sklearn.metrics.max_error¶
- 
sklearn.metrics.max_error(y_true, y_pred)[source]¶ max_error metric calculates the maximum residual error.
Read more in the User Guide.
- Parameters
 - y_truearray-like of shape (n_samples,)
 Ground truth (correct) target values.
- y_predarray-like of shape (n_samples,)
 Estimated target values.
- Returns
 - max_errorfloat
 A positive floating point value (the best value is 0.0).
Examples
>>> from sklearn.metrics import max_error >>> y_true = [3, 2, 7, 1] >>> y_pred = [4, 2, 7, 1] >>> max_error(y_true, y_pred) 1