.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "auto_examples/svm/plot_weighted_samples.py"
.. LINE NUMBERS ARE GIVEN BELOW.

.. only:: html

    .. note::
        :class: sphx-glr-download-link-note

        :ref:`Go to the end <sphx_glr_download_auto_examples_svm_plot_weighted_samples.py>`
        to download the full example code or to run this example in your browser via JupyterLite or Binder

.. rst-class:: sphx-glr-example-title

.. _sphx_glr_auto_examples_svm_plot_weighted_samples.py:


=====================
SVM: Weighted samples
=====================

Plot decision function of a weighted dataset, where the size of points
is proportional to its weight.

The sample weighting rescales the C parameter, which means that the classifier
puts more emphasis on getting these points right. The effect might often be
subtle.
To emphasize the effect here, we particularly weight outliers, making the
deformation of the decision boundary very visible.

.. GENERATED FROM PYTHON SOURCE LINES 16-73



.. image-sg:: /auto_examples/svm/images/sphx_glr_plot_weighted_samples_001.png
   :alt: Constant weights, Modified weights
   :srcset: /auto_examples/svm/images/sphx_glr_plot_weighted_samples_001.png
   :class: sphx-glr-single-img





.. code-block:: default


    import matplotlib.pyplot as plt
    import numpy as np

    from sklearn import svm


    def plot_decision_function(classifier, sample_weight, axis, title):
        # plot the decision function
        xx, yy = np.meshgrid(np.linspace(-4, 5, 500), np.linspace(-4, 5, 500))

        Z = classifier.decision_function(np.c_[xx.ravel(), yy.ravel()])
        Z = Z.reshape(xx.shape)

        # plot the line, the points, and the nearest vectors to the plane
        axis.contourf(xx, yy, Z, alpha=0.75, cmap=plt.cm.bone)
        axis.scatter(
            X[:, 0],
            X[:, 1],
            c=y,
            s=100 * sample_weight,
            alpha=0.9,
            cmap=plt.cm.bone,
            edgecolors="black",
        )

        axis.axis("off")
        axis.set_title(title)


    # we create 20 points
    np.random.seed(0)
    X = np.r_[np.random.randn(10, 2) + [1, 1], np.random.randn(10, 2)]
    y = [1] * 10 + [-1] * 10
    sample_weight_last_ten = abs(np.random.randn(len(X)))
    sample_weight_constant = np.ones(len(X))
    # and bigger weights to some outliers
    sample_weight_last_ten[15:] *= 5
    sample_weight_last_ten[9] *= 15

    # Fit the models.

    # This model does not take into account sample weights.
    clf_no_weights = svm.SVC(gamma=1)
    clf_no_weights.fit(X, y)

    # This other model takes into account some dedicated sample weights.
    clf_weights = svm.SVC(gamma=1)
    clf_weights.fit(X, y, sample_weight=sample_weight_last_ten)

    fig, axes = plt.subplots(1, 2, figsize=(14, 6))
    plot_decision_function(
        clf_no_weights, sample_weight_constant, axes[0], "Constant weights"
    )
    plot_decision_function(clf_weights, sample_weight_last_ten, axes[1], "Modified weights")

    plt.show()


.. rst-class:: sphx-glr-timing

   **Total running time of the script:** (0 minutes 0.538 seconds)


.. _sphx_glr_download_auto_examples_svm_plot_weighted_samples.py:

.. only:: html

  .. container:: sphx-glr-footer sphx-glr-footer-example


    .. container:: binder-badge

      .. image:: images/binder_badge_logo.svg
        :target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/1.3.X?urlpath=lab/tree/notebooks/auto_examples/svm/plot_weighted_samples.ipynb
        :alt: Launch binder
        :width: 150 px



    .. container:: lite-badge

      .. image:: images/jupyterlite_badge_logo.svg
        :target: ../../lite/lab/?path=auto_examples/svm/plot_weighted_samples.ipynb
        :alt: Launch JupyterLite
        :width: 150 px

    .. container:: sphx-glr-download sphx-glr-download-python

      :download:`Download Python source code: plot_weighted_samples.py <plot_weighted_samples.py>`

    .. container:: sphx-glr-download sphx-glr-download-jupyter

      :download:`Download Jupyter notebook: plot_weighted_samples.ipynb <plot_weighted_samples.ipynb>`


.. only:: html

 .. rst-class:: sphx-glr-signature

    `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_