.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "auto_examples/ensemble/plot_gradient_boosting_oob.py"
.. LINE NUMBERS ARE GIVEN BELOW.

.. only:: html

    .. note::
        :class: sphx-glr-download-link-note

        :ref:`Go to the end <sphx_glr_download_auto_examples_ensemble_plot_gradient_boosting_oob.py>`
        to download the full example code or to run this example in your browser via JupyterLite or Binder

.. rst-class:: sphx-glr-example-title

.. _sphx_glr_auto_examples_ensemble_plot_gradient_boosting_oob.py:


======================================
Gradient Boosting Out-of-Bag estimates
======================================
Out-of-bag (OOB) estimates can be a useful heuristic to estimate
the "optimal" number of boosting iterations.
OOB estimates are almost identical to cross-validation estimates but
they can be computed on-the-fly without the need for repeated model
fitting.
OOB estimates are only available for Stochastic Gradient Boosting
(i.e. ``subsample < 1.0``), the estimates are derived from the improvement
in loss based on the examples not included in the bootstrap sample
(the so-called out-of-bag examples).
The OOB estimator is a pessimistic estimator of the true
test loss, but remains a fairly good approximation for a small number of trees.
The figure shows the cumulative sum of the negative OOB improvements
as a function of the boosting iteration. As you can see, it tracks the test
loss for the first hundred iterations but then diverges in a
pessimistic way.
The figure also shows the performance of 3-fold cross validation which
usually gives a better estimate of the test loss
but is computationally more demanding.

.. GENERATED FROM PYTHON SOURCE LINES 24-145



.. image-sg:: /auto_examples/ensemble/images/sphx_glr_plot_gradient_boosting_oob_001.png
   :alt: plot gradient boosting oob
   :srcset: /auto_examples/ensemble/images/sphx_glr_plot_gradient_boosting_oob_001.png
   :class: sphx-glr-single-img


.. rst-class:: sphx-glr-script-out

 .. code-block:: none

    Accuracy: 0.6820






|

.. code-block:: default


    # Author: Peter Prettenhofer <peter.prettenhofer@gmail.com>
    #
    # License: BSD 3 clause

    import matplotlib.pyplot as plt
    import numpy as np
    from scipy.special import expit

    from sklearn import ensemble
    from sklearn.metrics import log_loss
    from sklearn.model_selection import KFold, train_test_split

    # Generate data (adapted from G. Ridgeway's gbm example)
    n_samples = 1000
    random_state = np.random.RandomState(13)
    x1 = random_state.uniform(size=n_samples)
    x2 = random_state.uniform(size=n_samples)
    x3 = random_state.randint(0, 4, size=n_samples)

    p = expit(np.sin(3 * x1) - 4 * x2 + x3)
    y = random_state.binomial(1, p, size=n_samples)

    X = np.c_[x1, x2, x3]

    X = X.astype(np.float32)
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=9)

    # Fit classifier with out-of-bag estimates
    params = {
        "n_estimators": 1200,
        "max_depth": 3,
        "subsample": 0.5,
        "learning_rate": 0.01,
        "min_samples_leaf": 1,
        "random_state": 3,
    }
    clf = ensemble.GradientBoostingClassifier(**params)

    clf.fit(X_train, y_train)
    acc = clf.score(X_test, y_test)
    print("Accuracy: {:.4f}".format(acc))

    n_estimators = params["n_estimators"]
    x = np.arange(n_estimators) + 1


    def heldout_score(clf, X_test, y_test):
        """compute deviance scores on ``X_test`` and ``y_test``."""
        score = np.zeros((n_estimators,), dtype=np.float64)
        for i, y_proba in enumerate(clf.staged_predict_proba(X_test)):
            score[i] = 2 * log_loss(y_test, y_proba[:, 1])
        return score


    def cv_estimate(n_splits=None):
        cv = KFold(n_splits=n_splits)
        cv_clf = ensemble.GradientBoostingClassifier(**params)
        val_scores = np.zeros((n_estimators,), dtype=np.float64)
        for train, test in cv.split(X_train, y_train):
            cv_clf.fit(X_train[train], y_train[train])
            val_scores += heldout_score(cv_clf, X_train[test], y_train[test])
        val_scores /= n_splits
        return val_scores


    # Estimate best n_estimator using cross-validation
    cv_score = cv_estimate(3)

    # Compute best n_estimator for test data
    test_score = heldout_score(clf, X_test, y_test)

    # negative cumulative sum of oob improvements
    cumsum = -np.cumsum(clf.oob_improvement_)

    # min loss according to OOB
    oob_best_iter = x[np.argmin(cumsum)]

    # min loss according to test (normalize such that first loss is 0)
    test_score -= test_score[0]
    test_best_iter = x[np.argmin(test_score)]

    # min loss according to cv (normalize such that first loss is 0)
    cv_score -= cv_score[0]
    cv_best_iter = x[np.argmin(cv_score)]

    # color brew for the three curves
    oob_color = list(map(lambda x: x / 256.0, (190, 174, 212)))
    test_color = list(map(lambda x: x / 256.0, (127, 201, 127)))
    cv_color = list(map(lambda x: x / 256.0, (253, 192, 134)))

    # line type for the three curves
    oob_line = "dashed"
    test_line = "solid"
    cv_line = "dashdot"

    # plot curves and vertical lines for best iterations
    plt.figure(figsize=(8, 4.8))
    plt.plot(x, cumsum, label="OOB loss", color=oob_color, linestyle=oob_line)
    plt.plot(x, test_score, label="Test loss", color=test_color, linestyle=test_line)
    plt.plot(x, cv_score, label="CV loss", color=cv_color, linestyle=cv_line)
    plt.axvline(x=oob_best_iter, color=oob_color, linestyle=oob_line)
    plt.axvline(x=test_best_iter, color=test_color, linestyle=test_line)
    plt.axvline(x=cv_best_iter, color=cv_color, linestyle=cv_line)

    # add three vertical lines to xticks
    xticks = plt.xticks()
    xticks_pos = np.array(
        xticks[0].tolist() + [oob_best_iter, cv_best_iter, test_best_iter]
    )
    xticks_label = np.array(list(map(lambda t: int(t), xticks[0])) + ["OOB", "CV", "Test"])
    ind = np.argsort(xticks_pos)
    xticks_pos = xticks_pos[ind]
    xticks_label = xticks_label[ind]
    plt.xticks(xticks_pos, xticks_label, rotation=90)

    plt.legend(loc="upper center")
    plt.ylabel("normalized loss")
    plt.xlabel("number of iterations")

    plt.show()


.. rst-class:: sphx-glr-timing

   **Total running time of the script:** (0 minutes 8.030 seconds)


.. _sphx_glr_download_auto_examples_ensemble_plot_gradient_boosting_oob.py:

.. only:: html

  .. container:: sphx-glr-footer sphx-glr-footer-example


    .. container:: binder-badge

      .. image:: images/binder_badge_logo.svg
        :target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/1.3.X?urlpath=lab/tree/notebooks/auto_examples/ensemble/plot_gradient_boosting_oob.ipynb
        :alt: Launch binder
        :width: 150 px



    .. container:: lite-badge

      .. image:: images/jupyterlite_badge_logo.svg
        :target: ../../lite/lab/?path=auto_examples/ensemble/plot_gradient_boosting_oob.ipynb
        :alt: Launch JupyterLite
        :width: 150 px

    .. container:: sphx-glr-download sphx-glr-download-python

      :download:`Download Python source code: plot_gradient_boosting_oob.py <plot_gradient_boosting_oob.py>`

    .. container:: sphx-glr-download sphx-glr-download-jupyter

      :download:`Download Jupyter notebook: plot_gradient_boosting_oob.ipynb <plot_gradient_boosting_oob.ipynb>`


.. only:: html

 .. rst-class:: sphx-glr-signature

    `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_