.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "auto_examples/ensemble/plot_voting_regressor.py"
.. LINE NUMBERS ARE GIVEN BELOW.

.. only:: html

    .. note::
        :class: sphx-glr-download-link-note

        :ref:`Go to the end <sphx_glr_download_auto_examples_ensemble_plot_voting_regressor.py>`
        to download the full example code or to run this example in your browser via JupyterLite or Binder

.. rst-class:: sphx-glr-example-title

.. _sphx_glr_auto_examples_ensemble_plot_voting_regressor.py:


=================================================
Plot individual and voting regression predictions
=================================================

.. currentmodule:: sklearn

A voting regressor is an ensemble meta-estimator that fits several base
regressors, each on the whole dataset. Then it averages the individual
predictions to form a final prediction.
We will use three different regressors to predict the data:
:class:`~ensemble.GradientBoostingRegressor`,
:class:`~ensemble.RandomForestRegressor`, and
:class:`~linear_model.LinearRegression`).
Then the above 3 regressors will be used for the
:class:`~ensemble.VotingRegressor`.

Finally, we will plot the predictions made by all models for comparison.

We will work with the diabetes dataset which consists of 10 features
collected from a cohort of diabetes patients. The target is a quantitative
measure of disease progression one year after baseline.

.. GENERATED FROM PYTHON SOURCE LINES 25-36

.. code-block:: default


    import matplotlib.pyplot as plt

    from sklearn.datasets import load_diabetes
    from sklearn.ensemble import (
        GradientBoostingRegressor,
        RandomForestRegressor,
        VotingRegressor,
    )
    from sklearn.linear_model import LinearRegression








.. GENERATED FROM PYTHON SOURCE LINES 37-43

Training classifiers
--------------------------------

First, we will load the diabetes dataset and initiate a gradient boosting
regressor, a random forest regressor and a linear regression. Next, we will
use the 3 regressors to build the voting regressor:

.. GENERATED FROM PYTHON SOURCE LINES 43-58

.. code-block:: default


    X, y = load_diabetes(return_X_y=True)

    # Train classifiers
    reg1 = GradientBoostingRegressor(random_state=1)
    reg2 = RandomForestRegressor(random_state=1)
    reg3 = LinearRegression()

    reg1.fit(X, y)
    reg2.fit(X, y)
    reg3.fit(X, y)

    ereg = VotingRegressor([("gb", reg1), ("rf", reg2), ("lr", reg3)])
    ereg.fit(X, y)






.. raw:: html

    <div class="output_subarea output_html rendered_html output_result">
    <style>#sk-container-id-25 {color: black;}#sk-container-id-25 pre{padding: 0;}#sk-container-id-25 div.sk-toggleable {background-color: white;}#sk-container-id-25 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-25 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-25 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-25 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-25 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-25 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-25 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-25 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-25 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-25 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-25 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-25 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-25 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-25 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-25 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-25 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-25 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-25 div.sk-item {position: relative;z-index: 1;}#sk-container-id-25 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-25 div.sk-item::before, #sk-container-id-25 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-25 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-25 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-25 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-25 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-25 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-25 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-25 div.sk-label-container {text-align: center;}#sk-container-id-25 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-25 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-25" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>VotingRegressor(estimators=[(&#x27;gb&#x27;, GradientBoostingRegressor(random_state=1)),
                                (&#x27;rf&#x27;, RandomForestRegressor(random_state=1)),
                                (&#x27;lr&#x27;, LinearRegression())])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-105" type="checkbox" ><label for="sk-estimator-id-105" class="sk-toggleable__label sk-toggleable__label-arrow">VotingRegressor</label><div class="sk-toggleable__content"><pre>VotingRegressor(estimators=[(&#x27;gb&#x27;, GradientBoostingRegressor(random_state=1)),
                                (&#x27;rf&#x27;, RandomForestRegressor(random_state=1)),
                                (&#x27;lr&#x27;, LinearRegression())])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><label>gb</label></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-106" type="checkbox" ><label for="sk-estimator-id-106" class="sk-toggleable__label sk-toggleable__label-arrow">GradientBoostingRegressor</label><div class="sk-toggleable__content"><pre>GradientBoostingRegressor(random_state=1)</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><label>rf</label></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-107" type="checkbox" ><label for="sk-estimator-id-107" class="sk-toggleable__label sk-toggleable__label-arrow">RandomForestRegressor</label><div class="sk-toggleable__content"><pre>RandomForestRegressor(random_state=1)</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><label>lr</label></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-108" type="checkbox" ><label for="sk-estimator-id-108" class="sk-toggleable__label sk-toggleable__label-arrow">LinearRegression</label><div class="sk-toggleable__content"><pre>LinearRegression()</pre></div></div></div></div></div></div></div></div></div></div>
    </div>
    <br />
    <br />

.. GENERATED FROM PYTHON SOURCE LINES 59-63

Making predictions
--------------------------------

Now we will use each of the regressors to make the 20 first predictions.

.. GENERATED FROM PYTHON SOURCE LINES 63-71

.. code-block:: default


    xt = X[:20]

    pred1 = reg1.predict(xt)
    pred2 = reg2.predict(xt)
    pred3 = reg3.predict(xt)
    pred4 = ereg.predict(xt)








.. GENERATED FROM PYTHON SOURCE LINES 72-77

Plot the results
--------------------------------

Finally, we will visualize the 20 predictions. The red stars show the average
prediction made by :class:`~ensemble.VotingRegressor`.

.. GENERATED FROM PYTHON SOURCE LINES 77-91

.. code-block:: default


    plt.figure()
    plt.plot(pred1, "gd", label="GradientBoostingRegressor")
    plt.plot(pred2, "b^", label="RandomForestRegressor")
    plt.plot(pred3, "ys", label="LinearRegression")
    plt.plot(pred4, "r*", ms=10, label="VotingRegressor")

    plt.tick_params(axis="x", which="both", bottom=False, top=False, labelbottom=False)
    plt.ylabel("predicted")
    plt.xlabel("training samples")
    plt.legend(loc="best")
    plt.title("Regressor predictions and their average")

    plt.show()



.. image-sg:: /auto_examples/ensemble/images/sphx_glr_plot_voting_regressor_001.png
   :alt: Regressor predictions and their average
   :srcset: /auto_examples/ensemble/images/sphx_glr_plot_voting_regressor_001.png
   :class: sphx-glr-single-img






.. rst-class:: sphx-glr-timing

   **Total running time of the script:** (0 minutes 0.930 seconds)


.. _sphx_glr_download_auto_examples_ensemble_plot_voting_regressor.py:

.. only:: html

  .. container:: sphx-glr-footer sphx-glr-footer-example


    .. container:: binder-badge

      .. image:: images/binder_badge_logo.svg
        :target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/1.3.X?urlpath=lab/tree/notebooks/auto_examples/ensemble/plot_voting_regressor.ipynb
        :alt: Launch binder
        :width: 150 px



    .. container:: lite-badge

      .. image:: images/jupyterlite_badge_logo.svg
        :target: ../../lite/lab/?path=auto_examples/ensemble/plot_voting_regressor.ipynb
        :alt: Launch JupyterLite
        :width: 150 px

    .. container:: sphx-glr-download sphx-glr-download-python

      :download:`Download Python source code: plot_voting_regressor.py <plot_voting_regressor.py>`

    .. container:: sphx-glr-download sphx-glr-download-jupyter

      :download:`Download Jupyter notebook: plot_voting_regressor.ipynb <plot_voting_regressor.ipynb>`


.. only:: html

 .. rst-class:: sphx-glr-signature

    `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_