.. _sphx_glr_auto_examples_ensemble: .. _ensemble_examples: Ensemble methods ---------------- Examples concerning the :mod:`sklearn.ensemble` module. .. raw:: html <div class="sphx-glr-thumbnails"> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="In this example, we will compare the training times and prediction performances of HistGradient..."> .. only:: html .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_gradient_boosting_categorical_thumb.png :alt: :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_categorical.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Categorical Feature Support in Gradient Boosting</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="Stacking refers to a method to blend estimators. In this strategy, some estimators are individu..."> .. only:: html .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_stack_predictors_thumb.png :alt: :ref:`sphx_glr_auto_examples_ensemble_plot_stack_predictors.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Combine predictors using stacking</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="In this example we compare the performance of Random Forest (RF) and Histogram Gradient Boostin..."> .. only:: html .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_forest_hist_grad_boosting_comparison_thumb.png :alt: :ref:`sphx_glr_auto_examples_ensemble_plot_forest_hist_grad_boosting_comparison.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Comparing Random Forests and Histogram Gradient Boosting models</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="An example to compare multi-output regression with random forest and the multiclass meta-estima..."> .. only:: html .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_random_forest_regression_multioutput_thumb.png :alt: :ref:`sphx_glr_auto_examples_ensemble_plot_random_forest_regression_multioutput.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Comparing random forests and the multi-output meta estimator</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="A decision tree is boosted using the AdaBoost.R2 [1]_ algorithm on a 1D sinusoidal dataset with..."> .. only:: html .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_adaboost_regression_thumb.png :alt: :ref:`sphx_glr_auto_examples_ensemble_plot_adaboost_regression.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Decision Tree Regression with AdaBoost</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="This notebook is based on Figure 10.2 from Hastie et al 2009 [1]_ and illustrates the differenc..."> .. only:: html .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_adaboost_hastie_10_2_thumb.png :alt: :ref:`sphx_glr_auto_examples_ensemble_plot_adaboost_hastie_10_2.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Discrete versus Real AdaBoost</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="Gradient boosting is an ensembling technique where several weak learners (regression trees) are..."> .. only:: html .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_gradient_boosting_early_stopping_thumb.png :alt: :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_early_stopping.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Early stopping of Gradient Boosting</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="This example shows the use of a forest of trees to evaluate the importance of features on an ar..."> .. only:: html .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_forest_importances_thumb.png :alt: :ref:`sphx_glr_auto_examples_ensemble_plot_forest_importances.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Feature importances with a forest of trees</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="Transform your features into a higher dimensional, sparse space. Then train a linear model on t..."> .. only:: html .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_feature_transformation_thumb.png :alt: :ref:`sphx_glr_auto_examples_ensemble_plot_feature_transformation.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Feature transformations with ensembles of trees</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="Gradient Boosting Out-of-Bag estimates"> .. only:: html .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_gradient_boosting_oob_thumb.png :alt: :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_oob.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Gradient Boosting Out-of-Bag estimates</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="This example demonstrates Gradient Boosting to produce a predictive model from an ensemble of w..."> .. only:: html .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_gradient_boosting_regression_thumb.png :alt: :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_regression.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Gradient Boosting regression</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="Illustration of the effect of different regularization strategies for Gradient Boosting. The ex..."> .. only:: html .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_gradient_boosting_regularization_thumb.png :alt: :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_regularization.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Gradient Boosting regularization</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="RandomTreesEmbedding provides a way to map data to a very high-dimensional, sparse representati..."> .. only:: html .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_random_forest_embedding_thumb.png :alt: :ref:`sphx_glr_auto_examples_ensemble_plot_random_forest_embedding.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Hashing feature transformation using Totally Random Trees</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="An example using IsolationForest for anomaly detection."> .. only:: html .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_isolation_forest_thumb.png :alt: :ref:`sphx_glr_auto_examples_ensemble_plot_isolation_forest.py` .. raw:: html <div class="sphx-glr-thumbnail-title">IsolationForest example</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="This example illustrates the effect of monotonic constraints on a gradient boosting estimator."> .. only:: html .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_monotonic_constraints_thumb.png :alt: :ref:`sphx_glr_auto_examples_ensemble_plot_monotonic_constraints.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Monotonic Constraints</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="This example shows how boosting can improve the prediction accuracy on a multi-label classifica..."> .. only:: html .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_adaboost_multiclass_thumb.png :alt: :ref:`sphx_glr_auto_examples_ensemble_plot_adaboost_multiclass.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Multi-class AdaBoosted Decision Trees</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="The RandomForestClassifier is trained using bootstrap aggregation, where each new tree is fit f..."> .. only:: html .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_ensemble_oob_thumb.png :alt: :ref:`sphx_glr_auto_examples_ensemble_plot_ensemble_oob.py` .. raw:: html <div class="sphx-glr-thumbnail-title">OOB Errors for Random Forests</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="This example shows the use of a forest of trees to evaluate the impurity based importance of th..."> .. only:: html .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_forest_importances_faces_thumb.png :alt: :ref:`sphx_glr_auto_examples_ensemble_plot_forest_importances_faces.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Pixel importances with a parallel forest of trees</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="Plot the class probabilities of the first sample in a toy dataset predicted by three different ..."> .. only:: html .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_voting_probas_thumb.png :alt: :ref:`sphx_glr_auto_examples_ensemble_plot_voting_probas.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Plot class probabilities calculated by the VotingClassifier</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="A voting regressor is an ensemble meta-estimator that fits several base regressors, each on the..."> .. only:: html .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_voting_regressor_thumb.png :alt: :ref:`sphx_glr_auto_examples_ensemble_plot_voting_regressor.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Plot individual and voting regression predictions</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="Plot the decision boundaries of a VotingClassifier for two features of the Iris dataset."> .. only:: html .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_voting_decision_regions_thumb.png :alt: :ref:`sphx_glr_auto_examples_ensemble_plot_voting_decision_regions.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Plot the decision boundaries of a VotingClassifier</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="Plot the decision surfaces of forests of randomized trees trained on pairs of features of the i..."> .. only:: html .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_forest_iris_thumb.png :alt: :ref:`sphx_glr_auto_examples_ensemble_plot_forest_iris.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Plot the decision surfaces of ensembles of trees on the iris dataset</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="This example shows how quantile regression can be used to create prediction intervals."> .. only:: html .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_gradient_boosting_quantile_thumb.png :alt: :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_quantile.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Prediction Intervals for Gradient Boosting Regression</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="This example illustrates and compares the bias-variance decomposition of the expected mean squa..."> .. only:: html .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_bias_variance_thumb.png :alt: :ref:`sphx_glr_auto_examples_ensemble_plot_bias_variance.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Single estimator versus bagging: bias-variance decomposition</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="This example fits an AdaBoosted decision stump on a non-linearly separable classification datas..."> .. only:: html .. image:: /auto_examples/ensemble/images/thumb/sphx_glr_plot_adaboost_twoclass_thumb.png :alt: :ref:`sphx_glr_auto_examples_ensemble_plot_adaboost_twoclass.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Two-class AdaBoost</div> </div> .. raw:: html </div> .. toctree:: :hidden: /auto_examples/ensemble/plot_gradient_boosting_categorical /auto_examples/ensemble/plot_stack_predictors /auto_examples/ensemble/plot_forest_hist_grad_boosting_comparison /auto_examples/ensemble/plot_random_forest_regression_multioutput /auto_examples/ensemble/plot_adaboost_regression /auto_examples/ensemble/plot_adaboost_hastie_10_2 /auto_examples/ensemble/plot_gradient_boosting_early_stopping /auto_examples/ensemble/plot_forest_importances /auto_examples/ensemble/plot_feature_transformation /auto_examples/ensemble/plot_gradient_boosting_oob /auto_examples/ensemble/plot_gradient_boosting_regression /auto_examples/ensemble/plot_gradient_boosting_regularization /auto_examples/ensemble/plot_random_forest_embedding /auto_examples/ensemble/plot_isolation_forest /auto_examples/ensemble/plot_monotonic_constraints /auto_examples/ensemble/plot_adaboost_multiclass /auto_examples/ensemble/plot_ensemble_oob /auto_examples/ensemble/plot_forest_importances_faces /auto_examples/ensemble/plot_voting_probas /auto_examples/ensemble/plot_voting_regressor /auto_examples/ensemble/plot_voting_decision_regions /auto_examples/ensemble/plot_forest_iris /auto_examples/ensemble/plot_gradient_boosting_quantile /auto_examples/ensemble/plot_bias_variance /auto_examples/ensemble/plot_adaboost_twoclass