sklearn.datasets
.fetch_california_housing¶
- sklearn.datasets.fetch_california_housing(*, data_home=None, download_if_missing=True, return_X_y=False, as_frame=False)[source]¶
Load the California housing dataset (regression).
Samples total
20640
Dimensionality
8
Features
real
Target
real 0.15 - 5.
Read more in the User Guide.
- Parameters:
- data_homestr, default=None
Specify another download and cache folder for the datasets. By default all scikit-learn data is stored in ‘~/scikit_learn_data’ subfolders.
- download_if_missingbool, default=True
If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site.
- return_X_ybool, default=False
If True, returns
(data.data, data.target)
instead of a Bunch object.New in version 0.20.
- as_framebool, default=False
If True, the data is a pandas DataFrame including columns with appropriate dtypes (numeric, string or categorical). The target is a pandas DataFrame or Series depending on the number of target_columns.
New in version 0.23.
- Returns:
- dataset
Bunch
Dictionary-like object, with the following attributes.
- datandarray, shape (20640, 8)
Each row corresponding to the 8 feature values in order. If
as_frame
is True,data
is a pandas object.- targetnumpy array of shape (20640,)
Each value corresponds to the average house value in units of 100,000. If
as_frame
is True,target
is a pandas object.- feature_nameslist of length 8
Array of ordered feature names used in the dataset.
- DESCRstr
Description of the California housing dataset.
- framepandas DataFrame
Only present when
as_frame=True
. DataFrame withdata
andtarget
.New in version 0.23.
- (data, target)tuple if
return_X_y
is True A tuple of two ndarray. The first containing a 2D array of shape (n_samples, n_features) with each row representing one sample and each column representing the features. The second ndarray of shape (n_samples,) containing the target samples.
New in version 0.20.
- dataset
Notes
This dataset consists of 20,640 samples and 9 features.
Examples using sklearn.datasets.fetch_california_housing
¶
Release Highlights for scikit-learn 0.24
Imputing missing values before building an estimator
Imputing missing values with variants of IterativeImputer
Compare the effect of different scalers on data with outliers