sklearn.preprocessing.add_dummy_feature

sklearn.preprocessing.add_dummy_feature(X, value=1.0)[source]

Augment dataset with an additional dummy feature.

This is useful for fitting an intercept term with implementations which cannot otherwise fit it directly.

Parameters
X{array-like, sparse matrix}, shape [n_samples, n_features]

Data.

valuefloat

Value to use for the dummy feature.

Returns
X{array, sparse matrix}, shape [n_samples, n_features + 1]

Same data with dummy feature added as first column.

Examples

>>> from sklearn.preprocessing import add_dummy_feature
>>> add_dummy_feature([[0, 1], [1, 0]])
array([[1., 0., 1.],
       [1., 1., 0.]])