.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/miscellaneous/plot_pipeline_display.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here <sphx_glr_download_auto_examples_miscellaneous_plot_pipeline_display.py>` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_miscellaneous_plot_pipeline_display.py: ================================================================= Displaying Pipelines ================================================================= The default configuration for displaying a pipeline in a Jupyter Notebook is `'diagram'` where `set_config(display='diagram')`. To deactivate HTML representation, use `set_config(display='text')`. To see more detailed steps in the visualization of the pipeline, click on the steps in the pipeline. .. GENERATED FROM PYTHON SOURCE LINES 15-21 Displaying a Pipeline with a Preprocessing Step and Classifier ############################################################################### This section constructs a :class:`~sklearn.pipeline.Pipeline` with a preprocessing step, :class:`~sklearn.preprocessing.StandardScaler`, and classifier, :class:`~sklearn.linear_model.LogisticRegression`, and displays its visual representation. .. GENERATED FROM PYTHON SOURCE LINES 21-33 .. code-block:: default from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from sklearn import set_config steps = [ ("preprocessing", StandardScaler()), ("classifier", LogisticRegression()), ] pipe = Pipeline(steps) .. GENERATED FROM PYTHON SOURCE LINES 34-35 To visualize the diagram, the default is `display='diagram'`. .. GENERATED FROM PYTHON SOURCE LINES 35-38 .. code-block:: default set_config(display="diagram") pipe # click on the diagram below to see the details of each step .. raw:: html <div class="output_subarea output_html rendered_html output_result"> <style>#sk-container-id-39 {color: black;background-color: white;}#sk-container-id-39 pre{padding: 0;}#sk-container-id-39 div.sk-toggleable {background-color: white;}#sk-container-id-39 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-39 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-39 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-39 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-39 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-39 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-39 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-39 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-39 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-39 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-39 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-39 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-39 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-39 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-39 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-39 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-39 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-39 div.sk-item {position: relative;z-index: 1;}#sk-container-id-39 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-39 div.sk-item::before, #sk-container-id-39 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-39 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-39 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-39 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-39 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-39 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-39 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-39 div.sk-label-container {text-align: center;}#sk-container-id-39 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-39 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-39" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[('preprocessing', StandardScaler()), ('classifier', LogisticRegression())])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-172" type="checkbox" ><label for="sk-estimator-id-172" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[('preprocessing', StandardScaler()), ('classifier', LogisticRegression())])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-173" type="checkbox" ><label for="sk-estimator-id-173" class="sk-toggleable__label sk-toggleable__label-arrow">StandardScaler</label><div class="sk-toggleable__content"><pre>StandardScaler()</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-174" type="checkbox" ><label for="sk-estimator-id-174" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression()</pre></div></div></div></div></div></div></div> </div> <br /> <br /> .. GENERATED FROM PYTHON SOURCE LINES 39-40 To view the text pipeline, change to `display='text'`. .. GENERATED FROM PYTHON SOURCE LINES 40-43 .. code-block:: default set_config(display="text") pipe .. rst-class:: sphx-glr-script-out .. code-block:: none Pipeline(steps=[('preprocessing', StandardScaler()), ('classifier', LogisticRegression())]) .. GENERATED FROM PYTHON SOURCE LINES 44-45 Put back the default display .. GENERATED FROM PYTHON SOURCE LINES 45-47 .. code-block:: default set_config(display="diagram") .. GENERATED FROM PYTHON SOURCE LINES 48-55 Displaying a Pipeline Chaining Multiple Preprocessing Steps & Classifier ############################################################################### This section constructs a :class:`~sklearn.pipeline.Pipeline` with multiple preprocessing steps, :class:`~sklearn.preprocessing.PolynomialFeatures` and :class:`~sklearn.preprocessing.StandardScaler`, and a classifier step, :class:`~sklearn.linear_model.LogisticRegression`, and displays its visual representation. .. GENERATED FROM PYTHON SOURCE LINES 55-68 .. code-block:: default from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler, PolynomialFeatures from sklearn.linear_model import LogisticRegression steps = [ ("standard_scaler", StandardScaler()), ("polynomial", PolynomialFeatures(degree=3)), ("classifier", LogisticRegression(C=2.0)), ] pipe = Pipeline(steps) pipe # click on the diagram below to see the details of each step .. raw:: html <div class="output_subarea output_html rendered_html output_result"> <style>#sk-container-id-40 {color: black;background-color: white;}#sk-container-id-40 pre{padding: 0;}#sk-container-id-40 div.sk-toggleable {background-color: white;}#sk-container-id-40 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-40 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-40 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-40 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-40 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-40 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-40 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-40 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-40 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-40 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-40 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-40 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-40 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-40 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-40 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-40 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-40 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-40 div.sk-item {position: relative;z-index: 1;}#sk-container-id-40 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-40 div.sk-item::before, #sk-container-id-40 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-40 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-40 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-40 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-40 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-40 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-40 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-40 div.sk-label-container {text-align: center;}#sk-container-id-40 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-40 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-40" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[('standard_scaler', StandardScaler()), ('polynomial', PolynomialFeatures(degree=3)), ('classifier', LogisticRegression(C=2.0))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-175" type="checkbox" ><label for="sk-estimator-id-175" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[('standard_scaler', StandardScaler()), ('polynomial', PolynomialFeatures(degree=3)), ('classifier', LogisticRegression(C=2.0))])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-176" type="checkbox" ><label for="sk-estimator-id-176" class="sk-toggleable__label sk-toggleable__label-arrow">StandardScaler</label><div class="sk-toggleable__content"><pre>StandardScaler()</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-177" type="checkbox" ><label for="sk-estimator-id-177" class="sk-toggleable__label sk-toggleable__label-arrow">PolynomialFeatures</label><div class="sk-toggleable__content"><pre>PolynomialFeatures(degree=3)</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-178" type="checkbox" ><label for="sk-estimator-id-178" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression(C=2.0)</pre></div></div></div></div></div></div></div> </div> <br /> <br /> .. GENERATED FROM PYTHON SOURCE LINES 69-75 Displaying a Pipeline and Dimensionality Reduction and Classifier ############################################################################### This section constructs a :class:`~sklearn.pipeline.Pipeline` with a dimensionality reduction step, :class:`~sklearn.decomposition.PCA`, a classifier, :class:`~sklearn.svm.SVC`, and displays its visual representation. .. GENERATED FROM PYTHON SOURCE LINES 75-84 .. code-block:: default from sklearn.pipeline import Pipeline from sklearn.svm import SVC from sklearn.decomposition import PCA steps = [("reduce_dim", PCA(n_components=4)), ("classifier", SVC(kernel="linear"))] pipe = Pipeline(steps) pipe # click on the diagram below to see the details of each step .. raw:: html <div class="output_subarea output_html rendered_html output_result"> <style>#sk-container-id-41 {color: black;background-color: white;}#sk-container-id-41 pre{padding: 0;}#sk-container-id-41 div.sk-toggleable {background-color: white;}#sk-container-id-41 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-41 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-41 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-41 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-41 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-41 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-41 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-41 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-41 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-41 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-41 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-41 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-41 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-41 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-41 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-41 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-41 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-41 div.sk-item {position: relative;z-index: 1;}#sk-container-id-41 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-41 div.sk-item::before, #sk-container-id-41 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-41 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-41 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-41 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-41 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-41 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-41 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-41 div.sk-label-container {text-align: center;}#sk-container-id-41 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-41 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-41" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[('reduce_dim', PCA(n_components=4)), ('classifier', SVC(kernel='linear'))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-179" type="checkbox" ><label for="sk-estimator-id-179" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[('reduce_dim', PCA(n_components=4)), ('classifier', SVC(kernel='linear'))])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-180" type="checkbox" ><label for="sk-estimator-id-180" class="sk-toggleable__label sk-toggleable__label-arrow">PCA</label><div class="sk-toggleable__content"><pre>PCA(n_components=4)</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-181" type="checkbox" ><label for="sk-estimator-id-181" class="sk-toggleable__label sk-toggleable__label-arrow">SVC</label><div class="sk-toggleable__content"><pre>SVC(kernel='linear')</pre></div></div></div></div></div></div></div> </div> <br /> <br /> .. GENERATED FROM PYTHON SOURCE LINES 85-91 Displaying a Complex Pipeline Chaining a Column Transformer ############################################################################### This section constructs a complex :class:`~sklearn.pipeline.Pipeline` with a :class:`~sklearn.compose.ColumnTransformer` and a classifier, :class:`~sklearn.linear_model.LogisticRegression`, and displays its visual representation. .. GENERATED FROM PYTHON SOURCE LINES 91-127 .. code-block:: default import numpy as np from sklearn.pipeline import make_pipeline from sklearn.pipeline import Pipeline from sklearn.impute import SimpleImputer from sklearn.compose import ColumnTransformer from sklearn.preprocessing import OneHotEncoder, StandardScaler from sklearn.linear_model import LogisticRegression numeric_preprocessor = Pipeline( steps=[ ("imputation_mean", SimpleImputer(missing_values=np.nan, strategy="mean")), ("scaler", StandardScaler()), ] ) categorical_preprocessor = Pipeline( steps=[ ( "imputation_constant", SimpleImputer(fill_value="missing", strategy="constant"), ), ("onehot", OneHotEncoder(handle_unknown="ignore")), ] ) preprocessor = ColumnTransformer( [ ("categorical", categorical_preprocessor, ["state", "gender"]), ("numerical", numeric_preprocessor, ["age", "weight"]), ] ) pipe = make_pipeline(preprocessor, LogisticRegression(max_iter=500)) pipe # click on the diagram below to see the details of each step .. raw:: html <div class="output_subarea output_html rendered_html output_result"> <style>#sk-container-id-42 {color: black;background-color: white;}#sk-container-id-42 pre{padding: 0;}#sk-container-id-42 div.sk-toggleable {background-color: white;}#sk-container-id-42 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-42 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-42 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-42 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-42 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-42 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-42 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-42 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-42 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-42 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-42 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-42 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-42 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-42 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-42 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-42 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-42 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-42 div.sk-item {position: relative;z-index: 1;}#sk-container-id-42 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-42 div.sk-item::before, #sk-container-id-42 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-42 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-42 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-42 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-42 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-42 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-42 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-42 div.sk-label-container {text-align: center;}#sk-container-id-42 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-42 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-42" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[('columntransformer', ColumnTransformer(transformers=[('categorical', Pipeline(steps=[('imputation_constant', SimpleImputer(fill_value='missing', strategy='constant')), ('onehot', OneHotEncoder(handle_unknown='ignore'))]), ['state', 'gender']), ('numerical', Pipeline(steps=[('imputation_mean', SimpleImputer()), ('scaler', StandardScaler())]), ['age', 'weight'])])), ('logisticregression', LogisticRegression(max_iter=500))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-182" type="checkbox" ><label for="sk-estimator-id-182" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[('columntransformer', ColumnTransformer(transformers=[('categorical', Pipeline(steps=[('imputation_constant', SimpleImputer(fill_value='missing', strategy='constant')), ('onehot', OneHotEncoder(handle_unknown='ignore'))]), ['state', 'gender']), ('numerical', Pipeline(steps=[('imputation_mean', SimpleImputer()), ('scaler', StandardScaler())]), ['age', 'weight'])])), ('logisticregression', LogisticRegression(max_iter=500))])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-183" type="checkbox" ><label for="sk-estimator-id-183" class="sk-toggleable__label sk-toggleable__label-arrow">columntransformer: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(transformers=[('categorical', Pipeline(steps=[('imputation_constant', SimpleImputer(fill_value='missing', strategy='constant')), ('onehot', OneHotEncoder(handle_unknown='ignore'))]), ['state', 'gender']), ('numerical', Pipeline(steps=[('imputation_mean', SimpleImputer()), ('scaler', StandardScaler())]), ['age', 'weight'])])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-184" type="checkbox" ><label for="sk-estimator-id-184" class="sk-toggleable__label sk-toggleable__label-arrow">categorical</label><div class="sk-toggleable__content"><pre>['state', 'gender']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-185" type="checkbox" ><label for="sk-estimator-id-185" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer(fill_value='missing', strategy='constant')</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-186" type="checkbox" ><label for="sk-estimator-id-186" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder(handle_unknown='ignore')</pre></div></div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-187" type="checkbox" ><label for="sk-estimator-id-187" class="sk-toggleable__label sk-toggleable__label-arrow">numerical</label><div class="sk-toggleable__content"><pre>['age', 'weight']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-188" type="checkbox" ><label for="sk-estimator-id-188" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer()</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-189" type="checkbox" ><label for="sk-estimator-id-189" class="sk-toggleable__label sk-toggleable__label-arrow">StandardScaler</label><div class="sk-toggleable__content"><pre>StandardScaler()</pre></div></div></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-190" type="checkbox" ><label for="sk-estimator-id-190" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression(max_iter=500)</pre></div></div></div></div></div></div></div> </div> <br /> <br /> .. GENERATED FROM PYTHON SOURCE LINES 128-134 Displaying a Grid Search over a Pipeline with a Classifier ############################################################################### This section constructs a :class:`~sklearn.model_selection.GridSearchCV` over a :class:`~sklearn.pipeline.Pipeline` with :class:`~sklearn.ensemble.RandomForestClassifier` and displays its visual representation. .. GENERATED FROM PYTHON SOURCE LINES 134-181 .. code-block:: default import numpy as np from sklearn.pipeline import make_pipeline from sklearn.pipeline import Pipeline from sklearn.impute import SimpleImputer from sklearn.compose import ColumnTransformer from sklearn.preprocessing import OneHotEncoder, StandardScaler from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import GridSearchCV numeric_preprocessor = Pipeline( steps=[ ("imputation_mean", SimpleImputer(missing_values=np.nan, strategy="mean")), ("scaler", StandardScaler()), ] ) categorical_preprocessor = Pipeline( steps=[ ( "imputation_constant", SimpleImputer(fill_value="missing", strategy="constant"), ), ("onehot", OneHotEncoder(handle_unknown="ignore")), ] ) preprocessor = ColumnTransformer( [ ("categorical", categorical_preprocessor, ["state", "gender"]), ("numerical", numeric_preprocessor, ["age", "weight"]), ] ) pipe = Pipeline( steps=[("preprocessor", preprocessor), ("classifier", RandomForestClassifier())] ) param_grid = { "classifier__n_estimators": [200, 500], "classifier__max_features": ["auto", "sqrt", "log2"], "classifier__max_depth": [4, 5, 6, 7, 8], "classifier__criterion": ["gini", "entropy"], } grid_search = GridSearchCV(pipe, param_grid=param_grid, n_jobs=1) grid_search # click on the diagram below to see the details of each step .. raw:: html <div class="output_subarea output_html rendered_html output_result"> <style>#sk-container-id-43 {color: black;background-color: white;}#sk-container-id-43 pre{padding: 0;}#sk-container-id-43 div.sk-toggleable {background-color: white;}#sk-container-id-43 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-43 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-43 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-43 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-43 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-43 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-43 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-43 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-43 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-43 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-43 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-43 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-43 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-43 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-43 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-43 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-43 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-43 div.sk-item {position: relative;z-index: 1;}#sk-container-id-43 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-43 div.sk-item::before, #sk-container-id-43 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-43 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-43 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-43 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-43 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-43 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-43 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-43 div.sk-label-container {text-align: center;}#sk-container-id-43 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-43 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-43" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>GridSearchCV(estimator=Pipeline(steps=[('preprocessor', ColumnTransformer(transformers=[('categorical', Pipeline(steps=[('imputation_constant', SimpleImputer(fill_value='missing', strategy='constant')), ('onehot', OneHotEncoder(handle_unknown='ignore'))]), ['state', 'gender']), ('numerical', Pipeline(steps=[('imputation_mean', SimpleImputer()), ('scaler', StandardScaler())]), ['age', 'weight'])])), ('classifier', RandomForestClassifier())]), n_jobs=1, param_grid={'classifier__criterion': ['gini', 'entropy'], 'classifier__max_depth': [4, 5, 6, 7, 8], 'classifier__max_features': ['auto', 'sqrt', 'log2'], 'classifier__n_estimators': [200, 500]})</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-191" type="checkbox" ><label for="sk-estimator-id-191" class="sk-toggleable__label sk-toggleable__label-arrow">GridSearchCV</label><div class="sk-toggleable__content"><pre>GridSearchCV(estimator=Pipeline(steps=[('preprocessor', ColumnTransformer(transformers=[('categorical', Pipeline(steps=[('imputation_constant', SimpleImputer(fill_value='missing', strategy='constant')), ('onehot', OneHotEncoder(handle_unknown='ignore'))]), ['state', 'gender']), ('numerical', Pipeline(steps=[('imputation_mean', SimpleImputer()), ('scaler', StandardScaler())]), ['age', 'weight'])])), ('classifier', RandomForestClassifier())]), n_jobs=1, param_grid={'classifier__criterion': ['gini', 'entropy'], 'classifier__max_depth': [4, 5, 6, 7, 8], 'classifier__max_features': ['auto', 'sqrt', 'log2'], 'classifier__n_estimators': [200, 500]})</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-192" type="checkbox" ><label for="sk-estimator-id-192" class="sk-toggleable__label sk-toggleable__label-arrow">estimator: Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[('preprocessor', ColumnTransformer(transformers=[('categorical', Pipeline(steps=[('imputation_constant', SimpleImputer(fill_value='missing', strategy='constant')), ('onehot', OneHotEncoder(handle_unknown='ignore'))]), ['state', 'gender']), ('numerical', Pipeline(steps=[('imputation_mean', SimpleImputer()), ('scaler', StandardScaler())]), ['age', 'weight'])])), ('classifier', RandomForestClassifier())])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-193" type="checkbox" ><label for="sk-estimator-id-193" class="sk-toggleable__label sk-toggleable__label-arrow">preprocessor: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(transformers=[('categorical', Pipeline(steps=[('imputation_constant', SimpleImputer(fill_value='missing', strategy='constant')), ('onehot', OneHotEncoder(handle_unknown='ignore'))]), ['state', 'gender']), ('numerical', Pipeline(steps=[('imputation_mean', SimpleImputer()), ('scaler', StandardScaler())]), ['age', 'weight'])])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-194" type="checkbox" ><label for="sk-estimator-id-194" class="sk-toggleable__label sk-toggleable__label-arrow">categorical</label><div class="sk-toggleable__content"><pre>['state', 'gender']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-195" type="checkbox" ><label for="sk-estimator-id-195" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer(fill_value='missing', strategy='constant')</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-196" type="checkbox" ><label for="sk-estimator-id-196" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder(handle_unknown='ignore')</pre></div></div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-197" type="checkbox" ><label for="sk-estimator-id-197" class="sk-toggleable__label sk-toggleable__label-arrow">numerical</label><div class="sk-toggleable__content"><pre>['age', 'weight']</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-198" type="checkbox" ><label for="sk-estimator-id-198" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer()</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-199" type="checkbox" ><label for="sk-estimator-id-199" class="sk-toggleable__label sk-toggleable__label-arrow">StandardScaler</label><div class="sk-toggleable__content"><pre>StandardScaler()</pre></div></div></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-200" type="checkbox" ><label for="sk-estimator-id-200" class="sk-toggleable__label sk-toggleable__label-arrow">RandomForestClassifier</label><div class="sk-toggleable__content"><pre>RandomForestClassifier()</pre></div></div></div></div></div></div></div></div></div></div></div></div> </div> <br /> <br /> .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.090 seconds) .. _sphx_glr_download_auto_examples_miscellaneous_plot_pipeline_display.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/1.2.X?urlpath=lab/tree/notebooks/auto_examples/miscellaneous/plot_pipeline_display.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_pipeline_display.py <plot_pipeline_display.py>` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_pipeline_display.ipynb <plot_pipeline_display.ipynb>` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_