.. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_impute_plot_missing_values.py: ==================================================== Imputing missing values before building an estimator ==================================================== Missing values can be replaced by the mean, the median or the most frequent value using the basic :class:`sklearn.impute.SimpleImputer`. In this example we will investigate different imputation techniques: - imputation by the constant value 0 - imputation by the mean value of each feature combined with a missing-ness indicator auxiliary variable - k nearest neighbor imputation - iterative imputation We will use two datasets: Diabetes dataset which consists of 10 feature variables collected from diabetes patients with an aim to predict disease progression and California Housing dataset for which the target is the median house value for California districts. As neither of these datasets have missing values, we will remove some values to create new versions with artificially missing data. The performance of :class:`~sklearn.ensemble.RandomForestRegressor` on the full original dataset is then compared the performance on the altered datasets with the artificially missing values imputed using different techniques. .. code-block:: default print(__doc__) # Authors: Maria Telenczuk # License: BSD 3 clause Download the data and make missing values sets ############################################### First we download the two datasets. Diabetes dataset is shipped with scikit-learn. It has 442 entries, each with 10 features. California Housing dataset is much larger with 20640 entries and 8 features. It needs to be downloaded. We will only use the first 400 entries for the sake of speeding up the calculations but feel free to use the whole dataset. .. code-block:: default import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.datasets import load_diabetes rng = np.random.RandomState(42) X_diabetes, y_diabetes = load_diabetes(return_X_y=True) X_california, y_california = fetch_california_housing(return_X_y=True) X_california = X_california[:400] y_california = y_california[:400] def add_missing_values(X_full, y_full): n_samples, n_features = X_full.shape # Add missing values in 75% of the lines missing_rate = 0.75 n_missing_samples = int(n_samples * missing_rate) missing_samples = np.zeros(n_samples, dtype=np.bool) missing_samples[: n_missing_samples] = True rng.shuffle(missing_samples) missing_features = rng.randint(0, n_features, n_missing_samples) X_missing = X_full.copy() X_missing[missing_samples, missing_features] = np.nan y_missing = y_full.copy() return X_missing, y_missing X_miss_california, y_miss_california = add_missing_values( X_california, y_california) X_miss_diabetes, y_miss_diabetes = add_missing_values( X_diabetes, y_diabetes) Impute the missing data and score ################################# Now we will write a function which will score the results on the differently imputed data. Let's look at each imputer separately: .. code-block:: default rng = np.random.RandomState(0) from sklearn.ensemble import RandomForestRegressor # To use the experimental IterativeImputer, we need to explicitly ask for it: from sklearn.experimental import enable_iterative_imputer # noqa from sklearn.impute import SimpleImputer, KNNImputer, IterativeImputer from sklearn.model_selection import cross_val_score from sklearn.pipeline import make_pipeline N_SPLITS = 5 regressor = RandomForestRegressor(random_state=0) Missing information ------------------- In addition to imputing the missing values, the imputers have an `add_indicator` parameter that marks the values that were missing, which might carry some information. .. code-block:: default def get_scores_for_imputer(imputer, X_missing, y_missing): estimator = make_pipeline(imputer, regressor) impute_scores = cross_val_score(estimator, X_missing, y_missing, scoring='neg_mean_squared_error', cv=N_SPLITS) return impute_scores x_labels = ['Full data', 'Zero imputation', 'Mean Imputation', 'KNN Imputation', 'Iterative Imputation'] mses_california = np.zeros(5) stds_california = np.zeros(5) mses_diabetes = np.zeros(5) stds_diabetes = np.zeros(5) Estimate the score ------------------ First, we want to estimate the score on the original data: .. code-block:: default def get_full_score(X_full, y_full): full_scores = cross_val_score(regressor, X_full, y_full, scoring='neg_mean_squared_error', cv=N_SPLITS) return full_scores.mean(), full_scores.std() mses_california[0], stds_california[0] = get_full_score(X_california, y_california) mses_diabetes[0], stds_diabetes[0] = get_full_score(X_diabetes, y_diabetes) Replace missing values by 0 --------------------------- Now we will estimate the score on the data where the missing values are replaced by 0: .. code-block:: default def get_impute_zero_score(X_missing, y_missing): imputer = SimpleImputer(missing_values=np.nan, add_indicator=True, strategy='constant', fill_value=0) zero_impute_scores = get_scores_for_imputer(imputer, X_missing, y_missing) return zero_impute_scores.mean(), zero_impute_scores.std() mses_california[1], stds_california[1] = get_impute_zero_score( X_miss_california, y_miss_california) mses_diabetes[1], stds_diabetes[1] = get_impute_zero_score(X_miss_diabetes, y_miss_diabetes) kNN-imputation of the missing values ------------------------------------ :class:`sklearn.impute.KNNImputer` imputes missing values using the weighted or unweighted mean of the desired number of nearest neighbors. .. code-block:: default def get_impute_knn_score(X_missing, y_missing): imputer = KNNImputer(missing_values=np.nan, add_indicator=True) knn_impute_scores = get_scores_for_imputer(imputer, X_missing, y_missing) return knn_impute_scores.mean(), knn_impute_scores.std() mses_california[2], stds_california[2] = get_impute_knn_score( X_miss_california, y_miss_california) mses_diabetes[2], stds_diabetes[2] = get_impute_knn_score(X_miss_diabetes, y_miss_diabetes) Impute missing values with mean ------------------------------- .. code-block:: default def get_impute_mean(X_missing, y_missing): imputer = SimpleImputer(missing_values=np.nan, strategy="mean", add_indicator=True) mean_impute_scores = get_scores_for_imputer(imputer, X_missing, y_missing) return mean_impute_scores.mean(), mean_impute_scores.std() mses_california[3], stds_california[3] = get_impute_mean(X_miss_california, y_miss_california) mses_diabetes[3], stds_diabetes[3] = get_impute_mean(X_miss_diabetes, y_miss_diabetes) Iterative imputation of the missing values ------------------------------------------ Another option is the :class:`sklearn.impute.IterativeImputer`. This uses round-robin linear regression, modeling each feature with missing values as a function of other features, in turn. The version implemented assumes Gaussian (output) variables. If your features are obviously non-normal, consider transforming them to look more normal to potentially improve performance. .. code-block:: default def get_impute_iterative(X_missing, y_missing): imputer = IterativeImputer(missing_values=np.nan, add_indicator=True, random_state=0, n_nearest_features=5, sample_posterior=True) iterative_impute_scores = get_scores_for_imputer(imputer, X_missing, y_missing) return iterative_impute_scores.mean(), iterative_impute_scores.std() mses_california[4], stds_california[4] = get_impute_iterative( X_miss_california, y_miss_california) mses_diabetes[4], stds_diabetes[4] = get_impute_iterative(X_miss_diabetes, y_miss_diabetes) mses_diabetes = mses_diabetes * -1 mses_california = mses_california * -1 Plot the results ################ Finally we are going to visualize the score: .. code-block:: default import matplotlib.pyplot as plt n_bars = len(mses_diabetes) xval = np.arange(n_bars) colors = ['r', 'g', 'b', 'orange', 'black'] # plot diabetes results plt.figure(figsize=(12, 6)) ax1 = plt.subplot(121) for j in xval: ax1.barh(j, mses_diabetes[j], xerr=stds_diabetes[j], color=colors[j], alpha=0.6, align='center') ax1.set_title('Imputation Techniques with Diabetes Data') ax1.set_xlim(left=np.min(mses_diabetes) * 0.9, right=np.max(mses_diabetes) * 1.1) ax1.set_yticks(xval) ax1.set_xlabel('MSE') ax1.invert_yaxis() ax1.set_yticklabels(x_labels) # plot california dataset results ax2 = plt.subplot(122) for j in xval: ax2.barh(j, mses_california[j], xerr=stds_california[j], color=colors[j], alpha=0.6, align='center') ax2.set_title('Imputation Techniques with California Data') ax2.set_yticks(xval) ax2.set_xlabel('MSE') ax2.invert_yaxis() ax2.set_yticklabels([''] * n_bars) plt.show() # You can also try different techniques. For instance, the median is a more # robust estimator for data with high magnitude variables which could dominate # results (otherwise known as a 'long tail'). .. image:: /auto_examples/impute/images/sphx_glr_plot_missing_values_001.png :alt: Imputation Techniques with Diabetes Data, Imputation Techniques with California Data :class: sphx-glr-single-img .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 15.287 seconds) .. _sphx_glr_download_auto_examples_impute_plot_missing_values.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/0.23.X?urlpath=lab/tree/notebooks/auto_examples/impute/plot_missing_values.ipynb :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_missing_values.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_missing_values.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_