.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "auto_examples/compose/plot_feature_union.py"
.. LINE NUMBERS ARE GIVEN BELOW.

.. only:: html

    .. note::
        :class: sphx-glr-download-link-note

        Click :ref:`here <sphx_glr_download_auto_examples_compose_plot_feature_union.py>`
        to download the full example code or to run this example in your browser via Binder

.. rst-class:: sphx-glr-example-title

.. _sphx_glr_auto_examples_compose_plot_feature_union.py:


=================================================
Concatenating multiple feature extraction methods
=================================================

In many real-world examples, there are many ways to extract features from a
dataset. Often it is beneficial to combine several methods to obtain good
performance. This example shows how to use ``FeatureUnion`` to combine
features obtained by PCA and univariate selection.

Combining features using this transformer has the benefit that it allows
cross validation and grid searches over the whole process.

The combination used in this example is not particularly helpful on this
dataset and is only used to illustrate the usage of FeatureUnion.

.. GENERATED FROM PYTHON SOURCE LINES 18-63




.. rst-class:: sphx-glr-script-out

 .. code-block:: none

    Combined space has 3 features
    Fitting 5 folds for each of 18 candidates, totalling 90 fits
    [CV 1/5; 1/18] START features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1
    [CV 1/5; 1/18] END features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1;, score=0.933 total time=   0.0s
    [CV 2/5; 1/18] START features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1
    [CV 2/5; 1/18] END features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1;, score=0.933 total time=   0.0s
    [CV 3/5; 1/18] START features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1
    [CV 3/5; 1/18] END features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1;, score=0.867 total time=   0.0s
    [CV 4/5; 1/18] START features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1
    [CV 4/5; 1/18] END features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1;, score=0.933 total time=   0.0s
    [CV 5/5; 1/18] START features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1
    [CV 5/5; 1/18] END features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1;, score=1.000 total time=   0.0s
    [CV 1/5; 2/18] START features__pca__n_components=1, features__univ_select__k=1, svm__C=1
    [CV 1/5; 2/18] END features__pca__n_components=1, features__univ_select__k=1, svm__C=1;, score=0.900 total time=   0.0s
    [CV 2/5; 2/18] START features__pca__n_components=1, features__univ_select__k=1, svm__C=1
    [CV 2/5; 2/18] END features__pca__n_components=1, features__univ_select__k=1, svm__C=1;, score=1.000 total time=   0.0s
    [CV 3/5; 2/18] START features__pca__n_components=1, features__univ_select__k=1, svm__C=1
    [CV 3/5; 2/18] END features__pca__n_components=1, features__univ_select__k=1, svm__C=1;, score=0.867 total time=   0.0s
    [CV 4/5; 2/18] START features__pca__n_components=1, features__univ_select__k=1, svm__C=1
    [CV 4/5; 2/18] END features__pca__n_components=1, features__univ_select__k=1, svm__C=1;, score=0.933 total time=   0.0s
    [CV 5/5; 2/18] START features__pca__n_components=1, features__univ_select__k=1, svm__C=1
    [CV 5/5; 2/18] END features__pca__n_components=1, features__univ_select__k=1, svm__C=1;, score=1.000 total time=   0.0s
    [CV 1/5; 3/18] START features__pca__n_components=1, features__univ_select__k=1, svm__C=10
    [CV 1/5; 3/18] END features__pca__n_components=1, features__univ_select__k=1, svm__C=10;, score=0.933 total time=   0.0s
    [CV 2/5; 3/18] START features__pca__n_components=1, features__univ_select__k=1, svm__C=10
    [CV 2/5; 3/18] END features__pca__n_components=1, features__univ_select__k=1, svm__C=10;, score=1.000 total time=   0.0s
    [CV 3/5; 3/18] START features__pca__n_components=1, features__univ_select__k=1, svm__C=10
    [CV 3/5; 3/18] END features__pca__n_components=1, features__univ_select__k=1, svm__C=10;, score=0.900 total time=   0.0s
    [CV 4/5; 3/18] START features__pca__n_components=1, features__univ_select__k=1, svm__C=10
    [CV 4/5; 3/18] END features__pca__n_components=1, features__univ_select__k=1, svm__C=10;, score=0.933 total time=   0.0s
    [CV 5/5; 3/18] START features__pca__n_components=1, features__univ_select__k=1, svm__C=10
    [CV 5/5; 3/18] END features__pca__n_components=1, features__univ_select__k=1, svm__C=10;, score=1.000 total time=   0.0s
    [CV 1/5; 4/18] START features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1
    [CV 1/5; 4/18] END features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1;, score=0.933 total time=   0.0s
    [CV 2/5; 4/18] START features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1
    [CV 2/5; 4/18] END features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1;, score=0.967 total time=   0.0s
    [CV 3/5; 4/18] START features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1
    [CV 3/5; 4/18] END features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1;, score=0.933 total time=   0.0s
    [CV 4/5; 4/18] START features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1
    [CV 4/5; 4/18] END features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1;, score=0.933 total time=   0.0s
    [CV 5/5; 4/18] START features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1
    [CV 5/5; 4/18] END features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1;, score=1.000 total time=   0.0s
    [CV 1/5; 5/18] START features__pca__n_components=1, features__univ_select__k=2, svm__C=1
    [CV 1/5; 5/18] END features__pca__n_components=1, features__univ_select__k=2, svm__C=1;, score=0.933 total time=   0.0s
    [CV 2/5; 5/18] START features__pca__n_components=1, features__univ_select__k=2, svm__C=1
    [CV 2/5; 5/18] END features__pca__n_components=1, features__univ_select__k=2, svm__C=1;, score=0.967 total time=   0.0s
    [CV 3/5; 5/18] START features__pca__n_components=1, features__univ_select__k=2, svm__C=1
    [CV 3/5; 5/18] END features__pca__n_components=1, features__univ_select__k=2, svm__C=1;, score=0.933 total time=   0.0s
    [CV 4/5; 5/18] START features__pca__n_components=1, features__univ_select__k=2, svm__C=1
    [CV 4/5; 5/18] END features__pca__n_components=1, features__univ_select__k=2, svm__C=1;, score=0.933 total time=   0.0s
    [CV 5/5; 5/18] START features__pca__n_components=1, features__univ_select__k=2, svm__C=1
    [CV 5/5; 5/18] END features__pca__n_components=1, features__univ_select__k=2, svm__C=1;, score=1.000 total time=   0.0s
    [CV 1/5; 6/18] START features__pca__n_components=1, features__univ_select__k=2, svm__C=10
    [CV 1/5; 6/18] END features__pca__n_components=1, features__univ_select__k=2, svm__C=10;, score=0.967 total time=   0.0s
    [CV 2/5; 6/18] START features__pca__n_components=1, features__univ_select__k=2, svm__C=10
    [CV 2/5; 6/18] END features__pca__n_components=1, features__univ_select__k=2, svm__C=10;, score=0.967 total time=   0.0s
    [CV 3/5; 6/18] START features__pca__n_components=1, features__univ_select__k=2, svm__C=10
    [CV 3/5; 6/18] END features__pca__n_components=1, features__univ_select__k=2, svm__C=10;, score=0.933 total time=   0.0s
    [CV 4/5; 6/18] START features__pca__n_components=1, features__univ_select__k=2, svm__C=10
    [CV 4/5; 6/18] END features__pca__n_components=1, features__univ_select__k=2, svm__C=10;, score=0.933 total time=   0.0s
    [CV 5/5; 6/18] START features__pca__n_components=1, features__univ_select__k=2, svm__C=10
    [CV 5/5; 6/18] END features__pca__n_components=1, features__univ_select__k=2, svm__C=10;, score=1.000 total time=   0.0s
    [CV 1/5; 7/18] START features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1
    [CV 1/5; 7/18] END features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1;, score=0.933 total time=   0.0s
    [CV 2/5; 7/18] START features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1
    [CV 2/5; 7/18] END features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1;, score=1.000 total time=   0.0s
    [CV 3/5; 7/18] START features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1
    [CV 3/5; 7/18] END features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1;, score=0.867 total time=   0.0s
    [CV 4/5; 7/18] START features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1
    [CV 4/5; 7/18] END features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1;, score=0.933 total time=   0.0s
    [CV 5/5; 7/18] START features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1
    [CV 5/5; 7/18] END features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1;, score=1.000 total time=   0.0s
    [CV 1/5; 8/18] START features__pca__n_components=2, features__univ_select__k=1, svm__C=1
    [CV 1/5; 8/18] END features__pca__n_components=2, features__univ_select__k=1, svm__C=1;, score=0.967 total time=   0.0s
    [CV 2/5; 8/18] START features__pca__n_components=2, features__univ_select__k=1, svm__C=1
    [CV 2/5; 8/18] END features__pca__n_components=2, features__univ_select__k=1, svm__C=1;, score=1.000 total time=   0.0s
    [CV 3/5; 8/18] START features__pca__n_components=2, features__univ_select__k=1, svm__C=1
    [CV 3/5; 8/18] END features__pca__n_components=2, features__univ_select__k=1, svm__C=1;, score=0.933 total time=   0.0s
    [CV 4/5; 8/18] START features__pca__n_components=2, features__univ_select__k=1, svm__C=1
    [CV 4/5; 8/18] END features__pca__n_components=2, features__univ_select__k=1, svm__C=1;, score=0.933 total time=   0.0s
    [CV 5/5; 8/18] START features__pca__n_components=2, features__univ_select__k=1, svm__C=1
    [CV 5/5; 8/18] END features__pca__n_components=2, features__univ_select__k=1, svm__C=1;, score=1.000 total time=   0.0s
    [CV 1/5; 9/18] START features__pca__n_components=2, features__univ_select__k=1, svm__C=10
    [CV 1/5; 9/18] END features__pca__n_components=2, features__univ_select__k=1, svm__C=10;, score=0.967 total time=   0.0s
    [CV 2/5; 9/18] START features__pca__n_components=2, features__univ_select__k=1, svm__C=10
    [CV 2/5; 9/18] END features__pca__n_components=2, features__univ_select__k=1, svm__C=10;, score=0.967 total time=   0.0s
    [CV 3/5; 9/18] START features__pca__n_components=2, features__univ_select__k=1, svm__C=10
    [CV 3/5; 9/18] END features__pca__n_components=2, features__univ_select__k=1, svm__C=10;, score=0.900 total time=   0.0s
    [CV 4/5; 9/18] START features__pca__n_components=2, features__univ_select__k=1, svm__C=10
    [CV 4/5; 9/18] END features__pca__n_components=2, features__univ_select__k=1, svm__C=10;, score=0.933 total time=   0.0s
    [CV 5/5; 9/18] START features__pca__n_components=2, features__univ_select__k=1, svm__C=10
    [CV 5/5; 9/18] END features__pca__n_components=2, features__univ_select__k=1, svm__C=10;, score=1.000 total time=   0.0s
    [CV 1/5; 10/18] START features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1
    [CV 1/5; 10/18] END features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1;, score=0.967 total time=   0.0s
    [CV 2/5; 10/18] START features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1
    [CV 2/5; 10/18] END features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1;, score=1.000 total time=   0.0s
    [CV 3/5; 10/18] START features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1
    [CV 3/5; 10/18] END features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1;, score=0.933 total time=   0.0s
    [CV 4/5; 10/18] START features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1
    [CV 4/5; 10/18] END features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1;, score=0.933 total time=   0.0s
    [CV 5/5; 10/18] START features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1
    [CV 5/5; 10/18] END features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1;, score=1.000 total time=   0.0s
    [CV 1/5; 11/18] START features__pca__n_components=2, features__univ_select__k=2, svm__C=1
    [CV 1/5; 11/18] END features__pca__n_components=2, features__univ_select__k=2, svm__C=1;, score=0.967 total time=   0.0s
    [CV 2/5; 11/18] START features__pca__n_components=2, features__univ_select__k=2, svm__C=1
    [CV 2/5; 11/18] END features__pca__n_components=2, features__univ_select__k=2, svm__C=1;, score=1.000 total time=   0.0s
    [CV 3/5; 11/18] START features__pca__n_components=2, features__univ_select__k=2, svm__C=1
    [CV 3/5; 11/18] END features__pca__n_components=2, features__univ_select__k=2, svm__C=1;, score=0.933 total time=   0.0s
    [CV 4/5; 11/18] START features__pca__n_components=2, features__univ_select__k=2, svm__C=1
    [CV 4/5; 11/18] END features__pca__n_components=2, features__univ_select__k=2, svm__C=1;, score=0.967 total time=   0.0s
    [CV 5/5; 11/18] START features__pca__n_components=2, features__univ_select__k=2, svm__C=1
    [CV 5/5; 11/18] END features__pca__n_components=2, features__univ_select__k=2, svm__C=1;, score=1.000 total time=   0.0s
    [CV 1/5; 12/18] START features__pca__n_components=2, features__univ_select__k=2, svm__C=10
    [CV 1/5; 12/18] END features__pca__n_components=2, features__univ_select__k=2, svm__C=10;, score=0.967 total time=   0.0s
    [CV 2/5; 12/18] START features__pca__n_components=2, features__univ_select__k=2, svm__C=10
    [CV 2/5; 12/18] END features__pca__n_components=2, features__univ_select__k=2, svm__C=10;, score=1.000 total time=   0.0s
    [CV 3/5; 12/18] START features__pca__n_components=2, features__univ_select__k=2, svm__C=10
    [CV 3/5; 12/18] END features__pca__n_components=2, features__univ_select__k=2, svm__C=10;, score=0.900 total time=   0.0s
    [CV 4/5; 12/18] START features__pca__n_components=2, features__univ_select__k=2, svm__C=10
    [CV 4/5; 12/18] END features__pca__n_components=2, features__univ_select__k=2, svm__C=10;, score=0.933 total time=   0.0s
    [CV 5/5; 12/18] START features__pca__n_components=2, features__univ_select__k=2, svm__C=10
    [CV 5/5; 12/18] END features__pca__n_components=2, features__univ_select__k=2, svm__C=10;, score=1.000 total time=   0.0s
    [CV 1/5; 13/18] START features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1
    [CV 1/5; 13/18] END features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1;, score=0.967 total time=   0.0s
    [CV 2/5; 13/18] START features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1
    [CV 2/5; 13/18] END features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1;, score=1.000 total time=   0.0s
    [CV 3/5; 13/18] START features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1
    [CV 3/5; 13/18] END features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1;, score=0.933 total time=   0.0s
    [CV 4/5; 13/18] START features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1
    [CV 4/5; 13/18] END features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1;, score=0.967 total time=   0.0s
    [CV 5/5; 13/18] START features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1
    [CV 5/5; 13/18] END features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1;, score=1.000 total time=   0.0s
    [CV 1/5; 14/18] START features__pca__n_components=3, features__univ_select__k=1, svm__C=1
    [CV 1/5; 14/18] END features__pca__n_components=3, features__univ_select__k=1, svm__C=1;, score=0.967 total time=   0.0s
    [CV 2/5; 14/18] START features__pca__n_components=3, features__univ_select__k=1, svm__C=1
    [CV 2/5; 14/18] END features__pca__n_components=3, features__univ_select__k=1, svm__C=1;, score=1.000 total time=   0.0s
    [CV 3/5; 14/18] START features__pca__n_components=3, features__univ_select__k=1, svm__C=1
    [CV 3/5; 14/18] END features__pca__n_components=3, features__univ_select__k=1, svm__C=1;, score=0.933 total time=   0.0s
    [CV 4/5; 14/18] START features__pca__n_components=3, features__univ_select__k=1, svm__C=1
    [CV 4/5; 14/18] END features__pca__n_components=3, features__univ_select__k=1, svm__C=1;, score=0.967 total time=   0.0s
    [CV 5/5; 14/18] START features__pca__n_components=3, features__univ_select__k=1, svm__C=1
    [CV 5/5; 14/18] END features__pca__n_components=3, features__univ_select__k=1, svm__C=1;, score=1.000 total time=   0.0s
    [CV 1/5; 15/18] START features__pca__n_components=3, features__univ_select__k=1, svm__C=10
    [CV 1/5; 15/18] END features__pca__n_components=3, features__univ_select__k=1, svm__C=10;, score=1.000 total time=   0.0s
    [CV 2/5; 15/18] START features__pca__n_components=3, features__univ_select__k=1, svm__C=10
    [CV 2/5; 15/18] END features__pca__n_components=3, features__univ_select__k=1, svm__C=10;, score=1.000 total time=   0.0s
    [CV 3/5; 15/18] START features__pca__n_components=3, features__univ_select__k=1, svm__C=10
    [CV 3/5; 15/18] END features__pca__n_components=3, features__univ_select__k=1, svm__C=10;, score=0.933 total time=   0.0s
    [CV 4/5; 15/18] START features__pca__n_components=3, features__univ_select__k=1, svm__C=10
    [CV 4/5; 15/18] END features__pca__n_components=3, features__univ_select__k=1, svm__C=10;, score=0.967 total time=   0.0s
    [CV 5/5; 15/18] START features__pca__n_components=3, features__univ_select__k=1, svm__C=10
    [CV 5/5; 15/18] END features__pca__n_components=3, features__univ_select__k=1, svm__C=10;, score=1.000 total time=   0.0s
    [CV 1/5; 16/18] START features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1
    [CV 1/5; 16/18] END features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1;, score=0.967 total time=   0.0s
    [CV 2/5; 16/18] START features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1
    [CV 2/5; 16/18] END features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1;, score=1.000 total time=   0.0s
    [CV 3/5; 16/18] START features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1
    [CV 3/5; 16/18] END features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1;, score=0.933 total time=   0.0s
    [CV 4/5; 16/18] START features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1
    [CV 4/5; 16/18] END features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1;, score=0.967 total time=   0.0s
    [CV 5/5; 16/18] START features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1
    [CV 5/5; 16/18] END features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1;, score=1.000 total time=   0.0s
    [CV 1/5; 17/18] START features__pca__n_components=3, features__univ_select__k=2, svm__C=1
    [CV 1/5; 17/18] END features__pca__n_components=3, features__univ_select__k=2, svm__C=1;, score=0.967 total time=   0.0s
    [CV 2/5; 17/18] START features__pca__n_components=3, features__univ_select__k=2, svm__C=1
    [CV 2/5; 17/18] END features__pca__n_components=3, features__univ_select__k=2, svm__C=1;, score=1.000 total time=   0.0s
    [CV 3/5; 17/18] START features__pca__n_components=3, features__univ_select__k=2, svm__C=1
    [CV 3/5; 17/18] END features__pca__n_components=3, features__univ_select__k=2, svm__C=1;, score=0.967 total time=   0.0s
    [CV 4/5; 17/18] START features__pca__n_components=3, features__univ_select__k=2, svm__C=1
    [CV 4/5; 17/18] END features__pca__n_components=3, features__univ_select__k=2, svm__C=1;, score=0.967 total time=   0.0s
    [CV 5/5; 17/18] START features__pca__n_components=3, features__univ_select__k=2, svm__C=1
    [CV 5/5; 17/18] END features__pca__n_components=3, features__univ_select__k=2, svm__C=1;, score=1.000 total time=   0.0s
    [CV 1/5; 18/18] START features__pca__n_components=3, features__univ_select__k=2, svm__C=10
    [CV 1/5; 18/18] END features__pca__n_components=3, features__univ_select__k=2, svm__C=10;, score=1.000 total time=   0.0s
    [CV 2/5; 18/18] START features__pca__n_components=3, features__univ_select__k=2, svm__C=10
    [CV 2/5; 18/18] END features__pca__n_components=3, features__univ_select__k=2, svm__C=10;, score=1.000 total time=   0.0s
    [CV 3/5; 18/18] START features__pca__n_components=3, features__univ_select__k=2, svm__C=10
    [CV 3/5; 18/18] END features__pca__n_components=3, features__univ_select__k=2, svm__C=10;, score=0.900 total time=   0.0s
    [CV 4/5; 18/18] START features__pca__n_components=3, features__univ_select__k=2, svm__C=10
    [CV 4/5; 18/18] END features__pca__n_components=3, features__univ_select__k=2, svm__C=10;, score=0.967 total time=   0.0s
    [CV 5/5; 18/18] START features__pca__n_components=3, features__univ_select__k=2, svm__C=10
    [CV 5/5; 18/18] END features__pca__n_components=3, features__univ_select__k=2, svm__C=10;, score=1.000 total time=   0.0s
    Pipeline(steps=[('features',
                     FeatureUnion(transformer_list=[('pca', PCA(n_components=3)),
                                                    ('univ_select',
                                                     SelectKBest(k=1))])),
                    ('svm', SVC(C=10, kernel='linear'))])






|

.. code-block:: default


    # Author: Andreas Mueller <amueller@ais.uni-bonn.de>
    #
    # License: BSD 3 clause

    from sklearn.pipeline import Pipeline, FeatureUnion
    from sklearn.model_selection import GridSearchCV
    from sklearn.svm import SVC
    from sklearn.datasets import load_iris
    from sklearn.decomposition import PCA
    from sklearn.feature_selection import SelectKBest

    iris = load_iris()

    X, y = iris.data, iris.target

    # This dataset is way too high-dimensional. Better do PCA:
    pca = PCA(n_components=2)

    # Maybe some original features were good, too?
    selection = SelectKBest(k=1)

    # Build estimator from PCA and Univariate selection:

    combined_features = FeatureUnion([("pca", pca), ("univ_select", selection)])

    # Use combined features to transform dataset:
    X_features = combined_features.fit(X, y).transform(X)
    print("Combined space has", X_features.shape[1], "features")

    svm = SVC(kernel="linear")

    # Do grid search over k, n_components and C:

    pipeline = Pipeline([("features", combined_features), ("svm", svm)])

    param_grid = dict(
        features__pca__n_components=[1, 2, 3],
        features__univ_select__k=[1, 2],
        svm__C=[0.1, 1, 10],
    )

    grid_search = GridSearchCV(pipeline, param_grid=param_grid, verbose=10)
    grid_search.fit(X, y)
    print(grid_search.best_estimator_)


.. rst-class:: sphx-glr-timing

   **Total running time of the script:** ( 0 minutes  0.290 seconds)


.. _sphx_glr_download_auto_examples_compose_plot_feature_union.py:

.. only:: html

  .. container:: sphx-glr-footer sphx-glr-footer-example


    .. container:: binder-badge

      .. image:: images/binder_badge_logo.svg
        :target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/1.1.X?urlpath=lab/tree/notebooks/auto_examples/compose/plot_feature_union.ipynb
        :alt: Launch binder
        :width: 150 px

    .. container:: sphx-glr-download sphx-glr-download-python

      :download:`Download Python source code: plot_feature_union.py <plot_feature_union.py>`

    .. container:: sphx-glr-download sphx-glr-download-jupyter

      :download:`Download Jupyter notebook: plot_feature_union.ipynb <plot_feature_union.ipynb>`


.. only:: html

 .. rst-class:: sphx-glr-signature

    `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_