sklearn.linear_model.RidgeClassifierCV

class sklearn.linear_model.RidgeClassifierCV(alphas=(0.1, 1.0, 10.0), *, fit_intercept=True, normalize='deprecated', scoring=None, cv=None, class_weight=None, store_cv_values=False)[source]

Ridge classifier with built-in cross-validation.

See glossary entry for cross-validation estimator.

By default, it performs Leave-One-Out Cross-Validation. Currently, only the n_features > n_samples case is handled efficiently.

Read more in the User Guide.

Parameters
alphasndarray of shape (n_alphas,), default=(0.1, 1.0, 10.0)

Array of alpha values to try. Regularization strength; must be a positive float. Regularization improves the conditioning of the problem and reduces the variance of the estimates. Larger values specify stronger regularization. Alpha corresponds to 1 / (2C) in other linear models such as LogisticRegression or LinearSVC.

fit_interceptbool, default=True

Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be centered).

normalizebool, default=False

This parameter is ignored when fit_intercept is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use StandardScaler before calling fit on an estimator with normalize=False.

Deprecated since version 1.0: normalize was deprecated in version 1.0 and will be removed in 1.2.

scoringstr, callable, default=None

A string (see model evaluation documentation) or a scorer callable object / function with signature scorer(estimator, X, y).

cvint, cross-validation generator or an iterable, default=None

Determines the cross-validation splitting strategy. Possible inputs for cv are:

  • None, to use the efficient Leave-One-Out cross-validation

  • integer, to specify the number of folds.

  • CV splitter,

  • An iterable yielding (train, test) splits as arrays of indices.

Refer User Guide for the various cross-validation strategies that can be used here.

class_weightdict or ‘balanced’, default=None

Weights associated with classes in the form {class_label: weight}. If not given, all classes are supposed to have weight one.

The “balanced” mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as n_samples / (n_classes * np.bincount(y)).

store_cv_valuesbool, default=False

Flag indicating if the cross-validation values corresponding to each alpha should be stored in the cv_values_ attribute (see below). This flag is only compatible with cv=None (i.e. using Leave-One-Out Cross-Validation).

Attributes
cv_values_ndarray of shape (n_samples, n_targets, n_alphas), optional

Cross-validation values for each alpha (only if store_cv_values=True and cv=None). After fit() has been called, this attribute will contain the mean squared errors if scoring is None otherwise it will contain standardized per point prediction values.

coef_ndarray of shape (1, n_features) or (n_targets, n_features)

Coefficient of the features in the decision function.

coef_ is of shape (1, n_features) when the given problem is binary.

intercept_float or ndarray of shape (n_targets,)

Independent term in decision function. Set to 0.0 if fit_intercept = False.

alpha_float

Estimated regularization parameter.

best_score_float

Score of base estimator with best alpha.

New in version 0.23.

classes_ndarray of shape (n_classes,)

Classes labels.

n_features_in_int

Number of features seen during fit.

New in version 0.24.

feature_names_in_ndarray of shape (n_features_in_,)

Names of features seen during fit. Defined only when X has feature names that are all strings.

New in version 1.0.

See also

Ridge

Ridge regression.

RidgeClassifier

Ridge classifier.

RidgeCV

Ridge regression with built-in cross validation.

Notes

For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is implemented by taking advantage of the multi-variate response support in Ridge.

Examples

>>> from sklearn.datasets import load_breast_cancer
>>> from sklearn.linear_model import RidgeClassifierCV
>>> X, y = load_breast_cancer(return_X_y=True)
>>> clf = RidgeClassifierCV(alphas=[1e-3, 1e-2, 1e-1, 1]).fit(X, y)
>>> clf.score(X, y)
0.9630...

Methods

decision_function(X)

Predict confidence scores for samples.

fit(X, y[, sample_weight])

Fit Ridge classifier with cv.

get_params([deep])

Get parameters for this estimator.

predict(X)

Predict class labels for samples in X.

score(X, y[, sample_weight])

Return the mean accuracy on the given test data and labels.

set_params(**params)

Set the parameters of this estimator.

property classes_

Classes labels.

decision_function(X)[source]

Predict confidence scores for samples.

The confidence score for a sample is proportional to the signed distance of that sample to the hyperplane.

Parameters
X{array-like, sparse matrix} of shape (n_samples, n_features)

The data matrix for which we want to get the confidence scores.

Returns
scoresndarray of shape (n_samples,) or (n_samples, n_classes)

Confidence scores per (n_samples, n_classes) combination. In the binary case, confidence score for self.classes_[1] where >0 means this class would be predicted.

fit(X, y, sample_weight=None)[source]

Fit Ridge classifier with cv.

Parameters
Xndarray of shape (n_samples, n_features)

Training vectors, where n_samples is the number of samples and n_features is the number of features. When using GCV, will be cast to float64 if necessary.

yndarray of shape (n_samples,)

Target values. Will be cast to X’s dtype if necessary.

sample_weightfloat or ndarray of shape (n_samples,), default=None

Individual weights for each sample. If given a float, every sample will have the same weight.

Returns
selfobject

Fitted estimator.

get_params(deep=True)[source]

Get parameters for this estimator.

Parameters
deepbool, default=True

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns
paramsdict

Parameter names mapped to their values.

predict(X)[source]

Predict class labels for samples in X.

Parameters
X{array-like, spare matrix} of shape (n_samples, n_features)

The data matrix for which we want to predict the targets.

Returns
y_predndarray of shape (n_samples,) or (n_samples, n_outputs)

Vector or matrix containing the predictions. In binary and multiclass problems, this is a vector containing n_samples. In a multilabel problem, it returns a matrix of shape (n_samples, n_outputs).

score(X, y, sample_weight=None)[source]

Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.

Parameters
Xarray-like of shape (n_samples, n_features)

Test samples.

yarray-like of shape (n_samples,) or (n_samples, n_outputs)

True labels for X.

sample_weightarray-like of shape (n_samples,), default=None

Sample weights.

Returns
scorefloat

Mean accuracy of self.predict(X) wrt. y.

set_params(**params)[source]

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters
**paramsdict

Estimator parameters.

Returns
selfestimator instance

Estimator instance.