.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "auto_examples/linear_model/plot_lasso_lars.py"
.. LINE NUMBERS ARE GIVEN BELOW.

.. only:: html

    .. note::
        :class: sphx-glr-download-link-note

        Click :ref:`here <sphx_glr_download_auto_examples_linear_model_plot_lasso_lars.py>`
        to download the full example code or to run this example in your browser via Binder

.. rst-class:: sphx-glr-example-title

.. _sphx_glr_auto_examples_linear_model_plot_lasso_lars.py:


=====================
Lasso path using LARS
=====================

Computes Lasso Path along the regularization parameter using the LARS
algorithm on the diabetes dataset. Each color represents a different
feature of the coefficient vector, and this is displayed as a function
of the regularization parameter.

.. GENERATED FROM PYTHON SOURCE LINES 12-39



.. image-sg:: /auto_examples/linear_model/images/sphx_glr_plot_lasso_lars_001.png
   :alt: LASSO Path
   :srcset: /auto_examples/linear_model/images/sphx_glr_plot_lasso_lars_001.png
   :class: sphx-glr-single-img


.. rst-class:: sphx-glr-script-out

 .. code-block:: none

    Computing regularization path using the LARS ...
    .





|

.. code-block:: default


    # Author: Fabian Pedregosa <fabian.pedregosa@inria.fr>
    #         Alexandre Gramfort <alexandre.gramfort@inria.fr>
    # License: BSD 3 clause

    import numpy as np
    import matplotlib.pyplot as plt

    from sklearn import linear_model
    from sklearn import datasets

    X, y = datasets.load_diabetes(return_X_y=True)

    print("Computing regularization path using the LARS ...")
    _, _, coefs = linear_model.lars_path(X, y, method="lasso", verbose=True)

    xx = np.sum(np.abs(coefs.T), axis=1)
    xx /= xx[-1]

    plt.plot(xx, coefs.T)
    ymin, ymax = plt.ylim()
    plt.vlines(xx, ymin, ymax, linestyle="dashed")
    plt.xlabel("|coef| / max|coef|")
    plt.ylabel("Coefficients")
    plt.title("LASSO Path")
    plt.axis("tight")
    plt.show()


.. rst-class:: sphx-glr-timing

   **Total running time of the script:** ( 0 minutes  0.118 seconds)


.. _sphx_glr_download_auto_examples_linear_model_plot_lasso_lars.py:

.. only:: html

  .. container:: sphx-glr-footer sphx-glr-footer-example


    .. container:: binder-badge

      .. image:: images/binder_badge_logo.svg
        :target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/1.2.X?urlpath=lab/tree/notebooks/auto_examples/linear_model/plot_lasso_lars.ipynb
        :alt: Launch binder
        :width: 150 px

    .. container:: sphx-glr-download sphx-glr-download-python

      :download:`Download Python source code: plot_lasso_lars.py <plot_lasso_lars.py>`

    .. container:: sphx-glr-download sphx-glr-download-jupyter

      :download:`Download Jupyter notebook: plot_lasso_lars.ipynb <plot_lasso_lars.ipynb>`


.. only:: html

 .. rst-class:: sphx-glr-signature

    `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_