This is documentation for an old release of Scikit-learn (version 1.2). Try the latest stable release (version 1.6) or development (unstable) versions.

Decomposition

Examples concerning the sklearn.decomposition module.

Beta-divergence loss functions

Beta-divergence loss functions

Beta-divergence loss functions
Blind source separation using FastICA

Blind source separation using FastICA

Blind source separation using FastICA
Comparison of LDA and PCA 2D projection of Iris dataset

Comparison of LDA and PCA 2D projection of Iris dataset

Comparison of LDA and PCA 2D projection of Iris dataset
Faces dataset decompositions

Faces dataset decompositions

Faces dataset decompositions
Factor Analysis (with rotation) to visualize patterns

Factor Analysis (with rotation) to visualize patterns

Factor Analysis (with rotation) to visualize patterns
FastICA on 2D point clouds

FastICA on 2D point clouds

FastICA on 2D point clouds
Image denoising using dictionary learning

Image denoising using dictionary learning

Image denoising using dictionary learning
Incremental PCA

Incremental PCA

Incremental PCA
Kernel PCA

Kernel PCA

Kernel PCA
Model selection with Probabilistic PCA and Factor Analysis (FA)

Model selection with Probabilistic PCA and Factor Analysis (FA)

Model selection with Probabilistic PCA and Factor Analysis (FA)
PCA example with Iris Data-set

PCA example with Iris Data-set

PCA example with Iris Data-set
Principal components analysis (PCA)

Principal components analysis (PCA)

Principal components analysis (PCA)
Sparse coding with a precomputed dictionary

Sparse coding with a precomputed dictionary

Sparse coding with a precomputed dictionary