sklearn.preprocessing.Binarizer

class sklearn.preprocessing.Binarizer(*, threshold=0.0, copy=True)[source]

Binarize data (set feature values to 0 or 1) according to a threshold.

Values greater than the threshold map to 1, while values less than or equal to the threshold map to 0. With the default threshold of 0, only positive values map to 1.

Binarization is a common operation on text count data where the analyst can decide to only consider the presence or absence of a feature rather than a quantified number of occurrences for instance.

It can also be used as a pre-processing step for estimators that consider boolean random variables (e.g. modelled using the Bernoulli distribution in a Bayesian setting).

Read more in the User Guide.

Parameters:
thresholdfloat, default=0.0

Feature values below or equal to this are replaced by 0, above it by 1. Threshold may not be less than 0 for operations on sparse matrices.

copybool, default=True

Set to False to perform inplace binarization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix).

Attributes:
n_features_in_int

Number of features seen during fit.

New in version 0.24.

feature_names_in_ndarray of shape (n_features_in_,)

Names of features seen during fit. Defined only when X has feature names that are all strings.

New in version 1.0.

See also

binarize

Equivalent function without the estimator API.

KBinsDiscretizer

Bin continuous data into intervals.

OneHotEncoder

Encode categorical features as a one-hot numeric array.

Notes

If the input is a sparse matrix, only the non-zero values are subject to update by the Binarizer class.

This estimator is stateless (besides constructor parameters), the fit method does nothing but is useful when used in a pipeline.

Examples

>>> from sklearn.preprocessing import Binarizer
>>> X = [[ 1., -1.,  2.],
...      [ 2.,  0.,  0.],
...      [ 0.,  1., -1.]]
>>> transformer = Binarizer().fit(X)  # fit does nothing.
>>> transformer
Binarizer()
>>> transformer.transform(X)
array([[1., 0., 1.],
       [1., 0., 0.],
       [0., 1., 0.]])

Methods

fit(X[, y])

Do nothing and return the estimator unchanged.

fit_transform(X[, y])

Fit to data, then transform it.

get_feature_names_out([input_features])

Get output feature names for transformation.

get_params([deep])

Get parameters for this estimator.

set_params(**params)

Set the parameters of this estimator.

transform(X[, copy])

Binarize each element of X.

fit(X, y=None)[source]

Do nothing and return the estimator unchanged.

This method is just there to implement the usual API and hence work in pipelines.

Parameters:
X{array-like, sparse matrix} of shape (n_samples, n_features)

The data.

yNone

Ignored.

Returns:
selfobject

Fitted transformer.

fit_transform(X, y=None, **fit_params)[source]

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters:
Xarray-like of shape (n_samples, n_features)

Input samples.

yarray-like of shape (n_samples,) or (n_samples, n_outputs), default=None

Target values (None for unsupervised transformations).

**fit_paramsdict

Additional fit parameters.

Returns:
X_newndarray array of shape (n_samples, n_features_new)

Transformed array.

get_feature_names_out(input_features=None)[source]

Get output feature names for transformation.

Parameters:
input_featuresarray-like of str or None, default=None

Input features.

  • If input_features is None, then feature_names_in_ is used as feature names in. If feature_names_in_ is not defined, then the following input feature names are generated: ["x0", "x1", ..., "x(n_features_in_ - 1)"].

  • If input_features is an array-like, then input_features must match feature_names_in_ if feature_names_in_ is defined.

Returns:
feature_names_outndarray of str objects

Same as input features.

get_params(deep=True)[source]

Get parameters for this estimator.

Parameters:
deepbool, default=True

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns:
paramsdict

Parameter names mapped to their values.

set_params(**params)[source]

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters:
**paramsdict

Estimator parameters.

Returns:
selfestimator instance

Estimator instance.

transform(X, copy=None)[source]

Binarize each element of X.

Parameters:
X{array-like, sparse matrix} of shape (n_samples, n_features)

The data to binarize, element by element. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy.

copybool

Copy the input X or not.

Returns:
X_tr{ndarray, sparse matrix} of shape (n_samples, n_features)

Transformed array.