sklearn.multioutput.MultiOutputClassifier¶
- class sklearn.multioutput.MultiOutputClassifier(estimator, *, n_jobs=None)[source]¶
Multi target classification.
This strategy consists of fitting one classifier per target. This is a simple strategy for extending classifiers that do not natively support multi-target classification.
- Parameters:
- estimatorestimator object
An estimator object implementing fit, score and predict_proba.
- n_jobsint or None, optional (default=None)
The number of jobs to run in parallel.
fit,predictandpartial_fit(if supported by the passed estimator) will be parallelized for each target.When individual estimators are fast to train or predict, using
n_jobs > 1can result in slower performance due to the parallelism overhead.Nonemeans1unless in ajoblib.parallel_backendcontext.-1means using all available processes / threads. See Glossary for more details.Changed in version 0.20:
n_jobsdefault changed from1toNone.
- Attributes:
- classes_ndarray of shape (n_classes,)
Class labels.
- estimators_list of
n_outputestimators Estimators used for predictions.
- n_features_in_int
Number of features seen during fit. Only defined if the underlying
estimatorexposes such an attribute when fit.New in version 0.24.
- feature_names_in_ndarray of shape (
n_features_in_,) Names of features seen during fit. Only defined if the underlying estimators expose such an attribute when fit.
New in version 1.0.
See also
ClassifierChainA multi-label model that arranges binary classifiers into a chain.
MultiOutputRegressorFits one regressor per target variable.
Examples
>>> import numpy as np >>> from sklearn.datasets import make_multilabel_classification >>> from sklearn.multioutput import MultiOutputClassifier >>> from sklearn.linear_model import LogisticRegression >>> X, y = make_multilabel_classification(n_classes=3, random_state=0) >>> clf = MultiOutputClassifier(LogisticRegression()).fit(X, y) >>> clf.predict(X[-2:]) array([[1, 1, 1], [1, 0, 1]])
Methods
fit(X, Y[, sample_weight])Fit the model to data matrix X and targets Y.
get_params([deep])Get parameters for this estimator.
partial_fit(X, y[, classes, sample_weight])Incrementally fit a separate model for each class output.
predict(X)Predict multi-output variable using model for each target variable.
Return prediction probabilities for each class of each output.
score(X, y)Return the mean accuracy on the given test data and labels.
set_params(**params)Set the parameters of this estimator.
- fit(X, Y, sample_weight=None, **fit_params)[source]¶
Fit the model to data matrix X and targets Y.
- Parameters:
- X{array-like, sparse matrix} of shape (n_samples, n_features)
The input data.
- Yarray-like of shape (n_samples, n_classes)
The target values.
- sample_weightarray-like of shape (n_samples,), default=None
Sample weights. If
None, then samples are equally weighted. Only supported if the underlying classifier supports sample weights.- **fit_paramsdict of string -> object
Parameters passed to the
estimator.fitmethod of each step.New in version 0.23.
- Returns:
- selfobject
Returns a fitted instance.
- get_params(deep=True)[source]¶
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- partial_fit(X, y, classes=None, sample_weight=None)[source]¶
Incrementally fit a separate model for each class output.
- Parameters:
- X{array-like, sparse matrix} of shape (n_samples, n_features)
The input data.
- y{array-like, sparse matrix} of shape (n_samples, n_outputs)
Multi-output targets.
- classeslist of ndarray of shape (n_outputs,), default=None
Each array is unique classes for one output in str/int. Can be obtained via
[np.unique(y[:, i]) for i in range(y.shape[1])], whereyis the target matrix of the entire dataset. This argument is required for the first call to partial_fit and can be omitted in the subsequent calls. Note thatydoesn’t need to contain all labels inclasses.- sample_weightarray-like of shape (n_samples,), default=None
Sample weights. If
None, then samples are equally weighted. Only supported if the underlying regressor supports sample weights.
- Returns:
- selfobject
Returns a fitted instance.
- predict(X)[source]¶
Predict multi-output variable using model for each target variable.
- Parameters:
- X{array-like, sparse matrix} of shape (n_samples, n_features)
The input data.
- Returns:
- y{array-like, sparse matrix} of shape (n_samples, n_outputs)
Multi-output targets predicted across multiple predictors. Note: Separate models are generated for each predictor.
- predict_proba(X)[source]¶
Return prediction probabilities for each class of each output.
This method will raise a
ValueErrorif any of the estimators do not havepredict_proba.- Parameters:
- Xarray-like of shape (n_samples, n_features)
The input data.
- Returns:
- parray of shape (n_samples, n_classes), or a list of n_outputs such arrays if n_outputs > 1.
The class probabilities of the input samples. The order of the classes corresponds to that in the attribute classes_.
Changed in version 0.19: This function now returns a list of arrays where the length of the list is
n_outputs, and each array is (n_samples,n_classes) for that particular output.
- score(X, y)[source]¶
Return the mean accuracy on the given test data and labels.
- Parameters:
- Xarray-like of shape (n_samples, n_features)
Test samples.
- yarray-like of shape (n_samples, n_outputs)
True values for X.
- Returns:
- scoresfloat
Mean accuracy of predicted target versus true target.
- set_params(**params)[source]¶
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.