class sklearn.linear_model.Lars(*, fit_intercept=True, verbose=False, normalize='deprecated', precompute='auto', n_nonzero_coefs=500, eps=2.220446049250313e-16, copy_X=True, fit_path=True, jitter=None, random_state=None)[source]

Least Angle Regression model a.k.a. LAR.

Read more in the User Guide.

fit_interceptbool, default=True

Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be centered).

verbosebool or int, default=False

Sets the verbosity amount.

normalizebool, default=True

This parameter is ignored when fit_intercept is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use StandardScaler before calling fit on an estimator with normalize=False.

Deprecated since version 1.0: normalize was deprecated in version 1.0. It will default to False in 1.2 and be removed in 1.4.

precomputebool, ‘auto’ or array-like , default=’auto’

Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto' let us decide. The Gram matrix can also be passed as argument.

n_nonzero_coefsint, default=500

Target number of non-zero coefficients. Use np.inf for no limit.

epsfloat, default=np.finfo(float).eps

The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the tol parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization.

copy_Xbool, default=True

If True, X will be copied; else, it may be overwritten.

fit_pathbool, default=True

If True the full path is stored in the coef_path_ attribute. If you compute the solution for a large problem or many targets, setting fit_path to False will lead to a speedup, especially with a small alpha.

jitterfloat, default=None

Upper bound on a uniform noise parameter to be added to the y values, to satisfy the model’s assumption of one-at-a-time computations. Might help with stability.

New in version 0.23.

random_stateint, RandomState instance or None, default=None

Determines random number generation for jittering. Pass an int for reproducible output across multiple function calls. See Glossary. Ignored if jitter is None.

New in version 0.23.

alphas_array-like of shape (n_alphas + 1,) or list of such arrays

Maximum of covariances (in absolute value) at each iteration. n_alphas is either max_iter, n_features or the number of nodes in the path with alpha >= alpha_min, whichever is smaller. If this is a list of array-like, the length of the outer list is n_targets.

active_list of shape (n_alphas,) or list of such lists

Indices of active variables at the end of the path. If this is a list of list, the length of the outer list is n_targets.

coef_path_array-like of shape (n_features, n_alphas + 1) or list of such arrays

The varying values of the coefficients along the path. It is not present if the fit_path parameter is False. If this is a list of array-like, the length of the outer list is n_targets.

coef_array-like of shape (n_features,) or (n_targets, n_features)

Parameter vector (w in the formulation formula).

intercept_float or array-like of shape (n_targets,)

Independent term in decision function.

n_iter_array-like or int

The number of iterations taken by lars_path to find the grid of alphas for each target.


Number of features seen during fit.

New in version 0.24.

feature_names_in_ndarray of shape (n_features_in_,)

Names of features seen during fit. Defined only when X has feature names that are all strings.

New in version 1.0.

See also


Compute Least Angle Regression or Lasso path using LARS algorithm.


Cross-validated Least Angle Regression model.


Sparse coding.


>>> from sklearn import linear_model
>>> reg = linear_model.Lars(n_nonzero_coefs=1, normalize=False)
>>>[[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111])
Lars(n_nonzero_coefs=1, normalize=False)
>>> print(reg.coef_)
[ 0. -1.11...]


fit(X, y[, Xy])

Fit the model using X, y as training data.


Get parameters for this estimator.


Predict using the linear model.

score(X, y[, sample_weight])

Return the coefficient of determination of the prediction.


Set the parameters of this estimator.

fit(X, y, Xy=None)[source]

Fit the model using X, y as training data.

Xarray-like of shape (n_samples, n_features)

Training data.

yarray-like of shape (n_samples,) or (n_samples, n_targets)

Target values.

Xyarray-like of shape (n_samples,) or (n_samples, n_targets), default=None

Xy =, y) that can be precomputed. It is useful only when the Gram matrix is precomputed.


Returns an instance of self.


Get parameters for this estimator.

deepbool, default=True

If True, will return the parameters for this estimator and contained subobjects that are estimators.


Parameter names mapped to their values.


Predict using the linear model.

Xarray-like or sparse matrix, shape (n_samples, n_features)


Carray, shape (n_samples,)

Returns predicted values.

score(X, y, sample_weight=None)[source]

Return the coefficient of determination of the prediction.

The coefficient of determination \(R^2\) is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares ((y_true - y_pred)** 2).sum() and \(v\) is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a \(R^2\) score of 0.0.

Xarray-like of shape (n_samples, n_features)

Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape (n_samples, n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for the estimator.

yarray-like of shape (n_samples,) or (n_samples, n_outputs)

True values for X.

sample_weightarray-like of shape (n_samples,), default=None

Sample weights.


\(R^2\) of self.predict(X) wrt. y.


The \(R^2\) score used when calling score on a regressor uses multioutput='uniform_average' from version 0.23 to keep consistent with default value of r2_score. This influences the score method of all the multioutput regressors (except for MultiOutputRegressor).


Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.


Estimator parameters.

selfestimator instance

Estimator instance.