.. only:: html
.. note::
:class: sphx-glr-download-link-note
Click :ref:`here ` to download the full example code or to run this example in your browser via Binder
.. rst-class:: sphx-glr-example-title
.. _sphx_glr_auto_examples_ensemble_plot_gradient_boosting_regression.py:
============================
Gradient Boosting regression
============================
This example demonstrates Gradient Boosting to produce a predictive
model from an ensemble of weak predictive models. Gradient boosting can be used
for regression and classification problems. Here, we will train a model to
tackle a diabetes regression task. We will obtain the results from
:class:`~sklearn.ensemble.GradientBoostingRegressor` with least squares loss
and 500 regression trees of depth 4.
Note: For larger datasets (n_samples >= 10000), please refer to
:class:`sklearn.ensemble.HistGradientBoostingRegressor`.
.. code-block:: default
print(__doc__)
# Author: Peter Prettenhofer
# Maria Telenczuk
# Katrina Ni
#
# License: BSD 3 clause
import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, ensemble
from sklearn.inspection import permutation_importance
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
Load the data
-------------------------------------
First we need to load the data.
.. code-block:: default
diabetes = datasets.load_diabetes()
X, y = diabetes.data, diabetes.target
Data preprocessing
-------------------------------------
Next, we will split our dataset to use 90% for training and leave the rest
for testing. We will also set the regression model parameters. You can play
with these parameters to see how the results change.
n_estimators : the number of boosting stages that will be performed.
Later, we will plot deviance against boosting iterations.
max_depth : limits the number of nodes in the tree.
The best value depends on the interaction of the input variables.
min_samples_split : the minimum number of samples required to split an
internal node.
learning_rate : how much the contribution of each tree will shrink.
loss : loss function to optimize. The least squares function is used in this
case however, there are many other options (see
:class:`~sklearn.ensemble.GradientBoostingRegressor` ).
.. code-block:: default
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.1, random_state=13)
params = {'n_estimators': 500,
'max_depth': 4,
'min_samples_split': 5,
'learning_rate': 0.01,
'loss': 'ls'}
Fit regression model
-------------------------------------
Now we will initiate the gradient boosting regressors and fit it with our
training data. Let's also look and the mean squared error on the test data.
.. code-block:: default
reg = ensemble.GradientBoostingRegressor(**params)
reg.fit(X_train, y_train)
mse = mean_squared_error(y_test, reg.predict(X_test))
print("The mean squared error (MSE) on test set: {:.4f}".format(mse))
.. rst-class:: sphx-glr-script-out
Out:
.. code-block:: none
The mean squared error (MSE) on test set: 3017.9419
Plot training deviance
-------------------------------------
Finally, we will visualize the results. To do that we will first compute the
test set deviance and then plot it against boosting iterations.
.. code-block:: default
test_score = np.zeros((params['n_estimators'],), dtype=np.float64)
for i, y_pred in enumerate(reg.staged_predict(X_test)):
test_score[i] = reg.loss_(y_test, y_pred)
fig = plt.figure(figsize=(6, 6))
plt.subplot(1, 1, 1)
plt.title('Deviance')
plt.plot(np.arange(params['n_estimators']) + 1, reg.train_score_, 'b-',
label='Training Set Deviance')
plt.plot(np.arange(params['n_estimators']) + 1, test_score, 'r-',
label='Test Set Deviance')
plt.legend(loc='upper right')
plt.xlabel('Boosting Iterations')
plt.ylabel('Deviance')
fig.tight_layout()
plt.show()
.. image:: /auto_examples/ensemble/images/sphx_glr_plot_gradient_boosting_regression_001.png
:alt: Deviance
:class: sphx-glr-single-img
Plot feature importance
-------------------------------------
Careful, impurity-based feature importances can be misleading for
high cardinality features (many unique values). As an alternative,
the permutation importances of ``reg`` can be computed on a
held out test set. See :ref:`permutation_importance` for more details.
For this example, the impurity-based and permutation methods identify the
same 2 strongly predictive features but not in the same order. The third most
predictive feature, "bp", is also the same for the 2 methods. The remaining
features are less predictive and the error bars of the permutation plot
show that they overlap with 0.
.. code-block:: default
feature_importance = reg.feature_importances_
sorted_idx = np.argsort(feature_importance)
pos = np.arange(sorted_idx.shape[0]) + .5
fig = plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.barh(pos, feature_importance[sorted_idx], align='center')
plt.yticks(pos, np.array(diabetes.feature_names)[sorted_idx])
plt.title('Feature Importance (MDI)')
result = permutation_importance(reg, X_test, y_test, n_repeats=10,
random_state=42, n_jobs=2)
sorted_idx = result.importances_mean.argsort()
plt.subplot(1, 2, 2)
plt.boxplot(result.importances[sorted_idx].T,
vert=False, labels=np.array(diabetes.feature_names)[sorted_idx])
plt.title("Permutation Importance (test set)")
fig.tight_layout()
plt.show()
.. image:: /auto_examples/ensemble/images/sphx_glr_plot_gradient_boosting_regression_002.png
:alt: Feature Importance (MDI), Permutation Importance (test set)
:class: sphx-glr-single-img
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 0 minutes 1.678 seconds)
.. _sphx_glr_download_auto_examples_ensemble_plot_gradient_boosting_regression.py:
.. only :: html
.. container:: sphx-glr-footer
:class: sphx-glr-footer-example
.. container:: binder-badge
.. image:: https://mybinder.org/badge_logo.svg
:target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/0.23.X?urlpath=lab/tree/notebooks/auto_examples/ensemble/plot_gradient_boosting_regression.ipynb
:width: 150 px
.. container:: sphx-glr-download sphx-glr-download-python
:download:`Download Python source code: plot_gradient_boosting_regression.py `
.. container:: sphx-glr-download sphx-glr-download-jupyter
:download:`Download Jupyter notebook: plot_gradient_boosting_regression.ipynb `
.. only:: html
.. rst-class:: sphx-glr-signature
`Gallery generated by Sphinx-Gallery `_