sklearn.utils.class_weight
.compute_class_weight¶
- sklearn.utils.class_weight.compute_class_weight(class_weight, *, classes, y)[source]¶
Estimate class weights for unbalanced datasets.
- Parameters:
- class_weightdict, ‘balanced’ or None
If ‘balanced’, class weights will be given by
n_samples / (n_classes * np.bincount(y))
. If a dictionary is given, keys are classes and values are corresponding class weights. If None is given, the class weights will be uniform.- classesndarray
Array of the classes occurring in the data, as given by
np.unique(y_org)
withy_org
the original class labels.- yarray-like of shape (n_samples,)
Array of original class labels per sample.
- Returns:
- class_weight_vectndarray of shape (n_classes,)
Array with class_weight_vect[i] the weight for i-th class.
References
The “balanced” heuristic is inspired by Logistic Regression in Rare Events Data, King, Zen, 2001.