.. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_applications_plot_out_of_core_classification.py: ====================================================== Out-of-core classification of text documents ====================================================== This is an example showing how scikit-learn can be used for classification using an out-of-core approach: learning from data that doesn't fit into main memory. We make use of an online classifier, i.e., one that supports the partial_fit method, that will be fed with batches of examples. To guarantee that the features space remains the same over time we leverage a HashingVectorizer that will project each example into the same feature space. This is especially useful in the case of text classification where new features (words) may appear in each batch. .. code-block:: default # Authors: Eustache Diemert # @FedericoV # License: BSD 3 clause from glob import glob import itertools import os.path import re import tarfile import time import sys import numpy as np import matplotlib.pyplot as plt from matplotlib import rcParams from html.parser import HTMLParser from urllib.request import urlretrieve from sklearn.datasets import get_data_home from sklearn.feature_extraction.text import HashingVectorizer from sklearn.linear_model import SGDClassifier from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.linear_model import Perceptron from sklearn.naive_bayes import MultinomialNB def _not_in_sphinx(): # Hack to detect whether we are running by the sphinx builder return '__file__' in globals() Reuters Dataset related routines -------------------------------- The dataset used in this example is Reuters-21578 as provided by the UCI ML repository. It will be automatically downloaded and uncompressed on first run. .. code-block:: default class ReutersParser(HTMLParser): """Utility class to parse a SGML file and yield documents one at a time.""" def __init__(self, encoding='latin-1'): HTMLParser.__init__(self) self._reset() self.encoding = encoding def handle_starttag(self, tag, attrs): method = 'start_' + tag getattr(self, method, lambda x: None)(attrs) def handle_endtag(self, tag): method = 'end_' + tag getattr(self, method, lambda: None)() def _reset(self): self.in_title = 0 self.in_body = 0 self.in_topics = 0 self.in_topic_d = 0 self.title = "" self.body = "" self.topics = [] self.topic_d = "" def parse(self, fd): self.docs = [] for chunk in fd: self.feed(chunk.decode(self.encoding)) for doc in self.docs: yield doc self.docs = [] self.close() def handle_data(self, data): if self.in_body: self.body += data elif self.in_title: self.title += data elif self.in_topic_d: self.topic_d += data def start_reuters(self, attributes): pass def end_reuters(self): self.body = re.sub(r'\s+', r' ', self.body) self.docs.append({'title': self.title, 'body': self.body, 'topics': self.topics}) self._reset() def start_title(self, attributes): self.in_title = 1 def end_title(self): self.in_title = 0 def start_body(self, attributes): self.in_body = 1 def end_body(self): self.in_body = 0 def start_topics(self, attributes): self.in_topics = 1 def end_topics(self): self.in_topics = 0 def start_d(self, attributes): self.in_topic_d = 1 def end_d(self): self.in_topic_d = 0 self.topics.append(self.topic_d) self.topic_d = "" def stream_reuters_documents(data_path=None): """Iterate over documents of the Reuters dataset. The Reuters archive will automatically be downloaded and uncompressed if the `data_path` directory does not exist. Documents are represented as dictionaries with 'body' (str), 'title' (str), 'topics' (list(str)) keys. """ DOWNLOAD_URL = ('http://archive.ics.uci.edu/ml/machine-learning-databases/' 'reuters21578-mld/reuters21578.tar.gz') ARCHIVE_FILENAME = 'reuters21578.tar.gz' if data_path is None: data_path = os.path.join(get_data_home(), "reuters") if not os.path.exists(data_path): """Download the dataset.""" print("downloading dataset (once and for all) into %s" % data_path) os.mkdir(data_path) def progress(blocknum, bs, size): total_sz_mb = '%.2f MB' % (size / 1e6) current_sz_mb = '%.2f MB' % ((blocknum * bs) / 1e6) if _not_in_sphinx(): sys.stdout.write( '\rdownloaded %s / %s' % (current_sz_mb, total_sz_mb)) archive_path = os.path.join(data_path, ARCHIVE_FILENAME) urlretrieve(DOWNLOAD_URL, filename=archive_path, reporthook=progress) if _not_in_sphinx(): sys.stdout.write('\r') print("untarring Reuters dataset...") tarfile.open(archive_path, 'r:gz').extractall(data_path) print("done.") parser = ReutersParser() for filename in glob(os.path.join(data_path, "*.sgm")): for doc in parser.parse(open(filename, 'rb')): yield doc Main ---- Create the vectorizer and limit the number of features to a reasonable maximum .. code-block:: default vectorizer = HashingVectorizer(decode_error='ignore', n_features=2 ** 18, alternate_sign=False) # Iterator over parsed Reuters SGML files. data_stream = stream_reuters_documents() # We learn a binary classification between the "acq" class and all the others. # "acq" was chosen as it is more or less evenly distributed in the Reuters # files. For other datasets, one should take care of creating a test set with # a realistic portion of positive instances. all_classes = np.array([0, 1]) positive_class = 'acq' # Here are some classifiers that support the `partial_fit` method partial_fit_classifiers = { 'SGD': SGDClassifier(max_iter=5), 'Perceptron': Perceptron(), 'NB Multinomial': MultinomialNB(alpha=0.01), 'Passive-Aggressive': PassiveAggressiveClassifier(), } def get_minibatch(doc_iter, size, pos_class=positive_class): """Extract a minibatch of examples, return a tuple X_text, y. Note: size is before excluding invalid docs with no topics assigned. """ data = [('{title}\n\n{body}'.format(**doc), pos_class in doc['topics']) for doc in itertools.islice(doc_iter, size) if doc['topics']] if not len(data): return np.asarray([], dtype=int), np.asarray([], dtype=int) X_text, y = zip(*data) return X_text, np.asarray(y, dtype=int) def iter_minibatches(doc_iter, minibatch_size): """Generator of minibatches.""" X_text, y = get_minibatch(doc_iter, minibatch_size) while len(X_text): yield X_text, y X_text, y = get_minibatch(doc_iter, minibatch_size) # test data statistics test_stats = {'n_test': 0, 'n_test_pos': 0} # First we hold out a number of examples to estimate accuracy n_test_documents = 1000 tick = time.time() X_test_text, y_test = get_minibatch(data_stream, 1000) parsing_time = time.time() - tick tick = time.time() X_test = vectorizer.transform(X_test_text) vectorizing_time = time.time() - tick test_stats['n_test'] += len(y_test) test_stats['n_test_pos'] += sum(y_test) print("Test set is %d documents (%d positive)" % (len(y_test), sum(y_test))) def progress(cls_name, stats): """Report progress information, return a string.""" duration = time.time() - stats['t0'] s = "%20s classifier : \t" % cls_name s += "%(n_train)6d train docs (%(n_train_pos)6d positive) " % stats s += "%(n_test)6d test docs (%(n_test_pos)6d positive) " % test_stats s += "accuracy: %(accuracy).3f " % stats s += "in %.2fs (%5d docs/s)" % (duration, stats['n_train'] / duration) return s cls_stats = {} for cls_name in partial_fit_classifiers: stats = {'n_train': 0, 'n_train_pos': 0, 'accuracy': 0.0, 'accuracy_history': [(0, 0)], 't0': time.time(), 'runtime_history': [(0, 0)], 'total_fit_time': 0.0} cls_stats[cls_name] = stats get_minibatch(data_stream, n_test_documents) # Discard test set # We will feed the classifier with mini-batches of 1000 documents; this means # we have at most 1000 docs in memory at any time. The smaller the document # batch, the bigger the relative overhead of the partial fit methods. minibatch_size = 1000 # Create the data_stream that parses Reuters SGML files and iterates on # documents as a stream. minibatch_iterators = iter_minibatches(data_stream, minibatch_size) total_vect_time = 0.0 # Main loop : iterate on mini-batches of examples for i, (X_train_text, y_train) in enumerate(minibatch_iterators): tick = time.time() X_train = vectorizer.transform(X_train_text) total_vect_time += time.time() - tick for cls_name, cls in partial_fit_classifiers.items(): tick = time.time() # update estimator with examples in the current mini-batch cls.partial_fit(X_train, y_train, classes=all_classes) # accumulate test accuracy stats cls_stats[cls_name]['total_fit_time'] += time.time() - tick cls_stats[cls_name]['n_train'] += X_train.shape[0] cls_stats[cls_name]['n_train_pos'] += sum(y_train) tick = time.time() cls_stats[cls_name]['accuracy'] = cls.score(X_test, y_test) cls_stats[cls_name]['prediction_time'] = time.time() - tick acc_history = (cls_stats[cls_name]['accuracy'], cls_stats[cls_name]['n_train']) cls_stats[cls_name]['accuracy_history'].append(acc_history) run_history = (cls_stats[cls_name]['accuracy'], total_vect_time + cls_stats[cls_name]['total_fit_time']) cls_stats[cls_name]['runtime_history'].append(run_history) if i % 3 == 0: print(progress(cls_name, cls_stats[cls_name])) if i % 3 == 0: print('\n') .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Test set is 975 documents (104 positive) SGD classifier : 981 train docs ( 125 positive) 975 test docs ( 104 positive) accuracy: 0.914 in 0.76s ( 1292 docs/s) Perceptron classifier : 981 train docs ( 125 positive) 975 test docs ( 104 positive) accuracy: 0.912 in 0.76s ( 1287 docs/s) NB Multinomial classifier : 981 train docs ( 125 positive) 975 test docs ( 104 positive) accuracy: 0.893 in 0.78s ( 1256 docs/s) Passive-Aggressive classifier : 981 train docs ( 125 positive) 975 test docs ( 104 positive) accuracy: 0.927 in 0.78s ( 1251 docs/s) SGD classifier : 3851 train docs ( 445 positive) 975 test docs ( 104 positive) accuracy: 0.951 in 2.17s ( 1774 docs/s) Perceptron classifier : 3851 train docs ( 445 positive) 975 test docs ( 104 positive) accuracy: 0.942 in 2.17s ( 1772 docs/s) NB Multinomial classifier : 3851 train docs ( 445 positive) 975 test docs ( 104 positive) accuracy: 0.910 in 2.19s ( 1757 docs/s) Passive-Aggressive classifier : 3851 train docs ( 445 positive) 975 test docs ( 104 positive) accuracy: 0.958 in 2.19s ( 1755 docs/s) SGD classifier : 6715 train docs ( 811 positive) 975 test docs ( 104 positive) accuracy: 0.951 in 3.50s ( 1917 docs/s) Perceptron classifier : 6715 train docs ( 811 positive) 975 test docs ( 104 positive) accuracy: 0.918 in 3.50s ( 1916 docs/s) NB Multinomial classifier : 6715 train docs ( 811 positive) 975 test docs ( 104 positive) accuracy: 0.920 in 3.52s ( 1907 docs/s) Passive-Aggressive classifier : 6715 train docs ( 811 positive) 975 test docs ( 104 positive) accuracy: 0.955 in 3.52s ( 1905 docs/s) SGD classifier : 9509 train docs ( 1093 positive) 975 test docs ( 104 positive) accuracy: 0.957 in 4.81s ( 1975 docs/s) Perceptron classifier : 9509 train docs ( 1093 positive) 975 test docs ( 104 positive) accuracy: 0.966 in 4.82s ( 1974 docs/s) NB Multinomial classifier : 9509 train docs ( 1093 positive) 975 test docs ( 104 positive) accuracy: 0.929 in 4.83s ( 1967 docs/s) Passive-Aggressive classifier : 9509 train docs ( 1093 positive) 975 test docs ( 104 positive) accuracy: 0.962 in 4.84s ( 1966 docs/s) SGD classifier : 12031 train docs ( 1396 positive) 975 test docs ( 104 positive) accuracy: 0.961 in 6.15s ( 1957 docs/s) Perceptron classifier : 12031 train docs ( 1396 positive) 975 test docs ( 104 positive) accuracy: 0.935 in 6.15s ( 1956 docs/s) NB Multinomial classifier : 12031 train docs ( 1396 positive) 975 test docs ( 104 positive) accuracy: 0.933 in 6.17s ( 1951 docs/s) Passive-Aggressive classifier : 12031 train docs ( 1396 positive) 975 test docs ( 104 positive) accuracy: 0.965 in 6.17s ( 1950 docs/s) SGD classifier : 14450 train docs ( 1738 positive) 975 test docs ( 104 positive) accuracy: 0.965 in 7.43s ( 1945 docs/s) Perceptron classifier : 14450 train docs ( 1738 positive) 975 test docs ( 104 positive) accuracy: 0.927 in 7.43s ( 1944 docs/s) NB Multinomial classifier : 14450 train docs ( 1738 positive) 975 test docs ( 104 positive) accuracy: 0.937 in 7.45s ( 1940 docs/s) Passive-Aggressive classifier : 14450 train docs ( 1738 positive) 975 test docs ( 104 positive) accuracy: 0.954 in 7.45s ( 1939 docs/s) SGD classifier : 17306 train docs ( 2163 positive) 975 test docs ( 104 positive) accuracy: 0.967 in 8.77s ( 1973 docs/s) Perceptron classifier : 17306 train docs ( 2163 positive) 975 test docs ( 104 positive) accuracy: 0.956 in 8.77s ( 1972 docs/s) NB Multinomial classifier : 17306 train docs ( 2163 positive) 975 test docs ( 104 positive) accuracy: 0.943 in 8.79s ( 1968 docs/s) Passive-Aggressive classifier : 17306 train docs ( 2163 positive) 975 test docs ( 104 positive) accuracy: 0.967 in 8.79s ( 1968 docs/s) Plot results ------------ The plot represents the learning curve of the classifier: the evolution of classification accuracy over the course of the mini-batches. Accuracy is measured on the first 1000 samples, held out as a validation set. To limit the memory consumption, we queue examples up to a fixed amount before feeding them to the learner. .. code-block:: default def plot_accuracy(x, y, x_legend): """Plot accuracy as a function of x.""" x = np.array(x) y = np.array(y) plt.title('Classification accuracy as a function of %s' % x_legend) plt.xlabel('%s' % x_legend) plt.ylabel('Accuracy') plt.grid(True) plt.plot(x, y) rcParams['legend.fontsize'] = 10 cls_names = list(sorted(cls_stats.keys())) # Plot accuracy evolution plt.figure() for _, stats in sorted(cls_stats.items()): # Plot accuracy evolution with #examples accuracy, n_examples = zip(*stats['accuracy_history']) plot_accuracy(n_examples, accuracy, "training examples (#)") ax = plt.gca() ax.set_ylim((0.8, 1)) plt.legend(cls_names, loc='best') plt.figure() for _, stats in sorted(cls_stats.items()): # Plot accuracy evolution with runtime accuracy, runtime = zip(*stats['runtime_history']) plot_accuracy(runtime, accuracy, 'runtime (s)') ax = plt.gca() ax.set_ylim((0.8, 1)) plt.legend(cls_names, loc='best') # Plot fitting times plt.figure() fig = plt.gcf() cls_runtime = [stats['total_fit_time'] for cls_name, stats in sorted(cls_stats.items())] cls_runtime.append(total_vect_time) cls_names.append('Vectorization') bar_colors = ['b', 'g', 'r', 'c', 'm', 'y'] ax = plt.subplot(111) rectangles = plt.bar(range(len(cls_names)), cls_runtime, width=0.5, color=bar_colors) ax.set_xticks(np.linspace(0, len(cls_names) - 1, len(cls_names))) ax.set_xticklabels(cls_names, fontsize=10) ymax = max(cls_runtime) * 1.2 ax.set_ylim((0, ymax)) ax.set_ylabel('runtime (s)') ax.set_title('Training Times') def autolabel(rectangles): """attach some text vi autolabel on rectangles.""" for rect in rectangles: height = rect.get_height() ax.text(rect.get_x() + rect.get_width() / 2., 1.05 * height, '%.4f' % height, ha='center', va='bottom') plt.setp(plt.xticks()[1], rotation=30) autolabel(rectangles) plt.tight_layout() plt.show() # Plot prediction times plt.figure() cls_runtime = [] cls_names = list(sorted(cls_stats.keys())) for cls_name, stats in sorted(cls_stats.items()): cls_runtime.append(stats['prediction_time']) cls_runtime.append(parsing_time) cls_names.append('Read/Parse\n+Feat.Extr.') cls_runtime.append(vectorizing_time) cls_names.append('Hashing\n+Vect.') ax = plt.subplot(111) rectangles = plt.bar(range(len(cls_names)), cls_runtime, width=0.5, color=bar_colors) ax.set_xticks(np.linspace(0, len(cls_names) - 1, len(cls_names))) ax.set_xticklabels(cls_names, fontsize=8) plt.setp(plt.xticks()[1], rotation=30) ymax = max(cls_runtime) * 1.2 ax.set_ylim((0, ymax)) ax.set_ylabel('runtime (s)') ax.set_title('Prediction Times (%d instances)' % n_test_documents) autolabel(rectangles) plt.tight_layout() plt.show() .. rst-class:: sphx-glr-horizontal * .. image:: /auto_examples/applications/images/sphx_glr_plot_out_of_core_classification_001.png :alt: Classification accuracy as a function of training examples (#) :class: sphx-glr-multi-img * .. image:: /auto_examples/applications/images/sphx_glr_plot_out_of_core_classification_002.png :alt: Classification accuracy as a function of runtime (s) :class: sphx-glr-multi-img * .. image:: /auto_examples/applications/images/sphx_glr_plot_out_of_core_classification_003.png :alt: Training Times :class: sphx-glr-multi-img * .. image:: /auto_examples/applications/images/sphx_glr_plot_out_of_core_classification_004.png :alt: Prediction Times (1000 instances) :class: sphx-glr-multi-img .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 9.873 seconds) .. _sphx_glr_download_auto_examples_applications_plot_out_of_core_classification.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: https://mybinder.org/badge_logo.svg :target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/0.23.X?urlpath=lab/tree/notebooks/auto_examples/applications/plot_out_of_core_classification.ipynb :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_out_of_core_classification.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_out_of_core_classification.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_