.. _sphx_glr_auto_examples_ensemble:

.. _ensemble_examples:

Ensemble methods
----------------

Examples concerning the :mod:`sklearn.ensemble` module.



.. raw:: html

    <div class="sphx-glr-thumbnails">


.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="In this example, we will compare the training times and prediction performances of HistGradient...">

.. only:: html

  .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_gradient_boosting_categorical_thumb.png
    :alt:

  :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_categorical.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">Categorical Feature Support in Gradient Boosting</div>
    </div>


.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="Stacking refers to a method to blend estimators. In this strategy, some estimators are individu...">

.. only:: html

  .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_stack_predictors_thumb.png
    :alt:

  :ref:`sphx_glr_auto_examples_ensemble_plot_stack_predictors.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">Combine predictors using stacking</div>
    </div>


.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="In this example we compare the performance of Random Forest (RF) and Histogram Gradient Boostin...">

.. only:: html

  .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_forest_hist_grad_boosting_comparison_thumb.png
    :alt:

  :ref:`sphx_glr_auto_examples_ensemble_plot_forest_hist_grad_boosting_comparison.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">Comparing Random Forests and Histogram Gradient Boosting models</div>
    </div>


.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="An example to compare multi-output regression with random forest and the multiclass meta-estima...">

.. only:: html

  .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_random_forest_regression_multioutput_thumb.png
    :alt:

  :ref:`sphx_glr_auto_examples_ensemble_plot_random_forest_regression_multioutput.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">Comparing random forests and the multi-output meta estimator</div>
    </div>


.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="A decision tree is boosted using the AdaBoost.R2 [1]_ algorithm on a 1D sinusoidal dataset with...">

.. only:: html

  .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_adaboost_regression_thumb.png
    :alt:

  :ref:`sphx_glr_auto_examples_ensemble_plot_adaboost_regression.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">Decision Tree Regression with AdaBoost</div>
    </div>


.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="This notebook is based on Figure 10.2 from Hastie et al 2009 [1]_ and illustrates the differenc...">

.. only:: html

  .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_adaboost_hastie_10_2_thumb.png
    :alt:

  :ref:`sphx_glr_auto_examples_ensemble_plot_adaboost_hastie_10_2.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">Discrete versus Real AdaBoost</div>
    </div>


.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="Gradient boosting is an ensembling technique where several weak learners (regression trees) are...">

.. only:: html

  .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_gradient_boosting_early_stopping_thumb.png
    :alt:

  :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_early_stopping.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">Early stopping of Gradient Boosting</div>
    </div>


.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="This example shows the use of a forest of trees to evaluate the importance of features on an ar...">

.. only:: html

  .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_forest_importances_thumb.png
    :alt:

  :ref:`sphx_glr_auto_examples_ensemble_plot_forest_importances.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">Feature importances with a forest of trees</div>
    </div>


.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="Transform your features into a higher dimensional, sparse space. Then train a linear model on t...">

.. only:: html

  .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_feature_transformation_thumb.png
    :alt:

  :ref:`sphx_glr_auto_examples_ensemble_plot_feature_transformation.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">Feature transformations with ensembles of trees</div>
    </div>


.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="Gradient Boosting Out-of-Bag estimates">

.. only:: html

  .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_gradient_boosting_oob_thumb.png
    :alt:

  :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_oob.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">Gradient Boosting Out-of-Bag estimates</div>
    </div>


.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="This example demonstrates Gradient Boosting to produce a predictive model from an ensemble of w...">

.. only:: html

  .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_gradient_boosting_regression_thumb.png
    :alt:

  :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_regression.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">Gradient Boosting regression</div>
    </div>


.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="Illustration of the effect of different regularization strategies for Gradient Boosting. The ex...">

.. only:: html

  .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_gradient_boosting_regularization_thumb.png
    :alt:

  :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_regularization.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">Gradient Boosting regularization</div>
    </div>


.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="RandomTreesEmbedding provides a way to map data to a very high-dimensional, sparse representati...">

.. only:: html

  .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_random_forest_embedding_thumb.png
    :alt:

  :ref:`sphx_glr_auto_examples_ensemble_plot_random_forest_embedding.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">Hashing feature transformation using Totally Random Trees</div>
    </div>


.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="An example using IsolationForest for anomaly detection.">

.. only:: html

  .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_isolation_forest_thumb.png
    :alt:

  :ref:`sphx_glr_auto_examples_ensemble_plot_isolation_forest.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">IsolationForest example</div>
    </div>


.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="This example illustrates the effect of monotonic constraints on a gradient boosting estimator.">

.. only:: html

  .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_monotonic_constraints_thumb.png
    :alt:

  :ref:`sphx_glr_auto_examples_ensemble_plot_monotonic_constraints.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">Monotonic Constraints</div>
    </div>


.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="This example shows how boosting can improve the prediction accuracy on a multi-label classifica...">

.. only:: html

  .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_adaboost_multiclass_thumb.png
    :alt:

  :ref:`sphx_glr_auto_examples_ensemble_plot_adaboost_multiclass.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">Multi-class AdaBoosted Decision Trees</div>
    </div>


.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="The RandomForestClassifier is trained using bootstrap aggregation, where each new tree is fit f...">

.. only:: html

  .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_ensemble_oob_thumb.png
    :alt:

  :ref:`sphx_glr_auto_examples_ensemble_plot_ensemble_oob.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">OOB Errors for Random Forests</div>
    </div>


.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="This example shows the use of a forest of trees to evaluate the impurity based importance of th...">

.. only:: html

  .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_forest_importances_faces_thumb.png
    :alt:

  :ref:`sphx_glr_auto_examples_ensemble_plot_forest_importances_faces.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">Pixel importances with a parallel forest of trees</div>
    </div>


.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="Plot the class probabilities of the first sample in a toy dataset predicted by three different ...">

.. only:: html

  .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_voting_probas_thumb.png
    :alt:

  :ref:`sphx_glr_auto_examples_ensemble_plot_voting_probas.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">Plot class probabilities calculated by the VotingClassifier</div>
    </div>


.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="A voting regressor is an ensemble meta-estimator that fits several base regressors, each on the...">

.. only:: html

  .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_voting_regressor_thumb.png
    :alt:

  :ref:`sphx_glr_auto_examples_ensemble_plot_voting_regressor.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">Plot individual and voting regression predictions</div>
    </div>


.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="Plot the decision boundaries of a VotingClassifier for two features of the Iris dataset.">

.. only:: html

  .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_voting_decision_regions_thumb.png
    :alt:

  :ref:`sphx_glr_auto_examples_ensemble_plot_voting_decision_regions.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">Plot the decision boundaries of a VotingClassifier</div>
    </div>


.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="Plot the decision surfaces of forests of randomized trees trained on pairs of features of the i...">

.. only:: html

  .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_forest_iris_thumb.png
    :alt:

  :ref:`sphx_glr_auto_examples_ensemble_plot_forest_iris.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">Plot the decision surfaces of ensembles of trees on the iris dataset</div>
    </div>


.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="This example shows how quantile regression can be used to create prediction intervals.">

.. only:: html

  .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_gradient_boosting_quantile_thumb.png
    :alt:

  :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_quantile.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">Prediction Intervals for Gradient Boosting Regression</div>
    </div>


.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="This example illustrates and compares the bias-variance decomposition of the expected mean squa...">

.. only:: html

  .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_bias_variance_thumb.png
    :alt:

  :ref:`sphx_glr_auto_examples_ensemble_plot_bias_variance.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">Single estimator versus bagging: bias-variance decomposition</div>
    </div>


.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="This example fits an AdaBoosted decision stump on a non-linearly separable classification datas...">

.. only:: html

  .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_adaboost_twoclass_thumb.png
    :alt:

  :ref:`sphx_glr_auto_examples_ensemble_plot_adaboost_twoclass.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">Two-class AdaBoost</div>
    </div>


.. raw:: html

    </div>


.. toctree::
   :hidden:

   /auto_examples/ensemble/plot_gradient_boosting_categorical
   /auto_examples/ensemble/plot_stack_predictors
   /auto_examples/ensemble/plot_forest_hist_grad_boosting_comparison
   /auto_examples/ensemble/plot_random_forest_regression_multioutput
   /auto_examples/ensemble/plot_adaboost_regression
   /auto_examples/ensemble/plot_adaboost_hastie_10_2
   /auto_examples/ensemble/plot_gradient_boosting_early_stopping
   /auto_examples/ensemble/plot_forest_importances
   /auto_examples/ensemble/plot_feature_transformation
   /auto_examples/ensemble/plot_gradient_boosting_oob
   /auto_examples/ensemble/plot_gradient_boosting_regression
   /auto_examples/ensemble/plot_gradient_boosting_regularization
   /auto_examples/ensemble/plot_random_forest_embedding
   /auto_examples/ensemble/plot_isolation_forest
   /auto_examples/ensemble/plot_monotonic_constraints
   /auto_examples/ensemble/plot_adaboost_multiclass
   /auto_examples/ensemble/plot_ensemble_oob
   /auto_examples/ensemble/plot_forest_importances_faces
   /auto_examples/ensemble/plot_voting_probas
   /auto_examples/ensemble/plot_voting_regressor
   /auto_examples/ensemble/plot_voting_decision_regions
   /auto_examples/ensemble/plot_forest_iris
   /auto_examples/ensemble/plot_gradient_boosting_quantile
   /auto_examples/ensemble/plot_bias_variance
   /auto_examples/ensemble/plot_adaboost_twoclass