.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "auto_examples/model_selection/plot_det.py"
.. LINE NUMBERS ARE GIVEN BELOW.

.. only:: html

    .. note::
        :class: sphx-glr-download-link-note

        Click :ref:`here <sphx_glr_download_auto_examples_model_selection_plot_det.py>`
        to download the full example code or to run this example in your browser via Binder

.. rst-class:: sphx-glr-example-title

.. _sphx_glr_auto_examples_model_selection_plot_det.py:


====================================
Detection error tradeoff (DET) curve
====================================

In this example, we compare two binary classification multi-threshold metrics:
the Receiver Operating Characteristic (ROC) and the Detection Error Tradeoff
(DET). For such purpose, we evaluate two different classifiers for the same
classification task.

ROC curves feature true positive rate (TPR) on the Y axis, and false positive
rate (FPR) on the X axis. This means that the top left corner of the plot is the
"ideal" point - a FPR of zero, and a TPR of one.

DET curves are a variation of ROC curves where False Negative Rate (FNR) is
plotted on the y-axis instead of the TPR. In this case the origin (bottom left
corner) is the "ideal" point.

.. note::

    - See :func:`sklearn.metrics.roc_curve` for further information about ROC
      curves.

    - See :func:`sklearn.metrics.det_curve` for further information about
      DET curves.

    - This example is loosely based on
      :ref:`sphx_glr_auto_examples_classification_plot_classifier_comparison.py`
      example.

    - See :ref:`sphx_glr_auto_examples_model_selection_plot_roc_crossval.py` for
      an example estimating the variance of the ROC curves and ROC-AUC.

.. GENERATED FROM PYTHON SOURCE LINES 37-39

Generate synthetic data
-----------------------

.. GENERATED FROM PYTHON SOURCE LINES 39-55

.. code-block:: default


    from sklearn.datasets import make_classification
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler

    X, y = make_classification(
        n_samples=1_000,
        n_features=2,
        n_redundant=0,
        n_informative=2,
        random_state=1,
        n_clusters_per_class=1,
    )

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=0)








.. GENERATED FROM PYTHON SOURCE LINES 56-63

Define the classifiers
----------------------

Here we define two different classifiers. The goal is to visualy compare their
statistical performance across thresholds using the ROC and DET curves. There
is no particular reason why these classifiers are chosen other classifiers
available in scikit-learn.

.. GENERATED FROM PYTHON SOURCE LINES 63-75

.. code-block:: default


    from sklearn.ensemble import RandomForestClassifier
    from sklearn.pipeline import make_pipeline
    from sklearn.svm import LinearSVC

    classifiers = {
        "Linear SVM": make_pipeline(StandardScaler(), LinearSVC(C=0.025)),
        "Random Forest": RandomForestClassifier(
            max_depth=5, n_estimators=10, max_features=1
        ),
    }








.. GENERATED FROM PYTHON SOURCE LINES 76-83

Plot ROC and DET curves
-----------------------

DET curves are commonly plotted in normal deviate scale. To achieve this the
DET display transforms the error rates as returned by the
:func:`~sklearn.metrics.det_curve` and the axis scale using
:func:`scipy.stats.norm`.

.. GENERATED FROM PYTHON SOURCE LINES 83-104

.. code-block:: default


    import matplotlib.pyplot as plt
    from sklearn.metrics import DetCurveDisplay, RocCurveDisplay

    fig, [ax_roc, ax_det] = plt.subplots(1, 2, figsize=(11, 5))

    for name, clf in classifiers.items():
        clf.fit(X_train, y_train)

        RocCurveDisplay.from_estimator(clf, X_test, y_test, ax=ax_roc, name=name)
        DetCurveDisplay.from_estimator(clf, X_test, y_test, ax=ax_det, name=name)

    ax_roc.set_title("Receiver Operating Characteristic (ROC) curves")
    ax_det.set_title("Detection Error Tradeoff (DET) curves")

    ax_roc.grid(linestyle="--")
    ax_det.grid(linestyle="--")

    plt.legend()
    plt.show()




.. image-sg:: /auto_examples/model_selection/images/sphx_glr_plot_det_001.png
   :alt: Receiver Operating Characteristic (ROC) curves, Detection Error Tradeoff (DET) curves
   :srcset: /auto_examples/model_selection/images/sphx_glr_plot_det_001.png
   :class: sphx-glr-single-img





.. GENERATED FROM PYTHON SOURCE LINES 105-116

Notice that it is easier to visually assess the overall performance of
different classification algorithms using DET curves than using ROC curves. As
ROC curves are plot in a linear scale, different classifiers usually appear
similar for a large part of the plot and differ the most in the top left
corner of the graph. On the other hand, because DET curves represent straight
lines in normal deviate scale, they tend to be distinguishable as a whole and
the area of interest spans a large part of the plot.

DET curves give direct feedback of the detection error tradeoff to aid in
operating point analysis. The user can then decide the FNR they are willing to
accept at the expense of the FPR (or vice-versa).


.. rst-class:: sphx-glr-timing

   **Total running time of the script:** ( 0 minutes  0.177 seconds)


.. _sphx_glr_download_auto_examples_model_selection_plot_det.py:

.. only:: html

  .. container:: sphx-glr-footer sphx-glr-footer-example


    .. container:: binder-badge

      .. image:: images/binder_badge_logo.svg
        :target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/1.2.X?urlpath=lab/tree/notebooks/auto_examples/model_selection/plot_det.ipynb
        :alt: Launch binder
        :width: 150 px

    .. container:: sphx-glr-download sphx-glr-download-python

      :download:`Download Python source code: plot_det.py <plot_det.py>`

    .. container:: sphx-glr-download sphx-glr-download-jupyter

      :download:`Download Jupyter notebook: plot_det.ipynb <plot_det.ipynb>`


.. only:: html

 .. rst-class:: sphx-glr-signature

    `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_