.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "auto_examples/manifold/plot_mds.py"
.. LINE NUMBERS ARE GIVEN BELOW.

.. only:: html

    .. note::
        :class: sphx-glr-download-link-note

        :ref:`Go to the end <sphx_glr_download_auto_examples_manifold_plot_mds.py>`
        to download the full example code or to run this example in your browser via JupyterLite or Binder

.. rst-class:: sphx-glr-example-title

.. _sphx_glr_auto_examples_manifold_plot_mds.py:


=========================
Multi-dimensional scaling
=========================

An illustration of the metric and non-metric MDS on generated noisy data.

The reconstructed points using the metric MDS and non metric MDS are slightly
shifted to avoid overlapping.

.. GENERATED FROM PYTHON SOURCE LINES 12-103



.. image-sg:: /auto_examples/manifold/images/sphx_glr_plot_mds_001.png
   :alt: plot mds
   :srcset: /auto_examples/manifold/images/sphx_glr_plot_mds_001.png
   :class: sphx-glr-single-img





.. code-block:: default


    # Author: Nelle Varoquaux <nelle.varoquaux@gmail.com>
    # License: BSD

    import numpy as np
    from matplotlib import pyplot as plt
    from matplotlib.collections import LineCollection

    from sklearn import manifold
    from sklearn.decomposition import PCA
    from sklearn.metrics import euclidean_distances

    EPSILON = np.finfo(np.float32).eps
    n_samples = 20
    seed = np.random.RandomState(seed=3)
    X_true = seed.randint(0, 20, 2 * n_samples).astype(float)
    X_true = X_true.reshape((n_samples, 2))
    # Center the data
    X_true -= X_true.mean()

    similarities = euclidean_distances(X_true)

    # Add noise to the similarities
    noise = np.random.rand(n_samples, n_samples)
    noise = noise + noise.T
    noise[np.arange(noise.shape[0]), np.arange(noise.shape[0])] = 0
    similarities += noise

    mds = manifold.MDS(
        n_components=2,
        max_iter=3000,
        eps=1e-9,
        random_state=seed,
        dissimilarity="precomputed",
        n_jobs=1,
        normalized_stress="auto",
    )
    pos = mds.fit(similarities).embedding_

    nmds = manifold.MDS(
        n_components=2,
        metric=False,
        max_iter=3000,
        eps=1e-12,
        dissimilarity="precomputed",
        random_state=seed,
        n_jobs=1,
        n_init=1,
        normalized_stress="auto",
    )
    npos = nmds.fit_transform(similarities, init=pos)

    # Rescale the data
    pos *= np.sqrt((X_true**2).sum()) / np.sqrt((pos**2).sum())
    npos *= np.sqrt((X_true**2).sum()) / np.sqrt((npos**2).sum())

    # Rotate the data
    clf = PCA(n_components=2)
    X_true = clf.fit_transform(X_true)

    pos = clf.fit_transform(pos)

    npos = clf.fit_transform(npos)

    fig = plt.figure(1)
    ax = plt.axes([0.0, 0.0, 1.0, 1.0])

    s = 100
    plt.scatter(X_true[:, 0], X_true[:, 1], color="navy", s=s, lw=0, label="True Position")
    plt.scatter(pos[:, 0], pos[:, 1], color="turquoise", s=s, lw=0, label="MDS")
    plt.scatter(npos[:, 0], npos[:, 1], color="darkorange", s=s, lw=0, label="NMDS")
    plt.legend(scatterpoints=1, loc="best", shadow=False)

    similarities = similarities.max() / (similarities + EPSILON) * 100
    np.fill_diagonal(similarities, 0)
    # Plot the edges
    start_idx, end_idx = np.where(pos)
    # a sequence of (*line0*, *line1*, *line2*), where::
    #            linen = (x0, y0), (x1, y1), ... (xm, ym)
    segments = [
        [X_true[i, :], X_true[j, :]] for i in range(len(pos)) for j in range(len(pos))
    ]
    values = np.abs(similarities)
    lc = LineCollection(
        segments, zorder=0, cmap=plt.cm.Blues, norm=plt.Normalize(0, values.max())
    )
    lc.set_array(similarities.flatten())
    lc.set_linewidths(np.full(len(segments), 0.5))
    ax.add_collection(lc)

    plt.show()


.. rst-class:: sphx-glr-timing

   **Total running time of the script:** (0 minutes 0.229 seconds)


.. _sphx_glr_download_auto_examples_manifold_plot_mds.py:

.. only:: html

  .. container:: sphx-glr-footer sphx-glr-footer-example


    .. container:: binder-badge

      .. image:: images/binder_badge_logo.svg
        :target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/1.3.X?urlpath=lab/tree/notebooks/auto_examples/manifold/plot_mds.ipynb
        :alt: Launch binder
        :width: 150 px



    .. container:: lite-badge

      .. image:: images/jupyterlite_badge_logo.svg
        :target: ../../lite/lab/?path=auto_examples/manifold/plot_mds.ipynb
        :alt: Launch JupyterLite
        :width: 150 px

    .. container:: sphx-glr-download sphx-glr-download-python

      :download:`Download Python source code: plot_mds.py <plot_mds.py>`

    .. container:: sphx-glr-download sphx-glr-download-jupyter

      :download:`Download Jupyter notebook: plot_mds.ipynb <plot_mds.ipynb>`


.. only:: html

 .. rst-class:: sphx-glr-signature

    `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_