sklearn.datasets
.fetch_20newsgroups_vectorized¶
- sklearn.datasets.fetch_20newsgroups_vectorized(*, subset='train', remove=(), data_home=None, download_if_missing=True, return_X_y=False, normalize=True, as_frame=False)[source]¶
Load and vectorize the 20 newsgroups dataset (classification).
Download it if necessary.
This is a convenience function; the transformation is done using the default settings for
CountVectorizer
. For more advanced usage (stopword filtering, n-gram extraction, etc.), combine fetch_20newsgroups with a customCountVectorizer
,HashingVectorizer
,TfidfTransformer
orTfidfVectorizer
.The resulting counts are normalized using
sklearn.preprocessing.normalize
unless normalize is set to False.Classes
20
Samples total
18846
Dimensionality
130107
Features
real
Read more in the User Guide.
- Parameters:
- subset{‘train’, ‘test’, ‘all’}, default=’train’
Select the dataset to load: ‘train’ for the training set, ‘test’ for the test set, ‘all’ for both, with shuffled ordering.
- removetuple, default=()
May contain any subset of (‘headers’, ‘footers’, ‘quotes’). Each of these are kinds of text that will be detected and removed from the newsgroup posts, preventing classifiers from overfitting on metadata.
‘headers’ removes newsgroup headers, ‘footers’ removes blocks at the ends of posts that look like signatures, and ‘quotes’ removes lines that appear to be quoting another post.
- data_homestr, default=None
Specify an download and cache folder for the datasets. If None, all scikit-learn data is stored in ‘~/scikit_learn_data’ subfolders.
- download_if_missingbool, default=True
If False, raise an IOError if the data is not locally available instead of trying to download the data from the source site.
- return_X_ybool, default=False
If True, returns
(data.data, data.target)
instead of a Bunch object.New in version 0.20.
- normalizebool, default=True
If True, normalizes each document’s feature vector to unit norm using
sklearn.preprocessing.normalize
.New in version 0.22.
- as_framebool, default=False
If True, the data is a pandas DataFrame including columns with appropriate dtypes (numeric, string, or categorical). The target is a pandas DataFrame or Series depending on the number of
target_columns
.New in version 0.24.
- Returns:
- bunch
Bunch
Dictionary-like object, with the following attributes.
- data: {sparse matrix, dataframe} of shape (n_samples, n_features)
The input data matrix. If
as_frame
isTrue
,data
is a pandas DataFrame with sparse columns.- target: {ndarray, series} of shape (n_samples,)
The target labels. If
as_frame
isTrue
,target
is a pandas Series.- target_names: list of shape (n_classes,)
The names of target classes.
- DESCR: str
The full description of the dataset.
- frame: dataframe of shape (n_samples, n_features + 1)
Only present when
as_frame=True
. Pandas DataFrame withdata
andtarget
.New in version 0.24.
- (data, target)tuple if
return_X_y
is True data
andtarget
would be of the format defined in theBunch
description above.New in version 0.20.
- bunch
Examples using sklearn.datasets.fetch_20newsgroups_vectorized
¶
Multiclass sparse logistic regression on 20newgroups
The Johnson-Lindenstrauss bound for embedding with random projections