.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "auto_examples/miscellaneous/plot_johnson_lindenstrauss_bound.py"
.. LINE NUMBERS ARE GIVEN BELOW.

.. only:: html

    .. note::
        :class: sphx-glr-download-link-note

        :ref:`Go to the end <sphx_glr_download_auto_examples_miscellaneous_plot_johnson_lindenstrauss_bound.py>`
        to download the full example code or to run this example in your browser via JupyterLite or Binder

.. rst-class:: sphx-glr-example-title

.. _sphx_glr_auto_examples_miscellaneous_plot_johnson_lindenstrauss_bound.py:


=====================================================================
The Johnson-Lindenstrauss bound for embedding with random projections
=====================================================================


The `Johnson-Lindenstrauss lemma`_ states that any high dimensional
dataset can be randomly projected into a lower dimensional Euclidean
space while controlling the distortion in the pairwise distances.

.. _`Johnson-Lindenstrauss lemma`: https://en.wikipedia.org/wiki/\
    Johnson%E2%80%93Lindenstrauss_lemma

.. GENERATED FROM PYTHON SOURCE LINES 15-29

.. code-block:: default


    import sys
    from time import time

    import matplotlib.pyplot as plt
    import numpy as np

    from sklearn.datasets import fetch_20newsgroups_vectorized, load_digits
    from sklearn.metrics.pairwise import euclidean_distances
    from sklearn.random_projection import (
        SparseRandomProjection,
        johnson_lindenstrauss_min_dim,
    )








.. GENERATED FROM PYTHON SOURCE LINES 30-53

Theoretical bounds
==================
The distortion introduced by a random projection `p` is asserted by
the fact that `p` is defining an eps-embedding with good probability
as defined by:

.. math::
   (1 - eps) \|u - v\|^2 < \|p(u) - p(v)\|^2 < (1 + eps) \|u - v\|^2

Where `u` and `v` are any rows taken from a dataset of shape `(n_samples,
n_features)` and `p` is a projection by a random Gaussian `N(0, 1)` matrix
of shape `(n_components, n_features)` (or a sparse Achlioptas matrix).

The minimum number of components to guarantees the eps-embedding is
given by:

.. math::
   n\_components \geq 4 log(n\_samples) / (eps^2 / 2 - eps^3 / 3)


The first plot shows that with an increasing number of samples ``n_samples``,
the minimal number of dimensions ``n_components`` increased logarithmically
in order to guarantee an ``eps``-embedding.

.. GENERATED FROM PYTHON SOURCE LINES 53-73

.. code-block:: default


    # range of admissible distortions
    eps_range = np.linspace(0.1, 0.99, 5)
    colors = plt.cm.Blues(np.linspace(0.3, 1.0, len(eps_range)))

    # range of number of samples (observation) to embed
    n_samples_range = np.logspace(1, 9, 9)

    plt.figure()
    for eps, color in zip(eps_range, colors):
        min_n_components = johnson_lindenstrauss_min_dim(n_samples_range, eps=eps)
        plt.loglog(n_samples_range, min_n_components, color=color)

    plt.legend([f"eps = {eps:0.1f}" for eps in eps_range], loc="lower right")
    plt.xlabel("Number of observations to eps-embed")
    plt.ylabel("Minimum number of dimensions")
    plt.title("Johnson-Lindenstrauss bounds:\nn_samples vs n_components")
    plt.show()





.. image-sg:: /auto_examples/miscellaneous/images/sphx_glr_plot_johnson_lindenstrauss_bound_001.png
   :alt: Johnson-Lindenstrauss bounds: n_samples vs n_components
   :srcset: /auto_examples/miscellaneous/images/sphx_glr_plot_johnson_lindenstrauss_bound_001.png
   :class: sphx-glr-single-img





.. GENERATED FROM PYTHON SOURCE LINES 74-77

The second plot shows that an increase of the admissible
distortion ``eps`` allows to reduce drastically the minimal number of
dimensions ``n_components`` for a given number of samples ``n_samples``

.. GENERATED FROM PYTHON SOURCE LINES 77-96

.. code-block:: default


    # range of admissible distortions
    eps_range = np.linspace(0.01, 0.99, 100)

    # range of number of samples (observation) to embed
    n_samples_range = np.logspace(2, 6, 5)
    colors = plt.cm.Blues(np.linspace(0.3, 1.0, len(n_samples_range)))

    plt.figure()
    for n_samples, color in zip(n_samples_range, colors):
        min_n_components = johnson_lindenstrauss_min_dim(n_samples, eps=eps_range)
        plt.semilogy(eps_range, min_n_components, color=color)

    plt.legend([f"n_samples = {n}" for n in n_samples_range], loc="upper right")
    plt.xlabel("Distortion eps")
    plt.ylabel("Minimum number of dimensions")
    plt.title("Johnson-Lindenstrauss bounds:\nn_components vs eps")
    plt.show()




.. image-sg:: /auto_examples/miscellaneous/images/sphx_glr_plot_johnson_lindenstrauss_bound_002.png
   :alt: Johnson-Lindenstrauss bounds: n_components vs eps
   :srcset: /auto_examples/miscellaneous/images/sphx_glr_plot_johnson_lindenstrauss_bound_002.png
   :class: sphx-glr-single-img





.. GENERATED FROM PYTHON SOURCE LINES 97-115

Empirical validation
====================

We validate the above bounds on the 20 newsgroups text document
(TF-IDF word frequencies) dataset or on the digits dataset:

- for the 20 newsgroups dataset some 300 documents with 100k
  features in total are projected using a sparse random matrix to smaller
  euclidean spaces with various values for the target number of dimensions
  ``n_components``.

- for the digits dataset, some 8x8 gray level pixels data for 300
  handwritten digits pictures are randomly projected to spaces for various
  larger number of dimensions ``n_components``.

The default dataset is the 20 newsgroups dataset. To run the example on the
digits dataset, pass the ``--use-digits-dataset`` command line argument to
this script.

.. GENERATED FROM PYTHON SOURCE LINES 115-121

.. code-block:: default


    if "--use-digits-dataset" in sys.argv:
        data = load_digits().data[:300]
    else:
        data = fetch_20newsgroups_vectorized().data[:300]








.. GENERATED FROM PYTHON SOURCE LINES 122-128

For each value of ``n_components``, we plot:

- 2D distribution of sample pairs with pairwise distances in original
  and projected spaces as x- and y-axis respectively.

- 1D histogram of the ratio of those distances (projected / original).

.. GENERATED FROM PYTHON SOURCE LINES 128-188

.. code-block:: default


    n_samples, n_features = data.shape
    print(
        f"Embedding {n_samples} samples with dim {n_features} using various "
        "random projections"
    )

    n_components_range = np.array([300, 1_000, 10_000])
    dists = euclidean_distances(data, squared=True).ravel()

    # select only non-identical samples pairs
    nonzero = dists != 0
    dists = dists[nonzero]

    for n_components in n_components_range:
        t0 = time()
        rp = SparseRandomProjection(n_components=n_components)
        projected_data = rp.fit_transform(data)
        print(
            f"Projected {n_samples} samples from {n_features} to {n_components} in "
            f"{time() - t0:0.3f}s"
        )
        if hasattr(rp, "components_"):
            n_bytes = rp.components_.data.nbytes
            n_bytes += rp.components_.indices.nbytes
            print(f"Random matrix with size: {n_bytes / 1e6:0.3f} MB")

        projected_dists = euclidean_distances(projected_data, squared=True).ravel()[nonzero]

        plt.figure()
        min_dist = min(projected_dists.min(), dists.min())
        max_dist = max(projected_dists.max(), dists.max())
        plt.hexbin(
            dists,
            projected_dists,
            gridsize=100,
            cmap=plt.cm.PuBu,
            extent=[min_dist, max_dist, min_dist, max_dist],
        )
        plt.xlabel("Pairwise squared distances in original space")
        plt.ylabel("Pairwise squared distances in projected space")
        plt.title("Pairwise distances distribution for n_components=%d" % n_components)
        cb = plt.colorbar()
        cb.set_label("Sample pairs counts")

        rates = projected_dists / dists
        print(f"Mean distances rate: {np.mean(rates):.2f} ({np.std(rates):.2f})")

        plt.figure()
        plt.hist(rates, bins=50, range=(0.0, 2.0), edgecolor="k", density=True)
        plt.xlabel("Squared distances rate: projected / original")
        plt.ylabel("Distribution of samples pairs")
        plt.title("Histogram of pairwise distance rates for n_components=%d" % n_components)

        # TODO: compute the expected value of eps and add them to the previous plot
        # as vertical lines / region

    plt.show()





.. rst-class:: sphx-glr-horizontal


    *

      .. image-sg:: /auto_examples/miscellaneous/images/sphx_glr_plot_johnson_lindenstrauss_bound_003.png
         :alt: Pairwise distances distribution for n_components=300
         :srcset: /auto_examples/miscellaneous/images/sphx_glr_plot_johnson_lindenstrauss_bound_003.png
         :class: sphx-glr-multi-img

    *

      .. image-sg:: /auto_examples/miscellaneous/images/sphx_glr_plot_johnson_lindenstrauss_bound_004.png
         :alt: Histogram of pairwise distance rates for n_components=300
         :srcset: /auto_examples/miscellaneous/images/sphx_glr_plot_johnson_lindenstrauss_bound_004.png
         :class: sphx-glr-multi-img

    *

      .. image-sg:: /auto_examples/miscellaneous/images/sphx_glr_plot_johnson_lindenstrauss_bound_005.png
         :alt: Pairwise distances distribution for n_components=1000
         :srcset: /auto_examples/miscellaneous/images/sphx_glr_plot_johnson_lindenstrauss_bound_005.png
         :class: sphx-glr-multi-img

    *

      .. image-sg:: /auto_examples/miscellaneous/images/sphx_glr_plot_johnson_lindenstrauss_bound_006.png
         :alt: Histogram of pairwise distance rates for n_components=1000
         :srcset: /auto_examples/miscellaneous/images/sphx_glr_plot_johnson_lindenstrauss_bound_006.png
         :class: sphx-glr-multi-img

    *

      .. image-sg:: /auto_examples/miscellaneous/images/sphx_glr_plot_johnson_lindenstrauss_bound_007.png
         :alt: Pairwise distances distribution for n_components=10000
         :srcset: /auto_examples/miscellaneous/images/sphx_glr_plot_johnson_lindenstrauss_bound_007.png
         :class: sphx-glr-multi-img

    *

      .. image-sg:: /auto_examples/miscellaneous/images/sphx_glr_plot_johnson_lindenstrauss_bound_008.png
         :alt: Histogram of pairwise distance rates for n_components=10000
         :srcset: /auto_examples/miscellaneous/images/sphx_glr_plot_johnson_lindenstrauss_bound_008.png
         :class: sphx-glr-multi-img


.. rst-class:: sphx-glr-script-out

 .. code-block:: none

    Embedding 300 samples with dim 130107 using various random projections
    Projected 300 samples from 130107 to 300 in 0.266s
    Random matrix with size: 1.293 MB
    Mean distances rate: 1.01 (0.17)
    Projected 300 samples from 130107 to 1000 in 0.849s
    Random matrix with size: 4.323 MB
    Mean distances rate: 1.00 (0.09)
    Projected 300 samples from 130107 to 10000 in 8.441s
    Random matrix with size: 43.268 MB
    Mean distances rate: 1.01 (0.03)




.. GENERATED FROM PYTHON SOURCE LINES 189-209

We can see that for low values of ``n_components`` the distribution is wide
with many distorted pairs and a skewed distribution (due to the hard
limit of zero ratio on the left as distances are always positives)
while for larger values of `n_components` the distortion is controlled
and the distances are well preserved by the random projection.

Remarks
=======

According to the JL lemma, projecting 300 samples without too much distortion
will require at least several thousands dimensions, irrespective of the
number of features of the original dataset.

Hence using random projections on the digits dataset which only has 64
features in the input space does not make sense: it does not allow
for dimensionality reduction in this case.

On the twenty newsgroups on the other hand the dimensionality can be
decreased from 56,436 down to 10,000 while reasonably preserving
pairwise distances.


.. rst-class:: sphx-glr-timing

   **Total running time of the script:** (0 minutes 12.161 seconds)


.. _sphx_glr_download_auto_examples_miscellaneous_plot_johnson_lindenstrauss_bound.py:

.. only:: html

  .. container:: sphx-glr-footer sphx-glr-footer-example


    .. container:: binder-badge

      .. image:: images/binder_badge_logo.svg
        :target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/1.3.X?urlpath=lab/tree/notebooks/auto_examples/miscellaneous/plot_johnson_lindenstrauss_bound.ipynb
        :alt: Launch binder
        :width: 150 px



    .. container:: lite-badge

      .. image:: images/jupyterlite_badge_logo.svg
        :target: ../../lite/lab/?path=auto_examples/miscellaneous/plot_johnson_lindenstrauss_bound.ipynb
        :alt: Launch JupyterLite
        :width: 150 px

    .. container:: sphx-glr-download sphx-glr-download-python

      :download:`Download Python source code: plot_johnson_lindenstrauss_bound.py <plot_johnson_lindenstrauss_bound.py>`

    .. container:: sphx-glr-download sphx-glr-download-jupyter

      :download:`Download Jupyter notebook: plot_johnson_lindenstrauss_bound.ipynb <plot_johnson_lindenstrauss_bound.ipynb>`


.. only:: html

 .. rst-class:: sphx-glr-signature

    `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_