.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/decomposition/plot_pca_3d.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_decomposition_plot_pca_3d.py: ========================================================= Principal components analysis (PCA) ========================================================= These figures aid in illustrating how a point cloud can be very flat in one direction--which is where PCA comes in to choose a direction that is not flat. .. GENERATED FROM PYTHON SOURCE LINES 12-18 .. code-block:: default # Authors: Gael Varoquaux # Jaques Grobler # Kevin Hughes # License: BSD 3 clause .. GENERATED FROM PYTHON SOURCE LINES 19-21 Create the data --------------- .. GENERATED FROM PYTHON SOURCE LINES 21-52 .. code-block:: default import numpy as np from scipy import stats e = np.exp(1) np.random.seed(4) def pdf(x): return 0.5 * (stats.norm(scale=0.25 / e).pdf(x) + stats.norm(scale=4 / e).pdf(x)) y = np.random.normal(scale=0.5, size=(30000)) x = np.random.normal(scale=0.5, size=(30000)) z = np.random.normal(scale=0.1, size=len(x)) density = pdf(x) * pdf(y) pdf_z = pdf(5 * z) density *= pdf_z a = x + y b = 2 * y c = a - b + z norm = np.sqrt(a.var() + b.var()) a /= norm b /= norm .. GENERATED FROM PYTHON SOURCE LINES 53-55 Plot the figures ---------------- .. GENERATED FROM PYTHON SOURCE LINES 55-102 .. code-block:: default from sklearn.decomposition import PCA import matplotlib.pyplot as plt # unused but required import for doing 3d projections with matplotlib < 3.2 import mpl_toolkits.mplot3d # noqa: F401 def plot_figs(fig_num, elev, azim): fig = plt.figure(fig_num, figsize=(4, 3)) plt.clf() ax = fig.add_subplot(111, projection="3d", elev=elev, azim=azim) ax.set_position([0, 0, 0.95, 1]) ax.scatter(a[::10], b[::10], c[::10], c=density[::10], marker="+", alpha=0.4) Y = np.c_[a, b, c] # Using SciPy's SVD, this would be: # _, pca_score, Vt = scipy.linalg.svd(Y, full_matrices=False) pca = PCA(n_components=3) pca.fit(Y) V = pca.components_.T x_pca_axis, y_pca_axis, z_pca_axis = 3 * V x_pca_plane = np.r_[x_pca_axis[:2], -x_pca_axis[1::-1]] y_pca_plane = np.r_[y_pca_axis[:2], -y_pca_axis[1::-1]] z_pca_plane = np.r_[z_pca_axis[:2], -z_pca_axis[1::-1]] x_pca_plane.shape = (2, 2) y_pca_plane.shape = (2, 2) z_pca_plane.shape = (2, 2) ax.plot_surface(x_pca_plane, y_pca_plane, z_pca_plane) ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) elev = -40 azim = -80 plot_figs(1, elev, azim) elev = 30 azim = 20 plot_figs(2, elev, azim) plt.show() .. rst-class:: sphx-glr-horizontal * .. image-sg:: /auto_examples/decomposition/images/sphx_glr_plot_pca_3d_001.png :alt: plot pca 3d :srcset: /auto_examples/decomposition/images/sphx_glr_plot_pca_3d_001.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/decomposition/images/sphx_glr_plot_pca_3d_002.png :alt: plot pca 3d :srcset: /auto_examples/decomposition/images/sphx_glr_plot_pca_3d_002.png :class: sphx-glr-multi-img .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.150 seconds) .. _sphx_glr_download_auto_examples_decomposition_plot_pca_3d.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/1.1.X?urlpath=lab/tree/notebooks/auto_examples/decomposition/plot_pca_3d.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_pca_3d.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_pca_3d.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_