.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/gaussian_process/plot_gpr_noisy_targets.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_gaussian_process_plot_gpr_noisy_targets.py: ========================================================= Gaussian Processes regression: basic introductory example ========================================================= A simple one-dimensional regression example computed in two different ways: 1. A noise-free case 2. A noisy case with known noise-level per datapoint In both cases, the kernel's parameters are estimated using the maximum likelihood principle. The figures illustrate the interpolating property of the Gaussian Process model as well as its probabilistic nature in the form of a pointwise 95% confidence interval. Note that the parameter ``alpha`` is applied as a Tikhonov regularization of the assumed covariance between the training points. .. GENERATED FROM PYTHON SOURCE LINES 21-114 .. rst-class:: sphx-glr-horizontal * .. image:: /auto_examples/gaussian_process/images/sphx_glr_plot_gpr_noisy_targets_001.png :alt: plot gpr noisy targets :class: sphx-glr-multi-img * .. image:: /auto_examples/gaussian_process/images/sphx_glr_plot_gpr_noisy_targets_002.png :alt: plot gpr noisy targets :class: sphx-glr-multi-img .. code-block:: default print(__doc__) # Author: Vincent Dubourg # Jake Vanderplas # Jan Hendrik Metzen s # License: BSD 3 clause import numpy as np from matplotlib import pyplot as plt from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import RBF, ConstantKernel as C np.random.seed(1) def f(x): """The function to predict.""" return x * np.sin(x) # ---------------------------------------------------------------------- # First the noiseless case X = np.atleast_2d([1., 3., 5., 6., 7., 8.]).T # Observations y = f(X).ravel() # Mesh the input space for evaluations of the real function, the prediction and # its MSE x = np.atleast_2d(np.linspace(0, 10, 1000)).T # Instantiate a Gaussian Process model kernel = C(1.0, (1e-3, 1e3)) * RBF(10, (1e-2, 1e2)) gp = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=9) # Fit to data using Maximum Likelihood Estimation of the parameters gp.fit(X, y) # Make the prediction on the meshed x-axis (ask for MSE as well) y_pred, sigma = gp.predict(x, return_std=True) # Plot the function, the prediction and the 95% confidence interval based on # the MSE plt.figure() plt.plot(x, f(x), 'r:', label=r'$f(x) = x\,\sin(x)$') plt.plot(X, y, 'r.', markersize=10, label='Observations') plt.plot(x, y_pred, 'b-', label='Prediction') plt.fill(np.concatenate([x, x[::-1]]), np.concatenate([y_pred - 1.9600 * sigma, (y_pred + 1.9600 * sigma)[::-1]]), alpha=.5, fc='b', ec='None', label='95% confidence interval') plt.xlabel('$x$') plt.ylabel('$f(x)$') plt.ylim(-10, 20) plt.legend(loc='upper left') # ---------------------------------------------------------------------- # now the noisy case X = np.linspace(0.1, 9.9, 20) X = np.atleast_2d(X).T # Observations and noise y = f(X).ravel() dy = 0.5 + 1.0 * np.random.random(y.shape) noise = np.random.normal(0, dy) y += noise # Instantiate a Gaussian Process model gp = GaussianProcessRegressor(kernel=kernel, alpha=dy ** 2, n_restarts_optimizer=10) # Fit to data using Maximum Likelihood Estimation of the parameters gp.fit(X, y) # Make the prediction on the meshed x-axis (ask for MSE as well) y_pred, sigma = gp.predict(x, return_std=True) # Plot the function, the prediction and the 95% confidence interval based on # the MSE plt.figure() plt.plot(x, f(x), 'r:', label=r'$f(x) = x\,\sin(x)$') plt.errorbar(X.ravel(), y, dy, fmt='r.', markersize=10, label='Observations') plt.plot(x, y_pred, 'b-', label='Prediction') plt.fill(np.concatenate([x, x[::-1]]), np.concatenate([y_pred - 1.9600 * sigma, (y_pred + 1.9600 * sigma)[::-1]]), alpha=.5, fc='b', ec='None', label='95% confidence interval') plt.xlabel('$x$') plt.ylabel('$f(x)$') plt.ylim(-10, 20) plt.legend(loc='upper left') plt.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.555 seconds) .. _sphx_glr_download_auto_examples_gaussian_process_plot_gpr_noisy_targets.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/0.24.X?urlpath=lab/tree/notebooks/auto_examples/gaussian_process/plot_gpr_noisy_targets.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_gpr_noisy_targets.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_gpr_noisy_targets.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_