.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "auto_examples/decomposition/plot_image_denoising.py"
.. LINE NUMBERS ARE GIVEN BELOW.

.. only:: html

    .. note::
        :class: sphx-glr-download-link-note

        :ref:`Go to the end <sphx_glr_download_auto_examples_decomposition_plot_image_denoising.py>`
        to download the full example code or to run this example in your browser via JupyterLite or Binder

.. rst-class:: sphx-glr-example-title

.. _sphx_glr_auto_examples_decomposition_plot_image_denoising.py:


=========================================
Image denoising using dictionary learning
=========================================

An example comparing the effect of reconstructing noisy fragments
of a raccoon face image using firstly online :ref:`DictionaryLearning` and
various transform methods.

The dictionary is fitted on the distorted left half of the image, and
subsequently used to reconstruct the right half. Note that even better
performance could be achieved by fitting to an undistorted (i.e.
noiseless) image, but here we start from the assumption that it is not
available.

A common practice for evaluating the results of image denoising is by looking
at the difference between the reconstruction and the original image. If the
reconstruction is perfect this will look like Gaussian noise.

It can be seen from the plots that the results of :ref:`omp` with two
non-zero coefficients is a bit less biased than when keeping only one
(the edges look less prominent). It is in addition closer from the ground
truth in Frobenius norm.

The result of :ref:`least_angle_regression` is much more strongly biased: the
difference is reminiscent of the local intensity value of the original image.

Thresholding is clearly not useful for denoising, but it is here to show that
it can produce a suggestive output with very high speed, and thus be useful
for other tasks such as object classification, where performance is not
necessarily related to visualisation.

.. GENERATED FROM PYTHON SOURCE LINES 36-38

Generate distorted image
------------------------

.. GENERATED FROM PYTHON SOURCE LINES 38-67

.. code-block:: default

    import numpy as np

    try:  # Scipy >= 1.10
        from scipy.datasets import face
    except ImportError:
        from scipy.misc import face

    raccoon_face = face(gray=True)

    # Convert from uint8 representation with values between 0 and 255 to
    # a floating point representation with values between 0 and 1.
    raccoon_face = raccoon_face / 255.0

    # downsample for higher speed
    raccoon_face = (
        raccoon_face[::4, ::4]
        + raccoon_face[1::4, ::4]
        + raccoon_face[::4, 1::4]
        + raccoon_face[1::4, 1::4]
    )
    raccoon_face /= 4.0
    height, width = raccoon_face.shape

    # Distort the right half of the image
    print("Distorting image...")
    distorted = raccoon_face.copy()
    distorted[:, width // 2 :] += 0.075 * np.random.randn(height, width // 2)






.. rst-class:: sphx-glr-script-out

 .. code-block:: none

    Distorting image...




.. GENERATED FROM PYTHON SOURCE LINES 68-70

Display the distorted image
---------------------------

.. GENERATED FROM PYTHON SOURCE LINES 70-97

.. code-block:: default

    import matplotlib.pyplot as plt


    def show_with_diff(image, reference, title):
        """Helper function to display denoising"""
        plt.figure(figsize=(5, 3.3))
        plt.subplot(1, 2, 1)
        plt.title("Image")
        plt.imshow(image, vmin=0, vmax=1, cmap=plt.cm.gray, interpolation="nearest")
        plt.xticks(())
        plt.yticks(())
        plt.subplot(1, 2, 2)
        difference = image - reference

        plt.title("Difference (norm: %.2f)" % np.sqrt(np.sum(difference**2)))
        plt.imshow(
            difference, vmin=-0.5, vmax=0.5, cmap=plt.cm.PuOr, interpolation="nearest"
        )
        plt.xticks(())
        plt.yticks(())
        plt.suptitle(title, size=16)
        plt.subplots_adjust(0.02, 0.02, 0.98, 0.79, 0.02, 0.2)


    show_with_diff(distorted, raccoon_face, "Distorted image")





.. image-sg:: /auto_examples/decomposition/images/sphx_glr_plot_image_denoising_001.png
   :alt: Distorted image, Image, Difference (norm: 11.71)
   :srcset: /auto_examples/decomposition/images/sphx_glr_plot_image_denoising_001.png
   :class: sphx-glr-single-img





.. GENERATED FROM PYTHON SOURCE LINES 98-100

Extract reference patches
----------------------------

.. GENERATED FROM PYTHON SOURCE LINES 100-115

.. code-block:: default

    from time import time

    from sklearn.feature_extraction.image import extract_patches_2d

    # Extract all reference patches from the left half of the image
    print("Extracting reference patches...")
    t0 = time()
    patch_size = (7, 7)
    data = extract_patches_2d(distorted[:, : width // 2], patch_size)
    data = data.reshape(data.shape[0], -1)
    data -= np.mean(data, axis=0)
    data /= np.std(data, axis=0)
    print(f"{data.shape[0]} patches extracted in %.2fs." % (time() - t0))






.. rst-class:: sphx-glr-script-out

 .. code-block:: none

    Extracting reference patches...
    22692 patches extracted in 0.01s.




.. GENERATED FROM PYTHON SOURCE LINES 116-118

Learn the dictionary from reference patches
-------------------------------------------

.. GENERATED FROM PYTHON SOURCE LINES 118-148

.. code-block:: default

    from sklearn.decomposition import MiniBatchDictionaryLearning

    print("Learning the dictionary...")
    t0 = time()
    dico = MiniBatchDictionaryLearning(
        # increase to 300 for higher quality results at the cost of slower
        # training times.
        n_components=50,
        batch_size=200,
        alpha=1.0,
        max_iter=10,
    )
    V = dico.fit(data).components_
    dt = time() - t0
    print(f"{dico.n_iter_} iterations / {dico.n_steps_} steps in {dt:.2f}.")

    plt.figure(figsize=(4.2, 4))
    for i, comp in enumerate(V[:100]):
        plt.subplot(10, 10, i + 1)
        plt.imshow(comp.reshape(patch_size), cmap=plt.cm.gray_r, interpolation="nearest")
        plt.xticks(())
        plt.yticks(())
    plt.suptitle(
        "Dictionary learned from face patches\n"
        + "Train time %.1fs on %d patches" % (dt, len(data)),
        fontsize=16,
    )
    plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23)





.. image-sg:: /auto_examples/decomposition/images/sphx_glr_plot_image_denoising_002.png
   :alt: Dictionary learned from face patches Train time 16.9s on 22692 patches
   :srcset: /auto_examples/decomposition/images/sphx_glr_plot_image_denoising_002.png
   :class: sphx-glr-single-img


.. rst-class:: sphx-glr-script-out

 .. code-block:: none

    Learning the dictionary...
    2.0 iterations / 125 steps in 16.95.




.. GENERATED FROM PYTHON SOURCE LINES 149-151

Extract noisy patches and reconstruct them using the dictionary
---------------------------------------------------------------

.. GENERATED FROM PYTHON SOURCE LINES 151-190

.. code-block:: default

    from sklearn.feature_extraction.image import reconstruct_from_patches_2d

    print("Extracting noisy patches... ")
    t0 = time()
    data = extract_patches_2d(distorted[:, width // 2 :], patch_size)
    data = data.reshape(data.shape[0], -1)
    intercept = np.mean(data, axis=0)
    data -= intercept
    print("done in %.2fs." % (time() - t0))

    transform_algorithms = [
        ("Orthogonal Matching Pursuit\n1 atom", "omp", {"transform_n_nonzero_coefs": 1}),
        ("Orthogonal Matching Pursuit\n2 atoms", "omp", {"transform_n_nonzero_coefs": 2}),
        ("Least-angle regression\n4 atoms", "lars", {"transform_n_nonzero_coefs": 4}),
        ("Thresholding\n alpha=0.1", "threshold", {"transform_alpha": 0.1}),
    ]

    reconstructions = {}
    for title, transform_algorithm, kwargs in transform_algorithms:
        print(title + "...")
        reconstructions[title] = raccoon_face.copy()
        t0 = time()
        dico.set_params(transform_algorithm=transform_algorithm, **kwargs)
        code = dico.transform(data)
        patches = np.dot(code, V)

        patches += intercept
        patches = patches.reshape(len(data), *patch_size)
        if transform_algorithm == "threshold":
            patches -= patches.min()
            patches /= patches.max()
        reconstructions[title][:, width // 2 :] = reconstruct_from_patches_2d(
            patches, (height, width // 2)
        )
        dt = time() - t0
        print("done in %.2fs." % dt)
        show_with_diff(reconstructions[title], raccoon_face, title + " (time: %.1fs)" % dt)

    plt.show()



.. rst-class:: sphx-glr-horizontal


    *

      .. image-sg:: /auto_examples/decomposition/images/sphx_glr_plot_image_denoising_003.png
         :alt: Orthogonal Matching Pursuit 1 atom (time: 0.7s), Image, Difference (norm: 10.70)
         :srcset: /auto_examples/decomposition/images/sphx_glr_plot_image_denoising_003.png
         :class: sphx-glr-multi-img

    *

      .. image-sg:: /auto_examples/decomposition/images/sphx_glr_plot_image_denoising_004.png
         :alt: Orthogonal Matching Pursuit 2 atoms (time: 1.3s), Image, Difference (norm: 9.37)
         :srcset: /auto_examples/decomposition/images/sphx_glr_plot_image_denoising_004.png
         :class: sphx-glr-multi-img

    *

      .. image-sg:: /auto_examples/decomposition/images/sphx_glr_plot_image_denoising_005.png
         :alt: Least-angle regression 4 atoms (time: 10.3s), Image, Difference (norm: 13.35)
         :srcset: /auto_examples/decomposition/images/sphx_glr_plot_image_denoising_005.png
         :class: sphx-glr-multi-img

    *

      .. image-sg:: /auto_examples/decomposition/images/sphx_glr_plot_image_denoising_006.png
         :alt: Thresholding  alpha=0.1 (time: 0.1s), Image, Difference (norm: 14.26)
         :srcset: /auto_examples/decomposition/images/sphx_glr_plot_image_denoising_006.png
         :class: sphx-glr-multi-img


.. rst-class:: sphx-glr-script-out

 .. code-block:: none

    Extracting noisy patches... 
    done in 0.00s.
    Orthogonal Matching Pursuit
    1 atom...
    done in 0.66s.
    Orthogonal Matching Pursuit
    2 atoms...
    done in 1.28s.
    Least-angle regression
    4 atoms...
    done in 10.29s.
    Thresholding
     alpha=0.1...
    done in 0.09s.





.. rst-class:: sphx-glr-timing

   **Total running time of the script:** (0 minutes 30.659 seconds)


.. _sphx_glr_download_auto_examples_decomposition_plot_image_denoising.py:

.. only:: html

  .. container:: sphx-glr-footer sphx-glr-footer-example


    .. container:: binder-badge

      .. image:: images/binder_badge_logo.svg
        :target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/1.3.X?urlpath=lab/tree/notebooks/auto_examples/decomposition/plot_image_denoising.ipynb
        :alt: Launch binder
        :width: 150 px



    .. container:: lite-badge

      .. image:: images/jupyterlite_badge_logo.svg
        :target: ../../lite/lab/?path=auto_examples/decomposition/plot_image_denoising.ipynb
        :alt: Launch JupyterLite
        :width: 150 px

    .. container:: sphx-glr-download sphx-glr-download-python

      :download:`Download Python source code: plot_image_denoising.py <plot_image_denoising.py>`

    .. container:: sphx-glr-download sphx-glr-download-jupyter

      :download:`Download Jupyter notebook: plot_image_denoising.ipynb <plot_image_denoising.ipynb>`


.. only:: html

 .. rst-class:: sphx-glr-signature

    `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_