sklearn.kernel_approximation.AdditiveChi2Sampler

class sklearn.kernel_approximation.AdditiveChi2Sampler(*, sample_steps=2, sample_interval=None)[source]

Approximate feature map for additive chi2 kernel.

Uses sampling the fourier transform of the kernel characteristic at regular intervals.

Since the kernel that is to be approximated is additive, the components of the input vectors can be treated separately. Each entry in the original space is transformed into 2*sample_steps+1 features, where sample_steps is a parameter of the method. Typical values of sample_steps include 1, 2 and 3.

Optimal choices for the sampling interval for certain data ranges can be computed (see the reference). The default values should be reasonable.

Read more in the User Guide.

Parameters
sample_stepsint, optional

Gives the number of (complex) sampling points.

sample_intervalfloat, optional

Sampling interval. Must be specified when sample_steps not in {1,2,3}.

Attributes
sample_interval_float

Stored sampling interval. Specified as a parameter if sample_steps not in {1,2,3}.

See also

SkewedChi2Sampler

A Fourier-approximation to a non-additive variant of the chi squared kernel.

sklearn.metrics.pairwise.chi2_kernel

The exact chi squared kernel.

sklearn.metrics.pairwise.additive_chi2_kernel

The exact additive chi squared kernel.

Notes

This estimator approximates a slightly different version of the additive chi squared kernel then metric.additive_chi2 computes.

References

See “Efficient additive kernels via explicit feature maps” A. Vedaldi and A. Zisserman, Pattern Analysis and Machine Intelligence, 2011

Examples

>>> from sklearn.datasets import load_digits
>>> from sklearn.linear_model import SGDClassifier
>>> from sklearn.kernel_approximation import AdditiveChi2Sampler
>>> X, y = load_digits(return_X_y=True)
>>> chi2sampler = AdditiveChi2Sampler(sample_steps=2)
>>> X_transformed = chi2sampler.fit_transform(X, y)
>>> clf = SGDClassifier(max_iter=5, random_state=0, tol=1e-3)
>>> clf.fit(X_transformed, y)
SGDClassifier(max_iter=5, random_state=0)
>>> clf.score(X_transformed, y)
0.9499...

Methods

fit(X[, y])

Set the parameters

fit_transform(X[, y])

Fit to data, then transform it.

get_params([deep])

Get parameters for this estimator.

set_params(**params)

Set the parameters of this estimator.

transform(X)

Apply approximate feature map to X.

__init__(*, sample_steps=2, sample_interval=None)[source]

Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)[source]

Set the parameters

Parameters
Xarray-like, shape (n_samples, n_features)

Training data, where n_samples in the number of samples and n_features is the number of features.

Returns
selfobject

Returns the transformer.

fit_transform(X, y=None, **fit_params)[source]

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters
X{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)
yndarray of shape (n_samples,), default=None

Target values.

**fit_paramsdict

Additional fit parameters.

Returns
X_newndarray array of shape (n_samples, n_features_new)

Transformed array.

get_params(deep=True)[source]

Get parameters for this estimator.

Parameters
deepbool, default=True

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns
paramsmapping of string to any

Parameter names mapped to their values.

set_params(**params)[source]

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters
**paramsdict

Estimator parameters.

Returns
selfobject

Estimator instance.

transform(X)[source]

Apply approximate feature map to X.

Parameters
X{array-like, sparse matrix} of shape (n_samples, n_features)
Returns
X_new{array, sparse matrix}, shape = (n_samples, n_features * (2*sample_steps + 1))

Whether the return value is an array of sparse matrix depends on the type of the input X.