This is documentation for an old release of Scikit-learn (version 1.0). Try the latest stable release (version 1.6) or development (unstable) versions.

sklearn.preprocessing.KBinsDiscretizer

class sklearn.preprocessing.KBinsDiscretizer(n_bins=5, *, encode='onehot', strategy='quantile', dtype=None)[source]

Bin continuous data into intervals.

Read more in the User Guide.

New in version 0.20.

Parameters
n_binsint or array-like of shape (n_features,), default=5

The number of bins to produce. Raises ValueError if n_bins < 2.

encode{‘onehot’, ‘onehot-dense’, ‘ordinal’}, default=’onehot’

Method used to encode the transformed result.

  • ‘onehot’: Encode the transformed result with one-hot encoding and return a sparse matrix. Ignored features are always stacked to the right.

  • ‘onehot-dense’: Encode the transformed result with one-hot encoding and return a dense array. Ignored features are always stacked to the right.

  • ‘ordinal’: Return the bin identifier encoded as an integer value.

strategy{‘uniform’, ‘quantile’, ‘kmeans’}, default=’quantile’

Strategy used to define the widths of the bins.

  • ‘uniform’: All bins in each feature have identical widths.

  • ‘quantile’: All bins in each feature have the same number of points.

  • ‘kmeans’: Values in each bin have the same nearest center of a 1D k-means cluster.

dtype{np.float32, np.float64}, default=None

The desired data-type for the output. If None, output dtype is consistent with input dtype. Only np.float32 and np.float64 are supported.

New in version 0.24.

Attributes
bin_edges_ndarray of ndarray of shape (n_features,)

The edges of each bin. Contain arrays of varying shapes (n_bins_, ) Ignored features will have empty arrays.

n_bins_ndarray of shape (n_features,), dtype=np.int_

Number of bins per feature. Bins whose width are too small (i.e., <= 1e-8) are removed with a warning.

n_features_in_int

Number of features seen during fit.

New in version 0.24.

feature_names_in_ndarray of shape (n_features_in_,)

Names of features seen during fit. Defined only when X has feature names that are all strings.

New in version 1.0.

See also

Binarizer

Class used to bin values as 0 or 1 based on a parameter threshold.

Notes

In bin edges for feature i, the first and last values are used only for inverse_transform. During transform, bin edges are extended to:

np.concatenate([-np.inf, bin_edges_[i][1:-1], np.inf])

You can combine KBinsDiscretizer with ColumnTransformer if you only want to preprocess part of the features.

KBinsDiscretizer might produce constant features (e.g., when encode = 'onehot' and certain bins do not contain any data). These features can be removed with feature selection algorithms (e.g., VarianceThreshold).

Examples

>>>
>>> from sklearn.preprocessing import KBinsDiscretizer
>>> X = [[-2, 1, -4,   -1],
...      [-1, 2, -3, -0.5],
...      [ 0, 3, -2,  0.5],
...      [ 1, 4, -1,    2]]
>>> est = KBinsDiscretizer(n_bins=3, encode='ordinal', strategy='uniform')
>>> est.fit(X)
KBinsDiscretizer(...)
>>> Xt = est.transform(X)
>>> Xt  
array([[ 0., 0., 0., 0.],
       [ 1., 1., 1., 0.],
       [ 2., 2., 2., 1.],
       [ 2., 2., 2., 2.]])

Sometimes it may be useful to convert the data back into the original feature space. The inverse_transform function converts the binned data into the original feature space. Each value will be equal to the mean of the two bin edges.

>>>
>>> est.bin_edges_[0]
array([-2., -1.,  0.,  1.])
>>> est.inverse_transform(Xt)
array([[-1.5,  1.5, -3.5, -0.5],
       [-0.5,  2.5, -2.5, -0.5],
       [ 0.5,  3.5, -1.5,  0.5],
       [ 0.5,  3.5, -1.5,  1.5]])

Methods

fit(X[, y])

Fit the estimator.

fit_transform(X[, y])

Fit to data, then transform it.

get_feature_names_out([input_features])

Get output feature names.

get_params([deep])

Get parameters for this estimator.

inverse_transform(Xt)

Transform discretized data back to original feature space.

set_params(**params)

Set the parameters of this estimator.

transform(X)

Discretize the data.

fit(X, y=None)[source]

Fit the estimator.

Parameters
Xarray-like of shape (n_samples, n_features)

Data to be discretized.

yNone

Ignored. This parameter exists only for compatibility with Pipeline.

Returns
selfobject

Returns the instance itself.

fit_transform(X, y=None, **fit_params)[source]

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters
Xarray-like of shape (n_samples, n_features)

Input samples.

yarray-like of shape (n_samples,) or (n_samples, n_outputs), default=None

Target values (None for unsupervised transformations).

**fit_paramsdict

Additional fit parameters.

Returns
X_newndarray array of shape (n_samples, n_features_new)

Transformed array.

get_feature_names_out(input_features=None)[source]

Get output feature names.

Parameters
input_featuresarray-like of str or None, default=None

Input features.

  • If input_features is None, then feature_names_in_ is used as feature names in. If feature_names_in_ is not defined, then names are generated: [x0, x1, ..., x(n_features_in_)].

  • If input_features is an array-like, then input_features must match feature_names_in_ if feature_names_in_ is defined.

Returns
feature_names_outndarray of str objects

Transformed feature names.

get_params(deep=True)[source]

Get parameters for this estimator.

Parameters
deepbool, default=True

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns
paramsdict

Parameter names mapped to their values.

inverse_transform(Xt)[source]

Transform discretized data back to original feature space.

Note that this function does not regenerate the original data due to discretization rounding.

Parameters
Xtarray-like of shape (n_samples, n_features)

Transformed data in the binned space.

Returns
Xinvndarray, dtype={np.float32, np.float64}

Data in the original feature space.

set_params(**params)[source]

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters
**paramsdict

Estimator parameters.

Returns
selfestimator instance

Estimator instance.

transform(X)[source]

Discretize the data.

Parameters
Xarray-like of shape (n_samples, n_features)

Data to be discretized.

Returns
Xt{ndarray, sparse matrix}, dtype={np.float32, np.float64}

Data in the binned space. Will be a sparse matrix if self.encode='onehot' and ndarray otherwise.

Examples using sklearn.preprocessing.KBinsDiscretizer