.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "auto_examples/neighbors/plot_nca_classification.py"
.. LINE NUMBERS ARE GIVEN BELOW.

.. only:: html

    .. note::
        :class: sphx-glr-download-link-note

        Click :ref:`here <sphx_glr_download_auto_examples_neighbors_plot_nca_classification.py>`
        to download the full example code or to run this example in your browser via Binder

.. rst-class:: sphx-glr-example-title

.. _sphx_glr_auto_examples_neighbors_plot_nca_classification.py:


=============================================================================
Comparing Nearest Neighbors with and without Neighborhood Components Analysis
=============================================================================

An example comparing nearest neighbors classification with and without
Neighborhood Components Analysis.

It will plot the class decision boundaries given by a Nearest Neighbors
classifier when using the Euclidean distance on the original features, versus
using the Euclidean distance after the transformation learned by Neighborhood
Components Analysis. The latter aims to find a linear transformation that
maximises the (stochastic) nearest neighbor classification accuracy on the
training set.

.. GENERATED FROM PYTHON SOURCE LINES 16-89



.. rst-class:: sphx-glr-horizontal


    *

      .. image:: /auto_examples/neighbors/images/sphx_glr_plot_nca_classification_001.png
          :alt: KNN (k = 1)
          :class: sphx-glr-multi-img

    *

      .. image:: /auto_examples/neighbors/images/sphx_glr_plot_nca_classification_002.png
          :alt: NCA, KNN (k = 1)
          :class: sphx-glr-multi-img


.. rst-class:: sphx-glr-script-out

 Out:

 .. code-block:: none


    /home/circleci/project/examples/neighbors/plot_nca_classification.py:78: MatplotlibDeprecationWarning: shading='flat' when X and Y have the same dimensions as C is deprecated since 3.3.  Either specify the corners of the quadrilaterals with X and Y, or pass shading='auto', 'nearest' or 'gouraud', or set rcParams['pcolor.shading'].  This will become an error two minor releases later.
      plt.pcolormesh(xx, yy, Z, cmap=cmap_light, alpha=.8)
    /home/circleci/project/examples/neighbors/plot_nca_classification.py:78: MatplotlibDeprecationWarning: shading='flat' when X and Y have the same dimensions as C is deprecated since 3.3.  Either specify the corners of the quadrilaterals with X and Y, or pass shading='auto', 'nearest' or 'gouraud', or set rcParams['pcolor.shading'].  This will become an error two minor releases later.
      plt.pcolormesh(xx, yy, Z, cmap=cmap_light, alpha=.8)






|

.. code-block:: default


    # License: BSD 3 clause

    import numpy as np
    import matplotlib.pyplot as plt
    from matplotlib.colors import ListedColormap
    from sklearn import datasets
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler
    from sklearn.neighbors import (KNeighborsClassifier,
                                   NeighborhoodComponentsAnalysis)
    from sklearn.pipeline import Pipeline


    print(__doc__)

    n_neighbors = 1

    dataset = datasets.load_iris()
    X, y = dataset.data, dataset.target

    # we only take two features. We could avoid this ugly
    # slicing by using a two-dim dataset
    X = X[:, [0, 2]]

    X_train, X_test, y_train, y_test = \
        train_test_split(X, y, stratify=y, test_size=0.7, random_state=42)

    h = .01  # step size in the mesh

    # Create color maps
    cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF'])
    cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF'])

    names = ['KNN', 'NCA, KNN']

    classifiers = [Pipeline([('scaler', StandardScaler()),
                             ('knn', KNeighborsClassifier(n_neighbors=n_neighbors))
                             ]),
                   Pipeline([('scaler', StandardScaler()),
                             ('nca', NeighborhoodComponentsAnalysis()),
                             ('knn', KNeighborsClassifier(n_neighbors=n_neighbors))
                             ])
                   ]

    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                         np.arange(y_min, y_max, h))

    for name, clf in zip(names, classifiers):

        clf.fit(X_train, y_train)
        score = clf.score(X_test, y_test)

        # Plot the decision boundary. For that, we will assign a color to each
        # point in the mesh [x_min, x_max]x[y_min, y_max].
        Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

        # Put the result into a color plot
        Z = Z.reshape(xx.shape)
        plt.figure()
        plt.pcolormesh(xx, yy, Z, cmap=cmap_light, alpha=.8)

        # Plot also the training and testing points
        plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold, edgecolor='k', s=20)
        plt.xlim(xx.min(), xx.max())
        plt.ylim(yy.min(), yy.max())
        plt.title("{} (k = {})".format(name, n_neighbors))
        plt.text(0.9, 0.1, '{:.2f}'.format(score), size=15,
                 ha='center', va='center', transform=plt.gca().transAxes)

    plt.show()


.. rst-class:: sphx-glr-timing

   **Total running time of the script:** ( 0 minutes  21.798 seconds)


.. _sphx_glr_download_auto_examples_neighbors_plot_nca_classification.py:


.. only :: html

 .. container:: sphx-glr-footer
    :class: sphx-glr-footer-example


  .. container:: binder-badge

    .. image:: images/binder_badge_logo.svg
      :target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/0.24.X?urlpath=lab/tree/notebooks/auto_examples/neighbors/plot_nca_classification.ipynb
      :alt: Launch binder
      :width: 150 px


  .. container:: sphx-glr-download sphx-glr-download-python

     :download:`Download Python source code: plot_nca_classification.py <plot_nca_classification.py>`



  .. container:: sphx-glr-download sphx-glr-download-jupyter

     :download:`Download Jupyter notebook: plot_nca_classification.ipynb <plot_nca_classification.ipynb>`


.. only:: html

 .. rst-class:: sphx-glr-signature

    `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_