.. Places parent toc into the sidebar

:parenttoc: True

.. include:: includes/big_toc_css.rst

.. _visualizations:

==============
Visualizations
==============

Scikit-learn defines a simple API for creating visualizations for machine
learning. The key feature of this API is to allow for quick plotting and
visual adjustments without recalculation. We provide `Display` classes that
expose two methods for creating plots: `from_estimator` and
`from_predictions`. The `from_estimator` method will take a fitted estimator
and some data (`X` and `y`) and create a `Display` object. Sometimes, we would
like to only compute the predictions once and one should use `from_predictions`
instead. In the following example, we plot a ROC curve for a fitted support
vector machine:

.. plot::
   :context: close-figs
   :align: center

    from sklearn.model_selection import train_test_split
    from sklearn.svm import SVC
    from sklearn.metrics import RocCurveDisplay
    from sklearn.datasets import load_wine

    X, y = load_wine(return_X_y=True)
    y = y == 2  # make binary
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)
    svc = SVC(random_state=42)
    svc.fit(X_train, y_train)

    svc_disp = RocCurveDisplay.from_estimator(svc, X_test, y_test)

The returned `svc_disp` object allows us to continue using the already computed
ROC curve for SVC in future plots. In this case, the `svc_disp` is a
:class:`~sklearn.metrics.RocCurveDisplay` that stores the computed values as
attributes called `roc_auc`, `fpr`, and `tpr`. Be aware that we could get
the predictions from the support vector machine and then use `from_predictions`
instead of `from_estimator`. Next, we train a random forest classifier and plot
the previously computed roc curve again by using the `plot` method of the
`Display` object.

.. plot::
   :context: close-figs
   :align: center

    import matplotlib.pyplot as plt
    from sklearn.ensemble import RandomForestClassifier

    rfc = RandomForestClassifier(n_estimators=10, random_state=42)
    rfc.fit(X_train, y_train)

    ax = plt.gca()
    rfc_disp = RocCurveDisplay.from_estimator(rfc, X_test, y_test, ax=ax, alpha=0.8)
    svc_disp.plot(ax=ax, alpha=0.8)

Notice that we pass `alpha=0.8` to the plot functions to adjust the alpha
values of the curves.

.. topic:: Examples:

    * :ref:`sphx_glr_auto_examples_miscellaneous_plot_roc_curve_visualization_api.py`
    * :ref:`sphx_glr_auto_examples_miscellaneous_plot_partial_dependence_visualization_api.py`
    * :ref:`sphx_glr_auto_examples_miscellaneous_plot_display_object_visualization.py`
    * :ref:`sphx_glr_auto_examples_calibration_plot_compare_calibration.py`

Available Plotting Utilities
============================

Display Objects
---------------

.. currentmodule:: sklearn

.. autosummary::

   calibration.CalibrationDisplay
   inspection.PartialDependenceDisplay
   inspection.DecisionBoundaryDisplay
   metrics.ConfusionMatrixDisplay
   metrics.DetCurveDisplay
   metrics.PrecisionRecallDisplay
   metrics.PredictionErrorDisplay
   metrics.RocCurveDisplay
   model_selection.LearningCurveDisplay
   model_selection.ValidationCurveDisplay