(--sklearn-color-background);
      border-radius: 1em;
      height: 1em;
      width: 1em;
      text-decoration: none !important;
      margin-left: 1ex;
      /* unfitted */
      border: var(--sklearn-color-unfitted-level-1) 1pt solid;
      color: var(--sklearn-color-unfitted-level-1);
    }

    .sk-estimator-doc-link.fitted,
    a:link.sk-estimator-doc-link.fitted,
    a:visited.sk-estimator-doc-link.fitted {
      /* fitted */
      border: var(--sklearn-color-fitted-level-1) 1pt solid;
      color: var(--sklearn-color-fitted-level-1);
    }

    /* On hover */
    div.sk-estimator:hover .sk-estimator-doc-link:hover,
    .sk-estimator-doc-link:hover,
    div.sk-label-container:hover .sk-estimator-doc-link:hover,
    .sk-estimator-doc-link:hover {
      /* unfitted */
      background-color: var(--sklearn-color-unfitted-level-3);
      color: var(--sklearn-color-background);
      text-decoration: none;
    }

    div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,
    .sk-estimator-doc-link.fitted:hover,
    div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,
    .sk-estimator-doc-link.fitted:hover {
      /* fitted */
      background-color: var(--sklearn-color-fitted-level-3);
      color: var(--sklearn-color-background);
      text-decoration: none;
    }

    /* Span, style for the box shown on hovering the info icon */
    .sk-estimator-doc-link span {
      display: none;
      z-index: 9999;
      position: relative;
      font-weight: normal;
      right: .2ex;
      padding: .5ex;
      margin: .5ex;
      width: min-content;
      min-width: 20ex;
      max-width: 50ex;
      color: var(--sklearn-color-text);
      box-shadow: 2pt 2pt 4pt #999;
      /* unfitted */
      background: var(--sklearn-color-unfitted-level-0);
      border: .5pt solid var(--sklearn-color-unfitted-level-3);
    }

    .sk-estimator-doc-link.fitted span {
      /* fitted */
      background: var(--sklearn-color-fitted-level-0);
      border: var(--sklearn-color-fitted-level-3);
    }

    .sk-estimator-doc-link:hover span {
      display: block;
    }

    /* "?"-specific style due to the `<a>` HTML tag */

    #sk-container-id-26 a.estimator_doc_link {
      float: right;
      font-size: 1rem;
      line-height: 1em;
      font-family: monospace;
      background-color: var(--sklearn-color-background);
      border-radius: 1rem;
      height: 1rem;
      width: 1rem;
      text-decoration: none;
      /* unfitted */
      color: var(--sklearn-color-unfitted-level-1);
      border: var(--sklearn-color-unfitted-level-1) 1pt solid;
    }

    #sk-container-id-26 a.estimator_doc_link.fitted {
      /* fitted */
      border: var(--sklearn-color-fitted-level-1) 1pt solid;
      color: var(--sklearn-color-fitted-level-1);
    }

    /* On hover */
    #sk-container-id-26 a.estimator_doc_link:hover {
      /* unfitted */
      background-color: var(--sklearn-color-unfitted-level-3);
      color: var(--sklearn-color-background);
      text-decoration: none;
    }

    #sk-container-id-26 a.estimator_doc_link.fitted:hover {
      /* fitted */
      background-color: var(--sklearn-color-fitted-level-3);
    }
    </style><div id="sk-container-id-26" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>GraphicalLassoCV(alphas=array([ 0.03162278,  0.05994843,  0.11364637,  0.21544347,  0.40842387,
            0.77426368,  1.46779927,  2.7825594 ,  5.27499706, 10.        ]))</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-105" type="checkbox" checked><label for="sk-estimator-id-105" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;&nbsp;GraphicalLassoCV<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.4/modules/generated/sklearn.covariance.GraphicalLassoCV.html">?<span>Documentation for GraphicalLassoCV</span></a><span class="sk-estimator-doc-link fitted">i<span>Fitted</span></span></label><div class="sk-toggleable__content fitted"><pre>GraphicalLassoCV(alphas=array([ 0.03162278,  0.05994843,  0.11364637,  0.21544347,  0.40842387,
            0.77426368,  1.46779927,  2.7825594 ,  5.27499706, 10.        ]))</pre></div> </div></div></div></div>
    </div>
    <br />
    <br />

.. GENERATED FROM PYTHON SOURCE LINES 133-147

Clustering using affinity propagation
-------------------------------------

We use clustering to group together quotes that behave similarly. Here,
amongst the :ref:`various clustering techniques <clustering>` available
in the scikit-learn, we use :ref:`affinity_propagation` as it does
not enforce equal-size clusters, and it can choose automatically the
number of clusters from the data.

Note that this gives us a different indication than the graph, as the
graph reflects conditional relations between variables, while the
clustering reflects marginal properties: variables clustered together can
be considered as having a similar impact at the level of the full stock
market.

.. GENERATED FROM PYTHON SOURCE LINES 147-156

.. code-block:: Python


    from sklearn import cluster

    _, labels = cluster.affinity_propagation(edge_model.covariance_, random_state=0)
    n_labels = labels.max()

    for i in range(n_labels + 1):
        print(f"Cluster {i + 1}: {', '.join(names[labels == i])}")





.. rst-class:: sphx-glr-script-out

 .. code-block:: none

    Cluster 1: Apple, Amazon, Yahoo
    Cluster 2: Comcast, Cablevision, Time Warner
    Cluster 3: ConocoPhillips, Chevron, Total, Valero Energy, Exxon
    Cluster 4: Cisco, Dell, HP, IBM, Microsoft, SAP, Texas Instruments
    Cluster 5: Boeing, General Dynamics, Northrop Grumman, Raytheon
    Cluster 6: AIG, American express, Bank of America, Caterpillar, CVS, DuPont de Nemours, Ford, General Electrics, Goldman Sachs, Home Depot, JPMorgan Chase, Marriott, McDonald's, 3M, Ryder, Wells Fargo, Wal-Mart
    Cluster 7: GlaxoSmithKline, Novartis, Pfizer, Sanofi-Aventis, Unilever
    Cluster 8: Kellogg, Coca Cola, Pepsi
    Cluster 9: Colgate-Palmolive, Kimberly-Clark, Procter Gamble
    Cluster 10: Canon, Honda, Navistar, Sony, Toyota, Xerox




.. GENERATED FROM PYTHON SOURCE LINES 157-166

Embedding in 2D space
---------------------

For visualization purposes, we need to lay out the different symbols on a
2D canvas. For this we use :ref:`manifold` techniques to retrieve 2D
embedding.
We use a dense eigen_solver to achieve reproducibility (arpack is initiated
with the random vectors that we don't control). In addition, we use a large
number of neighbors to capture the large-scale structure.

.. GENERATED FROM PYTHON SOURCE LINES 166-178

.. code-block:: Python


    # Finding a low-dimension embedding for visualization: find the best position of
    # the nodes (the stocks) on a 2D plane

    from sklearn import manifold

    node_position_model = manifold.LocallyLinearEmbedding(
        n_components=2, eigen_solver="dense", n_neighbors=6
    )

    embedding = node_position_model.fit_transform(X.T).T








.. GENERATED FROM PYTHON SOURCE LINES 179-194

Visualization
-------------

The output of the 3 models are combined in a 2D graph where nodes
represents the stocks and edges the:

- cluster labels are used to define the color of the nodes
- the sparse covariance model is used to display the strength of the edges
- the 2D embedding is used to position the nodes in the plan

This example has a fair amount of visualization-related code, as
visualization is crucial here to display the graph. One of the challenge
is to position the labels minimizing overlap. For this we use an
heuristic based on the direction of the nearest neighbor along each
axis.

.. GENERATED FROM PYTHON SOURCE LINES 194-275

.. code-block:: Python


    import matplotlib.pyplot as plt
    from matplotlib.collections import LineCollection

    plt.figure(1, facecolor="w", figsize=(10, 8))
    plt.clf()
    ax = plt.axes([0.0, 0.0, 1.0, 1.0])
    plt.axis("off")

    # Plot the graph of partial correlations
    partial_correlations = edge_model.precision_.copy()
    d = 1 / np.sqrt(np.diag(partial_correlations))
    partial_correlations *= d
    partial_correlations *= d[:, np.newaxis]
    non_zero = np.abs(np.triu(partial_correlations, k=1)) > 0.02

    # Plot the nodes using the coordinates of our embedding
    plt.scatter(
        embedding[0], embedding[1], s=100 * d**2, c=labels, cmap=plt.cm.nipy_spectral
    )

    # Plot the edges
    start_idx, end_idx = np.where(non_zero)
    # a sequence of (*line0*, *line1*, *line2*), where::
    #            linen = (x0, y0), (x1, y1), ... (xm, ym)
    segments = [
        [embedding[:, start], embedding[:, stop]] for start, stop in zip(start_idx, end_idx)
    ]
    values = np.abs(partial_correlations[non_zero])
    lc = LineCollection(
        segments, zorder=0, cmap=plt.cm.hot_r, norm=plt.Normalize(0, 0.7 * values.max())
    )
    lc.set_array(values)
    lc.set_linewidths(15 * values)
    ax.add_collection(lc)

    # Add a label to each node. The challenge here is that we want to
    # position the labels to avoid overlap with other labels
    for index, (name, label, (x, y)) in enumerate(zip(names, labels, embedding.T)):
        dx = x - embedding[0]
        dx[index] = 1
        dy = y - embedding[1]
        dy[index] = 1
        this_dx = dx[np.argmin(np.abs(dy))]
        this_dy = dy[np.argmin(np.abs(dx))]
        if this_dx > 0:
            horizontalalignment = "left"
            x = x + 0.002
        else:
            horizontalalignment = "right"
            x = x - 0.002
        if this_dy > 0:
            verticalalignment = "bottom"
            y = y + 0.002
        else:
            verticalalignment = "top"
            y = y - 0.002
        plt.text(
            x,
            y,
            name,
            size=10,
            horizontalalignment=horizontalalignment,
            verticalalignment=verticalalignment,
            bbox=dict(
                facecolor="w",
                edgecolor=plt.cm.nipy_spectral(label / float(n_labels)),
                alpha=0.6,
            ),
        )

    plt.xlim(
        embedding[0].min() - 0.15 * np.ptp(embedding[0]),
        embedding[0].max() + 0.10 * np.ptp(embedding[0]),
    )
    plt.ylim(
        embedding[1].min() - 0.03 * np.ptp(embedding[1]),
        embedding[1].max() + 0.03 * np.ptp(embedding[1]),
    )

    plt.show()



.. image-sg:: /auto_examples/applications/images/sphx_glr_plot_stock_market_001.png
   :alt: plot stock market
   :srcset: /auto_examples/applications/images/sphx_glr_plot_stock_market_001.png
   :class: sphx-glr-single-img






.. rst-class:: sphx-glr-timing

   **Total running time of the script:** (0 minutes 2.544 seconds)


.. _sphx_glr_download_auto_examples_applications_plot_stock_market.py:

.. only:: html

  .. container:: sphx-glr-footer sphx-glr-footer-example

    .. container:: binder-badge

      .. image:: images/binder_badge_logo.svg
        :target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/1.4.X?urlpath=lab/tree/notebooks/auto_examples/applications/plot_stock_market.ipynb
        :alt: Launch binder
        :width: 150 px

    .. container:: lite-badge

      .. image:: images/jupyterlite_badge_logo.svg
        :target: ../../lite/lab/?path=auto_examples/applications/plot_stock_market.ipynb
        :alt: Launch JupyterLite
        :width: 150 px

    .. container:: sphx-glr-download sphx-glr-download-jupyter

      :download:`Download Jupyter notebook: plot_stock_market.ipynb <plot_stock_market.ipynb>`

    .. container:: sphx-glr-download sphx-glr-download-python

      :download:`Download Python source code: plot_stock_market.py <plot_stock_market.py>`


.. include:: plot_stock_market.recommendations


.. only:: html

 .. rst-class:: sphx-glr-signature

    `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_