.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/manifold/plot_swissroll.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_manifold_plot_swissroll.py: =================================== Swiss Roll And Swiss-Hole Reduction =================================== This notebook seeks to compare two popular non-linear dimensionality techniques, T-distributed Stochastic Neighbor Embedding (t-SNE) and Locally Linear Embedding (LLE), on the classic Swiss Roll dataset. Then, we will explore how they both deal with the addition of a hole in the data. .. GENERATED FROM PYTHON SOURCE LINES 12-16 Swiss Roll --------------------------------------------------- We start by generating the Swiss Roll dataset. .. GENERATED FROM PYTHON SOURCE LINES 16-23 .. code-block:: default import matplotlib.pyplot as plt from sklearn import manifold, datasets sr_points, sr_color = datasets.make_swiss_roll(n_samples=1500, random_state=0) .. GENERATED FROM PYTHON SOURCE LINES 24-25 Now, let's take a look at our data: .. GENERATED FROM PYTHON SOURCE LINES 25-36 .. code-block:: default fig = plt.figure(figsize=(8, 6)) ax = fig.add_subplot(111, projection="3d") fig.add_axes(ax) ax.scatter( sr_points[:, 0], sr_points[:, 1], sr_points[:, 2], c=sr_color, s=50, alpha=0.8 ) ax.set_title("Swiss Roll in Ambient Space") ax.view_init(azim=-66, elev=12) _ = ax.text2D(0.8, 0.05, s="n_samples=1500", transform=ax.transAxes) .. image-sg:: /auto_examples/manifold/images/sphx_glr_plot_swissroll_001.png :alt: Swiss Roll in Ambient Space :srcset: /auto_examples/manifold/images/sphx_glr_plot_swissroll_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 37-42 Computing the LLE and t-SNE embeddings, we find that LLE seems to unroll the Swiss Roll pretty effectively. t-SNE on the other hand, is able to preserve the general structure of the data, but, poorly represents the continuous nature of our original data. Instead, it seems to unnecessarily clump sections of points together. .. GENERATED FROM PYTHON SOURCE LINES 42-57 .. code-block:: default sr_lle, sr_err = manifold.locally_linear_embedding( sr_points, n_neighbors=12, n_components=2 ) sr_tsne = manifold.TSNE( n_components=2, learning_rate="auto", perplexity=40, init="pca", random_state=0 ).fit_transform(sr_points) fig, axs = plt.subplots(figsize=(8, 8), nrows=2) axs[0].scatter(sr_lle[:, 0], sr_lle[:, 1], c=sr_color) axs[0].set_title("LLE Embedding of Swiss Roll") axs[1].scatter(sr_tsne[:, 0], sr_tsne[:, 1], c=sr_color) _ = axs[1].set_title("t-SNE Embedding of Swiss Roll") .. image-sg:: /auto_examples/manifold/images/sphx_glr_plot_swissroll_002.png :alt: LLE Embedding of Swiss Roll, t-SNE Embedding of Swiss Roll :srcset: /auto_examples/manifold/images/sphx_glr_plot_swissroll_002.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none /home/runner/work/scikit-learn/scikit-learn/sklearn/manifold/_t_sne.py:996: FutureWarning: The PCA initialization in TSNE will change to have the standard deviation of PC1 equal to 1e-4 in 1.2. This will ensure better convergence. warnings.warn( .. GENERATED FROM PYTHON SOURCE LINES 58-65 .. note:: LLE seems to be stretching the points from the center (purple) of the swiss roll. However, we observe that this is simply a byproduct of how the data was generated. There is a higher density of points near the center of the roll, which ultimately affects how LLE reconstructs the data in a lower dimension. .. GENERATED FROM PYTHON SOURCE LINES 67-72 Swiss-Hole --------------------------------------------------- Now let's take a look at how both algorithms deal with us adding a hole to the data. First, we generate the Swiss-Hole dataset and plot it: .. GENERATED FROM PYTHON SOURCE LINES 72-87 .. code-block:: default sh_points, sh_color = datasets.make_swiss_roll( n_samples=1500, hole=True, random_state=0 ) fig = plt.figure(figsize=(8, 6)) ax = fig.add_subplot(111, projection="3d") fig.add_axes(ax) ax.scatter( sh_points[:, 0], sh_points[:, 1], sh_points[:, 2], c=sh_color, s=50, alpha=0.8 ) ax.set_title("Swiss-Hole in Ambient Space") ax.view_init(azim=-66, elev=12) _ = ax.text2D(0.8, 0.05, s="n_samples=1500", transform=ax.transAxes) .. image-sg:: /auto_examples/manifold/images/sphx_glr_plot_swissroll_003.png :alt: Swiss-Hole in Ambient Space :srcset: /auto_examples/manifold/images/sphx_glr_plot_swissroll_003.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 88-92 Computing the LLE and t-SNE embeddings, we obtain similar results to the Swiss Roll. LLE very capably unrolls the data and even preserves the hole. t-SNE, again seems to clump sections of points together, but, we note that it preserves the general topology of the original data. .. GENERATED FROM PYTHON SOURCE LINES 92-108 .. code-block:: default sh_lle, sh_err = manifold.locally_linear_embedding( sh_points, n_neighbors=12, n_components=2 ) sh_tsne = manifold.TSNE( n_components=2, learning_rate="auto", perplexity=40, init="random", random_state=0 ).fit_transform(sh_points) fig, axs = plt.subplots(figsize=(8, 8), nrows=2) axs[0].scatter(sh_lle[:, 0], sh_lle[:, 1], c=sh_color) axs[0].set_title("LLE Embedding of Swiss-Hole") axs[1].scatter(sh_tsne[:, 0], sh_tsne[:, 1], c=sh_color) _ = axs[1].set_title("t-SNE Embedding of Swiss-Hole") .. image-sg:: /auto_examples/manifold/images/sphx_glr_plot_swissroll_004.png :alt: LLE Embedding of Swiss-Hole, t-SNE Embedding of Swiss-Hole :srcset: /auto_examples/manifold/images/sphx_glr_plot_swissroll_004.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 109-119 Concluding remarks ------------------ We note that t-SNE benefits from testing more combinations of parameters. Better results could probably have been obtained by better tuning these parameters. We observe that, as seen in the "Manifold learning on handwritten digits" example, t-SNE generally performs better than LLE on real world data. .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 18.006 seconds) .. _sphx_glr_download_auto_examples_manifold_plot_swissroll.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/1.1.X?urlpath=lab/tree/notebooks/auto_examples/manifold/plot_swissroll.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_swissroll.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_swissroll.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_