
scikit-learn user guide
Release 0.23.2

scikit-learn developers

Aug 04, 2020

CONTENTS

1 Welcome to scikit-learn 1
1.1 Installing scikit-learn . 1
1.2 Frequently Asked Questions . 4
1.3 Support . 9
1.4 Related Projects . 11
1.5 About us . 14
1.6 Who is using scikit-learn? . 20
1.7 Release History . 28
1.8 Roadmap . 176
1.9 Scikit-learn governance and decision-making . 179

2 scikit-learn Tutorials 183
2.1 An introduction to machine learning with scikit-learn . 183
2.2 A tutorial on statistical-learning for scientific data processing . 189
2.3 Working With Text Data . 216
2.4 Choosing the right estimator . 223
2.5 External Resources, Videos and Talks . 224

3 Getting Started 227
3.1 Fitting and predicting: estimator basics . 227
3.2 Transformers and pre-processors . 228
3.3 Pipelines: chaining pre-processors and estimators . 228
3.4 Model evaluation . 229
3.5 Automatic parameter searches . 229
3.6 Next steps . 230

4 User Guide 231
4.1 Supervised learning . 231
4.2 Unsupervised learning . 377
4.3 Model selection and evaluation . 477
4.4 Inspection . 623
4.5 Visualizations . 629
4.6 Dataset transformations . 631
4.7 Dataset loading utilities . 682
4.8 Computing with scikit-learn . 707

5 Glossary of Common Terms and API Elements 723
5.1 General Concepts . 723
5.2 Class APIs and Estimator Types . 732
5.3 Target Types . 734

i

5.4 Methods . 736
5.5 Parameters . 739
5.6 Attributes . 741
5.7 Data and sample properties . 742

6 Examples 743
6.1 Release Highlights . 743
6.2 Biclustering . 753
6.3 Calibration . 766
6.4 Classification . 783
6.5 Clustering . 799
6.6 Covariance estimation . 889
6.7 Cross decomposition . 903
6.8 Dataset examples . 907
6.9 Decision Trees . 916
6.10 Decomposition . 929
6.11 Ensemble methods . 976
6.12 Examples based on real world datasets . 1037
6.13 Feature Selection . 1098
6.14 Gaussian Mixture Models . 1110
6.15 Gaussian Process for Machine Learning . 1126
6.16 Generalized Linear Models . 1158
6.17 Inspection . 1269
6.18 Manifold learning . 1306
6.19 Miscellaneous . 1337
6.20 Missing Value Imputation . 1381
6.21 Model Selection . 1389
6.22 Multioutput methods . 1440
6.23 Nearest Neighbors . 1443
6.24 Neural Networks . 1479
6.25 Pipelines and composite estimators . 1492
6.26 Preprocessing . 1515
6.27 Semi Supervised Classification . 1542
6.28 Support Vector Machines . 1555
6.29 Tutorial exercises . 1590
6.30 Working with text documents . 1598

7 API Reference 1615
7.1 sklearn.base: Base classes and utility functions . 1615
7.2 sklearn.calibration: Probability Calibration . 1625
7.3 sklearn.cluster: Clustering . 1628
7.4 sklearn.compose: Composite Estimators . 1683
7.5 sklearn.covariance: Covariance Estimators . 1693
7.6 sklearn.cross_decomposition: Cross decomposition . 1726
7.7 sklearn.datasets: Datasets . 1741
7.8 sklearn.decomposition: Matrix Decomposition . 1790
7.9 sklearn.discriminant_analysis: Discriminant Analysis 1847
7.10 sklearn.dummy: Dummy estimators . 1856
7.11 sklearn.ensemble: Ensemble Methods . 1862
7.12 sklearn.exceptions: Exceptions and warnings . 1913
7.13 sklearn.experimental: Experimental . 1918
7.14 sklearn.feature_extraction: Feature Extraction . 1919
7.15 sklearn.feature_selection: Feature Selection . 1949
7.16 sklearn.gaussian_process: Gaussian Processes . 1986

ii

7.17 sklearn.impute: Impute . 2033
7.18 sklearn.inspection: inspection . 2045
7.19 sklearn.isotonic: Isotonic regression . 2053
7.20 sklearn.kernel_approximation Kernel Approximation 2058
7.21 sklearn.kernel_ridge Kernel Ridge Regression . 2067
7.22 sklearn.linear_model: Linear Models . 2071
7.23 sklearn.manifold: Manifold Learning . 2179
7.24 sklearn.metrics: Metrics . 2199
7.25 sklearn.mixture: Gaussian Mixture Models . 2288
7.26 sklearn.model_selection: Model Selection . 2299
7.27 sklearn.multiclass: Multiclass and multilabel classification 2354
7.28 sklearn.multioutput: Multioutput regression and classification 2364
7.29 sklearn.naive_bayes: Naive Bayes . 2375
7.30 sklearn.neighbors: Nearest Neighbors . 2392
7.31 sklearn.neural_network: Neural network models . 2456
7.32 sklearn.pipeline: Pipeline . 2470
7.33 sklearn.preprocessing: Preprocessing and Normalization 2478
7.34 sklearn.random_projection: Random projection . 2537
7.35 sklearn.semi_supervised Semi-Supervised Learning . 2544
7.36 sklearn.svm: Support Vector Machines . 2550
7.37 sklearn.tree: Decision Trees . 2580
7.38 sklearn.utils: Utilities . 2612
7.39 Recently deprecated . 2641

8 Developer’s Guide 2643
8.1 Contributing . 2643
8.2 Developing scikit-learn estimators . 2657
8.3 Developers’ Tips and Tricks . 2667
8.4 Utilities for Developers . 2671
8.5 How to optimize for speed . 2674
8.6 Installing the development version of scikit-learn . 2680
8.7 Maintainer / core-developer information . 2686
8.8 Developing with the Plotting API . 2690

Bibliography 2693

Index 2703

iii

iv

CHAPTER

ONE

WELCOME TO SCIKIT-LEARN

1.1 Installing scikit-learn

There are different ways to install scikit-learn:

• Install the latest official release. This is the best approach for most users. It will provide a stable version and
pre-built packages are available for most platforms.

• Install the version of scikit-learn provided by your operating system or Python distribution. This is a quick
option for those who have operating systems or Python distributions that distribute scikit-learn. It might not
provide the latest release version.

• Building the package from source. This is best for users who want the latest-and-greatest features and aren’t
afraid of running brand-new code. This is also needed for users who wish to contribute to the project.

1.1.1 Installing the latest release

Then run:

In order to check your installation you can use

Note that in order to avoid potential conflicts with other packages it is strongly recommended to use a virtual environ-
ment, e.g. python3 virtualenv (see python3 virtualenv documentation) or conda environments.

Using an isolated environment makes possible to install a specific version of scikit-learn and its dependencies indepen-
dently of any previously installed Python packages. In particular under Linux is it discouraged to install pip packages
alongside the packages managed by the package manager of the distribution (apt, dnf, pacman. . .).

Note that you should always remember to activate the environment of your choice prior to running any Python com-
mand whenever you start a new terminal session.

If you have not installed NumPy or SciPy yet, you can also install these using conda or pip. When using pip, please
ensure that binary wheels are used, and NumPy and SciPy are not recompiled from source, which can happen when
using particular configurations of operating system and hardware (such as Linux on a Raspberry Pi).

If you must install scikit-learn and its dependencies with pip, you can install it as scikit-learn[alldeps].

Scikit-learn plotting capabilities (i.e., functions start with “plot_” and classes end with “Display”) require Matplotlib
(>= 2.1.1). For running the examples Matplotlib >= 2.1.1 is required. A few examples require scikit-image >= 0.13, a
few examples require pandas >= 0.18.0, some examples require seaborn >= 0.9.0.

1

https://docs.python.org/3/tutorial/venv.html
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html

scikit-learn user guide, Release 0.23.2

Warning: Scikit-learn 0.20 was the last version to support Python 2.7 and Python 3.4. Scikit-learn 0.21 supported
Python 3.5-3.7. Scikit-learn 0.22 supported Python 3.5-3.8. Scikit-learn now requires Python 3.6 or newer.

Note: For installing on PyPy, PyPy3-v5.10+, Numpy 1.14.0+, and scipy 1.1.0+ are required.

1.1.2 Third party distributions of scikit-learn

Some third-party distributions provide versions of scikit-learn integrated with their package-management systems.

These can make installation and upgrading much easier for users since the integration includes the ability to automat-
ically install dependencies (numpy, scipy) that scikit-learn requires.

The following is an incomplete list of OS and python distributions that provide their own version of scikit-learn.

Arch Linux

Arch Linux’s package is provided through the official repositories as python-scikit-learn for Python. It can
be installed by typing the following command:

$ sudo pacman -S python-scikit-learn

Debian/Ubuntu

The Debian/Ubuntu package is splitted in three different packages called python3-sklearn (python modules),
python3-sklearn-lib (low-level implementations and bindings), python3-sklearn-doc (documenta-
tion). Only the Python 3 version is available in the Debian Buster (the more recent Debian distribution). Packages can
be installed using apt-get:

$ sudo apt-get install python3-sklearn python3-sklearn-lib python3-sklearn-doc

Fedora

The Fedora package is called python3-scikit-learn for the python 3 version, the only one available in Fe-
dora30. It can be installed using dnf:

$ sudo dnf install python3-scikit-learn

NetBSD

scikit-learn is available via pkgsrc-wip:

http://pkgsrc.se/math/py-scikit-learn

2 Chapter 1. Welcome to scikit-learn

https://www.archlinux.org/packages/?q=scikit-learn
http://pkgsrc-wip.sourceforge.net/
http://pkgsrc.se/math/py-scikit-learn

scikit-learn user guide, Release 0.23.2

MacPorts for Mac OSX

The MacPorts package is named py<XY>-scikits-learn, where XY denotes the Python version. It can be
installed by typing the following command:

$ sudo port install py36-scikit-learn

Canopy and Anaconda for all supported platforms

Canopy and Anaconda both ship a recent version of scikit-learn, in addition to a large set of scientific python library
for Windows, Mac OSX and Linux.

Anaconda offers scikit-learn as part of its free distribution.

Intel conda channel

Intel maintains a dedicated conda channel that ships scikit-learn:

$ conda install -c intel scikit-learn

This version of scikit-learn comes with alternative solvers for some common estimators. Those solvers come from the
DAAL C++ library and are optimized for multi-core Intel CPUs.

Note that those solvers are not enabled by default, please refer to the daal4py documentation for more details.

Compatibility with the standard scikit-learn solvers is checked by running the full scikit-learn test suite via automated
continuous integration as reported on https://github.com/IntelPython/daal4py.

WinPython for Windows

The WinPython project distributes scikit-learn as an additional plugin.

1.1.3 Troubleshooting

Error caused by file path length limit on Windows

It can happen that pip fails to install packages when reaching the default path size limit of Windows if Python is
installed in a nested location such as the AppData folder structure under the user home directory, for instance:

C:\Users\username>C:\Users\username\AppData\Local\Microsoft\WindowsApps\python.exe -m
→˓pip install scikit-learn
Collecting scikit-learn
...
Installing collected packages: scikit-learn
ERROR: Could not install packages due to an EnvironmentError: [Errno 2] No such file
→˓or directory:
→˓'C:\\Users\\username\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.7_
→˓qbz5n2kfra8p0\\LocalCache\\local-packages\\Python37\\site-
→˓packages\\sklearn\\datasets\\tests\\data\\openml\\292\\api-v1-json-data-list-data_
→˓name-australian-limit-2-data_version-1-status-deactivated.json.gz'

In this case it is possible to lift that limit in the Windows registry by using the regedit tool:

1. Type “regedit” in the Windows start menu to launch regedit.

1.1. Installing scikit-learn 3

https://www.enthought.com/products/canopy
https://www.anaconda.com/download
https://intelpython.github.io/daal4py/sklearn.html
https://github.com/IntelPython/daal4py
https://winpython.github.io/

scikit-learn user guide, Release 0.23.2

2. Go to the Computer\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\FileSystem
key.

3. Edit the value of the LongPathsEnabled property of that key and set it to 1.

4. Reinstall scikit-learn (ignoring the previous broken installation):

pip install --exists-action=i scikit-learn

1.2 Frequently Asked Questions

Here we try to give some answers to questions that regularly pop up on the mailing list.

1.2.1 What is the project name (a lot of people get it wrong)?

scikit-learn, but not scikit or SciKit nor sci-kit learn. Also not scikits.learn or scikits-learn, which were previously
used.

1.2.2 How do you pronounce the project name?

sy-kit learn. sci stands for science!

1.2.3 Why scikit?

There are multiple scikits, which are scientific toolboxes built around SciPy. You can find a list at https://scikits.
appspot.com/scikits. Apart from scikit-learn, another popular one is scikit-image.

1.2.4 How can I contribute to scikit-learn?

See Contributing. Before wanting to add a new algorithm, which is usually a major and lengthy undertaking, it is
recommended to start with known issues. Please do not contact the contributors of scikit-learn directly regarding
contributing to scikit-learn.

1.2.5 What’s the best way to get help on scikit-learn usage?

For general machine learning questions, please use Cross Validated with the [machine-learning] tag.

For scikit-learn usage questions, please use Stack Overflow with the [scikit-learn] and [python] tags. You
can alternatively use the mailing list.

Please make sure to include a minimal reproduction code snippet (ideally shorter than 10 lines) that highlights your
problem on a toy dataset (for instance from sklearn.datasets or randomly generated with functions of numpy.
random with a fixed random seed). Please remove any line of code that is not necessary to reproduce your problem.

The problem should be reproducible by simply copy-pasting your code snippet in a Python shell with scikit-learn
installed. Do not forget to include the import statements.

More guidance to write good reproduction code snippets can be found at:

https://stackoverflow.com/help/mcve

4 Chapter 1. Welcome to scikit-learn

https://scikits.appspot.com/scikits
https://scikits.appspot.com/scikits
https://scikit-image.org/
https://stats.stackexchange.com/
https://stackoverflow.com/questions/tagged/scikit-learn
https://mail.python.org/mailman/listinfo/scikit-learn
https://stackoverflow.com/help/mcve

scikit-learn user guide, Release 0.23.2

If your problem raises an exception that you do not understand (even after googling it), please make sure to include
the full traceback that you obtain when running the reproduction script.

For bug reports or feature requests, please make use of the issue tracker on GitHub.

There is also a scikit-learn Gitter channel where some users and developers might be found.

Please do not email any authors directly to ask for assistance, report bugs, or for any other issue related to
scikit-learn.

1.2.6 How should I save, export or deploy estimators for production?

See Model persistence.

1.2.7 How can I create a bunch object?

Bunch objects are sometimes used as an output for functions and methods. They extend dictionaries by enabling
values to be accessed by key, bunch["value_key"], or by an attribute, bunch.value_key.

They should not be used as an input; therefore you almost never need to create a Bunch object, unless you are
extending the scikit-learn’s API.

1.2.8 How can I load my own datasets into a format usable by scikit-learn?

Generally, scikit-learn works on any numeric data stored as numpy arrays or scipy sparse matrices. Other types that
are convertible to numeric arrays such as pandas DataFrame are also acceptable.

For more information on loading your data files into these usable data structures, please refer to loading external
datasets.

1.2.9 What are the inclusion criteria for new algorithms ?

We only consider well-established algorithms for inclusion. A rule of thumb is at least 3 years since publication, 200+
citations, and wide use and usefulness. A technique that provides a clear-cut improvement (e.g. an enhanced data
structure or a more efficient approximation technique) on a widely-used method will also be considered for inclusion.

From the algorithms or techniques that meet the above criteria, only those which fit well within the current API of
scikit-learn, that is a fit, predict/transform interface and ordinarily having input/output that is a numpy array
or sparse matrix, are accepted.

The contributor should support the importance of the proposed addition with research papers and/or implementations
in other similar packages, demonstrate its usefulness via common use-cases/applications and corroborate performance
improvements, if any, with benchmarks and/or plots. It is expected that the proposed algorithm should outperform the
methods that are already implemented in scikit-learn at least in some areas.

Inclusion of a new algorithm speeding up an existing model is easier if:

• it does not introduce new hyper-parameters (as it makes the library more future-proof),

• it is easy to document clearly when the contribution improves the speed and when it does not, for instance “when
n_features >> n_samples”,

• benchmarks clearly show a speed up.

1.2. Frequently Asked Questions 5

https://github.com/scikit-learn/scikit-learn/issues
https://gitter.im/scikit-learn/scikit-learn

scikit-learn user guide, Release 0.23.2

Also, note that your implementation need not be in scikit-learn to be used together with scikit-learn tools. You can
implement your favorite algorithm in a scikit-learn compatible way, upload it to GitHub and let us know. We will be
happy to list it under Related Projects. If you already have a package on GitHub following the scikit-learn API, you
may also be interested to look at scikit-learn-contrib.

1.2.10 Why are you so selective on what algorithms you include in scikit-learn?

Code comes with maintenance cost, and we need to balance the amount of code we have with the size of the team
(and add to this the fact that complexity scales non linearly with the number of features). The package relies on
core developers using their free time to fix bugs, maintain code and review contributions. Any algorithm that is added
needs future attention by the developers, at which point the original author might long have lost interest. See also What
are the inclusion criteria for new algorithms ?. For a great read about long-term maintenance issues in open-source
software, look at the Executive Summary of Roads and Bridges

1.2.11 Why did you remove HMMs from scikit-learn?

See Will you add graphical models or sequence prediction to scikit-learn?.

1.2.12 Will you add graphical models or sequence prediction to scikit-learn?

Not in the foreseeable future. scikit-learn tries to provide a unified API for the basic tasks in machine learning, with
pipelines and meta-algorithms like grid search to tie everything together. The required concepts, APIs, algorithms
and expertise required for structured learning are different from what scikit-learn has to offer. If we started doing
arbitrary structured learning, we’d need to redesign the whole package and the project would likely collapse under its
own weight.

There are two project with API similar to scikit-learn that do structured prediction:

• pystruct handles general structured learning (focuses on SSVMs on arbitrary graph structures with approximate
inference; defines the notion of sample as an instance of the graph structure)

• seqlearn handles sequences only (focuses on exact inference; has HMMs, but mostly for the sake of complete-
ness; treats a feature vector as a sample and uses an offset encoding for the dependencies between feature
vectors)

1.2.13 Will you add GPU support?

No, or at least not in the near future. The main reason is that GPU support will introduce many software dependencies
and introduce platform specific issues. scikit-learn is designed to be easy to install on a wide variety of platforms.
Outside of neural networks, GPUs don’t play a large role in machine learning today, and much larger gains in speed
can often be achieved by a careful choice of algorithms.

1.2.14 Do you support PyPy?

In case you didn’t know, PyPy is an alternative Python implementation with a built-in just-in-time compiler. Experi-
mental support for PyPy3-v5.10+ has been added, which requires Numpy 1.14.0+, and scipy 1.1.0+.

6 Chapter 1. Welcome to scikit-learn

https://scikit-learn-contrib.github.io
https://www.fordfoundation.org/media/2976/roads-and-bridges-the-unseen-labor-behind-our-digital-infrastructure.pdf#page=8
https://pystruct.github.io/
https://larsmans.github.io/seqlearn/
https://pypy.org/

scikit-learn user guide, Release 0.23.2

1.2.15 How do I deal with string data (or trees, graphs. . .)?

scikit-learn estimators assume you’ll feed them real-valued feature vectors. This assumption is hard-coded in pretty
much all of the library. However, you can feed non-numerical inputs to estimators in several ways.

If you have text documents, you can use a term frequency features; see Text feature extraction for the built-in text
vectorizers. For more general feature extraction from any kind of data, see Loading features from dicts and Feature
hashing.

Another common case is when you have non-numerical data and a custom distance (or similarity) metric on these data.
Examples include strings with edit distance (aka. Levenshtein distance; e.g., DNA or RNA sequences). These can be
encoded as numbers, but doing so is painful and error-prone. Working with distance metrics on arbitrary data can be
done in two ways.

Firstly, many estimators take precomputed distance/similarity matrices, so if the dataset is not too large, you can
compute distances for all pairs of inputs. If the dataset is large, you can use feature vectors with only one “feature”,
which is an index into a separate data structure, and supply a custom metric function that looks up the actual data in
this data structure. E.g., to use DBSCAN with Levenshtein distances:

>>> from leven import levenshtein
>>> import numpy as np
>>> from sklearn.cluster import dbscan
>>> data = ["ACCTCCTAGAAG", "ACCTACTAGAAGTT", "GAATATTAGGCCGA"]
>>> def lev_metric(x, y):
... i, j = int(x[0]), int(y[0]) # extract indices
... return levenshtein(data[i], data[j])
...
>>> X = np.arange(len(data)).reshape(-1, 1)
>>> X
array([[0],

[1],
[2]])

>>> # We need to specify algoritum='brute' as the default assumes
>>> # a continuous feature space.
>>> dbscan(X, metric=lev_metric, eps=5, min_samples=2, algorithm='brute')
...
([0, 1], array([0, 0, -1]))

(This uses the third-party edit distance package leven.)

Similar tricks can be used, with some care, for tree kernels, graph kernels, etc.

1.2.16 Why do I sometime get a crash/freeze with n_jobs > 1 under OSX or Linux?

Several scikit-learn tools such as GridSearchCV and cross_val_score rely internally on Python’s
multiprocessing module to parallelize execution onto several Python processes by passing n_jobs > 1 as
an argument.

The problem is that Python multiprocessing does a fork system call without following it with an exec system
call for performance reasons. Many libraries like (some versions of) Accelerate / vecLib under OSX, (some versions
of) MKL, the OpenMP runtime of GCC, nvidia’s Cuda (and probably many others), manage their own internal thread
pool. Upon a call to fork, the thread pool state in the child process is corrupted: the thread pool believes it has many
threads while only the main thread state has been forked. It is possible to change the libraries to make them detect
when a fork happens and reinitialize the thread pool in that case: we did that for OpenBLAS (merged upstream in
master since 0.2.10) and we contributed a patch to GCC’s OpenMP runtime (not yet reviewed).

But in the end the real culprit is Python’s multiprocessing that does fork without exec to reduce the overhead
of starting and using new Python processes for parallel computing. Unfortunately this is a violation of the POSIX

1.2. Frequently Asked Questions 7

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=60035

scikit-learn user guide, Release 0.23.2

standard and therefore some software editors like Apple refuse to consider the lack of fork-safety in Accelerate /
vecLib as a bug.

In Python 3.4+ it is now possible to configure multiprocessing to use the ‘forkserver’ or ‘spawn’ start methods
(instead of the default ‘fork’) to manage the process pools. To work around this issue when using scikit-learn, you
can set the JOBLIB_START_METHOD environment variable to ‘forkserver’. However the user should be aware that
using the ‘forkserver’ method prevents joblib.Parallel to call function interactively defined in a shell session.

If you have custom code that uses multiprocessing directly instead of using it via joblib you can enable the
‘forkserver’ mode globally for your program: Insert the following instructions in your main script:

import multiprocessing

other imports, custom code, load data, define model...

if __name__ == '__main__':
multiprocessing.set_start_method('forkserver')

call scikit-learn utils with n_jobs > 1 here

You can find more default on the new start methods in the multiprocessing documentation.

1.2.17 Why does my job use more cores than specified with n_jobs?

This is because n_jobs only controls the number of jobs for routines that are parallelized with joblib, but parallel
code can come from other sources:

• some routines may be parallelized with OpenMP (for code written in C or Cython).

• scikit-learn relies a lot on numpy, which in turn may rely on numerical libraries like MKL, OpenBLAS or BLIS
which can provide parallel implementations.

For more details, please refer to our Parallelism notes.

1.2.18 Why is there no support for deep or reinforcement learning / Will there be
support for deep or reinforcement learning in scikit-learn?

Deep learning and reinforcement learning both require a rich vocabulary to define an architecture, with deep learning
additionally requiring GPUs for efficient computing. However, neither of these fit within the design constraints of
scikit-learn; as a result, deep learning and reinforcement learning are currently out of scope for what scikit-learn seeks
to achieve.

You can find more information about addition of gpu support at Will you add GPU support?.

Note that scikit-learn currently implements a simple multilayer perceptron in sklearn.neural_network. We
will only accept bug fixes for this module. If you want to implement more complex deep learning models, please turn
to popular deep learning frameworks such as tensorflow, keras and pytorch.

1.2.19 Why is my pull request not getting any attention?

The scikit-learn review process takes a significant amount of time, and contributors should not be discouraged by a
lack of activity or review on their pull request. We care a lot about getting things right the first time, as maintenance
and later change comes at a high cost. We rarely release any “experimental” code, so all of our contributions will be
subject to high use immediately and should be of the highest quality possible initially.

8 Chapter 1. Welcome to scikit-learn

https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods
https://www.tensorflow.org/
https://keras.io/
https://pytorch.org/

scikit-learn user guide, Release 0.23.2

Beyond that, scikit-learn is limited in its reviewing bandwidth; many of the reviewers and core developers are working
on scikit-learn on their own time. If a review of your pull request comes slowly, it is likely because the reviewers are
busy. We ask for your understanding and request that you not close your pull request or discontinue your work solely
because of this reason.

1.2.20 How do I set a random_state for an entire execution?

For testing and replicability, it is often important to have the entire execution controlled by a single seed for the pseudo-
random number generator used in algorithms that have a randomized component. Scikit-learn does not use its own
global random state; whenever a RandomState instance or an integer random seed is not provided as an argument, it
relies on the numpy global random state, which can be set using numpy.random.seed. For example, to set an
execution’s numpy global random state to 42, one could execute the following in his or her script:

import numpy as np
np.random.seed(42)

However, a global random state is prone to modification by other code during execution. Thus, the only way to ensure
replicability is to pass RandomState instances everywhere and ensure that both estimators and cross-validation
splitters have their random_state parameter set.

1.2.21 Why do categorical variables need preprocessing in scikit-learn, compared
to other tools?

Most of scikit-learn assumes data is in NumPy arrays or SciPy sparse matrices of a single numeric dtype. These do
not explicitly represent categorical variables at present. Thus, unlike R’s data.frames or pandas.DataFrame, we require
explicit conversion of categorical features to numeric values, as discussed in Encoding categorical features. See also
Column Transformer with Mixed Types for an example of working with heterogeneous (e.g. categorical and numeric)
data.

1.2.22 Why does Scikit-learn not directly work with, for example, pan-
das.DataFrame?

The homogeneous NumPy and SciPy data objects currently expected are most efficient to process for most operations.
Extensive work would also be needed to support Pandas categorical types. Restricting input to homogeneous types
therefore reduces maintenance cost and encourages usage of efficient data structures.

1.2.23 Do you plan to implement transform for target y in a pipeline?

Currently transform only works for features X in a pipeline. There’s a long-standing discussion about not being
able to transform y in a pipeline. Follow on github issue #4143. Meanwhile check out sklearn.compose.
TransformedTargetRegressor, pipegraph, imbalanced-learn. Note that Scikit-learn solved for the case where
y has an invertible transformation applied before training and inverted after prediction. Scikit-learn intends to solve
for use cases where y should be transformed at training time and not at test time, for resampling and similar uses, like
at imbalanced learn. In general, these use cases can be solved with a custom meta estimator rather than a Pipeline

1.3 Support

There are several ways to get in touch with the developers.

1.3. Support 9

https://numpy.org/doc/stable/reference/random/generated/numpy.random.seed.html#numpy.random.seed
https://github.com/scikit-learn/scikit-learn/issues/4143
https://github.com/mcasl/PipeGraph
https://github.com/scikit-learn-contrib/imbalanced-learn

scikit-learn user guide, Release 0.23.2

1.3.1 Mailing List

• The main mailing list is scikit-learn.

• There is also a commit list scikit-learn-commits, where updates to the main repository and test failures get
notified.

1.3.2 User questions

• Some scikit-learn developers support users on StackOverflow using the [scikit-learn] tag.

• For general theoretical or methodological Machine Learning questions stack exchange is probably a more suit-
able venue.

In both cases please use a descriptive question in the title field (e.g. no “Please help with scikit-learn!” as this is not a
question) and put details on what you tried to achieve, what were the expected results and what you observed instead
in the details field.

Code and data snippets are welcome. Minimalistic (up to ~20 lines long) reproduction script very helpful.

Please describe the nature of your data and the how you preprocessed it: what is the number of samples, what is the
number and type of features (i.d. categorical or numerical) and for supervised learning tasks, what target are your
trying to predict: binary, multiclass (1 out of n_classes) or multilabel (k out of n_classes) classification or
continuous variable regression.

1.3.3 Bug tracker

If you think you’ve encountered a bug, please report it to the issue tracker:

https://github.com/scikit-learn/scikit-learn/issues

Don’t forget to include:

• steps (or better script) to reproduce,

• expected outcome,

• observed outcome or python (or gdb) tracebacks

To help developers fix your bug faster, please link to a https://gist.github.com holding a standalone minimalistic python
script that reproduces your bug and optionally a minimalistic subsample of your dataset (for instance exported as CSV
files using numpy.savetxt).

Note: gists are git cloneable repositories and thus you can use git to push datafiles to them.

Gitter ===

Some developers like to hang out on scikit-learn Gitter room: https://gitter.im/scikit-learn/scikit-learn.

1.3.4 Documentation resources

This documentation is relative to 0.23.2. Documentation for other versions can be found here.

Printable pdf documentation for old versions can be found here.

10 Chapter 1. Welcome to scikit-learn

https://mail.python.org/mailman/listinfo/scikit-learn
https://lists.sourceforge.net/lists/listinfo/scikit-learn-commits
https://stackoverflow.com/questions/tagged/scikit-learn
https://stats.stackexchange.com/
https://github.com/scikit-learn/scikit-learn/issues
https://gist.github.com
https://gitter.im/scikit-learn/scikit-learn
http://scikit-learn.org/dev/versions.html
https://sourceforge.net/projects/scikit-learn/files/documentation/

scikit-learn user guide, Release 0.23.2

1.4 Related Projects

Projects implementing the scikit-learn estimator API are encouraged to use the scikit-learn-contrib template which
facilitates best practices for testing and documenting estimators. The scikit-learn-contrib GitHub organisation also
accepts high-quality contributions of repositories conforming to this template.

Below is a list of sister-projects, extensions and domain specific packages.

1.4.1 Interoperability and framework enhancements

These tools adapt scikit-learn for use with other technologies or otherwise enhance the functionality of scikit-learn’s
estimators.

Data formats

• Fast svmlight / libsvm file loader Fast and memory-efficient svmlight / libsvm file loader for Python.

• sklearn_pandas bridge for scikit-learn pipelines and pandas data frame with dedicated transformers.

• sklearn_xarray provides compatibility of scikit-learn estimators with xarray data structures.

Auto-ML

• auto-sklearn An automated machine learning toolkit and a drop-in replacement for a scikit-learn estimator

• TPOT An automated machine learning toolkit that optimizes a series of scikit-learn operators to design a ma-
chine learning pipeline, including data and feature preprocessors as well as the estimators. Works as a drop-in
replacement for a scikit-learn estimator.

Experimentation frameworks

• REP Environment for conducting data-driven research in a consistent and reproducible way

• Scikit-Learn Laboratory A command-line wrapper around scikit-learn that makes it easy to run machine learning
experiments with multiple learners and large feature sets.

Model inspection and visualisation

• dtreeviz A python library for decision tree visualization and model interpretation.

• eli5 A library for debugging/inspecting machine learning models and explaining their predictions.

• mlxtend Includes model visualization utilities.

• yellowbrick A suite of custom matplotlib visualizers for scikit-learn estimators to support visual feature analysis,
model selection, evaluation, and diagnostics.

Model selection

• scikit-optimize A library to minimize (very) expensive and noisy black-box functions. It implements sev-
eral methods for sequential model-based optimization, and includes a replacement for GridSearchCV or
RandomizedSearchCV to do cross-validated parameter search using any of these strategies.

• sklearn-deap Use evolutionary algorithms instead of gridsearch in scikit-learn.

Model export for production

• onnxmltools Serializes many Scikit-learn pipelines to ONNX for interchange and prediction.

• sklearn2pmml Serialization of a wide variety of scikit-learn estimators and transformers into PMML with the
help of JPMML-SkLearn library.

• sklearn-porter Transpile trained scikit-learn models to C, Java, Javascript and others.

1.4. Related Projects 11

https://github.com/scikit-learn-contrib/project-template
https://github.com/scikit-learn-contrib/scikit-learn-contrib
https://github.com/mblondel/svmlight-loader
https://github.com/paulgb/sklearn-pandas/
https://github.com/phausamann/sklearn-xarray/
https://github.com/automl/auto-sklearn/
https://github.com/rhiever/tpot
https://github.com/yandex/REP
https://skll.readthedocs.io/en/latest/index.html
https://github.com/parrt/dtreeviz/
https://github.com/TeamHG-Memex/eli5/
https://github.com/rasbt/mlxtend
https://github.com/DistrictDataLabs/yellowbrick
https://scikit-optimize.github.io/
https://github.com/rsteca/sklearn-deap
https://github.com/onnx/onnxmltools
https://onnx.ai/
https://github.com/jpmml/sklearn2pmml
https://github.com/jpmml/jpmml-sklearn
https://github.com/nok/sklearn-porter

scikit-learn user guide, Release 0.23.2

• treelite Compiles tree-based ensemble models into C code for minimizing prediction latency.

1.4.2 Other estimators and tasks

Not everything belongs or is mature enough for the central scikit-learn project. The following are projects providing
interfaces similar to scikit-learn for additional learning algorithms, infrastructures and tasks.

Structured learning

• tslearn A machine learning library for time series that offers tools for pre-processing and feature extraction as
well as dedicated models for clustering, classification and regression.

• sktime A scikit-learn compatible toolbox for machine learning with time series including time series classifica-
tion/regression and (supervised/panel) forecasting.

• HMMLearn Implementation of hidden markov models that was previously part of scikit-learn.

• PyStruct General conditional random fields and structured prediction.

• pomegranate Probabilistic modelling for Python, with an emphasis on hidden Markov models.

• sklearn-crfsuite Linear-chain conditional random fields (CRFsuite wrapper with sklearn-like API).

Deep neural networks etc.

• nolearn A number of wrappers and abstractions around existing neural network libraries

• keras Deep Learning library capable of running on top of either TensorFlow or Theano.

• lasagne A lightweight library to build and train neural networks in Theano.

• skorch A scikit-learn compatible neural network library that wraps PyTorch.

Broad scope

• mlxtend Includes a number of additional estimators as well as model visualization utilities.

Other regression and classification

• xgboost Optimised gradient boosted decision tree library.

• ML-Ensemble Generalized ensemble learning (stacking, blending, subsemble, deep ensembles, etc.).

• lightning Fast state-of-the-art linear model solvers (SDCA, AdaGrad, SVRG, SAG, etc. . .).

• py-earth Multivariate adaptive regression splines

• Kernel Regression Implementation of Nadaraya-Watson kernel regression with automatic bandwidth selection

• gplearn Genetic Programming for symbolic regression tasks.

• scikit-multilearn Multi-label classification with focus on label space manipulation.

• seglearn Time series and sequence learning using sliding window segmentation.

• libOPF Optimal path forest classifier

• fastFM Fast factorization machine implementation compatible with scikit-learn

Decomposition and clustering

• lda: Fast implementation of latent Dirichlet allocation in Cython which uses Gibbs sampling
to sample from the true posterior distribution. (scikit-learn’s sklearn.decomposition.
LatentDirichletAllocation implementation uses variational inference to sample from a tractable
approximation of a topic model’s posterior distribution.)

• kmodes k-modes clustering algorithm for categorical data, and several of its variations.

12 Chapter 1. Welcome to scikit-learn

https://treelite.readthedocs.io
https://github.com/tslearn-team/tslearn
https://github.com/alan-turing-institute/sktime
https://github.com/hmmlearn/hmmlearn
https://pystruct.github.io
https://github.com/jmschrei/pomegranate
https://github.com/TeamHG-Memex/sklearn-crfsuite
http://www.chokkan.org/software/crfsuite/
https://github.com/dnouri/nolearn
https://github.com/fchollet/keras
https://github.com/Lasagne/Lasagne
https://github.com/dnouri/skorch
https://github.com/rasbt/mlxtend
https://github.com/dmlc/xgboost
https://mlens.readthedocs.io/
https://github.com/scikit-learn-contrib/lightning
https://github.com/scikit-learn-contrib/py-earth
https://github.com/jmetzen/kernel_regression
https://github.com/trevorstephens/gplearn
https://github.com/scikit-multilearn/scikit-multilearn
https://github.com/dmbee/seglearn
https://github.com/jppbsi/LibOPF
https://github.com/ibayer/fastFM
https://github.com/lda-project/lda/
https://en.wikipedia.org/wiki/Gibbs_sampling
https://en.wikipedia.org/wiki/Variational_Bayesian_methods
https://github.com/nicodv/kmodes

scikit-learn user guide, Release 0.23.2

• hdbscan HDBSCAN and Robust Single Linkage clustering algorithms for robust variable density clustering.

• spherecluster Spherical K-means and mixture of von Mises Fisher clustering routines for data on the unit hyper-
sphere.

Pre-processing

• categorical-encoding A library of sklearn compatible categorical variable encoders.

• imbalanced-learn Various methods to under- and over-sample datasets.

1.4.3 Statistical learning with Python

Other packages useful for data analysis and machine learning.

• Pandas Tools for working with heterogeneous and columnar data, relational queries, time series and basic statis-
tics.

• statsmodels Estimating and analysing statistical models. More focused on statistical tests and less on prediction
than scikit-learn.

• PyMC Bayesian statistical models and fitting algorithms.

• Sacred Tool to help you configure, organize, log and reproduce experiments

• Seaborn Visualization library based on matplotlib. It provides a high-level interface for drawing attractive
statistical graphics.

Recommendation Engine packages

• implicit, Library for implicit feedback datasets.

• lightfm A Python/Cython implementation of a hybrid recommender system.

• OpenRec TensorFlow-based neural-network inspired recommendation algorithms.

• Spotlight Pytorch-based implementation of deep recommender models.

• Surprise Lib Library for explicit feedback datasets.

Domain specific packages

• scikit-image Image processing and computer vision in python.

• Natural language toolkit (nltk) Natural language processing and some machine learning.

• gensim A library for topic modelling, document indexing and similarity retrieval

• NiLearn Machine learning for neuro-imaging.

• AstroML Machine learning for astronomy.

• MSMBuilder Machine learning for protein conformational dynamics time series.

1.4. Related Projects 13

https://github.com/scikit-learn-contrib/hdbscan
https://github.com/clara-labs/spherecluster
https://github.com/scikit-learn-contrib/categorical-encoding
https://github.com/scikit-learn-contrib/imbalanced-learn
https://pandas.pydata.org/
https://www.statsmodels.org
https://pymc-devs.github.io/pymc/
https://github.com/IDSIA/Sacred
https://stanford.edu/~mwaskom/software/seaborn/
https://github.com/benfred/implicit
https://github.com/lyst/lightfm
https://github.com/ylongqi/openrec
https://github.com/maciejkula/spotlight
http://surpriselib.com/
https://scikit-image.org/
https://www.nltk.org/
https://radimrehurek.com/gensim/
https://nilearn.github.io/
https://www.astroml.org/
http://msmbuilder.org/

scikit-learn user guide, Release 0.23.2

1.5 About us

1.5.1 History

This project was started in 2007 as a Google Summer of Code project by David Cournapeau. Later that year, Matthieu
Brucher started work on this project as part of his thesis.

In 2010 Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort and Vincent Michel of INRIA took leadership of the
project and made the first public release, February the 1st 2010. Since then, several releases have appeared following
a ~ 3-month cycle, and a thriving international community has been leading the development.

1.5.2 Governance

The decision making process and governance structure of scikit-learn is laid out in the governance document.

1.5.3 Authors

The following people are currently core contributors to scikit-learn’s development and maintenance:

Please do not email the authors directly to ask for assistance or report issues. Instead, please see What’s the best way
to ask questions about scikit-learn in the FAQ.

See also:

How you can contribute to the project

1.5.4 Emeritus Core Developers

The following people have been active contributors in the past, but are no longer active in the project:

• Mathieu Blondel

• Matthieu Brucher

• Lars Buitinck

• David Cournapeau

• Noel Dawe

• Shiqiao Du

• Vincent Dubourg

• Edouard Duchesnay

• Alexander Fabisch

• Virgile Fritsch

• Satrajit Ghosh

• Angel Soler Gollonet

• Chris Gorgolewski

• Jaques Grobler

• Brian Holt

14 Chapter 1. Welcome to scikit-learn

http://scikit-learn.org/stable/faq.html#what-s-the-best-way-to-get-help-on-scikit-learn-usage
http://scikit-learn.org/stable/faq.html#what-s-the-best-way-to-get-help-on-scikit-learn-usage

scikit-learn user guide, Release 0.23.2

• Arnaud Joly

• Thouis (Ray) Jones

• Kyle Kastner

• manoj kumar

• Robert Layton

• Wei Li

• Paolo Losi

• Gilles Louppe

• Vincent Michel

• Jarrod Millman

• Alexandre Passos

• Fabian Pedregosa

• Peter Prettenhofer

• (Venkat) Raghav, Rajagopalan

• Jacob Schreiber

• Jake Vanderplas

• David Warde-Farley

• Ron Weiss

1.5.5 Citing scikit-learn

If you use scikit-learn in a scientific publication, we would appreciate citations to the following paper:

Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.

Bibtex entry:

@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.

and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},

journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}

If you want to cite scikit-learn for its API or design, you may also want to consider the following paper:

API design for machine learning software: experiences from the scikit-learn project, Buitinck et al., 2013.

Bibtex entry:

1.5. About us 15

http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
https://arxiv.org/abs/1309.0238

scikit-learn user guide, Release 0.23.2

@inproceedings{sklearn_api,
author = {Lars Buitinck and Gilles Louppe and Mathieu Blondel and

Fabian Pedregosa and Andreas Mueller and Olivier Grisel and
Vlad Niculae and Peter Prettenhofer and Alexandre Gramfort
and Jaques Grobler and Robert Layton and Jake VanderPlas and
Arnaud Joly and Brian Holt and Ga{\"{e}}l Varoquaux},

title = {{API} design for machine learning software: experiences from
→˓the scikit-learn

project},
booktitle = {ECML PKDD Workshop: Languages for Data Mining and Machine

→˓Learning},
year = {2013},
pages = {108--122},

}

1.5.6 Artwork

High quality PNG and SVG logos are available in the doc/logos/ source directory.

1.5.7 Funding

Scikit-Learn is a community driven project, however institutional and private grants help to assure its sustainability.

The project would like to thank the following funders.

The Members of the Scikit-Learn Consortium at Inria Foundation fund Olivier Grisel, Guillaume Lemaitre, Jérémie
du Boisberranger and Chiara Marmo.

16 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/tree/master/doc/logos
https://scikit-learn.fondation-inria.fr/en/home/#sponsors
https://scikit-learn.fondation-inria.fr/en/home/

scikit-learn user guide, Release 0.23.2

Columbia University funds Andreas Müller since 2016

Andreas Müller received a grant to improve scikit-learn from the Alfred P. Sloan Foundation . This grant supports the
position of Nicolas Hug and Thomas J. Fan.

The University of Sydney funds Joel Nothman since July 2017.

Past Sponsors

INRIA actively supports this project. It has provided funding for Fabian Pedregosa (2010-2012), Jaques Grobler
(2012-2013) and Olivier Grisel (2013-2017) to work on this project full-time. It also hosts coding sprints and other
events.

1.5. About us 17

https://www.microsoft.com/
https://www.bcg.com/beyond-consulting/bcg-gamma/default.aspx
https://www.axa.fr/
https://www.bnpparibascardif.com/
https://www.fujitsu.com/global/
https://www.intel.com/
https://www.dataiku.com/
https://www.nvidia.com/
https://www.inria.fr
https://columbia.edu/
https://www.columbia.edu/
https://sloan.org
https://sloan.org/
https://sydney.edu.au/
https://sydney.edu.au/
https://www.inria.fr

scikit-learn user guide, Release 0.23.2

Paris-Saclay Center for Data Science funded one year for a developer to work on the project full-time (2014-2015),
50% of the time of Guillaume Lemaitre (2016-2017) and 50% of the time of Joris van den Bossche (2017-2018).

Anaconda, Inc funded Adrin Jalali in 2019.

NYU Moore-Sloan Data Science Environment funded Andreas Mueller (2014-2016) to work on this project. The
Moore-Sloan Data Science Environment also funds several students to work on the project part-time.

Télécom Paristech funded Manoj Kumar (2014), Tom Dupré la Tour (2015), Raghav RV (2015-2017), Thierry Guille-
mot (2016-2017) and Albert Thomas (2017) to work on scikit-learn.

The Labex DigiCosme funded Nicolas Goix (2015-2016), Tom Dupré la Tour (2015-2016 and 2017-2018), Mathurin
Massias (2018-2019) to work part time on scikit-learn during their PhDs. It also funded a scikit-learn coding sprint in
2015.

The following students were sponsored by Google to work on scikit-learn through the Google Summer of Code
program.

• 2007 - David Cournapeau

• 2011 - Vlad Niculae

• 2012 - Vlad Niculae, Immanuel Bayer.

• 2013 - Kemal Eren, Nicolas Trésegnie

• 2014 - Hamzeh Alsalhi, Issam Laradji, Maheshakya Wijewardena, Manoj Kumar.

18 Chapter 1. Welcome to scikit-learn

https://www.inria.fr
https://www.datascience-paris-saclay.fr/
https://www.datascience-paris-saclay.fr/
https://www.anaconda.com/
https://www.anaconda.com/
https://cds.nyu.edu/mooresloan/
https://cds.nyu.edu/mooresloan/
https://www.telecom-paristech.fr/
https://www.telecom-paristech.fr/
https://digicosme.lri.fr
https://digicosme.lri.fr
https://developers.google.com/open-source/
https://en.wikipedia.org/wiki/Google_Summer_of_Code
https://vene.ro/
https://vene.ro/

scikit-learn user guide, Release 0.23.2

• 2015 - Raghav RV, Wei Xue

• 2016 - Nelson Liu, YenChen Lin

The NeuroDebian project providing Debian packaging and contributions is supported by Dr. James V. Haxby (Dart-
mouth College).

1.5.8 Sprints

The International 2019 Paris sprint was kindly hosted by AXA. Also some participants could attend thanks to the
support of the Alfred P. Sloan Foundation, the Python Software Foundation (PSF) and the DATAIA Institute.

The 2013 International Paris Sprint was made possible thanks to the support of Télécom Paristech, tinyclues, the
French Python Association and the Fonds de la Recherche Scientifique.

The 2011 International Granada sprint was made possible thanks to the support of the PSF and tinyclues.

Donating to the project

If you are interested in donating to the project or to one of our code-sprints, you can use the Paypal button below or the
NumFOCUS Donations Page (if you use the latter, please indicate that you are donating for the scikit-learn project).

All donations will be handled by NumFOCUS, a non-profit-organization which is managed by a board of Scipy
community members. NumFOCUS’s mission is to foster scientific computing software, in particular in Python. As
a fiscal home of scikit-learn, it ensures that money is available when needed to keep the project funded and available
while in compliance with tax regulations.

The received donations for the scikit-learn project mostly will go towards covering travel-expenses for code sprints, as
well as towards the organization budget of the project1.

Notes

1.5.9 Infrastructure support

• We would like to thank Rackspace for providing us with a free Rackspace Cloud account to automatically build
the documentation and the example gallery from for the development version of scikit-learn using this tool.

• We would also like to thank Microsoft Azure, Travis Cl, CircleCl for free CPU time on their Continuous Inte-
gration servers.

1 Regarding the organization budget, in particular, we might use some of the donated funds to pay for other project expenses such as DNS,
hosting or continuous integration services.

1.5. About us 19

https://github.com/raghavrv
http://nelsonliu.me
https://yclin.me/
http://neuro.debian.net
https://www.debian.org/
http://haxbylab.dartmouth.edu/
https://pbs.dartmouth.edu/
https://pbs.dartmouth.edu/
https://www.axa.fr/
https://sloan.org
https://www.python.org/psf/
https://dataia.eu/en
https://www.telecom-paristech.fr/
https://www.tinyclues.com/
https://www.afpy.org/
https://www.frs-fnrs.be/-fnrs
https://www.python.org/psf/
https://www.tinyclues.com/
https://www.numfocus.org/support-numfocus.html
https://numfocus.org/
https://numfocus.org/board.html
https://numfocus.org/board.html
https://www.rackspace.com
https://www.rackspace.com/cloud/
https://github.com/scikit-learn/sklearn-docbuilder
https://azure.microsoft.com/en-us/
https://travis-ci.org/
https://circleci.com/

scikit-learn user guide, Release 0.23.2

1.6 Who is using scikit-learn?

1.6.1 J.P.Morgan

Scikit-learn is an indispensable part of the Python machine learning toolkit at JPMorgan. It is very widely used
across all parts of the bank for classification, predictive analytics, and very many other machine learning tasks. Its
straightforward API, its breadth of algorithms, and the quality of its documentation combine to make scikit-learn
simultaneously very approachable and very powerful.

Stephen Simmons, VP, Athena Research, JPMorgan

1.6.2 Spotify

Scikit-learn provides a toolbox with solid implementations of a bunch of state-of-the-art models and makes it easy to
plug them into existing applications. We’ve been using it quite a lot for music recommendations at Spotify and I think
it’s the most well-designed ML package I’ve seen so far.

Erik Bernhardsson, Engineering Manager Music Discovery & Machine Learning, Spotify

1.6.3 Inria

At INRIA, we use scikit-learn to support leading-edge basic research in many teams: Parietal for neuroimaging, Lear
for computer vision, Visages for medical image analysis, Privatics for security. The project is a fantastic tool to
address difficult applications of machine learning in an academic environment as it is performant and versatile, but all
easy-to-use and well documented, which makes it well suited to grad students.

Gaël Varoquaux, research at Parietal

1.6.4 betaworks

Betaworks is a NYC-based startup studio that builds new products, grows companies, and invests in others. Over
the past 8 years we’ve launched a handful of social data analytics-driven services, such as Bitly, Chartbeat, digg and

20 Chapter 1. Welcome to scikit-learn

https://www.jpmorgan.com
https://www.spotify.com
https://team.inria.fr/parietal/
https://lear.inrialpes.fr/
https://team.inria.fr/visages/
https://team.inria.fr/privatics
https://www.inria.fr/

scikit-learn user guide, Release 0.23.2

Scale Model. Consistently the betaworks data science team uses Scikit-learn for a variety of tasks. From exploratory
analysis, to product development, it is an essential part of our toolkit. Recent uses are included in digg’s new video
recommender system, and Poncho’s dynamic heuristic subspace clustering.

Gilad Lotan, Chief Data Scientist

1.6.5 Hugging Face

At Hugging Face we’re using NLP and probabilistic models to generate conversational Artificial intelligences that are
fun to chat with. Despite using deep neural nets for a few of our NLP tasks, scikit-learn is still the bread-and-butter of
our daily machine learning routine. The ease of use and predictability of the interface, as well as the straightforward
mathematical explanations that are here when you need them, is the killer feature. We use a variety of scikit-learn
models in production and they are also operationally very pleasant to work with.

Julien Chaumond, Chief Technology Officer

1.6.6 Evernote

Building a classifier is typically an iterative process of exploring the data, selecting the features (the attributes of the
data believed to be predictive in some way), training the models, and finally evaluating them. For many of these tasks,
we relied on the excellent scikit-learn package for Python.

Read more

Mark Ayzenshtat, VP, Augmented Intelligence

1.6.7 Télécom ParisTech

At Telecom ParisTech, scikit-learn is used for hands-on sessions and home assignments in introductory and advanced
machine learning courses. The classes are for undergrads and masters students. The great benefit of scikit-learn is its
fast learning curve that allows students to quickly start working on interesting and motivating problems.

Alexandre Gramfort, Assistant Professor

1.6. Who is using scikit-learn? 21

https://medium.com/i-data/the-digg-video-recommender-2f9ade7c4ba3
https://medium.com/i-data/the-digg-video-recommender-2f9ade7c4ba3
https://medium.com/@DiggData/scaling-poncho-using-data-ca24569d56fd
https://betaworks.com
https://medium.com/huggingface/understanding-emotions-from-keras-to-pytorch-3ccb61d5a983
https://huggingface.co/coref/
https://huggingface.co
http://blog.evernote.com/tech/2013/01/22/stay-classified/
https://evernote.com

scikit-learn user guide, Release 0.23.2

1.6.8 Booking.com

At Booking.com, we use machine learning algorithms for many different applications, such as recommending ho-
tels and destinations to our customers, detecting fraudulent reservations, or scheduling our customer service agents.
Scikit-learn is one of the tools we use when implementing standard algorithms for prediction tasks. Its API and doc-
umentations are excellent and make it easy to use. The scikit-learn developers do a great job of incorporating state of
the art implementations and new algorithms into the package. Thus, scikit-learn provides convenient access to a wide
spectrum of algorithms, and allows us to readily find the right tool for the right job.

Melanie Mueller, Data Scientist

1.6.9 AWeber

The scikit-learn toolkit is indispensable for the Data Analysis and Management team at AWeber. It allows us to do
AWesome stuff we would not otherwise have the time or resources to accomplish. The documentation is excellent,
allowing new engineers to quickly evaluate and apply many different algorithms to our data. The text feature extraction
utilities are useful when working with the large volume of email content we have at AWeber. The RandomizedPCA
implementation, along with Pipelining and FeatureUnions, allows us to develop complex machine learning algorithms
efficiently and reliably.

Anyone interested in learning more about how AWeber deploys scikit-learn in a production environment should check
out talks from PyData Boston by AWeber’s Michael Becker available at https://github.com/mdbecker/pydata_2013

Michael Becker, Software Engineer, Data Analysis and Management Ninjas

1.6.10 Yhat

The combination of consistent APIs, thorough documentation, and top notch implementation make scikit-learn our
favorite machine learning package in Python. scikit-learn makes doing advanced analysis in Python accessible to
anyone. At Yhat, we make it easy to integrate these models into your production applications. Thus eliminating the
unnecessary dev time encountered productionizing analytical work.

Greg Lamp, Co-founder Yhat

22 Chapter 1. Welcome to scikit-learn

https://www.telecom-paristech.fr/
https://www.booking.com
https://github.com/mdbecker/pydata_2013
https://www.aweber.com/

scikit-learn user guide, Release 0.23.2

1.6.11 Rangespan

The Python scikit-learn toolkit is a core tool in the data science group at Rangespan. Its large collection of well
documented models and algorithms allow our team of data scientists to prototype fast and quickly iterate to find the
right solution to our learning problems. We find that scikit-learn is not only the right tool for prototyping, but its
careful and well tested implementation give us the confidence to run scikit-learn models in production.

Jurgen Van Gael, Data Science Director at Rangespan Ltd

1.6.12 Birchbox

At Birchbox, we face a range of machine learning problems typical to E-commerce: product recommendation, user
clustering, inventory prediction, trends detection, etc. Scikit-learn lets us experiment with many models, especially in
the exploration phase of a new project: the data can be passed around in a consistent way; models are easy to save and
reuse; updates keep us informed of new developments from the pattern discovery research community. Scikit-learn is
an important tool for our team, built the right way in the right language.

Thierry Bertin-Mahieux, Birchbox, Data Scientist

1.6.13 Bestofmedia Group

Scikit-learn is our #1 toolkit for all things machine learning at Bestofmedia. We use it for a variety of tasks (e.g. spam
fighting, ad click prediction, various ranking models) thanks to the varied, state-of-the-art algorithm implementations
packaged into it. In the lab it accelerates prototyping of complex pipelines. In production I can say it has proven to be
robust and efficient enough to be deployed for business critical components.

Eustache Diemert, Lead Scientist Bestofmedia Group

1.6. Who is using scikit-learn? 23

https://www.yhat.com
http://www.rangespan.com
https://www.birchbox.com

scikit-learn user guide, Release 0.23.2

1.6.14 Change.org

At change.org we automate the use of scikit-learn’s RandomForestClassifier in our production systems to drive email
targeting that reaches millions of users across the world each week. In the lab, scikit-learn’s ease-of-use, performance,
and overall variety of algorithms implemented has proved invaluable in giving us a single reliable source to turn to for
our machine-learning needs.

Vijay Ramesh, Software Engineer in Data/science at Change.org

1.6.15 PHIMECA Engineering

At PHIMECA Engineering, we use scikit-learn estimators as surrogates for expensive-to-evaluate numerical models
(mostly but not exclusively finite-element mechanical models) for speeding up the intensive post-processing operations
involved in our simulation-based decision making framework. Scikit-learn’s fit/predict API together with its efficient
cross-validation tools considerably eases the task of selecting the best-fit estimator. We are also using scikit-learn for
illustrating concepts in our training sessions. Trainees are always impressed by the ease-of-use of scikit-learn despite
the apparent theoretical complexity of machine learning.

Vincent Dubourg, PHIMECA Engineering, PhD Engineer

24 Chapter 1. Welcome to scikit-learn

http://www.bestofmedia.com
https://www.change.org
https://www.phimeca.com/?lang=en

scikit-learn user guide, Release 0.23.2

1.6.16 HowAboutWe

At HowAboutWe, scikit-learn lets us implement a wide array of machine learning techniques in analysis and in pro-
duction, despite having a small team. We use scikit-learn’s classification algorithms to predict user behavior, enabling
us to (for example) estimate the value of leads from a given traffic source early in the lead’s tenure on our site. Also, our
users’ profiles consist of primarily unstructured data (answers to open-ended questions), so we use scikit-learn’s fea-
ture extraction and dimensionality reduction tools to translate these unstructured data into inputs for our matchmaking
system.

Daniel Weitzenfeld, Senior Data Scientist at HowAboutWe

1.6.17 PeerIndex

At PeerIndex we use scientific methodology to build the Influence Graph - a unique dataset that allows us to identify
who’s really influential and in which context. To do this, we have to tackle a range of machine learning and predic-
tive modeling problems. Scikit-learn has emerged as our primary tool for developing prototypes and making quick
progress. From predicting missing data and classifying tweets to clustering communities of social media users, scikit-
learn proved useful in a variety of applications. Its very intuitive interface and excellent compatibility with other
python tools makes it and indispensable tool in our daily research efforts.

Ferenc Huszar - Senior Data Scientist at Peerindex

1.6.18 DataRobot

DataRobot is building next generation predictive analytics software to make data scientists more productive, and
scikit-learn is an integral part of our system. The variety of machine learning techniques in combination with the
solid implementations that scikit-learn offers makes it a one-stop-shopping library for machine learning in Python.
Moreover, its consistent API, well-tested code and permissive licensing allow us to use it in a production environment.
Scikit-learn has literally saved us years of work we would have had to do ourselves to bring our product to market.

Jeremy Achin, CEO & Co-founder DataRobot Inc.

1.6.19 OkCupid

We’re using scikit-learn at OkCupid to evaluate and improve our matchmaking system. The range of features it has,
especially preprocessing utilities, means we can use it for a wide variety of projects, and it’s performant enough to
handle the volume of data that we need to sort through. The documentation is really thorough, as well, which makes
the library quite easy to use.

David Koh - Senior Data Scientist at OkCupid

1.6. Who is using scikit-learn? 25

http://www.howaboutwe.com/
https://www.brandwatch.com/peerindex-and-brandwatch
https://www.datarobot.com

scikit-learn user guide, Release 0.23.2

1.6.20 Lovely

At Lovely, we strive to deliver the best apartment marketplace, with respect to our users and our listings. From
understanding user behavior, improving data quality, and detecting fraud, scikit-learn is a regular tool for gathering
insights, predictive modeling and improving our product. The easy-to-read documentation and intuitive architecture of
the API makes machine learning both explorable and accessible to a wide range of python developers. I’m constantly
recommending that more developers and scientists try scikit-learn.

Simon Frid - Data Scientist, Lead at Lovely

1.6.21 Data Publica

Data Publica builds a new predictive sales tool for commercial and marketing teams called C-Radar. We extensively
use scikit-learn to build segmentations of customers through clustering, and to predict future customers based on past
partnerships success or failure. We also categorize companies using their website communication thanks to scikit-learn
and its machine learning algorithm implementations. Eventually, machine learning makes it possible to detect weak
signals that traditional tools cannot see. All these complex tasks are performed in an easy and straightforward way
thanks to the great quality of the scikit-learn framework.

Guillaume Lebourgeois & Samuel Charron - Data Scientists at Data Publica

1.6.22 Machinalis

Scikit-learn is the cornerstone of all the machine learning projects carried at Machinalis. It has a consistent API, a
wide selection of algorithms and lots of auxiliary tools to deal with the boilerplate. We have used it in production en-
vironments on a variety of projects including click-through rate prediction, information extraction, and even counting
sheep!

In fact, we use it so much that we’ve started to freeze our common use cases into Python packages, some of them
open-sourced, like FeatureForge . Scikit-learn in one word: Awesome.

Rafael Carrascosa, Lead developer

26 Chapter 1. Welcome to scikit-learn

https://www.okcupid.com
https://livelovely.com
http://www.data-publica.com/
https://github.com/machinalis/iepy
https://github.com/machinalis/featureforge

scikit-learn user guide, Release 0.23.2

1.6.23 solido

Scikit-learn is helping to drive Moore’s Law, via Solido. Solido creates computer-aided design tools used by the
majority of top-20 semiconductor companies and fabs, to design the bleeding-edge chips inside smartphones, auto-
mobiles, and more. Scikit-learn helps to power Solido’s algorithms for rare-event estimation, worst-case verification,
optimization, and more. At Solido, we are particularly fond of scikit-learn’s libraries for Gaussian Process models,
large-scale regularized linear regression, and classification. Scikit-learn has increased our productivity, because for
many ML problems we no longer need to “roll our own” code. This PyData 2014 talk has details.

Trent McConaghy, founder, Solido Design Automation Inc.

1.6.24 INFONEA

We employ scikit-learn for rapid prototyping and custom-made Data Science solutions within our in-memory based
Business Intelligence Software INFONEA®. As a well-documented and comprehensive collection of state-of-the-art
algorithms and pipelining methods, scikit-learn enables us to provide flexible and scalable scientific analysis solutions.
Thus, scikit-learn is immensely valuable in realizing a powerful integration of Data Science technology within self-
service business analytics.

Thorsten Kranz, Data Scientist, Coma Soft AG.

1.6.25 Dataiku

Our software, Data Science Studio (DSS), enables users to create data services that combine ETL with Machine
Learning. Our Machine Learning module integrates many scikit-learn algorithms. The scikit-learn library is a perfect
integration with DSS because it offers algorithms for virtually all business cases. Our goal is to offer a transparent and
flexible tool that makes it easier to optimize time consuming aspects of building a data service, preparing data, and
training machine learning algorithms on all types of data.

Florian Douetteau, CEO, Dataiku

1.6. Who is using scikit-learn? 27

https://www.machinalis.com/
https://www.youtube.com/watch?v=Jm-eBD9xR3w
https://www.solidodesign.com/
http://www.infonea.com/en/
https://en.wikipedia.org/wiki/Extract,_transform,_load
https://www.dataiku.com/

scikit-learn user guide, Release 0.23.2

1.6.26 Otto Group

Here at Otto Group, one of global Big Five B2C online retailers, we are using scikit-learn in all aspects of our daily
work from data exploration to development of machine learning application to the productive deployment of those
services. It helps us to tackle machine learning problems ranging from e-commerce to logistics. It consistent APIs
enabled us to build the Palladium REST-API framework around it and continuously deliver scikit-learn based services.

Christian Rammig, Head of Data Science, Otto Group

1.6.27 Zopa

At Zopa, the first ever Peer-to-Peer lending platform, we extensively use scikit-learn to run the business and optimize
our users’ experience. It powers our Machine Learning models involved in credit risk, fraud risk, marketing, and
pricing, and has been used for originating at least 1 billion GBP worth of Zopa loans. It is very well documented,
powerful, and simple to use. We are grateful for the capabilities it has provided, and for allowing us to deliver on our
mission of making money simple and fair.

Vlasios Vasileiou, Head of Data Science, Zopa

1.6.28 MARS

Scikit-Learn is integral to the Machine Learning Ecosystem at Mars. Whether we’re designing better recipes for
petfood or closely analysing our cocoa supply chain, Scikit-Learn is used as a tool for rapidly prototyping ideas and
taking them to production. This allows us to better understand and meet the needs of our consumers worldwide.
Scikit-Learn’s feature-rich toolset is easy to use and equips our associates with the capabilities they need to solve the
business challenges they face every day.

Michael Fitzke Next Generation Technologies Sr Leader, Mars Inc.

1.7 Release History

Release notes for all scikit-learn releases are linked in this page.

Tip: Subscribe to scikit-learn releases on libraries.io to be notified when new versions are released.

1.7.1 Version 0.24.0

In Development

28 Chapter 1. Welcome to scikit-learn

https://github.com/ottogroup/palladium/
https://ottogroup.com
https://zopa.com
https://www.mars.com/global
https://libraries.io/pypi/scikit-learn

scikit-learn user guide, Release 0.23.2

Legend for changelogs

• [MAJOR FEATURE]: something big that you couldn’t do before.

• [FEATURE]: something that you couldn’t do before.

• [EFFICIENCY]: an existing feature now may not require as much computation or memory.

• [ENHANCEMENT]: a miscellaneous minor improvement.

• [FIX]: something that previously didn’t work as documentated – or according to reasonable expectations –
should now work.

• [API CHANGE]: you will need to change your code to have the same effect in the future; or a feature will be
removed in the future.

Put the changes in their relevant module.

Changed models

The following estimators and functions, when fit with the same data and parameters, may produce different models
from the previous version. This often occurs due to changes in the modelling logic (bug fixes or enhancements), or in
random sampling procedures.

• items

• items

Details are listed in the changelog below.

(While we are trying to better inform users by providing this information, we cannot assure that this list is complete.)

Changelog

sklearn.module

Code and Documentation Contributors

Thanks to everyone who has contributed to the maintenance and improvement of the project since version 0.20, in-
cluding:

1.7.2 Version 0.23.2

August 3 2020

Changed models

The following estimators and functions, when fit with the same data and parameters, may produce different models
from the previous version. This often occurs due to changes in the modelling logic (bug fixes or enhancements), or in
random sampling procedures.

• [FIX] inertia_ attribute of cluster.KMeans and cluster.MiniBatchKMeans.

Details are listed in the changelog below.

(While we are trying to better inform users by providing this information, we cannot assure that this list is complete.)

1.7. Release History 29

scikit-learn user guide, Release 0.23.2

Changelog

sklearn.cluster

• [FIX] Fixed a bug in cluster.KMeans where rounding errors could prevent convergence to be declared when
tol=0. #17959 by Jérémie du Boisberranger.

• [FIX] Fixed a bug in cluster.KMeans and cluster.MiniBatchKMeans where the reported inertia was
incorrectly weighted by the sample weights. #17848 by Jérémie du Boisberranger.

• [FIX] Fixed a bug in cluster.MeanShift with bin_seeding=True. When the estimated bandwidth is
0, the behavior is equivalent to bin_seeding=False. #17742 by Jeremie du Boisberranger.

• [FIX] Fixed a bug in cluster.AffinityPropagation, that gives incorrect clusters when the array dtype
is float32. #17995 by Thomaz Santana and Amanda Dsouza.

sklearn.decomposition

• [FIX] Fixed a bug in decomposition.MiniBatchDictionaryLearning.partial_fit which
should update the dictionary by iterating only once over a mini-batch. #17433 by Chiara Marmo.

• [FIX] Avoid overflows on Windows in decomposition.IncrementalPCA.partial_fit for large
batch_size and n_samples values. #17985 by Alan Butler and Amanda Dsouza.

sklearn.ensemble

• [FIX] Fixed bug in ensemble.MultinomialDeviance where the average of logloss was incorrectly cal-
culated as sum of logloss. #17694 by Markus Rempfler and Tsutomu Kusanagi.

• [FIX] Fixes ensemble.StackingClassifier and ensemble.StackingRegressor compatibility
with estimators that do not define n_features_in_. #17357 by Thomas Fan.

sklearn.feature_extraction

• [FIX] Fixes bug in feature_extraction.text.CountVectorizer where sample order invariance
was broken when max_features was set and features had the same count. #18016 by Thomas Fan, Roman
Yurchak, and Joel Nothman.

sklearn.linear_model

• [FIX] linear_model.lars_path does not overwrite X when X_copy=True and Gram='auto'.
#17914 by Thomas Fan.

sklearn.manifold

• [FIX] Fixed a bug where metrics.pairwise_distances would raise an error if
metric='seuclidean' and X is not type np.float64. #15730 by Forrest Koch.

30 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/pull/17959
https://github.com/jeremiedbb
https://github.com/scikit-learn/scikit-learn/pull/17848
https://github.com/jeremiedbb
https://github.com/scikit-learn/scikit-learn/pull/17742
https://github.com/jeremiedbb
https://github.com/scikit-learn/scikit-learn/pull/17995
https://github.com/Wikilicious
https://github.com/amy12xx
https://github.com/scikit-learn/scikit-learn/pull/17433
https://github.com/cmarmo
https://github.com/scikit-learn/scikit-learn/pull/17985
https://github.com/aldee153
https://github.com/amy12xx
https://github.com/scikit-learn/scikit-learn/pull/17694
https://github.com/rempfler
https://github.com/t-kusanagi2
https://github.com/scikit-learn/scikit-learn/pull/17357
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/pull/18016
https://github.com/thomasjpfan
https://github.com/rth
https://github.com/rth
https://joelnothman.com/
https://github.com/scikit-learn/scikit-learn/pull/17914
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/pull/15730
https://github.com/ForrestCKoch

scikit-learn user guide, Release 0.23.2

sklearn.metrics

• [FIX] Fixed a bug in metrics.mean_squared_error where the average of multiple RMSE values was
incorrectly calculated as the root of the average of multiple MSE values. #17309 by Swier Heeres.

sklearn.pipeline

• [FIX] pipeline.FeatureUnion raises a deprecation warning when None is included in
transformer_list. #17360 by Thomas Fan.

sklearn.utils

• [FIX] Fix utils.estimator_checks.check_estimator so that all test cases support the
binary_only estimator tag. #17812 by Bruno Charron.

1.7.3 Version 0.23.1

May 18 2020

Changelog

sklearn.cluster

• [EFFICIENCY] cluster.KMeans efficiency has been improved for very small datasets. In particular it cannot
spawn idle threads any more. #17210 and #17235 by Jeremie du Boisberranger.

• [FIX] Fixed a bug in cluster.KMeans where the sample weights provided by the user were modified in
place. #17204 by Jeremie du Boisberranger.

Miscellaneous

• [FIX] Fixed a bug in the repr of third-party estimators that use a **kwargs parameter in their constructor,
when changed_only is True which is now the default. #17205 by Nicolas Hug.

1.7.4 Version 0.23.0

May 12 2020

For a short description of the main highlights of the release, please refer to Release Highlights for scikit-learn 0.23.

Legend for changelogs

• [MAJOR FEATURE]: something big that you couldn’t do before.

• [FEATURE]: something that you couldn’t do before.

• [EFFICIENCY]: an existing feature now may not require as much computation or memory.

• [ENHANCEMENT]: a miscellaneous minor improvement.

1.7. Release History 31

https://github.com/scikit-learn/scikit-learn/pull/17309
https://github.com/swierh
https://github.com/scikit-learn/scikit-learn/pull/17360
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/pull/17812
https://github.com/brcharron
https://github.com/scikit-learn/scikit-learn/pull/17210
https://github.com/scikit-learn/scikit-learn/pull/17235
https://github.com/jeremiedbb
https://github.com/scikit-learn/scikit-learn/pull/17204
https://github.com/jeremiedbb
https://github.com/scikit-learn/scikit-learn/pull/17205
https://github.com/NicolasHug

scikit-learn user guide, Release 0.23.2

• [FIX]: something that previously didn’t work as documentated – or according to reasonable expectations –
should now work.

• [API CHANGE]: you will need to change your code to have the same effect in the future; or a feature will be
removed in the future.

Enforcing keyword-only arguments

In an effort to promote clear and non-ambiguous use of the library, most constructor and function parameters are now
expected to be passed as keyword arguments (i.e. using the param=value syntax) instead of positional. To ease
the transition, a FutureWarning is raised if a keyword-only parameter is used as positional. In version 0.25, these
parameters will be strictly keyword-only, and a TypeError will be raised. #15005 by Joel Nothman, Adrin Jalali,
Thomas Fan, and Nicolas Hug. See SLEP009 for more details.

Changed models

The following estimators and functions, when fit with the same data and parameters, may produce different models
from the previous version. This often occurs due to changes in the modelling logic (bug fixes or enhancements), or in
random sampling procedures.

• [FIX] ensemble.BaggingClassifier, ensemble.BaggingRegressor, and ensemble.
IsolationForest.

• [FIX] cluster.KMeans with algorithm="elkan" and algorithm="full".

• [FIX] cluster.Birch

• [FIX] compose.ColumnTransformer.get_feature_names

• [FIX] compose.ColumnTransformer.fit

• [FIX] datasets.make_multilabel_classification

• [FIX] decomposition.PCA with n_components='mle'

• [ENHANCEMENT] decomposition.NMF and decomposition.non_negative_factorization
with float32 dtype input.

• [FIX] decomposition.KernelPCA.inverse_transform

• [API CHANGE] ensemble.HistGradientBoostingClassifier and ensemble.
HistGradientBoostingRegrerssor

• [FIX] estimator_samples_ in ensemble.BaggingClassifier, ensemble.
BaggingRegressor and ensemble.IsolationForest

• [FIX] ensemble.StackingClassifier and ensemble.StackingRegressor with
sample_weight

• [FIX] gaussian_process.GaussianProcessRegressor

• [FIX] linear_model.RANSACRegressor with sample_weight.

• [FIX] linear_model.RidgeClassifierCV

• [FIX] metrics.mean_squared_error with squared and multioutput='raw_values'.

• [FIX] metrics.mutual_info_score with negative scores.

• [FIX] metrics.confusion_matrix with zero length y_true and y_pred

• [FIX] neural_network.MLPClassifier

32 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/issues/15005
https://joelnothman.com/
https://github.com/adrinjalali
https://github.com/thomasjpfan
https://github.com/NicolasHug
https://scikit-learn-enhancement-proposals.readthedocs.io/en/latest/slep009/proposal.html

scikit-learn user guide, Release 0.23.2

• [FIX] preprocessing.StandardScaler with partial_fit and sparse input.

• [FIX] preprocessing.Normalizer with norm=’max’

• [FIX] Any model using the svm.libsvm or the svm.liblinear solver, including svm.LinearSVC,
svm.LinearSVR, svm.NuSVC, svm.NuSVR, svm.OneClassSVM , svm.SVC, svm.SVR,
linear_model.LogisticRegression.

• [FIX] tree.DecisionTreeClassifier, tree.ExtraTreeClassifier and ensemble.
GradientBoostingClassifier as well as predict method of tree.DecisionTreeRegressor,
tree.ExtraTreeRegressor, and ensemble.GradientBoostingRegressor and read-only
float32 input in predict, decision_path and predict_proba.

Details are listed in the changelog below.

(While we are trying to better inform users by providing this information, we cannot assure that this list is complete.)

Changelog

sklearn.cluster

• [EFFICIENCY] cluster.Birch implementation of the predict method avoids high memory footprint by cal-
culating the distances matrix using a chunked scheme. #16149 by Jeremie du Boisberranger and Alex Shacked.

• [EFFICIENCY] [MAJOR FEATURE] The critical parts of cluster.KMeans have a more optimized implemen-
tation. Parallelism is now over the data instead of over initializations allowing better scalability. #11950 by
Jeremie du Boisberranger.

• [ENHANCEMENT] cluster.KMeans now supports sparse data when solver = "elkan". #11950 by
Jeremie du Boisberranger.

• [ENHANCEMENT] cluster.AgglomerativeClustering has a faster and more memory efficient imple-
mentation of single linkage clustering. #11514 by Leland McInnes.

• [FIX] cluster.KMeans with algorithm="elkan" now converges with tol=0 as with the default
algorithm="full". #16075 by Erich Schubert.

• [FIX] Fixed a bug in cluster.Birch where the n_clusters parameter could not have a np.int64 type.
#16484 by Jeremie du Boisberranger.

• [FIX] cluster.AgglomerativeCluClustering add specific error when distance matrix is not square
and affinity=precomputed. #16257 by Simona Maggio.

• [API CHANGE] The n_jobs parameter of cluster.KMeans, cluster.SpectralCoclustering and
cluster.SpectralBiclustering is deprecated. They now use OpenMP based parallelism. For more
details on how to control the number of threads, please refer to our Parallelism notes. #11950 by Jeremie du
Boisberranger.

• [API CHANGE] The precompute_distances parameter of cluster.KMeans is deprecated. It has no
effect. #11950 by Jeremie du Boisberranger.

• [API CHANGE] The random_state parameter has been added to cluster.AffinityPropagation.
#16801 by @rcwoolston and Chiara Marmo.

sklearn.compose

• [EFFICIENCY] compose.ColumnTransformer is now faster when working with dataframes and strings are
used to specific subsets of data for transformers. #16431 by Thomas Fan.

1.7. Release History 33

https://github.com/scikit-learn/scikit-learn/pull/16149
https://github.com/jeremiedbb
https://github.com/alexshacked
https://github.com/scikit-learn/scikit-learn/pull/11950
https://github.com/jeremiedbb
https://github.com/scikit-learn/scikit-learn/pull/11950
https://github.com/jeremiedbb
https://github.com/scikit-learn/scikit-learn/pull/11514
https://github.com/lmcinnes
https://github.com/scikit-learn/scikit-learn/pull/16075
https://github.com/kno10
https://github.com/scikit-learn/scikit-learn/pull/16484
https://github.com/jeremiedbb
https://github.com/scikit-learn/scikit-learn/pull/16257
https://github.com/simonamaggio
https://github.com/scikit-learn/scikit-learn/pull/11950
https://github.com/jeremiedbb
https://github.com/jeremiedbb
https://github.com/scikit-learn/scikit-learn/pull/11950
https://github.com/jeremiedbb
https://github.com/scikit-learn/scikit-learn/pull/16801
https://github.com/rcwoolston
https://github.com/cmarmo
https://github.com/scikit-learn/scikit-learn/pull/16431
https://github.com/thomasjpfan

scikit-learn user guide, Release 0.23.2

• [ENHANCEMENT] compose.ColumnTransformer method get_feature_names now supports
'passthrough' columns, with the feature name being either the column name for a dataframe, or 'xi'
for column index i. #14048 by Lewis Ball.

• [FIX] compose.ColumnTransformer method get_feature_names now returns correct results when
one of the transformer steps applies on an empty list of columns #15963 by Roman Yurchak.

• [FIX] compose.ColumnTransformer.fit will error when selecting a column name that is not unique in
the dataframe. #16431 by Thomas Fan.

sklearn.datasets

• [EFFICIENCY] datasets.fetch_openml has reduced memory usage because it no longer stores the full
dataset text stream in memory. #16084 by Joel Nothman.

• [FEATURE] datasets.fetch_california_housing now supports heterogeneous data using pandas by
setting as_frame=True. #15950 by Stephanie Andrews and Reshama Shaikh.

• [FEATURE] embedded dataset loaders load_breast_cancer, load_diabetes, load_digits,
load_iris, load_linnerud and load_wine now support loading as a pandas DataFrame by setting
as_frame=True. #15980 by @wconnell and Reshama Shaikh.

• [ENHANCEMENT] Added return_centers parameter in datasets.make_blobs, which can be used to
return centers for each cluster. #15709 by @shivamgargsya and Venkatachalam N.

• [ENHANCEMENT] Functions datasets.make_circles and datasets.make_moons now accept two-
element tuple. #15707 by Maciej J Mikulski.

• [FIX] datasets.make_multilabel_classification now generates ValueError for arguments
n_classes < 1 OR length < 1. #16006 by Rushabh Vasani.

• [API CHANGE] The StreamHandler was removed from sklearn.logger to avoid double logging of
messages in common cases where a hander is attached to the root logger, and to follow the Python logging
documentation recommendation for libraries to leave the log message handling to users and application code.
#16451 by Christoph Deil.

sklearn.decomposition

• [ENHANCEMENT] decomposition.NMF and decomposition.non_negative_factorization
now preserves float32 dtype. #16280 by Jeremie du Boisberranger.

• [ENHANCEMENT] TruncatedSVD.transform is now faster on given sparse csc matrices. #16837 by
@wornbb.

• [FIX] decomposition.PCA with a float n_components parameter, will exclusively choose the compo-
nents that explain the variance greater than n_components. #15669 by Krishna Chaitanya

• [FIX] decomposition.PCA with n_components='mle' now correctly handles small eigenvalues, and
does not infer 0 as the correct number of components. #16224 by Lisa Schwetlick, and Gelavizh Ahmadi and
Marija Vlajic Wheeler and #16841 by Nicolas Hug.

• [FIX] decomposition.KernelPCAmethod inverse_transform now applies the correct inverse trans-
form to the transformed data. #16655 by Lewis Ball.

• [FIX] Fixed bug that was causing decomposition.KernelPCA to sometimes raise invalid value
encountered in multiply during fit. #16718 by Gui Miotto.

• [FEATURE] Added n_components_ attribute to decomposition.SparsePCA and decomposition.
MiniBatchSparsePCA. #16981 by Mateusz Górski.

34 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/pull/14048
https://github.com/lrjball
https://github.com/scikit-learn/scikit-learn/pull/15963
https://github.com/rth
https://github.com/scikit-learn/scikit-learn/pull/16431
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/pull/16084
https://joelnothman.com/
https://github.com/scikit-learn/scikit-learn/pull/15950
https://github.com/gitsteph
https://github.com/reshamas
https://github.com/scikit-learn/scikit-learn/pull/15980
https://github.com/wconnell
https://github.com/reshamas
https://github.com/scikit-learn/scikit-learn/pull/15709
https://github.com/shivamgargsya
https://github.com/venkyyuvy
https://github.com/scikit-learn/scikit-learn/pull/15707
https://github.com/mjmikulski
https://github.com/scikit-learn/scikit-learn/pull/16006
https://github.com/rushabh-v
https://github.com/scikit-learn/scikit-learn/pull/16451
https://github.com/cdeil
https://github.com/scikit-learn/scikit-learn/pull/16280
https://github.com/jeremiedbb
https://github.com/scikit-learn/scikit-learn/pull/16837
https://github.com/wornbb
https://github.com/scikit-learn/scikit-learn/pull/15669
https://github.com/krishnachaitanya9
https://github.com/scikit-learn/scikit-learn/pull/16224
https://github.com/lschwetlick
https://github.com/gelavizh1
https://github.com/marijavlajic
https://github.com/scikit-learn/scikit-learn/pull/16841
https://github.com/NicolasHug
https://github.com/scikit-learn/scikit-learn/pull/16655
https://github.com/lrjball
https://github.com/scikit-learn/scikit-learn/pull/16718
https://github.com/gui-miotto
https://github.com/scikit-learn/scikit-learn/pull/16981
https://github.com/Reksbril

scikit-learn user guide, Release 0.23.2

sklearn.ensemble

• [MAJOR FEATURE] ensemble.HistGradientBoostingClassifier and ensemble.
HistGradientBoostingRegressor now support sample_weight. #14696 by Adrin Jalali and
Nicolas Hug.

• [FEATURE] Early stopping in ensemble.HistGradientBoostingClassifier and ensemble.
HistGradientBoostingRegressor is now determined with a new early_stopping parameter in-
stead of n_iter_no_change. Default value is ‘auto’, which enables early stopping if there are at least 10,000
samples in the training set. #14516 by Johann Faouzi.

• [MAJOR FEATURE] ensemble.HistGradientBoostingClassifier and ensemble.
HistGradientBoostingRegressor now support monotonic constraints, useful when features are
supposed to have a positive/negative effect on the target. #15582 by Nicolas Hug.

• [API CHANGE] Added boolean verbose flag to classes: ensemble.VotingClassifier and
ensemble.VotingRegressor. #16069 by Sam Bail, Hanna Bruce MacDonald, Reshama Shaikh, and
Chiara Marmo.

• [API CHANGE] Fixed a bug in ensemble.HistGradientBoostingClassifier and ensemble.
HistGradientBoostingRegrerssor that would not respect the max_leaf_nodes parameter if the
criteria was reached at the same time as the max_depth criteria. #16183 by Nicolas Hug.

• [FIX] Changed the convention for max_depth parameter of ensemble.
HistGradientBoostingClassifier and ensemble.HistGradientBoostingRegressor.
The depth now corresponds to the number of edges to go from the root to the deepest leaf. Stumps (trees with
one split) are now allowed. #16182 by Santhosh B

• [FIX] Fixed a bug in ensemble.BaggingClassifier, ensemble.BaggingRegressor and
ensemble.IsolationForest where the attribute estimators_samples_ did not generate the proper
indices used during fit. #16437 by Jin-Hwan CHO.

• [FIX] Fixed a bug in ensemble.StackingClassifier and ensemble.StackingRegressor where
the sample_weight argument was not being passed to cross_val_predict when evaluating the base
estimators on cross-validation folds to obtain the input to the meta estimator. #16539 by Bill DeRose.

• [FEATURE] Added additional option loss="poisson" to ensemble.
HistGradientBoostingRegressor, which adds Poisson deviance with log-link useful for modeling
count data. #16692 by Christian Lorentzen

• [FIX] Fixed a bug where ensemble.HistGradientBoostingRegressor and ensemble.
HistGradientBoostingClassifier would fail with multiple calls to fit when warm_start=True,
early_stopping=True, and there is no validation set. #16663 by Thomas Fan.

sklearn.feature_extraction

• [EFFICIENCY] feature_extraction.text.CountVectorizer now sorts features after pruning them
by document frequency. This improves performances for datasets with large vocabularies combined with
min_df or max_df. #15834 by Santiago M. Mola.

sklearn.feature_selection

• [ENHANCEMENT] Added support for multioutput data in feature_selection.RFE and
feature_selection.RFECV . #16103 by Divyaprabha M.

• [API CHANGE] Adds feature_selection.SelectorMixin back to public API. #16132 by @trimeta.

1.7. Release History 35

https://github.com/scikit-learn/scikit-learn/pull/14696
https://github.com/adrinjalali
https://github.com/NicolasHug
https://github.com/scikit-learn/scikit-learn/pull/14516
https://github.com/johannfaouzi
https://github.com/scikit-learn/scikit-learn/pull/15582
https://github.com/NicolasHug
https://github.com/scikit-learn/scikit-learn/pull/16069
https://github.com/spbail
https://github.com/hannahbrucemacdonald
https://github.com/reshamas
https://github.com/cmarmo
https://github.com/scikit-learn/scikit-learn/pull/16183
https://github.com/NicolasHug
https://github.com/scikit-learn/scikit-learn/pull/16182
https://github.com/santhoshbala18
https://github.com/scikit-learn/scikit-learn/pull/16437
https://github.com/chofchof
https://github.com/scikit-learn/scikit-learn/pull/16539
https://github.com/wderose
https://github.com/scikit-learn/scikit-learn/pull/16692
https://github.com/lorentzenchr
https://github.com/scikit-learn/scikit-learn/pull/16663
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/pull/15834
https://github.com/smola
https://github.com/scikit-learn/scikit-learn/pull/16103
https://github.com/divyaprabha123
https://github.com/scikit-learn/scikit-learn/pull/16132
https://github.com/trimeta

scikit-learn user guide, Release 0.23.2

sklearn.gaussian_process

• [ENHANCEMENT] gaussian_process.kernels.Matern returns the RBF kernel when nu=np.inf.
#15503 by Sam Dixon.

• [FIX] Fixed bug in gaussian_process.GaussianProcessRegressor that caused predicted standard
deviations to only be between 0 and 1 when WhiteKernel is not used. #15782 by @plgreenLIRU.

sklearn.impute

• [ENHANCEMENT] impute.IterativeImputer accepts both scalar and array-like inputs for max_value
and min_value. Array-like inputs allow a different max and min to be specified for each feature. #16403 by
Narendra Mukherjee.

• [ENHANCEMENT] impute.SimpleImputer, impute.KNNImputer, and impute.
IterativeImputer accepts pandas’ nullable integer dtype with missing values. #16508 by Thomas
Fan.

sklearn.inspection

• [FEATURE] inspection.partial_dependence and inspection.plot_partial_dependence
now support the fast ‘recursion’ method for ensemble.RandomForestRegressor and tree.
DecisionTreeRegressor. #15864 by Nicolas Hug.

sklearn.linear_model

• [MAJOR FEATURE] Added generalized linear models (GLM) with non normal error distributions, including
linear_model.PoissonRegressor, linear_model.GammaRegressor and linear_model.
TweedieRegressor which use Poisson, Gamma and Tweedie distributions respectively. #14300 by Chris-
tian Lorentzen, Roman Yurchak, and Olivier Grisel.

• [MAJOR FEATURE] Support of sample_weight in linear_model.ElasticNet and linear_model.
Lasso for dense feature matrix X. #15436 by Christian Lorentzen.

• [EFFICIENCY] linear_model.RidgeCV and linear_model.RidgeClassifierCV now does not al-
locate a potentially large array to store dual coefficients for all hyperparameters during its fit, nor an array to
store all error or LOO predictions unless store_cv_values is True. #15652 by Jérôme Dockès.

• [ENHANCEMENT] linear_model.LassoLars and linear_model.Lars now support a jitter pa-
rameter that adds random noise to the target. This might help with stability in some edge cases. #15179 by
@angelaambroz.

• [FIX] Fixed a bug where if a sample_weight parameter was passed to the fit method of linear_model.
RANSACRegressor, it would not be passed to the wrapped base_estimator during the fitting of the final
model. #15773 by Jeremy Alexandre.

• [FIX] add best_score_ attribute to linear_model.RidgeCV and linear_model.
RidgeClassifierCV . #15653 by Jérôme Dockès.

• [FIX] Fixed a bug in linear_model.RidgeClassifierCV to pass a specific scoring strategy. Before the
internal estimator outputs score instead of predictions. #14848 by Venkatachalam N.

• [FIX] linear_model.LogisticRegression will now avoid an unnecessary iteration when
solver='newton-cg' by checking for inferior or equal instead of strictly inferior for maximum of
absgrad and tol in utils.optimize._newton_cg. #16266 by Rushabh Vasani.

36 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/pull/15503
https://github.com/sam-dixon
https://github.com/scikit-learn/scikit-learn/pull/15782
https://github.com/plgreenLIRU
https://github.com/scikit-learn/scikit-learn/pull/16403
https://github.com/narendramukherjee
https://github.com/scikit-learn/scikit-learn/pull/16508
https://github.com/thomasjpfan
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/pull/15864
https://github.com/NicolasHug
https://github.com/scikit-learn/scikit-learn/pull/14300
https://github.com/lorentzenchr
https://github.com/lorentzenchr
https://github.com/rth
https://twitter.com/ogrisel
https://github.com/scikit-learn/scikit-learn/pull/15436
https://github.com/lorentzenchr
https://github.com/scikit-learn/scikit-learn/pull/15652
https://github.com/jeromedockes
https://github.com/scikit-learn/scikit-learn/pull/15179
https://github.com/angelaambroz
https://github.com/scikit-learn/scikit-learn/pull/15773
https://github.com/J-A16
https://github.com/scikit-learn/scikit-learn/pull/15653
https://github.com/jeromedockes
https://github.com/scikit-learn/scikit-learn/pull/14848
https://github.com/venkyyuvy
https://github.com/scikit-learn/scikit-learn/pull/16266
https://github.com/rushabh-v

scikit-learn user guide, Release 0.23.2

• [API CHANGE] Deprecated public attributes standard_coef_, standard_intercept_,
average_coef_, and average_intercept_ in linear_model.SGDClassifier,
linear_model.SGDRegressor, linear_model.PassiveAggressiveClassifier,
linear_model.PassiveAggressiveRegressor. #16261 by Carlos Brandt.

• [FIX] [EFFICIENCY] linear_model.ARDRegression is more stable and much faster when n_samples
> n_features. It can now scale to hundreds of thousands of samples. The stability fix might imply changes
in the number of non-zero coefficients and in the predicted output. #16849 by Nicolas Hug.

• [FIX] Fixed a bug in linear_model.ElasticNetCV , linear_model.MultitaskElasticNetCV,
linear_model.LassoCV and linear_model.MultitaskLassoCV where fitting would fail when
using joblib loky backend. #14264 by Jérémie du Boisberranger.

• [EFFICIENCY] Speed up linear_model.MultiTaskLasso, linear_model.MultiTaskLassoCV ,
linear_model.MultiTaskElasticNet, linear_model.MultiTaskElasticNetCV by avoid-
ing slower BLAS Level 2 calls on small arrays #17021 by Alex Gramfort and Mathurin Massias.

sklearn.metrics

• [ENHANCEMENT] metrics.pairwise.pairwise_distances_chunked now allows its
reduce_func to not have a return value, enabling in-place operations. #16397 by Joel Nothman.

• [FIX] Fixed a bug in metrics.mean_squared_error to not ignore argument squared when argument
multioutput='raw_values'. #16323 by Rushabh Vasani

• [FIX] Fixed a bug in metrics.mutual_info_score where negative scores could be returned. #16362 by
Thomas Fan.

• [FIX] Fixed a bug in metrics.confusion_matrix that would raise an error when y_true and y_pred
were length zero and labels was not None. In addition, we raise an error when an empty list is given to the
labels parameter. #16442 by Kyle Parsons.

• [API CHANGE] Changed the formatting of values in metrics.ConfusionMatrixDisplay.plot and
metrics.plot_confusion_matrix to pick the shorter format (either ‘2g’ or ‘d’). #16159 by Rick
Mackenbach and Thomas Fan.

• [API CHANGE] From version 0.25, metrics.pairwise.pairwise_distances will no longer automat-
ically compute the VI parameter for Mahalanobis distance and the V parameter for seuclidean distance if Y is
passed. The user will be expected to compute this parameter on the training data of their choice and pass it to
pairwise_distances. #16993 by Joel Nothman.

sklearn.model_selection

• [ENHANCEMENT] model_selection.GridSearchCV and model_selection.
RandomizedSearchCV yields stack trace information in fit failed warning messages in addition to
previously emitted type and details. #15622 by Gregory Morse.

• [FIX] model_selection.cross_val_predict supports method="predict_proba" when
y=None. #15918 by Luca Kubin.

• [FIX] model_selection.fit_grid_point is deprecated in 0.23 and will be removed in 0.25. #16401
by Arie Pratama Sutiono

1.7. Release History 37

https://github.com/scikit-learn/scikit-learn/pull/16261
https://github.com/chbrandt
https://github.com/scikit-learn/scikit-learn/pull/16849
https://github.com/NicolasHug
https://github.com/scikit-learn/scikit-learn/pull/14264
https://github.com/jeremiedbb
https://github.com/scikit-learn/scikit-learn/pull/17021
https://github.com/agramfort
https://github.com/mathurinm
https://github.com/scikit-learn/scikit-learn/pull/16397
https://joelnothman.com/
https://github.com/scikit-learn/scikit-learn/pull/16323
https://github.com/rushabh-v
https://github.com/scikit-learn/scikit-learn/pull/16362
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/pull/16442
https://github.com/parsons-kyle-89
https://github.com/scikit-learn/scikit-learn/pull/16159
https://github.com/Rick-Mackenbach
https://github.com/Rick-Mackenbach
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/pull/16993
https://joelnothman.com/
https://github.com/scikit-learn/scikit-learn/pull/15622
https://github.com/GregoryMorse
https://github.com/scikit-learn/scikit-learn/pull/15918
https://github.com/lkubin
https://github.com/scikit-learn/scikit-learn/pull/16401
https://github.com/ariepratama

scikit-learn user guide, Release 0.23.2

sklearn.multioutput

• [ENHANCEMENT] multioutput.RegressorChain now supports fit_params for base_estimator
during fit. #16111 by Venkatachalam N.

sklearn.naive_bayes

• [FIX] A correctly formatted error message is shown in naive_bayes.CategoricalNB when the number
of features in the input differs between predict and fit. #16090 by Madhura Jayaratne.

sklearn.neural_network

• [EFFICIENCY] neural_network.MLPClassifier and neural_network.MLPRegressor has re-
duced memory footprint when using stochastic solvers, 'sgd' or 'adam', and shuffle=True. #14075
by @meyer89.

• [FIX] Increases the numerical stability of the logistic loss function in neural_network.MLPClassifier
by clipping the probabilities. #16117 by Thomas Fan.

sklearn.inspection

• [ENHANCEMENT] inspection.PartialDependenceDisplay now exposes the deciles lines as at-
tributes so they can be hidden or customized. #15785 by Nicolas Hug

sklearn.preprocessing

• [FEATURE] argument drop of preprocessing.OneHotEncoder will now accept value ‘if_binary’ and
will drop the first category of each feature with two categories. #16245 by Rushabh Vasani.

• [ENHANCEMENT] preprocessing.OneHotEncoder’s drop_idx_ ndarray can now contain None,
where drop_idx_[i] = None means that no category is dropped for index i. #16585 by Chiara Marmo.

• [ENHANCEMENT] preprocessing.MaxAbsScaler, preprocessing.MinMaxScaler,
preprocessing.StandardScaler, preprocessing.PowerTransformer, preprocessing.
QuantileTransformer, preprocessing.RobustScaler now supports pandas’ nullable integer
dtype with missing values. #16508 by Thomas Fan.

• [EFFICIENCY] preprocessing.OneHotEncoder is now faster at transforming. #15762 by Thomas Fan.

• [FIX] Fix a bug in preprocessing.StandardScaler which was incorrectly computing statistics when
calling partial_fit on sparse inputs. #16466 by Guillaume Lemaitre.

• [FIX] Fix a bug in preprocessing.Normalizer with norm=’max’, which was not taking the absolute
value of the maximum values before normalizing the vectors. #16632 by Maura Pintor and Battista Biggio.

sklearn.semi_supervised

• [FIX] semi_supervised.LabelSpreading and semi_supervised.LabelPropagation avoids
divide by zero warnings when normalizing label_distributions_. #15946 by @ngshya.

38 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/pull/16111
https://github.com/venkyyuvy
https://github.com/scikit-learn/scikit-learn/pull/16090
https://github.com/madhuracj
https://github.com/scikit-learn/scikit-learn/pull/14075
https://github.com/meyer89
https://github.com/scikit-learn/scikit-learn/pull/16117
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/pull/15785
https://github.com/NicolasHug
https://github.com/scikit-learn/scikit-learn/pull/16245
https://github.com/rushabh-v
https://github.com/scikit-learn/scikit-learn/pull/16585
https://github.com/cmarmo
https://github.com/scikit-learn/scikit-learn/pull/16508
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/pull/15762
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/pull/16466
https://github.com/glemaitre
https://github.com/scikit-learn/scikit-learn/pull/16632
https://github.com/Maupin1991
https://github.com/bbiggio
https://github.com/scikit-learn/scikit-learn/pull/15946
https://github.com/ngshya

scikit-learn user guide, Release 0.23.2

sklearn.svm

• [FIX] [EFFICIENCY] Improved libsvm and liblinear random number generators used to randomly select
coordinates in the coordinate descent algorithms. Platform-dependent C rand() was used, which is only
able to generate numbers up to 32767 on windows platform (see this blog post) and also has poor random-
ization power as suggested by this presentation. It was replaced with C++11 mt19937, a Mersenne Twister
that correctly generates 31bits/63bits random numbers on all platforms. In addition, the crude “modulo” post-
processor used to get a random number in a bounded interval was replaced by the tweaked Lemire method
as suggested by this blog post. Any model using the svm.libsvm or the svm.liblinear solver, includ-
ing svm.LinearSVC, svm.LinearSVR, svm.NuSVC, svm.NuSVR, svm.OneClassSVM , svm.SVC,
svm.SVR, linear_model.LogisticRegression, is affected. In particular users can expect a better
convergence when the number of samples (LibSVM) or the number of features (LibLinear) is large. #13511 by
Sylvain Marié.

• [FIX] Fix use of custom kernel not taking float entries such as string kernels in svm.SVC and svm.SVR. Note
that custom kennels are now expected to validate their input where they previously received valid numeric arrays.
#11296 by Alexandre Gramfort and Georgi Peev.

• [API CHANGE] svm.SVR and svm.OneClassSVM attributes, probA_ and probB_, are now deprecated as
they were not useful. #15558 by Thomas Fan.

sklearn.tree

• [FIX] tree.plot_tree rotate parameter was unused and has been deprecated. #15806 by Chiara Marmo.

• [FIX] Fix support of read-only float32 array input in predict, decision_path and predict_proba
methods of tree.DecisionTreeClassifier, tree.ExtraTreeClassifier and ensemble.
GradientBoostingClassifier as well as predict method of tree.DecisionTreeRegressor,
tree.ExtraTreeRegressor, and ensemble.GradientBoostingRegressor. #16331 by
Alexandre Batisse.

sklearn.utils

• [MAJOR FEATURE] Estimators can now be displayed with a rich html representation. This can be enabled in
Jupyter notebooks by setting display='diagram' in set_config. The raw html can be returned by
using utils.estimator_html_repr. #14180 by Thomas Fan.

• [ENHANCEMENT] improve error message in utils.validation.column_or_1d. #15926 by Loïc Estève.

• [ENHANCEMENT] add warning in utils.check_array for pandas sparse DataFrame. #16021 by Rushabh
Vasani.

• [ENHANCEMENT] utils.check_array now constructs a sparse matrix from a pandas DataFrame that con-
tains only SparseArray columns. #16728 by Thomas Fan.

• [ENHANCEMENT] utils.validation.check_array supports pandas’ nullable integer dtype with miss-
ing values when force_all_finite is set to False or 'allow-nan' in which case the data is converted
to floating point values where pd.NA values are replaced by np.nan. As a consequence, all sklearn.
preprocessing transformers that accept numeric inputs with missing values represented as np.nan now
also accepts being directly fed pandas dataframes with pd.Int* or `pd.Uint* typed columns that use
pd.NA as a missing value marker. #16508 by Thomas Fan.

• [API CHANGE] Passing classes to utils.estimator_checks.check_estimator and utils.
estimator_checks.parametrize_with_checks is now deprecated, and support for classes will be
removed in 0.24. Pass instances instead. #17032 by Nicolas Hug.

1.7. Release History 39

https://codeforces.com/blog/entry/61587
https://channel9.msdn.com/Events/GoingNative/2013/rand-Considered-Harmful
http://www.pcg-random.org/posts/bounded-rands.html
https://github.com/scikit-learn/scikit-learn/pull/13511
https://github.com/smarie
https://github.com/scikit-learn/scikit-learn/pull/11296
http://alexandre.gramfort.net
https://github.com/georgipeev
https://github.com/scikit-learn/scikit-learn/pull/15558
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/pull/15806
https://github.com/cmarmo
https://github.com/scikit-learn/scikit-learn/pull/16331
https://github.com/batalex
https://github.com/scikit-learn/scikit-learn/pull/14180
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/pull/15926
https://github.com/lesteve
https://github.com/scikit-learn/scikit-learn/pull/16021
https://github.com/rushabh-v
https://github.com/rushabh-v
https://github.com/scikit-learn/scikit-learn/pull/16728
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/pull/16508
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/pull/17032
https://github.com/NicolasHug

scikit-learn user guide, Release 0.23.2

• [API CHANGE] The private utility _safe_tags in utils.estimator_checks was removed, hence all
tags should be obtained through estimator._get_tags(). Note that Mixins like RegressorMixin
must come before base classes in the MRO for _get_tags() to work properly. #16950 by Nicolas Hug.

• [FIX] utils.all_estimators now only returns public estimators. #15380 by Thomas Fan.

Miscellaneous

• [MAJOR FEATURE] Adds a HTML representation of estimators to be shown in a jupyter notebook or lab. This
visualization is acitivated by setting the display option in sklearn.set_config. #14180 by Thomas
Fan.

• [ENHANCEMENT] scikit-learn now works with mypy without errors. #16726 by Roman Yurchak.

• [API CHANGE] Most estimators now expose a n_features_in_ attribute. This attribute is equal to the
number of features passed to the fit method. See SLEP010 for details. #16112 by Nicolas Hug.

• [API CHANGE] Estimators now have a requires_y tags which is False by default except for estimators that
inherit from ~sklearn.base.RegressorMixin or ~sklearn.base.ClassifierMixin. This tag
is used to ensure that a proper error message is raised when y was expected but None was passed. #16622 by
Nicolas Hug.

• [API CHANGE] The default setting print_changed_only has been changed from False to True. This
means that the repr of estimators is now more concise and only shows the parameters whose default value
has been changed when printing an estimator. You can restore the previous behaviour by using sklearn.
set_config(print_changed_only=False). Also, note that it is always possible to quickly inspect
the parameters of any estimator using est.get_params(deep=False). #17061 by Nicolas Hug.

Code and Documentation Contributors

Thanks to everyone who has contributed to the maintenance and improvement of the project since version 0.22, in-
cluding:

Abbie Popa, Adrin Jalali, Aleksandra Kocot, Alexandre Batisse, Alexandre Gramfort, Alex Henrie, Alex Itkes,
Alex Liang, alexshacked, Alonso Silva Allende, Ana Casado, Andreas Mueller, Angela Ambroz, Ankit810, Arie
Pratama Sutiono, Arunav Konwar, Baptiste Maingret, Benjamin Beier Liu, bernie gray, Bharathi Srinivasan, Bharat
Raghunathan, Bibhash Chandra Mitra, Brian Wignall, brigi, Brigitta Sipőcz, Carlos H Brandt, CastaChick, castor,
cgsavard, Chiara Marmo, Chris Gregory, Christian Kastner, Christian Lorentzen, Corrie Bartelheimer, Daniël van
Gelder, Daphne, David Breuer, david-cortes, dbauer9, Divyaprabha M, Edward Qian, Ekaterina Borovikova, ELNS,
Emily Taylor, Erich Schubert, Eric Leung, Evgeni Chasnovski, Fabiana, Facundo Ferrín, Fan, Franziska Boenisch,
Gael Varoquaux, Gaurav Sharma, Geoffrey Bolmier, Georgi Peev, gholdman1, Gonthier Nicolas, Gregory Morse,
Gregory R. Lee, Guillaume Lemaitre, Gui Miotto, Hailey Nguyen, Hanmin Qin, Hao Chun Chang, HaoYin, Hélion
du Mas des Bourboux, Himanshu Garg, Hirofumi Suzuki, huangk10, Hugo van Kemenade, Hye Sung Jung, indeci-
siveuser, inderjeet, J-A16, Jérémie du Boisberranger, Jin-Hwan CHO, JJmistry, Joel Nothman, Johann Faouzi, Jon
Haitz Legarreta Gorroño, Juan Carlos Alfaro Jiménez, judithabk6, jumon, Kathryn Poole, Katrina Ni, Kesshi Jordan,
Kevin Loftis, Kevin Markham, krishnachaitanya9, Lam Gia Thuan, Leland McInnes, Lisa Schwetlick, lkubin, Loic
Esteve, lopusz, lrjball, lucgiffon, lucyleeow, Lucy Liu, Lukas Kemkes, Maciej J Mikulski, Madhura Jayaratne, Magda
Zielinska, maikia, Mandy Gu, Manimaran, Manish Aradwad, Maren Westermann, Maria, Mariana Meireles, Marie
Douriez, Marielle, Mateusz Górski, mathurinm, Matt Hall, Maura Pintor, mc4229, meyer89, m.fab, Michael Shoe-
maker, Michał Słapek, Mina Naghshhnejad, mo, Mohamed Maskani, Mojca Bertoncelj, narendramukherjee, ngshya,
Nicholas Won, Nicolas Hug, nicolasservel, Niklas, @nkish, Noa Tamir, Oleksandr Pavlyk, olicairns, Oliver Urs Lenz,
Olivier Grisel, parsons-kyle-89, Paula, Pete Green, Pierre Delanoue, pspachtholz, Pulkit Mehta, Qizhi Jiang, Quang
Nguyen, rachelcjordan, raduspaimoc, Reshama Shaikh, Riccardo Folloni, Rick Mackenbach, Ritchie Ng, Roman Feld-
bauer, Roman Yurchak, Rory Hartong-Redden, Rüdiger Busche, Rushabh Vasani, Sambhav Kothari, Samesh Lakhotia,
Samuel Duan, SanthoshBala18, Santiago M. Mola, Sarat Addepalli, scibol, Sebastian Kießling, SergioDSR, Sergul

40 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/pull/16950
https://github.com/NicolasHug
https://github.com/scikit-learn/scikit-learn/pull/15380
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/pull/14180
https://github.com/thomasjpfan
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/pull/16726
https://github.com/rth
https://scikit-learn-enhancement-proposals.readthedocs.io/en/latest/slep010/proposal.html
https://github.com/scikit-learn/scikit-learn/pull/16112
https://github.com/NicolasHug
https://github.com/scikit-learn/scikit-learn/pull/16622
https://github.com/NicolasHug
https://github.com/scikit-learn/scikit-learn/pull/17061
https://github.com/NicolasHug

scikit-learn user guide, Release 0.23.2

Aydore, Shiki-H, shivamgargsya, SHUBH CHATTERJEE, Siddharth Gupta, simonamaggio, smarie, Snowhite, stareh,
Stephen Blystone, Stephen Marsh, Sunmi Yoon, SylvainLan, talgatomarov, tamirlan1, th0rwas, theoptips, Thomas J
Fan, Thomas Li, Thomas Schmitt, Tim Nonner, Tim Vink, Tiphaine Viard, Tirth Patel, Titus Christian, Tom Dupré la
Tour, trimeta, Vachan D A, Vandana Iyer, Venkatachalam N, waelbenamara, wconnell, wderose, wenliwyan, Windber,
wornbb, Yu-Hang “Maxin” Tang

1.7.5 Version 0.22.2.post1

March 3 2020

The 0.22.2.post1 release includes a packaging fix for the source distribution but the content of the packages is otherwise
identical to the content of the wheels with the 0.22.2 version (without the .post1 suffix). Both contain the following
changes.

Changelog

sklearn.impute

• [EFFICIENCY] Reduce impute.KNNImputer asymptotic memory usage by chunking pairwise distance com-
putation. #16397 by Joel Nothman.

sklearn.metrics

• [FIX] Fixed a bug in metrics.plot_roc_curve where the name of the estimator was passed in the
metrics.RocCurveDisplay instead of the parameter name. It results in a different plot when calling
metrics.RocCurveDisplay.plot for the subsequent times. #16500 by Guillaume Lemaitre.

• [FIX] Fixed a bug in metrics.plot_precision_recall_curve where the name of the estimator was
passed in the metrics.PrecisionRecallDisplay instead of the parameter name. It results in a differ-
ent plot when calling metrics.PrecisionRecallDisplay.plot for the subsequent times. #16505 by
Guillaume Lemaitre.

sklearn.neighbors

• [FIX] Fix a bug which converted a list of arrays into a 2-D object array instead of a 1-D array containing NumPy
arrays. This bug was affecting neighbors.NearestNeighbors.radius_neighbors. #16076 by
Guillaume Lemaitre and Alex Shacked.

1.7.6 Version 0.22.1

January 2 2020

This is a bug-fix release to primarily resolve some packaging issues in version 0.22.0. It also includes minor docu-
mentation improvements and some bug fixes.

Changelog

1.7. Release History 41

https://github.com/scikit-learn/scikit-learn/pull/16397
https://joelnothman.com/
https://github.com/scikit-learn/scikit-learn/pull/16500
https://github.com/glemaitre
https://github.com/scikit-learn/scikit-learn/pull/16505
https://github.com/glemaitre
https://github.com/scikit-learn/scikit-learn/pull/16076
https://github.com/glemaitre
https://github.com/alexshacked

scikit-learn user guide, Release 0.23.2

sklearn.cluster

• [FIX] cluster.KMeans with algorithm="elkan" now uses the same stopping criterion as with the
default algorithm="full". #15930 by @inder128.

sklearn.inspection

• [FIX] inspection.permutation_importance will return the same importances when a
random_state is given for both n_jobs=1 or n_jobs>1 both with shared memory backends (thread-
safety) and isolated memory, process-based backends. Also avoid casting the data as object dtype and avoid
read-only error on large dataframes with n_jobs>1 as reported in #15810. Follow-up of #15898 by Shivam
Gargsya. #15933 by Guillaume Lemaitre and Olivier Grisel.

• [FIX] inspection.plot_partial_dependence and inspection.
PartialDependenceDisplay.plot now consistently checks the number of axes passed in. #15760 by
Thomas Fan.

sklearn.metrics

• [FIX] metrics.plot_confusion_matrix now raises error when normalize is invalid. Previously, it
runs fine with no normalization. #15888 by Hanmin Qin.

• [FIX] metrics.plot_confusion_matrix now colors the label color correctly to maximize contrast with
its background. #15936 by Thomas Fan and @DizietAsahi.

• [FIX] metrics.classification_report does no longer ignore the value of the zero_division
keyword argument. #15879 by Bibhash Chandra Mitra.

• [FIX] Fixed a bug in metrics.plot_confusion_matrix to correctly pass the values_format pa-
rameter to the ConfusionMatrixDisplay plot() call. #15937 by Stephen Blystone.

sklearn.model_selection

• [FIX] model_selection.GridSearchCV and model_selection.RandomizedSearchCV accept
scalar values provided in fit_params. Change in 0.22 was breaking backward compatibility. #15863 by
Adrin Jalali and Guillaume Lemaitre.

sklearn.naive_bayes

• [FIX] Removed abstractmethod decorator for the method _check_X in naive_bayes.BaseNB that
could break downstream projects inheriting from this deprecated public base class. #15996 by Brigitta Sipőcz.

sklearn.preprocessing

• [FIX] preprocessing.QuantileTransformer now guarantees the quantiles_ attribute to be com-
pletely sorted in non-decreasing manner. #15751 by Tirth Patel.

42 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/pull/15930
https://github.com/inder128
https://github.com/scikit-learn/scikit-learn/issues/15810
https://github.com/scikit-learn/scikit-learn/pull/15898
https://github.com/shivamgargsya
https://github.com/shivamgargsya
https://github.com/scikit-learn/scikit-learn/pull/15933
https://github.com/glemaitre
https://twitter.com/ogrisel
https://github.com/scikit-learn/scikit-learn/pull/15760
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/pull/15888
https://github.com/qinhanmin2014
https://github.com/scikit-learn/scikit-learn/pull/15936
https://github.com/thomasjpfan
https://github.com/DizietAsahi
https://github.com/scikit-learn/scikit-learn/pull/15879
https://github.com/Bibyutatsu
https://github.com/scikit-learn/scikit-learn/pull/15937
https://github.com/blynotes
https://github.com/scikit-learn/scikit-learn/pull/15863
https://github.com/adrinjalali
https://github.com/glemaitre
https://github.com/scikit-learn/scikit-learn/pull/15996
https://github.com/bsipocz
https://github.com/scikit-learn/scikit-learn/pull/15751
https://github.com/tirthasheshpatel

scikit-learn user guide, Release 0.23.2

sklearn.semi_supervised

• [FIX] semi_supervised.LabelPropagation and semi_supervised.LabelSpreading now
allow callable kernel function to return sparse weight matrix. #15868 by Niklas Smedemark-Margulies.

sklearn.utils

• [FIX] utils.check_array now correctly converts pandas DataFrame with boolean columns to floats.
#15797 by Thomas Fan.

• [FIX] utils.check_is_fitted accepts back an explicit attributes argument to check for specific
attributes as explicit markers of a fitted estimator. When no explicit attributes are provided, only the
attributes that end with a underscore and do not start with double underscore are used as “fitted” markers.
The all_or_any argument is also no longer deprecated. This change is made to restore some backward
compatibility with the behavior of this utility in version 0.21. #15947 by Thomas Fan.

sklearn.multioutput

• [FEATURE] multioutput.MultiOutputRegressor.fit and multioutput.
MultiOutputClassifier.fit now can accept fit_params to pass to the estimator.fit
method of each step. #15953 #15959 by Ke Huang.

1.7.7 Version 0.22.0

December 3 2019

For a short description of the main highlights of the release, please refer to Release Highlights for scikit-learn 0.22.

Legend for changelogs

• [MAJOR FEATURE]: something big that you couldn’t do before.

• [FEATURE]: something that you couldn’t do before.

• [EFFICIENCY]: an existing feature now may not require as much computation or memory.

• [ENHANCEMENT]: a miscellaneous minor improvement.

• [FIX]: something that previously didn’t work as documentated – or according to reasonable expectations –
should now work.

• [API CHANGE]: you will need to change your code to have the same effect in the future; or a feature will be
removed in the future.

Website update

Our website was revamped and given a fresh new look. #14849 by Thomas Fan.

1.7. Release History 43

https://github.com/scikit-learn/scikit-learn/pull/15868
https://github.com/nik-sm
https://github.com/scikit-learn/scikit-learn/pull/15797
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/pull/15947
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/issues/15953
https://github.com/scikit-learn/scikit-learn/pull/15959
https://github.com/huangk10
https://scikit-learn.org/
https://github.com/scikit-learn/scikit-learn/pull/14849
https://github.com/thomasjpfan

scikit-learn user guide, Release 0.23.2

Clear definition of the public API

Scikit-learn has a public API, and a private API.

We do our best not to break the public API, and to only introduce backward-compatible changes that do not require
any user action. However, in cases where that’s not possible, any change to the public API is subject to a deprecation
cycle of two minor versions. The private API isn’t publicly documented and isn’t subject to any deprecation cycle, so
users should not rely on its stability.

A function or object is public if it is documented in the API Reference and if it can be imported with an import path
without leading underscores. For example sklearn.pipeline.make_pipeline is public, while sklearn.
pipeline._name_estimators is private. sklearn.ensemble._gb.BaseEnsemble is private too be-
cause the whole _gb module is private.

Up to 0.22, some tools were de-facto public (no leading underscore), while they should have been private in the first
place. In version 0.22, these tools have been made properly private, and the public API space has been cleaned. In addi-
tion, importing from most sub-modules is now deprecated: you should for example use from sklearn.cluster
import Birch instead of from sklearn.cluster.birch import Birch (in practice, birch.py has
been moved to _birch.py).

Note: All the tools in the public API should be documented in the API Reference. If you find a public tool (without
leading underscore) that isn’t in the API reference, that means it should either be private or documented. Please let us
know by opening an issue!

This work was tracked in issue 9250 and issue 12927.

Deprecations: using FutureWarning from now on

When deprecating a feature, previous versions of scikit-learn used to raise a DeprecationWarning. Since the
DeprecationWarnings aren’t shown by default by Python, scikit-learn needed to resort to a custom warning
filter to always show the warnings. That filter would sometimes interfere with users custom warning filters.

Starting from version 0.22, scikit-learn will show FutureWarnings for deprecations, as recommended by the
Python documentation. FutureWarnings are always shown by default by Python, so the custom filter has been
removed and scikit-learn no longer hinders with user filters. #15080 by Nicolas Hug.

Changed models

The following estimators and functions, when fit with the same data and parameters, may produce different models
from the previous version. This often occurs due to changes in the modelling logic (bug fixes or enhancements), or in
random sampling procedures.

• cluster.KMeans when n_jobs=1. [FIX]

• decomposition.SparseCoder, decomposition.DictionaryLearning, and
decomposition.MiniBatchDictionaryLearning [FIX]

• decomposition.SparseCoder with algorithm='lasso_lars' [FIX]

• decomposition.SparsePCA where normalize_components has no effect due to deprecation.

• ensemble.HistGradientBoostingClassifier and ensemble.
HistGradientBoostingRegressor [FIX], [FEATURE], [ENHANCEMENT].

• impute.IterativeImputer when X has features with no missing values. [FEATURE]

• linear_model.Ridge when X is sparse. [FIX]

44 Chapter 1. Welcome to scikit-learn

https://scikit-learn.org/dev/modules/classes.html
https://scikit-learn.org/dev/modules/classes.html
https://github.com/scikit-learn/scikit-learn/issues/9250
https://github.com/scikit-learn/scikit-learn/issues/12927
https://docs.python.org/3/library/exceptions.html#FutureWarning
https://docs.python.org/3/library/exceptions.html#FutureWarning
https://github.com/scikit-learn/scikit-learn/pull/15080
https://github.com/NicolasHug

scikit-learn user guide, Release 0.23.2

• model_selection.StratifiedKFold and any use of cv=int with a classifier. [FIX]

• cross_decomposition.CCA when using scipy >= 1.3 [FIX]

Details are listed in the changelog below.

(While we are trying to better inform users by providing this information, we cannot assure that this list is complete.)

Changelog

sklearn.base

• [API CHANGE] From version 0.24 base.BaseEstimator.get_params will raise an AttributeError rather
than return None for parameters that are in the estimator’s constructor but not stored as attributes on the instance.
#14464 by Joel Nothman.

sklearn.calibration

• [FIX] Fixed a bug that made calibration.CalibratedClassifierCV fail when given a
sample_weight parameter of type list (in the case where sample_weights are not supported by the
wrapped estimator). #13575 by William de Vazelhes.

sklearn.cluster

• [FEATURE] cluster.SpectralClustering now accepts precomputed sparse neighbors graph as input.
#10482 by Tom Dupre la Tour and Kumar Ashutosh.

• [ENHANCEMENT] cluster.SpectralClustering now accepts a n_components parame-
ter. This parameter extends SpectralClustering class functionality to match cluster.
spectral_clustering. #13726 by Shuzhe Xiao.

• [FIX] Fixed a bug where cluster.KMeans produced inconsistent results between n_jobs=1 and
n_jobs>1 due to the handling of the random state. #9288 by Bryan Yang.

• [FIX] Fixed a bug where elkan algorithm in cluster.KMeans was producing Segmentation Fault on large
arrays due to integer index overflow. #15057 by Vladimir Korolev.

• [FIX] MeanShift now accepts a max_iter with a default value of 300 instead of always using the default 300.
It also now exposes an n_iter_ indicating the maximum number of iterations performed on each seed. #15120
by Adrin Jalali.

• [FIX] cluster.AgglomerativeClustering and cluster.FeatureAgglomeration now raise
an error if affinity='cosine' and X has samples that are all-zeros. #7943 by @mthorrell.

sklearn.compose

• [FEATURE] Adds compose.make_column_selector which is used with compose.
ColumnTransformer to select DataFrame columns on the basis of name and dtype. #12303 by
Thomas Fan.

• [FIX] Fixed a bug in compose.ColumnTransformer which failed to select the proper columns when using
a boolean list, with NumPy older than 1.12. #14510 by Guillaume Lemaitre.

• [FIX] Fixed a bug in compose.TransformedTargetRegressor which did not pass **fit_params
to the underlying regressor. #14890 by Miguel Cabrera.

1.7. Release History 45

https://github.com/scikit-learn/scikit-learn/pull/14464
https://joelnothman.com/
https://github.com/scikit-learn/scikit-learn/pull/13575
https://github.com/wdevazelhes
https://github.com/scikit-learn/scikit-learn/issues/10482
https://github.com/TomDLT
https://github.com/thechargedneutron
https://github.com/scikit-learn/scikit-learn/pull/13726
https://github.com/fdas3213
https://github.com/scikit-learn/scikit-learn/pull/9288
https://github.com/bryanyang0528
https://github.com/scikit-learn/scikit-learn/pull/15057
https://github.com/balodja
https://github.com/scikit-learn/scikit-learn/pull/15120
https://github.com/adrinjalali
https://github.com/scikit-learn/scikit-learn/pull/7943
https://github.com/mthorrell
https://github.com/scikit-learn/scikit-learn/pull/12303
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/pull/14510
https://github.com/glemaitre
https://github.com/scikit-learn/scikit-learn/pull/14890
https://github.com/mfcabrera

scikit-learn user guide, Release 0.23.2

• [FIX] The compose.ColumnTransformer now requires the number of features to be consistent between
fit and transform. A FutureWarning is raised now, and this will raise an error in 0.24. If the number
of features isn’t consistent and negative indexing is used, an error is raised. #14544 by Adrin Jalali.

sklearn.cross_decomposition

• [FEATURE] cross_decomposition.PLSCanonical and cross_decomposition.
PLSRegression have a new function inverse_transform to transform data to the original space.
#15304 by Jaime Ferrando Huertas.

• [ENHANCEMENT] decomposition.KernelPCA now properly checks the eigenvalues found by the solver
for numerical or conditioning issues. This ensures consistency of results across solvers (different choices for
eigen_solver), including approximate solvers such as 'randomized' and 'lobpcg' (see #12068).
#12145 by Sylvain Marié

• [FIX] Fixed a bug where cross_decomposition.PLSCanonical and cross_decomposition.
PLSRegression were raising an error when fitted with a target matrix Y in which the first column was
constant. #13609 by Camila Williamson.

• [FIX] cross_decomposition.CCA now produces the same results with scipy 1.3 and previous scipy ver-
sions. #15661 by Thomas Fan.

sklearn.datasets

• [FEATURE] datasets.fetch_openml now supports heterogeneous data using pandas by setting
as_frame=True. #13902 by Thomas Fan.

• [FEATURE] datasets.fetch_openml now includes the target_names in the returned Bunch. #15160
by Thomas Fan.

• [ENHANCEMENT] The parameter return_X_y was added to datasets.fetch_20newsgroups and
datasets.fetch_olivetti_faces . #14259 by Sourav Singh.

• [ENHANCEMENT] datasets.make_classification now accepts array-like weights parameter, i.e.
list or numpy.array, instead of list only. #14764 by Cat Chenal.

• [ENHANCEMENT] The parameter normalize was added to datasets.fetch_20newsgroups_vectorized.
#14740 by Stéphan Tulkens

• [FIX] Fixed a bug in datasets.fetch_openml, which failed to load an OpenML dataset that contains an
ignored feature. #14623 by Sarra Habchi.

sklearn.decomposition

• [EFFICIENCY] decomposition.NMF(solver='mu') fitted on sparse input matrices now uses batching to
avoid briefly allocating an array with size (#non-zero elements, n_components). #15257 by Mart Willocx.

• [ENHANCEMENT] decomposition.dict_learning and decomposition.
dict_learning_online now accept method_max_iter and pass it to decomposition.
sparse_encode. #12650 by Adrin Jalali.

• [ENHANCEMENT] decomposition.SparseCoder, decomposition.DictionaryLearning, and
decomposition.MiniBatchDictionaryLearning now take a transform_max_iter parame-
ter and pass it to either decomposition.dict_learning or decomposition.sparse_encode.
#12650 by Adrin Jalali.

46 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/pull/14544
https://github.com/adrinjalali
https://github.com/scikit-learn/scikit-learn/pull/15304
https://github.com/jiwidi
https://github.com/scikit-learn/scikit-learn/issues/12068
https://github.com/scikit-learn/scikit-learn/pull/12145
https://github.com/smarie
https://github.com/scikit-learn/scikit-learn/issues/13609
https://github.com/camilaagw
https://github.com/scikit-learn/scikit-learn/pull/15661
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/pull/13902
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/pull/15160
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/pull/14259
https://github.com/souravsingh
https://github.com/scikit-learn/scikit-learn/pull/14764
https://github.com/CatChenal
https://github.com/scikit-learn/scikit-learn/pull/14740
https://github.com/stephantul
https://github.com/scikit-learn/scikit-learn/pull/14623
https://github.com/HabchiSarra
https://github.com/scikit-learn/scikit-learn/pull/15257
https://github.com/scikit-learn/scikit-learn/issues/12650
https://github.com/adrinjalali
https://github.com/scikit-learn/scikit-learn/issues/12650
https://github.com/adrinjalali

scikit-learn user guide, Release 0.23.2

• [ENHANCEMENT] decomposition.IncrementalPCA now accepts sparse matrices as input, converting
them to dense in batches thereby avoiding the need to store the entire dense matrix at once. #13960 by Scott
Gigante.

• [FIX] decomposition.sparse_encode now passes the max_iter to the underlying linear_model.
LassoLars when algorithm='lasso_lars'. #12650 by Adrin Jalali.

sklearn.dummy

• [FIX] dummy.DummyClassifier now handles checking the existence of the provided constant in multiouput
cases. #14908 by Martina G. Vilas.

• [API CHANGE] The default value of the strategy parameter in dummy.DummyClassifier will change
from 'stratified' in version 0.22 to 'prior' in 0.24. A FutureWarning is raised when the default value
is used. #15382 by Thomas Fan.

• [API CHANGE] The outputs_2d_ attribute is deprecated in dummy.DummyClassifier and dummy.
DummyRegressor. It is equivalent to n_outputs > 1. #14933 by Nicolas Hug

sklearn.ensemble

• [MAJOR FEATURE] Added ensemble.StackingClassifier and ensemble.StackingRegressor
to stack predictors using a final classifier or regressor. #11047 by Guillaume Lemaitre and Caio Oliveira and
#15138 by Jon Cusick..

• [MAJOR FEATURE] Many improvements were made to ensemble.
HistGradientBoostingClassifier and ensemble.HistGradientBoostingRegressor:

– [FEATURE] Estimators now natively support dense data with missing values both for training and predicting.
They also support infinite values. #13911 and #14406 by Nicolas Hug, Adrin Jalali and Olivier Grisel.

– [FEATURE] Estimators now have an additional warm_start parameter that enables warm starting.
#14012 by Johann Faouzi.

– [FEATURE] inspection.partial_dependence and inspection.
plot_partial_dependence now support the fast ‘recursion’ method for both estimators.
#13769 by Nicolas Hug.

– [ENHANCEMENT] for ensemble.HistGradientBoostingClassifier the training loss or score
is now monitored on a class-wise stratified subsample to preserve the class balance of the original training
set. #14194 by Johann Faouzi.

– [ENHANCEMENT] ensemble.HistGradientBoostingRegressor now supports the
‘least_absolute_deviation’ loss. #13896 by Nicolas Hug.

– [FIX] Estimators now bin the training and validation data separately to avoid any data leak. #13933 by
Nicolas Hug.

– [FIX] Fixed a bug where early stopping would break with string targets. #14710 by Guillaume Lemaitre.

– [FIX] ensemble.HistGradientBoostingClassifier now raises an error if
categorical_crossentropy loss is given for a binary classification problem. #14869 by
Adrin Jalali.

Note that pickles from 0.21 will not work in 0.22.

• [ENHANCEMENT] Addition of max_samples argument allows limiting size of bootstrap sam-
ples to be less than size of dataset. Added to ensemble.RandomForestClassifier,

1.7. Release History 47

https://github.com/scikit-learn/scikit-learn/pull/13960
https://github.com/scottgigante
https://github.com/scottgigante
https://github.com/scikit-learn/scikit-learn/issues/12650
https://github.com/adrinjalali
https://github.com/scikit-learn/scikit-learn/pull/14908
https://github.com/martinagvilas
https://github.com/scikit-learn/scikit-learn/pull/15382
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/pull/14933
https://github.com/NicolasHug
https://github.com/scikit-learn/scikit-learn/pull/11047
https://github.com/glemaitre
https://github.com/caioaao
https://github.com/scikit-learn/scikit-learn/pull/15138
https://github.com/jcusick13
https://github.com/scikit-learn/scikit-learn/pull/13911
https://github.com/scikit-learn/scikit-learn/pull/14406
https://github.com/NicolasHug
https://github.com/adrinjalali
https://twitter.com/ogrisel
https://github.com/scikit-learn/scikit-learn/pull/14012
https://github.com/johannfaouzi
https://github.com/scikit-learn/scikit-learn/pull/13769
https://github.com/NicolasHug
https://github.com/scikit-learn/scikit-learn/pull/14194
https://github.com/johannfaouzi
https://github.com/scikit-learn/scikit-learn/pull/13896
https://github.com/NicolasHug
https://github.com/scikit-learn/scikit-learn/pull/13933
https://github.com/NicolasHug
https://github.com/scikit-learn/scikit-learn/pull/14710
https://github.com/glemaitre
https://github.com/scikit-learn/scikit-learn/pull/14869
https://github.com/adrinjalali

scikit-learn user guide, Release 0.23.2

ensemble.RandomForestRegressor, ensemble.ExtraTreesClassifier, ensemble.
ExtraTreesRegressor. #14682 by Matt Hancock and #5963 by Pablo Duboue.

• [FIX] ensemble.VotingClassifier.predict_proba will no longer be present when
voting='hard'. #14287 by Thomas Fan.

• [FIX] The named_estimators_ attribute in ensemble.VotingClassifier and ensemble.
VotingRegressor now correctly maps to dropped estimators. Previously, the named_estimators_
mapping was incorrect whenever one of the estimators was dropped. #15375 by Thomas Fan.

• [FIX] Run by default utils.estimator_checks.check_estimator on both ensemble.
VotingClassifier and ensemble.VotingRegressor. It leads to solve issues regarding shape con-
sistency during predict which was failing when the underlying estimators were not outputting consistent
array dimensions. Note that it should be replaced by refactoring the common tests in the future. #14305 by
Guillaume Lemaitre.

• [FIX] ensemble.AdaBoostClassifier computes probabilities based on the decision function as in the
literature. Thus, predict and predict_proba give consistent results. #14114 by Guillaume Lemaitre.

• [FIX] Stacking and Voting estimators now ensure that their underlying estimators are either all classifiers or all
regressors. ensemble.StackingClassifier, ensemble.StackingRegressor, and ensemble.
VotingClassifier and VotingRegressor now raise consistent error messages. #15084 by Guillaume
Lemaitre.

• [FIX] ensemble.AdaBoostRegressor where the loss should be normalized by the max of the samples
with non-null weights only. #14294 by Guillaume Lemaitre.

• [API CHANGE] presort is now deprecated in ensemble.GradientBoostingClassifier
and ensemble.GradientBoostingRegressor, and the parameter has no effect. Users
are recommended to use ensemble.HistGradientBoostingClassifier and ensemble.
HistGradientBoostingRegressor instead. #14907 by Adrin Jalali.

sklearn.feature_extraction

• [ENHANCEMENT] A warning will now be raised if a parameter choice means that another parameter will
be unused on calling the fit() method for feature_extraction.text.HashingVectorizer,
feature_extraction.text.CountVectorizer and feature_extraction.text.
TfidfVectorizer. #14602 by Gaurav Chawla.

• [FIX] Functions created by build_preprocessor and build_analyzer of feature_extraction.
text.VectorizerMixin can now be pickled. #14430 by Dillon Niederhut.

• [FIX] feature_extraction.text.strip_accents_unicode now correctly removes accents from
strings that are in NFKD normalized form. #15100 by Daniel Grady.

• [FIX] Fixed a bug that caused feature_extraction.DictVectorizer to raise an OverflowError
during the transform operation when producing a scipy.sparse matrix on large input data. #15463 by
Norvan Sahiner.

• [API CHANGE] Deprecated unused copy param for feature_extraction.text.TfidfVectorizer.
transform it will be removed in v0.24. #14520 by Guillem G. Subies.

sklearn.feature_selection

• [ENHANCEMENT] Updated the following feature_selection estimators to allow NaN/Inf val-
ues in transform and fit: feature_selection.RFE, feature_selection.RFECV ,
feature_selection.SelectFromModel, and feature_selection.VarianceThreshold.

48 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/pull/14682
https://github.com/notmatthancock
https://github.com/scikit-learn/scikit-learn/pull/5963
https://github.com/DrDub
https://github.com/scikit-learn/scikit-learn/pull/14287
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/pull/15375
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/pull/14305
https://github.com/glemaitre
https://github.com/scikit-learn/scikit-learn/pull/14114
https://github.com/glemaitre
https://github.com/scikit-learn/scikit-learn/pull/15084
https://github.com/glemaitre
https://github.com/glemaitre
https://github.com/scikit-learn/scikit-learn/pull/14294
https://github.com/glemaitre
https://github.com/scikit-learn/scikit-learn/pull/14907
https://github.com/adrinjalali
https://github.com/scikit-learn/scikit-learn/pull/14602
https://github.com/getgaurav2
https://github.com/scikit-learn/scikit-learn/pull/14430
https://github.com/deniederhut
https://github.com/scikit-learn/scikit-learn/pull/15100
https://github.com/DGrady
https://github.com/scikit-learn/scikit-learn/pull/15463
https://github.com/norvan
https://github.com/scikit-learn/scikit-learn/pull/14520
https://github.com/guillemgsubies

scikit-learn user guide, Release 0.23.2

Note that if the underlying estimator of the feature selector does not allow NaN/Inf then it will still error, but
the feature selectors themselves no longer enforce this restriction unnecessarily. #11635 by Alec Peters.

• [FIX] Fixed a bug where feature_selection.VarianceThreshold with threshold=0 did not re-
move constant features due to numerical instability, by using range rather than variance in this case. #13704 by
Roddy MacSween.

sklearn.gaussian_process

• [FEATURE] Gaussian process models on structured data: gaussian_process.
GaussianProcessRegressor and gaussian_process.GaussianProcessClassifier
can now accept a list of generic objects (e.g. strings, trees, graphs, etc.) as the X argument to their train-
ing/prediction methods. A user-defined kernel should be provided for computing the kernel matrix among the
generic objects, and should inherit from gaussian_process.kernels.GenericKernelMixin to
notify the GPR/GPC model that it handles non-vectorial samples. #15557 by Yu-Hang Tang.

• [EFFICIENCY] gaussian_process.GaussianProcessClassifier.
log_marginal_likelihood and gaussian_process.GaussianProcessRegressor.
log_marginal_likelihood now accept a clone_kernel=True keyword argument. When set
to False, the kernel attribute is modified, but may result in a performance improvement. #14378 by Masashi
Shibata.

• [API CHANGE] From version 0.24 gaussian_process.kernels.Kernel.get_params will raise an
AttributeError rather than return None for parameters that are in the estimator’s constructor but not stored
as attributes on the instance. #14464 by Joel Nothman.

sklearn.impute

• [MAJOR FEATURE] Added impute.KNNImputer, to impute missing values using k-Nearest Neighbors.
#12852 by Ashim Bhattarai and Thomas Fan and #15010 by Guillaume Lemaitre.

• [FEATURE] impute.IterativeImputer has new skip_compute flag that is False by default, which,
when True, will skip computation on features that have no missing values during the fit phase. #13773 by
Sergey Feldman.

• [EFFICIENCY] impute.MissingIndicator.fit_transform avoid repeated computation of the
masked matrix. #14356 by Harsh Soni.

• [FIX] impute.IterativeImputer now works when there is only one feature. By Sergey Feldman.

• [FIX] Fixed a bug in impute.IterativeImputer where features where imputed in the reverse desired
order with imputation_order either "ascending" or "descending". #15393 by Venkatachalam N.

sklearn.inspection

• [MAJOR FEATURE] inspection.permutation_importance has been added to measure the importance
of each feature in an arbitrary trained model with respect to a given scoring function. #13146 by Thomas Fan.

• [FEATURE] inspection.partial_dependence and inspection.plot_partial_dependence
now support the fast ‘recursion’ method for ensemble.HistGradientBoostingClassifier and
ensemble.HistGradientBoostingRegressor. #13769 by Nicolas Hug.

• [ENHANCEMENT] inspection.plot_partial_dependence has been extended to now support the new
visualization API described in the User Guide. #14646 by Thomas Fan.

1.7. Release History 49

https://github.com/scikit-learn/scikit-learn/issues/11635
https://github.com/adpeters
https://github.com/scikit-learn/scikit-learn/pull/13704
https://github.com/rlms
https://github.com/scikit-learn/scikit-learn/pull/15557
https://github.com/yhtang
https://github.com/scikit-learn/scikit-learn/pull/14378
https://github.com/c-bata
https://github.com/c-bata
https://github.com/scikit-learn/scikit-learn/pull/14464
https://joelnothman.com/
https://github.com/scikit-learn/scikit-learn/issues/12852
https://github.com/ashimb9
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/pull/15010
https://github.com/glemaitre
https://github.com/scikit-learn/scikit-learn/issues/13773
https://github.com/sergeyf
https://github.com/scikit-learn/scikit-learn/pull/14356
https://github.com/harsh020
https://github.com/sergeyf
https://github.com/scikit-learn/scikit-learn/pull/15393
https://github.com/venkyyuvy
https://github.com/scikit-learn/scikit-learn/issues/13146
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/pull/13769
https://github.com/NicolasHug
https://github.com/scikit-learn/scikit-learn/pull/14646
https://github.com/thomasjpfan

scikit-learn user guide, Release 0.23.2

• [ENHANCEMENT] inspection.partial_dependence accepts pandas DataFrame and
pipeline.Pipeline containing compose.ColumnTransformer. In addition inspection.
plot_partial_dependence will use the column names by default when a dataframe is passed. #14028
and #15429 by Guillaume Lemaitre.

sklearn.kernel_approximation

• [FIX] Fixed a bug where kernel_approximation.Nystroem raised a KeyError when using
kernel="precomputed". #14706 by Venkatachalam N.

sklearn.linear_model

• [EFFICIENCY] The ‘liblinear’ logistic regression solver is now faster and requires less memory. #14108, #14170,
#14296 by Alex Henrie.

• [ENHANCEMENT] linear_model.BayesianRidge now accepts hyperparameters alpha_init and
lambda_init which can be used to set the initial value of the maximization procedure in fit. #13618 by
Yoshihiro Uchida.

• [FIX] linear_model.Ridge now correctly fits an intercept when X is sparse, solver="auto" and
fit_intercept=True, because the default solver in this configuration has changed to sparse_cg, which
can fit an intercept with sparse data. #13995 by Jérôme Dockès.

• [FIX] linear_model.Ridge with solver='sag' now accepts F-ordered and non-contiguous arrays and
makes a conversion instead of failing. #14458 by Guillaume Lemaitre.

• [FIX] linear_model.LassoCV no longer forces precompute=False when fitting the final model.
#14591 by Andreas Müller.

• [FIX] linear_model.RidgeCV and linear_model.RidgeClassifierCV now correctly scores
when cv=None. #14864 by Venkatachalam N.

• [FIX] Fixed a bug in linear_model.LogisticRegressionCV where the scores_, n_iter_ and
coefs_paths_ attribute would have a wrong ordering with penalty='elastic-net'. #15044 by Nico-
las Hug

• [FIX] linear_model.MultiTaskLassoCV and linear_model.MultiTaskElasticNetCV with
X of dtype int and fit_intercept=True. #15086 by Alex Gramfort.

• [FIX] The liblinear solver now supports sample_weight. #15038 by Guillaume Lemaitre.

sklearn.manifold

• [FEATURE] manifold.Isomap, manifold.TSNE, and manifold.SpectralEmbedding now accept
precomputed sparse neighbors graph as input. #10482 by Tom Dupre la Tour and Kumar Ashutosh.

• [FEATURE] Exposed the n_jobs parameter in manifold.TSNE for multi-core calculation of the neighbors
graph. This parameter has no impact when metric="precomputed" or (metric="euclidean" and
method="exact"). #15082 by Roman Yurchak.

• [EFFICIENCY] Improved efficiency of manifold.TSNE when method="barnes-hut" by computing the
gradient in parallel. #13213 by Thomas Moreau

• [FIX] Fixed a bug where manifold.spectral_embedding (and therefore manifold.
SpectralEmbedding and cluster.SpectralClustering) computed wrong eigenvalues with
eigen_solver='amg' when n_samples < 5 * n_components. #14647 by Andreas Müller.

50 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/pull/14028
https://github.com/scikit-learn/scikit-learn/pull/15429
https://github.com/glemaitre
https://github.com/scikit-learn/scikit-learn/pull/14706
https://github.com/venkyyuvy
https://github.com/scikit-learn/scikit-learn/pull/14108
https://github.com/scikit-learn/scikit-learn/pull/14170
https://github.com/scikit-learn/scikit-learn/pull/14296
https://github.com/alexhenrie
https://github.com/scikit-learn/scikit-learn/pull/13618
https://github.com/c56pony
https://github.com/scikit-learn/scikit-learn/pull/13995
https://github.com/jeromedockes
https://github.com/scikit-learn/scikit-learn/pull/14458
https://github.com/glemaitre
https://github.com/scikit-learn/scikit-learn/pull/14591
https://amueller.github.io/
https://github.com/scikit-learn/scikit-learn/pull/14864
https://github.com/venkyyuvy
https://github.com/scikit-learn/scikit-learn/pull/15044
https://github.com/NicolasHug
https://github.com/NicolasHug
https://github.com/scikit-learn/scikit-learn/pull/15086
https://github.com/agramfort
https://github.com/scikit-learn/scikit-learn/pull/15038
https://github.com/glemaitre
https://github.com/scikit-learn/scikit-learn/issues/10482
https://github.com/TomDLT
https://github.com/thechargedneutron
https://github.com/scikit-learn/scikit-learn/issues/15082
https://github.com/rth
https://github.com/scikit-learn/scikit-learn/pull/13213
https://github.com/tommoral
https://github.com/scikit-learn/scikit-learn/pull/14647
https://amueller.github.io/

scikit-learn user guide, Release 0.23.2

• [FIX] Fixed a bug in manifold.spectral_embedding used in manifold.SpectralEmbedding
and cluster.SpectralClustering where eigen_solver="amg" would sometimes result in a
LinAlgError. #13393 by Andrew Knyazev #13707 by Scott White

• [API CHANGE] Deprecate training_data_ unused attribute in manifold.Isomap. #10482 by Tom
Dupre la Tour.

sklearn.metrics

• [MAJOR FEATURE] metrics.plot_roc_curve has been added to plot roc curves. This function introduces
the visualization API described in the User Guide. #14357 by Thomas Fan.

• [FEATURE] Added a new parameter zero_division to multiple classifica-
tion metrics: precision_score, recall_score, f1_score, fbeta_score,
precision_recall_fscore_support, classification_report. This allows to set returned
value for ill-defined metrics. #14900 by Marc Torrellas Socastro.

• [FEATURE] Added the metrics.pairwise.nan_euclidean_distances metric, which calculates eu-
clidean distances in the presence of missing values. #12852 by Ashim Bhattarai and Thomas Fan.

• [FEATURE] New ranking metrics metrics.ndcg_score and metrics.dcg_score have been added to
compute Discounted Cumulative Gain and Normalized Discounted Cumulative Gain. #9951 by Jérôme Dockès.

• [FEATURE] metrics.plot_precision_recall_curve has been added to plot precision recall curves.
#14936 by Thomas Fan.

• [FEATURE] metrics.plot_confusion_matrix has been added to plot confusion matrices. #15083 by
Thomas Fan.

• [FEATURE] Added multiclass support to metrics.roc_auc_score with correspond-
ing scorers 'roc_auc_ovr', 'roc_auc_ovo', 'roc_auc_ovr_weighted', and
'roc_auc_ovo_weighted'. #12789 and #15274 by Kathy Chen, Mohamed Maskani, and Thomas
Fan.

• [FEATURE] Add metrics.mean_tweedie_deviancemeasuring the Tweedie deviance for a given power
parameter. Also add mean Poisson deviance metrics.mean_poisson_deviance and mean Gamma de-
viance metrics.mean_gamma_deviance that are special cases of the Tweedie deviance for power=1
and power=2 respectively. #13938 by Christian Lorentzen and Roman Yurchak.

• [EFFICIENCY] Improved performance of metrics.pairwise.manhattan_distances in the case of
sparse matrices. #15049 by Paolo Toccaceli <ptocca>.

• [ENHANCEMENT] The parameter beta in metrics.fbeta_score is updated to accept the zero and
float('+inf') value. #13231 by Dong-hee Na.

• [ENHANCEMENT] Added parameter squared in metrics.mean_squared_error to return root mean
squared error. #13467 by Urvang Patel.

• [ENHANCEMENT] Allow computing averaged metrics in the case of no true positives. #14595 by Andreas Müller.

• [ENHANCEMENT] Multilabel metrics now supports list of lists as input. #14865 Srivatsan Ramesh, Herilalaina
Rakotoarison, Léonard Binet.

• [ENHANCEMENT] metrics.median_absolute_error now supports multioutput parameter. #14732
by Agamemnon Krasoulis.

• [ENHANCEMENT] ‘roc_auc_ovr_weighted’ and ‘roc_auc_ovo_weighted’ can now be used as the scoring param-
eter of model-selection tools. #14417 by Thomas Fan.

• [ENHANCEMENT] metrics.confusion_matrix accepts a parameters normalize allowing to normalize
the confusion matrix by column, rows, or overall. #15625 by Guillaume Lemaitre <glemaitre>.

1.7. Release History 51

https://github.com/scikit-learn/scikit-learn/issues/13393
https://github.com/lobpcg
https://github.com/scikit-learn/scikit-learn/pull/13707
https://github.com/whitews
https://github.com/scikit-learn/scikit-learn/issues/10482
https://github.com/TomDLT
https://github.com/TomDLT
https://github.com/scikit-learn/scikit-learn/pull/14357
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/pull/14900
https://github.com/marctorrellas
https://github.com/scikit-learn/scikit-learn/issues/12852
https://github.com/ashimb9
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/pull/9951
https://github.com/jeromedockes
https://github.com/scikit-learn/scikit-learn/pull/14936
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/pull/15083
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/pull/12789
https://github.com/scikit-learn/scikit-learn/pull/15274
https://github.com/kathyxchen
https://github.com/maskani-moh
https://github.com/thomasjpfan
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/pull/13938
https://github.com/lorentzenchr
https://github.com/rth
https://github.com/scikit-learn/scikit-learn/pull/15049
https://github.com/scikit-learn/scikit-learn/pull/13231
https://github.com/corona10
https://github.com/scikit-learn/scikit-learn/pull/13467
https://github.com/urvang96
https://github.com/scikit-learn/scikit-learn/pull/14595
https://amueller.github.io/
https://github.com/scikit-learn/scikit-learn/pull/14865
https://github.com/srivatsan-ramesh
https://github.com/herilalaina
https://github.com/herilalaina
https://github.com/leonardbinet
https://github.com/scikit-learn/scikit-learn/pull/14732
https://github.com/agamemnonc
https://github.com/scikit-learn/scikit-learn/pull/14417
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/pull/15625

scikit-learn user guide, Release 0.23.2

• [FIX] Raise a ValueError in metrics.silhouette_score when a precomputed distance matrix contains
non-zero diagonal entries. #12258 by Stephen Tierney.

• [API CHANGE] scoring="neg_brier_score" should be used instead of
scoring="brier_score_loss" which is now deprecated. #14898 by Stefan Matcovici.

sklearn.model_selection

• [EFFICIENCY] Improved performance of multimetric scoring in model_selection.cross_validate,
model_selection.GridSearchCV , and model_selection.RandomizedSearchCV . #14593 by
Thomas Fan.

• [ENHANCEMENT] model_selection.learning_curve now accepts parameter return_times which
can be used to retrieve computation times in order to plot model scalability (see learning_curve example).
#13938 by Hadrien Reboul.

• [ENHANCEMENT] model_selection.RandomizedSearchCV now accepts lists of parameter distribu-
tions. #14549 by Andreas Müller.

• [FIX] Reimplemented model_selection.StratifiedKFold to fix an issue where one test set could be
n_classes larger than another. Test sets should now be near-equally sized. #14704 by Joel Nothman.

• [FIX] The cv_results_ attribute of model_selection.GridSearchCV and model_selection.
RandomizedSearchCV now only contains unfitted estimators. This potentially saves a lot of memory since
the state of the estimators isn’t stored. ##15096 by Andreas Müller.

• [API CHANGE] model_selection.KFold and model_selection.StratifiedKFold now raise a
warning if random_state is set but shuffle is False. This will raise an error in 0.24.

sklearn.multioutput

• [FIX] multioutput.MultiOutputClassifier now has attribute classes_. #14629 by Agamemnon
Krasoulis.

• [FIX] multioutput.MultiOutputClassifier now has predict_proba as property and can be
checked with hasattr. #15488 #15490 by Rebekah Kim

sklearn.naive_bayes

• [MAJOR FEATURE] Added naive_bayes.CategoricalNB that implements the Categorical Naive Bayes
classifier. #12569 by Tim Bicker and Florian Wilhelm.

sklearn.neighbors

• [MAJOR FEATURE] Added neighbors.KNeighborsTransformer and neighbors.
RadiusNeighborsTransformer, which transform input dataset into a sparse neighbors graph.
They give finer control on nearest neighbors computations and enable easy pipeline caching for multiple use.
#10482 by Tom Dupre la Tour.

• [FEATURE] neighbors.KNeighborsClassifier, neighbors.KNeighborsRegressor,
neighbors.RadiusNeighborsClassifier, neighbors.RadiusNeighborsRegressor,
and neighbors.LocalOutlierFactor now accept precomputed sparse neighbors graph as input.
#10482 by Tom Dupre la Tour and Kumar Ashutosh.

52 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/pull/12258
https://github.com/sjtrny
https://github.com/scikit-learn/scikit-learn/pull/14898
https://github.com/stefan-matcovici
https://github.com/scikit-learn/scikit-learn/pull/14593
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/pull/13938
https://github.com/H4dr1en
https://github.com/scikit-learn/scikit-learn/pull/14549
https://amueller.github.io/
https://github.com/scikit-learn/scikit-learn/pull/14704
https://joelnothman.com/
https://github.com/scikit-learn/scikit-learn/pull/#15096
https://amueller.github.io/
https://github.com/scikit-learn/scikit-learn/pull/14629
https://github.com/agamemnonc
https://github.com/agamemnonc
https://github.com/scikit-learn/scikit-learn/issues/15488
https://github.com/scikit-learn/scikit-learn/pull/15490
https://github.com/rebekahkim
https://github.com/scikit-learn/scikit-learn/pull/12569
https://github.com/timbicker
https://github.com/FlorianWilhelm
https://github.com/scikit-learn/scikit-learn/issues/10482
https://github.com/TomDLT
https://github.com/scikit-learn/scikit-learn/issues/10482
https://github.com/TomDLT
https://github.com/thechargedneutron

scikit-learn user guide, Release 0.23.2

• [FEATURE] neighbors.RadiusNeighborsClassifier now supports predicting probabilities by using
predict_proba and supports more outlier_label options: ‘most_frequent’, or different outlier_labels for
multi-outputs. #9597 by Wenbo Zhao.

• [EFFICIENCY] Efficiency improvements for neighbors.RadiusNeighborsClassifier.predict.
#9597 by Wenbo Zhao.

• [FIX] neighbors.KNeighborsRegressor now throws error when metric='precomputed' and fit
on non-square data. #14336 by Gregory Dexter.

sklearn.neural_network

• [FEATURE] Add max_fun parameter in neural_network.BaseMultilayerPerceptron,
neural_network.MLPRegressor, and neural_network.MLPClassifier to give control
over maximum number of function evaluation to not meet tol improvement. #9274 by Daniel Perry.

sklearn.pipeline

• [ENHANCEMENT] pipeline.Pipeline now supports score_samples if the final estimator does. #13806 by
Anaël Beaugnon.

• [FIX] The fit in FeatureUnion now accepts fit_params to pass to the underlying transformers. #15119
by Adrin Jalali.

• [API CHANGE] None as a transformer is now deprecated in pipeline.FeatureUnion. Please use 'drop'
instead. #15053 by Thomas Fan.

sklearn.preprocessing

• [EFFICIENCY] preprocessing.PolynomialFeatures is now faster when the input data is dense.
#13290 by Xavier Dupré.

• [ENHANCEMENT] Avoid unnecessary data copy when fitting preprocessors preprocessing.
StandardScaler, preprocessing.MinMaxScaler, preprocessing.MaxAbsScaler,
preprocessing.RobustScaler and preprocessing.QuantileTransformer which results in
a slight performance improvement. #13987 by Roman Yurchak.

• [FIX] KernelCenterer now throws error when fit on non-square preprocessing.KernelCenterer
#14336 by Gregory Dexter.

sklearn.model_selection

• [FIX] model_selection.GridSearchCV and model_selection.RandomizedSearchCV now
supports the _pairwise property, which prevents an error during cross-validation for estimators with pairwise
inputs (such as neighbors.KNeighborsClassifier when metric is set to ‘precomputed’). #13925 by
Isaac S. Robson and #15524 by Xun Tang.

sklearn.svm

• [ENHANCEMENT] svm.SVC and svm.NuSVC now accept a break_ties parameter. This param-
eter results in predict breaking the ties according to the confidence values of decision_function, if
decision_function_shape='ovr', and the number of target classes > 2. #12557 by Adrin Jalali.

1.7. Release History 53

https://github.com/scikit-learn/scikit-learn/pull/9597
https://github.com/webber26232
https://github.com/scikit-learn/scikit-learn/pull/9597
https://github.com/webber26232
https://github.com/scikit-learn/scikit-learn/pull/14336
https://github.com/gdex1
https://github.com/scikit-learn/scikit-learn/issues/9274
https://github.com/daniel-perry
https://github.com/scikit-learn/scikit-learn/pull/13806
https://github.com/ab-anssi
https://github.com/scikit-learn/scikit-learn/pull/15119
https://github.com/adrinjalali
https://github.com/scikit-learn/scikit-learn/pull/15053
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/pull/13290
https://github.com/sdpython
https://github.com/scikit-learn/scikit-learn/pull/13987
https://github.com/rth
https://github.com/scikit-learn/scikit-learn/pull/14336
https://github.com/gdex1
https://github.com/scikit-learn/scikit-learn/pull/13925
https://github.com/isrobson
https://github.com/scikit-learn/scikit-learn/pull/15524
https://github.com/xun-tang
https://github.com/scikit-learn/scikit-learn/pull/12557
https://github.com/adrinjalali

scikit-learn user guide, Release 0.23.2

• [ENHANCEMENT] SVM estimators now throw a more specific error when kernel='precomputed' and fit
on non-square data. #14336 by Gregory Dexter.

• [FIX] svm.SVC, svm.SVR, svm.NuSVR and svm.OneClassSVM when received values negative or zero
for parameter sample_weight in method fit(), generated an invalid model. This behavior occurred only in
some border scenarios. Now in these cases, fit() will fail with an Exception. #14286 by Alex Shacked.

• [FIX] The n_support_ attribute of svm.SVR and svm.OneClassSVM was previously non-initialized, and
had size 2. It has now size 1 with the correct value. #15099 by Nicolas Hug.

• [FIX] fixed a bug in BaseLibSVM._sparse_fit where n_SV=0 raised a ZeroDivisionError. #14894 by
Danna Naser.

• [FIX] The liblinear solver now supports sample_weight. #15038 by Guillaume Lemaitre.

sklearn.tree

• [FEATURE] Adds minimal cost complexity pruning, controlled by ccp_alpha, to tree.
DecisionTreeClassifier, tree.DecisionTreeRegressor, tree.ExtraTreeClassifier,
tree.ExtraTreeRegressor, ensemble.RandomForestClassifier, ensemble.
RandomForestRegressor, ensemble.ExtraTreesClassifier, ensemble.
ExtraTreesRegressor, ensemble.GradientBoostingClassifier, and ensemble.
GradientBoostingRegressor. #12887 by Thomas Fan.

• [API CHANGE] presort is now deprecated in tree.DecisionTreeClassifier and tree.
DecisionTreeRegressor, and the parameter has no effect. #14907 by Adrin Jalali.

• [API CHANGE] The classes_ and n_classes_ attributes of tree.DecisionTreeRegressor are now
deprecated. #15028 by Mei Guan, Nicolas Hug, and Adrin Jalali.

sklearn.utils

• [FEATURE] check_estimator can now generate checks by setting generate_only=True. Previously,
running check_estimator will stop when the first check fails. With generate_only=True, all checks
can run independently and report the ones that are failing. Read more in Rolling your own estimator. #14381
by Thomas Fan.

• [FEATURE] Added a pytest specific decorator, parametrize_with_checks, to parametrize estimator
checks for a list of estimators. #14381 by Thomas Fan.

• [FEATURE] A new random variable, utils.fixes.loguniform implements a log-uniform random vari-
able (e.g., for use in RandomizedSearchCV). For example, the outcomes 1, 10 and 100 are all equally likely
for loguniform(1, 100). See #11232 by Scott Sievert and Nathaniel Saul, and SciPy PR 10815
<https://github.com/scipy/scipy/pull/10815>.

• [ENHANCEMENT] utils.safe_indexing (now deprecated) accepts an axis parameter to index array-like
across rows and columns. The column indexing can be done on NumPy array, SciPy sparse matrix, and Pandas
DataFrame. An additional refactoring was done. #14035 and #14475 by Guillaume Lemaitre.

• [ENHANCEMENT] utils.extmath.safe_sparse_dot works between 3D+ ndarray and sparse matrix.
#14538 by Jérémie du Boisberranger.

• [FIX] utils.check_array is now raising an error instead of casting NaN to integer. #14872 by Roman
Yurchak.

• [FIX] utils.check_array will now correctly detect numeric dtypes in pandas dataframes, fixing a bug
where float32 was upcast to float64 unnecessarily. #15094 by Andreas Müller.

54 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/pull/14336
https://github.com/gdex1
https://github.com/scikit-learn/scikit-learn/pull/14286
https://github.com/alexshacked
https://github.com/scikit-learn/scikit-learn/pull/15099
https://github.com/NicolasHug
https://github.com/scikit-learn/scikit-learn/pull/14894
https://github.com/danna-naser
https://github.com/scikit-learn/scikit-learn/pull/15038
https://github.com/glemaitre
https://github.com/scikit-learn/scikit-learn/pull/12887
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/pull/14907
https://github.com/adrinjalali
https://github.com/scikit-learn/scikit-learn/pull/15028
https://github.com/meiguan
https://github.com/NicolasHug
https://github.com/adrinjalali
https://github.com/scikit-learn/scikit-learn/pull/14381
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/pull/14381
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/issues/11232
https://github.com/stsievert
https://github.com/sauln
https://github.com/scikit-learn/scikit-learn/pull/14035
https://github.com/scikit-learn/scikit-learn/pull/14475
https://github.com/glemaitre
https://github.com/scikit-learn/scikit-learn/pull/14538
https://github.com/jeremiedbb
https://github.com/scikit-learn/scikit-learn/pull/14872
https://github.com/rth
https://github.com/rth
https://github.com/scikit-learn/scikit-learn/pull/15094
https://amueller.github.io/

scikit-learn user guide, Release 0.23.2

• [API CHANGE] The following utils have been deprecated and are now private:

– choose_check_classifiers_labels

– enforce_estimator_tags_y

– mocking.MockDataFrame

– mocking.CheckingClassifier

– optimize.newton_cg

– random.random_choice_csc

– utils.choose_check_classifiers_labels

– utils.enforce_estimator_tags_y

– utils.optimize.newton_cg

– utils.random.random_choice_csc

– utils.safe_indexing

– utils.mocking

– utils.fast_dict

– utils.seq_dataset

– utils.weight_vector

– utils.fixes.parallel_helper (removed)

– All of utils.testing except for all_estimators which is now in utils.

sklearn.isotonic

• [FIX] Fixed a bug where isotonic.IsotonicRegression.fit raised error when X.dtype ==
'float32' and X.dtype != y.dtype. #14902 by Lucas.

Miscellaneous

• [FIX] Port lobpcg from SciPy which implement some bug fixes but only available in 1.3+. #13609 and #14971
by Guillaume Lemaitre.

• [API CHANGE] Scikit-learn now converts any input data structure implementing a duck array to a numpy array
(using __array__) to ensure consistent behavior instead of relying on __array_function__ (see NEP
18). #14702 by Andreas Müller.

• [API CHANGE] Replace manual checks with check_is_fitted. Errors thrown when using a non-fitted
estimators are now more uniform. #13013 by Agamemnon Krasoulis.

Changes to estimator checks

These changes mostly affect library developers.

• Estimators are now expected to raise a NotFittedError if predict or transform is called before fit;
previously an AttributeError or ValueError was acceptable. #13013 by by Agamemnon Krasoulis.

• Binary only classifiers are now supported in estimator checks. Such classifiers need to have the
binary_only=True estimator tag. #13875 by Trevor Stephens.

1.7. Release History 55

https://github.com/scikit-learn/scikit-learn/pull/14902
https://github.com/lostcoaster
https://github.com/scikit-learn/scikit-learn/pull/13609
https://github.com/scikit-learn/scikit-learn/pull/14971
https://github.com/glemaitre
https://numpy.org/neps/nep-0018-array-function-protocol.html
https://numpy.org/neps/nep-0018-array-function-protocol.html
https://github.com/scikit-learn/scikit-learn/pull/14702
https://amueller.github.io/
https://github.com/scikit-learn/scikit-learn/pull/13013
https://github.com/agamemnonc
https://github.com/scikit-learn/scikit-learn/pull/13013
https://github.com/agamemnonc
https://github.com/scikit-learn/scikit-learn/pull/13875
http://trevorstephens.com/

scikit-learn user guide, Release 0.23.2

• Estimators are expected to convert input data (X, y, sample_weights) to numpy.ndarray and never call
__array_function__ on the original datatype that is passed (see NEP 18). #14702 by Andreas Müller.

• requires_positive_X estimator tag (for models that require X to be non-negative) is now used by
utils.estimator_checks.check_estimator to make sure a proper error message is raised if X
contains some negative entries. #14680 by Alex Gramfort.

• Added check that pairwise estimators raise error on non-square data #14336 by Gregory Dexter.

• Added two common multioutput estimator tests check_classifier_multioutput and
check_regressor_multioutput. #13392 by Rok Mihevc.

• [FIX] Added check_transformer_data_not_an_array to checks where missing

• [FIX] The estimators tags resolution now follows the regular MRO. They used to be overridable only once.
#14884 by Andreas Müller.

Code and Documentation Contributors

Thanks to everyone who has contributed to the maintenance and improvement of the project since version 0.21, in-
cluding:

Aaron Alphonsus, Abbie Popa, Abdur-Rahmaan Janhangeer, abenbihi, Abhinav Sagar, Abhishek Jana, Abraham K.
Lagat, Adam J. Stewart, Aditya Vyas, Adrin Jalali, Agamemnon Krasoulis, Alec Peters, Alessandro Surace, Alexan-
dre de Siqueira, Alexandre Gramfort, alexgoryainov, Alex Henrie, Alex Itkes, alexshacked, Allen Akinkunle, Anaël
Beaugnon, Anders Kaseorg, Andrea Maldonado, Andrea Navarrete, Andreas Mueller, Andreas Schuderer, Andrew
Nystrom, Angela Ambroz, Anisha Keshavan, Ankit Jha, Antonio Gutierrez, Anuja Kelkar, Archana Alva, arnaud-
stiegler, arpanchowdhry, ashimb9, Ayomide Bamidele, Baran Buluttekin, barrycg, Bharat Raghunathan, Bill Mill,
Biswadip Mandal, blackd0t, Brian G. Barkley, Brian Wignall, Bryan Yang, c56pony, camilaagw, cartman_nabana,
catajara, Cat Chenal, Cathy, cgsavard, Charles Vesteghem, Chiara Marmo, Chris Gregory, Christian Lorentzen, Chris-
tos Aridas, Dakota Grusak, Daniel Grady, Daniel Perry, Danna Naser, DatenBergwerk, David Dormagen, deeplook,
Dillon Niederhut, Dong-hee Na, Dougal J. Sutherland, DrGFreeman, Dylan Cashman, edvardlindelof, Eric Larson,
Eric Ndirangu, Eunseop Jeong, Fanny, federicopisanu, Felix Divo, flaviomorelli, FranciDona, Franco M. Luque, Frank
Hoang, Frederic Haase, g0g0gadget, Gabriel Altay, Gabriel do Vale Rios, Gael Varoquaux, ganevgv, gdex1, getgau-
rav2, Gideon Sonoiya, Gordon Chen, gpapadok, Greg Mogavero, Grzegorz Szpak, Guillaume Lemaitre, Guillem Gar-
cía Subies, H4dr1en, hadshirt, Hailey Nguyen, Hanmin Qin, Hannah Bruce Macdonald, Harsh Mahajan, Harsh Soni,
Honglu Zhang, Hossein Pourbozorg, Ian Sanders, Ingrid Spielman, J-A16, jaehong park, Jaime Ferrando Huertas,
James Hill, James Myatt, Jay, jeremiedbb, Jérémie du Boisberranger, jeromedockes, Jesper Dramsch, Joan Massich,
Joanna Zhang, Joel Nothman, Johann Faouzi, Jonathan Rahn, Jon Cusick, Jose Ortiz, Kanika Sabharwal, Katarina
Slama, kellycarmody, Kennedy Kang’ethe, Kensuke Arai, Kesshi Jordan, Kevad, Kevin Loftis, Kevin Winata, Kevin
Yu-Sheng Li, Kirill Dolmatov, Kirthi Shankar Sivamani, krishna katyal, Lakshmi Krishnan, Lakshya KD, LalliAcqua,
lbfin, Leland McInnes, Léonard Binet, Loic Esteve, loopyme, lostcoaster, Louis Huynh, lrjball, Luca Ionescu, Lutz
Roeder, MaggieChege, Maithreyi Venkatesh, Maltimore, Maocx, Marc Torrellas, Marie Douriez, Markus, Markus
Frey, Martina G. Vilas, Martin Oywa, Martin Thoma, Masashi SHIBATA, Maxwell Aladago, mbillingr, m-clare,
Meghann Agarwal, m.fab, Micah Smith, miguelbarao, Miguel Cabrera, Mina Naghshhnejad, Ming Li, motmoti,
mschaffenroth, mthorrell, Natasha Borders, nezar-a, Nicolas Hug, Nidhin Pattaniyil, Nikita Titov, Nishan Singh Mann,
Nitya Mandyam, norvan, notmatthancock, novaya, nxorable, Oleg Stikhin, Oleksandr Pavlyk, Olivier Grisel, Omar
Saleem, Owen Flanagan, panpiort8, Paolo, Paolo Toccaceli, Paresh Mathur, Paula, Peng Yu, Peter Marko, pierre-
tallotte, poorna-kumar, pspachtholz, qdeffense, Rajat Garg, Raphaël Bournhonesque, Ray, Ray Bell, Rebekah Kim,
Reza Gharibi, Richard Payne, Richard W, rlms, Robert Juergens, Rok Mihevc, Roman Feldbauer, Roman Yurchak,
R Sanjabi, RuchitaGarde, Ruth Waithera, Sackey, Sam Dixon, Samesh Lakhotia, Samuel Taylor, Sarra Habchi, Scott
Gigante, Scott Sievert, Scott White, Sebastian Pölsterl, Sergey Feldman, SeWook Oh, she-dares, Shreya V, Shub-
ham Mehta, Shuzhe Xiao, SimonCW, smarie, smujjiga, Sönke Behrends, Soumirai, Sourav Singh, stefan-matcovici,
steinfurt, Stéphane Couvreur, Stephan Tulkens, Stephen Cowley, Stephen Tierney, SylvainLan, th0rwas, theoptips,
theotheo, Thierno Ibrahima DIOP, Thomas Edwards, Thomas J Fan, Thomas Moreau, Thomas Schmitt, Tilen Kusterle,
Tim Bicker, Timsaur, Tim Staley, Tirth Patel, Tola A, Tom Augspurger, Tom Dupré la Tour, topisan, Trevor Stephens,

56 Chapter 1. Welcome to scikit-learn

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/neps/nep-0018-array-function-protocol.html
https://github.com/scikit-learn/scikit-learn/pull/14702
https://amueller.github.io/
https://github.com/scikit-learn/scikit-learn/pull/14680
https://github.com/agramfort
https://github.com/scikit-learn/scikit-learn/pull/14336
https://github.com/gdex1
https://github.com/scikit-learn/scikit-learn/pull/13392
https://github.com/rok
https://github.com/scikit-learn/scikit-learn/pull/14884
https://amueller.github.io/

scikit-learn user guide, Release 0.23.2

ttang131, Urvang Patel, Vathsala Achar, veerlosar, Venkatachalam N, Victor Luzgin, Vincent Jeanselme, Vincent
Lostanlen, Vladimir Korolev, vnherdeiro, Wenbo Zhao, Wendy Hu, willdarnell, William de Vazelhes, wolframalpha,
xavier dupré, xcjason, x-martian, xsat, xun-tang, Yinglr, yokasre, Yu-Hang “Maxin” Tang, Yulia Zamriy, Zhao Feng

1.7.8 Version 0.21.3

Legend for changelogs

• [MAJOR FEATURE]: something big that you couldn’t do before.

• [FEATURE]: something that you couldn’t do before.

• [EFFICIENCY]: an existing feature now may not require as much computation or memory.

• [ENHANCEMENT]: a miscellaneous minor improvement.

• [FIX]: something that previously didn’t work as documentated – or according to reasonable expectations –
should now work.

• [API CHANGE]: you will need to change your code to have the same effect in the future; or a feature will be
removed in the future.

July 30, 2019

Changed models

The following estimators and functions, when fit with the same data and parameters, may produce different models
from the previous version. This often occurs due to changes in the modelling logic (bug fixes or enhancements), or in
random sampling procedures.

• The v0.20.0 release notes failed to mention a backwards incompatibility in metrics.make_scorer
when needs_proba=True and y_true is binary. Now, the scorer function is supposed to accept a 1D
y_pred (i.e., probability of the positive class, shape (n_samples,)), instead of a 2D y_pred (i.e., shape
(n_samples, 2)).

Changelog

sklearn.cluster

• [FIX] Fixed a bug in cluster.KMeans where computation with init='random' was single threaded for
n_jobs > 1 or n_jobs = -1. #12955 by Prabakaran Kumaresshan.

• [FIX] Fixed a bug in cluster.OPTICS where users were unable to pass float min_samples and
min_cluster_size. #14496 by Fabian Klopfer and Hanmin Qin.

• [FIX] Fixed a bug in cluster.KMeans where KMeans++ initialisation could rarely result in an IndexError.
#11756 by Joel Nothman.

sklearn.compose

• [FIX] Fixed an issue in compose.ColumnTransformer where using DataFrames whose column order
differs between :func:fit and :func:transform could lead to silently passing incorrect columns to the
remainder transformer. #14237 by Andreas Schuderer <schuderer>.

1.7. Release History 57

https://github.com/scikit-learn/scikit-learn/pull/12955
https://github.com/nixphix
https://github.com/scikit-learn/scikit-learn/pull/14496
https://github.com/someusername1
https://github.com/qinhanmin2014
https://github.com/scikit-learn/scikit-learn/issues/11756
https://joelnothman.com/
https://github.com/scikit-learn/scikit-learn/pull/14237

scikit-learn user guide, Release 0.23.2

sklearn.datasets

• [FIX] datasets.fetch_california_housing, datasets.fetch_covtype, datasets.
fetch_kddcup99, datasets.fetch_olivetti_faces, datasets.fetch_rcv1, and
datasets.fetch_species_distributions try to persist the previously cache using the new
joblib if the cached data was persisted using the deprecated sklearn.externals.joblib. This
behavior is set to be deprecated and removed in v0.23. #14197 by Adrin Jalali.

sklearn.ensemble

• [FIX] Fix zero division error in HistGradientBoostingClassifier and
HistGradientBoostingRegressor. #14024 by Nicolas Hug <NicolasHug>.

sklearn.impute

• [FIX] Fixed a bug in impute.SimpleImputer and impute.IterativeImputer so that no errors are
thrown when there are missing values in training data. #13974 by Frank Hoang <fhoang7>.

sklearn.inspection

• [FIX] Fixed a bug in inspection.plot_partial_dependence where target parameter was not be-
ing taken into account for multiclass problems. #14393 by Guillem G. Subies.

sklearn.linear_model

• [FIX] Fixed a bug in linear_model.LogisticRegressionCV where refit=False would fail de-
pending on the 'multiclass' and 'penalty' parameters (regression introduced in 0.21). #14087 by
Nicolas Hug.

• [FIX] Compatibility fix for linear_model.ARDRegression and Scipy>=1.3.0. Adapts to upstream
changes to the default pinvh cutoff threshold which otherwise results in poor accuracy in some cases. #14067
by Tim Staley.

sklearn.neighbors

• [FIX] Fixed a bug in neighbors.NeighborhoodComponentsAnalysis where the validation of initial
parameters n_components, max_iter and tol required too strict types. #14092 by Jérémie du Boisber-
ranger.

sklearn.tree

• [FIX] Fixed bug in tree.export_text when the tree has one feature and a single feature name is passed in.
#14053 by Thomas Fan.

• [FIX] Fixed an issue with plot_tree where it displayed entropy calculations even for gini criterion in
DecisionTreeClassifiers. #13947 by Frank Hoang.

58 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/pull/14197
https://github.com/adrinjalali
https://github.com/scikit-learn/scikit-learn/pull/14024
https://github.com/scikit-learn/scikit-learn/pull/13974
https://github.com/scikit-learn/scikit-learn/pull/14393
https://github.com/guillemgsubies
https://github.com/scikit-learn/scikit-learn/pull/14087
https://github.com/NicolasHug
https://github.com/scikit-learn/scikit-learn/pull/14067
https://github.com/timstaley
https://github.com/scikit-learn/scikit-learn/pull/14092
https://github.com/jeremiedbb
https://github.com/jeremiedbb
https://github.com/scikit-learn/scikit-learn/pull/14053
https://github.com/scikit-learn/scikit-learn/pull/13947
https://github.com/fhoang7

scikit-learn user guide, Release 0.23.2

1.7.9 Version 0.21.2

24 May 2019

Changelog

sklearn.decomposition

• [FIX] Fixed a bug in cross_decomposition.CCA improving numerical stability when Y is close to zero.
#13903 by Thomas Fan.

sklearn.metrics

• [FIX] Fixed a bug in metrics.pairwise.euclidean_distances where a part of the distance matrix
was left un-instanciated for suffiently large float32 datasets (regression introduced in 0.21). #13910 by Jérémie
du Boisberranger.

sklearn.preprocessing

• [FIX] Fixed a bug in preprocessing.OneHotEncoder where the new drop parameter was not reflected
in get_feature_names. #13894 by James Myatt.

sklearn.utils.sparsefuncs

• [FIX] Fixed a bug where min_max_axis would fail on 32-bit systems for certain large inputs. This
affects preprocessing.MaxAbsScaler, preprocessing.normalize and preprocessing.
LabelBinarizer. #13741 by Roddy MacSween.

1.7.10 Version 0.21.1

17 May 2019

This is a bug-fix release to primarily resolve some packaging issues in version 0.21.0. It also includes minor docu-
mentation improvements and some bug fixes.

Changelog

sklearn.inspection

• [FIX] Fixed a bug in inspection.partial_dependence to only check classifier and not regressor for
the multiclass-multioutput case. #14309 by Guillaume Lemaitre.

sklearn.metrics

• [FIX] Fixed a bug in metrics.pairwise_distances where it would raise AttributeError for
boolean metrics when X had a boolean dtype and Y == None. #13864 by Paresh Mathur.

1.7. Release History 59

https://github.com/scikit-learn/scikit-learn/pull/13903
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/pull/13910
https://github.com/jeremiedbb
https://github.com/jeremiedbb
https://github.com/scikit-learn/scikit-learn/pull/13894
https://github.com/jamesmyatt
https://github.com/scikit-learn/scikit-learn/pull/13741
https://github.com/rlms
https://github.com/scikit-learn/scikit-learn/pull/14309
https://github.com/glemaitre
https://github.com/scikit-learn/scikit-learn/issues/13864
https://github.com/rick2047

scikit-learn user guide, Release 0.23.2

• [FIX] Fixed two bugs in metrics.pairwise_distances when n_jobs > 1. First it used to return a
distance matrix with same dtype as input, even for integer dtype. Then the diagonal was not zeros for euclidean
metric when Y is X. #13877 by Jérémie du Boisberranger.

sklearn.neighbors

• [FIX] Fixed a bug in neighbors.KernelDensity which could not be restored from a pickle if
sample_weight had been used. #13772 by Aditya Vyas.

1.7.11 Version 0.21.0

May 2019

Changed models

The following estimators and functions, when fit with the same data and parameters, may produce different models
from the previous version. This often occurs due to changes in the modelling logic (bug fixes or enhancements), or in
random sampling procedures.

• discriminant_analysis.LinearDiscriminantAnalysis for multiclass classification. [FIX]

• discriminant_analysis.LinearDiscriminantAnalysis with ‘eigen’ solver. [FIX]

• linear_model.BayesianRidge [FIX]

• Decision trees and derived ensembles when both max_depth and max_leaf_nodes are set. [FIX]

• linear_model.LogisticRegression and linear_model.LogisticRegressionCV with
‘saga’ solver. [FIX]

• ensemble.GradientBoostingClassifier [FIX]

• sklearn.feature_extraction.text.HashingVectorizer, sklearn.
feature_extraction.text.TfidfVectorizer, and sklearn.feature_extraction.
text.CountVectorizer [FIX]

• neural_network.MLPClassifier [FIX]

• svm.SVC.decision_function and multiclass.OneVsOneClassifier.
decision_function. [FIX]

• linear_model.SGDClassifier and any derived classifiers. [FIX]

• Any model using the linear_model._sag.sag_solver function with a 0 seed, includ-
ing linear_model.LogisticRegression, linear_model.LogisticRegressionCV ,
linear_model.Ridge, and linear_model.RidgeCV with ‘sag’ solver. [FIX]

• linear_model.RidgeCV when using generalized cross-validation with sparse inputs. [FIX]

Details are listed in the changelog below.

(While we are trying to better inform users by providing this information, we cannot assure that this list is complete.)

Known Major Bugs

• The default max_iter for linear_model.LogisticRegression is too small for many solvers given
the default tol. In particular, we accidentally changed the default max_iter for the liblinear solver from

60 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/issues/13877
https://github.com/jeremiedbb
https://github.com/scikit-learn/scikit-learn/issues/13772
https://github.com/aditya1702

scikit-learn user guide, Release 0.23.2

1000 to 100 iterations in #3591 released in version 0.16. In a future release we hope to choose better default
max_iter and tol heuristically depending on the solver (see #13317).

Changelog

Support for Python 3.4 and below has been officially dropped.

sklearn.base

• [API CHANGE] The R2 score used when calling score on a regressor will use
multioutput='uniform_average' from version 0.23 to keep consistent with metrics.r2_score.
This will influence the score method of all the multioutput regressors (except for multioutput.
MultiOutputRegressor). #13157 by Hanmin Qin.

sklearn.calibration

• [ENHANCEMENT] Added support to bin the data passed into calibration.calibration_curve by quan-
tiles instead of uniformly between 0 and 1. #13086 by Scott Cole.

• [ENHANCEMENT] Allow n-dimensional arrays as input for calibration.CalibratedClassifierCV.
#13485 by William de Vazelhes.

sklearn.cluster

• [MAJOR FEATURE] A new clustering algorithm: cluster.OPTICS: an algorithm related to cluster.
DBSCAN , that has hyperparameters easier to set and that scales better, by Shane, Adrin Jalali, Erich Schubert,
Hanmin Qin, and Assia Benbihi.

• [FIX] Fixed a bug where cluster.Birch could occasionally raise an AttributeError. #13651 by Joel Noth-
man.

• [FIX] Fixed a bug in cluster.KMeans where empty clusters weren’t correctly relocated when using sample
weights. #13486 by Jérémie du Boisberranger.

• [API CHANGE] The n_components_ attribute in cluster.AgglomerativeClustering and
cluster.FeatureAgglomeration has been renamed to n_connected_components_. #13427 by
Stephane Couvreur.

• [ENHANCEMENT] cluster.AgglomerativeClustering and cluster.FeatureAgglomeration
now accept a distance_threshold parameter which can be used to find the clusters instead of
n_clusters. #9069 by Vathsala Achar and Adrin Jalali.

sklearn.compose

• [API CHANGE] compose.ColumnTransformer is no longer an experimental feature. #13835 by Hanmin
Qin.

sklearn.datasets

• [FIX] Added support for 64-bit group IDs and pointers in SVMLight files. #10727 by Bryan K Woods.

1.7. Release History 61

https://github.com/scikit-learn/scikit-learn/pull/3591
https://github.com/scikit-learn/scikit-learn/pull/13317
https://github.com/scikit-learn/scikit-learn/pull/13157
https://github.com/qinhanmin2014
https://github.com/scikit-learn/scikit-learn/pull/13086
https://github.com/srcole
https://github.com/scikit-learn/scikit-learn/pull/13485
https://github.com/wdevazelhes
https://github.com/espg
https://github.com/adrinjalali
https://github.com/kno10
https://github.com/qinhanmin2014
https://github.com/assiaben
https://github.com/scikit-learn/scikit-learn/pull/13651
https://joelnothman.com/
https://joelnothman.com/
https://github.com/scikit-learn/scikit-learn/pull/13486
https://github.com/jeremiedbb
https://github.com/scikit-learn/scikit-learn/pull/13427
https://github.com/scouvreur
https://github.com/scikit-learn/scikit-learn/issues/9069
https://github.com/VathsalaAchar
https://github.com/adrinjalali
https://github.com/scikit-learn/scikit-learn/pull/13835
https://github.com/qinhanmin2014
https://github.com/qinhanmin2014
https://github.com/scikit-learn/scikit-learn/pull/10727
https://github.com/bryan-woods

scikit-learn user guide, Release 0.23.2

• [FIX] datasets.load_sample_images returns images with a deterministic order. #13250 by Thomas
Fan.

sklearn.decomposition

• [ENHANCEMENT] decomposition.KernelPCA now has deterministic output (resolved sign ambiguity in
eigenvalue decomposition of the kernel matrix). #13241 by Aurélien Bellet.

• [FIX] Fixed a bug in decomposition.KernelPCA, fit().transform() now produces
the correct output (the same as fit_transform()) in case of non-removed zero eigenvalues
(remove_zero_eig=False). fit_inverse_transform was also accelerated by using the same trick
as fit_transform to compute the transform of X. #12143 by Sylvain Marié

• [FIX] Fixed a bug in decomposition.NMF where init = 'nndsvd', init = 'nndsvda', and
init = 'nndsvdar' are allowed when n_components < n_features instead of n_components
<= min(n_samples, n_features). #11650 by Hossein Pourbozorg and Zijie (ZJ) Poh.

• [API CHANGE] The default value of the init argument in decomposition.
non_negative_factorization will change from random to None in version 0.23 to make it
consistent with decomposition.NMF. A FutureWarning is raised when the default value is used. #12988
by Zijie (ZJ) Poh.

sklearn.discriminant_analysis

• [ENHANCEMENT] discriminant_analysis.LinearDiscriminantAnalysis now preserves
float32 and float64 dtypes. #8769 and #11000 by Thibault Sejourne

• [FIX] A ChangedBehaviourWarning is now raised when discriminant_analysis.
LinearDiscriminantAnalysis is given as parameter n_components > min(n_features,
n_classes - 1), and n_components is changed to min(n_features, n_classes - 1) if so.
Previously the change was made, but silently. #11526 by William de Vazelhes.

• [FIX] Fixed a bug in discriminant_analysis.LinearDiscriminantAnalysis where the pre-
dicted probabilities would be incorrectly computed in the multiclass case. #6848, by Agamemnon Krasoulis
and Guillaume Lemaitre <glemaitre>.

• [FIX] Fixed a bug in discriminant_analysis.LinearDiscriminantAnalysis where the pre-
dicted probabilities would be incorrectly computed with eigen solver. #11727, by Agamemnon Krasoulis.

sklearn.dummy

• [FIX] Fixed a bug in dummy.DummyClassifier where the predict_proba method was returning int32
array instead of float64 for the stratified strategy. #13266 by Christos Aridas.

• [FIX] Fixed a bug in dummy.DummyClassifier where it was throwing a dimension mismatch error in
prediction time if a column vector y with shape=(n, 1) was given at fit time. #13545 by Nick Sorros and
Adrin Jalali.

sklearn.ensemble

• [MAJOR FEATURE] Add two new implementations of gradient boosting trees: ensemble.
HistGradientBoostingClassifier and ensemble.HistGradientBoostingRegressor.
The implementation of these estimators is inspired by LightGBM and can be orders of magnitude faster than

62 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/pull/13250
https://github.com/thomasjpfan
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/pull/13241
https://github.com/bellet
https://github.com/scikit-learn/scikit-learn/pull/12143
https://github.com/smarie
https://github.com/scikit-learn/scikit-learn/pull/11650
https://github.com/hossein-pourbozorg
https://github.com/zjpoh
https://github.com/scikit-learn/scikit-learn/pull/12988
https://github.com/zjpoh
https://github.com/scikit-learn/scikit-learn/pull/8769
https://github.com/scikit-learn/scikit-learn/pull/11000
https://github.com/thibsej
https://github.com/scikit-learn/scikit-learn/pull/11526
https://github.com/wdevazelhes
https://github.com/scikit-learn/scikit-learn/pull/6848
https://github.com/agamemnonc
https://github.com/scikit-learn/scikit-learn/pull/11727
https://github.com/agamemnonc
https://github.com/scikit-learn/scikit-learn/pull/13266
https://github.com/chkoar
https://github.com/scikit-learn/scikit-learn/pull/13545
https://github.com/nsorros
https://github.com/adrinjalali
https://github.com/Microsoft/LightGBM

scikit-learn user guide, Release 0.23.2

ensemble.GradientBoostingRegressor and ensemble.GradientBoostingClassifier
when the number of samples is larger than tens of thousands of samples. The API of these new estimators
is slightly different, and some of the features from ensemble.GradientBoostingClassifier and
ensemble.GradientBoostingRegressor are not yet supported.

These new estimators are experimental, which means that their results or their API might change without any
deprecation cycle. To use them, you need to explicitly import enable_hist_gradient_boosting:

>>> # explicitly require this experimental feature
>>> from sklearn.experimental import enable_hist_gradient_boosting # noqa
>>> # now you can import normally from sklearn.ensemble
>>> from sklearn.ensemble import HistGradientBoostingClassifier

#12807 by Nicolas Hug.

• [FEATURE] Add ensemble.VotingRegressor which provides an equivalent of ensemble.
VotingClassifier for regression problems. #12513 by Ramil Nugmanov and Mohamed Ali Jamaoui.

• [EFFICIENCY] Make ensemble.IsolationForest prefer threads over processes when running with
n_jobs > 1 as the underlying decision tree fit calls do release the GIL. This changes reduces memory usage
and communication overhead. #12543 by Isaac Storch and Olivier Grisel.

• [EFFICIENCY] Make ensemble.IsolationForest more memory efficient by avoiding keeping in memory
each tree prediction. #13260 by Nicolas Goix.

• [EFFICIENCY] ensemble.IsolationForest now uses chunks of data at prediction step, thus capping the
memory usage. #13283 by Nicolas Goix.

• [EFFICIENCY] sklearn.ensemble.GradientBoostingClassifier and sklearn.ensemble.
GradientBoostingRegressor now keep the input y as float64 to avoid it being copied internally
by trees. #13524 by Adrin Jalali.

• [ENHANCEMENT] Minimized the validation of X in ensemble.AdaBoostClassifier and ensemble.
AdaBoostRegressor #13174 by Christos Aridas.

• [ENHANCEMENT] ensemble.IsolationForest now exposes warm_start parameter, allowing iterative
addition of trees to an isolation forest. #13496 by Peter Marko.

• [FIX] The values of feature_importances_ in all random forest based models (i.e.
ensemble.RandomForestClassifier, ensemble.RandomForestRegressor,
ensemble.ExtraTreesClassifier, ensemble.ExtraTreesRegressor, ensemble.
RandomTreesEmbedding, ensemble.GradientBoostingClassifier, and ensemble.
GradientBoostingRegressor) now:

– sum up to 1

– all the single node trees in feature importance calculation are ignored

– in case all trees have only one single node (i.e. a root node), feature importances will be an array of all
zeros.

#13636 and #13620 by Adrin Jalali.

• [FIX] Fixed a bug in ensemble.GradientBoostingClassifier and ensemble.
GradientBoostingRegressor, which didn’t support scikit-learn estimators as the initial estimator.
Also added support of initial estimator which does not support sample weights. #12436 by Jérémie du
Boisberranger and #12983 by Nicolas Hug.

• [FIX] Fixed the output of the average path length computed in ensemble.IsolationForest when the
input is either 0, 1 or 2. #13251 by Albert Thomas and joshuakennethjones.

1.7. Release History 63

https://github.com/scikit-learn/scikit-learn/pull/12807
https://github.com/NicolasHug
https://github.com/scikit-learn/scikit-learn/pull/12513
https://github.com/stsouko
https://github.com/mohamed-ali
https://github.com/scikit-learn/scikit-learn/pull/12543
https://github.com/istorch
https://twitter.com/ogrisel
https://github.com/scikit-learn/scikit-learn/pull/13260
https://ngoix.github.io/
https://github.com/scikit-learn/scikit-learn/pull/13283
https://ngoix.github.io/
https://github.com/scikit-learn/scikit-learn/pull/13524
https://github.com/adrinjalali
https://github.com/scikit-learn/scikit-learn/pull/13174
https://github.com/chkoar
https://github.com/scikit-learn/scikit-learn/pull/13496
https://github.com/petibear
https://github.com/scikit-learn/scikit-learn/pull/13636
https://github.com/scikit-learn/scikit-learn/pull/13620
https://github.com/adrinjalali
https://github.com/scikit-learn/scikit-learn/pull/12436
https://github.com/jeremiedbb
https://github.com/jeremiedbb
https://github.com/scikit-learn/scikit-learn/pull/12983
https://github.com/NicolasHug
https://github.com/scikit-learn/scikit-learn/pull/13251
https://github.com/albertcthomas
https://github.com/joshuakennethjones

scikit-learn user guide, Release 0.23.2

• [FIX] Fixed a bug in ensemble.GradientBoostingClassifier where the gradients would be incor-
rectly computed in multiclass classification problems. #12715 by Nicolas Hug.

• [FIX] Fixed a bug in ensemble.GradientBoostingClassifier where validation sets for early stop-
ping were not sampled with stratification. #13164 by Nicolas Hug.

• [FIX] Fixed a bug in ensemble.GradientBoostingClassifier where the default initial prediction of
a multiclass classifier would predict the classes priors instead of the log of the priors. #12983 by Nicolas Hug.

• [FIX] Fixed a bug in ensemble.RandomForestClassifier where the predict method would error
for multiclass multioutput forests models if any targets were strings. #12834 by Elizabeth Sander.

• [FIX] Fixed a bug in ensemble.gradient_boosting.LossFunction and ensemble.
gradient_boosting.LeastSquaresError where the default value of learning_rate in
update_terminal_regions is not consistent with the document and the caller functions. Note however
that directly using these loss functions is deprecated. #6463 by movelikeriver.

• [FIX] ensemble.partial_dependence (and consequently the new version sklearn.inspection.
partial_dependence) now takes sample weights into account for the partial dependence computation
when the gradient boosting model has been trained with sample weights. #13193 by Samuel O. Ronsin.

• [API CHANGE] ensemble.partial_dependence and ensemble.plot_partial_dependence
are now deprecated in favor of inspection.partial_dependence and inspection.
plot_partial_dependence. #12599 by Trevor Stephens and Nicolas Hug.

• [FIX] ensemble.VotingClassifier and ensemble.VotingRegressor were failing during fit in
one of the estimators was set to None and sample_weight was not None. #13779 by Guillaume Lemaitre.

• [API CHANGE] ensemble.VotingClassifier and ensemble.VotingRegressor accept 'drop'
to disable an estimator in addition to None to be consistent with other estimators (i.e., pipeline.
FeatureUnion and compose.ColumnTransformer). #13780 by Guillaume Lemaitre.

sklearn.externals

• [API CHANGE] Deprecated externals.six since we have dropped support for Python 2.7. #12916 by Han-
min Qin.

sklearn.feature_extraction

• [FIX] If input='file' or input='filename', and a callable is given as the analyzer, sklearn.
feature_extraction.text.HashingVectorizer, sklearn.feature_extraction.text.
TfidfVectorizer, and sklearn.feature_extraction.text.CountVectorizer now read
the data from the file(s) and then pass it to the given analyzer, instead of passing the file name(s) or the
file object(s) to the analyzer. #13641 by Adrin Jalali.

sklearn.impute

• [MAJOR FEATURE] Added impute.IterativeImputer, which is a strategy for imputing missing values
by modeling each feature with missing values as a function of other features in a round-robin fashion. #8478
and #12177 by Sergey Feldman and Ben Lawson.

The API of IterativeImputer is experimental and subject to change without any deprecation cycle. To use them,
you need to explicitly import enable_iterative_imputer:

64 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/pull/12715
https://github.com/NicolasHug
https://github.com/scikit-learn/scikit-learn/pull/13164
https://github.com/NicolasHug
https://github.com/scikit-learn/scikit-learn/pull/12983
https://github.com/NicolasHug
https://github.com/scikit-learn/scikit-learn/pull/12834
https://github.com/elsander
https://github.com/scikit-learn/scikit-learn/pull/6463
https://github.com/movelikeriver
https://github.com/scikit-learn/scikit-learn/pull/13193
https://github.com/samronsin
https://github.com/scikit-learn/scikit-learn/pull/12599
https://github.com/trevorstephens
https://github.com/NicolasHug
https://github.com/scikit-learn/scikit-learn/pull/13779
https://github.com/glemaitre
https://github.com/scikit-learn/scikit-learn/pull/13780
https://github.com/glemaitre
https://github.com/scikit-learn/scikit-learn/pull/12916
https://github.com/qinhanmin2014
https://github.com/qinhanmin2014
https://github.com/scikit-learn/scikit-learn/pull/13641
https://github.com/adrinjalali
https://github.com/scikit-learn/scikit-learn/pull/8478
https://github.com/scikit-learn/scikit-learn/pull/12177
https://github.com/sergeyf
https://github.com/benlawson

scikit-learn user guide, Release 0.23.2

>>> from sklearn.experimental import enable_iterative_imputer # noqa
>>> # now you can import normally from sklearn.impute
>>> from sklearn.impute import IterativeImputer

• [FEATURE] The impute.SimpleImputer and impute.IterativeImputer have a new parameter
'add_indicator', which simply stacks a impute.MissingIndicator transform into the output of
the imputer’s transform. That allows a predictive estimator to account for missingness. #12583, #13601 by
Danylo Baibak.

• [FIX] In impute.MissingIndicator avoid implicit densification by raising an exception if input is sparse
add missing_values property is set to 0. #13240 by Bartosz Telenczuk.

• [FIX] Fixed two bugs in impute.MissingIndicator. First, when X is sparse, all the non-zero non missing
values used to become explicit False in the transformed data. Then, when features='missing-only',
all features used to be kept if there were no missing values at all. #13562 by Jérémie du Boisberranger.

sklearn.inspection

(new subpackage)

• [FEATURE] Partial dependence plots (inspection.plot_partial_dependence) are now supported for
any regressor or classifier (provided that they have a predict_proba method). #12599 by Trevor Stephens
and Nicolas Hug.

sklearn.isotonic

• [FEATURE] Allow different dtypes (such as float32) in isotonic.IsotonicRegression. #8769 by Vlad
Niculae

sklearn.linear_model

• [ENHANCEMENT] linear_model.Ridge now preserves float32 and float64 dtypes. #8769 and
#11000 by Guillaume Lemaitre, and Joan Massich

• [FEATURE] linear_model.LogisticRegression and linear_model.
LogisticRegressionCV now support Elastic-Net penalty, with the ‘saga’ solver. #11646 by Nicolas
Hug.

• [FEATURE] Added linear_model.lars_path_gram, which is linear_model.lars_path in the
sufficient stats mode, allowing users to compute linear_model.lars_path without providing X and y.
#11699 by Kuai Yu.

• [EFFICIENCY] linear_model.make_dataset now preserves float32 and float64 dtypes, reducing
memory consumption in stochastic gradient, SAG and SAGA solvers. #8769 and #11000 by Nelle Varoquaux,
Arthur Imbert, Guillaume Lemaitre, and Joan Massich

• [ENHANCEMENT] linear_model.LogisticRegression now supports an unregularized objective when
penalty='none' is passed. This is equivalent to setting C=np.inf with l2 regularization. Not supported
by the liblinear solver. #12860 by Nicolas Hug.

• [ENHANCEMENT] sparse_cg solver in linear_model.Ridge now supports fitting the intercept (i.e.
fit_intercept=True) when inputs are sparse. #13336 by Bartosz Telenczuk.

1.7. Release History 65

https://github.com/scikit-learn/scikit-learn/pull/12583
https://github.com/scikit-learn/scikit-learn/pull/13601
https://github.com/DanilBaibak
https://github.com/scikit-learn/scikit-learn/pull/13240
https://github.com/btel
https://github.com/scikit-learn/scikit-learn/pull/13562
https://github.com/jeremiedbb
https://github.com/scikit-learn/scikit-learn/pull/12599
https://github.com/trevorstephens
https://github.com/NicolasHug
https://github.com/scikit-learn/scikit-learn/pull/8769
https://github.com/vene
https://github.com/vene
https://github.com/scikit-learn/scikit-learn/issues/8769
https://github.com/scikit-learn/scikit-learn/issues/11000
https://github.com/glemaitre
https://github.com/massich
https://github.com/scikit-learn/scikit-learn/pull/11646
https://github.com/NicolasHug
https://github.com/NicolasHug
https://github.com/scikit-learn/scikit-learn/pull/11699
https://github.com/yukuairoy
https://github.com/scikit-learn/scikit-learn/pull/8769
https://github.com/scikit-learn/scikit-learn/pull/11000
https://github.com/NelleV
https://github.com/Henley13
https://github.com/glemaitre
https://github.com/massich
https://github.com/scikit-learn/scikit-learn/pull/12860
https://github.com/NicolasHug
https://github.com/scikit-learn/scikit-learn/pull/13336
https://github.com/btel

scikit-learn user guide, Release 0.23.2

• [ENHANCEMENT] The coordinate descent solver used in Lasso, ElasticNet, etc. now issues a
ConvergenceWarning when it completes without meeting the desired toleranbce. #11754 and #13397
by Brent Fagan and Adrin Jalali.

• [FIX] Fixed a bug in linear_model.LogisticRegression and linear_model.
LogisticRegressionCV with ‘saga’ solver, where the weights would not be correctly updated in
some cases. #11646 by Tom Dupre la Tour.

• [FIX] Fixed the posterior mean, posterior covariance and returned regularization parameters in
linear_model.BayesianRidge. The posterior mean and the posterior covariance were not the ones
computed with the last update of the regularization parameters and the returned regularization parameters were
not the final ones. Also fixed the formula of the log marginal likelihood used to compute the score when
compute_score=True. #12174 by Albert Thomas.

• [FIX] Fixed a bug in linear_model.LassoLarsIC, where user input copy_X=False at instance cre-
ation would be overridden by default parameter value copy_X=True in fit. #12972 by Lucio Fernandez-
Arjona

• [FIX] Fixed a bug in linear_model.LinearRegression that was not returning the same coeffecients
and intercepts with fit_intercept=True in sparse and dense case. #13279 by Alexandre Gramfort

• [FIX] Fixed a bug in linear_model.HuberRegressor that was broken when Xwas of dtype bool. #13328
by Alexandre Gramfort.

• [FIX] Fixed a performance issue of saga and sag solvers when called in a joblib.Parallel setting with
n_jobs > 1 and backend="threading", causing them to perform worse than in the sequential case.
#13389 by Pierre Glaser.

• [FIX] Fixed a bug in linear_model.stochastic_gradient.BaseSGDClassifier that was not
deterministic when trained in a multi-class setting on several threads. #13422 by Clément Doumouro.

• [FIX] Fixed bug in linear_model.ridge_regression, linear_model.Ridge
and linear_model.RidgeClassifier that caused unhandled exception for arguments
return_intercept=True and solver=auto (default) or any other solver different from sag.
#13363 by Bartosz Telenczuk

• [FIX] linear_model.ridge_regression will now raise an exception if return_intercept=True
and solver is different from sag. Previously, only warning was issued. #13363 by Bartosz Telenczuk

• [FIX] linear_model.ridge_regression will choose sparse_cg solver for sparse inputs when
solver=auto and sample_weight is provided (previously cholesky solver was selected). #13363 by
Bartosz Telenczuk

• [API CHANGE] The use of linear_model.lars_path with X=None while passing Gram is deprecated in
version 0.21 and will be removed in version 0.23. Use linear_model.lars_path_gram instead. #11699
by Kuai Yu.

• [API CHANGE] linear_model.logistic_regression_path is deprecated in version 0.21 and will be
removed in version 0.23. #12821 by Nicolas Hug.

• [FIX] linear_model.RidgeCV with generalized cross-validation now correctly fits an intercept when
fit_intercept=True and the design matrix is sparse. #13350 by Jérôme Dockès

sklearn.manifold

• [EFFICIENCY] Make manifold.tsne.trustworthiness use an inverted index instead of an np.where
lookup to find the rank of neighbors in the input space. This improves efficiency in particular when computed
with lots of neighbors and/or small datasets. #9907 by William de Vazelhes.

66 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/pull/11754
https://github.com/scikit-learn/scikit-learn/pull/13397
https://github.com/brentfagan
https://github.com/adrinjalali
https://github.com/scikit-learn/scikit-learn/pull/11646
https://github.com/TomDLT
https://github.com/scikit-learn/scikit-learn/pull/12174
https://github.com/albertcthomas
https://github.com/scikit-learn/scikit-learn/pull/12972
https://github.com/luk-f-a
https://github.com/luk-f-a
https://github.com/scikit-learn/scikit-learn/pull/13279
http://alexandre.gramfort.net
https://github.com/scikit-learn/scikit-learn/pull/13328
http://alexandre.gramfort.net
https://joblib.readthedocs.io/en/latest/generated/joblib.Parallel.html#joblib.Parallel
https://github.com/scikit-learn/scikit-learn/pull/13389
https://github.com/pierreglaser
https://github.com/scikit-learn/scikit-learn/pull/13422
https://github.com/ClemDoum
https://github.com/scikit-learn/scikit-learn/pull/13363
https://github.com/btel
https://github.com/scikit-learn/scikit-learn/pull/13363
https://github.com/btel
https://github.com/scikit-learn/scikit-learn/pull/13363
https://github.com/btel
https://github.com/scikit-learn/scikit-learn/pull/11699
https://github.com/yukuairoy
https://github.com/scikit-learn/scikit-learn/pull/12821
https://github.com/NicolasHug
https://github.com/scikit-learn/scikit-learn/issues/13350
https://github.com/jeromedockes
https://github.com/scikit-learn/scikit-learn/pull/9907
https://github.com/wdevazelhes

scikit-learn user guide, Release 0.23.2

sklearn.metrics

• [FEATURE] Added the metrics.max_error metric and a corresponding 'max_error' scorer for single
output regression. #12232 by Krishna Sangeeth.

• [FEATURE] Add metrics.multilabel_confusion_matrix, which calculates a confusion matrix with
true positive, false positive, false negative and true negative counts for each class. This facilitates the calculation
of set-wise metrics such as recall, specificity, fall out and miss rate. #11179 by Shangwu Yao and Joel Nothman.

• [FEATURE] metrics.jaccard_score has been added to calculate the Jaccard coefficient as an evalua-
tion metric for binary, multilabel and multiclass tasks, with an interface analogous to metrics.f1_score.
#13151 by Gaurav Dhingra and Joel Nothman.

• [FEATURE] Added metrics.pairwise.haversine_distances which can be accessed with
metric='pairwise' through metrics.pairwise_distances and estimators. (Haversine distance
was previously available for nearest neighbors calculation.) #12568 by Wei Xue, Emmanuel Arias and Joel
Nothman.

• [EFFICIENCY] Faster metrics.pairwise_distances with n_jobs > 1 by using a thread-based backend,
instead of process-based backends. #8216 by Pierre Glaser and Romuald Menuet

• [EFFICIENCY] The pairwise manhattan distances with sparse input now uses the BLAS shipped with scipy instead
of the bundled BLAS. #12732 by Jérémie du Boisberranger

• [ENHANCEMENT] Use label accuracy instead of micro-average on metrics.
classification_report to avoid confusion. micro-average is only shown for multi-label or
multi-class with a subset of classes because it is otherwise identical to accuracy. #12334 by Emmanuel Arias,
Joel Nothman and Andreas Müller

• [ENHANCEMENT] Added beta parameter to metrics.homogeneity_completeness_v_measure and
metrics.v_measure_score to configure the tradeoff between homogeneity and completeness. #13607
by Stephane Couvreur and and Ivan Sanchez.

• [FIX] The metric metrics.r2_score is degenerate with a single sample and now it returns NaN and raises
exceptions.UndefinedMetricWarning. #12855 by Pawel Sendyk.

• [FIX] Fixed a bug where metrics.brier_score_losswill sometimes return incorrect result when there’s
only one class in y_true. #13628 by Hanmin Qin.

• [FIX] Fixed a bug in metrics.label_ranking_average_precision_score where sample_weight
wasn’t taken into account for samples with degenerate labels. #13447 by Dan Ellis.

• [API CHANGE] The parameter labels in metrics.hamming_loss is deprecated in version 0.21 and will
be removed in version 0.23. #10580 by Reshama Shaikh and Sandra Mitrovic.

• [FIX] The function metrics.pairwise.euclidean_distances, and therefore several estimators with
metric='euclidean', suffered from numerical precision issues with float32 features. Precision has
been increased at the cost of a small drop of performance. #13554 by @Celelibi and Jérémie du Boisberranger.

• [API CHANGE] metrics.jaccard_similarity_score is deprecated in favour of the more consistent
metrics.jaccard_score. The former behavior for binary and multiclass targets is broken. #13151 by
Joel Nothman.

sklearn.mixture

• [FIX] Fixed a bug in mixture.BaseMixture and therefore on estimators based on it, i.e. mixture.
GaussianMixture and mixture.BayesianGaussianMixture, where fit_predict and fit.
predict were not equivalent. #13142 by Jérémie du Boisberranger.

1.7. Release History 67

https://github.com/scikit-learn/scikit-learn/pull/12232
https://github.com/whiletruelearn
https://github.com/scikit-learn/scikit-learn/pull/11179
https://github.com/ShangwuYao
https://joelnothman.com/
https://github.com/scikit-learn/scikit-learn/pull/13151
https://github.com/gxyd
https://joelnothman.com/
https://github.com/scikit-learn/scikit-learn/pull/12568
https://github.com/xuewei4d
https://github.com/eamanu
https://joelnothman.com/
https://joelnothman.com/
https://github.com/scikit-learn/scikit-learn/pull/8216
https://github.com/pierreglaser
https://github.com/zanospi
https://github.com/scikit-learn/scikit-learn/pull/12732
https://github.com/jeremiedbb
https://github.com/scikit-learn/scikit-learn/pull/12334
https://github.com/eamanu@eamanu.com
https://joelnothman.com/
https://amueller.github.io/
https://github.com/scikit-learn/scikit-learn/pull/13607
https://github.com/scouvreur
https://github.com/ivsanro1
https://github.com/scikit-learn/scikit-learn/pull/12855
https://github.com/psendyk
https://github.com/scikit-learn/scikit-learn/pull/13628
https://github.com/qinhanmin2014
https://github.com/scikit-learn/scikit-learn/pull/13447
https://github.com/dpwe
https://github.com/scikit-learn/scikit-learn/pull/10580
https://github.com/reshamas
https://github.com/SandraMNE
https://github.com/scikit-learn/scikit-learn/pull/13554
https://github.com/Celelibi
https://github.com/jeremiedbb
https://github.com/scikit-learn/scikit-learn/pull/13151
https://joelnothman.com/
https://github.com/scikit-learn/scikit-learn/pull/13142
https://github.com/jeremiedbb

scikit-learn user guide, Release 0.23.2

sklearn.model_selection

• [FEATURE] Classes GridSearchCV and RandomizedSearchCV now allow for refit=callable to add flex-
ibility in identifying the best estimator. See Balance model complexity and cross-validated score. #11354 by
Wenhao Zhang, Joel Nothman and Adrin Jalali.

• [ENHANCEMENT] Classes GridSearchCV , RandomizedSearchCV , and methods cross_val_score,
cross_val_predict, cross_validate, now print train scores when return_train_scores is
True and verbose > 2. For learning_curve, and validation_curve only the latter is required.
#12613 and #12669 by Marc Torrellas.

• [ENHANCEMENT] Some CV splitter classes and model_selection.train_test_split now raise
ValueError when the resulting training set is empty. #12861 by Nicolas Hug.

• [FIX] Fixed a bug where model_selection.StratifiedKFold shuffles each class’s samples with the
same random_state, making shuffle=True ineffective. #13124 by Hanmin Qin.

• [FIX] Added ability for model_selection.cross_val_predict to handle multi-label (and
multioutput-multiclass) targets with predict_proba-type methods. #8773 by Stephen Hoover.

• [FIX] Fixed an issue in cross_val_predict where method="predict_proba" returned always 0.0
when one of the classes was excluded in a cross-validation fold. #13366 by Guillaume Fournier

sklearn.multiclass

• [FIX] Fixed an issue in multiclass.OneVsOneClassifier.decision_function where the deci-
sion_function value of a given sample was different depending on whether the decision_function was evaluated
on the sample alone or on a batch containing this same sample due to the scaling used in decision_function.
#10440 by Jonathan Ohayon.

sklearn.multioutput

• [FIX] Fixed a bug in multioutput.MultiOutputClassifier where the predict_proba method
incorrectly checked for predict_proba attribute in the estimator object. #12222 by Rebekah Kim

sklearn.neighbors

• [MAJOR FEATURE] Added neighbors.NeighborhoodComponentsAnalysis for metric learning,
which implements the Neighborhood Components Analysis algorithm. #10058 by William de Vazelhes and
John Chiotellis.

• [API CHANGE] Methods in neighbors.NearestNeighbors : kneighbors, radius_neighbors,
kneighbors_graph, radius_neighbors_graph now raise NotFittedError, rather than
AttributeError, when called before fit #12279 by Krishna Sangeeth.

sklearn.neural_network

• [FIX] Fixed a bug in neural_network.MLPClassifier and neural_network.MLPRegressor
where the option shuffle=False was being ignored. #12582 by Sam Waterbury.

• [FIX] Fixed a bug in neural_network.MLPClassifier where validation sets for early stopping were not
sampled with stratification. In the multilabel case however, splits are still not stratified. #13164 by Nicolas Hug.

68 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/pull/11354
https://github.com/wenhaoz@ucla.edu
https://joelnothman.com/
https://github.com/adrinjalali
https://github.com/scikit-learn/scikit-learn/pull/12613
https://github.com/scikit-learn/scikit-learn/pull/12669
https://github.com/marctorrellas
https://github.com/scikit-learn/scikit-learn/pull/12861
https://github.com/NicolasHug
https://github.com/scikit-learn/scikit-learn/pull/13124
https://github.com/qinhanmin2014
https://github.com/scikit-learn/scikit-learn/pull/8773
https://github.com/stephen-hoover
https://github.com/scikit-learn/scikit-learn/pull/13366
https://github.com/gfournier
https://github.com/scikit-learn/scikit-learn/pull/10440
https://github.com/Johayon
https://github.com/scikit-learn/scikit-learn/pull/12222
https://github.com/rebekahkim
https://github.com/scikit-learn/scikit-learn/pull/10058
https://github.com/wdevazelhes
https://github.com/johny-c
https://github.com/scikit-learn/scikit-learn/pull/12279
https://github.com/whiletruelearn
https://github.com/scikit-learn/scikit-learn/pull/12582
https://github.com/samwaterbury
https://github.com/scikit-learn/scikit-learn/pull/13164
https://github.com/NicolasHug

scikit-learn user guide, Release 0.23.2

sklearn.pipeline

• [FEATURE] pipeline.Pipeline can now use indexing notation (e.g. my_pipeline[0:-1]) to extract a
subsequence of steps as another Pipeline instance. A Pipeline can also be indexed directly to extract a particular
step (e.g. my_pipeline['svc']), rather than accessing named_steps. #2568 by Joel Nothman.

• [FEATURE] Added optional parameter verbose in pipeline.Pipeline, compose.
ColumnTransformer and pipeline.FeatureUnion and corresponding make_ helpers for showing
progress and timing of each step. #11364 by Baze Petrushev, Karan Desai, Joel Nothman, and Thomas Fan.

• [ENHANCEMENT] pipeline.Pipeline now supports using 'passthrough' as a transformer, with the
same effect as None. #11144 by Thomas Fan.

• [ENHANCEMENT] pipeline.Pipeline implements __len__ and therefore len(pipeline) returns the
number of steps in the pipeline. #13439 by Lakshya KD.

sklearn.preprocessing

• [FEATURE] preprocessing.OneHotEncoder now supports dropping one feature per category with a new
drop parameter. #12908 by Drew Johnston.

• [EFFICIENCY] preprocessing.OneHotEncoder and preprocessing.OrdinalEncoder now han-
dle pandas DataFrames more efficiently. #13253 by @maikia.

• [EFFICIENCY] Make preprocessing.MultiLabelBinarizer cache class mappings instead of calculat-
ing it every time on the fly. #12116 by Ekaterina Krivich and Joel Nothman.

• [EFFICIENCY] preprocessing.PolynomialFeatures now supports compressed sparse row (CSR) ma-
trices as input for degrees 2 and 3. This is typically much faster than the dense case as it scales with matrix
density and expansion degree (on the order of density^degree), and is much, much faster than the compressed
sparse column (CSC) case. #12197 by Andrew Nystrom.

• [EFFICIENCY] Speed improvement in preprocessing.PolynomialFeatures, in the dense case. Also
added a new parameter order which controls output order for further speed performances. #12251 by Tom
Dupre la Tour.

• [FIX] Fixed the calculation overflow when using a float16 dtype with preprocessing.StandardScaler.
#13007 by Raffaello Baluyot

• [FIX] Fixed a bug in preprocessing.QuantileTransformer and preprocessing.
quantile_transform to force n_quantiles to be at most equal to n_samples. Values of n_quantiles
larger than n_samples were either useless or resulting in a wrong approximation of the cumulative distribution
function estimator. #13333 by Albert Thomas.

• [API CHANGE] The default value of copy in preprocessing.quantile_transform will change from
False to True in 0.23 in order to make it more consistent with the default copy values of other functions in
preprocessing and prevent unexpected side effects by modifying the value of X inplace. #13459 by Hunter
McGushion.

sklearn.svm

• [FIX] Fixed an issue in svm.SVC.decision_function when decision_function_shape='ovr'.
The decision_function value of a given sample was different depending on whether the decision_function was
evaluated on the sample alone or on a batch containing this same sample due to the scaling used in deci-
sion_function. #10440 by Jonathan Ohayon.

1.7. Release History 69

https://github.com/scikit-learn/scikit-learn/pull/2568
https://joelnothman.com/
https://github.com/scikit-learn/scikit-learn/pull/11364
https://github.com/petrushev
https://github.com/karandesai-96
https://joelnothman.com/
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/pull/11144
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/pull/13439
https://github.com/LakshKD
https://github.com/scikit-learn/scikit-learn/pull/12908
https://github.com/drewmjohnston
https://github.com/scikit-learn/scikit-learn/pull/13253
https://github.com/maikia
https://github.com/scikit-learn/scikit-learn/pull/12116
https://github.com/kiote
https://joelnothman.com/
https://github.com/scikit-learn/scikit-learn/pull/12197
https://github.com/awnystrom
https://github.com/scikit-learn/scikit-learn/pull/12251
https://github.com/TomDLT
https://github.com/TomDLT
https://github.com/scikit-learn/scikit-learn/pull/13007
https://github.com/baluyotraf
https://github.com/scikit-learn/scikit-learn/pull/13333
https://github.com/albertcthomas
https://github.com/scikit-learn/scikit-learn/pull/13459
https://github.com/HunterMcGushion
https://github.com/HunterMcGushion
https://github.com/scikit-learn/scikit-learn/pull/10440
https://github.com/Johayon

scikit-learn user guide, Release 0.23.2

sklearn.tree

• [FEATURE] Decision Trees can now be plotted with matplotlib using tree.plot_tree without relying on the
dot library, removing a hard-to-install dependency. #8508 by Andreas Müller.

• [FEATURE] Decision Trees can now be exported in a human readable textual format using tree.
export_text. #6261 by Giuseppe Vettigli <JustGlowing>.

• [FEATURE] get_n_leaves() and get_depth() have been added to tree.BaseDecisionTree
and consequently all estimators based on it, including tree.DecisionTreeClassifier, tree.
DecisionTreeRegressor, tree.ExtraTreeClassifier, and tree.ExtraTreeRegressor.
#12300 by Adrin Jalali.

• [FIX] Trees and forests did not previously predictmulti-output classification targets with string labels, despite
accepting them in fit. #11458 by Mitar Milutinovic.

• [FIX] Fixed an issue with tree.BaseDecisionTree and consequently all estimators based
on it, including tree.DecisionTreeClassifier, tree.DecisionTreeRegressor, tree.
ExtraTreeClassifier, and tree.ExtraTreeRegressor, where they used to exceed the given
max_depth by 1 while expanding the tree if max_leaf_nodes and max_depth were both specified by
the user. Please note that this also affects all ensemble methods using decision trees. #12344 by Adrin Jalali.

sklearn.utils

• [FEATURE] utils.resample now accepts a stratify parameter for sampling according to class distribu-
tions. #13549 by Nicolas Hug.

• [API CHANGE] Deprecated warn_on_dtype parameter from utils.check_array and utils.
check_X_y . Added explicit warning for dtype conversion in check_pairwise_arrays if the metric
being passed is a pairwise boolean metric. #13382 by Prathmesh Savale.

Multiple modules

• [MAJOR FEATURE] The __repr__() method of all estimators (used when calling print(estimator))
has been entirely re-written, building on Python’s pretty printing standard library. All parameters are printed
by default, but this can be altered with the print_changed_only option in sklearn.set_config.
#11705 by Nicolas Hug.

• [MAJOR FEATURE] Add estimators tags: these are annotations of estimators that allow programmatic inspection
of their capabilities, such as sparse matrix support, supported output types and supported methods. Estimator
tags also determine the tests that are run on an estimator when check_estimator is called. Read more in
the User Guide. #8022 by Andreas Müller.

• [EFFICIENCY] Memory copies are avoided when casting arrays to a different dtype in multiple estimators. #11973
by Roman Yurchak.

• [FIX] Fixed a bug in the implementation of the our_rand_r helper function that was not behaving consistently
across platforms. #13422 by Madhura Parikh and Clément Doumouro.

Miscellaneous

• [ENHANCEMENT] Joblib is no longer vendored in scikit-learn, and becomes a dependency. Minimal supported
version is joblib 0.11, however using version >= 0.13 is strongly recommended. #13531 by Roman Yurchak.

70 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/pull/8508
https://amueller.github.io/
https://github.com/scikit-learn/scikit-learn/pull/6261
https://github.com/scikit-learn/scikit-learn/pull/12300
https://github.com/adrinjalali
https://github.com/scikit-learn/scikit-learn/pull/11458
https://github.com/mitar
https://github.com/scikit-learn/scikit-learn/pull/12344
https://github.com/adrinjalali
https://github.com/scikit-learn/scikit-learn/pull/13549
https://github.com/NicolasHug
https://github.com/scikit-learn/scikit-learn/pull/13382
https://github.com/praths007
https://github.com/scikit-learn/scikit-learn/pull/11705
https://github.com/NicolasHug
https://github.com/scikit-learn/scikit-learn/pull/8022
https://github.com/amueller
https://github.com/scikit-learn/scikit-learn/pull/11973
https://github.com/rth
https://github.com/scikit-learn/scikit-learn/pull/13422
https://github.com/jdnc
https://github.com/ClemDoum
https://github.com/scikit-learn/scikit-learn/pull/13531
https://github.com/rth

scikit-learn user guide, Release 0.23.2

Changes to estimator checks

These changes mostly affect library developers.

• Add check_fit_idempotent to check_estimator, which checks that when fit is called twice with
the same data, the ouput of predict, predict_proba, transform, and decision_function does
not change. #12328 by Nicolas Hug

• Many checks can now be disabled or configured with Estimator Tags. #8022 by Andreas Müller.

Code and Documentation Contributors

Thanks to everyone who has contributed to the maintenance and improvement of the project since version 0.20, in-
cluding:

adanhawth, Aditya Vyas, Adrin Jalali, Agamemnon Krasoulis, Albert Thomas, Alberto Torres, Alexandre Gramfort,
amourav, Andrea Navarrete, Andreas Mueller, Andrew Nystrom, assiaben, Aurélien Bellet, Bartosz Michałowski,
Bartosz Telenczuk, bauks, BenjaStudio, bertrandhaut, Bharat Raghunathan, brentfagan, Bryan Woods, Cat Chenal,
Cheuk Ting Ho, Chris Choe, Christos Aridas, Clément Doumouro, Cole Smith, Connossor, Corey Levinson, Dan
Ellis, Dan Stine, Danylo Baibak, daten-kieker, Denis Kataev, Didi Bar-Zev, Dillon Gardner, Dmitry Mottl, Dmitry
Vukolov, Dougal J. Sutherland, Dowon, drewmjohnston, Dror Atariah, Edward J Brown, Ekaterina Krivich, Eliza-
beth Sander, Emmanuel Arias, Eric Chang, Eric Larson, Erich Schubert, esvhd, Falak, Feda Curic, Federico Caselli,
Frank Hoang, Fibinse Xavier‘, Finn O’Shea, Gabriel Marzinotto, Gabriel Vacaliuc, Gabriele Calvo, Gael Varoquaux,
GauravAhlawat, Giuseppe Vettigli, Greg Gandenberger, Guillaume Fournier, Guillaume Lemaitre, Gustavo De Mari
Pereira, Hanmin Qin, haroldfox, hhu-luqi, Hunter McGushion, Ian Sanders, JackLangerman, Jacopo Notarstefano,
jakirkham, James Bourbeau, Jan Koch, Jan S, janvanrijn, Jarrod Millman, jdethurens, jeremiedbb, JF, joaak, Joan
Massich, Joel Nothman, Jonathan Ohayon, Joris Van den Bossche, josephsalmon, Jérémie Méhault, Katrin Leinwe-
ber, ken, kms15, Koen, Kossori Aruku, Krishna Sangeeth, Kuai Yu, Kulbear, Kushal Chauhan, Kyle Jackson, Lakshya
KD, Leandro Hermida, Lee Yi Jie Joel, Lily Xiong, Lisa Sarah Thomas, Loic Esteve, louib, luk-f-a, maikia, mail-liam,
Manimaran, Manuel López-Ibáñez, Marc Torrellas, Marco Gaido, Marco Gorelli, MarcoGorelli, marineLM, Mark
Hannel, Martin Gubri, Masstran, mathurinm, Matthew Roeschke, Max Copeland, melsyt, mferrari3, Mickaël Schoent-
gen, Ming Li, Mitar, Mohammad Aftab, Mohammed AbdelAal, Mohammed Ibraheem, Muhammad Hassaan Rafique,
mwestt, Naoya Iijima, Nicholas Smith, Nicolas Goix, Nicolas Hug, Nikolay Shebanov, Oleksandr Pavlyk, Oliver
Rausch, Olivier Grisel, Orestis, Osman, Owen Flanagan, Paul Paczuski, Pavel Soriano, pavlos kallis, Pawel Sendyk,
peay, Peter, Peter Cock, Peter Hausamann, Peter Marko, Pierre Glaser, pierretallotte, Pim de Haan, Piotr Szymański,
Prabakaran Kumaresshan, Pradeep Reddy Raamana, Prathmesh Savale, Pulkit Maloo, Quentin Batista, Radostin Stoy-
anov, Raf Baluyot, Rajdeep Dua, Ramil Nugmanov, Raúl García Calvo, Rebekah Kim, Reshama Shaikh, Rohan
Lekhwani, Rohan Singh, Rohan Varma, Rohit Kapoor, Roman Feldbauer, Roman Yurchak, Romuald M, Roopam
Sharma, Ryan, Rüdiger Busche, Sam Waterbury, Samuel O. Ronsin, SandroCasagrande, Scott Cole, Scott Lowe, Se-
bastian Raschka, Shangwu Yao, Shivam Kotwalia, Shiyu Duan, smarie, Sriharsha Hatwar, Stephen Hoover, Stephen
Tierney, Stéphane Couvreur, surgan12, SylvainLan, TakingItCasual, Tashay Green, thibsej, Thomas Fan, Thomas
J Fan, Thomas Moreau, Tom Dupré la Tour, Tommy, Tulio Casagrande, Umar Farouk Umar, Utkarsh Upadhyay,
Vinayak Mehta, Vishaal Kapoor, Vivek Kumar, Vlad Niculae, vqean3, Wenhao Zhang, William de Vazelhes, xhan,
Xing Han Lu, xinyuliu12, Yaroslav Halchenko, Zach Griffith, Zach Miller, Zayd Hammoudeh, Zhuyi Xue, Zijie (ZJ)
Poh, ^__^

1.7.12 Version 0.20.4

July 30, 2019

This is a bug-fix release with some bug fixes applied to version 0.20.3.

1.7. Release History 71

https://github.com/scikit-learn/scikit-learn/pull/12328
https://github.com/NicolasHug
https://github.com/scikit-learn/scikit-learn/pull/8022
https://github.com/amueller

scikit-learn user guide, Release 0.23.2

Changelog

The bundled version of joblib was upgraded from 0.13.0 to 0.13.2.

sklearn.cluster

• [FIX] Fixed a bug in cluster.KMeans where KMeans++ initialisation could rarely result in an IndexError.
#11756 by Joel Nothman.

sklearn.compose

• [FIX] Fixed an issue in compose.ColumnTransformer where using DataFrames whose column order
differs between :func:fit and :func:transform could lead to silently passing incorrect columns to the
remainder transformer. #14237 by Andreas Schuderer <schuderer>.

sklearn.decomposition

• [FIX] Fixed a bug in cross_decomposition.CCA improving numerical stability when Y is close to zero.
#13903 by Thomas Fan.

sklearn.model_selection

• [FIX] Fixed a bug where model_selection.StratifiedKFold shuffles each class’s samples with the
same random_state, making shuffle=True ineffective. #13124 by Hanmin Qin.

sklearn.neighbors

• [FIX] Fixed a bug in neighbors.KernelDensity which could not be restored from a pickle if
sample_weight had been used. #13772 by Aditya Vyas.

1.7.13 Version 0.20.3

March 1, 2019

This is a bug-fix release with some minor documentation improvements and enhancements to features released in
0.20.0.

Changelog

sklearn.cluster

• [FIX] Fixed a bug in cluster.KMeans where computation was single threaded when n_jobs > 1 or
n_jobs = -1. #12949 by Prabakaran Kumaresshan.

72 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/issues/11756
https://joelnothman.com/
https://github.com/scikit-learn/scikit-learn/pull/14237
https://github.com/scikit-learn/scikit-learn/pull/13903
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/issues/13124
https://github.com/qinhanmin2014
https://github.com/scikit-learn/scikit-learn/issues/13772
https://github.com/aditya1702
https://github.com/scikit-learn/scikit-learn/issues/12949
https://github.com/nixphix

scikit-learn user guide, Release 0.23.2

sklearn.compose

• [FIX] Fixed a bug in compose.ColumnTransformer to handle negative indexes in the columns list of the
transformers. #12946 by Pierre Tallotte.

sklearn.covariance

• [FIX] Fixed a regression in covariance.graphical_lasso so that the case n_features=2 is handled
correctly. #13276 by Aurélien Bellet.

sklearn.decomposition

• [FIX] Fixed a bug in decomposition.sparse_encode where computation was single threaded when
n_jobs > 1 or n_jobs = -1. #13005 by Prabakaran Kumaresshan.

sklearn.datasets

• [EFFICIENCY] sklearn.datasets.fetch_openml now loads data by streaming, avoiding high memory
usage. #13312 by Joris Van den Bossche.

sklearn.feature_extraction

• [FIX] Fixed a bug in feature_extraction.text.CountVectorizer which would result in the sparse
feature matrix having conflicting indptr and indices precisions under very large vocabularies. #11295 by
Gabriel Vacaliuc.

sklearn.impute

• [FIX] add support for non-numeric data in sklearn.impute.MissingIndicator which was not sup-
ported while sklearn.impute.SimpleImputer was supporting this for some imputation strategies.
#13046 by Guillaume Lemaitre.

sklearn.linear_model

• [FIX] Fixed a bug in linear_model.MultiTaskElasticNet and linear_model.
MultiTaskLasso which were breaking when warm_start = True. #12360 by Aakanksha Joshi.

sklearn.preprocessing

• [FIX] Fixed a bug in preprocessing.KBinsDiscretizer where strategy='kmeans' fails with an
error during transformation due to unsorted bin edges. #13134 by Sandro Casagrande.

• [FIX] Fixed a bug in preprocessing.OneHotEncoder where the deprecation of
categorical_features was handled incorrectly in combination with handle_unknown='ignore'.
#12881 by Joris Van den Bossche.

• [FIX] Bins whose width are too small (i.e., <= 1e-8) are removed with a warning in preprocessing.
KBinsDiscretizer. #13165 by Hanmin Qin.

1.7. Release History 73

https://github.com/scikit-learn/scikit-learn/issues/12946
https://github.com/pierretallotte
https://github.com/scikit-learn/scikit-learn/issues/13276
https://github.com/bellet
https://github.com/scikit-learn/scikit-learn/issues/13005
https://github.com/nixphix
https://github.com/scikit-learn/scikit-learn/issues/13312
https://github.com/jorisvandenbossche
https://github.com/scikit-learn/scikit-learn/issues/11295
https://github.com/gvacaliuc
https://github.com/scikit-learn/scikit-learn/issues/13046
https://github.com/glemaitre
https://github.com/scikit-learn/scikit-learn/issues/12360
https://github.com/joaak
https://github.com/scikit-learn/scikit-learn/issues/13134
https://github.com/SandroCasagrande
https://github.com/scikit-learn/scikit-learn/issues/12881
https://github.com/jorisvandenbossche
https://github.com/scikit-learn/scikit-learn/issues/13165
https://github.com/qinhanmin2014

scikit-learn user guide, Release 0.23.2

sklearn.svm

• [FIX] Fixed a bug in svm.SVC, svm.NuSVC, svm.SVR, svm.NuSVR and svm.OneClassSVM where the
scale option of parameter gamma is erroneously defined as 1 / (n_features * X.std()). It’s now
defined as 1 / (n_features * X.var()). #13221 by Hanmin Qin.

Code and Documentation Contributors

With thanks to:

Adrin Jalali, Agamemnon Krasoulis, Albert Thomas, Andreas Mueller, Aurélien Bellet, bertrandhaut, Bharat Raghu-
nathan, Dowon, Emmanuel Arias, Fibinse Xavier, Finn O’Shea, Gabriel Vacaliuc, Gael Varoquaux, Guillaume
Lemaitre, Hanmin Qin, joaak, Joel Nothman, Joris Van den Bossche, Jérémie Méhault, kms15, Kossori Aruku, Lak-
shya KD, maikia, Manuel López-Ibáñez, Marco Gorelli, MarcoGorelli, mferrari3, Mickaël Schoentgen, Nicolas Hug,
pavlos kallis, Pierre Glaser, pierretallotte, Prabakaran Kumaresshan, Reshama Shaikh, Rohit Kapoor, Roman Yurchak,
SandroCasagrande, Tashay Green, Thomas Fan, Vishaal Kapoor, Zhuyi Xue, Zijie (ZJ) Poh

1.7.14 Version 0.20.2

December 20, 2018

This is a bug-fix release with some minor documentation improvements and enhancements to features released in
0.20.0.

Changed models

The following estimators and functions, when fit with the same data and parameters, may produce different models
from the previous version. This often occurs due to changes in the modelling logic (bug fixes or enhancements), or in
random sampling procedures.

• sklearn.neighbors when metric=='jaccard' (bug fix)

• use of 'seuclidean' or 'mahalanobis' metrics in some cases (bug fix)

Changelog

sklearn.compose

• [FIX] Fixed an issue in compose.make_column_transformer which raises unexpected error when
columns is pandas Index or pandas Series. #12704 by Hanmin Qin.

sklearn.metrics

• [FIX] Fixed a bug in metrics.pairwise_distances and metrics.
pairwise_distances_chunked where parameters V of "seuclidean" and VI of "mahalanobis"
metrics were computed after the data was split into chunks instead of being pre-computed on whole data.
#12701 by Jeremie du Boisberranger.

74 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/issues/13221
https://github.com/qinhanmin2014
https://github.com/scikit-learn/scikit-learn/issues/12704
https://github.com/qinhanmin2014
https://github.com/scikit-learn/scikit-learn/issues/12701
https://github.com/jeremiedbb

scikit-learn user guide, Release 0.23.2

sklearn.neighbors

• [FIX] Fixed sklearn.neighbors.DistanceMetric jaccard distance function to return 0 when two all-
zero vectors are compared. #12685 by Thomas Fan.

sklearn.utils

• [FIX] Calling utils.check_array on pandas.Series with categorical data, which raised an error in
0.20.0, now returns the expected output again. #12699 by Joris Van den Bossche.

Code and Documentation Contributors

With thanks to:

adanhawth, Adrin Jalali, Albert Thomas, Andreas Mueller, Dan Stine, Feda Curic, Hanmin Qin, Jan S, jeremiedbb,
Joel Nothman, Joris Van den Bossche, josephsalmon, Katrin Leinweber, Loic Esteve, Muhammad Hassaan Rafique,
Nicolas Hug, Olivier Grisel, Paul Paczuski, Reshama Shaikh, Sam Waterbury, Shivam Kotwalia, Thomas Fan

1.7.15 Version 0.20.1

November 21, 2018

This is a bug-fix release with some minor documentation improvements and enhancements to features released in
0.20.0. Note that we also include some API changes in this release, so you might get some extra warnings after
updating from 0.20.0 to 0.20.1.

Changed models

The following estimators and functions, when fit with the same data and parameters, may produce different models
from the previous version. This often occurs due to changes in the modelling logic (bug fixes or enhancements), or in
random sampling procedures.

• decomposition.IncrementalPCA (bug fix)

Changelog

sklearn.cluster

• [EFFICIENCY] make cluster.MeanShift no longer try to do nested parallelism as the overhead would hurt
performance significantly when n_jobs > 1. #12159 by Olivier Grisel.

• [FIX] Fixed a bug in cluster.DBSCAN with precomputed sparse neighbors graph, which would add explicitly
zeros on the diagonal even when already present. #12105 by Tom Dupre la Tour.

sklearn.compose

• [FIX] Fixed an issue in compose.ColumnTransformer when stacking columns with types not convertible
to a numeric. #11912 by Adrin Jalali.

• [API CHANGE] compose.ColumnTransformer now applies the sparse_threshold even if all trans-
formation results are sparse. #12304 by Andreas Müller.

1.7. Release History 75

https://github.com/scikit-learn/scikit-learn/issues/12685
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/issues/12699
https://github.com/jorisvandenbossche
https://github.com/scikit-learn/scikit-learn/issues/12159
https://github.com/ogrisel
https://github.com/scikit-learn/scikit-learn/issues/12105
https://github.com/TomDLT
https://github.com/scikit-learn/scikit-learn/issues/11912
https://github.com/adrinjalali
https://github.com/scikit-learn/scikit-learn/issues/12304
https://amueller.github.io/

scikit-learn user guide, Release 0.23.2

• [API CHANGE] compose.make_column_transformer now expects (transformer, columns) in-
stead of (columns, transformer) to keep consistent with compose.ColumnTransformer. #12339
by Adrin Jalali.

sklearn.datasets

• [FIX] datasets.fetch_openml to correctly use the local cache. #12246 by Jan N. van Rijn.

• [FIX] datasets.fetch_openml to correctly handle ignore attributes and row id attributes. #12330 by Jan
N. van Rijn.

• [FIX] Fixed integer overflow in datasets.make_classification for values of n_informative pa-
rameter larger than 64. #10811 by Roman Feldbauer.

• [FIX] Fixed olivetti faces dataset DESCR attribute to point to the right location in datasets.
fetch_olivetti_faces. #12441 by Jérémie du Boisberranger

• [FIX] datasets.fetch_openml to retry downloading when reading from local cache fails. #12517 by
Thomas Fan.

sklearn.decomposition

• [FIX] Fixed a regression in decomposition.IncrementalPCA where 0.20.0 raised an error if the number
of samples in the final batch for fitting IncrementalPCA was smaller than n_components. #12234 by Ming Li.

sklearn.ensemble

• [FIX] Fixed a bug mostly affecting ensemble.RandomForestClassifier where
class_weight='balanced_subsample' failed with more than 32 classes. #12165 by Joel Nothman.

• [FIX] Fixed a bug affecting ensemble.BaggingClassifier, ensemble.BaggingRegressor and
ensemble.IsolationForest, where max_features was sometimes rounded down to zero. #12388
by Connor Tann.

sklearn.feature_extraction

• [FIX] Fixed a regression in v0.20.0 where feature_extraction.text.CountVectorizer and other
text vectorizers could error during stop words validation with custom preprocessors or tokenizers. #12393 by
Roman Yurchak.

sklearn.linear_model

• [FIX] linear_model.SGDClassifier and variants with early_stopping=True would not use a
consistent validation split in the multiclass case and this would cause a crash when using those estimators as
part of parallel parameter search or cross-validation. #12122 by Olivier Grisel.

• [FIX] Fixed a bug affecting SGDClassifier in the multiclass case. Each one-versus-all step is run in a
joblib.Parallel call and mutating a common parameter, causing a segmentation fault if called within a
backend using processes and not threads. We now use require=sharedmem at the joblib.Parallel
instance creation. #12518 by Pierre Glaser and Olivier Grisel.

76 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/issues/12339
https://github.com/adrinjalali
https://github.com/scikit-learn/scikit-learn/issues/12246
https://github.com/janvanrijn
https://github.com/scikit-learn/scikit-learn/issues/12330
https://github.com/janvanrijn
https://github.com/janvanrijn
https://github.com/scikit-learn/scikit-learn/issues/10811
https://github.com/VarIr
https://github.com/scikit-learn/scikit-learn/issues/12441
https://github.com/jeremiedbb
https://github.com/scikit-learn/scikit-learn/issues/12517
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/issues/12234
https://github.com/minggli
https://github.com/scikit-learn/scikit-learn/issues/12165
https://joelnothman.com/
https://github.com/scikit-learn/scikit-learn/issues/12388
https://github.com/Connossor
https://github.com/scikit-learn/scikit-learn/issues/12393
https://github.com/rth
https://github.com/scikit-learn/scikit-learn/issues/12122
https://github.com/ogrisel
https://joblib.readthedocs.io/en/latest/generated/joblib.Parallel.html#joblib.Parallel
https://joblib.readthedocs.io/en/latest/generated/joblib.Parallel.html#joblib.Parallel
https://github.com/scikit-learn/scikit-learn/issues/12518
https://github.com/pierreglaser
https://github.com/ogrisel

scikit-learn user guide, Release 0.23.2

sklearn.metrics

• [FIX] Fixed a bug in metrics.pairwise.pairwise_distances_argmin_min which returned the
square root of the distance when the metric parameter was set to “euclidean”. #12481 by Jérémie du Boisber-
ranger.

• [FIX] Fixed a bug in metrics.pairwise.pairwise_distances_chunked which didn’t ensure the
diagonal is zero for euclidean distances. #12612 by Andreas Müller.

• [API CHANGE] The metrics.calinski_harabaz_score has been renamed to metrics.
calinski_harabasz_score and will be removed in version 0.23. #12211 by Lisa Thomas, Mark Hannel
and Melissa Ferrari.

sklearn.mixture

• [FIX] Ensure that the fit_predict method of mixture.GaussianMixture and mixture.
BayesianGaussianMixture always yield assignments consistent with fit followed by predict even
if the convergence criterion is too loose or not met. #12451 by Olivier Grisel.

sklearn.neighbors

• [FIX] force the parallelism backend to threading for neighbors.KDTree and neighbors.BallTree
in Python 2.7 to avoid pickling errors caused by the serialization of their methods. #12171 by Thomas Moreau.

sklearn.preprocessing

• [FIX] Fixed bug in preprocessing.OrdinalEncoder when passing manually specified categories.
#12365 by Joris Van den Bossche.

• [FIX] Fixed bug in preprocessing.KBinsDiscretizer where the transform method mutates the
_encoder attribute. The transform method is now thread safe. #12514 by Hanmin Qin.

• [FIX] Fixed a bug in preprocessing.PowerTransformer where the Yeo-Johnson transform was incor-
rect for lambda parameters outside of [0, 2] #12522 by Nicolas Hug.

• [FIX] Fixed a bug in preprocessing.OneHotEncoder where transform failed when set to ignore un-
known numpy strings of different lengths #12471 by Gabriel Marzinotto.

• [API CHANGE] The default value of the method argument in preprocessing.power_transform will
be changed from box-cox to yeo-johnson to match preprocessing.PowerTransformer in ver-
sion 0.23. A FutureWarning is raised when the default value is used. #12317 by Eric Chang.

sklearn.utils

• [FIX] Use float64 for mean accumulator to avoid floating point precision issues in preprocessing.
StandardScaler and decomposition.IncrementalPCA when using float32 datasets. #12338 by
bauks.

• [FIX] Calling utils.check_array on pandas.Series, which raised an error in 0.20.0, now returns the
expected output again. #12625 by Andreas Müller

1.7. Release History 77

https://github.com/scikit-learn/scikit-learn/issues/12481
https://github.com/jeremiedbb
https://github.com/jeremiedbb
https://github.com/scikit-learn/scikit-learn/issues/12612
https://github.com/amueller
https://github.com/scikit-learn/scikit-learn/issues/12211
https://github.com/LisaThomas9
https://github.com/markhannel
https://github.com/mferrari3
https://github.com/scikit-learn/scikit-learn/issues/12451
https://github.com/ogrisel
https://github.com/scikit-learn/scikit-learn/issues/12171
https://github.com/tomMoral
https://github.com/scikit-learn/scikit-learn/issues/12365
https://github.com/jorisvandenbossche
https://github.com/scikit-learn/scikit-learn/issues/12514
https://github.com/qinhanmin2014
https://github.com/scikit-learn/scikit-learn/issues/12522
https://github.com/NicolasHug
https://github.com/scikit-learn/scikit-learn/issues/12471
https://github.com/GMarzinotto
https://github.com/scikit-learn/scikit-learn/issues/12317
https://github.com/chang
https://github.com/scikit-learn/scikit-learn/issues/12338
https://github.com/bauks
https://github.com/scikit-learn/scikit-learn/issues/12625
https://amueller.github.io/

scikit-learn user guide, Release 0.23.2

Miscellaneous

• [FIX] When using site joblib by setting the environment variable SKLEARN_SITE_JOBLIB, added compati-
bility with joblib 0.11 in addition to 0.12+. #12350 by Joel Nothman and Roman Yurchak.

• [FIX] Make sure to avoid raising FutureWarning when calling np.vstack with numpy 1.16 and later (use
list comprehensions instead of generator expressions in many locations of the scikit-learn code base). #12467
by Olivier Grisel.

• [API CHANGE] Removed all mentions of sklearn.externals.joblib, and deprecated joblib
methods exposed in sklearn.utils, except for utils.parallel_backend and utils.
register_parallel_backend, which allow users to configure parallel computation in scikit-learn. Other
functionalities are part of joblib. package and should be used directly, by installing it. The goal of this change
is to prepare for unvendoring joblib in future version of scikit-learn. #12345 by Thomas Moreau

Code and Documentation Contributors

With thanks to:

^__^, Adrin Jalali, Andrea Navarrete, Andreas Mueller, bauks, BenjaStudio, Cheuk Ting Ho, Connossor, Corey Levin-
son, Dan Stine, daten-kieker, Denis Kataev, Dillon Gardner, Dmitry Vukolov, Dougal J. Sutherland, Edward J Brown,
Eric Chang, Federico Caselli, Gabriel Marzinotto, Gael Varoquaux, GauravAhlawat, Gustavo De Mari Pereira, Han-
min Qin, haroldfox, JackLangerman, Jacopo Notarstefano, janvanrijn, jdethurens, jeremiedbb, Joel Nothman, Joris
Van den Bossche, Koen, Kushal Chauhan, Lee Yi Jie Joel, Lily Xiong, mail-liam, Mark Hannel, melsyt, Ming Li,
Nicholas Smith, Nicolas Hug, Nikolay Shebanov, Oleksandr Pavlyk, Olivier Grisel, Peter Hausamann, Pierre Glaser,
Pulkit Maloo, Quentin Batista, Radostin Stoyanov, Ramil Nugmanov, Rebekah Kim, Reshama Shaikh, Rohan Singh,
Roman Feldbauer, Roman Yurchak, Roopam Sharma, Sam Waterbury, Scott Lowe, Sebastian Raschka, Stephen Tier-
ney, SylvainLan, TakingItCasual, Thomas Fan, Thomas Moreau, Tom Dupré la Tour, Tulio Casagrande, Utkarsh
Upadhyay, Xing Han Lu, Yaroslav Halchenko, Zach Miller

1.7.16 Version 0.20.0

September 25, 2018

This release packs in a mountain of bug fixes, features and enhancements for the Scikit-learn library, and improvements
to the documentation and examples. Thanks to our contributors!

This release is dedicated to the memory of Raghav Rajagopalan.

Warning: Version 0.20 is the last version of scikit-learn to support Python 2.7 and Python 3.4. Scikit-learn 0.21
will require Python 3.5 or higher.

Highlights

We have tried to improve our support for common data-science use-cases including missing values, categorical vari-
ables, heterogeneous data, and features/targets with unusual distributions. Missing values in features, represented by
NaNs, are now accepted in column-wise preprocessing such as scalers. Each feature is fitted disregarding NaNs, and
data containing NaNs can be transformed. The new impute module provides estimators for learning despite missing
data.

ColumnTransformer handles the case where different features or columns of a pandas.DataFrame need dif-
ferent preprocessing. String or pandas Categorical columns can now be encoded with OneHotEncoder or
OrdinalEncoder.

78 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/issues/12350
https://joelnothman.com/
https://github.com/rth
https://github.com/scikit-learn/scikit-learn/issues/12467
https://github.com/ogrisel
https://joblib.readthedocs.io/
https://github.com/scikit-learn/scikit-learn/issues/12345
https://github.com/tomMoral

scikit-learn user guide, Release 0.23.2

TransformedTargetRegressor helps when the regression target needs to be transformed to be modeled.
PowerTransformer and KBinsDiscretizer join QuantileTransformer as non-linear transformations.

Beyond this, we have added sample_weight support to several estimators (including KMeans,
BayesianRidge and KernelDensity) and improved stopping criteria in others (including MLPRegressor,
GradientBoostingRegressor and SGDRegressor).

This release is also the first to be accompanied by a Glossary of Common Terms and API Elements developed by Joel
Nothman. The glossary is a reference resource to help users and contributors become familiar with the terminology
and conventions used in Scikit-learn.

Sorry if your contribution didn’t make it into the highlights. There’s a lot here. . .

Changed models

The following estimators and functions, when fit with the same data and parameters, may produce different models
from the previous version. This often occurs due to changes in the modelling logic (bug fixes or enhancements), or in
random sampling procedures.

• cluster.MeanShift (bug fix)

• decomposition.IncrementalPCA in Python 2 (bug fix)

• decomposition.SparsePCA (bug fix)

• ensemble.GradientBoostingClassifier (bug fix affecting feature importances)

• isotonic.IsotonicRegression (bug fix)

• linear_model.ARDRegression (bug fix)

• linear_model.LogisticRegressionCV (bug fix)

• linear_model.OrthogonalMatchingPursuit (bug fix)

• linear_model.PassiveAggressiveClassifier (bug fix)

• linear_model.PassiveAggressiveRegressor (bug fix)

• linear_model.Perceptron (bug fix)

• linear_model.SGDClassifier (bug fix)

• linear_model.SGDRegressor (bug fix)

• metrics.roc_auc_score (bug fix)

• metrics.roc_curve (bug fix)

• neural_network.BaseMultilayerPerceptron (bug fix)

• neural_network.MLPClassifier (bug fix)

• neural_network.MLPRegressor (bug fix)

• The v0.19.0 release notes failed to mention a backwards incompatibility with model_selection.
StratifiedKFold when shuffle=True due to #7823.

Details are listed in the changelog below.

(While we are trying to better inform users by providing this information, we cannot assure that this list is complete.)

1.7. Release History 79

https://joelnothman.com/
https://joelnothman.com/
https://github.com/scikit-learn/scikit-learn/issues/7823

scikit-learn user guide, Release 0.23.2

Known Major Bugs

• #11924: linear_model.LogisticRegressionCV with solver='lbfgs' and
multi_class='multinomial' may be non-deterministic or otherwise broken on macOS. This ap-
pears to be the case on Travis CI servers, but has not been confirmed on personal MacBooks! This issue has
been present in previous releases.

• #9354: metrics.pairwise.euclidean_distances (which is used several times throughout the li-
brary) gives results with poor precision, which particularly affects its use with 32-bit float inputs. This became
more problematic in versions 0.18 and 0.19 when some algorithms were changed to avoid casting 32-bit data
into 64-bit.

Changelog

Support for Python 3.3 has been officially dropped.

sklearn.cluster

• [MAJOR FEATURE] cluster.AgglomerativeClustering now supports Single Linkage clustering via
linkage='single'. #9372 by Leland McInnes and Steve Astels.

• [FEATURE] cluster.KMeans and cluster.MiniBatchKMeans now support sample weights via new
parameter sample_weight in fit function. #10933 by Johannes Hansen.

• [EFFICIENCY] cluster.KMeans, cluster.MiniBatchKMeans and cluster.k_means passed with
algorithm='full' now enforces row-major ordering, improving runtime. #10471 by Gaurav Dhingra.

• [EFFICIENCY] cluster.DBSCAN now is parallelized according to n_jobs regardless of algorithm. #8003
by Joël Billaud.

• [ENHANCEMENT] cluster.KMeans now gives a warning if the number of distinct clusters found is smaller
than n_clusters. This may occur when the number of distinct points in the data set is actually smaller than
the number of cluster one is looking for. #10059 by Christian Braune.

• [FIX] Fixed a bug where the fitmethod of cluster.AffinityPropagation stored cluster centers as 3d
array instead of 2d array in case of non-convergence. For the same class, fixed undefined and arbitrary behavior
in case of training data where all samples had equal similarity. #9612. By Jonatan Samoocha.

• [FIX] Fixed a bug in cluster.spectral_clustering where the normalization of the spectrum was
using a division instead of a multiplication. #8129 by Jan Margeta, Guillaume Lemaitre, and Devansh D..

• [FIX] Fixed a bug in cluster.k_means_elkanwhere the returned iterationwas 1 less than the correct
value. Also added the missing n_iter_ attribute in the docstring of cluster.KMeans. #11353 by Jeremie
du Boisberranger.

• [FIX] Fixed a bug in cluster.mean_shift where the assigned labels were not deterministic if there were
multiple clusters with the same intensities. #11901 by Adrin Jalali.

• [API CHANGE] Deprecate pooling_func unused parameter in cluster.
AgglomerativeClustering. #9875 by Kumar Ashutosh.

sklearn.compose

• New module.

80 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/issues/11924
https://github.com/scikit-learn/scikit-learn/issues/9354
https://github.com/scikit-learn/scikit-learn/issues/9372
https://github.com/lmcinnes
https://github.com/sastels
https://github.com/scikit-learn/scikit-learn/issues/10933
https://github.com/jnhansen
https://github.com/scikit-learn/scikit-learn/issues/10471
https://github.com/gxyd
https://github.com/scikit-learn/scikit-learn/issues/8003
https://github.com/recamshak
https://github.com/scikit-learn/scikit-learn/issues/10059
https://github.com/christianbraune79
https://github.com/scikit-learn/scikit-learn/issues/9612
https://github.com/jsamoocha
https://github.com/scikit-learn/scikit-learn/issues/8129
https://github.com/jmargeta
https://github.com/glemaitre
https://github.com/devanshdalal
https://github.com/scikit-learn/scikit-learn/issues/11353
https://github.com/jeremiedbb
https://github.com/jeremiedbb
https://github.com/scikit-learn/scikit-learn/issues/11901
https://github.com/adrinjalali
https://github.com/scikit-learn/scikit-learn/issues/9875
https://github.com/thechargedneutron

scikit-learn user guide, Release 0.23.2

• [MAJOR FEATURE] Added compose.ColumnTransformer, which allows to apply different transformers
to different columns of arrays or pandas DataFrames. #9012 by Andreas Müller and Joris Van den Bossche, and
#11315 by Thomas Fan.

• [MAJOR FEATURE] Added the compose.TransformedTargetRegressor which transforms the target y
before fitting a regression model. The predictions are mapped back to the original space via an inverse transform.
#9041 by Andreas Müller and Guillaume Lemaitre.

sklearn.covariance

• [EFFICIENCY] Runtime improvements to covariance.GraphicalLasso. #9858 by Steven Brown.

• [API CHANGE] The covariance.graph_lasso, covariance.GraphLasso and covariance.
GraphLassoCV have been renamed to covariance.graphical_lasso, covariance.
GraphicalLasso and covariance.GraphicalLassoCV respectively and will be removed in
version 0.22. #9993 by Artiem Krinitsyn

sklearn.datasets

• [MAJOR FEATURE] Added datasets.fetch_openml to fetch datasets from OpenML. OpenML is a free,
open data sharing platform and will be used instead of mldata as it provides better service availability. #9908 by
Andreas Müller and Jan N. van Rijn.

• [FEATURE] In datasets.make_blobs, one can now pass a list to the n_samples parameter to indicate
the number of samples to generate per cluster. #8617 by Maskani Filali Mohamed and Konstantinos Katrioplas.

• [FEATURE] Add filename attribute to datasets that have a CSV file. #9101 by alex-33 and Maskani Filali
Mohamed.

• [FEATURE] return_X_y parameter has been added to several dataset loaders. #10774 by Chris Catalfo.

• [FIX] Fixed a bug in datasets.load_boston which had a wrong data point. #10795 by Takeshi
Yoshizawa.

• [FIX] Fixed a bug in datasets.load_iris which had two wrong data points. #11082 by Sadhana Srini-
vasan and Hanmin Qin.

• [FIX] Fixed a bug in datasets.fetch_kddcup99, where data were not properly shuffled. #9731 by Nico-
las Goix.

• [FIX] Fixed a bug in datasets.make_circles, where no odd number of data points could be generated.
#10045 by Christian Braune.

• [API CHANGE] Deprecated sklearn.datasets.fetch_mldata to be removed in version 0.22. ml-
data.org is no longer operational. Until removal it will remain possible to load cached datasets. #11466 by
Joel Nothman.

sklearn.decomposition

• [FEATURE] decomposition.dict_learning functions and models now support positivity constraints.
This applies to the dictionary and sparse code. #6374 by John Kirkham.

• [FEATURE] [FIX] decomposition.SparsePCA now exposes normalize_components. When set to
True, the train and test data are centered with the train mean respectively during the fit phase and the transform
phase. This fixes the behavior of SparsePCA. When set to False, which is the default, the previous abnormal
behaviour still holds. The False value is for backward compatibility and should not be used. #11585 by Ivan
Panico.

1.7. Release History 81

https://github.com/scikit-learn/scikit-learn/issues/9012
https://amueller.github.io/
https://github.com/jorisvandenbossche
https://github.com/scikit-learn/scikit-learn/issues/11315
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/issues/9041
https://amueller.github.io/
https://github.com/glemaitre
https://github.com/scikit-learn/scikit-learn/issues/9858
https://github.com/stevendbrown
https://github.com/scikit-learn/scikit-learn/issues/9993
https://github.com/artiemq
https://openml.org
https://github.com/scikit-learn/scikit-learn/issues/9908
https://amueller.github.io/
https://github.com/janvanrijn
https://github.com/scikit-learn/scikit-learn/issues/8617
https://github.com/maskani-moh
https://github.com/kkatrio
https://github.com/scikit-learn/scikit-learn/issues/9101
https://github.com/alex-33
https://github.com/maskani-moh
https://github.com/maskani-moh
https://github.com/scikit-learn/scikit-learn/issues/10774
https://github.com/ccatalfo
https://github.com/scikit-learn/scikit-learn/issues/10795
https://github.com/tarcusx
https://github.com/tarcusx
https://github.com/scikit-learn/scikit-learn/issues/11082
https://github.com/rotuna
https://github.com/rotuna
https://github.com/qinhanmin2014
https://github.com/scikit-learn/scikit-learn/issues/9731
https://ngoix.github.io/
https://ngoix.github.io/
https://github.com/scikit-learn/scikit-learn/issues/10045
https://github.com/christianbraune79
https://github.com/scikit-learn/scikit-learn/issues/11466
https://joelnothman.com/
https://github.com/scikit-learn/scikit-learn/issues/6374
https://github.com/jakirkham
https://github.com/scikit-learn/scikit-learn/issues/11585
https://github.com/FollowKenny
https://github.com/FollowKenny

scikit-learn user guide, Release 0.23.2

• [EFFICIENCY] Efficiency improvements in decomposition.dict_learning. #11420 and others by John
Kirkham.

• [FIX] Fix for uninformative error in decomposition.IncrementalPCA: now an error is raised if the
number of components is larger than the chosen batch size. The n_components=None case was adapted
accordingly. #6452. By Wally Gauze.

• [FIX] Fixed a bug where the partial_fit method of decomposition.IncrementalPCA used integer
division instead of float division on Python 2. #9492 by James Bourbeau.

• [FIX] In decomposition.PCA selecting a n_components parameter greater than the number of samples now
raises an error. Similarly, the n_components=None case now selects the minimum of n_samples and
n_features. #8484 by Wally Gauze.

• [FIX] Fixed a bug in decomposition.PCA where users will get unexpected error with large datasets when
n_components='mle' on Python 3 versions. #9886 by Hanmin Qin.

• [FIX] Fixed an underflow in calculating KL-divergence for decomposition.NMF #10142 by Tom Dupre la
Tour.

• [FIX] Fixed a bug in decomposition.SparseCoder when running OMP sparse coding in parallel using
read-only memory mapped datastructures. #5956 by Vighnesh Birodkar and Olivier Grisel.

sklearn.discriminant_analysis

• [EFFICIENCY] Memory usage improvement for _class_means and _class_cov in
discriminant_analysis. #10898 by Nanxin Chen.

sklearn.dummy

• [FEATURE] dummy.DummyRegressor now has a return_std option in its predict method. The re-
turned standard deviations will be zeros.

• [FEATURE] dummy.DummyClassifier and dummy.DummyRegressor now only require X to be an ob-
ject with finite length or shape. #9832 by Vrishank Bhardwaj.

• [FEATURE] dummy.DummyClassifier and dummy.DummyRegressor can now be scored without sup-
plying test samples. #11951 by Rüdiger Busche.

sklearn.ensemble

• [FEATURE] ensemble.BaggingRegressor and ensemble.BaggingClassifier can now be fit
with missing/non-finite values in X and/or multi-output Y to support wrapping pipelines that perform their
own imputation. #9707 by Jimmy Wan.

• [FEATURE] ensemble.GradientBoostingClassifier and ensemble.
GradientBoostingRegressor now support early stopping via n_iter_no_change,
validation_fraction and tol. #7071 by Raghav RV

• [FEATURE] Added named_estimators_ parameter in ensemble.VotingClassifier to access fitted
estimators. #9157 by Herilalaina Rakotoarison.

• [FIX] Fixed a bug when fitting ensemble.GradientBoostingClassifier or ensemble.
GradientBoostingRegressor with warm_start=True which previously raised a segmentation fault
due to a non-conversion of CSC matrix into CSR format expected by decision_function. Similarly,
Fortran-ordered arrays are converted to C-ordered arrays in the dense case. #9991 by Guillaume Lemaitre.

82 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/issues/11420
https://github.com/jakirkham
https://github.com/jakirkham
https://github.com/scikit-learn/scikit-learn/issues/6452
https://github.com/wallygauze
https://github.com/scikit-learn/scikit-learn/issues/9492
https://github.com/jrbourbeau
https://github.com/scikit-learn/scikit-learn/issues/8484
https://github.com/wallygauze
https://github.com/scikit-learn/scikit-learn/issues/9886
https://github.com/qinhanmin2014
https://github.com/scikit-learn/scikit-learn/issues/10142
https://github.com/TomDLT
https://github.com/TomDLT
https://github.com/scikit-learn/scikit-learn/issues/5956
https://github.com/vighneshbirodkar
https://github.com/ogrisel
https://github.com/scikit-learn/scikit-learn/issues/10898
https://github.com/bobchennan
https://github.com/scikit-learn/scikit-learn/issues/9832
https://github.com/vrishank97
https://github.com/scikit-learn/scikit-learn/issues/11951
https://github.com/JarnoRFB
https://github.com/scikit-learn/scikit-learn/issues/9707
https://github.com/jimmywan
https://github.com/scikit-learn/scikit-learn/issues/7071
https://github.com/raghavrv
https://github.com/scikit-learn/scikit-learn/issues/9157
https://github.com/herilalaina
https://github.com/scikit-learn/scikit-learn/issues/9991
https://github.com/glemaitre

scikit-learn user guide, Release 0.23.2

• [FIX] Fixed a bug in ensemble.GradientBoostingRegressor and ensemble.
GradientBoostingClassifier to have feature importances summed and then normalized, rather
than normalizing on a per-tree basis. The previous behavior over-weighted the Gini importance of features that
appear in later stages. This issue only affected feature importances. #11176 by Gil Forsyth.

• [API CHANGE] The default value of the n_estimators parameter of ensemble.
RandomForestClassifier, ensemble.RandomForestRegressor, ensemble.
ExtraTreesClassifier, ensemble.ExtraTreesRegressor, and ensemble.
RandomTreesEmbedding will change from 10 in version 0.20 to 100 in 0.22. A FutureWarning is
raised when the default value is used. #11542 by Anna Ayzenshtat.

• [API CHANGE] Classes derived from ensemble.BaseBagging. The attribute estimators_samples_
will return a list of arrays containing the indices selected for each bootstrap instead of a list of arrays containing
the mask of the samples selected for each bootstrap. Indices allows to repeat samples while mask does not allow
this functionality. #9524 by Guillaume Lemaitre.

• [FIX] ensemble.BaseBaggingwhere one could not deterministically reproduce fit result using the object
attributes when random_state is set. #9723 by Guillaume Lemaitre.

sklearn.feature_extraction

• [FEATURE] Enable the call to get_feature_names in unfitted feature_extraction.text.
CountVectorizer initialized with a vocabulary. #10908 by Mohamed Maskani.

• [ENHANCEMENT] idf_ can now be set on a feature_extraction.text.TfidfTransformer.
#10899 by Sergey Melderis.

• [FIX] Fixed a bug in feature_extraction.image.extract_patches_2d which would throw an
exception if max_patches was greater than or equal to the number of all possible patches rather than simply
returning the number of possible patches. #10101 by Varun Agrawal

• [FIX] Fixed a bug in feature_extraction.text.CountVectorizer, feature_extraction.
text.TfidfVectorizer, feature_extraction.text.HashingVectorizer to support 64 bit
sparse array indexing necessary to process large datasets with more than 2·109 tokens (words or n-grams).
#9147 by Claes-Fredrik Mannby and Roman Yurchak.

• [FIX] Fixed bug in feature_extraction.text.TfidfVectorizer which was ignoring the parame-
ter dtype. In addition, feature_extraction.text.TfidfTransformer will preserve dtype for
floating and raise a warning if dtype requested is integer. #10441 by Mayur Kulkarni and Guillaume Lemaitre.

sklearn.feature_selection

• [FEATURE] Added select K best features functionality to feature_selection.SelectFromModel.
#6689 by Nihar Sheth and Quazi Rahman.

• [FEATURE] Added min_features_to_select parameter to feature_selection.RFECV to bound
evaluated features counts. #11293 by Brent Yi.

• [FEATURE] feature_selection.RFECV ’s fit method now supports groups. #9656 by Adam Greenhall.

• [FIX] Fixed computation of n_features_to_compute for edge case with tied CV scores in
feature_selection.RFECV . #9222 by Nick Hoh.

sklearn.gaussian_process

• [EFFICIENCY] In gaussian_process.GaussianProcessRegressor, method predict is faster

1.7. Release History 83

https://github.com/scikit-learn/scikit-learn/issues/11176
https://github.com/gforsyth
https://github.com/scikit-learn/scikit-learn/issues/11542
https://github.com/annaayzenshtat
https://github.com/scikit-learn/scikit-learn/issues/9524
https://github.com/glemaitre
https://github.com/scikit-learn/scikit-learn/issues/9723
https://github.com/glemaitre
https://github.com/scikit-learn/scikit-learn/issues/10908
https://github.com/maskani-moh
https://github.com/scikit-learn/scikit-learn/issues/10899
https://github.com/serega
https://github.com/scikit-learn/scikit-learn/issues/10101
https://github.com/varunagrawal
https://github.com/scikit-learn/scikit-learn/issues/9147
https://github.com/mannby
https://github.com/rth
https://github.com/scikit-learn/scikit-learn/issues/10441
https://github.com/maykulkarni
https://github.com/glemaitre
https://github.com/scikit-learn/scikit-learn/issues/6689
https://github.com/nsheth12
https://github.com/qmaruf
https://github.com/scikit-learn/scikit-learn/issues/11293
https://github.com/brentyi
https://github.com/scikit-learn/scikit-learn/issues/9656
https://github.com/adamgreenhall
https://github.com/scikit-learn/scikit-learn/issues/9222
https://github.com/nickypie

scikit-learn user guide, Release 0.23.2

when using return_std=True in particular more when called several times in a row. #9234 by andrewww
and Minghui Liu.

sklearn.impute

• New module, adopting preprocessing.Imputer as impute.SimpleImputer with minor changes
(see under preprocessing below).

• [MAJOR FEATURE] Added impute.MissingIndicator which generates a binary indicator for missing
values. #8075 by Maniteja Nandana and Guillaume Lemaitre.

• [FEATURE] The impute.SimpleImputer has a new strategy, 'constant', to complete missing values
with a fixed one, given by the fill_value parameter. This strategy supports numeric and non-numeric data,
and so does the 'most_frequent' strategy now. #11211 by Jeremie du Boisberranger.

sklearn.isotonic

• [FIX] Fixed a bug in isotonic.IsotonicRegression which incorrectly combined weights when fitting
a model to data involving points with identical X values. #9484 by Dallas Card

sklearn.linear_model

• [FEATURE] linear_model.SGDClassifier, linear_model.SGDRegressor, linear_model.
PassiveAggressiveClassifier, linear_model.PassiveAggressiveRegressor and
linear_model.Perceptron now expose early_stopping, validation_fraction and
n_iter_no_change parameters, to stop optimization monitoring the score on a validation set. A new learn-
ing rate "adaptive" strategy divides the learning rate by 5 each time n_iter_no_change consecutive
epochs fail to improve the model. #9043 by Tom Dupre la Tour.

• [FEATURE] Add sample_weight parameter to the fit method of linear_model.BayesianRidge for
weighted linear regression. #10112 by Peter St. John.

• [FIX] Fixed a bug in logistic.logistic_regression_path to ensure that the returned coefficients
are correct when multiclass='multinomial'. Previously, some of the coefficients would override each
other, leading to incorrect results in linear_model.LogisticRegressionCV . #11724 by Nicolas Hug.

• [FIX] Fixed a bug in linear_model.LogisticRegression where when using the parameter
multi_class='multinomial', the predict_proba method was returning incorrect probabilities in
the case of binary outcomes. #9939 by Roger Westover.

• [FIX] Fixed a bug in linear_model.LogisticRegressionCV where the score method always com-
putes accuracy, not the metric given by the scoring parameter. #10998 by Thomas Fan.

• [FIX] Fixed a bug in linear_model.LogisticRegressionCV where the ‘ovr’ strategy was always used
to compute cross-validation scores in the multiclass setting, even if 'multinomial' was set. #8720 by
William de Vazelhes.

• [FIX] Fixed a bug in linear_model.OrthogonalMatchingPursuit that was broken when setting
normalize=False. #10071 by Alexandre Gramfort.

• [FIX] Fixed a bug in linear_model.ARDRegression which caused incorrectly updated estimates for the
standard deviation and the coefficients. #10153 by Jörg Döpfert.

• [FIX] Fixed a bug in linear_model.ARDRegression and linear_model.BayesianRidge which
caused NaN predictions when fitted with a constant target. #10095 by Jörg Döpfert.

84 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/issues/9234
https://github.com/andrewww
https://github.com/minghui-liu
https://github.com/scikit-learn/scikit-learn/issues/8075
https://github.com/maniteja123
https://github.com/glemaitre
https://github.com/scikit-learn/scikit-learn/issues/11211
https://github.com/jeremiedbb
https://github.com/scikit-learn/scikit-learn/issues/9484
https://github.com/dallascard
https://github.com/scikit-learn/scikit-learn/issues/9043
https://github.com/TomDLT
https://github.com/scikit-learn/scikit-learn/issues/10112
https://github.com/pstjohn
https://github.com/scikit-learn/scikit-learn/issues/11724
https://github.com/NicolasHug
https://github.com/scikit-learn/scikit-learn/issues/9939
https://github.com/rwolst
https://github.com/scikit-learn/scikit-learn/issues/10998
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/issues/8720
https://github.com/wdevazelhes
https://github.com/scikit-learn/scikit-learn/issues/10071
http://alexandre.gramfort.net
https://github.com/scikit-learn/scikit-learn/issues/10153
https://github.com/jdoepfert
https://github.com/scikit-learn/scikit-learn/issues/10095
https://github.com/jdoepfert

scikit-learn user guide, Release 0.23.2

• [FIX] Fixed a bug in linear_model.RidgeClassifierCV where the parameter store_cv_values
was not implemented though it was documented in cv_values as a way to set up the storage of cross-
validation values for different alphas. #10297 by Mabel Villalba-Jiménez.

• [FIX] Fixed a bug in linear_model.ElasticNet which caused the input to be overridden when using
parameter copy_X=True and check_input=False. #10581 by Yacine Mazari.

• [FIX] Fixed a bug in sklearn.linear_model.Lasso where the coefficient had wrong shape when
fit_intercept=False. #10687 by Martin Hahn.

• [FIX] Fixed a bug in sklearn.linear_model.LogisticRegression where the
multi_class='multinomial' with binary output with warm_start=True #10836 by Aish-
warya Srinivasan.

• [FIX] Fixed a bug in linear_model.RidgeCV where using integer alphas raised an error. #10397 by
Mabel Villalba-Jiménez.

• [FIX] Fixed condition triggering gap computation in linear_model.Lasso and linear_model.
ElasticNet when working with sparse matrices. #10992 by Alexandre Gramfort.

• [FIX] Fixed a bug in linear_model.SGDClassifier, linear_model.
SGDRegressor, linear_model.PassiveAggressiveClassifier, linear_model.
PassiveAggressiveRegressor and linear_model.Perceptron, where the stopping criterion
was stopping the algorithm before convergence. A parameter n_iter_no_change was added and set by
default to 5. Previous behavior is equivalent to setting the parameter to 1. #9043 by Tom Dupre la Tour.

• [FIX] Fixed a bug where liblinear and libsvm-based estimators would segfault if passed a scipy.sparse matrix
with 64-bit indices. They now raise a ValueError. #11327 by Karan Dhingra and Joel Nothman.

• [API CHANGE] The default values of the solver and multi_class parameters of linear_model.
LogisticRegression will change respectively from 'liblinear' and 'ovr' in version 0.20 to
'lbfgs' and 'auto' in version 0.22. A FutureWarning is raised when the default values are used. #11905
by Tom Dupre la Tour and Joel Nothman.

• [API CHANGE] Deprecate positive=True option in linear_model.Lars as the underlying implemen-
tation is broken. Use linear_model.Lasso instead. #9837 by Alexandre Gramfort.

• [API CHANGE] n_iter_ may vary from previous releases in linear_model.LogisticRegression
with solver='lbfgs' and linear_model.HuberRegressor. For Scipy <= 1.0.0, the optimizer could
perform more than the requested maximum number of iterations. Now both estimators will report at most
max_iter iterations even if more were performed. #10723 by Joel Nothman.

sklearn.manifold

• [EFFICIENCY] Speed improvements for both ‘exact’ and ‘barnes_hut’ methods in manifold.TSNE. #10593
and #10610 by Tom Dupre la Tour.

• [FEATURE] Support sparse input in manifold.Isomap.fit. #8554 by Leland McInnes.

• [FEATURE] manifold.t_sne.trustworthiness accepts metrics other than Euclidean. #9775 by
William de Vazelhes.

• [FIX] Fixed a bug in manifold.spectral_embedding where the normalization of the spectrum was
using a division instead of a multiplication. #8129 by Jan Margeta, Guillaume Lemaitre, and Devansh D..

• [API CHANGE] [FEATURE] Deprecate precomputed parameter in function manifold.t_sne.
trustworthiness. Instead, the new parameter metric should be used with any compatible metric in-
cluding ‘precomputed’, in which case the input matrix X should be a matrix of pairwise distances or squared
distances. #9775 by William de Vazelhes.

1.7. Release History 85

https://github.com/scikit-learn/scikit-learn/issues/10297
https://github.com/mabelvj
https://github.com/scikit-learn/scikit-learn/issues/10581
https://github.com/ymazari
https://github.com/scikit-learn/scikit-learn/issues/10687
https://github.com/martin-hahn
https://github.com/scikit-learn/scikit-learn/issues/10836
https://github.com/aishgrt1
https://github.com/aishgrt1
https://github.com/scikit-learn/scikit-learn/issues/10397
https://github.com/mabelvj
https://github.com/scikit-learn/scikit-learn/issues/10992
http://alexandre.gramfort.net
https://github.com/scikit-learn/scikit-learn/issues/9043
https://github.com/TomDLT
https://github.com/scikit-learn/scikit-learn/issues/11327
https://github.com/kdhingra307
https://joelnothman.com/
https://github.com/scikit-learn/scikit-learn/issues/11905
https://github.com/TomDLT
https://joelnothman.com/
https://github.com/scikit-learn/scikit-learn/issues/9837
http://alexandre.gramfort.net
https://github.com/scikit-learn/scikit-learn/issues/10723
https://joelnothman.com/
https://github.com/scikit-learn/scikit-learn/issues/10593
https://github.com/scikit-learn/scikit-learn/issues/10610
https://github.com/TomDLT
https://github.com/scikit-learn/scikit-learn/issues/8554
https://github.com/lmcinnes
https://github.com/scikit-learn/scikit-learn/issues/9775
https://github.com/wdevazelhes
https://github.com/scikit-learn/scikit-learn/issues/8129
https://github.com/jmargeta
https://github.com/glemaitre
https://github.com/devanshdalal
https://github.com/scikit-learn/scikit-learn/issues/9775
https://github.com/wdevazelhes

scikit-learn user guide, Release 0.23.2

• [API CHANGE] Deprecate precomputed parameter in function manifold.t_sne.trustworthiness.
Instead, the new parameter metric should be used with any compatible metric including ‘precomputed’, in
which case the input matrix X should be a matrix of pairwise distances or squared distances. #9775 by William
de Vazelhes.

sklearn.metrics

• [MAJOR FEATURE] Added the metrics.davies_bouldin_scoremetric for evaluation of clustering mod-
els without a ground truth. #10827 by Luis Osa.

• [MAJOR FEATURE] Added the metrics.balanced_accuracy_score metric and a corresponding
'balanced_accuracy' scorer for binary and multiclass classification. #8066 by @xyguo and Aman
Dalmia, and #10587 by Joel Nothman.

• [FEATURE] Partial AUC is available via max_fpr parameter in metrics.roc_auc_score. #3840 by
Alexander Niederbühl.

• [FEATURE] A scorer based on metrics.brier_score_loss is also available. #9521 by Hanmin Qin.

• [FEATURE] Added control over the normalization in metrics.normalized_mutual_info_score and
metrics.adjusted_mutual_info_score via the average_method parameter. In version 0.22, the
default normalizer for each will become the arithmetic mean of the entropies of each clustering. #11124 by
Arya McCarthy.

• [FEATURE] Added output_dict parameter in metrics.classification_report to return classifi-
cation statistics as dictionary. #11160 by Dan Barkhorn.

• [FEATURE] metrics.classification_report now reports all applicable averages on the given data, in-
cluding micro, macro and weighted average as well as samples average for multilabel data. #11679 by Alexander
Pacha.

• [FEATURE] metrics.average_precision_score now supports binary y_true other than {0, 1} or
{-1, 1} through pos_label parameter. #9980 by Hanmin Qin.

• [FEATURE] metrics.label_ranking_average_precision_score now supports
sample_weight. #10845 by Jose Perez-Parras Toledano.

• [FEATURE] Add dense_output parameter to metrics.pairwise.linear_kernel. When False and
both inputs are sparse, will return a sparse matrix. #10999 by Taylor G Smith.

• [EFFICIENCY] metrics.silhouette_score and metrics.silhouette_samples are more mem-
ory efficient and run faster. This avoids some reported freezes and MemoryErrors. #11135 by Joel Nothman.

• [FIX] Fixed a bug in metrics.precision_recall_fscore_support when truncated
range(n_labels) is passed as value for labels. #10377 by Gaurav Dhingra.

• [FIX] Fixed a bug due to floating point error in metrics.roc_auc_score with non-integer sample weights.
#9786 by Hanmin Qin.

• [FIX] Fixed a bug where metrics.roc_curve sometimes starts on y-axis instead of (0, 0), which is in-
consistent with the document and other implementations. Note that this will not influence the result from
metrics.roc_auc_score #10093 by alexryndin and Hanmin Qin.

• [FIX] Fixed a bug to avoid integer overflow. Casted product to 64 bits integer in metrics.
mutual_info_score. #9772 by Kumar Ashutosh.

• [FIX] Fixed a bug where metrics.average_precision_score will sometimes return nan when
sample_weight contains 0. #9980 by Hanmin Qin.

86 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/issues/9775
https://github.com/wdevazelhes
https://github.com/wdevazelhes
https://github.com/scikit-learn/scikit-learn/issues/10827
https://github.com/logc
https://github.com/scikit-learn/scikit-learn/issues/8066
https://github.com/xyguo
https://github.com/dalmia
https://github.com/dalmia
https://github.com/scikit-learn/scikit-learn/issues/10587
https://joelnothman.com/
https://github.com/scikit-learn/scikit-learn/issues/3840
https://github.com/Alexander-N
https://github.com/scikit-learn/scikit-learn/issues/9521
https://github.com/qinhanmin2014
https://github.com/scikit-learn/scikit-learn/issues/11124
https://github.com/aryamccarthy
https://github.com/scikit-learn/scikit-learn/issues/11160
https://github.com/danielbarkhorn
https://github.com/scikit-learn/scikit-learn/issues/11679
https://github.com/apacha
https://github.com/apacha
https://github.com/scikit-learn/scikit-learn/issues/9980
https://github.com/qinhanmin2014
https://github.com/scikit-learn/scikit-learn/issues/10845
https://github.com/jopepato
https://github.com/scikit-learn/scikit-learn/issues/10999
https://github.com/tgsmith61591
https://github.com/scikit-learn/scikit-learn/issues/11135
https://joelnothman.com/
https://github.com/scikit-learn/scikit-learn/issues/10377
https://github.com/gxyd
https://github.com/scikit-learn/scikit-learn/issues/9786
https://github.com/qinhanmin2014
https://github.com/scikit-learn/scikit-learn/issues/10093
https://github.com/alexryndin
https://github.com/qinhanmin2014
https://github.com/scikit-learn/scikit-learn/issues/9772
https://github.com/thechargedneutron
https://github.com/scikit-learn/scikit-learn/issues/9980
https://github.com/qinhanmin2014

scikit-learn user guide, Release 0.23.2

• [FIX] Fixed a bug in metrics.fowlkes_mallows_score to avoid integer overflow. Casted return value
of contingency_matrix to int64 and computed product of square roots rather than square root of prod-
uct. #9515 by Alan Liddell and Manh Dao.

• [API CHANGE] Deprecate reorder parameter in metrics.auc as it’s no longer required for metrics.
roc_auc_score. Moreover using reorder=True can hide bugs due to floating point error in the input.
#9851 by Hanmin Qin.

• [API CHANGE] In metrics.normalized_mutual_info_score and metrics.
adjusted_mutual_info_score, warn that average_method will have a new default value.
In version 0.22, the default normalizer for each will become the arithmetic mean of the entropies of
each clustering. Currently, metrics.normalized_mutual_info_score uses the default of
average_method='geometric', and metrics.adjusted_mutual_info_score uses the
default of average_method='max' to match their behaviors in version 0.19. #11124 by Arya McCarthy.

• [API CHANGE] The batch_size parameter to metrics.pairwise_distances_argmin_min and
metrics.pairwise_distances_argmin is deprecated to be removed in v0.22. It no longer has any ef-
fect, as batch size is determined by global working_memory config. See Limiting Working Memory. #10280
by Joel Nothman and Aman Dalmia.

sklearn.mixture

• [FEATURE] Added function fit_predict to mixture.GaussianMixture and mixture.
GaussianMixture, which is essentially equivalent to calling fit and predict. #10336 by Shu Haoran
and Andrew Peng.

• [FIX] Fixed a bug in mixture.BaseMixture where the reported n_iter_ was missing an iteration. It af-
fected mixture.GaussianMixture and mixture.BayesianGaussianMixture. #10740 by Erich
Schubert and Guillaume Lemaitre.

• [FIX] Fixed a bug in mixture.BaseMixture and its subclasses mixture.GaussianMixture and
mixture.BayesianGaussianMixturewhere the lower_bound_was not the max lower bound across
all initializations (when n_init > 1), but just the lower bound of the last initialization. #10869 by Aurélien
Géron.

sklearn.model_selection

• [FEATURE] Add return_estimator parameter in model_selection.cross_validate to return es-
timators fitted on each split. #9686 by Aurélien Bellet.

• [FEATURE] New refit_time_ attribute will be stored in model_selection.GridSearchCV and
model_selection.RandomizedSearchCV if refit is set to True. This will allow measuring the
complete time it takes to perform hyperparameter optimization and refitting the best model on the whole dataset.
#11310 by Matthias Feurer.

• [FEATURE] Expose error_score parameter in model_selection.cross_validate,
model_selection.cross_val_score, model_selection.learning_curve and
model_selection.validation_curve to control the behavior triggered when an error occurs in
model_selection._fit_and_score. #11576 by Samuel O. Ronsin.

• [FEATURE] BaseSearchCV now has an experimental, private interface to support customized parameter
search strategies, through its _run_search method. See the implementations in model_selection.
GridSearchCV and model_selection.RandomizedSearchCV and please provide feedback if you
use this. Note that we do not assure the stability of this API beyond version 0.20. #9599 by Joel Nothman

1.7. Release History 87

https://github.com/scikit-learn/scikit-learn/issues/9515
https://github.com/aliddell
https://github.com/manhdao
https://github.com/scikit-learn/scikit-learn/issues/9851
https://github.com/qinhanmin2014
https://github.com/scikit-learn/scikit-learn/issues/11124
https://github.com/aryamccarthy
https://github.com/scikit-learn/scikit-learn/issues/10280
https://joelnothman.com/
https://github.com/dalmia
https://github.com/scikit-learn/scikit-learn/issues/10336
https://github.com/haoranShu
https://github.com/Andrew-peng
https://github.com/scikit-learn/scikit-learn/issues/10740
https://github.com/kno10
https://github.com/kno10
https://github.com/glemaitre
https://github.com/scikit-learn/scikit-learn/issues/10869
https://github.com/ageron
https://github.com/ageron
https://github.com/scikit-learn/scikit-learn/issues/9686
https://github.com/bellet
https://github.com/scikit-learn/scikit-learn/issues/11310
https://github.com/mfeurer
https://github.com/scikit-learn/scikit-learn/issues/11576
https://github.com/samronsin
https://github.com/scikit-learn/scikit-learn/issues/9599
https://joelnothman.com/

scikit-learn user guide, Release 0.23.2

• [ENHANCEMENT] Add improved error message in model_selection.cross_val_score when multiple
metrics are passed in scoring keyword. #11006 by Ming Li.

• [API CHANGE] The default number of cross-validation folds cv and the default number of splits n_splits in
the model_selection.KFold-like splitters will change from 3 to 5 in 0.22 as 3-fold has a lot of variance.
#11557 by Alexandre Boucaud.

• [API CHANGE] The default of iid parameter of model_selection.GridSearchCV and
model_selection.RandomizedSearchCV will change from True to False in version 0.22 to
correspond to the standard definition of cross-validation, and the parameter will be removed in version
0.24 altogether. This parameter is of greatest practical significance where the sizes of different test sets in
cross-validation were very unequal, i.e. in group-based CV strategies. #9085 by Laurent Direr and Andreas
Müller.

• [API CHANGE] The default value of the error_score parameter in model_selection.GridSearchCV
and model_selection.RandomizedSearchCV will change to np.NaN in version 0.22. #10677 by
Kirill Zhdanovich.

• [API CHANGE] Changed ValueError exception raised in model_selection.ParameterSampler to a
UserWarning for case where the class is instantiated with a greater value of n_iter than the total space of
parameters in the parameter grid. n_iter now acts as an upper bound on iterations. #10982 by Juliet Lawton

• [API CHANGE] Invalid input for model_selection.ParameterGrid now raises TypeError. #10928 by
Solutus Immensus

sklearn.multioutput

• [MAJOR FEATURE] Added multioutput.RegressorChain for multi-target regression. #9257 by Kumar
Ashutosh.

sklearn.naive_bayes

• [MAJOR FEATURE] Added naive_bayes.ComplementNB, which implements the Complement Naive Bayes
classifier described in Rennie et al. (2003). #8190 by Michael A. Alcorn.

• [FEATURE] Add var_smoothing parameter in naive_bayes.GaussianNB to give a precise control over
variances calculation. #9681 by Dmitry Mottl.

• [FIX] Fixed a bug in naive_bayes.GaussianNB which incorrectly raised error for prior list which summed
to 1. #10005 by Gaurav Dhingra.

• [FIX] Fixed a bug in naive_bayes.MultinomialNB which did not accept vector valued pseudocounts
(alpha). #10346 by Tobias Madsen

sklearn.neighbors

• [EFFICIENCY] neighbors.RadiusNeighborsRegressor and neighbors.
RadiusNeighborsClassifier are now parallelized according to n_jobs regardless of algorithm.
#10887 by Joël Billaud.

• [EFFICIENCY] Nearest neighbors query methods are now more memory efficient when
algorithm='brute'. #11136 by Joel Nothman and Aman Dalmia.

• [FEATURE] Add sample_weight parameter to the fit method of neighbors.KernelDensity to enable
weighting in kernel density estimation. #4394 by Samuel O. Ronsin.

88 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/issues/11006
https://github.com/minggli
https://github.com/scikit-learn/scikit-learn/issues/11557
https://github.com/aboucaud
https://github.com/scikit-learn/scikit-learn/issues/9085
https://github.com/ldirer
https://amueller.github.io/
https://amueller.github.io/
https://github.com/scikit-learn/scikit-learn/issues/10677
https://github.com/Zhdanovich
https://github.com/scikit-learn/scikit-learn/issues/10982
https://github.com/julietcl
https://github.com/scikit-learn/scikit-learn/issues/10928
https://github.com/solutusimmensus
https://github.com/scikit-learn/scikit-learn/issues/9257
https://github.com/thechargedneutron
https://github.com/thechargedneutron
https://github.com/scikit-learn/scikit-learn/issues/8190
https://github.com/airalcorn2
https://github.com/scikit-learn/scikit-learn/issues/9681
https://github.com/Mottl
https://github.com/scikit-learn/scikit-learn/issues/10005
https://github.com/gxyd
https://github.com/scikit-learn/scikit-learn/issues/10346
https://github.com/TobiasMadsen
https://github.com/scikit-learn/scikit-learn/issues/10887
https://github.com/recamshak
https://github.com/scikit-learn/scikit-learn/issues/11136
https://joelnothman.com/
https://github.com/dalmia
https://github.com/scikit-learn/scikit-learn/issues/4394
https://github.com/samronsin

scikit-learn user guide, Release 0.23.2

• [FEATURE] Novelty detection with neighbors.LocalOutlierFactor: Add a novelty param-
eter to neighbors.LocalOutlierFactor. When novelty is set to True, neighbors.
LocalOutlierFactor can then be used for novelty detection, i.e. predict on new unseen data. Available
prediction methods are predict, decision_function and score_samples. By default, novelty is
set to False, and only the fit_predict method is avaiable. By Albert Thomas.

• [FIX] Fixed a bug in neighbors.NearestNeighbors where fitting a NearestNeighbors model fails when
a) the distance metric used is a callable and b) the input to the NearestNeighbors model is sparse. #9579 by
Thomas Kober.

• [FIX] Fixed a bug so predict in neighbors.RadiusNeighborsRegressor can handle empty neigh-
bor set when using non uniform weights. Also raises a new warning when no neighbors are found for samples.
#9655 by Andreas Bjerre-Nielsen.

• [FIX] [EFFICIENCY] Fixed a bug in KDTree construction that results in faster construction and querying times.
#11556 by Jake VanderPlas

• [FIX] Fixed a bug in neighbors.KDTree and neighbors.BallTree where pickled tree objects would
change their type to the super class BinaryTree. #11774 by Nicolas Hug.

sklearn.neural_network

• [FEATURE] Add n_iter_no_change parameter in neural_network.
BaseMultilayerPerceptron, neural_network.MLPRegressor, and neural_network.
MLPClassifier to give control over maximum number of epochs to not meet tol improvement. #9456 by
Nicholas Nadeau.

• [FIX] Fixed a bug in neural_network.BaseMultilayerPerceptron, neural_network.
MLPRegressor, and neural_network.MLPClassifier with new n_iter_no_change parameter
now at 10 from previously hardcoded 2. #9456 by Nicholas Nadeau.

• [FIX] Fixed a bug in neural_network.MLPRegressor where fitting quit unexpectedly early due to local
minima or fluctuations. #9456 by Nicholas Nadeau

sklearn.pipeline

• [FEATURE] The predict method of pipeline.Pipeline now passes keyword arguments on to the
pipeline’s last estimator, enabling the use of parameters such as return_std in a pipeline with caution.
#9304 by Breno Freitas.

• [API CHANGE] pipeline.FeatureUnion now supports 'drop' as a transformer to drop features. #11144
by Thomas Fan.

sklearn.preprocessing

• [MAJOR FEATURE] Expanded preprocessing.OneHotEncoder to allow to encode categorical string
features as a numeric array using a one-hot (or dummy) encoding scheme, and added preprocessing.
OrdinalEncoder to convert to ordinal integers. Those two classes now handle encoding of all feature types
(also handles string-valued features) and derives the categories based on the unique values in the features instead
of the maximum value in the features. #9151 and #10521 by Vighnesh Birodkar and Joris Van den Bossche.

• [MAJOR FEATURE] Added preprocessing.KBinsDiscretizer for turning continuous features into cat-
egorical or one-hot encoded features. #7668, #9647, #10195, #10192, #11272, #11467 and #11505. by Henry
Lin, Hanmin Qin, Tom Dupre la Tour and Giovanni Giuseppe Costa.

1.7. Release History 89

https://github.com/albertcthomas
https://github.com/scikit-learn/scikit-learn/issues/9579
https://github.com/tttthomasssss
https://github.com/scikit-learn/scikit-learn/issues/9655
https://github.com/abjer
https://github.com/scikit-learn/scikit-learn/issues/11556
https://github.com/jakevdp
https://github.com/scikit-learn/scikit-learn/issues/11774
https://github.com/NicolasHug
https://github.com/scikit-learn/scikit-learn/issues/9456
https://github.com/nnadeau
https://github.com/scikit-learn/scikit-learn/issues/9456
https://github.com/nnadeau
https://github.com/scikit-learn/scikit-learn/issues/9456
https://github.com/nnadeau
https://github.com/scikit-learn/scikit-learn/issues/9304
https://github.com/brenolf
https://github.com/scikit-learn/scikit-learn/issues/11144
https://github.com/thomasjpfan
https://github.com/scikit-learn/scikit-learn/issues/9151
https://github.com/scikit-learn/scikit-learn/issues/10521
https://github.com/vighneshbirodkar
https://github.com/jorisvandenbossche
https://github.com/scikit-learn/scikit-learn/issues/7668
https://github.com/scikit-learn/scikit-learn/issues/9647
https://github.com/scikit-learn/scikit-learn/issues/10195
https://github.com/scikit-learn/scikit-learn/issues/10192
https://github.com/scikit-learn/scikit-learn/issues/11272
https://github.com/scikit-learn/scikit-learn/issues/11467
https://github.com/scikit-learn/scikit-learn/issues/11505
https://github.com/hlin117
https://github.com/hlin117
https://github.com/qinhanmin2014
https://github.com/TomDLT
https://github.com/ggc87

scikit-learn user guide, Release 0.23.2

• [MAJOR FEATURE] Added preprocessing.PowerTransformer, which implements the Yeo-Johnson
and Box-Cox power transformations. Power transformations try to find a set of feature-wise parametric trans-
formations to approximately map data to a Gaussian distribution centered at zero and with unit variance. This is
useful as a variance-stabilizing transformation in situations where normality and homoscedasticity are desirable.
#10210 by Eric Chang and Maniteja Nandana, and #11520 by Nicolas Hug.

• [MAJOR FEATURE] NaN values are ignored and handled in the following preprocessing methods:
preprocessing.MaxAbsScaler, preprocessing.MinMaxScaler, preprocessing.
RobustScaler, preprocessing.StandardScaler, preprocessing.PowerTransformer,
preprocessing.QuantileTransformer classes and preprocessing.maxabs_scale,
preprocessing.minmax_scale, preprocessing.robust_scale, preprocessing.scale,
preprocessing.power_transform, preprocessing.quantile_transform functions respec-
tively addressed in issues #11011, #11005, #11308, #11206, #11306, and #10437. By Lucija Gregov and
Guillaume Lemaitre.

• [FEATURE] preprocessing.PolynomialFeatures now supports sparse input. #10452 by Aman
Dalmia and Joel Nothman.

• [FEATURE] preprocessing.RobustScaler and preprocessing.robust_scale can be fitted us-
ing sparse matrices. #11308 by Guillaume Lemaitre.

• [FEATURE] preprocessing.OneHotEncoder now supports the get_feature_names method to obtain the
transformed feature names. #10181 by Nirvan Anjirbag and Joris Van den Bossche.

• [FEATURE] A parameter check_inverse was added to preprocessing.FunctionTransformer to
ensure that func and inverse_func are the inverse of each other. #9399 by Guillaume Lemaitre.

• [FEATURE] The transform method of sklearn.preprocessing.MultiLabelBinarizer now ig-
nores any unknown classes. A warning is raised stating the unknown classes classes found which are ignored.
#10913 by Rodrigo Agundez.

• [FIX] Fixed bugs in preprocessing.LabelEncoder which would sometimes throw errors when
transform or inverse_transform was called with empty arrays. #10458 by Mayur Kulkarni.

• [FIX] Fix ValueError in preprocessing.LabelEncoder when using inverse_transform on unseen
labels. #9816 by Charlie Newey.

• [FIX] Fix bug in preprocessing.OneHotEncoder which discarded the dtype when returning a sparse
matrix output. #11042 by Daniel Morales.

• [FIX] Fix fit and partial_fit in preprocessing.StandardScaler in the rare case when
with_mean=False and with_std=False which was crashing by calling fit more than once and giving
inconsistent results for mean_ whether the input was a sparse or a dense matrix. mean_ will be set to None
with both sparse and dense inputs. n_samples_seen_ will be also reported for both input types. #11235 by
Guillaume Lemaitre.

• [API CHANGE] Deprecate n_values and categorical_features parameters and
active_features_, feature_indices_ and n_values_ attributes of preprocessing.
OneHotEncoder. The n_values parameter can be replaced with the new categories pa-
rameter, and the attributes with the new categories_ attribute. Selecting the categorical fea-
tures with the categorical_features parameter is now better supported using the compose.
ColumnTransformer. #10521 by Joris Van den Bossche.

• [API CHANGE] Deprecate preprocessing.Imputer and move the corresponding module to impute.
SimpleImputer. #9726 by Kumar Ashutosh.

• [API CHANGE] The axis parameter that was in preprocessing.Imputer is no longer present in
impute.SimpleImputer. The behavior is equivalent to axis=0 (impute along columns). Row-
wise imputation can be performed with FunctionTransformer (e.g., FunctionTransformer(lambda X:
SimpleImputer().fit_transform(X.T).T)). #10829 by Guillaume Lemaitre and Gilberto Olimpio.

90 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/issues/10210
https://github.com/chang
https://github.com/maniteja123
https://github.com/scikit-learn/scikit-learn/issues/11520
https://github.com/nicolashug
https://github.com/scikit-learn/scikit-learn/issues/11011
https://github.com/scikit-learn/scikit-learn/issues/11005
https://github.com/scikit-learn/scikit-learn/issues/11308
https://github.com/scikit-learn/scikit-learn/issues/11206
https://github.com/scikit-learn/scikit-learn/issues/11306
https://github.com/scikit-learn/scikit-learn/issues/10437
https://github.com/LucijaGregov
https://github.com/glemaitre
https://github.com/scikit-learn/scikit-learn/issues/10452
https://github.com/dalmia
https://github.com/dalmia
https://joelnothman.com/
https://github.com/scikit-learn/scikit-learn/issues/11308
https://github.com/glemaitre
https://github.com/scikit-learn/scikit-learn/issues/10181
https://github.com/Nirvan101
https://github.com/jorisvandenbossche
https://github.com/scikit-learn/scikit-learn/issues/9399
https://github.com/glemaitre
https://github.com/scikit-learn/scikit-learn/issues/10913
https://github.com/rragundez
https://github.com/scikit-learn/scikit-learn/issues/10458
https://github.com/maykulkarni
https://github.com/scikit-learn/scikit-learn/issues/9816
https://github.com/newey01c
https://github.com/scikit-learn/scikit-learn/issues/11042
https://github.com/DanielMorales9
https://github.com/scikit-learn/scikit-learn/issues/11235
https://github.com/glemaitre
https://github.com/scikit-learn/scikit-learn/issues/10521
https://github.com/jorisvandenbossche
https://github.com/scikit-learn/scikit-learn/issues/9726
https://github.com/thechargedneutron
https://github.com/scikit-learn/scikit-learn/issues/10829
https://github.com/glemaitre
https://github.com/gilbertoolimpio

scikit-learn user guide, Release 0.23.2

• [API CHANGE] The NaN marker for the missing values has been changed between the preprocessing.
Imputer and the impute.SimpleImputer. missing_values='NaN' should now be
missing_values=np.nan. #11211 by Jeremie du Boisberranger.

• [API CHANGE] In preprocessing.FunctionTransformer, the default of validate will be from
True to False in 0.22. #10655 by Guillaume Lemaitre.

sklearn.svm

• [FIX] Fixed a bug in svm.SVC where when the argument kernel is unicode in Python2, the
predict_proba method was raising an unexpected TypeError given dense inputs. #10412 by Jiongyan
Zhang.

• [API CHANGE] Deprecate random_state parameter in svm.OneClassSVM as the underlying implemen-
tation is not random. #9497 by Albert Thomas.

• [API CHANGE] The default value of gamma parameter of svm.SVC, NuSVC, SVR, NuSVR, OneClassSVM
will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. #8361 by
Gaurav Dhingra and Ting Neo.

sklearn.tree

• [ENHANCEMENT] Although private (and hence not assured API stability), tree._criterion.
ClassificationCriterion and tree._criterion.RegressionCriterion may now be cim-
ported and extended. #10325 by Camil Staps.

• [FIX] Fixed a bug in tree.BaseDecisionTree with splitter="best" where split threshold could
become infinite when values in X were near infinite. #10536 by Jonathan Ohayon.

• [FIX] Fixed a bug in tree.MAE to ensure sample weights are being used during the calculation of tree MAE im-
purity. Previous behaviour could cause suboptimal splits to be chosen since the impurity calculation considered
all samples to be of equal weight importance. #11464 by John Stott.

sklearn.utils

• [FEATURE] utils.check_array and utils.check_X_y now have accept_large_sparse to con-
trol whether scipy.sparse matrices with 64-bit indices should be rejected. #11327 by Karan Dhingra and Joel
Nothman.

• [EFFICIENCY] [FIX] Avoid copying the data in utils.check_array when the input data is a memmap (and
copy=False). #10663 by Arthur Mensch and Loïc Estève.

• [API CHANGE] utils.check_array yield a FutureWarning indicating that arrays of bytes/strings will
be interpreted as decimal numbers beginning in version 0.22. #10229 by Ryan Lee

Multiple modules

• [FEATURE] [API CHANGE] More consistent outlier detection API: Add a score_samples method
in svm.OneClassSVM , ensemble.IsolationForest, neighbors.LocalOutlierFactor,
covariance.EllipticEnvelope. It allows to access raw score functions from original pa-
pers. A new offset_ parameter allows to link score_samples and decision_function
methods. The contamination parameter of ensemble.IsolationForest and neighbors.
LocalOutlierFactor decision_function methods is used to define this offset_ such that outliers

1.7. Release History 91

https://github.com/scikit-learn/scikit-learn/issues/11211
https://github.com/jeremiedbb
https://github.com/scikit-learn/scikit-learn/issues/10655
https://github.com/glemaitre
https://github.com/scikit-learn/scikit-learn/issues/10412
https://github.com/qmick
https://github.com/qmick
https://github.com/scikit-learn/scikit-learn/issues/9497
https://github.com/albertcthomas
https://github.com/scikit-learn/scikit-learn/issues/8361
https://github.com/gxyd
https://github.com/neokt
https://github.com/scikit-learn/scikit-learn/issues/10325
https://github.com/camilstaps
https://github.com/scikit-learn/scikit-learn/issues/10536
https://github.com/Johayon
https://github.com/scikit-learn/scikit-learn/issues/11464
https://github.com/JohnStott
https://github.com/scikit-learn/scikit-learn/issues/11327
https://github.com/kdhingra307
https://joelnothman.com/
https://joelnothman.com/
https://github.com/scikit-learn/scikit-learn/issues/10663
https://github.com/arthurmensch
https://github.com/lesteve
https://github.com/scikit-learn/scikit-learn/issues/10229
https://github.com/rtlee9

scikit-learn user guide, Release 0.23.2

(resp. inliers) have negative (resp. positive) decision_function values. By default, contamination
is kept unchanged to 0.1 for a deprecation period. In 0.22, it will be set to “auto”, thus using method-specific
score offsets. In covariance.EllipticEnvelope decision_function method, the raw_values
parameter is deprecated as the shifted Mahalanobis distance will be always returned in 0.22. #9015 by Nicolas
Goix.

• [FEATURE] [API CHANGE] A behaviour parameter has been introduced in ensemble.
IsolationForest to ensure backward compatibility. In the old behaviour, the decision_function is
independent of the contamination parameter. A threshold attribute depending on the contamination
parameter is thus used. In the new behaviour the decision_function is dependent on the
contamination parameter, in such a way that 0 becomes its natural threshold to detect outliers. Set-
ting behaviour to “old” is deprecated and will not be possible in version 0.22. Beside, the behaviour parameter
will be removed in 0.24. #11553 by Nicolas Goix.

• [API CHANGE] Added convergence warning to svm.LinearSVC and linear_model.
LogisticRegression when verbose is set to 0. #10881 by Alexandre Sevin.

• [API CHANGE] Changed warning type from UserWarning to exceptions.ConvergenceWarning
for failing convergence in linear_model.logistic_regression_path, linear_model.
RANSACRegressor, linear_model.ridge_regression, gaussian_process.
GaussianProcessRegressor, gaussian_process.GaussianProcessClassifier,
decomposition.fastica, cross_decomposition.PLSCanonical, cluster.
AffinityPropagation, and cluster.Birch. #10306 by Jonathan Siebert.

Miscellaneous

• [MAJOR FEATURE] A new configuration parameter, working_memory was added to control memory con-
sumption limits in chunked operations, such as the new metrics.pairwise_distances_chunked. See
Limiting Working Memory. #10280 by Joel Nothman and Aman Dalmia.

• [FEATURE] The version of joblib bundled with Scikit-learn is now 0.12. This uses a new default multiprocess-
ing implementation, named loky. While this may incur some memory and communication overhead, it should
provide greater cross-platform stability than relying on Python standard library multiprocessing. #11741 by the
Joblib developers, especially Thomas Moreau and Olivier Grisel.

• [FEATURE] An environment variable to use the site joblib instead of the vendored one was added (Environment
variables). The main API of joblib is now exposed in sklearn.utils. #11166 by Gael Varoquaux.

• [FEATURE] Add almost complete PyPy 3 support. Known unsupported functionalities are datasets.
load_svmlight_file, feature_extraction.FeatureHasher and feature_extraction.
text.HashingVectorizer. For running on PyPy, PyPy3-v5.10+, Numpy 1.14.0+, and scipy 1.1.0+ are
required. #11010 by Ronan Lamy and Roman Yurchak.

• [FEATURE] A utility method sklearn.show_versions was added to print out information relevant for
debugging. It includes the user system, the Python executable, the version of the main libraries and BLAS
binding information. #11596 by Alexandre Boucaud

• [FIX] Fixed a bug when setting parameters on meta-estimator, involving both a wrapped estimator and its pa-
rameter. #9999 by Marcus Voss and Joel Nothman.

• [FIX] Fixed a bug where calling sklearn.base.clone was not thread safe and could result in a “pop from
empty list” error. #9569 by Andreas Müller.

• [API CHANGE] The default value of n_jobs is changed from 1 to None in all related functions and classes.
n_jobs=None means unset. It will generally be interpreted as n_jobs=1, unless the current joblib.
Parallel backend context specifies otherwise (See Glossary for additional information). Note that this
change happens immediately (i.e., without a deprecation cycle). #11741 by Olivier Grisel.

92 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/issues/9015
https://ngoix.github.io/
https://ngoix.github.io/
https://github.com/scikit-learn/scikit-learn/issues/11553
https://ngoix.github.io/
https://github.com/scikit-learn/scikit-learn/issues/10881
https://github.com/AlexandreSev
https://docs.python.org/3/library/exceptions.html#UserWarning
https://github.com/scikit-learn/scikit-learn/issues/10306
https://github.com/jotasi
https://github.com/scikit-learn/scikit-learn/issues/10280
https://joelnothman.com/
https://github.com/dalmia
https://joblib.readthedocs.io/en/latest/index.html#module-joblib
https://github.com/tomMoral/loky
https://github.com/scikit-learn/scikit-learn/issues/11741
https://github.com/tomMoral
https://twitter.com/ogrisel
https://github.com/scikit-learn/scikit-learn/issues/11166
http://gael-varoquaux.info
https://github.com/scikit-learn/scikit-learn/issues/11010
https://github.com/rlamy
https://github.com/rth
https://github.com/scikit-learn/scikit-learn/issues/11596
https://github.com/aboucaud
https://github.com/scikit-learn/scikit-learn/issues/9999
https://github.com/marcus-voss
https://joelnothman.com/
https://github.com/scikit-learn/scikit-learn/issues/9569
https://amueller.github.io/
https://github.com/scikit-learn/scikit-learn/issues/11741
https://twitter.com/ogrisel

scikit-learn user guide, Release 0.23.2

• [FIX] Fixed a bug in validation helpers where passing a Dask DataFrame results in an error. #12462 by Zachariah
Miller

Changes to estimator checks

These changes mostly affect library developers.

• Checks for transformers now apply if the estimator implements transform, regardless of whether it inherits from
sklearn.base.TransformerMixin. #10474 by Joel Nothman.

• Classifiers are now checked for consistency between decision_function and categorical predictions. #10500 by
Narine Kokhlikyan.

• Allow tests in utils.estimator_checks.check_estimator to test functions that accept pairwise
data. #9701 by Kyle Johnson

• Allow utils.estimator_checks.check_estimator to check that there is no private settings apart
from parameters during estimator initialization. #9378 by Herilalaina Rakotoarison

• The set of checks in utils.estimator_checks.check_estimator now includes a
check_set_params test which checks that set_params is equivalent to passing parameters in
__init__ and warns if it encounters parameter validation. #7738 by Alvin Chiang

• Add invariance tests for clustering metrics. #8102 by Ankita Sinha and Guillaume Lemaitre.

• Add check_methods_subset_invariance to check_estimator, which checks that estimator
methods are invariant if applied to a data subset. #10428 by Jonathan Ohayon

• Add tests in utils.estimator_checks.check_estimator to check that an estimator can handle
read-only memmap input data. #10663 by Arthur Mensch and Loïc Estève.

• check_sample_weights_pandas_series now uses 8 rather than 6 samples to accommodate for the
default number of clusters in cluster.KMeans. #10933 by Johannes Hansen.

• Estimators are now checked for whether sample_weight=None equates to sample_weight=np.
ones(...). #11558 by Sergul Aydore.

Code and Documentation Contributors

Thanks to everyone who has contributed to the maintenance and improvement of the project since version 0.19, in-
cluding:

211217613, Aarshay Jain, absolutelyNoWarranty, Adam Greenhall, Adam Kleczewski, Adam Richie-Halford, adelr,
AdityaDaflapurkar, Adrin Jalali, Aidan Fitzgerald, aishgrt1, Akash Shivram, Alan Liddell, Alan Yee, Albert Thomas,
Alexander Lenail, Alexander-N, Alexandre Boucaud, Alexandre Gramfort, Alexandre Sevin, Alex Egg, Alvaro Perez-
Diaz, Amanda, Aman Dalmia, Andreas Bjerre-Nielsen, Andreas Mueller, Andrew Peng, Angus Williams, Aniruddha
Dave, annaayzenshtat, Anthony Gitter, Antonio Quinonez, Anubhav Marwaha, Arik Pamnani, Arthur Ozga, Artiem
K, Arunava, Arya McCarthy, Attractadore, Aurélien Bellet, Aurélien Geron, Ayush Gupta, Balakumaran Manoha-
ran, Bangda Sun, Barry Hart, Bastian Venthur, Ben Lawson, Benn Roth, Breno Freitas, Brent Yi, brett koonce,
Caio Oliveira, Camil Staps, cclauss, Chady Kamar, Charlie Brummitt, Charlie Newey, chris, Chris, Chris Catalfo,
Chris Foster, Chris Holdgraf, Christian Braune, Christian Hirsch, Christian Hogan, Christopher Jenness, Clement
Joudet, cnx, cwitte, Dallas Card, Dan Barkhorn, Daniel, Daniel Ferreira, Daniel Gomez, Daniel Klevebring, Danielle
Shwed, Daniel Mohns, Danil Baibak, Darius Morawiec, David Beach, David Burns, David Kirkby, David Nichol-
son, David Pickup, Derek, Didi Bar-Zev, diegodlh, Dillon Gardner, Dillon Niederhut, dilutedsauce, dlovell, Dmitry
Mottl, Dmitry Petrov, Dor Cohen, Douglas Duhaime, Ekaterina Tuzova, Eric Chang, Eric Dean Sanchez, Erich Schu-
bert, Eunji, Fang-Chieh Chou, FarahSaeed, felix, Félix Raimundo, fenx, filipj8, FrankHui, Franz Wompner, Freija
Descamps, frsi, Gabriele Calvo, Gael Varoquaux, Gaurav Dhingra, Georgi Peev, Gil Forsyth, Giovanni Giuseppe
Costa, gkevinyen5418, goncalo-rodrigues, Gryllos Prokopis, Guillaume Lemaitre, Guillaume “Vermeille” Sanchez,

1.7. Release History 93

https://github.com/scikit-learn/scikit-learn/issues/12462
https://github.com/zwmiller
https://github.com/zwmiller
https://github.com/scikit-learn/scikit-learn/issues/10474
https://joelnothman.com/
https://github.com/scikit-learn/scikit-learn/issues/10500
https://github.com/NarineK
https://github.com/scikit-learn/scikit-learn/issues/9701
https://github.com/gkjohns
https://github.com/scikit-learn/scikit-learn/issues/9378
https://github.com/herilalaina
https://github.com/scikit-learn/scikit-learn/issues/7738
https://github.com/absolutelyNoWarranty
https://github.com/scikit-learn/scikit-learn/issues/8102
https://github.com/anki08
https://github.com/glemaitre
https://github.com/scikit-learn/scikit-learn/issues/10428
https://github.com/Johayon
https://github.com/scikit-learn/scikit-learn/issues/10663
https://github.com/arthurmensch
https://github.com/lesteve
https://github.com/scikit-learn/scikit-learn/issues/10933
https://github.com/jnhansen
https://github.com/scikit-learn/scikit-learn/issues/11558
https://github.com/sergulaydore

scikit-learn user guide, Release 0.23.2

Gustavo De Mari Pereira, hakaa1, Hanmin Qin, Henry Lin, Hong, Honghe, Hossein Pourbozorg, Hristo, Hunan Ros-
tomyan, iampat, Ivan PANICO, Jaewon Chung, Jake VanderPlas, jakirkham, James Bourbeau, James Malcolm, Jamie
Cox, Jan Koch, Jan Margeta, Jan Schlüter, janvanrijn, Jason Wolosonovich, JC Liu, Jeb Bearer, jeremiedbb, Jimmy
Wan, Jinkun Wang, Jiongyan Zhang, jjabl, jkleint, Joan Massich, Joël Billaud, Joel Nothman, Johannes Hansen,
JohnStott, Jonatan Samoocha, Jonathan Ohayon, Jörg Döpfert, Joris Van den Bossche, Jose Perez-Parras Toledano,
josephsalmon, jotasi, jschendel, Julian Kuhlmann, Julien Chaumond, julietcl, Justin Shenk, Karl F, Kasper Primdal
Lauritzen, Katrin Leinweber, Kirill, ksemb, Kuai Yu, Kumar Ashutosh, Kyeongpil Kang, Kye Taylor, kyledrogo,
Leland McInnes, Léo DS, Liam Geron, Liutong Zhou, Lizao Li, lkjcalc, Loic Esteve, louib, Luciano Viola, Lucija
Gregov, Luis Osa, Luis Pedro Coelho, Luke M Craig, Luke Persola, Mabel, Mabel Villalba, Maniteja Nandana, MarkI-
wanchyshyn, Mark Roth, Markus Müller, MarsGuy, Martin Gubri, martin-hahn, martin-kokos, mathurinm, Matthias
Feurer, Max Copeland, Mayur Kulkarni, Meghann Agarwal, Melanie Goetz, Michael A. Alcorn, Minghui Liu, Ming
Li, Minh Le, Mohamed Ali Jamaoui, Mohamed Maskani, Mohammad Shahebaz, Muayyad Alsadi, Nabarun Pal, Na-
garjuna Kumar, Naoya Kanai, Narendran Santhanam, NarineK, Nathaniel Saul, Nathan Suh, Nicholas Nadeau, P.Eng.,
AVS, Nick Hoh, Nicolas Goix, Nicolas Hug, Nicolau Werneck, nielsenmarkus11, Nihar Sheth, Nikita Titov, Nilesh
Kevlani, Nirvan Anjirbag, notmatthancock, nzw, Oleksandr Pavlyk, oliblum90, Oliver Rausch, Olivier Grisel, Oren
Milman, Osaid Rehman Nasir, pasbi, Patrick Fernandes, Patrick Olden, Paul Paczuski, Pedro Morales, Peter, Peter St.
John, pierreablin, pietruh, Pinaki Nath Chowdhury, Piotr Szymański, Pradeep Reddy Raamana, Pravar D Mahajan,
pravarmahajan, QingYing Chen, Raghav RV, Rajendra arora, RAKOTOARISON Herilalaina, Rameshwar Bhaskaran,
RankyLau, Rasul Kerimov, Reiichiro Nakano, Rob, Roman Kosobrodov, Roman Yurchak, Ronan Lamy, rragundez,
Rüdiger Busche, Ryan, Sachin Kelkar, Sagnik Bhattacharya, Sailesh Choyal, Sam Radhakrishnan, Sam Steingold,
Samuel Bell, Samuel O. Ronsin, Saqib Nizam Shamsi, SATISH J, Saurabh Gupta, Scott Gigante, Sebastian Flen-
nerhag, Sebastian Raschka, Sebastien Dubois, Sébastien Lerique, Sebastin Santy, Sergey Feldman, Sergey Melderis,
Sergul Aydore, Shahebaz, Shalil Awaley, Shangwu Yao, Sharad Vijalapuram, Sharan Yalburgi, shenhanc78, Shivam
Rastogi, Shu Haoran, siftikha, Sinclert Pérez, SolutusImmensus, Somya Anand, srajan paliwal, Sriharsha Hatwar, Sri
Krishna, Stefan van der Walt, Stephen McDowell, Steven Brown, syonekura, Taehoon Lee, Takanori Hayashi, tarcusx,
Taylor G Smith, theriley106, Thomas, Thomas Fan, Thomas Heavey, Tobias Madsen, tobycheese, Tom Augspurger,
Tom Dupré la Tour, Tommy, Trevor Stephens, Trishnendu Ghorai, Tulio Casagrande, twosigmajab, Umar Farouk
Umar, Urvang Patel, Utkarsh Upadhyay, Vadim Markovtsev, Varun Agrawal, Vathsala Achar, Vilhelm von Ehren-
heim, Vinayak Mehta, Vinit, Vinod Kumar L, Viraj Mavani, Viraj Navkal, Vivek Kumar, Vlad Niculae, vqean3, Vris-
hank Bhardwaj, vufg, wallygauze, Warut Vijitbenjaronk, wdevazelhes, Wenhao Zhang, Wes Barnett, Will, William de
Vazelhes, Will Rosenfeld, Xin Xiong, Yiming (Paul) Li, ymazari, Yufeng, Zach Griffith, Zé Vinícius, Zhenqing Hu,
Zhiqing Xiao, Zijie (ZJ) Poh

1.7.17 Version 0.19.2

July, 2018

This release is exclusively in order to support Python 3.7.

Related changes

• n_iter_ may vary from previous releases in linear_model.LogisticRegression with
solver='lbfgs' and linear_model.HuberRegressor. For Scipy <= 1.0.0, the optimizer could
perform more than the requested maximum number of iterations. Now both estimators will report at most
max_iter iterations even if more were performed. #10723 by Joel Nothman.

1.7.18 Version 0.19.1

October 23, 2017

This is a bug-fix release with some minor documentation improvements and enhancements to features released in
0.19.0.

94 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/issues/10723
https://joelnothman.com/

scikit-learn user guide, Release 0.23.2

Note there may be minor differences in TSNE output in this release (due to #9623), in the case where multiple samples
have equal distance to some sample.

Changelog

API changes

• Reverted the addition of metrics.ndcg_score and metrics.dcg_score which had been merged into
version 0.19.0 by error. The implementations were broken and undocumented.

• return_train_score which was added to model_selection.GridSearchCV ,
model_selection.RandomizedSearchCV and model_selection.cross_validate in
version 0.19.0 will be changing its default value from True to False in version 0.21. We found that calculating
training score could have a great effect on cross validation runtime in some cases. Users should explicitly
set return_train_score to False if prediction or scoring functions are slow, resulting in a deleterious
effect on CV runtime, or to True if they wish to use the calculated scores. #9677 by Kumar Ashutosh and Joel
Nothman.

• correlation_models and regression_models from the legacy gaussian processes implementation
have been belatedly deprecated. #9717 by Kumar Ashutosh.

Bug fixes

• Avoid integer overflows in metrics.matthews_corrcoef. #9693 by Sam Steingold.

• Fixed a bug in the objective function for manifold.TSNE (both exact and with the Barnes-Hut approximation)
when n_components >= 3. #9711 by @goncalo-rodrigues.

• Fix regression in model_selection.cross_val_predict where it raised an error with
method='predict_proba' for some probabilistic classifiers. #9641 by James Bourbeau.

• Fixed a bug where datasets.make_classification modified its input weights. #9865 by Sachin
Kelkar.

• model_selection.StratifiedShuffleSplit now works with multioutput multiclass or multilabel
data with more than 1000 columns. #9922 by Charlie Brummitt.

• Fixed a bug with nested and conditional parameter setting, e.g. setting a pipeline step and its parameter at the
same time. #9945 by Andreas Müller and Joel Nothman.

Regressions in 0.19.0 fixed in 0.19.1:

• Fixed a bug where parallelised prediction in random forests was not thread-safe and could (rarely) result in
arbitrary errors. #9830 by Joel Nothman.

• Fix regression in model_selection.cross_val_predict where it no longer accepted X as a list.
#9600 by Rasul Kerimov.

• Fixed handling of cross_val_predict for binary classification with
method='decision_function'. #9593 by Reiichiro Nakano and core devs.

• Fix regression in pipeline.Pipeline where it no longer accepted steps as a tuple. #9604 by Joris Van
den Bossche.

• Fix bug where n_iter was not properly deprecated, leaving n_iter unavailable for interim use
in linear_model.SGDClassifier, linear_model.SGDRegressor, linear_model.
PassiveAggressiveClassifier, linear_model.PassiveAggressiveRegressor and
linear_model.Perceptron. #9558 by Andreas Müller.

1.7. Release History 95

https://github.com/scikit-learn/scikit-learn/issues/9623
https://github.com/scikit-learn/scikit-learn/issues/9677
https://github.com/thechargedneutron
https://joelnothman.com/
https://joelnothman.com/
https://github.com/scikit-learn/scikit-learn/issues/9717
https://github.com/thechargedneutron
https://github.com/scikit-learn/scikit-learn/issues/9693
https://github.com/sam-s
https://github.com/scikit-learn/scikit-learn/issues/9711
https://github.com/goncalo-rodrigues
https://github.com/scikit-learn/scikit-learn/issues/9641
https://github.com/jrbourbeau
https://github.com/scikit-learn/scikit-learn/issues/9865
https://github.com/s4chin
https://github.com/s4chin
https://github.com/scikit-learn/scikit-learn/issues/9922
https://github.com/crbrummitt
https://github.com/scikit-learn/scikit-learn/issues/9945
https://amueller.github.io/
https://joelnothman.com/
https://github.com/scikit-learn/scikit-learn/issues/9830
https://joelnothman.com/
https://github.com/scikit-learn/scikit-learn/issues/9600
https://github.com/CoderINusE
https://github.com/scikit-learn/scikit-learn/issues/9593
https://github.com/reiinakano
https://github.com/scikit-learn/scikit-learn/issues/9604
https://github.com/jorisvandenbossche
https://github.com/jorisvandenbossche
https://github.com/scikit-learn/scikit-learn/issues/9558
https://amueller.github.io/

scikit-learn user guide, Release 0.23.2

• Dataset fetchers make sure temporary files are closed before removing them, which caused errors on Windows.
#9847 by Joan Massich.

• Fixed a regression in manifold.TSNE where it no longer supported metrics other than ‘euclidean’ and ‘pre-
computed’. #9623 by Oli Blum.

Enhancements

• Our test suite and utils.estimator_checks.check_estimators can now be run without Nose in-
stalled. #9697 by Joan Massich.

• To improve usability of version 0.19’s pipeline.Pipeline caching, memory now allows joblib.
Memory instances. This make use of the new utils.validation.check_memory helper. issue:9584
by Kumar Ashutosh

• Some fixes to examples: #9750, #9788, #9815

• Made a FutureWarning in SGD-based estimators less verbose. #9802 by Vrishank Bhardwaj.

Code and Documentation Contributors

With thanks to:

Joel Nothman, Loic Esteve, Andreas Mueller, Kumar Ashutosh, Vrishank Bhardwaj, Hanmin Qin, Rasul Kerimov,
James Bourbeau, Nagarjuna Kumar, Nathaniel Saul, Olivier Grisel, Roman Yurchak, Reiichiro Nakano, Sachin Kelkar,
Sam Steingold, Yaroslav Halchenko, diegodlh, felix, goncalo-rodrigues, jkleint, oliblum90, pasbi, Anthony Gitter, Ben
Lawson, Charlie Brummitt, Didi Bar-Zev, Gael Varoquaux, Joan Massich, Joris Van den Bossche, nielsenmarkus11

1.7.19 Version 0.19

August 12, 2017

Highlights

We are excited to release a number of great new features including neighbors.LocalOutlierFactor
for anomaly detection, preprocessing.QuantileTransformer for robust feature transformation, and
the multioutput.ClassifierChain meta-estimator to simply account for dependencies between classes
in multilabel problems. We have some new algorithms in existing estimators, such as multiplicative up-
date in decomposition.NMF and multinomial linear_model.LogisticRegression with L1 loss (use
solver='saga').

Cross validation is now able to return the results from multiple metric evaluations. The new model_selection.
cross_validate can return many scores on the test data as well as training set performance and timings, and we
have extended the scoring and refit parameters for grid/randomized search to handle multiple metrics.

You can also learn faster. For instance, the new option to cache transformations in pipeline.Pipeline makes
grid search over pipelines including slow transformations much more efficient. And you can predict faster: if you’re
sure you know what you’re doing, you can turn off validating that the input is finite using config_context.

We’ve made some important fixes too. We’ve fixed a longstanding implementation error in metrics.
average_precision_score, so please be cautious with prior results reported from that function. A number
of errors in the manifold.TSNE implementation have been fixed, particularly in the default Barnes-Hut approx-
imation. semi_supervised.LabelSpreading and semi_supervised.LabelPropagation have had
substantial fixes. LabelPropagation was previously broken. LabelSpreading should now correctly respect its alpha
parameter.

96 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/issues/9847
https://github.com/massich
https://github.com/scikit-learn/scikit-learn/issues/9623
https://github.com/oliblum90
https://github.com/scikit-learn/scikit-learn/issues/9697
https://github.com/massich
https://github.com/thechargedneutron
https://github.com/scikit-learn/scikit-learn/issues/9750
https://github.com/scikit-learn/scikit-learn/issues/9788
https://github.com/scikit-learn/scikit-learn/issues/9815
https://github.com/scikit-learn/scikit-learn/issues/9802
https://github.com/vrishank97

scikit-learn user guide, Release 0.23.2

Changed models

The following estimators and functions, when fit with the same data and parameters, may produce different models
from the previous version. This often occurs due to changes in the modelling logic (bug fixes or enhancements), or in
random sampling procedures.

• cluster.KMeans with sparse X and initial centroids given (bug fix)

• cross_decomposition.PLSRegression with scale=True (bug fix)

• ensemble.GradientBoostingClassifier and ensemble.GradientBoostingRegressor
where min_impurity_split is used (bug fix)

• gradient boosting loss='quantile' (bug fix)

• ensemble.IsolationForest (bug fix)

• feature_selection.SelectFdr (bug fix)

• linear_model.RANSACRegressor (bug fix)

• linear_model.LassoLars (bug fix)

• linear_model.LassoLarsIC (bug fix)

• manifold.TSNE (bug fix)

• neighbors.NearestCentroid (bug fix)

• semi_supervised.LabelSpreading (bug fix)

• semi_supervised.LabelPropagation (bug fix)

• tree based models where min_weight_fraction_leaf is used (enhancement)

• model_selection.StratifiedKFold with shuffle=True (this change, due to #7823 was not men-
tioned in the release notes at the time)

Details are listed in the changelog below.

(While we are trying to better inform users by providing this information, we cannot assure that this list is complete.)

Changelog

New features

Classifiers and regressors

• Added multioutput.ClassifierChain for multi-label classification. By Adam Kleczewski.

• Added solver 'saga' that implements the improved version of Stochastic Average Gradient, in
linear_model.LogisticRegression and linear_model.Ridge. It allows the use of L1 penalty
with multinomial logistic loss, and behaves marginally better than ‘sag’ during the first epochs of ridge and
logistic regression. #8446 by Arthur Mensch.

Other estimators

• Added the neighbors.LocalOutlierFactor class for anomaly detection based on nearest neighbors.
#5279 by Nicolas Goix and Alexandre Gramfort.

• Added preprocessing.QuantileTransformer class and preprocessing.
quantile_transform function for features normalization based on quantiles. #8363 by Denis Engemann,
Guillaume Lemaitre, Olivier Grisel, Raghav RV, Thierry Guillemot, and Gael Varoquaux.

1.7. Release History 97

https://github.com/scikit-learn/scikit-learn/issues/7823
https://github.com/adamklec
https://github.com/scikit-learn/scikit-learn/issues/8446
https://amensch.fr
https://github.com/scikit-learn/scikit-learn/issues/5279
https://ngoix.github.io/
http://alexandre.gramfort.net
https://github.com/scikit-learn/scikit-learn/issues/8363
https://github.com/dengemann
https://github.com/glemaitre
https://twitter.com/ogrisel
https://github.com/raghavrv
https://github.com/tguillemot
http://gael-varoquaux.info

scikit-learn user guide, Release 0.23.2

• The new solver 'mu' implements a Multiplicate Update in decomposition.NMF, allowing the optimization
of all beta-divergences, including the Frobenius norm, the generalized Kullback-Leibler divergence and the
Itakura-Saito divergence. #5295 by Tom Dupre la Tour.

Model selection and evaluation

• model_selection.GridSearchCV and model_selection.RandomizedSearchCV now support
simultaneous evaluation of multiple metrics. Refer to the Specifying multiple metrics for evaluation section of
the user guide for more information. #7388 by Raghav RV

• Added the model_selection.cross_validatewhich allows evaluation of multiple metrics. This func-
tion returns a dict with more useful information from cross-validation such as the train scores, fit times and score
times. Refer to The cross_validate function and multiple metric evaluation section of the userguide for more
information. #7388 by Raghav RV

• Added metrics.mean_squared_log_error, which computes the mean square error of the logarithmic
transformation of targets, particularly useful for targets with an exponential trend. #7655 by Karan Desai.

• Added metrics.dcg_score and metrics.ndcg_score, which compute Discounted cumulative gain
(DCG) and Normalized discounted cumulative gain (NDCG). #7739 by David Gasquez.

• Added the model_selection.RepeatedKFold and model_selection.
RepeatedStratifiedKFold. #8120 by Neeraj Gangwar.

Miscellaneous

• Validation that input data contains no NaN or inf can now be suppressed using config_context, at your
own risk. This will save on runtime, and may be particularly useful for prediction time. #7548 by Joel Nothman.

• Added a test to ensure parameter listing in docstrings match the function/class signature. #9206 by Alexandre
Gramfort and Raghav RV.

Enhancements

Trees and ensembles

• The min_weight_fraction_leaf constraint in tree construction is now more efficient, taking a fast path
to declare a node a leaf if its weight is less than 2 * the minimum. Note that the constructed tree will be different
from previous versions where min_weight_fraction_leaf is used. #7441 by Nelson Liu.

• ensemble.GradientBoostingClassifier and ensemble.GradientBoostingRegressor
now support sparse input for prediction. #6101 by Ibraim Ganiev.

• ensemble.VotingClassifier now allows changing estimators by using ensemble.
VotingClassifier.set_params. An estimator can also be removed by setting it to None. #7674 by
Yichuan Liu.

• tree.export_graphviz now shows configurable number of decimal places. #8698 by Guillaume
Lemaitre.

• Added flatten_transform parameter to ensemble.VotingClassifier to change output shape of
transform method to 2 dimensional. #7794 by Ibraim Ganiev and Herilalaina Rakotoarison.

Linear, kernelized and related models

• linear_model.SGDClassifier, linear_model.SGDRegressor, linear_model.
PassiveAggressiveClassifier, linear_model.PassiveAggressiveRegressor and
linear_model.Perceptron now expose max_iter and tol parameters, to handle convergence more
precisely. n_iter parameter is deprecated, and the fitted estimator exposes a n_iter_ attribute, with actual
number of iterations before convergence. #5036 by Tom Dupre la Tour.

98 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/issues/5295
https://github.com/TomDLT
https://github.com/scikit-learn/scikit-learn/issues/7388
https://github.com/raghavrv
https://github.com/scikit-learn/scikit-learn/issues/7388
https://github.com/raghavrv
https://github.com/scikit-learn/scikit-learn/issues/7655
https://github.com/karandesai-96
https://github.com/scikit-learn/scikit-learn/issues/7739
https://github.com/davidgasquez
https://github.com/scikit-learn/scikit-learn/issues/8120
http://neerajgangwar.in
https://github.com/scikit-learn/scikit-learn/issues/7548
https://joelnothman.com/
https://github.com/scikit-learn/scikit-learn/issues/9206
http://alexandre.gramfort.net
http://alexandre.gramfort.net
https://github.com/raghavrv
https://github.com/scikit-learn/scikit-learn/issues/7441
https://github.com/nelson-liu
https://github.com/scikit-learn/scikit-learn/issues/6101
https://github.com/olologin
https://github.com/scikit-learn/scikit-learn/issues/7674
https://github.com/yl565
https://github.com/scikit-learn/scikit-learn/issues/8698
https://github.com/glemaitre
https://github.com/glemaitre
https://github.com/scikit-learn/scikit-learn/issues/7794
https://github.com/olologin
https://github.com/herilalaina
https://github.com/scikit-learn/scikit-learn/issues/5036
https://github.com/TomDLT

scikit-learn user guide, Release 0.23.2

• Added average parameter to perform weight averaging in linear_model.
PassiveAggressiveClassifier. #4939 by Andrea Esuli.

• linear_model.RANSACRegressor no longer throws an error when calling fit if no inliers are found in
its first iteration. Furthermore, causes of skipped iterations are tracked in newly added attributes, n_skips_*.
#7914 by Michael Horrell.

• In gaussian_process.GaussianProcessRegressor, method predict is a lot faster with
return_std=True. #8591 by Hadrien Bertrand.

• Added return_std to predict method of linear_model.ARDRegression and linear_model.
BayesianRidge. #7838 by Sergey Feldman.

• Memory usage enhancements: Prevent cast from float32 to float64 in: linear_model.
MultiTaskElasticNet; linear_model.LogisticRegression when using newton-cg solver; and
linear_model.Ridge when using svd, sparse_cg, cholesky or lsqr solvers. #8835, #8061 by Joan Massich
and Nicolas Cordier and Thierry Guillemot.

Other predictors

• Custom metrics for the neighbors binary trees now have fewer constraints: they must take two 1d-arrays and
return a float. #6288 by Jake Vanderplas.

• algorithm='auto in neighbors estimators now chooses the most appropriate algorithm for all input
types and metrics. #9145 by Herilalaina Rakotoarison and Reddy Chinthala.

Decomposition, manifold learning and clustering

• cluster.MiniBatchKMeans and cluster.KMeans now use significantly less memory when assigning
data points to their nearest cluster center. #7721 by Jon Crall.

• decomposition.PCA, decomposition.IncrementalPCA and decomposition.
TruncatedSVD now expose the singular values from the underlying SVD. They are stored in the
attribute singular_values_, like in decomposition.IncrementalPCA. #7685 by Tommy Löfstedt

• decomposition.NMF now faster when beta_loss=0. #9277 by @hongkahjun.

• Memory improvements for method barnes_hut in manifold.TSNE #7089 by Thomas Moreau and Olivier
Grisel.

• Optimization schedule improvements for Barnes-Hut manifold.TSNE so the results are closer to the one
from the reference implementation lvdmaaten/bhtsne by Thomas Moreau and Olivier Grisel.

• Memory usage enhancements: Prevent cast from float32 to float64 in decomposition.PCA and
decomposition.randomized_svd_low_rank. #9067 by Raghav RV.

Preprocessing and feature selection

• Added norm_order parameter to feature_selection.SelectFromModel to enable selection of the
norm order when coef_ is more than 1D. #6181 by Antoine Wendlinger.

• Added ability to use sparse matrices in feature_selection.f_regression with center=True.
#8065 by Daniel LeJeune.

• Small performance improvement to n-gram creation in feature_extraction.text by binding methods
for loops and special-casing unigrams. #7567 by Jaye Doepke

• Relax assumption on the data for the kernel_approximation.SkewedChi2Sampler. Since the
Skewed-Chi2 kernel is defined on the open interval (−𝑠𝑘𝑒𝑤𝑒𝑑𝑛𝑒𝑠𝑠; +∞)𝑑, the transform function should not
check whether X < 0 but whether X < -self.skewedness. #7573 by Romain Brault.

• Made default kernel parameters kernel-dependent in kernel_approximation.Nystroem. #5229 by
Saurabh Bansod and Andreas Müller.

1.7. Release History 99

https://github.com/scikit-learn/scikit-learn/issues/4939
https://github.com/aesuli
https://github.com/scikit-learn/scikit-learn/issues/7914
https://github.com/mthorrell
https://github.com/scikit-learn/scikit-learn/issues/8591
https://github.com/hbertrand
https://github.com/scikit-learn/scikit-learn/issues/7838
https://github.com/sergeyf
https://github.com/scikit-learn/scikit-learn/issues/8835
https://github.com/scikit-learn/scikit-learn/issues/8061
https://github.com/massich
https://github.com/ncordier
https://github.com/tguillemot
https://github.com/scikit-learn/scikit-learn/issues/6288
https://staff.washington.edu/jakevdp/
https://github.com/scikit-learn/scikit-learn/issues/9145
https://github.com/herilalaina
https://github.com/preddy5
https://github.com/scikit-learn/scikit-learn/issues/7721
https://github.com/Erotemic
https://github.com/scikit-learn/scikit-learn/issues/7685
https://github.com/tomlof
https://github.com/scikit-learn/scikit-learn/issues/9277
https://github.com/hongkahjun
https://github.com/scikit-learn/scikit-learn/issues/7089
https://github.com/tomMoral
https://twitter.com/ogrisel
https://twitter.com/ogrisel
https://github.com/lvdmaaten/bhtsne
https://github.com/tomMoral
https://twitter.com/ogrisel
https://github.com/scikit-learn/scikit-learn/issues/9067
https://github.com/raghavrv
https://github.com/scikit-learn/scikit-learn/issues/6181
https://github.com/antoinewdg
https://github.com/scikit-learn/scikit-learn/issues/8065
https://github.com/acadiansith
https://github.com/scikit-learn/scikit-learn/issues/7567
https://github.com/jtdoepke
https://github.com/scikit-learn/scikit-learn/issues/7573
https://github.com/RomainBrault
https://github.com/scikit-learn/scikit-learn/issues/5229
https://github.com/mth4saurabh
https://amueller.github.io/

scikit-learn user guide, Release 0.23.2

Model evaluation and meta-estimators

• pipeline.Pipeline is now able to cache transformers within a pipeline by using the memory constructor
parameter. #7990 by Guillaume Lemaitre.

• pipeline.Pipeline steps can now be accessed as attributes of its named_steps attribute. #8586 by
Herilalaina Rakotoarison.

• Added sample_weight parameter to pipeline.Pipeline.score. #7723 by Mikhail Korobov.

• Added ability to set n_jobs parameter to pipeline.make_union. A TypeError will be raised for any
other kwargs. #8028 by Alexander Booth.

• model_selection.GridSearchCV , model_selection.RandomizedSearchCV and
model_selection.cross_val_score now allow estimators with callable kernels which were
previously prohibited. #8005 by Andreas Müller .

• model_selection.cross_val_predict now returns output of the correct shape for all values of the
argument method. #7863 by Aman Dalmia.

• Added shuffle and random_state parameters to shuffle training data before taking prefixes of it based on
training sizes in model_selection.learning_curve. #7506 by Narine Kokhlikyan.

• model_selection.StratifiedShuffleSplit now works with multioutput multiclass (or multilabel)
data. #9044 by Vlad Niculae.

• Speed improvements to model_selection.StratifiedShuffleSplit. #5991 by Arthur Mensch and
Joel Nothman.

• Add shuffle parameter to model_selection.train_test_split. #8845 by themrmax

• multioutput.MultiOutputRegressor and multioutput.MultiOutputClassifier now
support online learning using partial_fit. :issue: 8053 by Peng Yu.

• Add max_train_size parameter to model_selection.TimeSeriesSplit #8282 by Aman Dalmia.

• More clustering metrics are now available through metrics.get_scorer and scoring parameters. #8117
by Raghav RV.

• A scorer based on metrics.explained_variance_score is also available. #9259 by Hanmin Qin.

Metrics

• metrics.matthews_corrcoef now support multiclass classification. #8094 by Jon Crall.

• Add sample_weight parameter to metrics.cohen_kappa_score. #8335 by Victor Poughon.

Miscellaneous

• utils.check_estimator now attempts to ensure that methods transform, predict, etc. do not set attributes
on the estimator. #7533 by Ekaterina Krivich.

• Added type checking to the accept_sparse parameter in utils.validation methods. This parameter
now accepts only boolean, string, or list/tuple of strings. accept_sparse=None is deprecated and should
be replaced by accept_sparse=False. #7880 by Josh Karnofsky.

• Make it possible to load a chunk of an svmlight formatted file by passing a range of bytes to datasets.
load_svmlight_file. #935 by Olivier Grisel.

• dummy.DummyClassifier and dummy.DummyRegressor now accept non-finite features. #8931 by
@Attractadore.

100 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/issues/7990
https://github.com/glemaitre
https://github.com/scikit-learn/scikit-learn/issues/8586
https://github.com/herilalaina
https://github.com/scikit-learn/scikit-learn/issues/7723
https://github.com/kmike
https://github.com/scikit-learn/scikit-learn/issues/8028
https://github.com/alexandercbooth
https://github.com/scikit-learn/scikit-learn/issues/8005
https://amueller.github.io/
https://github.com/scikit-learn/scikit-learn/issues/7863
https://github.com/dalmia
https://github.com/scikit-learn/scikit-learn/issues/7506
https://github.com/NarineK
https://github.com/scikit-learn/scikit-learn/issues/9044
https://vene.ro/
https://github.com/scikit-learn/scikit-learn/issues/5991
https://github.com/arthurmensch
https://joelnothman.com/
https://github.com/scikit-learn/scikit-learn/issues/8845
https://github.com/themrmax
https://github.com/yupbank
https://github.com/scikit-learn/scikit-learn/issues/8282
https://github.com/dalmia
https://github.com/scikit-learn/scikit-learn/issues/8117
https://github.com/raghavrv
https://github.com/scikit-learn/scikit-learn/issues/9259
https://github.com/qinhanmin2014
https://github.com/scikit-learn/scikit-learn/issues/8094
https://github.com/Erotemic
https://github.com/scikit-learn/scikit-learn/issues/8335
https://github.com/vpoughon
https://github.com/scikit-learn/scikit-learn/issues/7533
https://github.com/kiote
https://github.com/scikit-learn/scikit-learn/issues/7880
https://github.com/jkarno
https://github.com/scikit-learn/scikit-learn/issues/935
https://github.com/ogrisel
https://github.com/scikit-learn/scikit-learn/issues/8931
https://github.com/Attractadore

scikit-learn user guide, Release 0.23.2

Bug fixes

Trees and ensembles

• Fixed a memory leak in trees when using trees with criterion='mae'. #8002 by Raghav RV.

• Fixed a bug where ensemble.IsolationForest uses an an incorrect formula for the average path length
#8549 by Peter Wang.

• Fixed a bug where ensemble.AdaBoostClassifier throws ZeroDivisionError while fitting data
with single class labels. #7501 by Dominik Krzeminski.

• Fixed a bug in ensemble.GradientBoostingClassifier and ensemble.
GradientBoostingRegressor where a float being compared to 0.0 using == caused a divide by
zero error. #7970 by He Chen.

• Fix a bug where ensemble.GradientBoostingClassifier and ensemble.
GradientBoostingRegressor ignored the min_impurity_split parameter. #8006 by Sebastian
Pölsterl.

• Fixed oob_score in ensemble.BaggingClassifier. #8936 by Michael Lewis

• Fixed excessive memory usage in prediction for random forests estimators. #8672 by Mike Benfield.

• Fixed a bug where sample_weight as a list broke random forests in Python 2 #8068 by @xor.

• Fixed a bug where ensemble.IsolationForest fails when max_features is less than 1. #5732 by
Ishank Gulati.

• Fix a bug where gradient boosting with loss='quantile' computed negative errors for negative values of
ytrue - ypred leading to wrong values when calling __call__. #8087 by Alexis Mignon

• Fix a bug where ensemble.VotingClassifier raises an error when a numpy array is passed in for
weights. #7983 by Vincent Pham.

• Fixed a bug where tree.export_graphviz raised an error when the length of features_names does not
match n_features in the decision tree. #8512 by Li Li.

Linear, kernelized and related models

• Fixed a bug where linear_model.RANSACRegressor.fit may run until max_iter if it finds a large
inlier group early. #8251 by @aivision2020.

• Fixed a bug where naive_bayes.MultinomialNB and naive_bayes.BernoulliNB failed when
alpha=0. #5814 by Yichuan Liu and Herilalaina Rakotoarison.

• Fixed a bug where linear_model.LassoLars does not give the same result as the LassoLars implemen-
tation available in R (lars library). #7849 by Jair Montoya Martinez.

• Fixed a bug in linear_model.RandomizedLasso, linear_model.Lars, linear_model.
LassoLars, linear_model.LarsCV and linear_model.LassoLarsCV , where the parameter
precompute was not used consistently across classes, and some values proposed in the docstring could raise
errors. #5359 by Tom Dupre la Tour.

• Fix inconsistent results between linear_model.RidgeCV and linear_model.Ridge when using
normalize=True. #9302 by Alexandre Gramfort.

• Fix a bug where linear_model.LassoLars.fit sometimes left coef_ as a list, rather than an ndarray.
#8160 by CJ Carey.

• Fix linear_model.BayesianRidge.fit to return ridge parameter alpha_ and lambda_ consistent
with calculated coefficients coef_ and intercept_. #8224 by Peter Gedeck.

1.7. Release History 101

https://github.com/scikit-learn/scikit-learn/issues/8002
https://github.com/raghavrv
https://github.com/scikit-learn/scikit-learn/issues/8549
https://github.com/PTRWang
https://github.com/scikit-learn/scikit-learn/issues/7501
https://github.com/dokato
https://github.com/scikit-learn/scikit-learn/issues/7970
https://github.com/chenhe95
https://github.com/scikit-learn/scikit-learn/issues/8006
https://github.com/sebp
https://github.com/sebp
https://github.com/scikit-learn/scikit-learn/issues/8936
https://github.com/mlewis1729
https://github.com/scikit-learn/scikit-learn/issues/8672
https://github.com/mikebenfield
https://github.com/scikit-learn/scikit-learn/issues/8068
https://github.com/xor
https://github.com/scikit-learn/scikit-learn/issues/5732
https://github.com/IshankGulati
https://github.com/scikit-learn/scikit-learn/issues/8087
https://github.com/AlexisMignon
https://github.com/scikit-learn/scikit-learn/issues/7983
https://github.com/vincentpham1991
https://github.com/scikit-learn/scikit-learn/issues/8512
https://github.com/aikinogard
https://github.com/scikit-learn/scikit-learn/issues/8251
https://github.com/aivision2020
https://github.com/scikit-learn/scikit-learn/issues/5814
https://github.com/yl565
https://github.com/herilalaina
https://github.com/scikit-learn/scikit-learn/issues/7849
https://github.com/jmontoyam
https://github.com/scikit-learn/scikit-learn/issues/5359
https://github.com/TomDLT
https://github.com/scikit-learn/scikit-learn/issues/9302
http://alexandre.gramfort.net
https://github.com/scikit-learn/scikit-learn/issues/8160
https://github.com/perimosocordiae
https://github.com/scikit-learn/scikit-learn/issues/8224
https://github.com/gedeck

scikit-learn user guide, Release 0.23.2

• Fixed a bug in svm.OneClassSVM where it returned floats instead of integer classes. #8676 by Vathsala
Achar.

• Fix AIC/BIC criterion computation in linear_model.LassoLarsIC. #9022 by Alexandre Gramfort and
Mehmet Basbug.

• Fixed a memory leak in our LibLinear implementation. #9024 by Sergei Lebedev

• Fix bug where stratified CV splitters did not work with linear_model.LassoCV . #8973 by Paulo Haddad.

• Fixed a bug in gaussian_process.GaussianProcessRegressor when the standard deviation and
covariance predicted without fit would fail with a unmeaningful error by default. #6573 by Quazi Marufur
Rahman and Manoj Kumar.

Other predictors

• Fix semi_supervised.BaseLabelPropagation to correctly implement LabelPropagation and
LabelSpreading as done in the referenced papers. #9239 by Andre Ambrosio Boechat, Utkarsh Upadhyay,
and Joel Nothman.

Decomposition, manifold learning and clustering

• Fixed the implementation of manifold.TSNE:

• early_exageration parameter had no effect and is now used for the first 250 optimization iterations.

• Fixed the AssertionError: Tree consistency failed exception reported in #8992.

• Improve the learning schedule to match the one from the reference implementation lvdmaaten/bhtsne. by
Thomas Moreau and Olivier Grisel.

• Fix a bug in decomposition.LatentDirichletAllocation where the perplexity method was
returning incorrect results because the transform method returns normalized document topic distributions as
of version 0.18. #7954 by Gary Foreman.

• Fix output shape and bugs with n_jobs > 1 in decomposition.SparseCoder transform and
decomposition.sparse_encode for one-dimensional data and one component. This also impacts the
output shape of decomposition.DictionaryLearning. #8086 by Andreas Müller.

• Fixed the implementation of explained_variance_ in decomposition.PCA, decomposition.
RandomizedPCA and decomposition.IncrementalPCA. #9105 by Hanmin Qin.

• Fixed the implementation of noise_variance_ in decomposition.PCA. #9108 by Hanmin Qin.

• Fixed a bug where cluster.DBSCAN gives incorrect result when input is a precomputed sparse matrix with
initial rows all zero. #8306 by Akshay Gupta

• Fix a bug regarding fitting cluster.KMeans with a sparse array X and initial centroids, where X’s means
were unnecessarily being subtracted from the centroids. #7872 by Josh Karnofsky.

• Fixes to the input validation in covariance.EllipticEnvelope. #8086 by Andreas Müller.

• Fixed a bug in covariance.MinCovDet where inputting data that produced a singular covariance matrix
would cause the helper method _c_step to throw an exception. #3367 by Jeremy Steward

• Fixed a bug in manifold.TSNE affecting convergence of the gradient descent. #8768 by David DeTomaso.

• Fixed a bug in manifold.TSNE where it stored the incorrect kl_divergence_. #6507 by Sebastian
Saeger.

• Fixed improper scaling in cross_decomposition.PLSRegression with scale=True. #7819 by
jayzed82.

102 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/issues/8676
https://github.com/VathsalaAchar
https://github.com/VathsalaAchar
https://github.com/scikit-learn/scikit-learn/issues/9022
http://alexandre.gramfort.net
https://github.com/mehmetbasbug
https://github.com/scikit-learn/scikit-learn/issues/9024
https://github.com/superbobry
https://github.com/scikit-learn/scikit-learn/issues/8973
https://github.com/paulochf
https://github.com/scikit-learn/scikit-learn/issues/6573
https://github.com/qmaruf
https://github.com/qmaruf
https://manojbits.wordpress.com
https://github.com/scikit-learn/scikit-learn/issues/9239
https://github.com/boechat107
https://github.com/musically-ut
https://joelnothman.com/
https://github.com/scikit-learn/scikit-learn/issues/8992
https://github.com/lvdmaaten/bhtsne
https://github.com/tomMoral
https://twitter.com/ogrisel
https://github.com/scikit-learn/scikit-learn/issues/7954
https://github.com/garyForeman
https://github.com/scikit-learn/scikit-learn/issues/8086
https://amueller.github.io/
https://github.com/scikit-learn/scikit-learn/issues/9105
https://github.com/qinhanmin2014
https://github.com/scikit-learn/scikit-learn/issues/9108
https://github.com/qinhanmin2014
https://github.com/scikit-learn/scikit-learn/issues/8306
https://github.com/Akshay0724
https://github.com/scikit-learn/scikit-learn/issues/7872
https://github.com/jkarno
https://github.com/scikit-learn/scikit-learn/issues/8086
https://amueller.github.io/
https://github.com/scikit-learn/scikit-learn/issues/3367
https://github.com/ThatGeoGuy
https://github.com/scikit-learn/scikit-learn/issues/8768
https://github.com/deto
https://github.com/scikit-learn/scikit-learn/issues/6507
https://github.com/ssaeger
https://github.com/ssaeger
https://github.com/scikit-learn/scikit-learn/issues/7819
https://github.com/jayzed82

scikit-learn user guide, Release 0.23.2

• cluster.bicluster.SpectralCoclustering and cluster.bicluster.
SpectralBiclustering fit method conforms with API by accepting y and returning the object.
#6126, #7814 by Laurent Direr and Maniteja Nandana.

• Fix bug where mixture sample methods did not return as many samples as requested. #7702 by Levi John
Wolf.

• Fixed the shrinkage implementation in neighbors.NearestCentroid. #9219 by Hanmin Qin.

Preprocessing and feature selection

• For sparse matrices, preprocessing.normalize with return_norm=True will now raise a
NotImplementedError with ‘l1’ or ‘l2’ norm and with norm ‘max’ the norms returned will be the same as
for dense matrices. #7771 by Ang Lu.

• Fix a bug where feature_selection.SelectFdr did not exactly implement Benjamini-Hochberg pro-
cedure. It formerly may have selected fewer features than it should. #7490 by Peng Meng.

• Fixed a bug where linear_model.RandomizedLasso and linear_model.
RandomizedLogisticRegression breaks for sparse input. #8259 by Aman Dalmia.

• Fix a bug where feature_extraction.FeatureHasher mandatorily applied a sparse random projec-
tion to the hashed features, preventing the use of feature_extraction.text.HashingVectorizer
in a pipeline with feature_extraction.text.TfidfTransformer. #7565 by Roman Yurchak.

• Fix a bug where feature_selection.mutual_info_regression did not correctly use
n_neighbors. #8181 by Guillaume Lemaitre.

Model evaluation and meta-estimators

• Fixed a bug where model_selection.BaseSearchCV.inverse_transform re-
turns self.best_estimator_.transform() instead of self.best_estimator_.
inverse_transform(). #8344 by Akshay Gupta and Rasmus Eriksson.

• Added classes_ attribute to model_selection.GridSearchCV , model_selection.
RandomizedSearchCV , grid_search.GridSearchCV, and grid_search.
RandomizedSearchCV that matches the classes_ attribute of best_estimator_. #7661 and
#8295 by Alyssa Batula, Dylan Werner-Meier, and Stephen Hoover.

• Fixed a bug where model_selection.validation_curve reused the same estimator for each parame-
ter value. #7365 by Aleksandr Sandrovskii.

• model_selection.permutation_test_score now works with Pandas types. #5697 by Stijn Tonk.

• Several fixes to input validation in multiclass.OutputCodeClassifier #8086 by Andreas Müller.

• multiclass.OneVsOneClassifier’s partial_fit now ensures all classes are provided up-front.
#6250 by Asish Panda.

• Fix multioutput.MultiOutputClassifier.predict_proba to return a list of 2d arrays, rather
than a 3d array. In the case where different target columns had different numbers of classes, a ValueError
would be raised on trying to stack matrices with different dimensions. #8093 by Peter Bull.

• Cross validation now works with Pandas datatypes that that have a read-only index. #9507 by Loic Esteve.

Metrics

• metrics.average_precision_score no longer linearly interpolates between operating points, and in-
stead weighs precisions by the change in recall since the last operating point, as per the Wikipedia entry. (#7356).
By Nick Dingwall and Gael Varoquaux.

• Fix a bug in metrics.classification._check_targetswhich would return 'binary' if y_true
and y_pred were both 'binary' but the union of y_true and y_pred was 'multiclass'. #8377 by
Loic Esteve.

1.7. Release History 103

https://github.com/scikit-learn/scikit-learn/issues/6126
https://github.com/scikit-learn/scikit-learn/issues/7814
https://github.com/ldirer
https://github.com/maniteja123
https://github.com/scikit-learn/scikit-learn/issues/7702
https://github.com/ljwolf
https://github.com/ljwolf
https://github.com/scikit-learn/scikit-learn/issues/9219
https://github.com/qinhanmin2014
https://github.com/scikit-learn/scikit-learn/issues/7771
https://github.com/luang008
https://github.com/scikit-learn/scikit-learn/issues/7490
https://github.com/mpjlu
https://github.com/scikit-learn/scikit-learn/issues/8259
https://github.com/dalmia
https://github.com/scikit-learn/scikit-learn/issues/7565
https://github.com/rth
https://github.com/scikit-learn/scikit-learn/issues/8181
https://github.com/glemaitre
https://github.com/scikit-learn/scikit-learn/issues/8344
https://github.com/Akshay0724
https://github.com/MrMjauh
https://github.com/scikit-learn/scikit-learn/issues/7661
https://github.com/scikit-learn/scikit-learn/issues/8295
https://github.com/abatula
https://github.com/unautre
https://github.com/stephen-hoover
https://github.com/scikit-learn/scikit-learn/issues/7365
https://github.com/Sundrique
https://github.com/scikit-learn/scikit-learn/issues/5697
https://github.com/equialgo
https://github.com/scikit-learn/scikit-learn/issues/8086
https://amueller.github.io/
https://github.com/scikit-learn/scikit-learn/issues/6250
https://github.com/kaichogami
https://github.com/scikit-learn/scikit-learn/issues/8093
https://github.com/pjbull
https://github.com/scikit-learn/scikit-learn/issues/9507
https://github.com/lesteve
https://en.wikipedia.org/wiki/Average_precision
https://github.com/scikit-learn/scikit-learn/pull/7356
https://github.com/ndingwall
http://gael-varoquaux.info
https://github.com/scikit-learn/scikit-learn/issues/8377
https://github.com/lesteve

scikit-learn user guide, Release 0.23.2

• Fixed an integer overflow bug in metrics.confusion_matrix and hence metrics.
cohen_kappa_score. #8354, #7929 by Joel Nothman and Jon Crall.

• Fixed passing of gamma parameter to the chi2 kernel in metrics.pairwise.pairwise_kernels
#5211 by Nick Rhinehart, Saurabh Bansod and Andreas Müller.

Miscellaneous

• Fixed a bug when datasets.make_classification fails when generating more than 30 features. #8159
by Herilalaina Rakotoarison.

• Fixed a bug where datasets.make_moons gives an incorrect result when n_samples is odd. #8198 by
Josh Levy.

• Some fetch_ functions in datasets were ignoring the download_if_missing keyword. #7944 by
Ralf Gommers.

• Fix estimators to accept a sample_weight parameter of type pandas.Series in their fit function.
#7825 by Kathleen Chen.

• Fix a bug in cases where numpy.cumsum may be numerically unstable, raising an exception if instability is
identified. #7376 and #7331 by Joel Nothman and @yangarbiter.

• Fix a bug where base.BaseEstimator.__getstate__ obstructed pickling customizations of child-
classes, when used in a multiple inheritance context. #8316 by Holger Peters.

• Update Sphinx-Gallery from 0.1.4 to 0.1.7 for resolving links in documentation build with Sphinx>1.5 #8010,
#7986 by Oscar Najera

• Add data_home parameter to sklearn.datasets.fetch_kddcup99. #9289 by Loic Esteve.

• Fix dataset loaders using Python 3 version of makedirs to also work in Python 2. #9284 by Sebastin Santy.

• Several minor issues were fixed with thanks to the alerts of lgtm.com. #9278 by Jean Helie,
among others.

API changes summary

Trees and ensembles

• Gradient boosting base models are no longer estimators. By Andreas Müller.

• All tree based estimators now accept a min_impurity_decrease parameter in lieu of the
min_impurity_split, which is now deprecated. The min_impurity_decrease helps stop
splitting the nodes in which the weighted impurity decrease from splitting is no longer at least
min_impurity_decrease. #8449 by Raghav RV.

Linear, kernelized and related models

• n_iter parameter is deprecated in linear_model.SGDClassifier, linear_model.
SGDRegressor, linear_model.PassiveAggressiveClassifier, linear_model.
PassiveAggressiveRegressor and linear_model.Perceptron. By Tom Dupre la Tour.

Other predictors

• neighbors.LSHForest has been deprecated and will be removed in 0.21 due to poor performance. #9078
by Laurent Direr.

• neighbors.NearestCentroid no longer purports to support metric='precomputed' which now
raises an error. #8515 by Sergul Aydore.

• The alpha parameter of semi_supervised.LabelPropagation now has no effect and is deprecated
to be removed in 0.21. #9239 by Andre Ambrosio Boechat, Utkarsh Upadhyay, and Joel Nothman.

104 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/issues/8354
https://github.com/scikit-learn/scikit-learn/issues/7929
https://joelnothman.com/
https://github.com/Erotemic
https://github.com/scikit-learn/scikit-learn/issues/5211
https://github.com/nrhine1
https://github.com/mth4saurabh
https://amueller.github.io/
https://github.com/scikit-learn/scikit-learn/issues/8159
https://github.com/herilalaina
https://github.com/scikit-learn/scikit-learn/issues/8198
https://github.com/levy5674
https://github.com/scikit-learn/scikit-learn/issues/7944
https://github.com/rgommers
https://github.com/scikit-learn/scikit-learn/issues/7825
https://github.com/kchen17
https://github.com/scikit-learn/scikit-learn/issues/7376
https://github.com/scikit-learn/scikit-learn/issues/7331
https://joelnothman.com/
https://github.com/yangarbiter
https://github.com/scikit-learn/scikit-learn/issues/8316
https://github.com/HolgerPeters
https://github.com/scikit-learn/scikit-learn/issues/8010
https://github.com/scikit-learn/scikit-learn/issues/7986
https://github.com/Titan-C
https://github.com/scikit-learn/scikit-learn/issues/9289
https://github.com/lesteve
https://github.com/scikit-learn/scikit-learn/issues/9284
https://github.com/SebastinSanty
https://lgtm.com/
https://github.com/scikit-learn/scikit-learn/issues/9278
https://github.com/jhelie
https://amueller.github.io/
https://github.com/scikit-learn/scikit-learn/issues/8449
https://github.com/raghavrv
https://github.com/TomDLT
https://github.com/scikit-learn/scikit-learn/issues/9078
https://github.com/ldirer
https://github.com/scikit-learn/scikit-learn/issues/8515
https://github.com/sergulaydore
https://github.com/scikit-learn/scikit-learn/issues/9239
https://github.com/boechat107
https://github.com/musically-ut
https://joelnothman.com/

scikit-learn user guide, Release 0.23.2

Decomposition, manifold learning and clustering

• Deprecate the doc_topic_distr argument of the perplexity method in decomposition.
LatentDirichletAllocation because the user no longer has access to the unnormalized document topic
distribution needed for the perplexity calculation. #7954 by Gary Foreman.

• The n_topics parameter of decomposition.LatentDirichletAllocation has been renamed to
n_components and will be removed in version 0.21. #8922 by @Attractadore.

• decomposition.SparsePCA.transform’s ridge_alpha parameter is deprecated in preference for
class parameter. #8137 by Naoya Kanai.

• cluster.DBSCAN now has a metric_params parameter. #8139 by Naoya Kanai.

Preprocessing and feature selection

• feature_selection.SelectFromModel now has a partial_fit method only if the underlying es-
timator does. By Andreas Müller.

• feature_selection.SelectFromModel now validates the threshold parameter and sets the
threshold_ attribute during the call to fit, and no longer during the call to transform`. By Andreas
Müller.

• The non_negative parameter in feature_extraction.FeatureHasher has been deprecated, and
replaced with a more principled alternative, alternate_sign. #7565 by Roman Yurchak.

• linear_model.RandomizedLogisticRegression, and linear_model.RandomizedLasso
have been deprecated and will be removed in version 0.21. #8995 by Ramana.S.

Model evaluation and meta-estimators

• Deprecate the fit_params constructor input to the model_selection.GridSearchCV and
model_selection.RandomizedSearchCV in favor of passing keyword parameters to the fit methods
of those classes. Data-dependent parameters needed for model training should be passed as keyword arguments
to fit, and conforming to this convention will allow the hyperparameter selection classes to be used with tools
such as model_selection.cross_val_predict. #2879 by Stephen Hoover.

• In version 0.21, the default behavior of splitters that use the test_size and train_size parameter will
change, such that specifying train_size alone will cause test_size to be the remainder. #7459 by Nelson
Liu.

• multiclass.OneVsRestClassifier now has partial_fit, decision_function and
predict_proba methods only when the underlying estimator does. #7812 by Andreas Müller and Mikhail
Korobov.

• multiclass.OneVsRestClassifier now has a partial_fit method only if the underlying estima-
tor does. By Andreas Müller.

• The decision_function output shape for binary classification in multiclass.
OneVsRestClassifier and multiclass.OneVsOneClassifier is now (n_samples,) to
conform to scikit-learn conventions. #9100 by Andreas Müller.

• The multioutput.MultiOutputClassifier.predict_proba function used to return a 3d array
(n_samples, n_classes, n_outputs). In the case where different target columns had different numbers
of classes, a ValueError would be raised on trying to stack matrices with different dimensions. This func-
tion now returns a list of arrays where the length of the list is n_outputs, and each array is (n_samples,
n_classes) for that particular output. #8093 by Peter Bull.

• Replace attribute named_steps dict to utils.Bunch in pipeline.Pipeline to enable tab com-
pletion in interactive environment. In the case conflict value on named_steps and dict attribute, dict
behavior will be prioritized. #8481 by Herilalaina Rakotoarison.

Miscellaneous

1.7. Release History 105

https://github.com/scikit-learn/scikit-learn/issues/7954
https://github.com/garyForeman
https://github.com/scikit-learn/scikit-learn/issues/8922
https://github.com/Attractadore
https://github.com/scikit-learn/scikit-learn/issues/8137
https://github.com/naoyak
https://github.com/scikit-learn/scikit-learn/issues/8139
https://github.com/naoyak
https://amueller.github.io/
https://amueller.github.io/
https://amueller.github.io/
https://github.com/scikit-learn/scikit-learn/issues/7565
https://github.com/rth
https://github.com/scikit-learn/scikit-learn/issues/8995
https://github.com/sentient07
https://github.com/scikit-learn/scikit-learn/issues/2879
https://github.com/stephen-hoover
https://github.com/scikit-learn/scikit-learn/issues/7459
https://github.com/nelson-liu
https://github.com/nelson-liu
https://github.com/scikit-learn/scikit-learn/issues/7812
https://amueller.github.io/
https://github.com/kmike
https://github.com/kmike
https://amueller.github.io/
https://github.com/scikit-learn/scikit-learn/issues/9100
https://amueller.github.io/
https://github.com/scikit-learn/scikit-learn/issues/8093
https://github.com/pjbull
https://github.com/scikit-learn/scikit-learn/issues/8481
https://github.com/herilalaina

scikit-learn user guide, Release 0.23.2

• Deprecate the y parameter in transform and inverse_transform. The method should not accept y
parameter, as it’s used at the prediction time. #8174 by Tahar Zanouda, Alexandre Gramfort and Raghav RV.

• SciPy >= 0.13.3 and NumPy >= 1.8.2 are now the minimum supported versions for scikit-learn. The following
backported functions in utils have been removed or deprecated accordingly. #8854 and #8874 by Naoya
Kanai

• The store_covariances and covariances_ parameters of discriminant_analysis.
QuadraticDiscriminantAnalysis has been renamed to store_covariance and covariance_
to be consistent with the corresponding parameter names of the discriminant_analysis.
LinearDiscriminantAnalysis. They will be removed in version 0.21. #7998 by Jiacheng

Removed in 0.19:

– utils.fixes.argpartition

– utils.fixes.array_equal

– utils.fixes.astype

– utils.fixes.bincount

– utils.fixes.expit

– utils.fixes.frombuffer_empty

– utils.fixes.in1d

– utils.fixes.norm

– utils.fixes.rankdata

– utils.fixes.safe_copy

Deprecated in 0.19, to be removed in 0.21:

– utils.arpack.eigs

– utils.arpack.eigsh

– utils.arpack.svds

– utils.extmath.fast_dot

– utils.extmath.logsumexp

– utils.extmath.norm

– utils.extmath.pinvh

– utils.graph.graph_laplacian

– utils.random.choice

– utils.sparsetools.connected_components

– utils.stats.rankdata

• Estimators with both methods decision_function and predict_proba are now required to have a
monotonic relation between them. The method check_decision_proba_consistency has been added
in utils.estimator_checks to check their consistency. #7578 by Shubham Bhardwaj

• All checks in utils.estimator_checks, in particular utils.estimator_checks.
check_estimator now accept estimator instances. Most other checks do not accept estimator classes any
more. #9019 by Andreas Müller.

106 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/issues/8174
https://github.com/tzano
http://alexandre.gramfort.net
https://github.com/raghavrv
https://github.com/scikit-learn/scikit-learn/issues/8854
https://github.com/scikit-learn/scikit-learn/issues/8874
https://github.com/naoyak
https://github.com/naoyak
https://github.com/scikit-learn/scikit-learn/issues/7998
https://github.com/mrbeann
https://github.com/scikit-learn/scikit-learn/issues/7578
https://github.com/shubham0704
https://github.com/scikit-learn/scikit-learn/issues/9019
https://amueller.github.io/

scikit-learn user guide, Release 0.23.2

• Ensure that estimators’ attributes ending with _ are not set in the constructor but only in the fit method.
Most notably, ensemble estimators (deriving from ensemble.BaseEnsemble) now only have self.
estimators_ available after fit. #7464 by Lars Buitinck and Loic Esteve.

Code and Documentation Contributors

Thanks to everyone who has contributed to the maintenance and improvement of the project since version 0.18, in-
cluding:

Joel Nothman, Loic Esteve, Andreas Mueller, Guillaume Lemaitre, Olivier Grisel, Hanmin Qin, Raghav RV, Alexandre
Gramfort, themrmax, Aman Dalmia, Gael Varoquaux, Naoya Kanai, Tom Dupré la Tour, Rishikesh, Nelson Liu, Tae-
hoon Lee, Nelle Varoquaux, Aashil, Mikhail Korobov, Sebastin Santy, Joan Massich, Roman Yurchak, RAKOTOARI-
SON Herilalaina, Thierry Guillemot, Alexandre Abadie, Carol Willing, Balakumaran Manoharan, Josh Karnofsky,
Vlad Niculae, Utkarsh Upadhyay, Dmitry Petrov, Minghui Liu, Srivatsan, Vincent Pham, Albert Thomas, Jake Van-
derPlas, Attractadore, JC Liu, alexandercbooth, chkoar, Óscar Nájera, Aarshay Jain, Kyle Gilliam, Ramana Subra-
manyam, CJ Carey, Clement Joudet, David Robles, He Chen, Joris Van den Bossche, Karan Desai, Katie Luangkote,
Leland McInnes, Maniteja Nandana, Michele Lacchia, Sergei Lebedev, Shubham Bhardwaj, akshay0724, omtcyfz,
rickiepark, waterponey, Vathsala Achar, jbDelafosse, Ralf Gommers, Ekaterina Krivich, Vivek Kumar, Ishank Gulati,
Dave Elliott, ldirer, Reiichiro Nakano, Levi John Wolf, Mathieu Blondel, Sid Kapur, Dougal J. Sutherland, midinas,
mikebenfield, Sourav Singh, Aseem Bansal, Ibraim Ganiev, Stephen Hoover, AishwaryaRK, Steven C. Howell, Gary
Foreman, Neeraj Gangwar, Tahar, Jon Crall, dokato, Kathy Chen, ferria, Thomas Moreau, Charlie Brummitt, Nicolas
Goix, Adam Kleczewski, Sam Shleifer, Nikita Singh, Basil Beirouti, Giorgio Patrini, Manoj Kumar, Rafael Possas,
James Bourbeau, James A. Bednar, Janine Harper, Jaye, Jean Helie, Jeremy Steward, Artsiom, John Wei, Jonathan
LIgo, Jonathan Rahn, seanpwilliams, Arthur Mensch, Josh Levy, Julian Kuhlmann, Julien Aubert, Jörn Hees, Kai,
shivamgargsya, Kat Hempstalk, Kaushik Lakshmikanth, Kennedy, Kenneth Lyons, Kenneth Myers, Kevin Yap, Kir-
ill Bobyrev, Konstantin Podshumok, Arthur Imbert, Lee Murray, toastedcornflakes, Lera, Li Li, Arthur Douillard,
Mainak Jas, tobycheese, Manraj Singh, Manvendra Singh, Marc Meketon, MarcoFalke, Matthew Brett, Matthias
Gilch, Mehul Ahuja, Melanie Goetz, Meng, Peng, Michael Dezube, Michal Baumgartner, vibrantabhi19, Artem Golu-
bin, Milen Paskov, Antonin Carette, Morikko, MrMjauh, NALEPA Emmanuel, Namiya, Antoine Wendlinger, Narine
Kokhlikyan, NarineK, Nate Guerin, Angus Williams, Ang Lu, Nicole Vavrova, Nitish Pandey, Okhlopkov Daniil
Olegovich, Andy Craze, Om Prakash, Parminder Singh, Patrick Carlson, Patrick Pei, Paul Ganssle, Paulo Haddad,
Paweł Lorek, Peng Yu, Pete Bachant, Peter Bull, Peter Csizsek, Peter Wang, Pieter Arthur de Jong, Ping-Yao, Chang,
Preston Parry, Puneet Mathur, Quentin Hibon, Andrew Smith, Andrew Jackson, 1kastner, Rameshwar Bhaskaran, Re-
becca Bilbro, Remi Rampin, Andrea Esuli, Rob Hall, Robert Bradshaw, Romain Brault, Aman Pratik, Ruifeng Zheng,
Russell Smith, Sachin Agarwal, Sailesh Choyal, Samson Tan, Samuël Weber, Sarah Brown, Sebastian Pölsterl, Se-
bastian Raschka, Sebastian Saeger, Alyssa Batula, Abhyuday Pratap Singh, Sergey Feldman, Sergul Aydore, Sharan
Yalburgi, willduan, Siddharth Gupta, Sri Krishna, Almer, Stijn Tonk, Allen Riddell, Theofilos Papapanagiotou, Alison,
Alexis Mignon, Tommy Boucher, Tommy Löfstedt, Toshihiro Kamishima, Tyler Folkman, Tyler Lanigan, Alexander
Junge, Varun Shenoy, Victor Poughon, Vilhelm von Ehrenheim, Aleksandr Sandrovskii, Alan Yee, Vlasios Vasileiou,
Warut Vijitbenjaronk, Yang Zhang, Yaroslav Halchenko, Yichuan Liu, Yuichi Fujikawa, affanv14, aivision2020, xor,
andreh7, brady salz, campustrampus, Agamemnon Krasoulis, ditenberg, elena-sharova, filipj8, fukatani, gedeck, guin-
iol, guoci, hakaa1, hongkahjun, i-am-xhy, jakirkham, jaroslaw-weber, jayzed82, jeroko, jmontoyam, jonathan.striebel,
josephsalmon, jschendel, leereeves, martin-hahn, mathurinm, mehak-sachdeva, mlewis1729, mlliou112, mthorrell,
ndingwall, nuffe, yangarbiter, plagree, pldtc325, Breno Freitas, Brett Olsen, Brian A. Alfano, Brian Burns, polmauri,
Brandon Carter, Charlton Austin, Chayant T15h, Chinmaya Pancholi, Christian Danielsen, Chung Yen, Chyi-Kwei
Yau, pravarmahajan, DOHMATOB Elvis, Daniel LeJeune, Daniel Hnyk, Darius Morawiec, David DeTomaso, David
Gasquez, David Haberthür, David Heryanto, David Kirkby, David Nicholson, rashchedrin, Deborah Gertrude Digges,
Denis Engemann, Devansh D, Dickson, Bob Baxley, Don86, E. Lynch-Klarup, Ed Rogers, Elizabeth Ferriss, Ellen-
Co2, Fabian Egli, Fang-Chieh Chou, Bing Tian Dai, Greg Stupp, Grzegorz Szpak, Bertrand Thirion, Hadrien Bertrand,
Harizo Rajaona, zxcvbnius, Henry Lin, Holger Peters, Icyblade Dai, Igor Andriushchenko, Ilya, Isaac Laughlin, Iván
Vallés, Aurélien Bellet, JPFrancoia, Jacob Schreiber, Asish Mahapatra

1.7. Release History 107

https://github.com/scikit-learn/scikit-learn/issues/7464
https://github.com/larsmans
https://github.com/lesteve

scikit-learn user guide, Release 0.23.2

1.7.20 Version 0.18.2

June 20, 2017

Last release with Python 2.6 support

Scikit-learn 0.18 is the last major release of scikit-learn to support Python 2.6. Later versions of scikit-learn will
require Python 2.7 or above.

Changelog

• Fixes for compatibility with NumPy 1.13.0: #7946 #8355 by Loic Esteve.

• Minor compatibility changes in the examples #9010 #8040 #9149.

Code Contributors

Aman Dalmia, Loic Esteve, Nate Guerin, Sergei Lebedev

1.7.21 Version 0.18.1

November 11, 2016

Changelog

Enhancements

• Improved sample_without_replacement speed by utilizing numpy.random.permutation for most cases.
As a result, samples may differ in this release for a fixed random state. Affected estimators:

– ensemble.BaggingClassifier

– ensemble.BaggingRegressor

– linear_model.RANSACRegressor

– model_selection.RandomizedSearchCV

– random_projection.SparseRandomProjection

This also affects the datasets.make_classification method.

Bug fixes

• Fix issue where min_grad_norm and n_iter_without_progress parameters were not being utilised
by manifold.TSNE. #6497 by Sebastian Säger

• Fix bug for svm’s decision values when decision_function_shape is ovr in svm.SVC. svm.SVC’s
decision_function was incorrect from versions 0.17.0 through 0.18.0. #7724 by Bing Tian Dai

• Attribute explained_variance_ratio of discriminant_analysis.
LinearDiscriminantAnalysis calculated with SVD and Eigen solver are now of the same length.
#7632 by JPFrancoia

108 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/issues/7946
https://github.com/scikit-learn/scikit-learn/issues/8355
https://github.com/lesteve
https://github.com/scikit-learn/scikit-learn/issues/9010
https://github.com/scikit-learn/scikit-learn/issues/8040
https://github.com/scikit-learn/scikit-learn/issues/9149
https://github.com/scikit-learn/scikit-learn/issues/6497
https://github.com/ssaeger
https://github.com/scikit-learn/scikit-learn/issues/7724
https://github.com/btdai
https://github.com/scikit-learn/scikit-learn/issues/7632
https://github.com/JPFrancoia

scikit-learn user guide, Release 0.23.2

• Fixes issue in Univariate feature selection where score functions were not accepting multi-label targets. #7676
by Mohammed Affan

• Fixed setting parameters when calling fit multiple times on feature_selection.SelectFromModel.
#7756 by Andreas Müller

• Fixes issue in partial_fit method of multiclass.OneVsRestClassifier when number of classes
used in partial_fit was less than the total number of classes in the data. #7786 by Srivatsan Ramesh

• Fixes issue in calibration.CalibratedClassifierCV where the sum of probabilities of each class
for a data was not 1, and CalibratedClassifierCV now handles the case where the training set has less
number of classes than the total data. #7799 by Srivatsan Ramesh

• Fix a bug where sklearn.feature_selection.SelectFdr did not exactly implement Benjamini-
Hochberg procedure. It formerly may have selected fewer features than it should. #7490 by Peng Meng.

• sklearn.manifold.LocallyLinearEmbedding now correctly handles integer inputs. #6282 by Jake
Vanderplas.

• The min_weight_fraction_leaf parameter of tree-based classifiers and regressors now assumes uniform
sample weights by default if the sample_weight argument is not passed to the fit function. Previously, the
parameter was silently ignored. #7301 by Nelson Liu.

• Numerical issue with linear_model.RidgeCV on centered data when n_features > n_samples.
#6178 by Bertrand Thirion

• Tree splitting criterion classes’ cloning/pickling is now memory safe #7680 by Ibraim Ganiev.

• Fixed a bug where decomposition.NMF sets its n_iters_ attribute in transform(). #7553 by Ekate-
rina Krivich.

• sklearn.linear_model.LogisticRegressionCV now correctly handles string labels. #5874 by
Raghav RV.

• Fixed a bug where sklearn.model_selection.train_test_split raised an error when
stratify is a list of string labels. #7593 by Raghav RV.

• Fixed a bug where sklearn.model_selection.GridSearchCV and sklearn.
model_selection.RandomizedSearchCV were not pickleable because of a pickling bug in np.
ma.MaskedArray. #7594 by Raghav RV.

• All cross-validation utilities in sklearn.model_selection now permit one time cross-validation splitters
for the cv parameter. Also non-deterministic cross-validation splitters (where multiple calls to split produce
dissimilar splits) can be used as cv parameter. The sklearn.model_selection.GridSearchCV will
cross-validate each parameter setting on the split produced by the first split call to the cross-validation splitter.
#7660 by Raghav RV.

• Fix bug where preprocessing.MultiLabelBinarizer.fit_transform returned an invalid CSR
matrix. #7750 by CJ Carey.

• Fixed a bug where metrics.pairwise.cosine_distances could return a small negative distance.
#7732 by Artsion.

API changes summary

Trees and forests

• The min_weight_fraction_leaf parameter of tree-based classifiers and regressors now assumes uniform
sample weights by default if the sample_weight argument is not passed to the fit function. Previously, the
parameter was silently ignored. #7301 by Nelson Liu.

• Tree splitting criterion classes’ cloning/pickling is now memory safe. #7680 by Ibraim Ganiev.

1.7. Release History 109

https://github.com/scikit-learn/scikit-learn/issues/7676
https://github.com/affanv14
https://github.com/scikit-learn/scikit-learn/issues/7756
https://amueller.github.io/
https://github.com/scikit-learn/scikit-learn/issues/7786
https://github.com/srivatsan-ramesh
https://github.com/scikit-learn/scikit-learn/issues/7799
https://github.com/srivatsan-ramesh
https://github.com/scikit-learn/scikit-learn/issues/7490
https://github.com/mpjlu
https://github.com/scikit-learn/scikit-learn/issues/6282
https://staff.washington.edu/jakevdp/
https://staff.washington.edu/jakevdp/
https://github.com/scikit-learn/scikit-learn/issues/7301
https://github.com/nelson-liu
https://github.com/scikit-learn/scikit-learn/issues/6178
https://team.inria.fr/parietal/bertrand-thirions-page
https://github.com/scikit-learn/scikit-learn/issues/7680
https://github.com/olologin
https://github.com/scikit-learn/scikit-learn/issues/7553
https://github.com/kiote
https://github.com/kiote
https://github.com/scikit-learn/scikit-learn/issues/5874
https://github.com/raghavrv
https://github.com/scikit-learn/scikit-learn/issues/7593
https://github.com/raghavrv
https://github.com/scikit-learn/scikit-learn/issues/7594
https://github.com/raghavrv
https://github.com/scikit-learn/scikit-learn/issues/7660
https://github.com/raghavrv
https://github.com/scikit-learn/scikit-learn/issues/7750
https://github.com/perimosocordiae
https://github.com/scikit-learn/scikit-learn/issues/7732
https://github.com/asanakoy
https://github.com/scikit-learn/scikit-learn/issues/7301
https://github.com/nelson-liu
https://github.com/scikit-learn/scikit-learn/issues/7680
https://github.com/olologin

scikit-learn user guide, Release 0.23.2

Linear, kernelized and related models

• Length of explained_variance_ratio of discriminant_analysis.
LinearDiscriminantAnalysis changed for both Eigen and SVD solvers. The attribute has now
a length of min(n_components, n_classes - 1). #7632 by JPFrancoia

• Numerical issue with linear_model.RidgeCV on centered data when n_features > n_samples.
#6178 by Bertrand Thirion

1.7.22 Version 0.18

September 28, 2016

Last release with Python 2.6 support

Scikit-learn 0.18 will be the last version of scikit-learn to support Python 2.6. Later versions of scikit-learn will
require Python 2.7 or above.

Model Selection Enhancements and API Changes

• The model_selection module

The new module sklearn.model_selection, which groups together the functionalities of formerly
sklearn.cross_validation, sklearn.grid_search and sklearn.learning_curve, intro-
duces new possibilities such as nested cross-validation and better manipulation of parameter searches with Pan-
das.

Many things will stay the same but there are some key differences. Read below to know more about the changes.

• Data-independent CV splitters enabling nested cross-validation

The new cross-validation splitters, defined in the sklearn.model_selection, are no longer initialized
with any data-dependent parameters such as y. Instead they expose a split method that takes in the data and
yields a generator for the different splits.

This change makes it possible to use the cross-validation splitters to perform nested cross-validation, facilitated
by model_selection.GridSearchCV and model_selection.RandomizedSearchCV utilities.

• The enhanced cv_results_ attribute

The new cv_results_ attribute (of model_selection.GridSearchCV and model_selection.
RandomizedSearchCV) introduced in lieu of the grid_scores_ attribute is a dict of 1D arrays with
elements in each array corresponding to the parameter settings (i.e. search candidates).

The cv_results_ dict can be easily imported into pandas as a DataFrame for exploring the search results.

The cv_results_ arrays include scores for each cross-validation split (with keys such as
'split0_test_score'), as well as their mean ('mean_test_score') and standard deviation
('std_test_score').

The ranks for the search candidates (based on their mean cross-validation score) is available at
cv_results_['rank_test_score'].

The parameter values for each parameter is stored separately as numpy masked object arrays. The value, for
that search candidate, is masked if the corresponding parameter is not applicable. Additionally a list of all the
parameter dicts are stored at cv_results_['params'].

110 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/issues/7632
https://github.com/JPFrancoia
https://github.com/scikit-learn/scikit-learn/issues/6178
https://team.inria.fr/parietal/bertrand-thirions-page

scikit-learn user guide, Release 0.23.2

• Parameters n_folds and n_iter renamed to n_splits

Some parameter names have changed: The n_folds parameter in new model_selection.KFold,
model_selection.GroupKFold (see below for the name change), and model_selection.
StratifiedKFold is now renamed to n_splits. The n_iter parameter in model_selection.
ShuffleSplit, the new class model_selection.GroupShuffleSplit and model_selection.
StratifiedShuffleSplit is now renamed to n_splits.

• Rename of splitter classes which accepts group labels along with data

The cross-validation splitters LabelKFold, LabelShuffleSplit, LeaveOneLabelOut and
LeavePLabelOut have been renamed to model_selection.GroupKFold, model_selection.
GroupShuffleSplit, model_selection.LeaveOneGroupOut and model_selection.
LeavePGroupsOut respectively.

Note the change from singular to plural form in model_selection.LeavePGroupsOut.

• Fit parameter labels renamed to groups

The labels parameter in the split method of the newly renamed splitters model_selection.
GroupKFold, model_selection.LeaveOneGroupOut, model_selection.
LeavePGroupsOut, model_selection.GroupShuffleSplit is renamed to groups following the
new nomenclature of their class names.

• Parameter n_labels renamed to n_groups

The parameter n_labels in the newly renamed model_selection.LeavePGroupsOut is changed to
n_groups.

• Training scores and Timing information

cv_results_ also includes the training scores for each cross-validation split (with keys such
as 'split0_train_score'), as well as their mean ('mean_train_score') and stan-
dard deviation ('std_train_score'). To avoid the cost of evaluating training score, set
return_train_score=False.

Additionally the mean and standard deviation of the times taken to split, train and score the model across all the
cross-validation splits is available at the key 'mean_time' and 'std_time' respectively.

Changelog

New features

Classifiers and Regressors

• The Gaussian Process module has been reimplemented and now offers classification and regression esti-
mators through gaussian_process.GaussianProcessClassifier and gaussian_process.
GaussianProcessRegressor. Among other things, the new implementation supports kernel engineering,
gradient-based hyperparameter optimization or sampling of functions from GP prior and GP posterior. Extensive
documentation and examples are provided. By Jan Hendrik Metzen.

• Added new supervised learning algorithm: Multi-layer Perceptron #3204 by Issam H. Laradji

• Added linear_model.HuberRegressor, a linear model robust to outliers. #5291 by Manoj Kumar.

• Added the multioutput.MultiOutputRegressor meta-estimator. It converts single output regressors
to multi-output regressors by fitting one regressor per output. By Tim Head.

Other estimators

1.7. Release History 111

https://jmetzen.github.io/
https://github.com/scikit-learn/scikit-learn/issues/3204
https://github.com/IssamLaradji
https://github.com/scikit-learn/scikit-learn/issues/5291
https://manojbits.wordpress.com
https://github.com/betatim

scikit-learn user guide, Release 0.23.2

• New mixture.GaussianMixture and mixture.BayesianGaussianMixture replace former mix-
ture models, employing faster inference for sounder results. #7295 by Wei Xue and Thierry Guillemot.

• Class decomposition.RandomizedPCA is now factored into decomposition.PCA and it is avail-
able calling with parameter svd_solver='randomized'. The default number of n_iter for
'randomized' has changed to 4. The old behavior of PCA is recovered by svd_solver='full'. An
additional solver calls arpack and performs truncated (non-randomized) SVD. By default, the best solver is
selected depending on the size of the input and the number of components requested. #5299 by Giorgio Patrini.

• Added two functions for mutual information estimation: feature_selection.
mutual_info_classif and feature_selection.mutual_info_regression. These
functions can be used in feature_selection.SelectKBest and feature_selection.
SelectPercentile as score functions. By Andrea Bravi and Nikolay Mayorov.

• Added the ensemble.IsolationForest class for anomaly detection based on random forests. By Nicolas
Goix.

• Added algorithm="elkan" to cluster.KMeans implementing Elkan’s fast K-Means algorithm. By
Andreas Müller.

Model selection and evaluation

• Added metrics.cluster.fowlkes_mallows_score, the Fowlkes Mallows Index which measures the
similarity of two clusterings of a set of points By Arnaud Fouchet and Thierry Guillemot.

• Added metrics.calinski_harabaz_score, which computes the Calinski and Harabaz score to evalu-
ate the resulting clustering of a set of points. By Arnaud Fouchet and Thierry Guillemot.

• Added new cross-validation splitter model_selection.TimeSeriesSplit to handle time series data.
#6586 by YenChen Lin

• The cross-validation iterators are replaced by cross-validation splitters available from sklearn.
model_selection, allowing for nested cross-validation. See Model Selection Enhancements and API
Changes for more information. #4294 by Raghav RV.

Enhancements

Trees and ensembles

• Added a new splitting criterion for tree.DecisionTreeRegressor, the mean absolute er-
ror. This criterion can also be used in ensemble.ExtraTreesRegressor, ensemble.
RandomForestRegressor, and the gradient boosting estimators. #6667 by Nelson Liu.

• Added weighted impurity-based early stopping criterion for decision tree growth. #6954 by Nelson Liu

• The random forest, extra tree and decision tree estimators now has a method decision_path which returns
the decision path of samples in the tree. By Arnaud Joly.

• A new example has been added unveiling the decision tree structure. By Arnaud Joly.

• Random forest, extra trees, decision trees and gradient boosting estimator accept the parameter
min_samples_split and min_samples_leaf provided as a percentage of the training samples. By
yelite and Arnaud Joly.

• Gradient boosting estimators accept the parameter criterion to specify to splitting criterion used in built
decision trees. #6667 by Nelson Liu.

• The memory footprint is reduced (sometimes greatly) for ensemble.bagging.BaseBagging and classes
that inherit from it, i.e, ensemble.BaggingClassifier, ensemble.BaggingRegressor, and
ensemble.IsolationForest, by dynamically generating attribute estimators_samples_ only
when it is needed. By David Staub.

112 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/issues/7295
https://github.com/xuewei4d
https://github.com/tguillemot
https://github.com/scikit-learn/scikit-learn/issues/5299
https://github.com/giorgiop
https://github.com/AndreaBravi
https://github.com/nmayorov
https://ngoix.github.io/
https://ngoix.github.io/
https://amueller.github.io/
https://github.com/afouchet
https://github.com/tguillemot
https://github.com/afouchet
https://github.com/tguillemot
https://github.com/scikit-learn/scikit-learn/issues/6586
https://github.com/yenchenlin
https://github.com/scikit-learn/scikit-learn/issues/4294
https://github.com/raghavrv
https://github.com/scikit-learn/scikit-learn/issues/6667
https://github.com/nelson-liu
https://github.com/scikit-learn/scikit-learn/issues/6954
https://github.com/nelson-liu
http://www.ajoly.org
http://www.ajoly.org
https://github.com/yelite
http://www.ajoly.org
https://github.com/scikit-learn/scikit-learn/issues/6667
https://github.com/nelson-liu
https://github.com/staubda

scikit-learn user guide, Release 0.23.2

• Added n_jobs and sample_weight parameters for ensemble.VotingClassifier to fit underlying
estimators in parallel. #5805 by Ibraim Ganiev.

Linear, kernelized and related models

• In linear_model.LogisticRegression, the SAG solver is now available in the multinomial case.
#5251 by Tom Dupre la Tour.

• linear_model.RANSACRegressor, svm.LinearSVC and svm.LinearSVR now support
sample_weight. By Imaculate.

• Add parameter loss to linear_model.RANSACRegressor to measure the error on the samples for every
trial. By Manoj Kumar.

• Prediction of out-of-sample events with Isotonic Regression (isotonic.IsotonicRegression) is now
much faster (over 1000x in tests with synthetic data). By Jonathan Arfa.

• Isotonic regression (isotonic.IsotonicRegression) now uses a better algorithm to avoid O(n^2)
behavior in pathological cases, and is also generally faster (##6691). By Antony Lee.

• naive_bayes.GaussianNB now accepts data-independent class-priors through the parameter priors.
By Guillaume Lemaitre.

• linear_model.ElasticNet and linear_model.Lasso now works with np.float32 input data
without converting it into np.float64. This allows to reduce the memory consumption. #6913 by YenChen
Lin.

• semi_supervised.LabelPropagation and semi_supervised.LabelSpreading now accept
arbitrary kernel functions in addition to strings knn and rbf. #5762 by Utkarsh Upadhyay.

Decomposition, manifold learning and clustering

• Added inverse_transform function to decomposition.NMF to compute data matrix of original shape.
By Anish Shah.

• cluster.KMeans and cluster.MiniBatchKMeans now works with np.float32 and np.
float64 input data without converting it. This allows to reduce the memory consumption by using np.
float32. #6846 by Sebastian Säger and YenChen Lin.

Preprocessing and feature selection

• preprocessing.RobustScaler now accepts quantile_range parameter. #5929 by Konstantin Pod-
shumok.

• feature_extraction.FeatureHasher now accepts string values. #6173 by Ryad Zenine and
Devashish Deshpande.

• Keyword arguments can now be supplied to func in preprocessing.FunctionTransformer by
means of the kw_args parameter. By Brian McFee.

• feature_selection.SelectKBest and feature_selection.SelectPercentile now accept
score functions that take X, y as input and return only the scores. By Nikolay Mayorov.

Model evaluation and meta-estimators

• multiclass.OneVsOneClassifier and multiclass.OneVsRestClassifier now support
partial_fit. By Asish Panda and Philipp Dowling.

• Added support for substituting or disabling pipeline.Pipeline and pipeline.FeatureUnion com-
ponents using the set_params interface that powers sklearn.grid_search. See Selecting dimension-
ality reduction with Pipeline and GridSearchCV By Joel Nothman and Robert McGibbon.

1.7. Release History 113

https://github.com/scikit-learn/scikit-learn/issues/5805
https://github.com/olologin
https://github.com/scikit-learn/scikit-learn/issues/5251
https://github.com/TomDLT
https://github.com/Imaculate
https://manojbits.wordpress.com
https://github.com/jarfa
https://github.com/scikit-learn/scikit-learn/issues/#6691
https://www.ocf.berkeley.edu/~antonyl/
https://github.com/glemaitre
https://github.com/scikit-learn/scikit-learn/issues/6913
https://github.com/yenchenlin
https://github.com/yenchenlin
https://github.com/scikit-learn/scikit-learn/issues/5762
https://github.com/musically-ut
https://github.com/AnishShah
https://github.com/scikit-learn/scikit-learn/issues/6846
https://github.com/ssaeger
https://github.com/yenchenlin
https://github.com/scikit-learn/scikit-learn/issues/5929
https://github.com/podshumok
https://github.com/podshumok
https://github.com/scikit-learn/scikit-learn/issues/6173
https://github.com/ryadzenine
https://github.com/dsquareindia
https://bmcfee.github.io
https://github.com/nmayorov
https://github.com/kaichogami
https://github.com/phdowling
https://joelnothman.com/
https://github.com/rmcgibbo

scikit-learn user guide, Release 0.23.2

• The new cv_results_ attribute of model_selection.GridSearchCV (and model_selection.
RandomizedSearchCV) can be easily imported into pandas as a DataFrame. Ref Model Selection En-
hancements and API Changes for more information. #6697 by Raghav RV.

• Generalization of model_selection.cross_val_predict. One can pass method names such as
predict_proba to be used in the cross validation framework instead of the default predict. By Ori
Ziv and Sears Merritt.

• The training scores and time taken for training followed by scoring for each search candidate are now available
at the cv_results_ dict. See Model Selection Enhancements and API Changes for more information. #7325
by Eugene Chen and Raghav RV.

Metrics

• Added labels flag to metrics.log_loss to explicitly provide the labels when the number of classes in
y_true and y_pred differ. #7239 by Hong Guangguo with help from Mads Jensen and Nelson Liu.

• Support sparse contingency matrices in cluster evaluation (metrics.cluster.supervised) to scale to a
large number of clusters. #7419 by Gregory Stupp and Joel Nothman.

• Add sample_weight parameter to metrics.matthews_corrcoef. By Jatin Shah and Raghav RV.

• Speed up metrics.silhouette_score by using vectorized operations. By Manoj Kumar.

• Add sample_weight parameter to metrics.confusion_matrix. By Bernardo Stein.

Miscellaneous

• Added n_jobs parameter to feature_selection.RFECV to compute the score on the test folds in par-
allel. By Manoj Kumar

• Codebase does not contain C/C++ cython generated files: they are generated during build. Distribution packages
will still contain generated C/C++ files. By Arthur Mensch.

• Reduce the memory usage for 32-bit float input arrays of utils.sparse_func.mean_variance_axis
and utils.sparse_func.incr_mean_variance_axis by supporting cython fused types. By
YenChen Lin.

• The ignore_warnings now accept a category argument to ignore only the warnings of a specified type. By
Thierry Guillemot.

• Added parameter return_X_y and return type (data, target) : tuple option to load_iris
dataset #7049, load_breast_cancer dataset #7152, load_digits dataset, load_diabetes dataset,
load_linnerud dataset, load_boston dataset #7154 by Manvendra Singh.

• Simplification of the clone function, deprecate support for estimators that modify parameters in __init__.
#5540 by Andreas Müller.

• When unpickling a scikit-learn estimator in a different version than the one the estimator was trained with, a
UserWarning is raised, see the documentation on model persistence for more details. (#7248) By Andreas
Müller.

Bug fixes

Trees and ensembles

• Random forest, extra trees, decision trees and gradient boosting won’t accept anymore
min_samples_split=1 as at least 2 samples are required to split a decision tree node. By Arnaud
Joly

• ensemble.VotingClassifier now raises NotFittedError if predict, transform or
predict_proba are called on the non-fitted estimator. by Sebastian Raschka.

114 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/issues/6697
https://github.com/raghavrv
https://github.com/zivori
https://github.com/zivori
https://github.com/merritts
https://github.com/scikit-learn/scikit-learn/issues/7325
https://github.com/eyc88
https://github.com/raghavrv
https://github.com/scikit-learn/scikit-learn/issues/7239
https://github.com/hongguangguo
https://github.com/indianajensen
https://github.com/nelson-liu
https://github.com/scikit-learn/scikit-learn/issues/7419
https://github.com/stuppie
https://joelnothman.com/
https://github.com/jatinshah
https://github.com/raghavrv
https://manojbits.wordpress.com
https://github.com/DanielSidhion
https://manojbits.wordpress.com
https://github.com/arthurmensch
https://github.com/yenchenlin
https://github.com/tguillemot
https://github.com/scikit-learn/scikit-learn/issues/7049
https://github.com/scikit-learn/scikit-learn/issues/7152
https://github.com/scikit-learn/scikit-learn/issues/7154
https://github.com/manu-chroma
https://github.com/scikit-learn/scikit-learn/issues/5540
https://amueller.github.io/
https://github.com/scikit-learn/scikit-learn/issues/7248
https://amueller.github.io/
https://amueller.github.io/
http://www.ajoly.org
http://www.ajoly.org
https://sebastianraschka.com/

scikit-learn user guide, Release 0.23.2

• Fix bug where ensemble.AdaBoostClassifier and ensemble.AdaBoostRegressor would per-
form poorly if the random_state was fixed (#7411). By Joel Nothman.

• Fix bug in ensembles with randomization where the ensemble would not set random_state
on base estimators in a pipeline or similar nesting. (#7411). Note, results for ensemble.
BaggingClassifier ensemble.BaggingRegressor, ensemble.AdaBoostClassifier and
ensemble.AdaBoostRegressor will now differ from previous versions. By Joel Nothman.

Linear, kernelized and related models

• Fixed incorrect gradient computation for loss='squared_epsilon_insensitive' in
linear_model.SGDClassifier and linear_model.SGDRegressor (#6764). By Wenhua
Yang.

• Fix bug in linear_model.LogisticRegressionCV where solver='liblinear' did not accept
class_weights='balanced. (#6817). By Tom Dupre la Tour.

• Fix bug in neighbors.RadiusNeighborsClassifier where an error occurred when there were out-
liers being labelled and a weight function specified (#6902). By LeonieBorne.

• Fix linear_model.ElasticNet sparse decision function to match output with dense in the multioutput
case.

Decomposition, manifold learning and clustering

• decomposition.RandomizedPCA default number of iterated_power is 4 instead of 3. #5141 by
Giorgio Patrini.

• utils.extmath.randomized_svd performs 4 power iterations by default, instead or 0. In practice this
is enough for obtaining a good approximation of the true eigenvalues/vectors in the presence of noise. When
n_components is small (< .1 * min(X.shape)) n_iter is set to 7, unless the user specifies a higher
number. This improves precision with few components. #5299 by Giorgio Patrini.

• Whiten/non-whiten inconsistency between components of decomposition.PCA and decomposition.
RandomizedPCA (now factored into PCA, see the New features) is fixed. components_ are stored with no
whitening. #5299 by Giorgio Patrini.

• Fixed bug in manifold.spectral_embedding where diagonal of unnormalized Laplacian matrix was
incorrectly set to 1. #4995 by Peter Fischer.

• Fixed incorrect initialization of utils.arpack.eigsh on all occurrences. Affects cluster.
bicluster.SpectralBiclustering, decomposition.KernelPCA, manifold.
LocallyLinearEmbedding, and manifold.SpectralEmbedding (#5012). By Peter Fischer.

• Attribute explained_variance_ratio_ calculated with the SVD solver of
discriminant_analysis.LinearDiscriminantAnalysis now returns correct results. By
JPFrancoia

Preprocessing and feature selection

• preprocessing.data._transform_selected now always passes a copy of X to transform function
when copy=True (#7194). By Caio Oliveira.

Model evaluation and meta-estimators

• model_selection.StratifiedKFold now raises error if all n_labels for individual classes is less than
n_folds. #6182 by Devashish Deshpande.

• Fixed bug in model_selection.StratifiedShuffleSplitwhere train and test sample could overlap
in some edge cases, see #6121 for more details. By Loic Esteve.

• Fix in sklearn.model_selection.StratifiedShuffleSplit to return splits of size
train_size and test_size in all cases (#6472). By Andreas Müller.

1.7. Release History 115

https://github.com/scikit-learn/scikit-learn/issues/7411
https://joelnothman.com/
https://github.com/scikit-learn/scikit-learn/issues/7411
https://joelnothman.com/
https://github.com/scikit-learn/scikit-learn/issues/6764
https://github.com/geekoala
https://github.com/geekoala
https://github.com/scikit-learn/scikit-learn/issues/6817
https://github.com/TomDLT
https://github.com/scikit-learn/scikit-learn/issues/6902
https://github.com/LeonieBorne
https://github.com/scikit-learn/scikit-learn/issues/5141
https://github.com/giorgiop
https://github.com/scikit-learn/scikit-learn/issues/5299
https://github.com/giorgiop
https://github.com/scikit-learn/scikit-learn/issues/5299
https://github.com/giorgiop
https://github.com/scikit-learn/scikit-learn/issues/4995
https://github.com/yanlend
https://github.com/scikit-learn/scikit-learn/issues/5012
https://github.com/yanlend
https://github.com/JPFrancoia
https://github.com/scikit-learn/scikit-learn/issues/7194
https://github.com/caioaao
https://github.com/scikit-learn/scikit-learn/issues/6182
https://github.com/dsquareindia
https://github.com/scikit-learn/scikit-learn/issues/6121
https://github.com/lesteve
https://github.com/scikit-learn/scikit-learn/issues/6472
https://amueller.github.io/

scikit-learn user guide, Release 0.23.2

• Cross-validation of OneVsOneClassifier and OneVsRestClassifier now works with precomputed
kernels. #7350 by Russell Smith.

• Fix incomplete predict_proba method delegation from model_selection.GridSearchCV to
linear_model.SGDClassifier (#7159) by Yichuan Liu.

Metrics

• Fix bug in metrics.silhouette_score in which clusters of size 1 were incorrectly scored. They should
get a score of 0. By Joel Nothman.

• Fix bug in metrics.silhouette_samples so that it now works with arbitrary labels, not just those
ranging from 0 to n_clusters - 1.

• Fix bug where expected and adjusted mutual information were incorrect if cluster contingency cells exceeded
2**16. By Joel Nothman.

• metrics.pairwise.pairwise_distances now converts arrays to boolean arrays when required in
scipy.spatial.distance. #5460 by Tom Dupre la Tour.

• Fix sparse input support in metrics.silhouette_score as well as example exam-
ples/text/document_clustering.py. By YenChen Lin.

• metrics.roc_curve and metrics.precision_recall_curve no longer round y_score values
when creating ROC curves; this was causing problems for users with very small differences in scores (#7353).

Miscellaneous

• model_selection.tests._search._check_param_grid now works correctly with all types that
extends/implements Sequence (except string), including range (Python 3.x) and xrange (Python 2.x). #7323
by Viacheslav Kovalevskyi.

• utils.extmath.randomized_range_finder is more numerically stable when many power iterations
are requested, since it applies LU normalization by default. If n_iter<2 numerical issues are unlikely, thus
no normalization is applied. Other normalization options are available: 'none', 'LU' and 'QR'. #5141 by
Giorgio Patrini.

• Fix a bug where some formats of scipy.sparse matrix, and estimators with them as parameters, could not
be passed to base.clone. By Loic Esteve.

• datasets.load_svmlight_file now is able to read long int QID values. #7101 by Ibraim Ganiev.

API changes summary

Linear, kernelized and related models

• residual_metric has been deprecated in linear_model.RANSACRegressor. Use loss instead.
By Manoj Kumar.

• Access to public attributes .X_ and .y_ has been deprecated in isotonic.IsotonicRegression. By
Jonathan Arfa.

Decomposition, manifold learning and clustering

• The old mixture.DPGMM is deprecated in favor of the new mixture.BayesianGaussianMixture
(with the parameter weight_concentration_prior_type='dirichlet_process'). The new
class solves the computational problems of the old class and computes the Gaussian mixture with a Dirich-
let process prior faster than before. #7295 by Wei Xue and Thierry Guillemot.

• The old mixture.VBGMM is deprecated in favor of the new mixture.BayesianGaussianMixture
(with the parameter weight_concentration_prior_type='dirichlet_distribution'). The

116 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/issues/7350
https://github.com/rsmith54
https://github.com/scikit-learn/scikit-learn/issues/7159
https://github.com/yl565
https://joelnothman.com/
https://joelnothman.com/
https://github.com/scikit-learn/scikit-learn/issues/5460
https://github.com/TomDLT
https://github.com/yenchenlin
https://github.com/scikit-learn/scikit-learn/issues/7353
https://github.com/scikit-learn/scikit-learn/issues/7323
https://github.com/scikit-learn/scikit-learn/issues/5141
https://github.com/giorgiop
https://github.com/lesteve
https://github.com/scikit-learn/scikit-learn/issues/7101
https://github.com/olologin
https://manojbits.wordpress.com
https://github.com/jarfa
https://github.com/scikit-learn/scikit-learn/issues/7295
https://github.com/xuewei4d
https://github.com/tguillemot

scikit-learn user guide, Release 0.23.2

new class solves the computational problems of the old class and computes the Variational Bayesian Gaussian
mixture faster than before. #6651 by Wei Xue and Thierry Guillemot.

• The old mixture.GMM is deprecated in favor of the new mixture.GaussianMixture. The new class
computes the Gaussian mixture faster than before and some of computational problems have been solved. #6666
by Wei Xue and Thierry Guillemot.

Model evaluation and meta-estimators

• The sklearn.cross_validation, sklearn.grid_search and sklearn.learning_curve
have been deprecated and the classes and functions have been reorganized into the sklearn.
model_selection module. Ref Model Selection Enhancements and API Changes for more information.
#4294 by Raghav RV.

• The grid_scores_ attribute of model_selection.GridSearchCV and model_selection.
RandomizedSearchCV is deprecated in favor of the attribute cv_results_. Ref Model Selection En-
hancements and API Changes for more information. #6697 by Raghav RV.

• The parameters n_iter or n_folds in old CV splitters are replaced by the new parameter n_splits since
it can provide a consistent and unambiguous interface to represent the number of train-test splits. #7187 by
YenChen Lin.

• classes parameter was renamed to labels in metrics.hamming_loss. #7260 by Sebastián Vanrell.

• The splitter classes LabelKFold, LabelShuffleSplit, LeaveOneLabelOut and
LeavePLabelsOut are renamed to model_selection.GroupKFold, model_selection.
GroupShuffleSplit, model_selection.LeaveOneGroupOut and model_selection.
LeavePGroupsOut respectively. Also the parameter labels in the split method of the newly renamed
splitters model_selection.LeaveOneGroupOut and model_selection.LeavePGroupsOut
is renamed to groups. Additionally in model_selection.LeavePGroupsOut, the parameter
n_labels is renamed to n_groups. #6660 by Raghav RV.

• Error and loss names for scoring parameters are now prefixed by 'neg_', such as
neg_mean_squared_error. The unprefixed versions are deprecated and will be removed in version 0.20.
#7261 by Tim Head.

Code Contributors

Aditya Joshi, Alejandro, Alexander Fabisch, Alexander Loginov, Alexander Minyushkin, Alexander Rudy, Alexan-
dre Abadie, Alexandre Abraham, Alexandre Gramfort, Alexandre Saint, alexfields, Alvaro Ulloa, alyssaq, Amlan
Kar, Andreas Mueller, andrew giessel, Andrew Jackson, Andrew McCulloh, Andrew Murray, Anish Shah, Arafat,
Archit Sharma, Ariel Rokem, Arnaud Joly, Arnaud Rachez, Arthur Mensch, Ash Hoover, asnt, b0noI, Behzad Tabib-
ian, Bernardo, Bernhard Kratzwald, Bhargav Mangipudi, blakeflei, Boyuan Deng, Brandon Carter, Brett Naul, Brian
McFee, Caio Oliveira, Camilo Lamus, Carol Willing, Cass, CeShine Lee, Charles Truong, Chyi-Kwei Yau, CJ Carey,
codevig, Colin Ni, Dan Shiebler, Daniel, Daniel Hnyk, David Ellis, David Nicholson, David Staub, David Thaler,
David Warshaw, Davide Lasagna, Deborah, definitelyuncertain, Didi Bar-Zev, djipey, dsquareindia, edwinENSAE,
Elias Kuthe, Elvis DOHMATOB, Ethan White, Fabian Pedregosa, Fabio Ticconi, fisache, Florian Wilhelm, Francis,
Francis O’Donovan, Gael Varoquaux, Ganiev Ibraim, ghg, Gilles Louppe, Giorgio Patrini, Giovanni Cherubin, Gio-
vanni Lanzani, Glenn Qian, Gordon Mohr, govin-vatsan, Graham Clenaghan, Greg Reda, Greg Stupp, Guillaume
Lemaitre, Gustav Mörtberg, halwai, Harizo Rajaona, Harry Mavroforakis, hashcode55, hdmetor, Henry Lin, Hob-
son Lane, Hugo Bowne-Anderson, Igor Andriushchenko, Imaculate, Inki Hwang, Isaac Sijaranamual, Ishank Gulati,
Issam Laradji, Iver Jordal, jackmartin, Jacob Schreiber, Jake Vanderplas, James Fiedler, James Routley, Jan Zikes,
Janna Brettingen, jarfa, Jason Laska, jblackburne, jeff levesque, Jeffrey Blackburne, Jeffrey04, Jeremy Hintz, jere-
mynixon, Jeroen, Jessica Yung, Jill-Jênn Vie, Jimmy Jia, Jiyuan Qian, Joel Nothman, johannah, John, John Boersma,
John Kirkham, John Moeller, jonathan.striebel, joncrall, Jordi, Joseph Munoz, Joshua Cook, JPFrancoia, jrfiedler,
JulianKahnert, juliathebrave, kaichogami, KamalakerDadi, Kenneth Lyons, Kevin Wang, kingjr, kjell, Konstantin
Podshumok, Kornel Kielczewski, Krishna Kalyan, krishnakalyan3, Kvle Putnam, Kyle Jackson, Lars Buitinck, ldavid,

1.7. Release History 117

https://github.com/scikit-learn/scikit-learn/issues/6651
https://github.com/xuewei4d
https://github.com/tguillemot
https://github.com/scikit-learn/scikit-learn/issues/6666
https://github.com/xuewei4d
https://github.com/tguillemot
https://github.com/scikit-learn/scikit-learn/issues/4294
https://github.com/raghavrv
https://github.com/scikit-learn/scikit-learn/issues/6697
https://github.com/raghavrv
https://github.com/scikit-learn/scikit-learn/issues/7187
https://github.com/yenchenlin
https://github.com/scikit-learn/scikit-learn/issues/7260
https://github.com/srvanrell
https://github.com/scikit-learn/scikit-learn/issues/6660
https://github.com/raghavrv
https://github.com/scikit-learn/scikit-learn/issues/7261
https://github.com/betatim

scikit-learn user guide, Release 0.23.2

LeiG, LeightonZhang, Leland McInnes, Liang-Chi Hsieh, Lilian Besson, lizsz, Loic Esteve, Louis Tiao, Léonie Borne,
Mads Jensen, Maniteja Nandana, Manoj Kumar, Manvendra Singh, Marco, Mario Krell, Mark Bao, Mark Szepieniec,
Martin Madsen, MartinBpr, MaryanMorel, Massil, Matheus, Mathieu Blondel, Mathieu Dubois, Matteo, Matthias Ek-
man, Max Moroz, Michael Scherer, michiaki ariga, Mikhail Korobov, Moussa Taifi, mrandrewandrade, Mridul Seth,
nadya-p, Naoya Kanai, Nate George, Nelle Varoquaux, Nelson Liu, Nick James, NickleDave, Nico, Nicolas Goix,
Nikolay Mayorov, ningchi, nlathia, okbalefthanded, Okhlopkov, Olivier Grisel, Panos Louridas, Paul Strickland, Per-
rine Letellier, pestrickland, Peter Fischer, Pieter, Ping-Yao, Chang, practicalswift, Preston Parry, Qimu Zheng, Rachit
Kansal, Raghav RV, Ralf Gommers, Ramana.S, Rammig, Randy Olson, Rob Alexander, Robert Lutz, Robin Schucker,
Rohan Jain, Ruifeng Zheng, Ryan Yu, Rémy Léone, saihttam, Saiwing Yeung, Sam Shleifer, Samuel St-Jean, Sar-
taj Singh, Sasank Chilamkurthy, saurabh.bansod, Scott Andrews, Scott Lowe, seales, Sebastian Raschka, Sebastian
Saeger, Sebastián Vanrell, Sergei Lebedev, shagun Sodhani, shanmuga cv, Shashank Shekhar, shawpan, shengxid-
uan, Shota, shuckle16, Skipper Seabold, sklearn-ci, SmedbergM, srvanrell, Sébastien Lerique, Taranjeet, themrmax,
Thierry, Thierry Guillemot, Thomas, Thomas Hallock, Thomas Moreau, Tim Head, tKammy, toastedcornflakes, Tom,
TomDLT, Toshihiro Kamishima, tracer0tong, Trent Hauck, trevorstephens, Tue Vo, Varun, Varun Jewalikar, Viach-
eslav, Vighnesh Birodkar, Vikram, Villu Ruusmann, Vinayak Mehta, walter, waterponey, Wenhua Yang, Wenjian
Huang, Will Welch, wyseguy7, xyguo, yanlend, Yaroslav Halchenko, yelite, Yen, YenChenLin, Yichuan Liu, Yoav
Ram, Yoshiki, Zheng RuiFeng, zivori, Óscar Nájera

1.7.23 Version 0.17.1

February 18, 2016

Changelog

Bug fixes

• Upgrade vendored joblib to version 0.9.4 that fixes an important bug in joblib.Parallel that can silently
yield to wrong results when working on datasets larger than 1MB: https://github.com/joblib/joblib/blob/0.9.4/
CHANGES.rst

• Fixed reading of Bunch pickles generated with scikit-learn version <= 0.16. This can affect users who have
already downloaded a dataset with scikit-learn 0.16 and are loading it with scikit-learn 0.17. See #6196 for how
this affected datasets.fetch_20newsgroups. By Loic Esteve.

• Fixed a bug that prevented using ROC AUC score to perform grid search on several CPU / cores on large arrays.
See #6147 By Olivier Grisel.

• Fixed a bug that prevented to properly set the presort parameter in ensemble.
GradientBoostingRegressor. See #5857 By Andrew McCulloh.

• Fixed a joblib error when evaluating the perplexity of a decomposition.
LatentDirichletAllocation model. See #6258 By Chyi-Kwei Yau.

1.7.24 Version 0.17

November 5, 2015

Changelog

118 Chapter 1. Welcome to scikit-learn

https://github.com/joblib/joblib/blob/0.9.4/CHANGES.rst
https://github.com/joblib/joblib/blob/0.9.4/CHANGES.rst
https://github.com/scikit-learn/scikit-learn/issues/6196
https://github.com/lesteve
https://github.com/scikit-learn/scikit-learn/issues/6147
https://twitter.com/ogrisel
https://github.com/scikit-learn/scikit-learn/issues/5857
https://github.com/scikit-learn/scikit-learn/issues/6258

scikit-learn user guide, Release 0.23.2

New features

• All the Scaler classes but preprocessing.RobustScaler can be fitted online by calling partial_fit.
By Giorgio Patrini.

• The new class ensemble.VotingClassifier implements a “majority rule” / “soft voting” ensemble
classifier to combine estimators for classification. By Sebastian Raschka.

• The new class preprocessing.RobustScaler provides an alternative to preprocessing.
StandardScaler for feature-wise centering and range normalization that is robust to outliers. By Thomas
Unterthiner.

• The new class preprocessing.MaxAbsScaler provides an alternative to preprocessing.
MinMaxScaler for feature-wise range normalization when the data is already centered or sparse. By Thomas
Unterthiner.

• The new class preprocessing.FunctionTransformer turns a Python function into a Pipeline-
compatible transformer object. By Joe Jevnik.

• The new classes cross_validation.LabelKFold and cross_validation.
LabelShuffleSplit generate train-test folds, respectively similar to cross_validation.KFold and
cross_validation.ShuffleSplit, except that the folds are conditioned on a label array. By Brian
McFee, Jean Kossaifi and Gilles Louppe.

• decomposition.LatentDirichletAllocation implements the Latent Dirichlet Allocation topic
model with online variational inference. By Chyi-Kwei Yau, with code based on an implementation by Matt
Hoffman. (#3659)

• The new solver sag implements a Stochastic Average Gradient descent and is available in both
linear_model.LogisticRegression and linear_model.Ridge. This solver is very efficient for
large datasets. By Danny Sullivan and Tom Dupre la Tour. (#4738)

• The new solver cd implements a Coordinate Descent in decomposition.NMF. Previous solver based on
Projected Gradient is still available setting new parameter solver to pg, but is deprecated and will be removed
in 0.19, along with decomposition.ProjectedGradientNMF and parameters sparseness, eta,
beta and nls_max_iter. New parameters alpha and l1_ratio control L1 and L2 regularization, and
shuffle adds a shuffling step in the cd solver. By Tom Dupre la Tour and Mathieu Blondel.

Enhancements

• manifold.TSNE now supports approximate optimization via the Barnes-Hut method, leading to much faster
fitting. By Christopher Erick Moody. (#4025)

• cluster.mean_shift_.MeanShift now supports parallel execution, as implemented in the
mean_shift function. By Martino Sorbaro.

• naive_bayes.GaussianNB now supports fitting with sample_weight. By Jan Hendrik Metzen.

• dummy.DummyClassifier now supports a prior fitting strategy. By Arnaud Joly.

• Added a fit_predict method for mixture.GMM and subclasses. By Cory Lorenz.

• Added the metrics.label_ranking_loss metric. By Arnaud Joly.

• Added the metrics.cohen_kappa_score metric.

• Added a warm_start constructor parameter to the bagging ensemble models to increase the size of the en-
semble. By Tim Head.

• Added option to use multi-output regression metrics without averaging. By Konstantin Shmelkov and Michael
Eickenberg.

1.7. Release History 119

https://github.com/giorgiop
https://sebastianraschka.com/
https://github.com/untom
https://github.com/untom
https://github.com/untom
https://github.com/untom
https://bmcfee.github.io
https://bmcfee.github.io
https://github.com/JeanKossaifi
http://www.montefiore.ulg.ac.be/~glouppe/
https://github.com/chyikwei
https://github.com/scikit-learn/scikit-learn/issues/3659
https://github.com/dsullivan7
https://github.com/TomDLT
https://github.com/scikit-learn/scikit-learn/issues/4738
https://github.com/TomDLT
http://www.mblondel.org
https://github.com/scikit-learn/scikit-learn/issues/4025
https://github.com/martinosorb
https://jmetzen.github.io/
http://www.ajoly.org
https://github.com/clorenz7
http://www.ajoly.org
https://github.com/betatim
https://github.com/eickenberg
https://github.com/eickenberg

scikit-learn user guide, Release 0.23.2

• Added stratify option to cross_validation.train_test_split for stratified splitting. By
Miroslav Batchkarov.

• The tree.export_graphviz function now supports aesthetic improvements for tree.
DecisionTreeClassifier and tree.DecisionTreeRegressor, including options for coloring
nodes by their majority class or impurity, showing variable names, and using node proportions instead of raw
sample counts. By Trevor Stephens.

• Improved speed of newton-cg solver in linear_model.LogisticRegression, by avoiding loss com-
putation. By Mathieu Blondel and Tom Dupre la Tour.

• The class_weight="auto" heuristic in classifiers supporting class_weight was deprecated and re-
placed by the class_weight="balanced" option, which has a simpler formula and interpretation. By
Hanna Wallach and Andreas Müller.

• Add class_weight parameter to automatically weight samples by class frequency for linear_model.
PassiveAggressiveClassifier. By Trevor Stephens.

• Added backlinks from the API reference pages to the user guide. By Andreas Müller.

• The labels parameter to sklearn.metrics.f1_score, sklearn.metrics.fbeta_score,
sklearn.metrics.recall_score and sklearn.metrics.precision_score has been ex-
tended. It is now possible to ignore one or more labels, such as where a multiclass problem has a majority
class to ignore. By Joel Nothman.

• Add sample_weight support to linear_model.RidgeClassifier. By Trevor Stephens.

• Provide an option for sparse output from sklearn.metrics.pairwise.cosine_similarity . By
Jaidev Deshpande.

• Add minmax_scale to provide a function interface for MinMaxScaler. By Thomas Unterthiner.

• dump_svmlight_file now handles multi-label datasets. By Chih-Wei Chang.

• RCV1 dataset loader (sklearn.datasets.fetch_rcv1). By Tom Dupre la Tour.

• The “Wisconsin Breast Cancer” classical two-class classification dataset is now included in scikit-learn, avail-
able with sklearn.dataset.load_breast_cancer.

• Upgraded to joblib 0.9.3 to benefit from the new automatic batching of short tasks. This makes it possible for
scikit-learn to benefit from parallelism when many very short tasks are executed in parallel, for instance by the
grid_search.GridSearchCV meta-estimator with n_jobs > 1 used with a large grid of parameters on
a small dataset. By Vlad Niculae, Olivier Grisel and Loic Esteve.

• For more details about changes in joblib 0.9.3 see the release notes: https://github.com/joblib/joblib/blob/master/
CHANGES.rst#release-093

• Improved speed (3 times per iteration) of decomposition.DictLearning with coordinate descent
method from linear_model.Lasso. By Arthur Mensch.

• Parallel processing (threaded) for queries of nearest neighbors (using the ball-tree) by Nikolay Mayorov.

• Allow datasets.make_multilabel_classification to output a sparse y. By Kashif Rasul.

• cluster.DBSCAN now accepts a sparse matrix of precomputed distances, allowing memory-efficient distance
precomputation. By Joel Nothman.

• tree.DecisionTreeClassifier now exposes an apply method for retrieving the leaf indices samples
are predicted as. By Daniel Galvez and Gilles Louppe.

• Speed up decision tree regressors, random forest regressors, extra trees regressors and gradient boosting estima-
tors by computing a proxy of the impurity improvement during the tree growth. The proxy quantity is such that
the split that maximizes this value also maximizes the impurity improvement. By Arnaud Joly, Jacob Schreiber
and Gilles Louppe.

120 Chapter 1. Welcome to scikit-learn

http://trevorstephens.com/
http://www.mblondel.org
https://github.com/TomDLT
https://dirichlet.net/
https://amueller.github.io/
http://trevorstephens.com/
https://amueller.github.io/
https://joelnothman.com/
http://trevorstephens.com/
https://github.com/jaidevd
https://github.com/untom
https://github.com/TomDLT
https://vene.ro/
https://twitter.com/ogrisel
https://github.com/lesteve
https://github.com/joblib/joblib/blob/master/CHANGES.rst#release-093
https://github.com/joblib/joblib/blob/master/CHANGES.rst#release-093
https://github.com/arthurmensch
https://joelnothman.com/
https://github.com/galv
http://www.montefiore.ulg.ac.be/~glouppe/
http://www.ajoly.org
https://github.com/jmschrei
http://www.montefiore.ulg.ac.be/~glouppe/

scikit-learn user guide, Release 0.23.2

• Speed up tree based methods by reducing the number of computations needed when computing the impurity
measure taking into account linear relationship of the computed statistics. The effect is particularly visible with
extra trees and on datasets with categorical or sparse features. By Arnaud Joly.

• ensemble.GradientBoostingRegressor and ensemble.GradientBoostingClassifier
now expose an apply method for retrieving the leaf indices each sample ends up in under each try. By Ja-
cob Schreiber.

• Add sample_weight support to linear_model.LinearRegression. By Sonny Hu. (##4881)

• Add n_iter_without_progress to manifold.TSNE to control the stopping criterion. By Santi Vil-
lalba. (#5186)

• Added optional parameter random_state in linear_model.Ridge , to set the seed of the pseudo random
generator used in sag solver. By Tom Dupre la Tour.

• Added optional parameter warm_start in linear_model.LogisticRegression. If set to True, the
solvers lbfgs, newton-cg and sag will be initialized with the coefficients computed in the previous fit. By
Tom Dupre la Tour.

• Added sample_weight support to linear_model.LogisticRegression for the lbfgs,
newton-cg, and sag solvers. By Valentin Stolbunov. Support added to the liblinear solver. By Manoj
Kumar.

• Added optional parameter presort to ensemble.GradientBoostingRegressor and ensemble.
GradientBoostingClassifier, keeping default behavior the same. This allows gradient boosters to
turn off presorting when building deep trees or using sparse data. By Jacob Schreiber.

• Altered metrics.roc_curve to drop unnecessary thresholds by default. By Graham Clenaghan.

• Added feature_selection.SelectFromModel meta-transformer which can be used along with esti-
mators that have coef_ or feature_importances_ attribute to select important features of the input data.
By Maheshakya Wijewardena, Joel Nothman and Manoj Kumar.

• Added metrics.pairwise.laplacian_kernel. By Clyde Fare.

• covariance.GraphLasso allows separate control of the convergence criterion for the Elastic-Net subprob-
lem via the enet_tol parameter.

• Improved verbosity in decomposition.DictionaryLearning.

• ensemble.RandomForestClassifier and ensemble.RandomForestRegressor no longer ex-
plicitly store the samples used in bagging, resulting in a much reduced memory footprint for storing random
forest models.

• Added positive option to linear_model.Lars and linear_model.lars_path to force coeffi-
cients to be positive. (#5131)

• Added the X_norm_squared parameter to metrics.pairwise.euclidean_distances to provide
precomputed squared norms for X.

• Added the fit_predict method to pipeline.Pipeline.

• Added the preprocessing.min_max_scale function.

Bug fixes

• Fixed non-determinism in dummy.DummyClassifier with sparse multi-label output. By Andreas Müller.

• Fixed the output shape of linear_model.RANSACRegressor to (n_samples,). By Andreas Müller.

• Fixed bug in decomposition.DictLearning when n_jobs < 0. By Andreas Müller.

1.7. Release History 121

http://www.ajoly.org
https://github.com/jmschrei
https://github.com/jmschrei
https://github.com/scikit-learn/scikit-learn/issues/#4881
https://github.com/scikit-learn/scikit-learn/issues/5186
https://github.com/TomDLT
https://github.com/TomDLT
http://www.vstolbunov.com
https://manojbits.wordpress.com
https://manojbits.wordpress.com
https://github.com/jmschrei
https://github.com/gclenaghan
https://github.com/maheshakya
https://joelnothman.com/
https://manojbits.wordpress.com
https://github.com/Clyde-fare
https://github.com/scikit-learn/scikit-learn/issues/5131
https://amueller.github.io/
https://amueller.github.io/
https://amueller.github.io/

scikit-learn user guide, Release 0.23.2

• Fixed bug where grid_search.RandomizedSearchCV could consume a lot of memory for large discrete
grids. By Joel Nothman.

• Fixed bug in linear_model.LogisticRegressionCV where penalty was ignored in the final fit. By
Manoj Kumar.

• Fixed bug in ensemble.forest.ForestClassifier while computing oob_score and X is a
sparse.csc_matrix. By Ankur Ankan.

• All regressors now consistently handle and warn when given y that is of shape (n_samples, 1). By Andreas
Müller and Henry Lin. (#5431)

• Fix in cluster.KMeans cluster reassignment for sparse input by Lars Buitinck.

• Fixed a bug in lda.LDA that could cause asymmetric covariance matrices when using shrinkage. By Martin
Billinger.

• Fixed cross_validation.cross_val_predict for estimators with sparse predictions. By Buddha
Prakash.

• Fixed the predict_proba method of linear_model.LogisticRegression to use soft-max instead
of one-vs-rest normalization. By Manoj Kumar. (#5182)

• Fixed the partial_fit method of linear_model.SGDClassifier when called with
average=True. By Andrew Lamb. (#5282)

• Dataset fetchers use different filenames under Python 2 and Python 3 to avoid pickling compatibility issues. By
Olivier Grisel. (#5355)

• Fixed a bug in naive_bayes.GaussianNB which caused classification results to depend on scale. By Jake
Vanderplas.

• Fixed temporarily linear_model.Ridge, which was incorrect when fitting the intercept in the case of
sparse data. The fix automatically changes the solver to ‘sag’ in this case. #5360 by Tom Dupre la Tour.

• Fixed a performance bug in decomposition.RandomizedPCA on data with a large number of features
and fewer samples. (#4478) By Andreas Müller, Loic Esteve and Giorgio Patrini.

• Fixed bug in cross_decomposition.PLS that yielded unstable and platform dependent output, and failed
on fit_transform. By Arthur Mensch.

• Fixes to the Bunch class used to store datasets.

• Fixed ensemble.plot_partial_dependence ignoring the percentiles parameter.

• Providing a set as vocabulary in CountVectorizer no longer leads to inconsistent results when pickling.

• Fixed the conditions on when a precomputed Gram matrix needs to be recomputed in linear_model.
LinearRegression, linear_model.OrthogonalMatchingPursuit, linear_model.Lasso
and linear_model.ElasticNet.

• Fixed inconsistent memory layout in the coordinate descent solver that affected linear_model.
DictionaryLearning and covariance.GraphLasso. (#5337) By Olivier Grisel.

• manifold.LocallyLinearEmbedding no longer ignores the reg parameter.

• Nearest Neighbor estimators with custom distance metrics can now be pickled. (#4362)

• Fixed a bug in pipeline.FeatureUnion where transformer_weights were not properly handled
when performing grid-searches.

• Fixed a bug in linear_model.LogisticRegression and linear_model.
LogisticRegressionCV when using class_weight='balanced' or class_weight='auto'.
By Tom Dupre la Tour.

122 Chapter 1. Welcome to scikit-learn

https://joelnothman.com/
https://manojbits.wordpress.com
https://github.com/ankurankan
https://amueller.github.io/
https://amueller.github.io/
https://github.com/scikit-learn/scikit-learn/issues/5431
https://github.com/larsmans
https://tnsre.embs.org/author/martinbillinger/
https://tnsre.embs.org/author/martinbillinger/
https://manojbits.wordpress.com
https://github.com/scikit-learn/scikit-learn/issues/5182
https://github.com/andylamb
https://github.com/scikit-learn/scikit-learn/issues/5282
https://twitter.com/ogrisel
https://github.com/scikit-learn/scikit-learn/issues/5355
https://staff.washington.edu/jakevdp/
https://staff.washington.edu/jakevdp/
https://github.com/scikit-learn/scikit-learn/issues/5360
https://github.com/TomDLT
https://github.com/scikit-learn/scikit-learn/issues/4478
https://amueller.github.io/
https://github.com/lesteve
https://github.com/giorgiop
https://github.com/arthurmensch
https://github.com/scikit-learn/scikit-learn/issues/5337
https://twitter.com/ogrisel
https://github.com/scikit-learn/scikit-learn/issues/4362
https://github.com/TomDLT

scikit-learn user guide, Release 0.23.2

• Fixed bug #5495 when doing OVR(SVC(decision_function_shape=”ovr”)). Fixed by Elvis Dohmatob.

API changes summary

• Attribute data_min, data_max and data_range in preprocessing.MinMaxScaler are depre-
cated and won’t be available from 0.19. Instead, the class now exposes data_min_, data_max_ and
data_range_. By Giorgio Patrini.

• All Scaler classes now have an scale_ attribute, the feature-wise rescaling applied by their transform
methods. The old attribute std_ in preprocessing.StandardScaler is deprecated and superseded by
scale_; it won’t be available in 0.19. By Giorgio Patrini.

• svm.SVC` and svm.NuSVC now have an decision_function_shape parameter to make their decision
function of shape (n_samples, n_classes) by setting decision_function_shape='ovr'. This
will be the default behavior starting in 0.19. By Andreas Müller.

• Passing 1D data arrays as input to estimators is now deprecated as it caused confusion in how the array ele-
ments should be interpreted as features or as samples. All data arrays are now expected to be explicitly shaped
(n_samples, n_features). By Vighnesh Birodkar.

• lda.LDA and qda.QDA have been moved to discriminant_analysis.
LinearDiscriminantAnalysis and discriminant_analysis.
QuadraticDiscriminantAnalysis.

• The store_covariance and tol parameters have been moved from the fit method to the constructor in
discriminant_analysis.LinearDiscriminantAnalysis and the store_covariances and
tol parameters have been moved from the fit method to the constructor in discriminant_analysis.
QuadraticDiscriminantAnalysis.

• Models inheriting from _LearntSelectorMixin will no longer support the transform methods. (i.e, Ran-
domForests, GradientBoosting, LogisticRegression, DecisionTrees, SVMs and SGD related models). Wrap
these models around the metatransfomer feature_selection.SelectFromModel to remove features
(according to coefs_ or feature_importances_) which are below a certain threshold value instead.

• cluster.KMeans re-runs cluster-assignments in case of non-convergence, to ensure consistency of
predict(X) and labels_. By Vighnesh Birodkar.

• Classifier and Regressor models are now tagged as such using the _estimator_type attribute.

• Cross-validation iterators always provide indices into training and test set, not boolean masks.

• The decision_function on all regressors was deprecated and will be removed in 0.19. Use predict
instead.

• datasets.load_lfw_pairs is deprecated and will be removed in 0.19. Use datasets.
fetch_lfw_pairs instead.

• The deprecated hmm module was removed.

• The deprecated Bootstrap cross-validation iterator was removed.

• The deprecated Ward and WardAgglomerative classes have been removed. Use clustering.
AgglomerativeClustering instead.

• cross_validation.check_cv is now a public function.

• The property residues_ of linear_model.LinearRegression is deprecated and will be removed in
0.19.

• The deprecated n_jobs parameter of linear_model.LinearRegression has been moved to the con-
structor.

1.7. Release History 123

https://github.com/scikit-learn/scikit-learn/issues/5495
https://github.com/dohmatob
https://github.com/giorgiop
https://github.com/giorgiop
https://amueller.github.io/
https://github.com/vighneshbirodkar
https://github.com/vighneshbirodkar

scikit-learn user guide, Release 0.23.2

• Removed deprecated class_weight parameter from linear_model.SGDClassifier’s fit method.
Use the construction parameter instead.

• The deprecated support for the sequence of sequences (or list of lists) multilabel format was removed. To convert
to and from the supported binary indicator matrix format, use MultiLabelBinarizer.

• The behavior of calling the inverse_transform method of Pipeline.pipeline will change in 0.19.
It will no longer reshape one-dimensional input to two-dimensional input.

• The deprecated attributes indicator_matrix_, multilabel_ and classes_ of preprocessing.
LabelBinarizer were removed.

• Using gamma=0 in svm.SVC and svm.SVR to automatically set the gamma to 1. / n_features is dep-
recated and will be removed in 0.19. Use gamma="auto" instead.

Code Contributors

Aaron Schumacher, Adithya Ganesh, akitty, Alexandre Gramfort, Alexey Grigorev, Ali Baharev, Allen Riddell, Ando
Saabas, Andreas Mueller, Andrew Lamb, Anish Shah, Ankur Ankan, Anthony Erlinger, Ari Rouvinen, Arnaud Joly,
Arnaud Rachez, Arthur Mensch, banilo, Barmaley.exe, benjaminirving, Boyuan Deng, Brett Naul, Brian McFee,
Buddha Prakash, Chi Zhang, Chih-Wei Chang, Christof Angermueller, Christoph Gohlke, Christophe Bourguignat,
Christopher Erick Moody, Chyi-Kwei Yau, Cindy Sridharan, CJ Carey, Clyde-fare, Cory Lorenz, Dan Blanchard,
Daniel Galvez, Daniel Kronovet, Danny Sullivan, Data1010, David, David D Lowe, David Dotson, djipey, Dmitry
Spikhalskiy, Donne Martin, Dougal J. Sutherland, Dougal Sutherland, edson duarte, Eduardo Caro, Eric Larson, Eric
Martin, Erich Schubert, Fernando Carrillo, Frank C. Eckert, Frank Zalkow, Gael Varoquaux, Ganiev Ibraim, Gilles
Louppe, Giorgio Patrini, giorgiop, Graham Clenaghan, Gryllos Prokopis, gwulfs, Henry Lin, Hsuan-Tien Lin, Im-
manuel Bayer, Ishank Gulati, Jack Martin, Jacob Schreiber, Jaidev Deshpande, Jake Vanderplas, Jan Hendrik Metzen,
Jean Kossaifi, Jeffrey04, Jeremy, jfraj, Jiali Mei, Joe Jevnik, Joel Nothman, John Kirkham, John Wittenauer, Joseph,
Joshua Loyal, Jungkook Park, KamalakerDadi, Kashif Rasul, Keith Goodman, Kian Ho, Konstantin Shmelkov, Kyler
Brown, Lars Buitinck, Lilian Besson, Loic Esteve, Louis Tiao, maheshakya, Maheshakya Wijewardena, Manoj Ku-
mar, MarkTab marktab.net, Martin Ku, Martin Spacek, MartinBpr, martinosorb, MaryanMorel, Masafumi Oyamada,
Mathieu Blondel, Matt Krump, Matti Lyra, Maxim Kolganov, mbillinger, mhg, Michael Heilman, Michael Patterson,
Miroslav Batchkarov, Nelle Varoquaux, Nicolas, Nikolay Mayorov, Olivier Grisel, Omer Katz, Óscar Nájera, Pauli
Virtanen, Peter Fischer, Peter Prettenhofer, Phil Roth, pianomania, Preston Parry, Raghav RV, Rob Zinkov, Robert
Layton, Rohan Ramanath, Saket Choudhary, Sam Zhang, santi, saurabh.bansod, scls19fr, Sebastian Raschka, Sebas-
tian Saeger, Shivan Sornarajah, SimonPL, sinhrks, Skipper Seabold, Sonny Hu, sseg, Stephen Hoover, Steven De
Gryze, Steven Seguin, Theodore Vasiloudis, Thomas Unterthiner, Tiago Freitas Pereira, Tian Wang, Tim Head, Timo-
thy Hopper, tokoroten, Tom Dupré la Tour, Trevor Stephens, Valentin Stolbunov, Vighnesh Birodkar, Vinayak Mehta,
Vincent, Vincent Michel, vstolbunov, wangz10, Wei Xue, Yucheng Low, Yury Zhauniarovich, Zac Stewart, zhai_pro,
Zichen Wang

1.7.25 Version 0.16.1

April 14, 2015

Changelog

Bug fixes

• Allow input data larger than block_size in covariance.LedoitWolf by Andreas Müller.

• Fix a bug in isotonic.IsotonicRegression deduplication that caused unstable result in
calibration.CalibratedClassifierCV by Jan Hendrik Metzen.

124 Chapter 1. Welcome to scikit-learn

https://amueller.github.io/
https://jmetzen.github.io/

scikit-learn user guide, Release 0.23.2

• Fix sorting of labels in func:preprocessing.label_binarize by Michael Heilman.

• Fix several stability and convergence issues in cross_decomposition.CCA and
cross_decomposition.PLSCanonical by Andreas Müller

• Fix a bug in cluster.KMeans when precompute_distances=False on fortran-ordered data.

• Fix a speed regression in ensemble.RandomForestClassifier’s predict and predict_proba
by Andreas Müller.

• Fix a regression where utils.shuffle converted lists and dataframes to arrays, by Olivier Grisel

1.7.26 Version 0.16

March 26, 2015

Highlights

• Speed improvements (notably in cluster.DBSCAN), reduced memory requirements, bug-fixes and better
default settings.

• Multinomial Logistic regression and a path algorithm in linear_model.LogisticRegressionCV .

• Out-of core learning of PCA via decomposition.IncrementalPCA.

• Probability callibration of classifiers using calibration.CalibratedClassifierCV .

• cluster.Birch clustering method for large-scale datasets.

• Scalable approximate nearest neighbors search with Locality-sensitive hashing forests in neighbors.
LSHForest.

• Improved error messages and better validation when using malformed input data.

• More robust integration with pandas dataframes.

Changelog

New features

• The new neighbors.LSHForest implements locality-sensitive hashing for approximate nearest neighbors
search. By Maheshakya Wijewardena.

• Added svm.LinearSVR. This class uses the liblinear implementation of Support Vector Regression which is
much faster for large sample sizes than svm.SVR with linear kernel. By Fabian Pedregosa and Qiang Luo.

• Incremental fit for GaussianNB.

• Added sample_weight support to dummy.DummyClassifier and dummy.DummyRegressor. By
Arnaud Joly.

• Added the metrics.label_ranking_average_precision_score metrics. By Arnaud Joly.

• Add the metrics.coverage_error metrics. By Arnaud Joly.

• Added linear_model.LogisticRegressionCV . By Manoj Kumar, Fabian Pedregosa, Gael Varoquaux
and Alexandre Gramfort.

• Added warm_start constructor parameter to make it possible for any trained forest model to grow additional
trees incrementally. By Laurent Direr.

1.7. Release History 125

https://amueller.github.io/
https://amueller.github.io/
https://twitter.com/ogrisel
https://github.com/maheshakya
http://fa.bianp.net
http://www.ajoly.org
http://www.ajoly.org
http://www.ajoly.org
https://manojbits.wordpress.com
http://fa.bianp.net
http://gael-varoquaux.info
http://alexandre.gramfort.net
https://github.com/ldirer

scikit-learn user guide, Release 0.23.2

• Added sample_weight support to ensemble.GradientBoostingClassifier and ensemble.
GradientBoostingRegressor. By Peter Prettenhofer.

• Added decomposition.IncrementalPCA, an implementation of the PCA algorithm that supports out-
of-core learning with a partial_fit method. By Kyle Kastner.

• Averaged SGD for SGDClassifier and SGDRegressor By Danny Sullivan.

• Added cross_val_predict function which computes cross-validated estimates. By Luis Pedro Coelho

• Added linear_model.TheilSenRegressor, a robust generalized-median-based estimator. By Florian
Wilhelm.

• Added metrics.median_absolute_error, a robust metric. By Gael Varoquaux and Florian Wilhelm.

• Add cluster.Birch, an online clustering algorithm. By Manoj Kumar, Alexandre Gramfort and Joel Noth-
man.

• Added shrinkage support to discriminant_analysis.LinearDiscriminantAnalysis using two
new solvers. By Clemens Brunner and Martin Billinger.

• Added kernel_ridge.KernelRidge, an implementation of kernelized ridge regression. By Mathieu
Blondel and Jan Hendrik Metzen.

• All solvers in linear_model.Ridge now support sample_weight. By Mathieu Blondel.

• Added cross_validation.PredefinedSplit cross-validation for fixed user-provided cross-validation
folds. By Thomas Unterthiner.

• Added calibration.CalibratedClassifierCV , an approach for calibrating the predicted probabili-
ties of a classifier. By Alexandre Gramfort, Jan Hendrik Metzen, Mathieu Blondel and Balazs Kegl.

Enhancements

• Add option return_distance in hierarchical.ward_tree to return distances between nodes for
both structured and unstructured versions of the algorithm. By Matteo Visconti di Oleggio Castello. The same
option was added in hierarchical.linkage_tree. By Manoj Kumar

• Add support for sample weights in scorer objects. Metrics with sample weight support will automatically benefit
from it. By Noel Dawe and Vlad Niculae.

• Added newton-cg and lbfgs solver support in linear_model.LogisticRegression. By Manoj
Kumar.

• Add selection="random" parameter to implement stochastic coordinate descent for linear_model.
Lasso, linear_model.ElasticNet and related. By Manoj Kumar.

• Add sample_weight parameter to metrics.jaccard_similarity_score and metrics.
log_loss. By Jatin Shah.

• Support sparse multilabel indicator representation in preprocessing.LabelBinarizer and
multiclass.OneVsRestClassifier (by Hamzeh Alsalhi with thanks to Rohit Sivaprasad), as
well as evaluation metrics (by Joel Nothman).

• Add sample_weight parameter to metrics.jaccard_similarity_score. By Jatin Shah.

• Add support for multiclass in metrics.hinge_loss. Added labels=None as optional parameter. By
Saurabh Jha.

• Add sample_weight parameter to metrics.hinge_loss. By Saurabh Jha.

126 Chapter 1. Welcome to scikit-learn

https://sites.google.com/site/peterprettenhofer/
https://kastnerkyle.github.io/
https://github.com/dsullivan7
http://luispedro.org
https://github.com/FlorianWilhelm
https://github.com/FlorianWilhelm
http://gael-varoquaux.info
https://github.com/FlorianWilhelm
https://manojbits.wordpress.com
http://alexandre.gramfort.net
https://joelnothman.com/
https://joelnothman.com/
https://github.com/cle1109
https://tnsre.embs.org/author/martinbillinger/
http://www.mblondel.org
http://www.mblondel.org
https://jmetzen.github.io/
http://www.mblondel.org
https://github.com/untom
http://alexandre.gramfort.net
https://jmetzen.github.io/
http://www.mblondel.org
https://github.com/kegl
http://www.mvdoc.me
https://manojbits.wordpress.com
https://github.com/ndawe
https://vene.ro/
https://manojbits.wordpress.com
https://manojbits.wordpress.com
https://manojbits.wordpress.com
https://github.com/jatinshah
https://github.com/hamsal
https://joelnothman.com/

scikit-learn user guide, Release 0.23.2

• Add multi_class="multinomial" option in linear_model.LogisticRegression to imple-
ment a Logistic Regression solver that minimizes the cross-entropy or multinomial loss instead of the default
One-vs-Rest setting. Supports lbfgs and newton-cg solvers. By Lars Buitinck and Manoj Kumar. Solver
option newton-cg by Simon Wu.

• DictVectorizer can now perform fit_transform on an iterable in a single pass, when giving the option
sort=False. By Dan Blanchard.

• GridSearchCV and RandomizedSearchCV can now be configured to work with estimators that may fail
and raise errors on individual folds. This option is controlled by the error_score parameter. This does not
affect errors raised on re-fit. By Michal Romaniuk.

• Add digits parameter to metrics.classification_report to allow report to show different preci-
sion of floating point numbers. By Ian Gilmore.

• Add a quantile prediction strategy to the dummy.DummyRegressor. By Aaron Staple.

• Add handle_unknown option to preprocessing.OneHotEncoder to handle unknown categorical fea-
tures more gracefully during transform. By Manoj Kumar.

• Added support for sparse input data to decision trees and their ensembles. By Fares Hedyati and Arnaud Joly.

• Optimized cluster.AffinityPropagation by reducing the number of memory allocations of large
temporary data-structures. By Antony Lee.

• Parellization of the computation of feature importances in random forest. By Olivier Grisel and Arnaud Joly.

• Add n_iter_ attribute to estimators that accept a max_iter attribute in their constructor. By Manoj Kumar.

• Added decision function for multiclass.OneVsOneClassifier By Raghav RV and Kyle Beauchamp.

• neighbors.kneighbors_graph and radius_neighbors_graph support non-Euclidean metrics.
By Manoj Kumar

• Parameter connectivity in cluster.AgglomerativeClustering and family now accept callables
that return a connectivity matrix. By Manoj Kumar.

• Sparse support for paired_distances. By Joel Nothman.

• cluster.DBSCAN now supports sparse input and sample weights and has been optimized: the inner loop has
been rewritten in Cython and radius neighbors queries are now computed in batch. By Joel Nothman and Lars
Buitinck.

• Add class_weight parameter to automatically weight samples by class frequency for
ensemble.RandomForestClassifier, tree.DecisionTreeClassifier, ensemble.
ExtraTreesClassifier and tree.ExtraTreeClassifier. By Trevor Stephens.

• grid_search.RandomizedSearchCV now does sampling without replacement if all parameters are given
as lists. By Andreas Müller.

• Parallelized calculation of pairwise_distances is now supported for scipy metrics and custom callables.
By Joel Nothman.

• Allow the fitting and scoring of all clustering algorithms in pipeline.Pipeline. By Andreas Müller.

• More robust seeding and improved error messages in cluster.MeanShift by Andreas Müller.

• Make the stopping criterion for mixture.GMM, mixture.DPGMM and mixture.VBGMM less dependent on
the number of samples by thresholding the average log-likelihood change instead of its sum over all samples.
By Hervé Bredin.

• The outcome of manifold.spectral_embedding was made deterministic by flipping the sign of eigen-
vectors. By Hasil Sharma.

1.7. Release History 127

https://github.com/larsmans
https://manojbits.wordpress.com
https://github.com/dan-blanchard
https://github.com/romaniukm
https://github.com/agileminor
https://github.com/staple
https://manojbits.wordpress.com
http://www.eecs.berkeley.edu/~fareshed
http://www.ajoly.org
https://www.ocf.berkeley.edu/~antonyl/
https://twitter.com/ogrisel
http://www.ajoly.org
https://manojbits.wordpress.com
https://github.com/raghavrv
https://github.com/kyleabeauchamp
https://manojbits.wordpress.com
https://manojbits.wordpress.com
https://joelnothman.com/
https://joelnothman.com/
https://github.com/larsmans
https://github.com/larsmans
http://trevorstephens.com/
https://amueller.github.io/
https://joelnothman.com/
https://amueller.github.io/
https://amueller.github.io/
https://herve.niderb.fr/
https://github.com/Hasil-Sharma

scikit-learn user guide, Release 0.23.2

• Significant performance and memory usage improvements in preprocessing.PolynomialFeatures.
By Eric Martin.

• Numerical stability improvements for preprocessing.StandardScaler and preprocessing.
scale. By Nicolas Goix

• svm.SVC fitted on sparse input now implements decision_function. By Rob Zinkov and Andreas
Müller.

• cross_validation.train_test_split now preserves the input type, instead of converting to numpy
arrays.

Documentation improvements

• Added example of using FeatureUnion for heterogeneous input. By Matt Terry

• Documentation on scorers was improved, to highlight the handling of loss functions. By Matt Pico.

• A discrepancy between liblinear output and scikit-learn’s wrappers is now noted. By Manoj Kumar.

• Improved documentation generation: examples referring to a class or function are now shown in a gallery on
the class/function’s API reference page. By Joel Nothman.

• More explicit documentation of sample generators and of data transformation. By Joel Nothman.

• sklearn.neighbors.BallTree and sklearn.neighbors.KDTree used to point to empty pages
stating that they are aliases of BinaryTree. This has been fixed to show the correct class docs. By Manoj Kumar.

• Added silhouette plots for analysis of KMeans clustering using metrics.silhouette_samples and
metrics.silhouette_score. See Selecting the number of clusters with silhouette analysis on KMeans
clustering

Bug fixes

• Metaestimators now support ducktyping for the presence of decision_function,
predict_proba and other methods. This fixes behavior of grid_search.GridSearchCV,
grid_search.RandomizedSearchCV, pipeline.Pipeline, feature_selection.RFE,
feature_selection.RFECV when nested. By Joel Nothman

• The scoring attribute of grid-search and cross-validation methods is no longer ignored when a
grid_search.GridSearchCV is given as a base estimator or the base estimator doesn’t have predict.

• The function hierarchical.ward_tree now returns the children in the same order for both the structured
and unstructured versions. By Matteo Visconti di Oleggio Castello.

• feature_selection.RFECV now correctly handles cases when step is not equal to 1. By Nikolay
Mayorov

• The decomposition.PCA now undoes whitening in its inverse_transform. Also, its components_
now always have unit length. By Michael Eickenberg.

• Fix incomplete download of the dataset when datasets.download_20newsgroups is called. By Manoj
Kumar.

• Various fixes to the Gaussian processes subpackage by Vincent Dubourg and Jan Hendrik Metzen.

• Calling partial_fit with class_weight=='auto' throws an appropriate error message and suggests
a work around. By Danny Sullivan.

128 Chapter 1. Welcome to scikit-learn

http://www.ericmart.in
https://ngoix.github.io/
https://www.zinkov.com/
https://amueller.github.io/
https://amueller.github.io/
https://github.com/mrterry
https://github.com/MattpSoftware
https://manojbits.wordpress.com
https://joelnothman.com/
https://joelnothman.com/
https://manojbits.wordpress.com
https://joelnothman.com/
http://www.mvdoc.me
https://github.com/nmayorov
https://github.com/nmayorov
https://github.com/eickenberg
https://manojbits.wordpress.com
https://manojbits.wordpress.com
https://github.com/dsullivan7

scikit-learn user guide, Release 0.23.2

• RBFSampler with gamma=g formerly approximated rbf_kernel with gamma=g/2.; the definition of
gamma is now consistent, which may substantially change your results if you use a fixed value. (If you cross-
validated over gamma, it probably doesn’t matter too much.) By Dougal Sutherland.

• Pipeline object delegate the classes_ attribute to the underlying estimator. It allows, for instance, to make
bagging of a pipeline object. By Arnaud Joly

• neighbors.NearestCentroid now uses the median as the centroid when metric is set to manhattan.
It was using the mean before. By Manoj Kumar

• Fix numerical stability issues in linear_model.SGDClassifier and linear_model.
SGDRegressor by clipping large gradients and ensuring that weight decay rescaling is always positive (for
large l2 regularization and large learning rate values). By Olivier Grisel

• When compute_full_tree is set to “auto”, the full tree is built when n_clusters is high and
is early stopped when n_clusters is low, while the behavior should be vice-versa in cluster.
AgglomerativeClustering (and friends). This has been fixed By Manoj Kumar

• Fix lazy centering of data in linear_model.enet_path and linear_model.lasso_path. It was
centered around one. It has been changed to be centered around the origin. By Manoj Kumar

• Fix handling of precomputed affinity matrices in cluster.AgglomerativeClustering when using
connectivity constraints. By Cathy Deng

• Correct partial_fit handling of class_prior for sklearn.naive_bayes.MultinomialNB and
sklearn.naive_bayes.BernoulliNB. By Trevor Stephens.

• Fixed a crash in metrics.precision_recall_fscore_supportwhen using unsorted labels in the
multi-label setting. By Andreas Müller.

• Avoid skipping the first nearest neighbor in the methods radius_neighbors, kneighbors,
kneighbors_graph and radius_neighbors_graph in sklearn.neighbors.
NearestNeighbors and family, when the query data is not the same as fit data. By Manoj Kumar.

• Fix log-density calculation in the mixture.GMM with tied covariance. By Will Dawson

• Fixed a scaling error in feature_selection.SelectFdr where a factor n_features was missing. By
Andrew Tulloch

• Fix zero division in neighbors.KNeighborsRegressor and related classes when using distance weight-
ing and having identical data points. By Garret-R.

• Fixed round off errors with non positive-definite covariance matrices in GMM. By Alexis Mignon.

• Fixed a error in the computation of conditional probabilities in naive_bayes.BernoulliNB. By Hanna
Wallach.

• Make the method radius_neighbors of neighbors.NearestNeighbors return the samples lying
on the boundary for algorithm='brute'. By Yan Yi.

• Flip sign of dual_coef_ of svm.SVC to make it consistent with the documentation and
decision_function. By Artem Sobolev.

• Fixed handling of ties in isotonic.IsotonicRegression. We now use the weighted average of targets
(secondary method). By Andreas Müller and Michael Bommarito.

API changes summary

• GridSearchCV and cross_val_score and other meta-estimators don’t convert pandas DataFrames into
arrays any more, allowing DataFrame specific operations in custom estimators.

1.7. Release History 129

https://github.com/dougalsutherland
http://www.ajoly.org
https://manojbits.wordpress.com
https://twitter.com/ogrisel
https://manojbits.wordpress.com
https://manojbits.wordpress.com
https://github.com/cathydeng
http://trevorstephens.com/
https://amueller.github.io/
https://manojbits.wordpress.com
http://www.dawsonresearch.com
https://tullo.ch/
https://github.com/Garrett-R
https://github.com/AlexisMignon
https://dirichlet.net/
https://dirichlet.net/
http://seowyanyi.org
https://amueller.github.io/
http://bommaritollc.com/

scikit-learn user guide, Release 0.23.2

• multiclass.fit_ovr, multiclass.predict_ovr, predict_proba_ovr, multiclass.
fit_ovo, multiclass.predict_ovo, multiclass.fit_ecoc and multiclass.
predict_ecoc are deprecated. Use the underlying estimators instead.

• Nearest neighbors estimators used to take arbitrary keyword arguments and pass these to their distance metric.
This will no longer be supported in scikit-learn 0.18; use the metric_params argument instead.

• n_jobs parameter of the fit method shifted to the constructor of the LinearRegression class.

• The predict_proba method of multiclass.OneVsRestClassifier now returns two probabilities
per sample in the multiclass case; this is consistent with other estimators and with the method’s documenta-
tion, but previous versions accidentally returned only the positive probability. Fixed by Will Lamond and Lars
Buitinck.

• Change default value of precompute in ElasticNet and Lasso to False. Setting precompute to “auto” was
found to be slower when n_samples > n_features since the computation of the Gram matrix is computationally
expensive and outweighs the benefit of fitting the Gram for just one alpha. precompute="auto" is now
deprecated and will be removed in 0.18 By Manoj Kumar.

• Expose positive option in linear_model.enet_path and linear_model.enet_path which
constrains coefficients to be positive. By Manoj Kumar.

• Users should now supply an explicit average parameter to sklearn.metrics.f1_score, sklearn.
metrics.fbeta_score, sklearn.metrics.recall_score and sklearn.metrics.
precision_score when performing multiclass or multilabel (i.e. not binary) classification. By Joel
Nothman.

• scoring parameter for cross validation now accepts 'f1_micro', 'f1_macro' or 'f1_weighted'.
'f1' is now for binary classification only. Similar changes apply to 'precision' and 'recall'. By Joel
Nothman.

• The fit_intercept, normalize and return_models parameters in linear_model.enet_path
and linear_model.lasso_path have been removed. They were deprecated since 0.14

• From now onwards, all estimators will uniformly raise NotFittedError (utils.validation.
NotFittedError), when any of the predict like methods are called before the model is fit. By Raghav
RV.

• Input data validation was refactored for more consistent input validation. The check_arrays function was
replaced by check_array and check_X_y. By Andreas Müller.

• Allow X=None in the methods radius_neighbors, kneighbors, kneighbors_graph and
radius_neighbors_graph in sklearn.neighbors.NearestNeighbors and family. If set to
None, then for every sample this avoids setting the sample itself as the first nearest neighbor. By Manoj Kumar.

• Add parameter include_self in neighbors.kneighbors_graph and neighbors.
radius_neighbors_graph which has to be explicitly set by the user. If set to True, then the
sample itself is considered as the first nearest neighbor.

• thresh parameter is deprecated in favor of new tol parameter in GMM, DPGMM and VBGMM. See
Enhancements section for details. By Hervé Bredin.

• Estimators will treat input with dtype object as numeric when possible. By Andreas Müller

• Estimators now raise ValueError consistently when fitted on empty data (less than 1 sample or less than 1
feature for 2D input). By Olivier Grisel.

• The shuffle option of linear_model.SGDClassifier, linear_model.SGDRegressor,
linear_model.Perceptron, linear_model.PassiveAggressiveClassifier and
linear_model.PassiveAggressiveRegressor now defaults to True.

130 Chapter 1. Welcome to scikit-learn

https://github.com/larsmans
https://github.com/larsmans
https://manojbits.wordpress.com
https://manojbits.wordpress.com
https://joelnothman.com/
https://joelnothman.com/
https://joelnothman.com/
https://joelnothman.com/
https://github.com/raghavrv
https://github.com/raghavrv
https://amueller.github.io/
https://manojbits.wordpress.com
https://herve.niderb.fr/
https://amueller.github.io/
https://twitter.com/ogrisel

scikit-learn user guide, Release 0.23.2

• cluster.DBSCAN now uses a deterministic initialization. The random_state parameter is deprecated.
By Erich Schubert.

Code Contributors

A. Flaxman, Aaron Schumacher, Aaron Staple, abhishek thakur, Akshay, akshayah3, Aldrian Obaja, Alexander
Fabisch, Alexandre Gramfort, Alexis Mignon, Anders Aagaard, Andreas Mueller, Andreas van Cranenburgh, An-
drew Tulloch, Andrew Walker, Antony Lee, Arnaud Joly, banilo, Barmaley.exe, Ben Davies, Benedikt Koehler, bhsu,
Boris Feld, Borja Ayerdi, Boyuan Deng, Brent Pedersen, Brian Wignall, Brooke Osborn, Calvin Giles, Cathy Deng,
Celeo, cgohlke, chebee7i, Christian Stade-Schuldt, Christof Angermueller, Chyi-Kwei Yau, CJ Carey, Clemens Brun-
ner, Daiki Aminaka, Dan Blanchard, danfrankj, Danny Sullivan, David Fletcher, Dmitrijs Milajevs, Dougal J. Suther-
land, Erich Schubert, Fabian Pedregosa, Florian Wilhelm, floydsoft, Félix-Antoine Fortin, Gael Varoquaux, Garrett-R,
Gilles Louppe, gpassino, gwulfs, Hampus Bengtsson, Hamzeh Alsalhi, Hanna Wallach, Harry Mavroforakis, Hasil
Sharma, Helder, Herve Bredin, Hsiang-Fu Yu, Hugues SALAMIN, Ian Gilmore, Ilambharathi Kanniah, Imran Haque,
isms, Jake VanderPlas, Jan Dlabal, Jan Hendrik Metzen, Jatin Shah, Javier López Peña, jdcaballero, Jean Kossaifi, Jeff
Hammerbacher, Joel Nothman, Jonathan Helmus, Joseph, Kaicheng Zhang, Kevin Markham, Kyle Beauchamp, Kyle
Kastner, Lagacherie Matthieu, Lars Buitinck, Laurent Direr, leepei, Loic Esteve, Luis Pedro Coelho, Lukas Michel-
bacher, maheshakya, Manoj Kumar, Manuel, Mario Michael Krell, Martin, Martin Billinger, Martin Ku, Mateusz
Susik, Mathieu Blondel, Matt Pico, Matt Terry, Matteo Visconti dOC, Matti Lyra, Max Linke, Mehdi Cherti, Michael
Bommarito, Michael Eickenberg, Michal Romaniuk, MLG, mr.Shu, Nelle Varoquaux, Nicola Montecchio, Nicolas,
Nikolay Mayorov, Noel Dawe, Okal Billy, Olivier Grisel, Óscar Nájera, Paolo Puggioni, Peter Prettenhofer, Pratap
Vardhan, pvnguyen, queqichao, Rafael Carrascosa, Raghav R V, Rahiel Kasim, Randall Mason, Rob Zinkov, Robert
Bradshaw, Saket Choudhary, Sam Nicholls, Samuel Charron, Saurabh Jha, sethdandridge, sinhrks, snuderl, Stefan
Otte, Stefan van der Walt, Steve Tjoa, swu, Sylvain Zimmer, tejesh95, terrycojones, Thomas Delteil, Thomas Un-
terthiner, Tomas Kazmar, trevorstephens, tttthomasssss, Tzu-Ming Kuo, ugurcaliskan, ugurthemaster, Vinayak Mehta,
Vincent Dubourg, Vjacheslav Murashkin, Vlad Niculae, wadawson, Wei Xue, Will Lamond, Wu Jiang, x0l, Xinfan
Meng, Yan Yi, Yu-Chin

1.7.27 Version 0.15.2

September 4, 2014

Bug fixes

• Fixed handling of the p parameter of the Minkowski distance that was previously ignored in nearest neighbors
models. By Nikolay Mayorov.

• Fixed duplicated alphas in linear_model.LassoLars with early stopping on 32 bit Python. By Olivier
Grisel and Fabian Pedregosa.

• Fixed the build under Windows when scikit-learn is built with MSVC while NumPy is built with MinGW. By
Olivier Grisel and Federico Vaggi.

• Fixed an array index overflow bug in the coordinate descent solver. By Gael Varoquaux.

• Better handling of numpy 1.9 deprecation warnings. By Gael Varoquaux.

• Removed unnecessary data copy in cluster.KMeans. By Gael Varoquaux.

• Explicitly close open files to avoid ResourceWarnings under Python 3. By Calvin Giles.

• The transform of discriminant_analysis.LinearDiscriminantAnalysis now projects the
input on the most discriminant directions. By Martin Billinger.

• Fixed potential overflow in _tree.safe_realloc by Lars Buitinck.

1.7. Release History 131

https://github.com/kno10
https://github.com/nmayorov
https://twitter.com/ogrisel
https://twitter.com/ogrisel
http://fa.bianp.net
https://twitter.com/ogrisel
https://github.com/FedericoV
http://gael-varoquaux.info
http://gael-varoquaux.info
http://gael-varoquaux.info
https://github.com/larsmans

scikit-learn user guide, Release 0.23.2

• Performance optimization in isotonic.IsotonicRegression. By Robert Bradshaw.

• nose is non-longer a runtime dependency to import sklearn, only for running the tests. By Joel Nothman.

• Many documentation and website fixes by Joel Nothman, Lars Buitinck Matt Pico, and others.

1.7.28 Version 0.15.1

August 1, 2014

Bug fixes

• Made cross_validation.cross_val_score use cross_validation.KFold instead of
cross_validation.StratifiedKFold on multi-output classification problems. By Nikolay Mayorov.

• Support unseen labels preprocessing.LabelBinarizer to restore the default behavior of 0.14.1 for
backward compatibility. By Hamzeh Alsalhi.

• Fixed the cluster.KMeans stopping criterion that prevented early convergence detection. By Edward Raff
and Gael Varoquaux.

• Fixed the behavior of multiclass.OneVsOneClassifier. in case of ties at the per-class vote level by
computing the correct per-class sum of prediction scores. By Andreas Müller.

• Made cross_validation.cross_val_score and grid_search.GridSearchCV accept Python
lists as input data. This is especially useful for cross-validation and model selection of text processing pipelines.
By Andreas Müller.

• Fixed data input checks of most estimators to accept input data that implements the NumPy __array__
protocol. This is the case for for pandas.Series and pandas.DataFrame in recent versions of pandas.
By Gael Varoquaux.

• Fixed a regression for linear_model.SGDClassifier with class_weight="auto" on data with
non-contiguous labels. By Olivier Grisel.

1.7.29 Version 0.15

July 15, 2014

Highlights

• Many speed and memory improvements all across the code

• Huge speed and memory improvements to random forests (and extra trees) that also benefit better from parallel
computing.

• Incremental fit to BernoulliRBM

• Added cluster.AgglomerativeClustering for hierarchical agglomerative clustering with average
linkage, complete linkage and ward strategies.

• Added linear_model.RANSACRegressor for robust regression models.

• Added dimensionality reduction with manifold.TSNE which can be used to visualize high-dimensional data.

132 Chapter 1. Welcome to scikit-learn

https://joelnothman.com/
https://joelnothman.com/
https://github.com/larsmans
https://github.com/MattpSoftware
https://github.com/nmayorov
https://github.com/hamsal
http://gael-varoquaux.info
https://amueller.github.io/
https://amueller.github.io/
http://gael-varoquaux.info
https://twitter.com/ogrisel

scikit-learn user guide, Release 0.23.2

Changelog

New features

• Added ensemble.BaggingClassifier and ensemble.BaggingRegressor meta-estimators for
ensembling any kind of base estimator. See the Bagging section of the user guide for details and examples.
By Gilles Louppe.

• New unsupervised feature selection algorithm feature_selection.VarianceThreshold, by Lars
Buitinck.

• Added linear_model.RANSACRegressor meta-estimator for the robust fitting of regression models. By
Johannes Schönberger.

• Added cluster.AgglomerativeClustering for hierarchical agglomerative clustering with average
linkage, complete linkage and ward strategies, by Nelle Varoquaux and Gael Varoquaux.

• Shorthand constructors pipeline.make_pipeline and pipeline.make_union were added by Lars
Buitinck.

• Shuffle option for cross_validation.StratifiedKFold. By Jeffrey Blackburne.

• Incremental learning (partial_fit) for Gaussian Naive Bayes by Imran Haque.

• Added partial_fit to BernoulliRBM By Danny Sullivan.

• Added learning_curve utility to chart performance with respect to training size. See Plotting Learning
Curves. By Alexander Fabisch.

• Add positive option in LassoCV and ElasticNetCV . By Brian Wignall and Alexandre Gramfort.

• Added linear_model.MultiTaskElasticNetCV and linear_model.MultiTaskLassoCV . By
Manoj Kumar.

• Added manifold.TSNE. By Alexander Fabisch.

Enhancements

• Add sparse input support to ensemble.AdaBoostClassifier and ensemble.
AdaBoostRegressor meta-estimators. By Hamzeh Alsalhi.

• Memory improvements of decision trees, by Arnaud Joly.

• Decision trees can now be built in best-first manner by using max_leaf_nodes as the stopping criteria.
Refactored the tree code to use either a stack or a priority queue for tree building. By Peter Prettenhofer and
Gilles Louppe.

• Decision trees can now be fitted on fortran- and c-style arrays, and non-continuous arrays without the need to
make a copy. If the input array has a different dtype than np.float32, a fortran- style copy will be made
since fortran-style memory layout has speed advantages. By Peter Prettenhofer and Gilles Louppe.

• Speed improvement of regression trees by optimizing the the computation of the mean square error criterion.
This lead to speed improvement of the tree, forest and gradient boosting tree modules. By Arnaud Joly

• The img_to_graph and grid_tograph functions in sklearn.feature_extraction.image now
return np.ndarray instead of np.matrix when return_as=np.ndarray. See the Notes section for
more information on compatibility.

• Changed the internal storage of decision trees to use a struct array. This fixed some small bugs, while improving
code and providing a small speed gain. By Joel Nothman.

1.7. Release History 133

http://www.montefiore.ulg.ac.be/~glouppe/
https://github.com/larsmans
https://github.com/larsmans
https://github.com/ahojnnes
https://github.com/nellev
http://gael-varoquaux.info
https://github.com/larsmans
https://github.com/larsmans
https://github.com/jblackburne
https://github.com/dsullivan7
http://alexandre.gramfort.net
https://manojbits.wordpress.com
https://github.com/hamsal
http://www.ajoly.org
https://sites.google.com/site/peterprettenhofer/
http://www.montefiore.ulg.ac.be/~glouppe/
https://sites.google.com/site/peterprettenhofer/
http://www.montefiore.ulg.ac.be/~glouppe/
http://www.ajoly.org
https://joelnothman.com/

scikit-learn user guide, Release 0.23.2

• Reduce memory usage and overhead when fitting and predicting with forests of randomized trees in parallel
with n_jobs != 1 by leveraging new threading backend of joblib 0.8 and releasing the GIL in the tree fitting
Cython code. By Olivier Grisel and Gilles Louppe.

• Speed improvement of the sklearn.ensemble.gradient_boosting module. By Gilles Louppe and
Peter Prettenhofer.

• Various enhancements to the sklearn.ensemble.gradient_boosting module: a warm_start ar-
gument to fit additional trees, a max_leaf_nodes argument to fit GBM style trees, a monitor fit argument
to inspect the estimator during training, and refactoring of the verbose code. By Peter Prettenhofer.

• Faster sklearn.ensemble.ExtraTrees by caching feature values. By Arnaud Joly.

• Faster depth-based tree building algorithm such as decision tree, random forest, extra trees or gradient tree
boosting (with depth based growing strategy) by avoiding trying to split on found constant features in the sample
subset. By Arnaud Joly.

• Add min_weight_fraction_leaf pre-pruning parameter to tree-based methods: the minimum weighted
fraction of the input samples required to be at a leaf node. By Noel Dawe.

• Added metrics.pairwise_distances_argmin_min, by Philippe Gervais.

• Added predict method to cluster.AffinityPropagation and cluster.MeanShift, by Mathieu
Blondel.

• Vector and matrix multiplications have been optimised throughout the library by Denis Engemann, and Alexan-
dre Gramfort. In particular, they should take less memory with older NumPy versions (prior to 1.7.2).

• Precision-recall and ROC examples now use train_test_split, and have more explanation of why these metrics
are useful. By Kyle Kastner

• The training algorithm for decomposition.NMF is faster for sparse matrices and has much lower memory
complexity, meaning it will scale up gracefully to large datasets. By Lars Buitinck.

• Added svd_method option with default value to “randomized” to decomposition.FactorAnalysis to
save memory and significantly speedup computation by Denis Engemann, and Alexandre Gramfort.

• Changed cross_validation.StratifiedKFold to try and preserve as much of the original ordering of
samples as possible so as not to hide overfitting on datasets with a non-negligible level of samples dependency.
By Daniel Nouri and Olivier Grisel.

• Add multi-output support to gaussian_process.GaussianProcess by John Novak.

• Support for precomputed distance matrices in nearest neighbor estimators by Robert Layton and Joel Nothman.

• Norm computations optimized for NumPy 1.6 and later versions by Lars Buitinck. In particular, the k-means
algorithm no longer needs a temporary data structure the size of its input.

• dummy.DummyClassifier can now be used to predict a constant output value. By Manoj Kumar.

• dummy.DummyRegressor has now a strategy parameter which allows to predict the mean, the median of the
training set or a constant output value. By Maheshakya Wijewardena.

• Multi-label classification output in multilabel indicator format is now supported by metrics.
roc_auc_score and metrics.average_precision_score by Arnaud Joly.

• Significant performance improvements (more than 100x speedup for large problems) in isotonic.
IsotonicRegression by Andrew Tulloch.

• Speed and memory usage improvements to the SGD algorithm for linear models: it now uses threads, not
separate processes, when n_jobs>1. By Lars Buitinck.

134 Chapter 1. Welcome to scikit-learn

https://twitter.com/ogrisel
http://www.montefiore.ulg.ac.be/~glouppe/
http://www.montefiore.ulg.ac.be/~glouppe/
https://sites.google.com/site/peterprettenhofer/
https://sites.google.com/site/peterprettenhofer/
http://www.ajoly.org
http://www.ajoly.org
https://github.com/ndawe
http://www.mblondel.org
http://www.mblondel.org
http://denis-engemann.de
http://alexandre.gramfort.net
http://alexandre.gramfort.net
https://kastnerkyle.github.io/
https://github.com/larsmans
http://denis-engemann.de
http://alexandre.gramfort.net
http://danielnouri.org
https://twitter.com/ogrisel
https://twitter.com/robertlayton
https://joelnothman.com/
https://github.com/larsmans
https://manojbits.wordpress.com
https://github.com/maheshakya
http://www.ajoly.org
https://tullo.ch/
https://github.com/larsmans

scikit-learn user guide, Release 0.23.2

• Grid search and cross validation allow NaNs in the input arrays so that preprocessors such as
preprocessing.Imputer can be trained within the cross validation loop, avoiding potentially skewed
results.

• Ridge regression can now deal with sample weights in feature space (only sample space until then). By Michael
Eickenberg. Both solutions are provided by the Cholesky solver.

• Several classification and regression metrics now support weighted samples with the new
sample_weight argument: metrics.accuracy_score, metrics.zero_one_loss,
metrics.precision_score, metrics.average_precision_score, metrics.
f1_score, metrics.fbeta_score, metrics.recall_score, metrics.roc_auc_score,
metrics.explained_variance_score, metrics.mean_squared_error, metrics.
mean_absolute_error, metrics.r2_score. By Noel Dawe.

• Speed up of the sample generator datasets.make_multilabel_classification. By Joel Nothman.

Documentation improvements

• The Working With Text Data tutorial has now been worked in to the main documentation’s tutorial section.
Includes exercises and skeletons for tutorial presentation. Original tutorial created by several authors including
Olivier Grisel, Lars Buitinck and many others. Tutorial integration into the scikit-learn documentation by Jaques
Grobler

• Added Computational Performance documentation. Discussion and examples of prediction latency / throughput
and different factors that have influence over speed. Additional tips for building faster models and choosing a
relevant compromise between speed and predictive power. By Eustache Diemert.

Bug fixes

• Fixed bug in decomposition.MiniBatchDictionaryLearning : partial_fit was not working
properly.

• Fixed bug in linear_model.stochastic_gradient : l1_ratiowas used as (1.0 - l1_ratio)
.

• Fixed bug in multiclass.OneVsOneClassifier with string labels

• Fixed a bug in LassoCV and ElasticNetCV : they would not pre-compute the Gram matrix with
precompute=True or precompute="auto" and n_samples > n_features. By Manoj Kumar.

• Fixed incorrect estimation of the degrees of freedom in feature_selection.f_regression when vari-
ates are not centered. By Virgile Fritsch.

• Fixed a race condition in parallel processing with pre_dispatch != "all" (for instance, in
cross_val_score). By Olivier Grisel.

• Raise error in cluster.FeatureAgglomeration and cluster.WardAgglomeration when no
samples are given, rather than returning meaningless clustering.

• Fixed bug in gradient_boosting.GradientBoostingRegressor with loss='huber': gamma
might have not been initialized.

• Fixed feature importances as computed with a forest of randomized trees when fit with sample_weight !=
None and/or with bootstrap=True. By Gilles Louppe.

1.7. Release History 135

https://github.com/eickenberg
https://github.com/eickenberg
https://github.com/ndawe
https://joelnothman.com/
https://twitter.com/ogrisel
https://github.com/jaquesgrobler
https://github.com/jaquesgrobler
https://github.com/oddskool
https://manojbits.wordpress.com
https://github.com/VirgileFritsch
https://twitter.com/ogrisel
http://www.montefiore.ulg.ac.be/~glouppe/

scikit-learn user guide, Release 0.23.2

API changes summary

• sklearn.hmm is deprecated. Its removal is planned for the 0.17 release.

• Use of covariance.EllipticEnvelop has now been removed after deprecation. Please use
covariance.EllipticEnvelope instead.

• cluster.Ward is deprecated. Use cluster.AgglomerativeClustering instead.

• cluster.WardClustering is deprecated. Use

• cluster.AgglomerativeClustering instead.

• cross_validation.Bootstrap is deprecated. cross_validation.KFold or
cross_validation.ShuffleSplit are recommended instead.

• Direct support for the sequence of sequences (or list of lists) multilabel format is deprecated. To convert to and
from the supported binary indicator matrix format, use MultiLabelBinarizer. By Joel Nothman.

• Add score method to PCA following the model of probabilistic PCA and deprecate ProbabilisticPCA
model whose score implementation is not correct. The computation now also exploits the matrix inversion
lemma for faster computation. By Alexandre Gramfort.

• The score method of FactorAnalysis now returns the average log-likelihood of the samples. Use
score_samples to get log-likelihood of each sample. By Alexandre Gramfort.

• Generating boolean masks (the setting indices=False) from cross-validation generators is deprecated. Sup-
port for masks will be removed in 0.17. The generators have produced arrays of indices by default since 0.10.
By Joel Nothman.

• 1-d arrays containing strings with dtype=object (as used in Pandas) are now considered valid classification
targets. This fixes a regression from version 0.13 in some classifiers. By Joel Nothman.

• Fix wrong explained_variance_ratio_ attribute in RandomizedPCA. By Alexandre Gramfort.

• Fit alphas for each l1_ratio instead of mean_l1_ratio in linear_model.ElasticNetCV and
linear_model.LassoCV . This changes the shape of alphas_ from (n_alphas,) to (n_l1_ratio,
n_alphas) if the l1_ratio provided is a 1-D array like object of length greater than one. By Manoj Kumar.

• Fix linear_model.ElasticNetCV and linear_model.LassoCV when fitting intercept and input
data is sparse. The automatic grid of alphas was not computed correctly and the scaling with normalize was
wrong. By Manoj Kumar.

• Fix wrong maximal number of features drawn (max_features) at each split for decision trees, random forests
and gradient tree boosting. Previously, the count for the number of drawn features started only after one non
constant features in the split. This bug fix will affect computational and generalization performance of those
algorithms in the presence of constant features. To get back previous generalization performance, you should
modify the value of max_features. By Arnaud Joly.

• Fix wrong maximal number of features drawn (max_features) at each split for ensemble.
ExtraTreesClassifier and ensemble.ExtraTreesRegressor. Previously, only non constant
features in the split was counted as drawn. Now constant features are counted as drawn. Furthermore at least
one feature must be non constant in order to make a valid split. This bug fix will affect computational and gen-
eralization performance of extra trees in the presence of constant features. To get back previous generalization
performance, you should modify the value of max_features. By Arnaud Joly.

• Fix utils.compute_class_weight when class_weight=="auto". Previously it was broken for
input of non-integer dtype and the weighted array that was returned was wrong. By Manoj Kumar.

• Fix cross_validation.Bootstrap to return ValueError when n_train + n_test > n. By
Ronald Phlypo.

136 Chapter 1. Welcome to scikit-learn

https://joelnothman.com/
http://alexandre.gramfort.net
http://alexandre.gramfort.net
https://joelnothman.com/
https://joelnothman.com/
http://alexandre.gramfort.net
https://manojbits.wordpress.com
https://manojbits.wordpress.com
http://www.ajoly.org
http://www.ajoly.org
https://manojbits.wordpress.com
https://github.com/rphlypo

scikit-learn user guide, Release 0.23.2

People

List of contributors for release 0.15 by number of commits.

• 312 Olivier Grisel

• 275 Lars Buitinck

• 221 Gael Varoquaux

• 148 Arnaud Joly

• 134 Johannes Schönberger

• 119 Gilles Louppe

• 113 Joel Nothman

• 111 Alexandre Gramfort

• 95 Jaques Grobler

• 89 Denis Engemann

• 83 Peter Prettenhofer

• 83 Alexander Fabisch

• 62 Mathieu Blondel

• 60 Eustache Diemert

• 60 Nelle Varoquaux

• 49 Michael Bommarito

• 45 Manoj-Kumar-S

• 28 Kyle Kastner

• 26 Andreas Mueller

• 22 Noel Dawe

• 21 Maheshakya Wijewardena

• 21 Brooke Osborn

• 21 Hamzeh Alsalhi

• 21 Jake VanderPlas

• 21 Philippe Gervais

• 19 Bala Subrahmanyam Varanasi

• 12 Ronald Phlypo

• 10 Mikhail Korobov

• 8 Thomas Unterthiner

• 8 Jeffrey Blackburne

• 8 eltermann

• 8 bwignall

• 7 Ankit Agrawal

• 7 CJ Carey

1.7. Release History 137

scikit-learn user guide, Release 0.23.2

• 6 Daniel Nouri

• 6 Chen Liu

• 6 Michael Eickenberg

• 6 ugurthemaster

• 5 Aaron Schumacher

• 5 Baptiste Lagarde

• 5 Rajat Khanduja

• 5 Robert McGibbon

• 5 Sergio Pascual

• 4 Alexis Metaireau

• 4 Ignacio Rossi

• 4 Virgile Fritsch

• 4 Sebastian Säger

• 4 Ilambharathi Kanniah

• 4 sdenton4

• 4 Robert Layton

• 4 Alyssa

• 4 Amos Waterland

• 3 Andrew Tulloch

• 3 murad

• 3 Steven Maude

• 3 Karol Pysniak

• 3 Jacques Kvam

• 3 cgohlke

• 3 cjlin

• 3 Michael Becker

• 3 hamzeh

• 3 Eric Jacobsen

• 3 john collins

• 3 kaushik94

• 3 Erwin Marsi

• 2 csytracy

• 2 LK

• 2 Vlad Niculae

• 2 Laurent Direr

• 2 Erik Shilts

138 Chapter 1. Welcome to scikit-learn

scikit-learn user guide, Release 0.23.2

• 2 Raul Garreta

• 2 Yoshiki Vázquez Baeza

• 2 Yung Siang Liau

• 2 abhishek thakur

• 2 James Yu

• 2 Rohit Sivaprasad

• 2 Roland Szabo

• 2 amormachine

• 2 Alexis Mignon

• 2 Oscar Carlsson

• 2 Nantas Nardelli

• 2 jess010

• 2 kowalski87

• 2 Andrew Clegg

• 2 Federico Vaggi

• 2 Simon Frid

• 2 Félix-Antoine Fortin

• 1 Ralf Gommers

• 1 t-aft

• 1 Ronan Amicel

• 1 Rupesh Kumar Srivastava

• 1 Ryan Wang

• 1 Samuel Charron

• 1 Samuel St-Jean

• 1 Fabian Pedregosa

• 1 Skipper Seabold

• 1 Stefan Walk

• 1 Stefan van der Walt

• 1 Stephan Hoyer

• 1 Allen Riddell

• 1 Valentin Haenel

• 1 Vijay Ramesh

• 1 Will Myers

• 1 Yaroslav Halchenko

• 1 Yoni Ben-Meshulam

• 1 Yury V. Zaytsev

1.7. Release History 139

scikit-learn user guide, Release 0.23.2

• 1 adrinjalali

• 1 ai8rahim

• 1 alemagnani

• 1 alex

• 1 benjamin wilson

• 1 chalmerlowe

• 1 dzikie drożdże

• 1 jamestwebber

• 1 matrixorz

• 1 popo

• 1 samuela

• 1 François Boulogne

• 1 Alexander Measure

• 1 Ethan White

• 1 Guilherme Trein

• 1 Hendrik Heuer

• 1 IvicaJovic

• 1 Jan Hendrik Metzen

• 1 Jean Michel Rouly

• 1 Eduardo Ariño de la Rubia

• 1 Jelle Zijlstra

• 1 Eddy L O Jansson

• 1 Denis

• 1 John

• 1 John Schmidt

• 1 Jorge Cañardo Alastuey

• 1 Joseph Perla

• 1 Joshua Vredevoogd

• 1 José Ricardo

• 1 Julien Miotte

• 1 Kemal Eren

• 1 Kenta Sato

• 1 David Cournapeau

• 1 Kyle Kelley

• 1 Daniele Medri

• 1 Laurent Luce

140 Chapter 1. Welcome to scikit-learn

scikit-learn user guide, Release 0.23.2

• 1 Laurent Pierron

• 1 Luis Pedro Coelho

• 1 DanielWeitzenfeld

• 1 Craig Thompson

• 1 Chyi-Kwei Yau

• 1 Matthew Brett

• 1 Matthias Feurer

• 1 Max Linke

• 1 Chris Filo Gorgolewski

• 1 Charles Earl

• 1 Michael Hanke

• 1 Michele Orrù

• 1 Bryan Lunt

• 1 Brian Kearns

• 1 Paul Butler

• 1 Paweł Mandera

• 1 Peter

• 1 Andrew Ash

• 1 Pietro Zambelli

• 1 staubda

1.7.30 Version 0.14

August 7, 2013

Changelog

• Missing values with sparse and dense matrices can be imputed with the transformer preprocessing.
Imputer by Nicolas Trésegnie.

• The core implementation of decisions trees has been rewritten from scratch, allowing for faster tree induction
and lower memory consumption in all tree-based estimators. By Gilles Louppe.

• Added ensemble.AdaBoostClassifier and ensemble.AdaBoostRegressor, by Noel Dawe and
Gilles Louppe. See the AdaBoost section of the user guide for details and examples.

• Added grid_search.RandomizedSearchCV and grid_search.ParameterSampler for random-
ized hyperparameter optimization. By Andreas Müller.

• Added biclustering algorithms (sklearn.cluster.bicluster.SpectralCoclustering and
sklearn.cluster.bicluster.SpectralBiclustering), data generation methods (sklearn.
datasets.make_biclusters and sklearn.datasets.make_checkerboard), and scoring met-
rics (sklearn.metrics.consensus_score). By Kemal Eren.

• Added Restricted Boltzmann Machines (neural_network.BernoulliRBM). By Yann Dauphin.

1.7. Release History 141

https://github.com/NicolasTr
http://www.montefiore.ulg.ac.be/~glouppe/
https://github.com/ndawe
http://www.montefiore.ulg.ac.be/~glouppe/
https://amueller.github.io/
http://www.kemaleren.com
https://ynd.github.io/

scikit-learn user guide, Release 0.23.2

• Python 3 support by Justin Vincent, Lars Buitinck, Subhodeep Moitra and Olivier Grisel. All tests now pass
under Python 3.3.

• Ability to pass one penalty (alpha value) per target in linear_model.Ridge, by @eickenberg and Mathieu
Blondel.

• Fixed sklearn.linear_model.stochastic_gradient.py L2 regularization issue (minor practical
significance). By Norbert Crombach and Mathieu Blondel .

• Added an interactive version of Andreas Müller’s Machine Learning Cheat Sheet (for scikit-learn) to the docu-
mentation. See Choosing the right estimator. By Jaques Grobler.

• grid_search.GridSearchCV and cross_validation.cross_val_score now support the use
of advanced scoring function such as area under the ROC curve and f-beta scores. See The scoring parameter:
defining model evaluation rules for details. By Andreas Müller and Lars Buitinck. Passing a function from
sklearn.metrics as score_func is deprecated.

• Multi-label classification output is now supported by metrics.accuracy_score,
metrics.zero_one_loss, metrics.f1_score, metrics.fbeta_score, metrics.
classification_report, metrics.precision_score and metrics.recall_score by
Arnaud Joly.

• Two new metrics metrics.hamming_loss and metrics.jaccard_similarity_score are added
with multi-label support by Arnaud Joly.

• Speed and memory usage improvements in feature_extraction.text.CountVectorizer and
feature_extraction.text.TfidfVectorizer, by Jochen Wersdörfer and Roman Sinayev.

• The min_df parameter in feature_extraction.text.CountVectorizer and
feature_extraction.text.TfidfVectorizer, which used to be 2, has been reset to 1 to
avoid unpleasant surprises (empty vocabularies) for novice users who try it out on tiny document collections. A
value of at least 2 is still recommended for practical use.

• svm.LinearSVC, linear_model.SGDClassifier and linear_model.SGDRegressor now
have a sparsify method that converts their coef_ into a sparse matrix, meaning stored models trained
using these estimators can be made much more compact.

• linear_model.SGDClassifier now produces multiclass probability estimates when trained under log
loss or modified Huber loss.

• Hyperlinks to documentation in example code on the website by Martin Luessi.

• Fixed bug in preprocessing.MinMaxScaler causing incorrect scaling of the features for non-default
feature_range settings. By Andreas Müller.

• max_features in tree.DecisionTreeClassifier, tree.DecisionTreeRegressor and all
derived ensemble estimators now supports percentage values. By Gilles Louppe.

• Performance improvements in isotonic.IsotonicRegression by Nelle Varoquaux.

• metrics.accuracy_score has an option normalize to return the fraction or the number of correctly clas-
sified sample by Arnaud Joly.

• Added metrics.log_loss that computes log loss, aka cross-entropy loss. By Jochen Wersdörfer and Lars
Buitinck.

• A bug that caused ensemble.AdaBoostClassifier’s to output incorrect probabilities has been fixed.

• Feature selectors now share a mixin providing consistent transform, inverse_transform and
get_support methods. By Joel Nothman.

• A fitted grid_search.GridSearchCV or grid_search.RandomizedSearchCV can now generally
be pickled. By Joel Nothman.

142 Chapter 1. Welcome to scikit-learn

https://github.com/justinvf
https://github.com/larsmans
https://github.com/smoitra87
https://twitter.com/ogrisel
http://www.mblondel.org
http://www.mblondel.org
https://github.com/norbert
http://www.mblondel.org
https://amueller.github.io/
https://peekaboo-vision.blogspot.de/2013/01/machine-learning-cheat-sheet-for-scikit.html
https://github.com/jaquesgrobler
https://amueller.github.io/
https://github.com/larsmans
http://www.ajoly.org
http://www.ajoly.org
https://github.com/mluessi
https://amueller.github.io/
http://www.montefiore.ulg.ac.be/~glouppe/
https://github.com/nellev
http://www.ajoly.org
https://github.com/larsmans
https://github.com/larsmans
https://joelnothman.com/
https://joelnothman.com/

scikit-learn user guide, Release 0.23.2

• Refactored and vectorized implementation of metrics.roc_curve and metrics.
precision_recall_curve. By Joel Nothman.

• The new estimator sklearn.decomposition.TruncatedSVD performs dimensionality reduction using
SVD on sparse matrices, and can be used for latent semantic analysis (LSA). By Lars Buitinck.

• Added self-contained example of out-of-core learning on text data Out-of-core classification of text documents.
By Eustache Diemert.

• The default number of components for sklearn.decomposition.RandomizedPCA is now correctly
documented to be n_features. This was the default behavior, so programs using it will continue to work as
they did.

• sklearn.cluster.KMeans now fits several orders of magnitude faster on sparse data (the speedup depends
on the sparsity). By Lars Buitinck.

• Reduce memory footprint of FastICA by Denis Engemann and Alexandre Gramfort.

• Verbose output in sklearn.ensemble.gradient_boosting now uses a column format and prints
progress in decreasing frequency. It also shows the remaining time. By Peter Prettenhofer.

• sklearn.ensemble.gradient_boosting provides out-of-bag improvement oob_improvement_
rather than the OOB score for model selection. An example that shows how to use OOB estimates to select the
number of trees was added. By Peter Prettenhofer.

• Most metrics now support string labels for multiclass classification by Arnaud Joly and Lars Buitinck.

• New OrthogonalMatchingPursuitCV class by Alexandre Gramfort and Vlad Niculae.

• Fixed a bug in sklearn.covariance.GraphLassoCV: the ‘alphas’ parameter now works as expected
when given a list of values. By Philippe Gervais.

• Fixed an important bug in sklearn.covariance.GraphLassoCV that prevented all folds provided by
a CV object to be used (only the first 3 were used). When providing a CV object, execution time may thus
increase significantly compared to the previous version (bug results are correct now). By Philippe Gervais.

• cross_validation.cross_val_score and the grid_search module is now tested with multi-
output data by Arnaud Joly.

• datasets.make_multilabel_classification can now return the output in label indicator multil-
abel format by Arnaud Joly.

• K-nearest neighbors, neighbors.KNeighborsRegressor and neighbors.
RadiusNeighborsRegressor, and radius neighbors, neighbors.RadiusNeighborsRegressor
and neighbors.RadiusNeighborsClassifier support multioutput data by Arnaud Joly.

• Random state in LibSVM-based estimators (svm.SVC, NuSVC, OneClassSVM, svm.SVR, svm.NuSVR)
can now be controlled. This is useful to ensure consistency in the probability estimates for the classifiers trained
with probability=True. By Vlad Niculae.

• Out-of-core learning support for discrete naive Bayes classifiers sklearn.naive_bayes.
MultinomialNB and sklearn.naive_bayes.BernoulliNB by adding the partial_fit
method by Olivier Grisel.

• New website design and navigation by Gilles Louppe, Nelle Varoquaux, Vincent Michel and Andreas Müller.

• Improved documentation on multi-class, multi-label and multi-output classification by Yannick Schwartz and
Arnaud Joly.

• Better input and error handling in the metrics module by Arnaud Joly and Joel Nothman.

• Speed optimization of the hmm module by Mikhail Korobov

• Significant speed improvements for sklearn.cluster.DBSCAN by cleverless

1.7. Release History 143

https://joelnothman.com/
https://github.com/larsmans
https://github.com/oddskool
https://github.com/larsmans
http://denis-engemann.de
http://alexandre.gramfort.net
https://sites.google.com/site/peterprettenhofer/
https://sites.google.com/site/peterprettenhofer/
http://www.ajoly.org
https://github.com/larsmans
http://alexandre.gramfort.net
https://vene.ro/
http://www.ajoly.org
http://www.ajoly.org
http://www.ajoly.org
https://vene.ro/
https://twitter.com/ogrisel
http://www.montefiore.ulg.ac.be/~glouppe/
https://github.com/nellev
https://amueller.github.io/
https://team.inria.fr/parietal/schwarty/
http://www.ajoly.org
http://www.ajoly.org
https://joelnothman.com/
https://github.com/kmike
https://github.com/cleverless

scikit-learn user guide, Release 0.23.2

API changes summary

• The auc_score was renamed roc_auc_score.

• Testing scikit-learn with sklearn.test() is deprecated. Use nosetests sklearn from the command
line.

• Feature importances in tree.DecisionTreeClassifier, tree.DecisionTreeRegressor and all
derived ensemble estimators are now computed on the fly when accessing the feature_importances_
attribute. Setting compute_importances=True is no longer required. By Gilles Louppe.

• linear_model.lasso_path and linear_model.enet_path can return its results in the same format
as that of linear_model.lars_path. This is done by setting the return_models parameter to False.
By Jaques Grobler and Alexandre Gramfort

• grid_search.IterGrid was renamed to grid_search.ParameterGrid.

• Fixed bug in KFold causing imperfect class balance in some cases. By Alexandre Gramfort and Tadej Janež.

• sklearn.neighbors.BallTree has been refactored, and a sklearn.neighbors.KDTree has been
added which shares the same interface. The Ball Tree now works with a wide variety of distance metrics.
Both classes have many new methods, including single-tree and dual-tree queries, breadth-first and depth-first
searching, and more advanced queries such as kernel density estimation and 2-point correlation functions. By
Jake Vanderplas

• Support for scipy.spatial.cKDTree within neighbors queries has been removed, and the functionality replaced
with the new KDTree class.

• sklearn.neighbors.KernelDensity has been added, which performs efficient kernel density estima-
tion with a variety of kernels.

• sklearn.decomposition.KernelPCA now always returns output with n_components components,
unless the new parameter remove_zero_eig is set to True. This new behavior is consistent with the way
kernel PCA was always documented; previously, the removal of components with zero eigenvalues was tacitly
performed on all data.

• gcv_mode="auto" no longer tries to perform SVD on a densified sparse matrix in sklearn.
linear_model.RidgeCV .

• Sparse matrix support in sklearn.decomposition.RandomizedPCA is now deprecated in favor of the
new TruncatedSVD.

• cross_validation.KFold and cross_validation.StratifiedKFold now enforce n_folds
>= 2 otherwise a ValueError is raised. By Olivier Grisel.

• datasets.load_files’s charset and charset_errors parameters were renamed encoding and
decode_errors.

• Attribute oob_score_ in sklearn.ensemble.GradientBoostingRegressor and
sklearn.ensemble.GradientBoostingClassifier is deprecated and has been replaced by
oob_improvement_ .

• Attributes in OrthogonalMatchingPursuit have been deprecated (copy_X, Gram, . . .) and precompute_gram
renamed precompute for consistency. See #2224.

• sklearn.preprocessing.StandardScaler now converts integer input to float, and raises a warning.
Previously it rounded for dense integer input.

• sklearn.multiclass.OneVsRestClassifier now has a decision_function method. This
will return the distance of each sample from the decision boundary for each class, as long as the underlying
estimators implement the decision_function method. By Kyle Kastner.

• Better input validation, warning on unexpected shapes for y.

144 Chapter 1. Welcome to scikit-learn

http://www.montefiore.ulg.ac.be/~glouppe/
https://github.com/jaquesgrobler
http://alexandre.gramfort.net
http://alexandre.gramfort.net
https://staff.washington.edu/jakevdp/
https://twitter.com/ogrisel
https://kastnerkyle.github.io/

scikit-learn user guide, Release 0.23.2

People

List of contributors for release 0.14 by number of commits.

• 277 Gilles Louppe

• 245 Lars Buitinck

• 187 Andreas Mueller

• 124 Arnaud Joly

• 112 Jaques Grobler

• 109 Gael Varoquaux

• 107 Olivier Grisel

• 102 Noel Dawe

• 99 Kemal Eren

• 79 Joel Nothman

• 75 Jake VanderPlas

• 73 Nelle Varoquaux

• 71 Vlad Niculae

• 65 Peter Prettenhofer

• 64 Alexandre Gramfort

• 54 Mathieu Blondel

• 38 Nicolas Trésegnie

• 35 eustache

• 27 Denis Engemann

• 25 Yann N. Dauphin

• 19 Justin Vincent

• 17 Robert Layton

• 15 Doug Coleman

• 14 Michael Eickenberg

• 13 Robert Marchman

• 11 Fabian Pedregosa

• 11 Philippe Gervais

• 10 Jim Holmström

• 10 Tadej Janež

• 10 syhw

• 9 Mikhail Korobov

• 9 Steven De Gryze

• 8 sergeyf

• 7 Ben Root

1.7. Release History 145

scikit-learn user guide, Release 0.23.2

• 7 Hrishikesh Huilgolkar

• 6 Kyle Kastner

• 6 Martin Luessi

• 6 Rob Speer

• 5 Federico Vaggi

• 5 Raul Garreta

• 5 Rob Zinkov

• 4 Ken Geis

• 3 A. Flaxman

• 3 Denton Cockburn

• 3 Dougal Sutherland

• 3 Ian Ozsvald

• 3 Johannes Schönberger

• 3 Robert McGibbon

• 3 Roman Sinayev

• 3 Szabo Roland

• 2 Diego Molla

• 2 Imran Haque

• 2 Jochen Wersdörfer

• 2 Sergey Karayev

• 2 Yannick Schwartz

• 2 jamestwebber

• 1 Abhijeet Kolhe

• 1 Alexander Fabisch

• 1 Bastiaan van den Berg

• 1 Benjamin Peterson

• 1 Daniel Velkov

• 1 Fazlul Shahriar

• 1 Felix Brockherde

• 1 Félix-Antoine Fortin

• 1 Harikrishnan S

• 1 Jack Hale

• 1 JakeMick

• 1 James McDermott

• 1 John Benediktsson

• 1 John Zwinck

146 Chapter 1. Welcome to scikit-learn

scikit-learn user guide, Release 0.23.2

• 1 Joshua Vredevoogd

• 1 Justin Pati

• 1 Kevin Hughes

• 1 Kyle Kelley

• 1 Matthias Ekman

• 1 Miroslav Shubernetskiy

• 1 Naoki Orii

• 1 Norbert Crombach

• 1 Rafael Cunha de Almeida

• 1 Rolando Espinoza La fuente

• 1 Seamus Abshere

• 1 Sergey Feldman

• 1 Sergio Medina

• 1 Stefano Lattarini

• 1 Steve Koch

• 1 Sturla Molden

• 1 Thomas Jarosch

• 1 Yaroslav Halchenko

1.7.31 Version 0.13.1

February 23, 2013

The 0.13.1 release only fixes some bugs and does not add any new functionality.

Changelog

• Fixed a testing error caused by the function cross_validation.train_test_split being interpreted
as a test by Yaroslav Halchenko.

• Fixed a bug in the reassignment of small clusters in the cluster.MiniBatchKMeans by Gael Varoquaux.

• Fixed default value of gamma in decomposition.KernelPCA by Lars Buitinck.

• Updated joblib to 0.7.0d by Gael Varoquaux.

• Fixed scaling of the deviance in ensemble.GradientBoostingClassifier by Peter Prettenhofer.

• Better tie-breaking in multiclass.OneVsOneClassifier by Andreas Müller.

• Other small improvements to tests and documentation.

1.7. Release History 147

http://www.onerussian.com/
http://gael-varoquaux.info
https://github.com/larsmans
http://gael-varoquaux.info
https://sites.google.com/site/peterprettenhofer/
https://amueller.github.io/

scikit-learn user guide, Release 0.23.2

People

List of contributors for release 0.13.1 by number of commits.

• 16 Lars Buitinck

• 12 Andreas Müller

• 8 Gael Varoquaux

• 5 Robert Marchman

• 3 Peter Prettenhofer

• 2 Hrishikesh Huilgolkar

• 1 Bastiaan van den Berg

• 1 Diego Molla

• 1 Gilles Louppe

• 1 Mathieu Blondel

• 1 Nelle Varoquaux

• 1 Rafael Cunha de Almeida

• 1 Rolando Espinoza La fuente

• 1 Vlad Niculae

• 1 Yaroslav Halchenko

1.7.32 Version 0.13

January 21, 2013

New Estimator Classes

• dummy.DummyClassifier and dummy.DummyRegressor, two data-independent predictors by Mathieu
Blondel. Useful to sanity-check your estimators. See Dummy estimators in the user guide. Multioutput support
added by Arnaud Joly.

• decomposition.FactorAnalysis, a transformer implementing the classical factor analysis, by Chris-
tian Osendorfer and Alexandre Gramfort. See Factor Analysis in the user guide.

• feature_extraction.FeatureHasher, a transformer implementing the “hashing trick” for fast,
low-memory feature extraction from string fields by Lars Buitinck and feature_extraction.text.
HashingVectorizer for text documents by Olivier Grisel See Feature hashing and Vectorizing a large
text corpus with the hashing trick for the documentation and sample usage.

• pipeline.FeatureUnion, a transformer that concatenates results of several other transformers by Andreas
Müller. See FeatureUnion: composite feature spaces in the user guide.

• random_projection.GaussianRandomProjection, random_projection.
SparseRandomProjection and the function random_projection.
johnson_lindenstrauss_min_dim. The first two are transformers implementing Gaussian and
sparse random projection matrix by Olivier Grisel and Arnaud Joly. See Random Projection in the user guide.

• kernel_approximation.Nystroem, a transformer for approximating arbitrary kernels by Andreas
Müller. See Nystroem Method for Kernel Approximation in the user guide.

148 Chapter 1. Welcome to scikit-learn

https://github.com/larsmans
https://amueller.github.io/
http://gael-varoquaux.info
https://sites.google.com/site/peterprettenhofer/
http://www.montefiore.ulg.ac.be/~glouppe/
http://www.mblondel.org
https://github.com/nellev
https://vene.ro/
http://www.onerussian.com/
http://www.mblondel.org
http://www.mblondel.org
http://www.ajoly.org
https://osdf.github.io
https://osdf.github.io
http://alexandre.gramfort.net
https://github.com/larsmans
https://twitter.com/ogrisel
https://amueller.github.io/
https://amueller.github.io/
https://twitter.com/ogrisel
http://www.ajoly.org
https://amueller.github.io/
https://amueller.github.io/

scikit-learn user guide, Release 0.23.2

• preprocessing.OneHotEncoder, a transformer that computes binary encodings of categorical features
by Andreas Müller. See Encoding categorical features in the user guide.

• linear_model.PassiveAggressiveClassifier and linear_model.
PassiveAggressiveRegressor, predictors implementing an efficient stochastic optimization for
linear models by Rob Zinkov and Mathieu Blondel. See Passive Aggressive Algorithms in the user guide.

• ensemble.RandomTreesEmbedding, a transformer for creating high-dimensional sparse representations
using ensembles of totally random trees by Andreas Müller. See Totally Random Trees Embedding in the user
guide.

• manifold.SpectralEmbedding and function manifold.spectral_embedding, implementing
the “laplacian eigenmaps” transformation for non-linear dimensionality reduction by Wei Li. See Spectral
Embedding in the user guide.

• isotonic.IsotonicRegression by Fabian Pedregosa, Alexandre Gramfort and Nelle Varoquaux,

Changelog

• metrics.zero_one_loss (formerly metrics.zero_one) now has option for normalized output that
reports the fraction of misclassifications, rather than the raw number of misclassifications. By Kyle Beauchamp.

• tree.DecisionTreeClassifier and all derived ensemble models now support sample weighting, by
Noel Dawe and Gilles Louppe.

• Speedup improvement when using bootstrap samples in forests of randomized trees, by Peter Prettenhofer and
Gilles Louppe.

• Partial dependence plots for Gradient Tree Boosting in ensemble.partial_dependence.
partial_dependence by Peter Prettenhofer. See Partial Dependence Plots for an example.

• The table of contents on the website has now been made expandable by Jaques Grobler.

• feature_selection.SelectPercentile now breaks ties deterministically instead of returning all
equally ranked features.

• feature_selection.SelectKBest and feature_selection.SelectPercentile are more
numerically stable since they use scores, rather than p-values, to rank results. This means that they might
sometimes select different features than they did previously.

• Ridge regression and ridge classification fitting with sparse_cg solver no longer has quadratic memory com-
plexity, by Lars Buitinck and Fabian Pedregosa.

• Ridge regression and ridge classification now support a new fast solver called lsqr, by Mathieu Blondel.

• Speed up of metrics.precision_recall_curve by Conrad Lee.

• Added support for reading/writing svmlight files with pairwise preference attribute (qid in svmlight file format)
in datasets.dump_svmlight_file and datasets.load_svmlight_file by Fabian Pedregosa.

• Faster and more robust metrics.confusion_matrix and Clustering performance evaluation by Wei Li.

• cross_validation.cross_val_score now works with precomputed kernels and affinity matrices, by
Andreas Müller.

• LARS algorithm made more numerically stable with heuristics to drop regressors too correlated as well as to
stop the path when numerical noise becomes predominant, by Gael Varoquaux.

• Faster implementation of metrics.precision_recall_curve by Conrad Lee.

• New kernel metrics.chi2_kernel by Andreas Müller, often used in computer vision applications.

• Fix of longstanding bug in naive_bayes.BernoulliNB fixed by Shaun Jackman.

1.7. Release History 149

https://amueller.github.io/
https://www.zinkov.com/
http://www.mblondel.org
https://amueller.github.io/
http://fa.bianp.net
http://alexandre.gramfort.net
https://github.com/nellev
https://github.com/ndawe
http://www.montefiore.ulg.ac.be/~glouppe/
https://sites.google.com/site/peterprettenhofer/
http://www.montefiore.ulg.ac.be/~glouppe/
https://sites.google.com/site/peterprettenhofer/
https://github.com/jaquesgrobler
https://github.com/larsmans
http://fa.bianp.net
http://www.mblondel.org
http://fa.bianp.net
https://amueller.github.io/
http://gael-varoquaux.info
https://amueller.github.io/

scikit-learn user guide, Release 0.23.2

• Implemented predict_proba in multiclass.OneVsRestClassifier, by Andrew Winterman.

• Improve consistency in gradient boosting: estimators ensemble.GradientBoostingRegressor and
ensemble.GradientBoostingClassifier use the estimator tree.DecisionTreeRegressor
instead of the tree._tree.Tree data structure by Arnaud Joly.

• Fixed a floating point exception in the decision trees module, by Seberg.

• Fix metrics.roc_curve fails when y_true has only one class by Wei Li.

• Add the metrics.mean_absolute_error function which computes the mean absolute error. The
metrics.mean_squared_error, metrics.mean_absolute_error and metrics.r2_score
metrics support multioutput by Arnaud Joly.

• Fixed class_weight support in svm.LinearSVC and linear_model.LogisticRegression by
Andreas Müller. The meaning of class_weight was reversed as erroneously higher weight meant less
positives of a given class in earlier releases.

• Improve narrative documentation and consistency in sklearn.metrics for regression and classification
metrics by Arnaud Joly.

• Fixed a bug in sklearn.svm.SVC when using csr-matrices with unsorted indices by Xinfan Meng and An-
dreas Müller.

• MiniBatchKMeans: Add random reassignment of cluster centers with little observations attached to them,
by Gael Varoquaux.

API changes summary

• Renamed all occurrences of n_atoms to n_components for consistency.
This applies to decomposition.DictionaryLearning, decomposition.
MiniBatchDictionaryLearning, decomposition.dict_learning, decomposition.
dict_learning_online.

• Renamed all occurrences of max_iters to max_iter for consistency. This applies to
semi_supervised.LabelPropagation and semi_supervised.label_propagation.
LabelSpreading.

• Renamed all occurrences of learn_rate to learning_rate for consistency in ensemble.
BaseGradientBoosting and ensemble.GradientBoostingRegressor.

• The module sklearn.linear_model.sparse is gone. Sparse matrix support was already integrated into
the “regular” linear models.

• sklearn.metrics.mean_square_error, which incorrectly returned the accumulated error, was re-
moved. Use mean_squared_error instead.

• Passing class_weight parameters to fit methods is no longer supported. Pass them to estimator construc-
tors instead.

• GMMs no longer have decode and rvs methods. Use the score, predict or sample methods instead.

• The solver fit option in Ridge regression and classification is now deprecated and will be removed in v0.14.
Use the constructor option instead.

• feature_extraction.text.DictVectorizer now returns sparse matrices in the CSR format, in-
stead of COO.

• Renamed k in cross_validation.KFold and cross_validation.StratifiedKFold to
n_folds, renamed n_bootstraps to n_iter in cross_validation.Bootstrap.

150 Chapter 1. Welcome to scikit-learn

http://www.ajoly.org
http://www.ajoly.org
https://amueller.github.io/
http://www.ajoly.org
https://amueller.github.io/
https://amueller.github.io/
http://gael-varoquaux.info

scikit-learn user guide, Release 0.23.2

• Renamed all occurrences of n_iterations to n_iter for consistency. This applies to
cross_validation.ShuffleSplit, cross_validation.StratifiedShuffleSplit,
utils.randomized_range_finder and utils.randomized_svd.

• Replaced rho in linear_model.ElasticNet and linear_model.SGDClassifier by
l1_ratio. The rho parameter had different meanings; l1_ratio was introduced to avoid confu-
sion. It has the same meaning as previously rho in linear_model.ElasticNet and (1-rho) in
linear_model.SGDClassifier.

• linear_model.LassoLars and linear_model.Lars now store a list of paths in the case of multiple
targets, rather than an array of paths.

• The attribute gmm of hmm.GMMHMM was renamed to gmm_ to adhere more strictly with the API.

• cluster.spectral_embedding was moved to manifold.spectral_embedding.

• Renamed eig_tol in manifold.spectral_embedding, cluster.SpectralClustering to
eigen_tol, renamed mode to eigen_solver.

• Renamed mode in manifold.spectral_embedding and cluster.SpectralClustering to
eigen_solver.

• classes_ and n_classes_ attributes of tree.DecisionTreeClassifier and all derived ensemble
models are now flat in case of single output problems and nested in case of multi-output problems.

• The estimators_ attribute of ensemble.gradient_boosting.GradientBoostingRegressor
and ensemble.gradient_boosting.GradientBoostingClassifier is now an array of
:class:’tree.DecisionTreeRegressor’.

• Renamed chunk_size to batch_size in decomposition.MiniBatchDictionaryLearning
and decomposition.MiniBatchSparsePCA for consistency.

• svm.SVC and svm.NuSVC now provide a classes_ attribute and support arbitrary dtypes for labels y.
Also, the dtype returned by predict now reflects the dtype of y during fit (used to be np.float).

• Changed default test_size in cross_validation.train_test_split to None, added pos-
sibility to infer test_size from train_size in cross_validation.ShuffleSplit and
cross_validation.StratifiedShuffleSplit.

• Renamed function sklearn.metrics.zero_one to sklearn.metrics.zero_one_loss. Be
aware that the default behavior in sklearn.metrics.zero_one_loss is different from sklearn.
metrics.zero_one: normalize=False is changed to normalize=True.

• Renamed function metrics.zero_one_score to metrics.accuracy_score.

• datasets.make_circles now has the same number of inner and outer points.

• In the Naive Bayes classifiers, the class_prior parameter was moved from fit to __init__.

People

List of contributors for release 0.13 by number of commits.

• 364 Andreas Müller

• 143 Arnaud Joly

• 137 Peter Prettenhofer

• 131 Gael Varoquaux

• 117 Mathieu Blondel

• 108 Lars Buitinck

1.7. Release History 151

https://amueller.github.io/
http://www.ajoly.org
https://sites.google.com/site/peterprettenhofer/
http://gael-varoquaux.info
http://www.mblondel.org
https://github.com/larsmans

scikit-learn user guide, Release 0.23.2

• 106 Wei Li

• 101 Olivier Grisel

• 65 Vlad Niculae

• 54 Gilles Louppe

• 40 Jaques Grobler

• 38 Alexandre Gramfort

• 30 Rob Zinkov

• 19 Aymeric Masurelle

• 18 Andrew Winterman

• 17 Fabian Pedregosa

• 17 Nelle Varoquaux

• 16 Christian Osendorfer

• 14 Daniel Nouri

• 13 Virgile Fritsch

• 13 syhw

• 12 Satrajit Ghosh

• 10 Corey Lynch

• 10 Kyle Beauchamp

• 9 Brian Cheung

• 9 Immanuel Bayer

• 9 mr.Shu

• 8 Conrad Lee

• 8 James Bergstra

• 7 Tadej Janež

• 6 Brian Cajes

• 6 Jake Vanderplas

• 6 Michael

• 6 Noel Dawe

• 6 Tiago Nunes

• 6 cow

• 5 Anze

• 5 Shiqiao Du

• 4 Christian Jauvin

• 4 Jacques Kvam

• 4 Richard T. Guy

• 4 Robert Layton

152 Chapter 1. Welcome to scikit-learn

https://twitter.com/ogrisel
https://vene.ro/
http://www.montefiore.ulg.ac.be/~glouppe/
https://github.com/jaquesgrobler
http://alexandre.gramfort.net
https://www.zinkov.com/
http://fa.bianp.net
https://osdf.github.io
http://danielnouri.org
https://github.com/VirgileFritsch
https://www.mit.edu/~satra/
http://www-etud.iro.umontreal.ca/~bergstrj/
https://staff.washington.edu/jakevdp/
https://twitter.com/robertlayton

scikit-learn user guide, Release 0.23.2

• 3 Alexandre Abraham

• 3 Doug Coleman

• 3 Scott Dickerson

• 2 ApproximateIdentity

• 2 John Benediktsson

• 2 Mark Veronda

• 2 Matti Lyra

• 2 Mikhail Korobov

• 2 Xinfan Meng

• 1 Alejandro Weinstein

• 1 Alexandre Passos

• 1 Christoph Deil

• 1 Eugene Nizhibitsky

• 1 Kenneth C. Arnold

• 1 Luis Pedro Coelho

• 1 Miroslav Batchkarov

• 1 Pavel

• 1 Sebastian Berg

• 1 Shaun Jackman

• 1 Subhodeep Moitra

• 1 bob

• 1 dengemann

• 1 emanuele

• 1 x006

1.7.33 Version 0.12.1

October 8, 2012

The 0.12.1 release is a bug-fix release with no additional features, but is instead a set of bug fixes

Changelog

• Improved numerical stability in spectral embedding by Gael Varoquaux

• Doctest under windows 64bit by Gael Varoquaux

• Documentation fixes for elastic net by Andreas Müller and Alexandre Gramfort

• Proper behavior with fortran-ordered NumPy arrays by Gael Varoquaux

• Make GridSearchCV work with non-CSR sparse matrix by Lars Buitinck

• Fix parallel computing in MDS by Gael Varoquaux

1.7. Release History 153

http://atpassos.me
http://gael-varoquaux.info
http://gael-varoquaux.info
https://amueller.github.io/
http://alexandre.gramfort.net
http://gael-varoquaux.info
https://github.com/larsmans
http://gael-varoquaux.info

scikit-learn user guide, Release 0.23.2

• Fix Unicode support in count vectorizer by Andreas Müller

• Fix MinCovDet breaking with X.shape = (3, 1) by Virgile Fritsch

• Fix clone of SGD objects by Peter Prettenhofer

• Stabilize GMM by Virgile Fritsch

People

• 14 Peter Prettenhofer

• 12 Gael Varoquaux

• 10 Andreas Müller

• 5 Lars Buitinck

• 3 Virgile Fritsch

• 1 Alexandre Gramfort

• 1 Gilles Louppe

• 1 Mathieu Blondel

1.7.34 Version 0.12

September 4, 2012

Changelog

• Various speed improvements of the decision trees module, by Gilles Louppe.

• ensemble.GradientBoostingRegressor and ensemble.GradientBoostingClassifier
now support feature subsampling via the max_features argument, by Peter Prettenhofer.

• Added Huber and Quantile loss functions to ensemble.GradientBoostingRegressor, by Peter Pret-
tenhofer.

• Decision trees and forests of randomized trees now support multi-output classification and regression problems,
by Gilles Louppe.

• Added preprocessing.LabelEncoder, a simple utility class to normalize labels or transform non-
numerical labels, by Mathieu Blondel.

• Added the epsilon-insensitive loss and the ability to make probabilistic predictions with the modified huber loss
in Stochastic Gradient Descent, by Mathieu Blondel.

• Added Multi-dimensional Scaling (MDS), by Nelle Varoquaux.

• SVMlight file format loader now detects compressed (gzip/bzip2) files and decompresses them on the fly, by
Lars Buitinck.

• SVMlight file format serializer now preserves double precision floating point values, by Olivier Grisel.

• A common testing framework for all estimators was added, by Andreas Müller.

• Understandable error messages for estimators that do not accept sparse input by Gael Varoquaux

• Speedups in hierarchical clustering by Gael Varoquaux. In particular building the tree now supports early
stopping. This is useful when the number of clusters is not small compared to the number of samples.

154 Chapter 1. Welcome to scikit-learn

https://amueller.github.io/
https://github.com/VirgileFritsch
https://sites.google.com/site/peterprettenhofer/
https://github.com/VirgileFritsch
https://sites.google.com/site/peterprettenhofer/
http://gael-varoquaux.info
https://amueller.github.io/
https://github.com/larsmans
https://github.com/VirgileFritsch
http://alexandre.gramfort.net
http://www.montefiore.ulg.ac.be/~glouppe/
http://www.mblondel.org
http://www.montefiore.ulg.ac.be/~glouppe/
https://sites.google.com/site/peterprettenhofer/
https://sites.google.com/site/peterprettenhofer/
https://sites.google.com/site/peterprettenhofer/
http://www.montefiore.ulg.ac.be/~glouppe/
http://www.mblondel.org
http://www.mblondel.org
https://github.com/larsmans
https://twitter.com/ogrisel
https://amueller.github.io/
http://gael-varoquaux.info
http://gael-varoquaux.info

scikit-learn user guide, Release 0.23.2

• Add MultiTaskLasso and MultiTaskElasticNet for joint feature selection, by Alexandre Gramfort.

• Added metrics.auc_score and metrics.average_precision_score convenience functions by
Andreas Müller.

• Improved sparse matrix support in the Feature selection module by Andreas Müller.

• New word boundaries-aware character n-gram analyzer for the Text feature extraction module by @kernc.

• Fixed bug in spectral clustering that led to single point clusters by Andreas Müller.

• In feature_extraction.text.CountVectorizer, added an option to ignore infrequent words,
min_df by Andreas Müller.

• Add support for multiple targets in some linear models (ElasticNet, Lasso and OrthogonalMatchingPursuit) by
Vlad Niculae and Alexandre Gramfort.

• Fixes in decomposition.ProbabilisticPCA score function by Wei Li.

• Fixed feature importance computation in Gradient Tree Boosting.

API changes summary

• The old scikits.learn package has disappeared; all code should import from sklearn instead, which
was introduced in 0.9.

• In metrics.roc_curve, the thresholds array is now returned with it’s order reversed, in order to keep
it consistent with the order of the returned fpr and tpr.

• In hmm objects, like hmm.GaussianHMM, hmm.MultinomialHMM, etc., all parameters must be passed to
the object when initialising it and not through fit. Now fit will only accept the data as an input parameter.

• For all SVM classes, a faulty behavior of gamma was fixed. Previously, the default gamma value was only
computed the first time fit was called and then stored. It is now recalculated on every call to fit.

• All Base classes are now abstract meta classes so that they can not be instantiated.

• cluster.ward_tree now also returns the parent array. This is necessary for early-stopping in which case
the tree is not completely built.

• In feature_extraction.text.CountVectorizer the parameters min_n and max_n were joined to
the parameter n_gram_range to enable grid-searching both at once.

• In feature_extraction.text.CountVectorizer, words that appear only in one document are now
ignored by default. To reproduce the previous behavior, set min_df=1.

• Fixed API inconsistency: linear_model.SGDClassifier.predict_proba now returns 2d array
when fit on two classes.

• Fixed API inconsistency: discriminant_analysis.QuadraticDiscriminantAnalysis.
decision_function and discriminant_analysis.LinearDiscriminantAnalysis.
decision_function now return 1d arrays when fit on two classes.

• Grid of alphas used for fitting linear_model.LassoCV and linear_model.ElasticNetCV is now
stored in the attribute alphas_ rather than overriding the init parameter alphas.

• Linear models when alpha is estimated by cross-validation store the estimated value in the alpha_ attribute
rather than just alpha or best_alpha.

• ensemble.GradientBoostingClassifier now supports ensemble.
GradientBoostingClassifier.staged_predict_proba, and ensemble.
GradientBoostingClassifier.staged_predict.

1.7. Release History 155

http://alexandre.gramfort.net
https://amueller.github.io/
https://amueller.github.io/
https://github.com/kernc
https://amueller.github.io/
https://amueller.github.io/
https://vene.ro/
http://alexandre.gramfort.net

scikit-learn user guide, Release 0.23.2

• svm.sparse.SVC and other sparse SVM classes are now deprecated. The all classes in the Support Vector
Machines module now automatically select the sparse or dense representation base on the input.

• All clustering algorithms now interpret the array X given to fit as input data, in particular cluster.
SpectralClustering and cluster.AffinityPropagationwhich previously expected affinity ma-
trices.

• For clustering algorithms that take the desired number of clusters as a parameter, this parameter is now called
n_clusters.

People

• 267 Andreas Müller

• 94 Gilles Louppe

• 89 Gael Varoquaux

• 79 Peter Prettenhofer

• 60 Mathieu Blondel

• 57 Alexandre Gramfort

• 52 Vlad Niculae

• 45 Lars Buitinck

• 44 Nelle Varoquaux

• 37 Jaques Grobler

• 30 Alexis Mignon

• 30 Immanuel Bayer

• 27 Olivier Grisel

• 16 Subhodeep Moitra

• 13 Yannick Schwartz

• 12 @kernc

• 11 Virgile Fritsch

• 9 Daniel Duckworth

• 9 Fabian Pedregosa

• 9 Robert Layton

• 8 John Benediktsson

• 7 Marko Burjek

• 5 Nicolas Pinto

• 4 Alexandre Abraham

• 4 Jake Vanderplas

• 3 Brian Holt

• 3 Edouard Duchesnay

• 3 Florian Hoenig

156 Chapter 1. Welcome to scikit-learn

https://amueller.github.io/
http://www.montefiore.ulg.ac.be/~glouppe/
http://gael-varoquaux.info
https://sites.google.com/site/peterprettenhofer/
http://www.mblondel.org
http://alexandre.gramfort.net
https://vene.ro/
https://github.com/larsmans
https://github.com/jaquesgrobler
https://twitter.com/ogrisel
https://github.com/kernc
https://github.com/VirgileFritsch
http://fa.bianp.net
https://twitter.com/robertlayton
https://twitter.com/npinto
https://staff.washington.edu/jakevdp/
http://personal.ee.surrey.ac.uk/Personal/B.Holt
https://sites.google.com/site/duchesnay/home

scikit-learn user guide, Release 0.23.2

• 3 flyingimmidev

• 2 Francois Savard

• 2 Hannes Schulz

• 2 Peter Welinder

• 2 Yaroslav Halchenko

• 2 Wei Li

• 1 Alex Companioni

• 1 Brandyn A. White

• 1 Bussonnier Matthias

• 1 Charles-Pierre Astolfi

• 1 Dan O’Huiginn

• 1 David Cournapeau

• 1 Keith Goodman

• 1 Ludwig Schwardt

• 1 Olivier Hervieu

• 1 Sergio Medina

• 1 Shiqiao Du

• 1 Tim Sheerman-Chase

• 1 buguen

1.7.35 Version 0.11

May 7, 2012

Changelog

Highlights

• Gradient boosted regression trees (Gradient Tree Boosting) for classification and regression by Peter Pretten-
hofer and Scott White .

• Simple dict-based feature loader with support for categorical variables (feature_extraction.
DictVectorizer) by Lars Buitinck.

• Added Matthews correlation coefficient (metrics.matthews_corrcoef) and added macro and micro av-
erage options to metrics.precision_score, metrics.recall_score and metrics.f1_score
by Satrajit Ghosh.

• Out of Bag Estimates of generalization error for Ensemble methods by Andreas Müller.

• Randomized sparse linear models for feature selection, by Alexandre Gramfort and Gael Varoquaux

• Label Propagation for semi-supervised learning, by Clay Woolam. Note the semi-supervised API is still work
in progress, and may change.

1.7. Release History 157

http://www.onerussian.com/
https://sites.google.com/site/peterprettenhofer/
https://sites.google.com/site/peterprettenhofer/
https://twitter.com/scottblanc
https://github.com/larsmans
https://www.mit.edu/~satra/
https://amueller.github.io/
http://alexandre.gramfort.net
http://gael-varoquaux.info

scikit-learn user guide, Release 0.23.2

• Added BIC/AIC model selection to classical Gaussian mixture models and unified the API with the remainder
of scikit-learn, by Bertrand Thirion

• Added sklearn.cross_validation.StratifiedShuffleSplit, which is a sklearn.
cross_validation.ShuffleSplit with balanced splits, by Yannick Schwartz.

• sklearn.neighbors.NearestCentroid classifier added, along with a shrink_threshold param-
eter, which implements shrunken centroid classification, by Robert Layton.

Other changes

• Merged dense and sparse implementations of Stochastic Gradient Descent module and exposed utility extension
types for sequential datasets seq_dataset and weight vectors weight_vector by Peter Prettenhofer.

• Added partial_fit (support for online/minibatch learning) and warm_start to the Stochastic Gradient De-
scent module by Mathieu Blondel.

• Dense and sparse implementations of Support Vector Machines classes and linear_model.
LogisticRegression merged by Lars Buitinck.

• Regressors can now be used as base estimator in the Multiclass and multilabel algorithms module by Mathieu
Blondel.

• Added n_jobs option to metrics.pairwise.pairwise_distances and metrics.pairwise.
pairwise_kernels for parallel computation, by Mathieu Blondel.

• K-means can now be run in parallel, using the n_jobs argument to either K-means or KMeans, by Robert
Layton.

• Improved Cross-validation: evaluating estimator performance and Tuning the hyper-parameters of an estima-
tor documentation and introduced the new cross_validation.train_test_split helper function by
Olivier Grisel

• svm.SVC members coef_ and intercept_ changed sign for consistency with decision_function;
for kernel==linear, coef_ was fixed in the one-vs-one case, by Andreas Müller.

• Performance improvements to efficient leave-one-out cross-validated Ridge regression, esp. for the
n_samples > n_features case, in linear_model.RidgeCV , by Reuben Fletcher-Costin.

• Refactoring and simplification of the Text feature extraction API and fixed a bug that caused possible negative
IDF, by Olivier Grisel.

• Beam pruning option in _BaseHMM module has been removed since it is difficult to Cythonize. If you are
interested in contributing a Cython version, you can use the python version in the git history as a reference.

• Classes in Nearest Neighbors now support arbitrary Minkowski metric for nearest neighbors searches. The
metric can be specified by argument p.

API changes summary

• covariance.EllipticEnvelop is now deprecated - Please use covariance.EllipticEnvelope
instead.

• NeighborsClassifier and NeighborsRegressor are gone in the module Nearest Neighbors. Use
the classes KNeighborsClassifier, RadiusNeighborsClassifier, KNeighborsRegressor
and/or RadiusNeighborsRegressor instead.

• Sparse classes in the Stochastic Gradient Descent module are now deprecated.

158 Chapter 1. Welcome to scikit-learn

https://team.inria.fr/parietal/bertrand-thirions-page
https://twitter.com/robertlayton
https://sites.google.com/site/peterprettenhofer/
http://www.mblondel.org
https://github.com/larsmans
http://www.mblondel.org
http://www.mblondel.org
http://www.mblondel.org
https://twitter.com/robertlayton
https://twitter.com/robertlayton
https://twitter.com/ogrisel
https://amueller.github.io/
https://twitter.com/ogrisel

scikit-learn user guide, Release 0.23.2

• In mixture.GMM, mixture.DPGMM and mixture.VBGMM, parameters must be passed to an object when
initialising it and not through fit. Now fit will only accept the data as an input parameter.

• methods rvs and decode in GMM module are now deprecated. sample and score or predict should be
used instead.

• attribute _scores and _pvalues in univariate feature selection objects are now deprecated. scores_ or
pvalues_ should be used instead.

• In LogisticRegression, LinearSVC, SVC and NuSVC, the class_weight parameter is now an ini-
tialization parameter, not a parameter to fit. This makes grid searches over this parameter possible.

• LFW data is now always shape (n_samples, n_features) to be consistent with the Olivetti faces
dataset. Use images and pairs attribute to access the natural images shapes instead.

• In svm.LinearSVC, the meaning of the multi_class parameter changed. Options now are 'ovr' and
'crammer_singer', with 'ovr' being the default. This does not change the default behavior but hopefully
is less confusing.

• Class feature_selection.text.Vectorizer is deprecated and replaced by
feature_selection.text.TfidfVectorizer.

• The preprocessor / analyzer nested structure for text feature extraction has been removed. All those features are
now directly passed as flat constructor arguments to feature_selection.text.TfidfVectorizer
and feature_selection.text.CountVectorizer, in particular the following parameters are now
used:

• analyzer can be 'word' or 'char' to switch the default analysis scheme, or use a specific python callable
(as previously).

• tokenizer and preprocessor have been introduced to make it still possible to customize those steps with
the new API.

• input explicitly control how to interpret the sequence passed to fit and predict: filenames, file objects or
direct (byte or Unicode) strings.

• charset decoding is explicit and strict by default.

• the vocabulary, fitted or not is now stored in the vocabulary_ attribute to be consistent with the project
conventions.

• Class feature_selection.text.TfidfVectorizer now derives directly from
feature_selection.text.CountVectorizer to make grid search trivial.

• methods rvs in _BaseHMM module are now deprecated. sample should be used instead.

• Beam pruning option in _BaseHMM module is removed since it is difficult to be Cythonized. If you are inter-
ested, you can look in the history codes by git.

• The SVMlight format loader now supports files with both zero-based and one-based column indices, since both
occur “in the wild”.

• Arguments in class ShuffleSplit are now consistent with StratifiedShuffleSplit. Arguments
test_fraction and train_fraction are deprecated and renamed to test_size and train_size
and can accept both float and int.

• Arguments in class Bootstrap are now consistent with StratifiedShuffleSplit. Arguments
n_test and n_train are deprecated and renamed to test_size and train_size and can accept both
float and int.

• Argument p added to classes in Nearest Neighbors to specify an arbitrary Minkowski metric for nearest neigh-
bors searches.

1.7. Release History 159

scikit-learn user guide, Release 0.23.2

People

• 282 Andreas Müller

• 239 Peter Prettenhofer

• 198 Gael Varoquaux

• 129 Olivier Grisel

• 114 Mathieu Blondel

• 103 Clay Woolam

• 96 Lars Buitinck

• 88 Jaques Grobler

• 82 Alexandre Gramfort

• 50 Bertrand Thirion

• 42 Robert Layton

• 28 flyingimmidev

• 26 Jake Vanderplas

• 26 Shiqiao Du

• 21 Satrajit Ghosh

• 17 David Marek

• 17 Gilles Louppe

• 14 Vlad Niculae

• 11 Yannick Schwartz

• 10 Fabian Pedregosa

• 9 fcostin

• 7 Nick Wilson

• 5 Adrien Gaidon

• 5 Nicolas Pinto

• 4 David Warde-Farley

• 5 Nelle Varoquaux

• 5 Emmanuelle Gouillart

• 3 Joonas Sillanpää

• 3 Paolo Losi

• 2 Charles McCarthy

• 2 Roy Hyunjin Han

• 2 Scott White

• 2 ibayer

• 1 Brandyn White

• 1 Carlos Scheidegger

160 Chapter 1. Welcome to scikit-learn

https://amueller.github.io/
https://sites.google.com/site/peterprettenhofer/
http://gael-varoquaux.info
https://twitter.com/ogrisel
http://www.mblondel.org
https://github.com/larsmans
https://github.com/jaquesgrobler
http://alexandre.gramfort.net
https://team.inria.fr/parietal/bertrand-thirions-page
https://twitter.com/robertlayton
https://staff.washington.edu/jakevdp/
https://www.mit.edu/~satra/
https://davidmarek.cz/
http://www.montefiore.ulg.ac.be/~glouppe/
https://vene.ro/
http://fa.bianp.net
https://twitter.com/npinto
http://www-etud.iro.umontreal.ca/~wardefar/

scikit-learn user guide, Release 0.23.2

• 1 Claire Revillet

• 1 Conrad Lee

• 1 Edouard Duchesnay

• 1 Jan Hendrik Metzen

• 1 Meng Xinfan

• 1 Rob Zinkov

• 1 Shiqiao

• 1 Udi Weinsberg

• 1 Virgile Fritsch

• 1 Xinfan Meng

• 1 Yaroslav Halchenko

• 1 jansoe

• 1 Leon Palafox

1.7.36 Version 0.10

January 11, 2012

Changelog

• Python 2.5 compatibility was dropped; the minimum Python version needed to use scikit-learn is now 2.6.

• Sparse inverse covariance estimation using the graph Lasso, with associated cross-validated estimator, by Gael
Varoquaux

• New Tree module by Brian Holt, Peter Prettenhofer, Satrajit Ghosh and Gilles Louppe. The module comes with
complete documentation and examples.

• Fixed a bug in the RFE module by Gilles Louppe (issue #378).

• Fixed a memory leak in Support Vector Machines module by Brian Holt (issue #367).

• Faster tests by Fabian Pedregosa and others.

• Silhouette Coefficient cluster analysis evaluation metric added as sklearn.metrics.
silhouette_score by Robert Layton.

• Fixed a bug in K-means in the handling of the n_init parameter: the clustering algorithm used to be run
n_init times but the last solution was retained instead of the best solution by Olivier Grisel.

• Minor refactoring in Stochastic Gradient Descent module; consolidated dense and sparse predict methods; En-
hanced test time performance by converting model parameters to fortran-style arrays after fitting (only multi-
class).

• Adjusted Mutual Information metric added as sklearn.metrics.adjusted_mutual_info_score
by Robert Layton.

• Models like SVC/SVR/LinearSVC/LogisticRegression from libsvm/liblinear now support scaling of C regular-
ization parameter by the number of samples by Alexandre Gramfort.

• New Ensemble Methods module by Gilles Louppe and Brian Holt. The module comes with the random forest
algorithm and the extra-trees method, along with documentation and examples.

1.7. Release History 161

https://sites.google.com/site/duchesnay/home
https://www.zinkov.com/
http://gael-varoquaux.info
http://gael-varoquaux.info
http://personal.ee.surrey.ac.uk/Personal/B.Holt
https://sites.google.com/site/peterprettenhofer/
https://www.mit.edu/~satra/
http://www.montefiore.ulg.ac.be/~glouppe/
http://www.montefiore.ulg.ac.be/~glouppe/
http://personal.ee.surrey.ac.uk/Personal/B.Holt
http://fa.bianp.net
https://twitter.com/ogrisel
http://alexandre.gramfort.net
http://www.montefiore.ulg.ac.be/~glouppe/
http://personal.ee.surrey.ac.uk/Personal/B.Holt

scikit-learn user guide, Release 0.23.2

• Novelty and Outlier Detection: outlier and novelty detection, by Virgile Fritsch.

• Kernel Approximation: a transform implementing kernel approximation for fast SGD on non-linear kernels by
Andreas Müller.

• Fixed a bug due to atom swapping in Orthogonal Matching Pursuit (OMP) by Vlad Niculae.

• Sparse coding with a precomputed dictionary by Vlad Niculae.

• Mini Batch K-Means performance improvements by Olivier Grisel.

• K-means support for sparse matrices by Mathieu Blondel.

• Improved documentation for developers and for the sklearn.utils module, by Jake Vanderplas.

• Vectorized 20newsgroups dataset loader (sklearn.datasets.fetch_20newsgroups_vectorized)
by Mathieu Blondel.

• Multiclass and multilabel algorithms by Lars Buitinck.

• Utilities for fast computation of mean and variance for sparse matrices by Mathieu Blondel.

• Make sklearn.preprocessing.scale and sklearn.preprocessing.Scaler work on sparse
matrices by Olivier Grisel

• Feature importances using decision trees and/or forest of trees, by Gilles Louppe.

• Parallel implementation of forests of randomized trees by Gilles Louppe.

• sklearn.cross_validation.ShuffleSplit can subsample the train sets as well as the test sets by
Olivier Grisel.

• Errors in the build of the documentation fixed by Andreas Müller.

API changes summary

Here are the code migration instructions when upgrading from scikit-learn version 0.9:

• Some estimators that may overwrite their inputs to save memory previously had overwrite_ parameters;
these have been replaced with copy_ parameters with exactly the opposite meaning.

This particularly affects some of the estimators in linear_model. The default behavior is still to copy
everything passed in.

• The SVMlight dataset loader sklearn.datasets.load_svmlight_file no longer supports loading
two files at once; use load_svmlight_files instead. Also, the (unused) buffer_mb parameter is gone.

• Sparse estimators in the Stochastic Gradient Descent module use dense parameter vector coef_ instead of
sparse_coef_. This significantly improves test time performance.

• The Covariance estimation module now has a robust estimator of covariance, the Minimum Covariance Deter-
minant estimator.

• Cluster evaluation metrics in metrics.cluster have been refactored but the changes are backwards compat-
ible. They have been moved to the metrics.cluster.supervised, along with metrics.cluster.
unsupervised which contains the Silhouette Coefficient.

• The permutation_test_score function now behaves the same way as cross_val_score (i.e. uses
the mean score across the folds.)

• Cross Validation generators now use integer indices (indices=True) by default instead of boolean masks.
This make it more intuitive to use with sparse matrix data.

162 Chapter 1. Welcome to scikit-learn

https://github.com/VirgileFritsch
https://amueller.github.io/
https://vene.ro/
https://vene.ro/
https://twitter.com/ogrisel
http://www.mblondel.org
https://staff.washington.edu/jakevdp/
http://www.mblondel.org
https://github.com/larsmans
http://www.mblondel.org
https://twitter.com/ogrisel
http://www.montefiore.ulg.ac.be/~glouppe/
http://www.montefiore.ulg.ac.be/~glouppe/
https://twitter.com/ogrisel
https://amueller.github.io/

scikit-learn user guide, Release 0.23.2

• The functions used for sparse coding, sparse_encode and sparse_encode_parallel have been com-
bined into sklearn.decomposition.sparse_encode, and the shapes of the arrays have been trans-
posed for consistency with the matrix factorization setting, as opposed to the regression setting.

• Fixed an off-by-one error in the SVMlight/LibSVM file format handling; files generated using sklearn.
datasets.dump_svmlight_file should be re-generated. (They should continue to work, but acciden-
tally had one extra column of zeros prepended.)

• BaseDictionaryLearning class replaced by SparseCodingMixin.

• sklearn.utils.extmath.fast_svd has been renamed sklearn.utils.extmath.
randomized_svd and the default oversampling is now fixed to 10 additional random vectors instead
of doubling the number of components to extract. The new behavior follows the reference paper.

People

The following people contributed to scikit-learn since last release:

• 246 Andreas Müller

• 242 Olivier Grisel

• 220 Gilles Louppe

• 183 Brian Holt

• 166 Gael Varoquaux

• 144 Lars Buitinck

• 73 Vlad Niculae

• 65 Peter Prettenhofer

• 64 Fabian Pedregosa

• 60 Robert Layton

• 55 Mathieu Blondel

• 52 Jake Vanderplas

• 44 Noel Dawe

• 38 Alexandre Gramfort

• 24 Virgile Fritsch

• 23 Satrajit Ghosh

• 3 Jan Hendrik Metzen

• 3 Kenneth C. Arnold

• 3 Shiqiao Du

• 3 Tim Sheerman-Chase

• 3 Yaroslav Halchenko

• 2 Bala Subrahmanyam Varanasi

• 2 DraXus

• 2 Michael Eickenberg

• 1 Bogdan Trach

1.7. Release History 163

https://amueller.github.io/
https://twitter.com/ogrisel
http://www.montefiore.ulg.ac.be/~glouppe/
http://personal.ee.surrey.ac.uk/Personal/B.Holt
http://gael-varoquaux.info
https://github.com/larsmans
https://vene.ro/
https://sites.google.com/site/peterprettenhofer/
http://fa.bianp.net
http://www.mblondel.org
https://staff.washington.edu/jakevdp/
http://alexandre.gramfort.net
https://github.com/VirgileFritsch
https://www.mit.edu/~satra/
http://www.onerussian.com/

scikit-learn user guide, Release 0.23.2

• 1 Félix-Antoine Fortin

• 1 Juan Manuel Caicedo Carvajal

• 1 Nelle Varoquaux

• 1 Nicolas Pinto

• 1 Tiziano Zito

• 1 Xinfan Meng

1.7.37 Version 0.9

September 21, 2011

scikit-learn 0.9 was released on September 2011, three months after the 0.8 release and includes the new modules
Manifold learning, The Dirichlet Process as well as several new algorithms and documentation improvements.

This release also includes the dictionary-learning work developed by Vlad Niculae as part of the Google Summer of
Code program.

164 Chapter 1. Welcome to scikit-learn

https://twitter.com/npinto
https://vene.ro/
https://developers.google.com/open-source/gsoc
https://developers.google.com/open-source/gsoc
../auto_examples/linear_model/plot_omp.html

scikit-learn user guide, Release 0.23.2

Changelog

• New Manifold learning module by Jake Vanderplas and Fabian Pedregosa.

• New Dirichlet Process Gaussian Mixture Model by Alexandre Passos

1.7. Release History 165

../auto_examples/manifold/plot_compare_methods.html
../auto_examples/decomposition/plot_kernel_pca.html
https://staff.washington.edu/jakevdp/
http://fa.bianp.net
http://atpassos.me

scikit-learn user guide, Release 0.23.2

• Nearest Neighbors module refactoring by Jake Vanderplas : general refactoring, support for sparse matrices in
input, speed and documentation improvements. See the next section for a full list of API changes.

• Improvements on the Feature selection module by Gilles Louppe : refactoring of the RFE classes, documenta-
tion rewrite, increased efficiency and minor API changes.

• Sparse principal components analysis (SparsePCA and MiniBatchSparsePCA) by Vlad Niculae, Gael Varo-
quaux and Alexandre Gramfort

• Printing an estimator now behaves independently of architectures and Python version thanks to Jean Kossaifi.

• Loader for libsvm/svmlight format by Mathieu Blondel and Lars Buitinck

• Documentation improvements: thumbnails in example gallery by Fabian Pedregosa.

• Important bugfixes in Support Vector Machines module (segfaults, bad performance) by Fabian Pedregosa.

• Added Multinomial Naive Bayes and Bernoulli Naive Bayes by Lars Buitinck

• Text feature extraction optimizations by Lars Buitinck

• Chi-Square feature selection (feature_selection.univariate_selection.chi2) by Lars Buit-
inck.

• Generated datasets module refactoring by Gilles Louppe

• Multiclass and multilabel algorithms by Mathieu Blondel

• Ball tree rewrite by Jake Vanderplas

• Implementation of DBSCAN algorithm by Robert Layton

• Kmeans predict and transform by Robert Layton

• Preprocessing module refactoring by Olivier Grisel

• Faster mean shift by Conrad Lee

• New Bootstrap, Random permutations cross-validation a.k.a. Shuffle & Split and various other improve-
ments in cross validation schemes by Olivier Grisel and Gael Varoquaux

• Adjusted Rand index and V-Measure clustering evaluation metrics by Olivier Grisel

• Added Orthogonal Matching Pursuit by Vlad Niculae

• Added 2D-patch extractor utilities in the Feature extraction module by Vlad Niculae

• Implementation of linear_model.LassoLarsCV (cross-validated Lasso solver using the Lars algorithm)
and linear_model.LassoLarsIC (BIC/AIC model selection in Lars) by Gael Varoquaux and Alexandre
Gramfort

• Scalability improvements to metrics.roc_curve by Olivier Hervieu

• Distance helper functions metrics.pairwise.pairwise_distances and metrics.pairwise.
pairwise_kernels by Robert Layton

• Mini-Batch K-Means by Nelle Varoquaux and Peter Prettenhofer.

• mldata utilities by Pietro Berkes.

• The Olivetti faces dataset by David Warde-Farley.

API changes summary

Here are the code migration instructions when upgrading from scikit-learn version 0.8:

166 Chapter 1. Welcome to scikit-learn

https://staff.washington.edu/jakevdp/
http://www.montefiore.ulg.ac.be/~glouppe/
https://vene.ro/
http://gael-varoquaux.info
http://gael-varoquaux.info
http://alexandre.gramfort.net
https://github.com/JeanKossaifi
http://www.mblondel.org
https://github.com/larsmans
http://fa.bianp.net
http://fa.bianp.net
https://github.com/larsmans
https://github.com/larsmans
https://github.com/larsmans
http://www.montefiore.ulg.ac.be/~glouppe/
http://www.mblondel.org
https://staff.washington.edu/jakevdp/
https://twitter.com/ogrisel
https://twitter.com/ogrisel
http://gael-varoquaux.info
https://twitter.com/ogrisel
https://vene.ro/
https://vene.ro/
http://gael-varoquaux.info
http://alexandre.gramfort.net
http://alexandre.gramfort.net
http://www-etud.iro.umontreal.ca/~wardefar/

scikit-learn user guide, Release 0.23.2

• The scikits.learn package was renamed sklearn. There is still a scikits.learn package alias for
backward compatibility.

Third-party projects with a dependency on scikit-learn 0.9+ should upgrade their codebase. For instance, under
Linux / MacOSX just run (make a backup first!):

find -name "*.py" | xargs sed -i 's/\bscikits.learn\b/sklearn/g'

• Estimators no longer accept model parameters as fit arguments: instead all parameters must be only
be passed as constructor arguments or using the now public set_params method inherited from base.
BaseEstimator.

Some estimators can still accept keyword arguments on the fit but this is restricted to data-dependent values
(e.g. a Gram matrix or an affinity matrix that are precomputed from the X data matrix.

• The cross_val package has been renamed to cross_validation although there is also a cross_val
package alias in place for backward compatibility.

Third-party projects with a dependency on scikit-learn 0.9+ should upgrade their codebase. For instance, under
Linux / MacOSX just run (make a backup first!):

find -name "*.py" | xargs sed -i 's/\bcross_val\b/cross_validation/g'

• The score_func argument of the sklearn.cross_validation.cross_val_score function is
now expected to accept y_test and y_predicted as only arguments for classification and regression tasks
or X_test for unsupervised estimators.

• gamma parameter for support vector machine algorithms is set to 1 / n_features by default, instead of 1
/ n_samples.

• The sklearn.hmm has been marked as orphaned: it will be removed from scikit-learn in version 0.11 unless
someone steps up to contribute documentation, examples and fix lurking numerical stability issues.

• sklearn.neighbors has been made into a submodule. The two previously available estimators,
NeighborsClassifier and NeighborsRegressor have been marked as deprecated. Their function-
ality has been divided among five new classes: NearestNeighbors for unsupervised neighbors searches,
KNeighborsClassifier & RadiusNeighborsClassifier for supervised classification problems,
and KNeighborsRegressor & RadiusNeighborsRegressor for supervised regression problems.

• sklearn.ball_tree.BallTree has been moved to sklearn.neighbors.BallTree. Using the
former will generate a warning.

• sklearn.linear_model.LARS() and related classes (LassoLARS, LassoLARSCV, etc.) have been re-
named to sklearn.linear_model.Lars().

• All distance metrics and kernels in sklearn.metrics.pairwise now have a Y parameter, which by
default is None. If not given, the result is the distance (or kernel similarity) between each sample in Y. If given,
the result is the pairwise distance (or kernel similarity) between samples in X to Y.

• sklearn.metrics.pairwise.l1_distance is now called manhattan_distance, and by default
returns the pairwise distance. For the component wise distance, set the parameter sum_over_features to
False.

Backward compatibility package aliases and other deprecated classes and functions will be removed in version 0.11.

People

38 people contributed to this release.

• 387 Vlad Niculae

1.7. Release History 167

https://vene.ro/

scikit-learn user guide, Release 0.23.2

• 320 Olivier Grisel

• 192 Lars Buitinck

• 179 Gael Varoquaux

• 168 Fabian Pedregosa (INRIA, Parietal Team)

• 127 Jake Vanderplas

• 120 Mathieu Blondel

• 85 Alexandre Passos

• 67 Alexandre Gramfort

• 57 Peter Prettenhofer

• 56 Gilles Louppe

• 42 Robert Layton

• 38 Nelle Varoquaux

• 32 Jean Kossaifi

• 30 Conrad Lee

• 22 Pietro Berkes

• 18 andy

• 17 David Warde-Farley

• 12 Brian Holt

• 11 Robert

• 8 Amit Aides

• 8 Virgile Fritsch

• 7 Yaroslav Halchenko

• 6 Salvatore Masecchia

• 5 Paolo Losi

• 4 Vincent Schut

• 3 Alexis Metaireau

• 3 Bryan Silverthorn

• 3 Andreas Müller

• 2 Minwoo Jake Lee

• 1 Emmanuelle Gouillart

• 1 Keith Goodman

• 1 Lucas Wiman

• 1 Nicolas Pinto

• 1 Thouis (Ray) Jones

• 1 Tim Sheerman-Chase

168 Chapter 1. Welcome to scikit-learn

https://twitter.com/ogrisel
https://github.com/larsmans
http://gael-varoquaux.info
http://fa.bianp.net
https://www.inria.fr/
http://parietal.saclay.inria.fr/
https://staff.washington.edu/jakevdp/
http://www.mblondel.org
http://atpassos.me
http://alexandre.gramfort.net
https://sites.google.com/site/peterprettenhofer/
http://www.montefiore.ulg.ac.be/~glouppe/
https://github.com/JeanKossaifi
https://github.com/VirgileFritsch
http://www.onerussian.com/
https://amueller.github.io/
https://twitter.com/npinto

scikit-learn user guide, Release 0.23.2

1.7.38 Version 0.8

May 11, 2011

scikit-learn 0.8 was released on May 2011, one month after the first “international” scikit-learn coding sprint and is
marked by the inclusion of important modules: Hierarchical clustering, Cross decomposition, Non-negative matrix
factorization (NMF or NNMF), initial support for Python 3 and by important enhancements and bug fixes.

Changelog

Several new modules where introduced during this release:

• New Hierarchical clustering module by Vincent Michel, Bertrand Thirion, Alexandre Gramfort and Gael Varo-
quaux.

• Kernel PCA implementation by Mathieu Blondel

• The Labeled Faces in the Wild face recognition dataset by Olivier Grisel.

• New Cross decomposition module by Edouard Duchesnay.

• Non-negative matrix factorization (NMF or NNMF) module Vlad Niculae

• Implementation of the Oracle Approximating Shrinkage algorithm by Virgile Fritsch in the Covariance estima-
tion module.

Some other modules benefited from significant improvements or cleanups.

• Initial support for Python 3: builds and imports cleanly, some modules are usable while others have failing tests
by Fabian Pedregosa.

• decomposition.PCA is now usable from the Pipeline object by Olivier Grisel.

• Guide How to optimize for speed by Olivier Grisel.

• Fixes for memory leaks in libsvm bindings, 64-bit safer BallTree by Lars Buitinck.

• bug and style fixing in K-means algorithm by Jan Schlüter.

• Add attribute converged to Gaussian Mixture Models by Vincent Schut.

• Implemented transform, predict_log_proba in discriminant_analysis.
LinearDiscriminantAnalysis By Mathieu Blondel.

• Refactoring in the Support Vector Machines module and bug fixes by Fabian Pedregosa, Gael Varoquaux and
Amit Aides.

• Refactored SGD module (removed code duplication, better variable naming), added interface for sample weight
by Peter Prettenhofer.

• Wrapped BallTree with Cython by Thouis (Ray) Jones.

• Added function svm.l1_min_c by Paolo Losi.

• Typos, doc style, etc. by Yaroslav Halchenko, Gael Varoquaux, Olivier Grisel, Yann Malet, Nicolas Pinto, Lars
Buitinck and Fabian Pedregosa.

People

People that made this release possible preceded by number of commits:

• 159 Olivier Grisel

1.7. Release History 169

https://github.com/scikit-learn/scikit-learn/wiki/Upcoming-events
https://team.inria.fr/parietal/bertrand-thirions-page
http://alexandre.gramfort.net
http://gael-varoquaux.info
http://gael-varoquaux.info
http://www.mblondel.org
https://twitter.com/ogrisel
https://sites.google.com/site/duchesnay/home
https://vene.ro/
https://github.com/VirgileFritsch
http://fa.bianp.net
https://twitter.com/ogrisel
https://twitter.com/ogrisel
http://www.mblondel.org
http://fa.bianp.net
http://gael-varoquaux.info
https://sites.google.com/site/peterprettenhofer/
http://www.onerussian.com/
http://gael-varoquaux.info
https://twitter.com/ogrisel
https://twitter.com/npinto
http://fa.bianp.net
https://twitter.com/ogrisel

scikit-learn user guide, Release 0.23.2

• 96 Gael Varoquaux

• 96 Vlad Niculae

• 94 Fabian Pedregosa

• 36 Alexandre Gramfort

• 32 Paolo Losi

• 31 Edouard Duchesnay

• 30 Mathieu Blondel

• 25 Peter Prettenhofer

• 22 Nicolas Pinto

• 11 Virgile Fritsch

– 7 Lars Buitinck

– 6 Vincent Michel

– 5 Bertrand Thirion

– 4 Thouis (Ray) Jones

– 4 Vincent Schut

– 3 Jan Schlüter

– 2 Julien Miotte

– 2 Matthieu Perrot

– 2 Yann Malet

– 2 Yaroslav Halchenko

– 1 Amit Aides

– 1 Andreas Müller

– 1 Feth Arezki

– 1 Meng Xinfan

1.7.39 Version 0.7

March 2, 2011

scikit-learn 0.7 was released in March 2011, roughly three months after the 0.6 release. This release is marked by the
speed improvements in existing algorithms like k-Nearest Neighbors and K-Means algorithm and by the inclusion of
an efficient algorithm for computing the Ridge Generalized Cross Validation solution. Unlike the preceding release,
no new modules where added to this release.

Changelog

• Performance improvements for Gaussian Mixture Model sampling [Jan Schlüter].

• Implementation of efficient leave-one-out cross-validated Ridge in linear_model.RidgeCV [Mathieu
Blondel]

170 Chapter 1. Welcome to scikit-learn

http://gael-varoquaux.info
https://vene.ro/
http://fa.bianp.net
http://alexandre.gramfort.net
https://sites.google.com/site/duchesnay/home
http://www.mblondel.org
https://sites.google.com/site/peterprettenhofer/
https://twitter.com/npinto
https://github.com/VirgileFritsch
https://team.inria.fr/parietal/bertrand-thirions-page
http://brainvisa.info/biblio/lnao/en/Author/PERROT-M.html
http://www.onerussian.com/
https://amueller.github.io/
http://www.mblondel.org
http://www.mblondel.org

scikit-learn user guide, Release 0.23.2

• Better handling of collinearity and early stopping in linear_model.lars_path [Alexandre Gramfort and
Fabian Pedregosa].

• Fixes for liblinear ordering of labels and sign of coefficients [Dan Yamins, Paolo Losi, Mathieu Blondel and
Fabian Pedregosa].

• Performance improvements for Nearest Neighbors algorithm in high-dimensional spaces [Fabian Pedregosa].

• Performance improvements for cluster.KMeans [Gael Varoquaux and James Bergstra].

• Sanity checks for SVM-based classes [Mathieu Blondel].

• Refactoring of neighbors.NeighborsClassifier and neighbors.kneighbors_graph: added
different algorithms for the k-Nearest Neighbor Search and implemented a more stable algorithm for finding
barycenter weights. Also added some developer documentation for this module, see notes_neighbors for more
information [Fabian Pedregosa].

• Documentation improvements: Added pca.RandomizedPCA and linear_model.
LogisticRegression to the class reference. Also added references of matrices used for clustering
and other fixes [Gael Varoquaux, Fabian Pedregosa, Mathieu Blondel, Olivier Grisel, Virgile Fritsch ,
Emmanuelle Gouillart]

• Binded decision_function in classes that make use of liblinear, dense and sparse variants, like svm.
LinearSVC or linear_model.LogisticRegression [Fabian Pedregosa].

• Performance and API improvements to metrics.euclidean_distances and to pca.
RandomizedPCA [James Bergstra].

• Fix compilation issues under NetBSD [Kamel Ibn Hassen Derouiche]

• Allow input sequences of different lengths in hmm.GaussianHMM [Ron Weiss].

• Fix bug in affinity propagation caused by incorrect indexing [Xinfan Meng]

People

People that made this release possible preceded by number of commits:

• 85 Fabian Pedregosa

• 67 Mathieu Blondel

• 20 Alexandre Gramfort

• 19 James Bergstra

• 14 Dan Yamins

• 13 Olivier Grisel

• 12 Gael Varoquaux

• 4 Edouard Duchesnay

• 4 Ron Weiss

• 2 Satrajit Ghosh

• 2 Vincent Dubourg

• 1 Emmanuelle Gouillart

• 1 Kamel Ibn Hassen Derouiche

• 1 Paolo Losi

1.7. Release History 171

http://alexandre.gramfort.net
http://fa.bianp.net
http://www.mblondel.org
http://fa.bianp.net
http://fa.bianp.net
http://gael-varoquaux.info
http://www-etud.iro.umontreal.ca/~bergstrj/
http://www.mblondel.org
https://github.com/scikit-learn/scikit-learn/wiki/Neighbors-working-notes
http://fa.bianp.net
http://gael-varoquaux.info
http://fa.bianp.net
http://www.mblondel.org
https://twitter.com/ogrisel
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://fa.bianp.net
http://www-etud.iro.umontreal.ca/~bergstrj/
https://www.ee.columbia.edu/~ronw/
http://fa.bianp.net
http://www.mblondel.org
http://alexandre.gramfort.net
http://www-etud.iro.umontreal.ca/~bergstrj/
https://twitter.com/ogrisel
http://gael-varoquaux.info
https://sites.google.com/site/duchesnay/home
https://www.ee.columbia.edu/~ronw/

scikit-learn user guide, Release 0.23.2

• 1 VirgileFritsch

• 1 Yaroslav Halchenko

• 1 Xinfan Meng

1.7.40 Version 0.6

December 21, 2010

scikit-learn 0.6 was released on December 2010. It is marked by the inclusion of several new modules and a general
renaming of old ones. It is also marked by the inclusion of new example, including applications to real-world datasets.

Changelog

• New stochastic gradient descent module by Peter Prettenhofer. The module comes with complete documentation
and examples.

• Improved svm module: memory consumption has been reduced by 50%, heuristic to automatically set class
weights, possibility to assign weights to samples (see SVM: Weighted samples for an example).

• New Gaussian Processes module by Vincent Dubourg. This module also has great documenta-
tion and some very neat examples. See example_gaussian_process_plot_gp_regression.py or exam-
ple_gaussian_process_plot_gp_probabilistic_classification_after_regression.py for a taste of what can be done.

• It is now possible to use liblinear’s Multi-class SVC (option multi_class in svm.LinearSVC)

• New features and performance improvements of text feature extraction.

• Improved sparse matrix support, both in main classes (grid_search.GridSearchCV) as in modules
sklearn.svm.sparse and sklearn.linear_model.sparse.

• Lots of cool new examples and a new section that uses real-world datasets was created. These include: Faces
recognition example using eigenfaces and SVMs, Species distribution modeling, Libsvm GUI, Wikipedia princi-
pal eigenvector and others.

• Faster Least Angle Regression algorithm. It is now 2x faster than the R version on worst case and up to 10x
times faster on some cases.

• Faster coordinate descent algorithm. In particular, the full path version of lasso (linear_model.
lasso_path) is more than 200x times faster than before.

• It is now possible to get probability estimates from a linear_model.LogisticRegression model.

• module renaming: the glm module has been renamed to linear_model, the gmm module has been included into
the more general mixture model and the sgd module has been included in linear_model.

• Lots of bug fixes and documentation improvements.

People

People that made this release possible preceded by number of commits:

• 207 Olivier Grisel

• 167 Fabian Pedregosa

• 97 Peter Prettenhofer

• 68 Alexandre Gramfort

172 Chapter 1. Welcome to scikit-learn

http://www.onerussian.com/
http://scikit-learn.org/stable/modules/sgd.html
https://twitter.com/ogrisel
http://fa.bianp.net
https://sites.google.com/site/peterprettenhofer/
http://alexandre.gramfort.net

scikit-learn user guide, Release 0.23.2

• 59 Mathieu Blondel

• 55 Gael Varoquaux

• 33 Vincent Dubourg

• 21 Ron Weiss

• 9 Bertrand Thirion

• 3 Alexandre Passos

• 3 Anne-Laure Fouque

• 2 Ronan Amicel

• 1 Christian Osendorfer

1.7.41 Version 0.5

October 11, 2010

Changelog

New classes

• Support for sparse matrices in some classifiers of modules svm and linear_model (see svm.
sparse.SVC, svm.sparse.SVR, svm.sparse.LinearSVC, linear_model.sparse.Lasso,
linear_model.sparse.ElasticNet)

• New pipeline.Pipeline object to compose different estimators.

• Recursive Feature Elimination routines in module Feature selection.

• Addition of various classes capable of cross validation in the linear_model module (linear_model.
LassoCV , linear_model.ElasticNetCV , etc.).

• New, more efficient LARS algorithm implementation. The Lasso variant of the algorithm is also implemented.
See linear_model.lars_path, linear_model.Lars and linear_model.LassoLars.

• New Hidden Markov Models module (see classes hmm.GaussianHMM, hmm.MultinomialHMM, hmm.
GMMHMM)

• New module feature_extraction (see class reference)

• New FastICA algorithm in module sklearn.fastica

Documentation

• Improved documentation for many modules, now separating narrative documentation from the class reference.
As an example, see documentation for the SVM module and the complete class reference.

Fixes

• API changes: adhere variable names to PEP-8, give more meaningful names.

• Fixes for svm module to run on a shared memory context (multiprocessing).

• It is again possible to generate latex (and thus PDF) from the sphinx docs.

1.7. Release History 173

http://www.mblondel.org
http://gael-varoquaux.info
https://www.ee.columbia.edu/~ronw/
http://atpassos.me
https://osdf.github.io
http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/modules/classes.html

scikit-learn user guide, Release 0.23.2

Examples

• new examples using some of the mlcomp datasets: sphx_glr_auto_examples_mlcomp_sparse_document_classification.
py (since removed) and Classification of text documents using sparse features

• Many more examples. See here the full list of examples.

External dependencies

• Joblib is now a dependency of this package, although it is shipped with (sklearn.externals.joblib).

Removed modules

• Module ann (Artificial Neural Networks) has been removed from the distribution. Users wanting this sort of
algorithms should take a look into pybrain.

Misc

• New sphinx theme for the web page.

Authors

The following is a list of authors for this release, preceded by number of commits:

• 262 Fabian Pedregosa

• 240 Gael Varoquaux

• 149 Alexandre Gramfort

• 116 Olivier Grisel

• 40 Vincent Michel

• 38 Ron Weiss

• 23 Matthieu Perrot

• 10 Bertrand Thirion

• 7 Yaroslav Halchenko

• 9 VirgileFritsch

• 6 Edouard Duchesnay

• 4 Mathieu Blondel

• 1 Ariel Rokem

• 1 Matthieu Brucher

1.7.42 Version 0.4

August 26, 2010

174 Chapter 1. Welcome to scikit-learn

http://scikit-learn.org/stable/auto_examples/index.html

scikit-learn user guide, Release 0.23.2

Changelog

Major changes in this release include:

• Coordinate Descent algorithm (Lasso, ElasticNet) refactoring & speed improvements (roughly 100x times
faster).

• Coordinate Descent Refactoring (and bug fixing) for consistency with R’s package GLMNET.

• New metrics module.

• New GMM module contributed by Ron Weiss.

• Implementation of the LARS algorithm (without Lasso variant for now).

• feature_selection module redesign.

• Migration to GIT as version control system.

• Removal of obsolete attrselect module.

• Rename of private compiled extensions (added underscore).

• Removal of legacy unmaintained code.

• Documentation improvements (both docstring and rst).

• Improvement of the build system to (optionally) link with MKL. Also, provide a lite BLAS implementation in
case no system-wide BLAS is found.

• Lots of new examples.

• Many, many bug fixes . . .

Authors

The committer list for this release is the following (preceded by number of commits):

• 143 Fabian Pedregosa

• 35 Alexandre Gramfort

• 34 Olivier Grisel

• 11 Gael Varoquaux

• 5 Yaroslav Halchenko

• 2 Vincent Michel

• 1 Chris Filo Gorgolewski

1.7.43 Earlier versions

Earlier versions included contributions by Fred Mailhot, David Cooke, David Huard, Dave Morrill, Ed Schofield,
Travis Oliphant, Pearu Peterson.

1.7. Release History 175

scikit-learn user guide, Release 0.23.2

1.8 Roadmap

1.8.1 Purpose of this document

This document list general directions that core contributors are interested to see developed in scikit-learn. The fact
that an item is listed here is in no way a promise that it will happen, as resources are limited. Rather, it is an indication
that help is welcomed on this topic.

1.8.2 Statement of purpose: Scikit-learn in 2018

Eleven years after the inception of Scikit-learn, much has changed in the world of machine learning. Key changes
include:

• Computational tools: The exploitation of GPUs, distributed programming frameworks like Scala/Spark, etc.

• High-level Python libraries for experimentation, processing and data management: Jupyter notebook, Cython,
Pandas, Dask, Numba. . .

• Changes in the focus of machine learning research: artificial intelligence applications (where input structure is
key) with deep learning, representation learning, reinforcement learning, domain transfer, etc.

A more subtle change over the last decade is that, due to changing interests in ML, PhD students in machine learning
are more likely to contribute to PyTorch, Dask, etc. than to Scikit-learn, so our contributor pool is very different to a
decade ago.

Scikit-learn remains very popular in practice for trying out canonical machine learning techniques, particularly for
applications in experimental science and in data science. A lot of what we provide is now very mature. But it can be
costly to maintain, and we cannot therefore include arbitrary new implementations. Yet Scikit-learn is also essential
in defining an API framework for the development of interoperable machine learning components external to the core
library.

Thus our main goals in this era are to:

• continue maintaining a high-quality, well-documented collection of canonical tools for data processing and
machine learning within the current scope (i.e. rectangular data largely invariant to column and row order;
predicting targets with simple structure)

• improve the ease for users to develop and publish external components

• improve inter-operability with modern data science tools (e.g. Pandas, Dask) and infrastructures (e.g. distributed
processing)

Many of the more fine-grained goals can be found under the API tag on the issue tracker.

1.8.3 Architectural / general goals

The list is numbered not as an indication of the order of priority, but to make referring to specific points easier. Please
add new entries only at the bottom. Note that the crossed out entries are already done, and we try to keep the document
up to date as we work on these issues.

1. Improved handling of Pandas DataFrames

• document current handling

• column reordering issue #7242

• avoiding unnecessary conversion to ndarray #12147

• returning DataFrames from transformers #5523

176 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/issues?q=is%3Aissue+is%3Aopen+sort%3Aupdated-desc+label%3AAPI
https://github.com/scikit-learn/scikit-learn/issues/7242
https://github.com/scikit-learn/scikit-learn/issues/12147
https://github.com/scikit-learn/scikit-learn/issues/5523

scikit-learn user guide, Release 0.23.2

• getting DataFrames from dataset loaders #10733, #13902

• Sparse currently not considered #12800

2. Improved handling of categorical features

• Tree-based models should be able to handle both continuous and categorical features #12866 and #15550.

• In dataset loaders #13902

• As generic transformers to be used with ColumnTransforms (e.g. ordinal encoding supervised by correla-
tion with target variable) #5853, #11805

• Handling mixtures of categorical and continuous variables

3. Improved handling of missing data

• Making sure meta-estimators are lenient towards missing data, #15319

• Non-trivial imputers #11977, #12852

• Learners directly handling missing data #13911

• An amputation sample generator to make parts of a dataset go missing #6284

4. More didactic documentation

• More and more options have been added to scikit-learn. As a result, the documentation is crowded which
makes it hard for beginners to get the big picture. Some work could be done in prioritizing the information.

5. Passing around information that is not (X, y): Sample properties

• We need to be able to pass sample weights to scorers in cross validation.

• We should have standard/generalised ways of passing sample-wise properties around in meta-estimators.
#4497 #7646

6. Passing around information that is not (X, y): Feature properties

• Feature names or descriptions should ideally be available to fit for, e.g. . #6425 #6424

• Per-feature handling (e.g. “is this a nominal / ordinal / English language text?”) should also not need to be
provided to estimator constructors, ideally, but should be available as metadata alongside X. #8480

7. Passing around information that is not (X, y): Target information

• We have problems getting the full set of classes to all components when the data is split/sampled. #6231
#8100

• We have no way to handle a mixture of categorical and continuous targets.

8. Make it easier for external users to write Scikit-learn-compatible components

• More flexible estimator checks that do not select by estimator name #6599 #6715

• Example of how to develop an estimator or a meta-estimator, #14582

• More self-sufficient running of scikit-learn-contrib or a similar resource

9. Support resampling and sample reduction

• Allow subsampling of majority classes (in a pipeline?) #3855

• Implement random forests with resampling #8732

10. Better interfaces for interactive development

• __repr__ and HTML visualisations of estimators #6323 and #14180.

• Include plotting tools, not just as examples. #9173

1.8. Roadmap 177

https://github.com/scikit-learn/scikit-learn/issues/10733
https://github.com/scikit-learn/scikit-learn/issues/13902
https://github.com/scikit-learn/scikit-learn/issues/12800
https://github.com/scikit-learn/scikit-learn/issues/12866
https://github.com/scikit-learn/scikit-learn/issues/15550
https://github.com/scikit-learn/scikit-learn/issues/13902
https://github.com/scikit-learn/scikit-learn/issues/5853
https://github.com/scikit-learn/scikit-learn/issues/11805
https://github.com/scikit-learn/scikit-learn/issues/15319
https://github.com/scikit-learn/scikit-learn/issues/11977
https://github.com/scikit-learn/scikit-learn/issues/12852
https://github.com/scikit-learn/scikit-learn/issues/13911
https://github.com/scikit-learn/scikit-learn/issues/6284
https://github.com/scikit-learn/scikit-learn/issues/4497
https://github.com/scikit-learn/scikit-learn/issues/7646
https://github.com/scikit-learn/scikit-learn/issues/6425
https://github.com/scikit-learn/scikit-learn/issues/6424
https://github.com/scikit-learn/scikit-learn/issues/8480
https://github.com/scikit-learn/scikit-learn/issues/6231
https://github.com/scikit-learn/scikit-learn/issues/8100
https://github.com/scikit-learn/scikit-learn/issues/6599
https://github.com/scikit-learn/scikit-learn/issues/6715
https://github.com/scikit-learn/scikit-learn/issues/14582
https://github.com/scikit-learn/scikit-learn/issues/3855
https://github.com/scikit-learn/scikit-learn/issues/8732
https://github.com/scikit-learn/scikit-learn/issues/6323
https://github.com/scikit-learn/scikit-learn/pull/14180
https://github.com/scikit-learn/scikit-learn/issues/9173

scikit-learn user guide, Release 0.23.2

11. Improved tools for model diagnostics and basic inference

• alternative feature importances implementations, #13146

• better ways to handle validation sets when fitting

• better ways to find thresholds / create decision rules #8614

12. Better tools for selecting hyperparameters with transductive estimators

• Grid search and cross validation are not applicable to most clustering tasks. Stability-based selection is
more relevant.

13. Better support for manual and automatic pipeline building

• Easier way to construct complex pipelines and valid search spaces #7608 #5082 #8243

• provide search ranges for common estimators??

• cf. searchgrid

14. Improved tracking of fitting

• Verbose is not very friendly and should use a standard logging library #6929, #78

• Callbacks or a similar system would facilitate logging and early stopping

15. Distributed parallelism

• Accept data which complies with __array_function__

16. A way forward for more out of core

• Dask enables easy out-of-core computation. While the Dask model probably cannot be adaptable to all
machine-learning algorithms, most machine learning is on smaller data than ETL, hence we can maybe
adapt to very large scale while supporting only a fraction of the patterns.

17. Support for working with pre-trained models

• Estimator “freezing”. In particular, right now it’s impossible to clone a CalibratedClassifierCV
with prefit. #8370. #6451

18. Backwards-compatible de/serialization of some estimators

• Currently serialization (with pickle) breaks across versions. While we may not be able to get around other
limitations of pickle re security etc, it would be great to offer cross-version safety from version 1.0. Note:
Gael and Olivier think that this can cause heavy maintenance burden and we should manage the trade-offs.
A possible alternative is presented in the following point.

19. Documentation and tooling for model lifecycle management

• Document good practices for model deployments and lifecycle: before deploying a model: snapshot the
code versions (numpy, scipy, scikit-learn, custom code repo), the training script and an alias on how to
retrieve historical training data + snapshot a copy of a small validation set + snapshot of the predictions
(predicted probabilities for classifiers) on that validation set.

• Document and tools to make it easy to manage upgrade of scikit-learn versions:

– Try to load the old pickle, if it works, use the validation set prediction snapshot to detect that the
serialized model still behave the same;

– If joblib.load / pickle.load not work, use the versioned control training script + historical training set
to retrain the model and use the validation set prediction snapshot to assert that it is possible to recover
the previous predictive performance: if this is not the case there is probably a bug in scikit-learn that
needs to be reported.

178 Chapter 1. Welcome to scikit-learn

https://github.com/scikit-learn/scikit-learn/issues/13146
https://github.com/scikit-learn/scikit-learn/issues/8614
https://github.com/scikit-learn/scikit-learn/issues/7608
https://github.com/scikit-learn/scikit-learn/issues/5082
https://github.com/scikit-learn/scikit-learn/issues/8243
https://searchgrid.readthedocs.io/en/latest/
https://github.com/scikit-learn/scikit-learn/issues/6929
https://github.com/scikit-learn/scikit-learn/issues/78
https://github.com/scikit-learn/scikit-learn/issues/8370
https://github.com/scikit-learn/scikit-learn/issues/6451

scikit-learn user guide, Release 0.23.2

20. Everything in Scikit-learn should probably conform to our API contract. We are still in the process of making
decisions on some of these related issues.

• Pipeline <pipeline.Pipeline> and FeatureUnion modify their input parameters in fit. Fix-
ing this requires making sure we have a good grasp of their use cases to make sure all current functionality
is maintained. #8157 #7382

21. (Optional) Improve scikit-learn common tests suite to make sure that (at least for frequently used) models have
stable predictions across-versions (to be discussed);

• Extend documentation to mention how to deploy models in Python-free environments for instance ONNX.
and use the above best practices to assess predictive consistency between scikit-learn and ONNX prediction
functions on validation set.

• Document good practices to detect temporal distribution drift for deployed model and good practices for
re-training on fresh data without causing catastrophic predictive performance regressions.

1.8.4 Subpackage-specific goals

sklearn.ensemble

• a stacking implementation, #11047

sklearn.cluster

• kmeans variants for non-Euclidean distances, if we can show these have benefits beyond hierarchical clustering.

sklearn.model_selection

• multi-metric scoring is slow #9326

• perhaps we want to be able to get back more than multiple metrics

• the handling of random states in CV splitters is a poor design and contradicts the validation of similar parameters
in estimators, #15177

• exploit warm-starting and path algorithms so the benefits of EstimatorCV objects can be accessed via
GridSearchCV and used in Pipelines. #1626

• Cross-validation should be able to be replaced by OOB estimates whenever a cross-validation iterator is used.

• Redundant computations in pipelines should be avoided (related to point above) cf daskml

sklearn.neighbors

• Ability to substitute a custom/approximate/precomputed nearest neighbors implementation for ours in all/most
contexts that nearest neighbors are used for learning. #10463

sklearn.pipeline

• Performance issues with Pipeline.memory

• see “Everything in Scikit-learn should conform to our API contract” above

1.9 Scikit-learn governance and decision-making

The purpose of this document is to formalize the governance process used by the scikit-learn project, to clarify how
decisions are made and how the various elements of our community interact. This document establishes a decision-
making structure that takes into account feedback from all members of the community and strives to find consensus,
while avoiding any deadlocks.

1.9. Scikit-learn governance and decision-making 179

https://github.com/scikit-learn/scikit-learn/issues/8157
https://github.com/scikit-learn/scikit-learn/issues/7382
https://github.com/onnx/onnxmltools
https://github.com/scikit-learn/scikit-learn/issues/11047
https://github.com/scikit-learn/scikit-learn/issues/9326
https://github.com/scikit-learn/scikit-learn/issues/15177
https://github.com/scikit-learn/scikit-learn/issues/1626
https://dask-ml.readthedocs.io/en/latest/hyper-parameter-search.html#avoid-repeated-work
https://github.com/scikit-learn/scikit-learn/issues/10463

scikit-learn user guide, Release 0.23.2

This is a meritocratic, consensus-based community project. Anyone with an interest in the project can join the com-
munity, contribute to the project design and participate in the decision making process. This document describes how
that participation takes place and how to set about earning merit within the project community.

1.9.1 Roles And Responsibilities

Contributors

Contributors are community members who contribute in concrete ways to the project. Anyone can become a contrib-
utor, and contributions can take many forms – not only code – as detailed in the contributors guide.

Core developers

Core developers are community members who have shown that they are dedicated to the continued development of
the project through ongoing engagement with the community. They have shown they can be trusted to maintain scikit-
learn with care. Being a core developer allows contributors to more easily carry on with their project related activities
by giving them direct access to the project’s repository and is represented as being an organization member on the
scikit-learn GitHub organization. Core developers are expected to review code contributions, can merge approved pull
requests, can cast votes for and against merging a pull-request, and can be involved in deciding major changes to the
API.

New core developers can be nominated by any existing core developers. Once they have been nominated, there will
be a vote by the current core developers. Voting on new core developers is one of the few activities that takes place on
the project’s private management list. While it is expected that most votes will be unanimous, a two-thirds majority of
the cast votes is enough. The vote needs to be open for at least 1 week.

Core developers that have not contributed to the project (commits or GitHub comments) in the past 12 months will be
asked if they want to become emeritus core developers and recant their commit and voting rights until they become
active again. The list of core developers, active and emeritus (with dates at which they became active) is public on the
scikit-learn website.

Technical Committee

The Technical Committee (TC) members are core developers who have additional responsibilities to ensure the smooth
running of the project. TC members are expected to participate in strategic planning, and approve changes to the
governance model. The purpose of the TC is to ensure a smooth progress from the big-picture perspective. Indeed
changes that impact the full project require a synthetic analysis and a consensus that is both explicit and informed.
In cases that the core developer community (which includes the TC members) fails to reach such a consensus in the
required time frame, the TC is the entity to resolve the issue. Membership of the TC is by nomination by a core
developer. A nomination will result in discussion which cannot take more than a month and then a vote by the core
developers which will stay open for a week. TC membership votes are subject to a two-third majority of all cast votes
as well as a simple majority approval of all the current TC members. TC members who do not actively engage with
the TC duties are expected to resign.

The initial Technical Committee of scikit-learn consists of Alexandre Gramfort, Olivier Grisel, Andreas Müller, Joel
Nothman, Hanmin Qin, Gaël Varoquaux, and Roman Yurchak.

1.9.2 Decision Making Process

Decisions about the future of the project are made through discussion with all members of the community. All non-
sensitive project management discussion takes place on the project contributors’ mailing list and the issue tracker.
Occasionally, sensitive discussion occurs on a private list.

180 Chapter 1. Welcome to scikit-learn

https://github.com/orgs/scikit-learn/people
https://github.com/agramfort
https://github.com/ogrisel
https://github.com/amueller
https://github.com/jnothman
https://github.com/jnothman
https://github.com/qinhanmin2014
https://github.com/GaelVaroquaux
https://github.com/rth
mailto:scikit-learn@python.org
https://github.com/scikit-learn/scikit-learn/issues

scikit-learn user guide, Release 0.23.2

Scikit-learn uses a “consensus seeking” process for making decisions. The group tries to find a resolution that has no
open objections among core developers. At any point during the discussion, any core-developer can call for a vote,
which will conclude one month from the call for the vote. Any vote must be backed by a SLEP <slep>. If no
option can gather two thirds of the votes cast, the decision is escalated to the TC, which in turn will use consensus
seeking with the fallback option of a simple majority vote if no consensus can be found within a month. This is what
we hereafter may refer to as “the decision making process”.

Decisions (in addition to adding core developers and TC membership as above) are made according to the following
rules:

• Minor Documentation changes, such as typo fixes, or addition / correction of a sentence, but no change of the
scikit-learn.org landing page or the “about” page: Requires +1 by a core developer, no -1 by a core developer
(lazy consensus), happens on the issue or pull request page. Core developers are expected to give “reasonable
time” to others to give their opinion on the pull request if they’re not confident others would agree.

• Code changes and major documentation changes require +1 by two core developers, no -1 by a core developer
(lazy consensus), happens on the issue of pull-request page.

• Changes to the API principles and changes to dependencies or supported versions happen via a Enhance-
ment proposals (SLEPs) and follows the decision-making process outlined above.

• Changes to the governance model use the same decision process outlined above.

If a veto -1 vote is cast on a lazy consensus, the proposer can appeal to the community and core developers and the
change can be approved or rejected using the decision making procedure outlined above.

1.9.3 Enhancement proposals (SLEPs)

For all votes, a proposal must have been made public and discussed before the vote. Such proposal must be a consol-
idated document, in the form of a ‘Scikit-Learn Enhancement Proposal’ (SLEP), rather than a long discussion on an
issue. A SLEP must be submitted as a pull-request to enhancement proposals using the SLEP template.

1.9. Scikit-learn governance and decision-making 181

https://scikit-learn-enhancement-proposals.readthedocs.io
https://scikit-learn-enhancement-proposals.readthedocs.io/en/latest/slep_template.html

scikit-learn user guide, Release 0.23.2

182 Chapter 1. Welcome to scikit-learn

CHAPTER

TWO

SCIKIT-LEARN TUTORIALS

2.1 An introduction to machine learning with scikit-learn

Section contents

In this section, we introduce the machine learning vocabulary that we use throughout scikit-learn and give a simple
learning example.

2.1.1 Machine learning: the problem setting

In general, a learning problem considers a set of n samples of data and then tries to predict properties of unknown data.
If each sample is more than a single number and, for instance, a multi-dimensional entry (aka multivariate data), it is
said to have several attributes or features.

Learning problems fall into a few categories:

• supervised learning, in which the data comes with additional attributes that we want to predict (Click here to go
to the scikit-learn supervised learning page).This problem can be either:

– classification: samples belong to two or more classes and we want to learn from already labeled data how
to predict the class of unlabeled data. An example of a classification problem would be handwritten digit
recognition, in which the aim is to assign each input vector to one of a finite number of discrete categories.
Another way to think of classification is as a discrete (as opposed to continuous) form of supervised
learning where one has a limited number of categories and for each of the n samples provided, one is to
try to label them with the correct category or class.

– regression: if the desired output consists of one or more continuous variables, then the task is called
regression. An example of a regression problem would be the prediction of the length of a salmon as a
function of its age and weight.

• unsupervised learning, in which the training data consists of a set of input vectors x without any corresponding
target values. The goal in such problems may be to discover groups of similar examples within the data, where
it is called clustering, or to determine the distribution of data within the input space, known as density estima-
tion, or to project the data from a high-dimensional space down to two or three dimensions for the purpose of
visualization (Click here to go to the Scikit-Learn unsupervised learning page).

183

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Sample_(statistics)
https://en.wikipedia.org/wiki/Multivariate_random_variable
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Classification_in_machine_learning
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Unsupervised_learning
https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/Density_estimation
https://en.wikipedia.org/wiki/Density_estimation

scikit-learn user guide, Release 0.23.2

Training set and testing set

Machine learning is about learning some properties of a data set and then testing those properties against another
data set. A common practice in machine learning is to evaluate an algorithm by splitting a data set into two. We
call one of those sets the training set, on which we learn some properties; we call the other set the testing set, on
which we test the learned properties.

2.1.2 Loading an example dataset

scikit-learn comes with a few standard datasets, for instance the iris and digits datasets for classification and the
diabetes dataset for regression.

In the following, we start a Python interpreter from our shell and then load the iris and digits datasets. Our
notational convention is that $ denotes the shell prompt while >>> denotes the Python interpreter prompt:

$ python
>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> digits = datasets.load_digits()

A dataset is a dictionary-like object that holds all the data and some metadata about the data. This data is stored in
the .data member, which is a n_samples, n_features array. In the case of supervised problem, one or more
response variables are stored in the .target member. More details on the different datasets can be found in the
dedicated section.

For instance, in the case of the digits dataset, digits.data gives access to the features that can be used to classify
the digits samples:

>>> print(digits.data)
[[0. 0. 5. ... 0. 0. 0.]
[0. 0. 0. ... 10. 0. 0.]
[0. 0. 0. ... 16. 9. 0.]
...
[0. 0. 1. ... 6. 0. 0.]
[0. 0. 2. ... 12. 0. 0.]
[0. 0. 10. ... 12. 1. 0.]]

and digits.target gives the ground truth for the digit dataset, that is the number corresponding to each digit
image that we are trying to learn:

>>> digits.target
array([0, 1, 2, ..., 8, 9, 8])

Shape of the data arrays

The data is always a 2D array, shape (n_samples, n_features), although the original data may have had a
different shape. In the case of the digits, each original sample is an image of shape (8, 8) and can be accessed
using:

>>> digits.images[0]
array([[0., 0., 5., 13., 9., 1., 0., 0.],

[0., 0., 13., 15., 10., 15., 5., 0.],
[0., 3., 15., 2., 0., 11., 8., 0.],
[0., 4., 12., 0., 0., 8., 8., 0.],
[0., 5., 8., 0., 0., 9., 8., 0.],
[0., 4., 11., 0., 1., 12., 7., 0.],
[0., 2., 14., 5., 10., 12., 0., 0.],
[0., 0., 6., 13., 10., 0., 0., 0.]])184 Chapter 2. scikit-learn Tutorials

https://en.wikipedia.org/wiki/Iris_flower_data_set
https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits
https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html

scikit-learn user guide, Release 0.23.2

The simple example on this dataset illustrates how starting from the original problem one can shape the data for
consumption in scikit-learn.

Loading from external datasets

To load from an external dataset, please refer to loading external datasets.

2.1.3 Learning and predicting

In the case of the digits dataset, the task is to predict, given an image, which digit it represents. We are given samples
of each of the 10 possible classes (the digits zero through nine) on which we fit an estimator to be able to predict the
classes to which unseen samples belong.

In scikit-learn, an estimator for classification is a Python object that implements the methods fit(X, y) and
predict(T).

An example of an estimator is the class sklearn.svm.SVC, which implements support vector classification. The
estimator’s constructor takes as arguments the model’s parameters.

For now, we will consider the estimator as a black box:

>>> from sklearn import svm
>>> clf = svm.SVC(gamma=0.001, C=100.)

Choosing the parameters of the model

In this example, we set the value of gamma manually. To find good values for these parameters, we can use tools
such as grid search and cross validation.

The clf (for classifier) estimator instance is first fitted to the model; that is, it must learn from the model. This is
done by passing our training set to the fit method. For the training set, we’ll use all the images from our dataset,
except for the last image, which we’ll reserve for our predicting. We select the training set with the [:-1] Python
syntax, which produces a new array that contains all but the last item from digits.data:

>>> clf.fit(digits.data[:-1], digits.target[:-1])
SVC(C=100.0, gamma=0.001)

Now you can predict new values. In this case, you’ll predict using the last image from digits.data. By predicting,
you’ll determine the image from the training set that best matches the last image.

>>> clf.predict(digits.data[-1:])
array([8])

The corresponding image is:

2.1. An introduction to machine learning with scikit-learn 185

https://en.wikipedia.org/wiki/Estimator
https://en.wikipedia.org/wiki/Support_vector_machine

scikit-learn user guide, Release 0.23.2

As you can see, it is a challenging task: after all, the images are of poor resolution. Do you agree with the classifier?

A complete example of this classification problem is available as an example that you can run and study: Recognizing
hand-written digits.

2.1.4 Model persistence

It is possible to save a model in scikit-learn by using Python’s built-in persistence model, pickle:

>>> from sklearn import svm
>>> from sklearn import datasets
>>> clf = svm.SVC()
>>> X, y = datasets.load_iris(return_X_y=True)
>>> clf.fit(X, y)
SVC()

>>> import pickle
>>> s = pickle.dumps(clf)
>>> clf2 = pickle.loads(s)
>>> clf2.predict(X[0:1])
array([0])
>>> y[0]
0

In the specific case of scikit-learn, it may be more interesting to use joblib’s replacement for pickle (joblib.dump
& joblib.load), which is more efficient on big data but it can only pickle to the disk and not to a string:

>>> from joblib import dump, load
>>> dump(clf, 'filename.joblib')

Later, you can reload the pickled model (possibly in another Python process) with:

>>> clf = load('filename.joblib')

Note: joblib.dump and joblib.load functions also accept file-like object instead of filenames. More infor-
mation on data persistence with Joblib is available here.

Note that pickle has some security and maintainability issues. Please refer to section Model persistence for more
detailed information about model persistence with scikit-learn.

2.1.5 Conventions

scikit-learn estimators follow certain rules to make their behavior more predictive. These are described in more detail
in the Glossary of Common Terms and API Elements.

186 Chapter 2. scikit-learn Tutorials

../../auto_examples/datasets/plot_digits_last_image.html
https://docs.python.org/2/library/pickle.html
https://joblib.readthedocs.io/en/latest/persistence.html

scikit-learn user guide, Release 0.23.2

Type casting

Unless otherwise specified, input will be cast to float64:

>>> import numpy as np
>>> from sklearn import random_projection

>>> rng = np.random.RandomState(0)
>>> X = rng.rand(10, 2000)
>>> X = np.array(X, dtype='float32')
>>> X.dtype
dtype('float32')

>>> transformer = random_projection.GaussianRandomProjection()
>>> X_new = transformer.fit_transform(X)
>>> X_new.dtype
dtype('float64')

In this example, X is float32, which is cast to float64 by fit_transform(X).

Regression targets are cast to float64 and classification targets are maintained:

>>> from sklearn import datasets
>>> from sklearn.svm import SVC
>>> iris = datasets.load_iris()
>>> clf = SVC()
>>> clf.fit(iris.data, iris.target)
SVC()

>>> list(clf.predict(iris.data[:3]))
[0, 0, 0]

>>> clf.fit(iris.data, iris.target_names[iris.target])
SVC()

>>> list(clf.predict(iris.data[:3]))
['setosa', 'setosa', 'setosa']

Here, the first predict() returns an integer array, since iris.target (an integer array) was used in fit. The
second predict() returns a string array, since iris.target_names was for fitting.

Refitting and updating parameters

Hyper-parameters of an estimator can be updated after it has been constructed via the set_params() method. Calling
fit() more than once will overwrite what was learned by any previous fit():

>>> import numpy as np
>>> from sklearn.datasets import load_iris
>>> from sklearn.svm import SVC
>>> X, y = load_iris(return_X_y=True)

>>> clf = SVC()
>>> clf.set_params(kernel='linear').fit(X, y)
SVC(kernel='linear')
>>> clf.predict(X[:5])
array([0, 0, 0, 0, 0])

(continues on next page)

2.1. An introduction to machine learning with scikit-learn 187

scikit-learn user guide, Release 0.23.2

(continued from previous page)

>>> clf.set_params(kernel='rbf').fit(X, y)
SVC()
>>> clf.predict(X[:5])
array([0, 0, 0, 0, 0])

Here, the default kernel rbf is first changed to linear via SVC.set_params() after the estimator has been
constructed, and changed back to rbf to refit the estimator and to make a second prediction.

Multiclass vs. multilabel fitting

When using multiclass classifiers, the learning and prediction task that is performed is dependent on the
format of the target data fit upon:

>>> from sklearn.svm import SVC
>>> from sklearn.multiclass import OneVsRestClassifier
>>> from sklearn.preprocessing import LabelBinarizer

>>> X = [[1, 2], [2, 4], [4, 5], [3, 2], [3, 1]]
>>> y = [0, 0, 1, 1, 2]

>>> classif = OneVsRestClassifier(estimator=SVC(random_state=0))
>>> classif.fit(X, y).predict(X)
array([0, 0, 1, 1, 2])

In the above case, the classifier is fit on a 1d array of multiclass labels and the predict() method therefore provides
corresponding multiclass predictions. It is also possible to fit upon a 2d array of binary label indicators:

>>> y = LabelBinarizer().fit_transform(y)
>>> classif.fit(X, y).predict(X)
array([[1, 0, 0],

[1, 0, 0],
[0, 1, 0],
[0, 0, 0],
[0, 0, 0]])

Here, the classifier is fit() on a 2d binary label representation of y, using the LabelBinarizer. In this case
predict() returns a 2d array representing the corresponding multilabel predictions.

Note that the fourth and fifth instances returned all zeroes, indicating that they matched none of the three labels fit
upon. With multilabel outputs, it is similarly possible for an instance to be assigned multiple labels:

>>> from sklearn.preprocessing import MultiLabelBinarizer
>>> y = [[0, 1], [0, 2], [1, 3], [0, 2, 3], [2, 4]]
>>> y = MultiLabelBinarizer().fit_transform(y)
>>> classif.fit(X, y).predict(X)
array([[1, 1, 0, 0, 0],

[1, 0, 1, 0, 0],
[0, 1, 0, 1, 0],
[1, 0, 1, 0, 0],
[1, 0, 1, 0, 0]])

In this case, the classifier is fit upon instances each assigned multiple labels. The MultiLabelBinarizer is
used to binarize the 2d array of multilabels to fit upon. As a result, predict() returns a 2d array with multiple
predicted labels for each instance.

188 Chapter 2. scikit-learn Tutorials

scikit-learn user guide, Release 0.23.2

2.2 A tutorial on statistical-learning for scientific data processing

Statistical learning

Machine learning is a technique with a growing importance, as the size of the datasets experimental sciences are fac-
ing is rapidly growing. Problems it tackles range from building a prediction function linking different observations,
to classifying observations, or learning the structure in an unlabeled dataset.

This tutorial will explore statistical learning, the use of machine learning techniques with the goal of statistical
inference: drawing conclusions on the data at hand.

Scikit-learn is a Python module integrating classic machine learning algorithms in the tightly-knit world of scientific
Python packages (NumPy, SciPy, matplotlib).

2.2.1 Statistical learning: the setting and the estimator object in scikit-learn

Datasets

Scikit-learn deals with learning information from one or more datasets that are represented as 2D arrays. They can be
understood as a list of multi-dimensional observations. We say that the first axis of these arrays is the samples axis,
while the second is the features axis.

A simple example shipped with scikit-learn: iris dataset

>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> data = iris.data
>>> data.shape
(150, 4)

It is made of 150 observations of irises, each described by 4 features: their sepal and petal length and width, as
detailed in iris.DESCR.

When the data is not initially in the (n_samples, n_features) shape, it needs to be preprocessed in order to
be used by scikit-learn.

An example of reshaping data would be the digits dataset

2.2. A tutorial on statistical-learning for scientific data processing 189

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Statistical_inference
https://en.wikipedia.org/wiki/Statistical_inference
https://www.numpy.org/
https://scipy.org/
https://matplotlib.org/
../../auto_examples/datasets/plot_digits_last_image.html

scikit-learn user guide, Release 0.23.2

The digits dataset is made of 1797 8x8 images of hand-written digits

>>> digits = datasets.load_digits()
>>> digits.images.shape
(1797, 8, 8)
>>> import matplotlib.pyplot as plt
>>> plt.imshow(digits.images[-1], cmap=plt.cm.gray_r)
<matplotlib.image.AxesImage object at ...>

To use this dataset with scikit-learn, we transform each 8x8 image into a feature vector of length 64

>>> data = digits.images.reshape((digits.images.shape[0], -1))

Estimators objects

Fitting data: the main API implemented by scikit-learn is that of the estimator. An estimator is any object that
learns from data; it may be a classification, regression or clustering algorithm or a transformer that extracts/filters
useful features from raw data.

All estimator objects expose a fit method that takes a dataset (usually a 2-d array):

>>> estimator.fit(data)

Estimator parameters: All the parameters of an estimator can be set when it is instantiated or by modifying the
corresponding attribute:

>>> estimator = Estimator(param1=1, param2=2)
>>> estimator.param1
1

Estimated parameters: When data is fitted with an estimator, parameters are estimated from the data at hand. All the
estimated parameters are attributes of the estimator object ending by an underscore:

>>> estimator.estimated_param_

2.2.2 Supervised learning: predicting an output variable from high-dimensional ob-
servations

The problem solved in supervised learning

Supervised learning consists in learning the link between two datasets: the observed data X and an external variable
y that we are trying to predict, usually called “target” or “labels”. Most often, y is a 1D array of length n_samples.

All supervised estimators in scikit-learn implement a fit(X, y) method to fit the model and a predict(X)
method that, given unlabeled observations X, returns the predicted labels y.

Vocabulary: classification and regression

If the prediction task is to classify the observations in a set of finite labels, in other words to “name” the objects
observed, the task is said to be a classification task. On the other hand, if the goal is to predict a continuous target
variable, it is said to be a regression task.

190 Chapter 2. scikit-learn Tutorials

https://en.wikipedia.org/wiki/Estimator

scikit-learn user guide, Release 0.23.2

When doing classification in scikit-learn, y is a vector of integers or strings.

Note: See the Introduction to machine learning with scikit-learn Tutorial for a quick run-through on the basic
machine learning vocabulary used within scikit-learn.

Nearest neighbor and the curse of dimensionality

Classifying irises:

The iris dataset is a classification task consisting in identifying 3 different types of irises (Setosa, Versicolour, and
Virginica) from their petal and sepal length and width:

>>> import numpy as np
>>> from sklearn import datasets
>>> iris_X, iris_y = datasets.load_iris(return_X_y=True)
>>> np.unique(iris_y)
array([0, 1, 2])

k-Nearest neighbors classifier

The simplest possible classifier is the nearest neighbor: given a new observation X_test, find in the training set (i.e.
the data used to train the estimator) the observation with the closest feature vector. (Please see the Nearest Neighbors
section of the online Scikit-learn documentation for more information about this type of classifier.)

2.2. A tutorial on statistical-learning for scientific data processing 191

../../auto_examples/datasets/plot_iris_dataset.html
https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

scikit-learn user guide, Release 0.23.2

Training set and testing set

While experimenting with any learning algorithm, it is important not to test the prediction of an estimator on the
data used to fit the estimator as this would not be evaluating the performance of the estimator on new data. This is
why datasets are often split into train and test data.

KNN (k nearest neighbors) classification example:

>>> # Split iris data in train and test data
>>> # A random permutation, to split the data randomly
>>> np.random.seed(0)
>>> indices = np.random.permutation(len(iris_X))
>>> iris_X_train = iris_X[indices[:-10]]
>>> iris_y_train = iris_y[indices[:-10]]
>>> iris_X_test = iris_X[indices[-10:]]
>>> iris_y_test = iris_y[indices[-10:]]
>>> # Create and fit a nearest-neighbor classifier
>>> from sklearn.neighbors import KNeighborsClassifier
>>> knn = KNeighborsClassifier()
>>> knn.fit(iris_X_train, iris_y_train)
KNeighborsClassifier()
>>> knn.predict(iris_X_test)
array([1, 2, 1, 0, 0, 0, 2, 1, 2, 0])
>>> iris_y_test
array([1, 1, 1, 0, 0, 0, 2, 1, 2, 0])

The curse of dimensionality

For an estimator to be effective, you need the distance between neighboring points to be less than some value 𝑑, which
depends on the problem. In one dimension, this requires on average 𝑛 ∼ 1/𝑑 points. In the context of the above 𝑘-NN
example, if the data is described by just one feature with values ranging from 0 to 1 and with 𝑛 training observations,
then new data will be no further away than 1/𝑛. Therefore, the nearest neighbor decision rule will be efficient as soon

192 Chapter 2. scikit-learn Tutorials

../../auto_examples/neighbors/plot_classification.html

scikit-learn user guide, Release 0.23.2

as 1/𝑛 is small compared to the scale of between-class feature variations.

If the number of features is 𝑝, you now require 𝑛 ∼ 1/𝑑𝑝 points. Let’s say that we require 10 points in one dimension:
now 10𝑝 points are required in 𝑝 dimensions to pave the [0, 1] space. As 𝑝 becomes large, the number of training points
required for a good estimator grows exponentially.

For example, if each point is just a single number (8 bytes), then an effective 𝑘-NN estimator in a paltry 𝑝 ∼ 20
dimensions would require more training data than the current estimated size of the entire internet (±1000 Exabytes or
so).

This is called the curse of dimensionality and is a core problem that machine learning addresses.

Linear model: from regression to sparsity

Diabetes dataset

The diabetes dataset consists of 10 physiological variables (age, sex, weight, blood pressure) measure on 442
patients, and an indication of disease progression after one year:

>>> diabetes_X, diabetes_y = datasets.load_diabetes(return_X_y=True)
>>> diabetes_X_train = diabetes_X[:-20]
>>> diabetes_X_test = diabetes_X[-20:]
>>> diabetes_y_train = diabetes_y[:-20]
>>> diabetes_y_test = diabetes_y[-20:]

The task at hand is to predict disease progression from physiological variables.

Linear regression

LinearRegression, in its simplest form, fits a linear model to the data set by adjusting a set of parameters in order
to make the sum of the squared residuals of the model as small as possible.

Linear models: 𝑦 = 𝑋𝛽 + 𝜖

• 𝑋: data

• 𝑦: target variable

• 𝛽: Coefficients

• 𝜖: Observation noise

2.2. A tutorial on statistical-learning for scientific data processing 193

https://en.wikipedia.org/wiki/Curse_of_dimensionality
../../auto_examples/linear_model/plot_ols.html

scikit-learn user guide, Release 0.23.2

>>> from sklearn import linear_model
>>> regr = linear_model.LinearRegression()
>>> regr.fit(diabetes_X_train, diabetes_y_train)
LinearRegression()
>>> print(regr.coef_)
[0.30349955 -237.63931533 510.53060544 327.73698041 -814.13170937

492.81458798 102.84845219 184.60648906 743.51961675 76.09517222]

>>> # The mean square error
>>> np.mean((regr.predict(diabetes_X_test) - diabetes_y_test)**2)
2004.56760268...

>>> # Explained variance score: 1 is perfect prediction
>>> # and 0 means that there is no linear relationship
>>> # between X and y.
>>> regr.score(diabetes_X_test, diabetes_y_test)
0.5850753022690...

Shrinkage

If there are few data points per dimension, noise in the observations induces high variance:

>>> X = np.c_[.5, 1].T
>>> y = [.5, 1]
>>> test = np.c_[0, 2].T
>>> regr = linear_model.LinearRegression()

>>> import matplotlib.pyplot as plt
>>> plt.figure()

>>> np.random.seed(0)
>>> for _ in range(6):
... this_X = .1 * np.random.normal(size=(2, 1)) + X
... regr.fit(this_X, y)
... plt.plot(test, regr.predict(test))
... plt.scatter(this_X, y, s=3)

A solution in high-dimensional statistical learning is to shrink the regression coefficients to zero: any two randomly
chosen set of observations are likely to be uncorrelated. This is called Ridge regression:

194 Chapter 2. scikit-learn Tutorials

../../auto_examples/linear_model/plot_ols_ridge_variance.html

scikit-learn user guide, Release 0.23.2

>>> regr = linear_model.Ridge(alpha=.1)

>>> plt.figure()

>>> np.random.seed(0)
>>> for _ in range(6):
... this_X = .1 * np.random.normal(size=(2, 1)) + X
... regr.fit(this_X, y)
... plt.plot(test, regr.predict(test))
... plt.scatter(this_X, y, s=3)

This is an example of bias/variance tradeoff: the larger the ridge alpha parameter, the higher the bias and the lower
the variance.

We can choose alpha to minimize left out error, this time using the diabetes dataset rather than our synthetic data:

>>> alphas = np.logspace(-4, -1, 6)
>>> print([regr.set_params(alpha=alpha)
... .fit(diabetes_X_train, diabetes_y_train)
... .score(diabetes_X_test, diabetes_y_test)
... for alpha in alphas])
[0.5851110683883..., 0.5852073015444..., 0.5854677540698...,
0.5855512036503..., 0.5830717085554..., 0.57058999437...]

Note: Capturing in the fitted parameters noise that prevents the model to generalize to new data is called overfitting.
The bias introduced by the ridge regression is called a regularization.

Sparsity

Fitting only features 1 and 2

2.2. A tutorial on statistical-learning for scientific data processing 195

../../auto_examples/linear_model/plot_ols_ridge_variance.html
https://en.wikipedia.org/wiki/Overfitting
https://en.wikipedia.org/wiki/Regularization_%28machine_learning%29

scikit-learn user guide, Release 0.23.2

Note: A representation of the full diabetes dataset would involve 11 dimensions (10 feature dimensions and one of
the target variable). It is hard to develop an intuition on such representation, but it may be useful to keep in mind that
it would be a fairly empty space.

We can see that, although feature 2 has a strong coefficient on the full model, it conveys little information on y when
considered with feature 1.

To improve the conditioning of the problem (i.e. mitigating the The curse of dimensionality), it would be interesting
to select only the informative features and set non-informative ones, like feature 2 to 0. Ridge regression will decrease
their contribution, but not set them to zero. Another penalization approach, called Lasso (least absolute shrinkage and
selection operator), can set some coefficients to zero. Such methods are called sparse method and sparsity can be
seen as an application of Occam’s razor: prefer simpler models.

>>> regr = linear_model.Lasso()
>>> scores = [regr.set_params(alpha=alpha)
... .fit(diabetes_X_train, diabetes_y_train)
... .score(diabetes_X_test, diabetes_y_test)
... for alpha in alphas]
>>> best_alpha = alphas[scores.index(max(scores))]
>>> regr.alpha = best_alpha
>>> regr.fit(diabetes_X_train, diabetes_y_train)
Lasso(alpha=0.025118864315095794)
>>> print(regr.coef_)
[0. -212.43764548 517.19478111 313.77959962 -160.8303982 -0.
-187.19554705 69.38229038 508.66011217 71.84239008]

Different algorithms for the same problem

196 Chapter 2. scikit-learn Tutorials

../../auto_examples/linear_model/plot_ols_3d.html
../../auto_examples/linear_model/plot_ols_3d.html
../../auto_examples/linear_model/plot_ols_3d.html

scikit-learn user guide, Release 0.23.2

Different algorithms can be used to solve the same mathematical problem. For instance the Lasso object in scikit-
learn solves the lasso regression problem using a coordinate descent method, that is efficient on large datasets.
However, scikit-learn also provides the LassoLars object using the LARS algorithm, which is very efficient for
problems in which the weight vector estimated is very sparse (i.e. problems with very few observations).

Classification

For classification, as in the labeling iris task, linear regression is not the right approach as it will give too much weight
to data far from the decision frontier. A linear approach is to fit a sigmoid function or logistic function:

𝑦 = sigmoid(𝑋𝛽 − offset) + 𝜖 =
1

1 + exp(−𝑋𝛽 + offset)
+ 𝜖

>>> log = linear_model.LogisticRegression(C=1e5)
>>> log.fit(iris_X_train, iris_y_train)
LogisticRegression(C=100000.0)

This is known as LogisticRegression.

Multiclass classification

If you have several classes to predict, an option often used is to fit one-versus-all classifiers and then use a voting
heuristic for the final decision.

2.2. A tutorial on statistical-learning for scientific data processing 197

https://en.wikipedia.org/wiki/Coordinate_descent
../../auto_examples/linear_model/plot_logistic.html
https://en.wikipedia.org/wiki/Iris_flower_data_set
../../auto_examples/linear_model/plot_iris_logistic.html

scikit-learn user guide, Release 0.23.2

Shrinkage and sparsity with logistic regression

The C parameter controls the amount of regularization in the LogisticRegression object: a large value
for C results in less regularization. penalty="l2" gives Shrinkage (i.e. non-sparse coefficients), while
penalty="l1" gives Sparsity.

Exercise

Try classifying the digits dataset with nearest neighbors and a linear model. Leave out the last 10% and test
prediction performance on these observations.

from sklearn import datasets, neighbors, linear_model

X_digits, y_digits = datasets.load_digits(return_X_y=True)
X_digits = X_digits / X_digits.max()

Solution: ../../auto_examples/exercises/plot_digits_classification_exercise.py

Support vector machines (SVMs)

Linear SVMs

Support Vector Machines belong to the discriminant model family: they try to find a combination of samples to build
a plane maximizing the margin between the two classes. Regularization is set by the C parameter: a small value for C
means the margin is calculated using many or all of the observations around the separating line (more regularization);
a large value for C means the margin is calculated on observations close to the separating line (less regularization).

Unregularized SVM Regularized SVM (default)

Example:

• Plot different SVM classifiers in the iris dataset

SVMs can be used in regression –SVR (Support Vector Regression)–, or in classification –SVC (Support Vector Clas-
sification).

198 Chapter 2. scikit-learn Tutorials

../../auto_examples/svm/plot_svm_margin.html
../../auto_examples/svm/plot_svm_margin.html

scikit-learn user guide, Release 0.23.2

>>> from sklearn import svm
>>> svc = svm.SVC(kernel='linear')
>>> svc.fit(iris_X_train, iris_y_train)
SVC(kernel='linear')

Warning: Normalizing data

For many estimators, including the SVMs, having datasets with unit standard deviation for each feature is important
to get good prediction.

Using kernels

Classes are not always linearly separable in feature space. The solution is to build a decision function that is not linear
but may be polynomial instead. This is done using the kernel trick that can be seen as creating a decision energy by
positioning kernels on observations:

Linear kernel Polynomial kernel

>>> svc = svm.SVC(kernel='linear') >>> svc = svm.SVC(kernel='poly',
... degree=3)
>>> # degree: polynomial degree

2.2. A tutorial on statistical-learning for scientific data processing 199

../../auto_examples/svm/plot_svm_kernels.html
../../auto_examples/svm/plot_svm_kernels.html

scikit-learn user guide, Release 0.23.2

RBF kernel (Radial Basis Function)

>>> svc = svm.SVC(kernel='rbf')
>>> # gamma: inverse of size of
>>> # radial kernel

Interactive example

See the SVM GUI to download svm_gui.py; add data points of both classes with right and left button, fit the
model and change parameters and data.

200 Chapter 2. scikit-learn Tutorials

../../auto_examples/svm/plot_svm_kernels.html
../../auto_examples/datasets/plot_iris_dataset.html

scikit-learn user guide, Release 0.23.2

Exercise

Try classifying classes 1 and 2 from the iris dataset with SVMs, with the 2 first features. Leave out 10% of each
class and test prediction performance on these observations.

Warning: the classes are ordered, do not leave out the last 10%, you would be testing on only one class.

Hint: You can use the decision_function method on a grid to get intuitions.

iris = datasets.load_iris()
X = iris.data
y = iris.target

X = X[y != 0, :2]
y = y[y != 0]

Solution: ../../auto_examples/exercises/plot_iris_exercise.py

2.2.3 Model selection: choosing estimators and their parameters

Score, and cross-validated scores

As we have seen, every estimator exposes a score method that can judge the quality of the fit (or the prediction) on
new data. Bigger is better.

>>> from sklearn import datasets, svm
>>> X_digits, y_digits = datasets.load_digits(return_X_y=True)
>>> svc = svm.SVC(C=1, kernel='linear')
>>> svc.fit(X_digits[:-100], y_digits[:-100]).score(X_digits[-100:], y_digits[-100:])
0.98

To get a better measure of prediction accuracy (which we can use as a proxy for goodness of fit of the model), we can
successively split the data in folds that we use for training and testing:

>>> import numpy as np
>>> X_folds = np.array_split(X_digits, 3)
>>> y_folds = np.array_split(y_digits, 3)
>>> scores = list()
>>> for k in range(3):
... # We use 'list' to copy, in order to 'pop' later on
... X_train = list(X_folds)
... X_test = X_train.pop(k)
... X_train = np.concatenate(X_train)
... y_train = list(y_folds)
... y_test = y_train.pop(k)
... y_train = np.concatenate(y_train)
... scores.append(svc.fit(X_train, y_train).score(X_test, y_test))
>>> print(scores)
[0.934..., 0.956..., 0.939...]

This is called a KFold cross-validation.

Cross-validation generators

Scikit-learn has a collection of classes which can be used to generate lists of train/test indices for popular cross-
validation strategies.

2.2. A tutorial on statistical-learning for scientific data processing 201

scikit-learn user guide, Release 0.23.2

They expose a split method which accepts the input dataset to be split and yields the train/test set indices for each
iteration of the chosen cross-validation strategy.

This example shows an example usage of the split method.

>>> from sklearn.model_selection import KFold, cross_val_score
>>> X = ["a", "a", "a", "b", "b", "c", "c", "c", "c", "c"]
>>> k_fold = KFold(n_splits=5)
>>> for train_indices, test_indices in k_fold.split(X):
... print('Train: %s | test: %s' % (train_indices, test_indices))
Train: [2 3 4 5 6 7 8 9] | test: [0 1]
Train: [0 1 4 5 6 7 8 9] | test: [2 3]
Train: [0 1 2 3 6 7 8 9] | test: [4 5]
Train: [0 1 2 3 4 5 8 9] | test: [6 7]
Train: [0 1 2 3 4 5 6 7] | test: [8 9]

The cross-validation can then be performed easily:

>>> [svc.fit(X_digits[train], y_digits[train]).score(X_digits[test], y_digits[test])
... for train, test in k_fold.split(X_digits)]
[0.963..., 0.922..., 0.963..., 0.963..., 0.930...]

The cross-validation score can be directly calculated using the cross_val_score helper. Given an estimator, the
cross-validation object and the input dataset, the cross_val_score splits the data repeatedly into a training and a
testing set, trains the estimator using the training set and computes the scores based on the testing set for each iteration
of cross-validation.

By default the estimator’s score method is used to compute the individual scores.

Refer the metrics module to learn more on the available scoring methods.

>>> cross_val_score(svc, X_digits, y_digits, cv=k_fold, n_jobs=-1)
array([0.96388889, 0.92222222, 0.9637883 , 0.9637883 , 0.93036212])

n_jobs=-1 means that the computation will be dispatched on all the CPUs of the computer.

Alternatively, the scoring argument can be provided to specify an alternative scoring method.

>>> cross_val_score(svc, X_digits, y_digits, cv=k_fold,
... scoring='precision_macro')
array([0.96578289, 0.92708922, 0.96681476, 0.96362897, 0.93192644])

Cross-validation generators

KFold (n_splits, shuffle, ran-
dom_state)

StratifiedKFold (n_splits,
shuffle, random_state)

GroupKFold (n_splits)

Splits it into K folds, trains on K-1
and then tests on the left-out.

Same as K-Fold but preserves the
class distribution within each fold.

Ensures that the same group is not in
both testing and training sets.

ShuffleSplit (n_splits,
test_size, train_size, ran-
dom_state)

StratifiedShuffleSplit GroupShuffleSplit

Generates train/test indices based
on random permutation.

Same as shuffle split but preserves the
class distribution within each iteration.

Ensures that the same group is not
in both testing and training sets.

202 Chapter 2. scikit-learn Tutorials

scikit-learn user guide, Release 0.23.2

LeaveOneGroupOut () LeavePGroupsOut (n_groups) LeaveOneOut ()
Takes a group array to group observations. Leave P groups out. Leave one observation out.

LeavePOut (p) PredefinedSplit
Leave P observations out. Generates train/test indices based on predefined splits.

Exercise

On the digits dataset, plot the cross-validation score of a SVC estimator with an linear kernel as a function of
parameter C (use a logarithmic grid of points, from 1 to 10).

import numpy as np
from sklearn.model_selection import cross_val_score
from sklearn import datasets, svm

X, y = datasets.load_digits(return_X_y=True)

svc = svm.SVC(kernel='linear')
C_s = np.logspace(-10, 0, 10)

scores = list()

Solution: Cross-validation on Digits Dataset Exercise

2.2. A tutorial on statistical-learning for scientific data processing 203

../../auto_examples/exercises/plot_cv_digits.html

scikit-learn user guide, Release 0.23.2

Grid-search and cross-validated estimators

Grid-search

scikit-learn provides an object that, given data, computes the score during the fit of an estimator on a parameter grid and
chooses the parameters to maximize the cross-validation score. This object takes an estimator during the construction
and exposes an estimator API:

>>> from sklearn.model_selection import GridSearchCV, cross_val_score
>>> Cs = np.logspace(-6, -1, 10)
>>> clf = GridSearchCV(estimator=svc, param_grid=dict(C=Cs),
... n_jobs=-1)
>>> clf.fit(X_digits[:1000], y_digits[:1000])
GridSearchCV(cv=None,...
>>> clf.best_score_
0.925...
>>> clf.best_estimator_.C
0.0077...

>>> # Prediction performance on test set is not as good as on train set
>>> clf.score(X_digits[1000:], y_digits[1000:])
0.943...

By default, the GridSearchCV uses a 3-fold cross-validation. However, if it detects that a classifier is passed, rather
than a regressor, it uses a stratified 3-fold. The default will change to a 5-fold cross-validation in version 0.22.

Nested cross-validation

>>> cross_val_score(clf, X_digits, y_digits)
array([0.938..., 0.963..., 0.944...])

Two cross-validation loops are performed in parallel: one by the GridSearchCV estimator to set gamma and the
other one by cross_val_score to measure the prediction performance of the estimator. The resulting scores
are unbiased estimates of the prediction score on new data.

Warning: You cannot nest objects with parallel computing (n_jobs different than 1).

Cross-validated estimators

Cross-validation to set a parameter can be done more efficiently on an algorithm-by-algorithm basis. This is why, for
certain estimators, scikit-learn exposes Cross-validation: evaluating estimator performance estimators that set their
parameter automatically by cross-validation:

>>> from sklearn import linear_model, datasets
>>> lasso = linear_model.LassoCV()
>>> X_diabetes, y_diabetes = datasets.load_diabetes(return_X_y=True)
>>> lasso.fit(X_diabetes, y_diabetes)
LassoCV()
>>> # The estimator chose automatically its lambda:
>>> lasso.alpha_
0.00375...

These estimators are called similarly to their counterparts, with ‘CV’ appended to their name.

204 Chapter 2. scikit-learn Tutorials

scikit-learn user guide, Release 0.23.2

Exercise

On the diabetes dataset, find the optimal regularization parameter alpha.

Bonus: How much can you trust the selection of alpha?

from sklearn import datasets
from sklearn.linear_model import LassoCV
from sklearn.linear_model import Lasso
from sklearn.model_selection import KFold
from sklearn.model_selection import GridSearchCV

X, y = datasets.load_diabetes(return_X_y=True)
X = X[:150]

Solution: Cross-validation on diabetes Dataset Exercise

2.2.4 Unsupervised learning: seeking representations of the data

Clustering: grouping observations together

The problem solved in clustering

Given the iris dataset, if we knew that there were 3 types of iris, but did not have access to a taxonomist to label
them: we could try a clustering task: split the observations into well-separated group called clusters.

K-means clustering

Note that there exist a lot of different clustering criteria and associated algorithms. The simplest clustering algorithm
is K-means.

>>> from sklearn import cluster, datasets
>>> X_iris, y_iris = datasets.load_iris(return_X_y=True)

>>> k_means = cluster.KMeans(n_clusters=3)
>>> k_means.fit(X_iris)
KMeans(n_clusters=3)

(continues on next page)

2.2. A tutorial on statistical-learning for scientific data processing 205

../../auto_examples/cluster/plot_cluster_iris.html

scikit-learn user guide, Release 0.23.2

(continued from previous page)

>>> print(k_means.labels_[::10])
[1 1 1 1 1 0 0 0 0 0 2 2 2 2 2]
>>> print(y_iris[::10])
[0 0 0 0 0 1 1 1 1 1 2 2 2 2 2]

Warning: There is absolutely no guarantee of recovering a ground truth. First, choosing the right number of
clusters is hard. Second, the algorithm is sensitive to initialization, and can fall into local minima, although scikit-
learn employs several tricks to mitigate this issue.

Bad initialization 8 clusters Ground truth

Don’t over-interpret clustering results

Application example: vector quantization

Clustering in general and KMeans, in particular, can be seen as a way of choosing a small number of exemplars to
compress the information. The problem is sometimes known as vector quantization. For instance, this can be used
to posterize an image:

>>> import scipy as sp
>>> try:
... face = sp.face(gray=True)
... except AttributeError:
... from scipy import misc
... face = misc.face(gray=True)
>>> X = face.reshape((-1, 1)) # We need an (n_sample, n_feature) array
>>> k_means = cluster.KMeans(n_clusters=5, n_init=1)
>>> k_means.fit(X)
KMeans(n_clusters=5, n_init=1)
>>> values = k_means.cluster_centers_.squeeze()
>>> labels = k_means.labels_
>>> face_compressed = np.choose(labels, values)
>>> face_compressed.shape = face.shape

Raw image K-means quantization Equal bins Image histogram

206 Chapter 2. scikit-learn Tutorials

../../auto_examples/cluster/plot_cluster_iris.html
../../auto_examples/cluster/plot_cluster_iris.html
../../auto_examples/cluster/plot_cluster_iris.html
https://en.wikipedia.org/wiki/Vector_quantization
../../auto_examples/cluster/plot_face_compress.html
../../auto_examples/cluster/plot_face_compress.html
../../auto_examples/cluster/plot_face_compress.html
../../auto_examples/cluster/plot_face_compress.html

scikit-learn user guide, Release 0.23.2

Hierarchical agglomerative clustering: Ward

A Hierarchical clustering method is a type of cluster analysis that aims to build a hierarchy of clusters. In general, the
various approaches of this technique are either:

• Agglomerative - bottom-up approaches: each observation starts in its own cluster, and clusters are iteratively
merged in such a way to minimize a linkage criterion. This approach is particularly interesting when the clus-
ters of interest are made of only a few observations. When the number of clusters is large, it is much more
computationally efficient than k-means.

• Divisive - top-down approaches: all observations start in one cluster, which is iteratively split as one moves
down the hierarchy. For estimating large numbers of clusters, this approach is both slow (due to all observations
starting as one cluster, which it splits recursively) and statistically ill-posed.

Connectivity-constrained clustering

With agglomerative clustering, it is possible to specify which samples can be clustered together by giving a connec-
tivity graph. Graphs in scikit-learn are represented by their adjacency matrix. Often, a sparse matrix is used. This
can be useful, for instance, to retrieve connected regions (sometimes also referred to as connected components) when
clustering an image.

>>> from skimage.data import coins
>>> from scipy.ndimage.filters import gaussian_filter
>>> from skimage.transform import rescale
>>> rescaled_coins = rescale(
... gaussian_filter(coins(), sigma=2),
... 0.2, mode='reflect', anti_aliasing=False, multichannel=False
...)
>>> X = np.reshape(rescaled_coins, (-1, 1))

We need a vectorized version of the image. 'rescaled_coins' is a down-scaled version of the coins image to
speed up the process:

>>> from sklearn.feature_extraction import grid_to_graph
>>> connectivity = grid_to_graph(*rescaled_coins.shape)

Define the graph structure of the data. Pixels connected to their neighbors:

>>> n_clusters = 27 # number of regions

>>> from sklearn.cluster import AgglomerativeClustering
>>> ward = AgglomerativeClustering(n_clusters=n_clusters, linkage='ward',

(continues on next page)

2.2. A tutorial on statistical-learning for scientific data processing 207

../../auto_examples/cluster/plot_coin_ward_segmentation.html

scikit-learn user guide, Release 0.23.2

(continued from previous page)

... connectivity=connectivity)
>>> ward.fit(X)
AgglomerativeClustering(connectivity=..., n_clusters=27)
>>> label = np.reshape(ward.labels_, rescaled_coins.shape)

Feature agglomeration

We have seen that sparsity could be used to mitigate the curse of dimensionality, i.e an insufficient amount of ob-
servations compared to the number of features. Another approach is to merge together similar features: feature
agglomeration. This approach can be implemented by clustering in the feature direction, in other words clustering
the transposed data.

>>> digits = datasets.load_digits()
>>> images = digits.images
>>> X = np.reshape(images, (len(images), -1))
>>> connectivity = grid_to_graph(*images[0].shape)

>>> agglo = cluster.FeatureAgglomeration(connectivity=connectivity,
... n_clusters=32)
>>> agglo.fit(X)
FeatureAgglomeration(connectivity=..., n_clusters=32)
>>> X_reduced = agglo.transform(X)

>>> X_approx = agglo.inverse_transform(X_reduced)
>>> images_approx = np.reshape(X_approx, images.shape)

transform and inverse_transform methods

Some estimators expose a transform method, for instance to reduce the dimensionality of the dataset.

Decompositions: from a signal to components and loadings

Components and loadings

If X is our multivariate data, then the problem that we are trying to solve is to rewrite it on a different observational
basis: we want to learn loadings L and a set of components C such that X = L C. Different criteria exist to choose

208 Chapter 2. scikit-learn Tutorials

../../auto_examples/cluster/plot_digits_agglomeration.html

scikit-learn user guide, Release 0.23.2

the components

Principal component analysis: PCA

Principal component analysis (PCA) selects the successive components that explain the maximum variance in the
signal.

The point cloud spanned by the observations above is very flat in one direction: one of the three univariate features
can almost be exactly computed using the other two. PCA finds the directions in which the data is not flat

When used to transform data, PCA can reduce the dimensionality of the data by projecting on a principal subspace.

>>> # Create a signal with only 2 useful dimensions
>>> x1 = np.random.normal(size=100)
>>> x2 = np.random.normal(size=100)
>>> x3 = x1 + x2
>>> X = np.c_[x1, x2, x3]

>>> from sklearn import decomposition
>>> pca = decomposition.PCA()
>>> pca.fit(X)
PCA()
>>> print(pca.explained_variance_)
[2.18565811e+00 1.19346747e+00 8.43026679e-32]

>>> # As we can see, only the 2 first components are useful
>>> pca.n_components = 2
>>> X_reduced = pca.fit_transform(X)
>>> X_reduced.shape
(100, 2)

Independent Component Analysis: ICA

Independent component analysis (ICA) selects components so that the distribution of their loadings carries a maximum
amount of independent information. It is able to recover non-Gaussian independent signals:

2.2. A tutorial on statistical-learning for scientific data processing 209

../../auto_examples/decomposition/plot_pca_3d.html
../../auto_examples/decomposition/plot_pca_3d.html

scikit-learn user guide, Release 0.23.2

>>> # Generate sample data
>>> import numpy as np
>>> from scipy import signal
>>> time = np.linspace(0, 10, 2000)
>>> s1 = np.sin(2 * time) # Signal 1 : sinusoidal signal
>>> s2 = np.sign(np.sin(3 * time)) # Signal 2 : square signal
>>> s3 = signal.sawtooth(2 * np.pi * time) # Signal 3: saw tooth signal
>>> S = np.c_[s1, s2, s3]
>>> S += 0.2 * np.random.normal(size=S.shape) # Add noise
>>> S /= S.std(axis=0) # Standardize data
>>> # Mix data
>>> A = np.array([[1, 1, 1], [0.5, 2, 1], [1.5, 1, 2]]) # Mixing matrix
>>> X = np.dot(S, A.T) # Generate observations

>>> # Compute ICA
>>> ica = decomposition.FastICA()
>>> S_ = ica.fit_transform(X) # Get the estimated sources
>>> A_ = ica.mixing_.T
>>> np.allclose(X, np.dot(S_, A_) + ica.mean_)
True

2.2.5 Putting it all together

Pipelining

We have seen that some estimators can transform data and that some estimators can predict variables. We can also
create combined estimators:

210 Chapter 2. scikit-learn Tutorials

../../auto_examples/decomposition/plot_ica_blind_source_separation.html

scikit-learn user guide, Release 0.23.2

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

from sklearn import datasets
from sklearn.decomposition import PCA
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV

Define a pipeline to search for the best combination of PCA truncation
and classifier regularization.
pca = PCA()
set the tolerance to a large value to make the example faster
logistic = LogisticRegression(max_iter=10000, tol=0.1)
pipe = Pipeline(steps=[('pca', pca), ('logistic', logistic)])

X_digits, y_digits = datasets.load_digits(return_X_y=True)

Parameters of pipelines can be set using ‘__’ separated parameter names:
param_grid = {

'pca__n_components': [5, 15, 30, 45, 64],
'logistic__C': np.logspace(-4, 4, 4),

}
search = GridSearchCV(pipe, param_grid, n_jobs=-1)
search.fit(X_digits, y_digits)
print("Best parameter (CV score=%0.3f):" % search.best_score_)
print(search.best_params_)

Plot the PCA spectrum

(continues on next page)

2.2. A tutorial on statistical-learning for scientific data processing 211

../../auto_examples/compose/plot_digits_pipe.html

scikit-learn user guide, Release 0.23.2

(continued from previous page)

pca.fit(X_digits)

fig, (ax0, ax1) = plt.subplots(nrows=2, sharex=True, figsize=(6, 6))
ax0.plot(np.arange(1, pca.n_components_ + 1),

pca.explained_variance_ratio_, '+', linewidth=2)
ax0.set_ylabel('PCA explained variance ratio')

ax0.axvline(search.best_estimator_.named_steps['pca'].n_components,
linestyle=':', label='n_components chosen')

ax0.legend(prop=dict(size=12))

Face recognition with eigenfaces

The dataset used in this example is a preprocessed excerpt of the “Labeled Faces in the Wild”, also known as LFW:

http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz (233MB)

"""
===
Faces recognition example using eigenfaces and SVMs
===

The dataset used in this example is a preprocessed excerpt of the
"Labeled Faces in the Wild", aka LFW_:

http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz (233MB)

.. _LFW: http://vis-www.cs.umass.edu/lfw/

Expected results for the top 5 most represented people in the dataset:

================== ============ ======= ========== =======
precision recall f1-score support

================== ============ ======= ========== =======
Ariel Sharon 0.67 0.92 0.77 13
Colin Powell 0.75 0.78 0.76 60

Donald Rumsfeld 0.78 0.67 0.72 27
George W Bush 0.86 0.86 0.86 146

Gerhard Schroeder 0.76 0.76 0.76 25
Hugo Chavez 0.67 0.67 0.67 15
Tony Blair 0.81 0.69 0.75 36

avg / total 0.80 0.80 0.80 322
================== ============ ======= ========== =======

"""
from time import time
import logging
import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.datasets import fetch_lfw_people
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix

(continues on next page)

212 Chapter 2. scikit-learn Tutorials

http://vis-www.cs.umass.edu/lfw/
http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz

scikit-learn user guide, Release 0.23.2

(continued from previous page)

from sklearn.decomposition import PCA
from sklearn.svm import SVC

print(__doc__)

Display progress logs on stdout
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')

###
Download the data, if not already on disk and load it as numpy arrays

lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)

introspect the images arrays to find the shapes (for plotting)
n_samples, h, w = lfw_people.images.shape

for machine learning we use the 2 data directly (as relative pixel
positions info is ignored by this model)
X = lfw_people.data
n_features = X.shape[1]

the label to predict is the id of the person
y = lfw_people.target
target_names = lfw_people.target_names
n_classes = target_names.shape[0]

print("Total dataset size:")
print("n_samples: %d" % n_samples)
print("n_features: %d" % n_features)
print("n_classes: %d" % n_classes)

###
Split into a training set and a test set using a stratified k fold

split into a training and testing set
X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.25, random_state=42)

###
Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled
dataset): unsupervised feature extraction / dimensionality reduction
n_components = 150

print("Extracting the top %d eigenfaces from %d faces"
% (n_components, X_train.shape[0]))

t0 = time()
pca = PCA(n_components=n_components, svd_solver='randomized',

whiten=True).fit(X_train)
print("done in %0.3fs" % (time() - t0))

eigenfaces = pca.components_.reshape((n_components, h, w))

print("Projecting the input data on the eigenfaces orthonormal basis")
(continues on next page)

2.2. A tutorial on statistical-learning for scientific data processing 213

scikit-learn user guide, Release 0.23.2

(continued from previous page)

t0 = time()
X_train_pca = pca.transform(X_train)
X_test_pca = pca.transform(X_test)
print("done in %0.3fs" % (time() - t0))

###
Train a SVM classification model

print("Fitting the classifier to the training set")
t0 = time()
param_grid = {'C': [1e3, 5e3, 1e4, 5e4, 1e5],

'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], }
clf = GridSearchCV(

SVC(kernel='rbf', class_weight='balanced'), param_grid
)
clf = clf.fit(X_train_pca, y_train)
print("done in %0.3fs" % (time() - t0))
print("Best estimator found by grid search:")
print(clf.best_estimator_)

###
Quantitative evaluation of the model quality on the test set

print("Predicting people's names on the test set")
t0 = time()
y_pred = clf.predict(X_test_pca)
print("done in %0.3fs" % (time() - t0))

print(classification_report(y_test, y_pred, target_names=target_names))
print(confusion_matrix(y_test, y_pred, labels=range(n_classes)))

###
Qualitative evaluation of the predictions using matplotlib

def plot_gallery(images, titles, h, w, n_row=3, n_col=4):
"""Helper function to plot a gallery of portraits"""
plt.figure(figsize=(1.8 * n_col, 2.4 * n_row))
plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35)
for i in range(n_row * n_col):

plt.subplot(n_row, n_col, i + 1)
plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray)
plt.title(titles[i], size=12)
plt.xticks(())
plt.yticks(())

plot the result of the prediction on a portion of the test set

def title(y_pred, y_test, target_names, i):
pred_name = target_names[y_pred[i]].rsplit(' ', 1)[-1]
true_name = target_names[y_test[i]].rsplit(' ', 1)[-1]
return 'predicted: %s\ntrue: %s' % (pred_name, true_name)

prediction_titles = [title(y_pred, y_test, target_names, i)
(continues on next page)

214 Chapter 2. scikit-learn Tutorials

scikit-learn user guide, Release 0.23.2

(continued from previous page)

for i in range(y_pred.shape[0])]

plot_gallery(X_test, prediction_titles, h, w)

plot the gallery of the most significative eigenfaces

eigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])]
plot_gallery(eigenfaces, eigenface_titles, h, w)

plt.show()

Prediction Eigenfaces

Expected results for the top 5 most represented people in the dataset:

precision recall f1-score support

Gerhard_Schroeder 0.91 0.75 0.82 28
Donald_Rumsfeld 0.84 0.82 0.83 33

Tony_Blair 0.65 0.82 0.73 34
Colin_Powell 0.78 0.88 0.83 58

George_W_Bush 0.93 0.86 0.90 129

avg / total 0.86 0.84 0.85 282

Open problem: Stock Market Structure

Can we predict the variation in stock prices for Google over a given time frame?

Learning a graph structure

2.2.6 Finding help

2.2. A tutorial on statistical-learning for scientific data processing 215

scikit-learn user guide, Release 0.23.2

The project mailing list

If you encounter a bug with scikit-learn or something that needs clarification in the docstring or the online
documentation, please feel free to ask on the Mailing List

Q&A communities with Machine Learning practitioners

Quora.com Quora has a topic for Machine Learning related questions that also features some
interesting discussions: https://www.quora.com/topic/Machine-Learning

Stack Exchange The Stack Exchange family of sites hosts multiple subdomains for Machine
Learning questions.

– _’An excellent free online course for Machine Learning taught by Professor Andrew Ng of Stanford’: https://www.
coursera.org/learn/machine-learning

– _’Another excellent free online course that takes a more general approach to Artificial Intelligence’:
https://www.udacity.com/course/intro-to-artificial-intelligence–cs271

2.3 Working With Text Data

The goal of this guide is to explore some of the main scikit-learn tools on a single practical task: analyzing a
collection of text documents (newsgroups posts) on twenty different topics.

In this section we will see how to:

• load the file contents and the categories

• extract feature vectors suitable for machine learning

• train a linear model to perform categorization

• use a grid search strategy to find a good configuration of both the feature extraction components and the classifier

2.3.1 Tutorial setup

To get started with this tutorial, you must first install scikit-learn and all of its required dependencies.

Please refer to the installation instructions page for more information and for system-specific instructions.

The source of this tutorial can be found within your scikit-learn folder:

scikit-learn/doc/tutorial/text_analytics/

The source can also be found on Github.

The tutorial folder should contain the following sub-folders:

• *.rst files - the source of the tutorial document written with sphinx

• data - folder to put the datasets used during the tutorial

• skeletons - sample incomplete scripts for the exercises

• solutions - solutions of the exercises

You can already copy the skeletons into a new folder somewhere on your hard-drive named
sklearn_tut_workspace where you will edit your own files for the exercises while keeping the original
skeletons intact:

216 Chapter 2. scikit-learn Tutorials

http://scikit-learn.org/stable/support.html
https://www.quora.com/topic/Machine-Learning
https://meta.stackexchange.com/q/130524
https://meta.stackexchange.com/q/130524
https://www.coursera.org/learn/machine-learning
https://www.coursera.org/learn/machine-learning
https://www.udacity.com/course/intro-to-artificial-intelligence--cs271
https://github.com/scikit-learn/scikit-learn/tree/master/doc/tutorial/text_analytics

scikit-learn user guide, Release 0.23.2

% cp -r skeletons work_directory/sklearn_tut_workspace

Machine learning algorithms need data. Go to each $TUTORIAL_HOME/data sub-folder and run the
fetch_data.py script from there (after having read them first).

For instance:

% cd $TUTORIAL_HOME/data/languages
% less fetch_data.py
% python fetch_data.py

2.3.2 Loading the 20 newsgroups dataset

The dataset is called “Twenty Newsgroups”. Here is the official description, quoted from the website:

The 20 Newsgroups data set is a collection of approximately 20,000 newsgroup documents, partitioned
(nearly) evenly across 20 different newsgroups. To the best of our knowledge, it was originally collected
by Ken Lang, probably for his paper “Newsweeder: Learning to filter netnews,” though he does not explic-
itly mention this collection. The 20 newsgroups collection has become a popular data set for experiments
in text applications of machine learning techniques, such as text classification and text clustering.

In the following we will use the built-in dataset loader for 20 newsgroups from scikit-learn. Alternatively, it is possible
to download the dataset manually from the website and use the sklearn.datasets.load_files function by
pointing it to the 20news-bydate-train sub-folder of the uncompressed archive folder.

In order to get faster execution times for this first example we will work on a partial dataset with only 4 categories out
of the 20 available in the dataset:

>>> categories = ['alt.atheism', 'soc.religion.christian',
... 'comp.graphics', 'sci.med']

We can now load the list of files matching those categories as follows:

>>> from sklearn.datasets import fetch_20newsgroups
>>> twenty_train = fetch_20newsgroups(subset='train',
... categories=categories, shuffle=True, random_state=42)

The returned dataset is a scikit-learn “bunch”: a simple holder object with fields that can be both accessed
as python dict keys or object attributes for convenience, for instance the target_names holds the list of the
requested category names:

>>> twenty_train.target_names
['alt.atheism', 'comp.graphics', 'sci.med', 'soc.religion.christian']

The files themselves are loaded in memory in the data attribute. For reference the filenames are also available:

>>> len(twenty_train.data)
2257
>>> len(twenty_train.filenames)
2257

Let’s print the first lines of the first loaded file:

>>> print("\n".join(twenty_train.data[0].split("\n")[:3]))
From: sd345@city.ac.uk (Michael Collier)
Subject: Converting images to HP LaserJet III?

(continues on next page)

2.3. Working With Text Data 217

http://people.csail.mit.edu/jrennie/20Newsgroups/

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Nntp-Posting-Host: hampton

>>> print(twenty_train.target_names[twenty_train.target[0]])
comp.graphics

Supervised learning algorithms will require a category label for each document in the training set. In this case the cat-
egory is the name of the newsgroup which also happens to be the name of the folder holding the individual documents.

For speed and space efficiency reasons scikit-learn loads the target attribute as an array of integers that corre-
sponds to the index of the category name in the target_names list. The category integer id of each sample is stored
in the target attribute:

>>> twenty_train.target[:10]
array([1, 1, 3, 3, 3, 3, 3, 2, 2, 2])

It is possible to get back the category names as follows:

>>> for t in twenty_train.target[:10]:
... print(twenty_train.target_names[t])
...
comp.graphics
comp.graphics
soc.religion.christian
soc.religion.christian
soc.religion.christian
soc.religion.christian
soc.religion.christian
sci.med
sci.med
sci.med

You might have noticed that the samples were shuffled randomly when we called fetch_20newsgroups(...,
shuffle=True, random_state=42): this is useful if you wish to select only a subset of samples to quickly
train a model and get a first idea of the results before re-training on the complete dataset later.

2.3.3 Extracting features from text files

In order to perform machine learning on text documents, we first need to turn the text content into numerical feature
vectors.

Bags of words

The most intuitive way to do so is to use a bags of words representation:

1. Assign a fixed integer id to each word occurring in any document of the training set (for instance by building a
dictionary from words to integer indices).

2. For each document #i, count the number of occurrences of each word w and store it in X[i, j] as the value
of feature #j where j is the index of word w in the dictionary.

The bags of words representation implies that n_features is the number of distinct words in the corpus: this
number is typically larger than 100,000.

If n_samples == 10000, storing X as a NumPy array of type float32 would require 10000 x 100000 x 4 bytes =
4GB in RAM which is barely manageable on today’s computers.

218 Chapter 2. scikit-learn Tutorials

scikit-learn user guide, Release 0.23.2

Fortunately, most values in X will be zeros since for a given document less than a few thousand distinct words will
be used. For this reason we say that bags of words are typically high-dimensional sparse datasets. We can save a lot
of memory by only storing the non-zero parts of the feature vectors in memory.

scipy.sparse matrices are data structures that do exactly this, and scikit-learn has built-in support for these
structures.

Tokenizing text with scikit-learn

Text preprocessing, tokenizing and filtering of stopwords are all included in CountVectorizer, which builds a
dictionary of features and transforms documents to feature vectors:

>>> from sklearn.feature_extraction.text import CountVectorizer
>>> count_vect = CountVectorizer()
>>> X_train_counts = count_vect.fit_transform(twenty_train.data)
>>> X_train_counts.shape
(2257, 35788)

CountVectorizer supports counts of N-grams of words or consecutive characters. Once fitted, the vectorizer has
built a dictionary of feature indices:

>>> count_vect.vocabulary_.get(u'algorithm')
4690

The index value of a word in the vocabulary is linked to its frequency in the whole training corpus.

From occurrences to frequencies

Occurrence count is a good start but there is an issue: longer documents will have higher average count values than
shorter documents, even though they might talk about the same topics.

To avoid these potential discrepancies it suffices to divide the number of occurrences of each word in a document by
the total number of words in the document: these new features are called tf for Term Frequencies.

Another refinement on top of tf is to downscale weights for words that occur in many documents in the corpus and are
therefore less informative than those that occur only in a smaller portion of the corpus.

This downscaling is called tf–idf for “Term Frequency times Inverse Document Frequency”.

Both tf and tf–idf can be computed as follows using TfidfTransformer:

>>> from sklearn.feature_extraction.text import TfidfTransformer
>>> tf_transformer = TfidfTransformer(use_idf=False).fit(X_train_counts)
>>> X_train_tf = tf_transformer.transform(X_train_counts)
>>> X_train_tf.shape
(2257, 35788)

In the above example-code, we firstly use the fit(..) method to fit our estimator to the data and secondly the
transform(..) method to transform our count-matrix to a tf-idf representation. These two steps can be com-
bined to achieve the same end result faster by skipping redundant processing. This is done through using the
fit_transform(..) method as shown below, and as mentioned in the note in the previous section:

>>> tfidf_transformer = TfidfTransformer()
>>> X_train_tfidf = tfidf_transformer.fit_transform(X_train_counts)
>>> X_train_tfidf.shape
(2257, 35788)

2.3. Working With Text Data 219

https://en.wikipedia.org/wiki/Tf-idf

scikit-learn user guide, Release 0.23.2

2.3.4 Training a classifier

Now that we have our features, we can train a classifier to try to predict the category of a post. Let’s start with a
naïve Bayes classifier, which provides a nice baseline for this task. scikit-learn includes several variants of this
classifier; the one most suitable for word counts is the multinomial variant:

>>> from sklearn.naive_bayes import MultinomialNB
>>> clf = MultinomialNB().fit(X_train_tfidf, twenty_train.target)

To try to predict the outcome on a new document we need to extract the features using almost the same feature extract-
ing chain as before. The difference is that we call transform instead of fit_transform on the transformers,
since they have already been fit to the training set:

>>> docs_new = ['God is love', 'OpenGL on the GPU is fast']
>>> X_new_counts = count_vect.transform(docs_new)
>>> X_new_tfidf = tfidf_transformer.transform(X_new_counts)

>>> predicted = clf.predict(X_new_tfidf)

>>> for doc, category in zip(docs_new, predicted):
... print('%r => %s' % (doc, twenty_train.target_names[category]))
...
'God is love' => soc.religion.christian
'OpenGL on the GPU is fast' => comp.graphics

2.3.5 Building a pipeline

In order to make the vectorizer => transformer => classifier easier to work with, scikit-learn provides a
Pipeline class that behaves like a compound classifier:

>>> from sklearn.pipeline import Pipeline
>>> text_clf = Pipeline([
... ('vect', CountVectorizer()),
... ('tfidf', TfidfTransformer()),
... ('clf', MultinomialNB()),
...])

The names vect, tfidf and clf (classifier) are arbitrary. We will use them to perform grid search for suitable
hyperparameters below. We can now train the model with a single command:

>>> text_clf.fit(twenty_train.data, twenty_train.target)
Pipeline(...)

2.3.6 Evaluation of the performance on the test set

Evaluating the predictive accuracy of the model is equally easy:

>>> import numpy as np
>>> twenty_test = fetch_20newsgroups(subset='test',
... categories=categories, shuffle=True, random_state=42)
>>> docs_test = twenty_test.data
>>> predicted = text_clf.predict(docs_test)
>>> np.mean(predicted == twenty_test.target)
0.8348...

220 Chapter 2. scikit-learn Tutorials

scikit-learn user guide, Release 0.23.2

We achieved 83.5% accuracy. Let’s see if we can do better with a linear support vector machine (SVM), which is
widely regarded as one of the best text classification algorithms (although it’s also a bit slower than naïve Bayes). We
can change the learner by simply plugging a different classifier object into our pipeline:

>>> from sklearn.linear_model import SGDClassifier
>>> text_clf = Pipeline([
... ('vect', CountVectorizer()),
... ('tfidf', TfidfTransformer()),
... ('clf', SGDClassifier(loss='hinge', penalty='l2',
... alpha=1e-3, random_state=42,
... max_iter=5, tol=None)),
...])

>>> text_clf.fit(twenty_train.data, twenty_train.target)
Pipeline(...)
>>> predicted = text_clf.predict(docs_test)
>>> np.mean(predicted == twenty_test.target)
0.9101...

We achieved 91.3% accuracy using the SVM. scikit-learn provides further utilities for more detailed perfor-
mance analysis of the results:

>>> from sklearn import metrics
>>> print(metrics.classification_report(twenty_test.target, predicted,
... target_names=twenty_test.target_names))

precision recall f1-score support

alt.atheism 0.95 0.80 0.87 319
comp.graphics 0.87 0.98 0.92 389

sci.med 0.94 0.89 0.91 396
soc.religion.christian 0.90 0.95 0.93 398

accuracy 0.91 1502
macro avg 0.91 0.91 0.91 1502

weighted avg 0.91 0.91 0.91 1502

>>> metrics.confusion_matrix(twenty_test.target, predicted)
array([[256, 11, 16, 36],

[4, 380, 3, 2],
[5, 35, 353, 3],
[5, 11, 4, 378]])

As expected the confusion matrix shows that posts from the newsgroups on atheism and Christianity are more often
confused for one another than with computer graphics.

2.3.7 Parameter tuning using grid search

We’ve already encountered some parameters such as use_idf in the TfidfTransformer. Classifiers tend to have
many parameters as well; e.g., MultinomialNB includes a smoothing parameter alpha and SGDClassifier
has a penalty parameter alpha and configurable loss and penalty terms in the objective function (see the module
documentation, or use the Python help function to get a description of these).

Instead of tweaking the parameters of the various components of the chain, it is possible to run an exhaustive search of
the best parameters on a grid of possible values. We try out all classifiers on either words or bigrams, with or without
idf, and with a penalty parameter of either 0.01 or 0.001 for the linear SVM:

2.3. Working With Text Data 221

scikit-learn user guide, Release 0.23.2

>>> from sklearn.model_selection import GridSearchCV
>>> parameters = {
... 'vect__ngram_range': [(1, 1), (1, 2)],
... 'tfidf__use_idf': (True, False),
... 'clf__alpha': (1e-2, 1e-3),
... }

Obviously, such an exhaustive search can be expensive. If we have multiple CPU cores at our disposal, we can tell
the grid searcher to try these eight parameter combinations in parallel with the n_jobs parameter. If we give this
parameter a value of -1, grid search will detect how many cores are installed and use them all:

>>> gs_clf = GridSearchCV(text_clf, parameters, cv=5, n_jobs=-1)

The grid search instance behaves like a normal scikit-learn model. Let’s perform the search on a smaller subset
of the training data to speed up the computation:

>>> gs_clf = gs_clf.fit(twenty_train.data[:400], twenty_train.target[:400])

The result of calling fit on a GridSearchCV object is a classifier that we can use to predict:

>>> twenty_train.target_names[gs_clf.predict(['God is love'])[0]]
'soc.religion.christian'

The object’s best_score_ and best_params_ attributes store the best mean score and the parameters setting
corresponding to that score:

>>> gs_clf.best_score_
0.9...
>>> for param_name in sorted(parameters.keys()):
... print("%s: %r" % (param_name, gs_clf.best_params_[param_name]))
...
clf__alpha: 0.001
tfidf__use_idf: True
vect__ngram_range: (1, 1)

A more detailed summary of the search is available at gs_clf.cv_results_.

The cv_results_ parameter can be easily imported into pandas as a DataFrame for further inspection.

Exercises

To do the exercises, copy the content of the ‘skeletons’ folder as a new folder named ‘workspace’:

% cp -r skeletons workspace

You can then edit the content of the workspace without fear of losing the original exercise instructions.

Then fire an ipython shell and run the work-in-progress script with:

[1] %run workspace/exercise_XX_script.py arg1 arg2 arg3

If an exception is triggered, use %debug to fire-up a post mortem ipdb session.

Refine the implementation and iterate until the exercise is solved.

For each exercise, the skeleton file provides all the necessary import statements, boilerplate code to load the
data and sample code to evaluate the predictive accuracy of the model.

222 Chapter 2. scikit-learn Tutorials

scikit-learn user guide, Release 0.23.2

2.3.8 Exercise 1: Language identification

• Write a text classification pipeline using a custom preprocessor and CharNGramAnalyzer using data from
Wikipedia articles as training set.

• Evaluate the performance on some held out test set.

ipython command line:

%run workspace/exercise_01_language_train_model.py data/languages/paragraphs/

2.3.9 Exercise 2: Sentiment Analysis on movie reviews

• Write a text classification pipeline to classify movie reviews as either positive or negative.

• Find a good set of parameters using grid search.

• Evaluate the performance on a held out test set.

ipython command line:

%run workspace/exercise_02_sentiment.py data/movie_reviews/txt_sentoken/

2.3.10 Exercise 3: CLI text classification utility

Using the results of the previous exercises and the cPickle module of the standard library, write a command line
utility that detects the language of some text provided on stdin and estimate the polarity (positive or negative) if the
text is written in English.

Bonus point if the utility is able to give a confidence level for its predictions.

2.3.11 Where to from here

Here are a few suggestions to help further your scikit-learn intuition upon the completion of this tutorial:

• Try playing around with the analyzer and token normalisation under CountVectorizer.

• If you don’t have labels, try using Clustering on your problem.

• If you have multiple labels per document, e.g categories, have a look at the Multiclass and multilabel section.

• Try using Truncated SVD for latent semantic analysis.

• Have a look at using Out-of-core Classification to learn from data that would not fit into the computer main
memory.

• Have a look at the Hashing Vectorizer as a memory efficient alternative to CountVectorizer.

2.4 Choosing the right estimator

Often the hardest part of solving a machine learning problem can be finding the right estimator for the job.

Different estimators are better suited for different types of data and different problems.

The flowchart below is designed to give users a bit of a rough guide on how to approach problems with regard to which
estimators to try on your data.

2.4. Choosing the right estimator 223

https://en.wikipedia.org/wiki/Latent_semantic_analysis

scikit-learn user guide, Release 0.23.2

Click on any estimator in the chart below to see its documentation.

2.5 External Resources, Videos and Talks

For written tutorials, see the Tutorial section of the documentation.

2.5.1 New to Scientific Python?

For those that are still new to the scientific Python ecosystem, we highly recommend the Python Scientific Lecture
Notes. This will help you find your footing a bit and will definitely improve your scikit-learn experience. A basic
understanding of NumPy arrays is recommended to make the most of scikit-learn.

2.5.2 External Tutorials

There are several online tutorials available which are geared toward specific subject areas:

• Machine Learning for NeuroImaging in Python

• Machine Learning for Astronomical Data Analysis

2.5.3 Videos

• An introduction to scikit-learn Part I and Part II at Scipy 2013 by Gael Varoquaux, Jake Vanderplas and Olivier
Grisel. Notebooks on github.

• Introduction to scikit-learn by Gael Varoquaux at ICML 2010

A three minute video from a very early stage of scikit-learn, explaining the basic idea and approach
we are following.

• Introduction to statistical learning with scikit-learn by Gael Varoquaux at SciPy 2011

An extensive tutorial, consisting of four sessions of one hour. The tutorial covers the basics of ma-
chine learning, many algorithms and how to apply them using scikit-learn. The material correspond-
ing is now in the scikit-learn documentation section A tutorial on statistical-learning for scientific
data processing.

• Statistical Learning for Text Classification with scikit-learn and NLTK (and slides) by Olivier Grisel at PyCon
2011

Thirty minute introduction to text classification. Explains how to use NLTK and scikit-learn to solve
real-world text classification tasks and compares against cloud-based solutions.

• Introduction to Interactive Predictive Analytics in Python with scikit-learn by Olivier Grisel at PyCon 2012

3-hours long introduction to prediction tasks using scikit-learn.

• scikit-learn - Machine Learning in Python by Jake Vanderplas at the 2012 PyData workshop at Google

Interactive demonstration of some scikit-learn features. 75 minutes.

• scikit-learn tutorial by Jake Vanderplas at PyData NYC 2012

Presentation using the online tutorial, 45 minutes.

224 Chapter 2. scikit-learn Tutorials

https://www.scipy-lectures.org/
https://www.scipy-lectures.org/
https://nilearn.github.io/
https://github.com/astroML/sklearn_tutorial
https://conference.scipy.org/scipy2013/tutorial_detail.php?id=107
https://conference.scipy.org/scipy2013/tutorial_detail.php?id=111
http://gael-varoquaux.info
https://staff.washington.edu/jakevdp
https://twitter.com/ogrisel
https://twitter.com/ogrisel
https://github.com/jakevdp/sklearn_scipy2013
http://videolectures.net/icml2010_varaquaux_scik/
http://gael-varoquaux.info
https://archive.org/search.php?query=scikit-learn
http://gael-varoquaux.info
https://pyvideo.org/video/417/pycon-2011--statistical-machine-learning-for-text
https://www.slideshare.net/ogrisel/statistical-machine-learning-for-text-classification-with-scikitlearn-and-nltk
https://twitter.com/ogrisel
https://www.youtube.com/watch?v=Zd5dfooZWG4
https://twitter.com/ogrisel
https://newcircle.com/s/post/1152/scikit-learn_machine_learning_in_python
https://staff.washington.edu/jakevdp
https://www.youtube.com/watch?v=cHZONQ2-x7I
https://staff.washington.edu/jakevdp

scikit-learn user guide, Release 0.23.2

Note: Doctest Mode

The code-examples in the above tutorials are written in a python-console format. If you wish to easily execute these
examples in IPython, use:

%doctest_mode

in the IPython-console. You can then simply copy and paste the examples directly into IPython without having to
worry about removing the >>> manually.

2.5. External Resources, Videos and Talks 225

scikit-learn user guide, Release 0.23.2

226 Chapter 2. scikit-learn Tutorials

CHAPTER

THREE

GETTING STARTED

The purpose of this guide is to illustrate some of the main features that scikit-learn provides. It assumes a very
basic working knowledge of machine learning practices (model fitting, predicting, cross-validation, etc.). Please refer
to our installation instructions for installing scikit-learn.

Scikit-learn is an open source machine learning library that supports supervised and unsupervised learning. It
also provides various tools for model fitting, data preprocessing, model selection and evaluation, and many other
utilities.

3.1 Fitting and predicting: estimator basics

Scikit-learn provides dozens of built-in machine learning algorithms and models, called estimators. Each esti-
mator can be fitted to some data using its fit method.

Here is a simple example where we fit a RandomForestClassifier to some very basic data:

>>> from sklearn.ensemble import RandomForestClassifier
>>> clf = RandomForestClassifier(random_state=0)
>>> X = [[1, 2, 3], # 2 samples, 3 features
... [11, 12, 13]]
>>> y = [0, 1] # classes of each sample
>>> clf.fit(X, y)
RandomForestClassifier(random_state=0)

The fit method generally accepts 2 inputs:

• The samples matrix (or design matrix) X. The size of X is typically (n_samples, n_features), which
means that samples are represented as rows and features are represented as columns.

• The target values y which are real numbers for regression tasks, or integers for classification (or any other
discrete set of values). For unsupervized learning tasks, y does not need to be specified. y is usually 1d array
where the i th entry corresponds to the target of the i th sample (row) of X.

Both X and y are usually expected to be numpy arrays or equivalent array-like data types, though some estimators
work with other formats such as sparse matrices.

Once the estimator is fitted, it can be used for predicting target values of new data. You don’t need to re-train the
estimator:

>>> clf.predict(X) # predict classes of the training data
array([0, 1])
>>> clf.predict([[4, 5, 6], [14, 15, 16]]) # predict classes of new data
array([0, 1])

227

scikit-learn user guide, Release 0.23.2

3.2 Transformers and pre-processors

Machine learning workflows are often composed of different parts. A typical pipeline consists of a pre-processing step
that transforms or imputes the data, and a final predictor that predicts target values.

In scikit-learn, pre-processors and transformers follow the same API as the estimator objects (they actually all
inherit from the same BaseEstimator class). The transformer objects don’t have a predict method but rather a
transform method that outputs a newly transformed sample matrix X:

>>> from sklearn.preprocessing import StandardScaler
>>> X = [[0, 15],
... [1, -10]]
>>> StandardScaler().fit(X).transform(X)
array([[-1., 1.],

[1., -1.]])

Sometimes, you want to apply different transformations to different features: the ColumnTransformer is designed for
these use-cases.

3.3 Pipelines: chaining pre-processors and estimators

Transformers and estimators (predictors) can be combined together into a single unifying object: a Pipeline. The
pipeline offers the same API as a regular estimator: it can be fitted and used for prediction with fit and predict.
As we will see later, using a pipeline will also prevent you from data leakage, i.e. disclosing some testing data in your
training data.

In the following example, we load the Iris dataset, split it into train and test sets, and compute the accuracy score of a
pipeline on the test data:

>>> from sklearn.preprocessing import StandardScaler
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.pipeline import make_pipeline
>>> from sklearn.datasets import load_iris
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.metrics import accuracy_score
...
>>> # create a pipeline object
>>> pipe = make_pipeline(
... StandardScaler(),
... LogisticRegression(random_state=0)
...)
...
>>> # load the iris dataset and split it into train and test sets
>>> X, y = load_iris(return_X_y=True)
>>> X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
...
>>> # fit the whole pipeline
>>> pipe.fit(X_train, y_train)
Pipeline(steps=[('standardscaler', StandardScaler()),

('logisticregression', LogisticRegression(random_state=0))])
>>> # we can now use it like any other estimator
>>> accuracy_score(pipe.predict(X_test), y_test)
0.97...

228 Chapter 3. Getting Started

scikit-learn user guide, Release 0.23.2

3.4 Model evaluation

Fitting a model to some data does not entail that it will predict well on unseen data. This needs to be directly evaluated.
We have just seen the train_test_split helper that splits a dataset into train and test sets, but scikit-learn
provides many other tools for model evaluation, in particular for cross-validation.

We here briefly show how to perform a 5-fold cross-validation procedure, using the cross_validate helper. Note
that it is also possible to manually iterate over the folds, use different data splitting strategies, and use custom scoring
functions. Please refer to our User Guide for more details:

>>> from sklearn.datasets import make_regression
>>> from sklearn.linear_model import LinearRegression
>>> from sklearn.model_selection import cross_validate
...
>>> X, y = make_regression(n_samples=1000, random_state=0)
>>> lr = LinearRegression()
...
>>> result = cross_validate(lr, X, y) # defaults to 5-fold CV
>>> result['test_score'] # r_squared score is high because dataset is easy
array([1., 1., 1., 1., 1.])

3.5 Automatic parameter searches

All estimators have parameters (often called hyper-parameters in the literature) that can be tuned. The generalization
power of an estimator often critically depends on a few parameters. For example a RandomForestRegressor
has a n_estimators parameter that determines the number of trees in the forest, and a max_depth parameter
that determines the maximum depth of each tree. Quite often, it is not clear what the exact values of these parameters
should be since they depend on the data at hand.

Scikit-learn provides tools to automatically find the best parameter combinations (via cross-validation). In the
following example, we randomly search over the parameter space of a random forest with a RandomizedSearchCV
object. When the search is over, the RandomizedSearchCV behaves as a RandomForestRegressor that has
been fitted with the best set of parameters. Read more in the User Guide:

>>> from sklearn.datasets import fetch_california_housing
>>> from sklearn.ensemble import RandomForestRegressor
>>> from sklearn.model_selection import RandomizedSearchCV
>>> from sklearn.model_selection import train_test_split
>>> from scipy.stats import randint
...
>>> X, y = fetch_california_housing(return_X_y=True)
>>> X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
...
>>> # define the parameter space that will be searched over
>>> param_distributions = {'n_estimators': randint(1, 5),
... 'max_depth': randint(5, 10)}
...
>>> # now create a searchCV object and fit it to the data
>>> search = RandomizedSearchCV(estimator=RandomForestRegressor(random_state=0),
... n_iter=5,
... param_distributions=param_distributions,
... random_state=0)
>>> search.fit(X_train, y_train)
RandomizedSearchCV(estimator=RandomForestRegressor(random_state=0), n_iter=5,

(continues on next page)

3.4. Model evaluation 229

scikit-learn user guide, Release 0.23.2

(continued from previous page)

param_distributions={'max_depth': ...,
'n_estimators': ...},

random_state=0)
>>> search.best_params_
{'max_depth': 9, 'n_estimators': 4}

>>> # the search object now acts like a normal random forest estimator
>>> # with max_depth=9 and n_estimators=4
>>> search.score(X_test, y_test)
0.73...

Note: In practice, you almost always want to search over a pipeline, instead of a single estimator. One of the main
reasons is that if you apply a pre-processing step to the whole dataset without using a pipeline, and then perform any
kind of cross-validation, you would be breaking the fundamental assumption of independence between training and
testing data. Indeed, since you pre-processed the data using the whole dataset, some information about the test sets
are available to the train sets. This will lead to over-estimating the generalization power of the estimator (you can read
more in this Kaggle post).

Using a pipeline for cross-validation and searching will largely keep you from this common pitfall.

3.6 Next steps

We have briefly covered estimator fitting and predicting, pre-processing steps, pipelines, cross-validation tools and
automatic hyper-parameter searches. This guide should give you an overview of some of the main features of the
library, but there is much more to scikit-learn!

Please refer to our User Guide for details on all the tools that we provide. You can also find an exhaustive list of the
public API in the API Reference.

You can also look at our numerous examples that illustrate the use of scikit-learn in many different contexts.

The tutorials also contain additional learning resources.

230 Chapter 3. Getting Started

https://www.kaggle.com/alexisbcook/data-leakage

CHAPTER

FOUR

USER GUIDE

4.1 Supervised learning

4.1.1 Linear Models

The following are a set of methods intended for regression in which the target value is expected to be a linear combi-
nation of the features. In mathematical notation, if 𝑦 is the predicted value.

𝑦(𝑤, 𝑥) = 𝑤0 + 𝑤1𝑥1 + ...+ 𝑤𝑝𝑥𝑝

Across the module, we designate the vector 𝑤 = (𝑤1, ..., 𝑤𝑝) as coef_ and 𝑤0 as intercept_.

To perform classification with generalized linear models, see Logistic regression.

Ordinary Least Squares

LinearRegression fits a linear model with coefficients 𝑤 = (𝑤1, ..., 𝑤𝑝) to minimize the residual sum of squares
between the observed targets in the dataset, and the targets predicted by the linear approximation. Mathematically it
solves a problem of the form:

min
𝑤
||𝑋𝑤 − 𝑦||22

LinearRegression will take in its fit method arrays X, y and will store the coefficients 𝑤 of the linear model
in its coef_ member:

231

../auto_examples/linear_model/plot_ols.html

scikit-learn user guide, Release 0.23.2

>>> from sklearn import linear_model
>>> reg = linear_model.LinearRegression()
>>> reg.fit([[0, 0], [1, 1], [2, 2]], [0, 1, 2])
LinearRegression()
>>> reg.coef_
array([0.5, 0.5])

The coefficient estimates for Ordinary Least Squares rely on the independence of the features. When features are
correlated and the columns of the design matrix𝑋 have an approximate linear dependence, the design matrix becomes
close to singular and as a result, the least-squares estimate becomes highly sensitive to random errors in the observed
target, producing a large variance. This situation of multicollinearity can arise, for example, when data are collected
without an experimental design.

Examples:

• Linear Regression Example

Ordinary Least Squares Complexity

The least squares solution is computed using the singular value decomposition of X. If X is a matrix of shape
(n_samples, n_features) this method has a cost of 𝑂(𝑛samples𝑛

2
features), assuming that 𝑛samples ≥ 𝑛features.

Ridge regression and classification

Regression

Ridge regression addresses some of the problems of Ordinary Least Squares by imposing a penalty on the size of the
coefficients. The ridge coefficients minimize a penalized residual sum of squares:

min
𝑤
||𝑋𝑤 − 𝑦||22 + 𝛼||𝑤||22

The complexity parameter 𝛼 ≥ 0 controls the amount of shrinkage: the larger the value of 𝛼, the greater the amount
of shrinkage and thus the coefficients become more robust to collinearity.

As with other linear models, Ridge will take in its fit method arrays X, y and will store the coefficients 𝑤 of the
linear model in its coef_ member:

232 Chapter 4. User Guide

../auto_examples/linear_model/plot_ridge_path.html

scikit-learn user guide, Release 0.23.2

>>> from sklearn import linear_model
>>> reg = linear_model.Ridge(alpha=.5)
>>> reg.fit([[0, 0], [0, 0], [1, 1]], [0, .1, 1])
Ridge(alpha=0.5)
>>> reg.coef_
array([0.34545455, 0.34545455])
>>> reg.intercept_
0.13636...

Classification

The Ridge regressor has a classifier variant: RidgeClassifier. This classifier first converts binary targets to
{-1, 1} and then treats the problem as a regression task, optimizing the same objective as above. The predicted
class corresponds to the sign of the regressor’s prediction. For multiclass classification, the problem is treated as
multi-output regression, and the predicted class corresponds to the output with the highest value.

It might seem questionable to use a (penalized) Least Squares loss to fit a classification model instead of the more
traditional logistic or hinge losses. However in practice all those models can lead to similar cross-validation scores in
terms of accuracy or precision/recall, while the penalized least squares loss used by the RidgeClassifier allows
for a very different choice of the numerical solvers with distinct computational performance profiles.

The RidgeClassifier can be significantly faster than e.g. LogisticRegression with a high number of
classes, because it is able to compute the projection matrix (𝑋𝑇𝑋)−1𝑋𝑇 only once.

This classifier is sometimes referred to as a Least Squares Support Vector Machines with a linear kernel.

Examples:

• Plot Ridge coefficients as a function of the regularization

• Classification of text documents using sparse features

• Common pitfalls in interpretation of coefficients of linear models

Ridge Complexity

This method has the same order of complexity as Ordinary Least Squares.

Setting the regularization parameter: generalized Cross-Validation

RidgeCV implements ridge regression with built-in cross-validation of the alpha parameter. The object works in
the same way as GridSearchCV except that it defaults to Generalized Cross-Validation (GCV), an efficient form of
leave-one-out cross-validation:

>>> import numpy as np
>>> from sklearn import linear_model
>>> reg = linear_model.RidgeCV(alphas=np.logspace(-6, 6, 13))
>>> reg.fit([[0, 0], [0, 0], [1, 1]], [0, .1, 1])
RidgeCV(alphas=array([1.e-06, 1.e-05, 1.e-04, 1.e-03, 1.e-02, 1.e-01, 1.e+00, 1.e+01,

1.e+02, 1.e+03, 1.e+04, 1.e+05, 1.e+06]))
>>> reg.alpha_
0.01

4.1. Supervised learning 233

https://en.wikipedia.org/wiki/Least-squares_support-vector_machine

scikit-learn user guide, Release 0.23.2

Specifying the value of the cv attribute will trigger the use of cross-validation with GridSearchCV , for example
cv=10 for 10-fold cross-validation, rather than Generalized Cross-Validation.

References

• “Notes on Regularized Least Squares”, Rifkin & Lippert (technical report, course slides).

Lasso

The Lasso is a linear model that estimates sparse coefficients. It is useful in some contexts due to its tendency to
prefer solutions with fewer non-zero coefficients, effectively reducing the number of features upon which the given
solution is dependent. For this reason Lasso and its variants are fundamental to the field of compressed sensing.
Under certain conditions, it can recover the exact set of non-zero coefficients (see Compressive sensing: tomography
reconstruction with L1 prior (Lasso)).

Mathematically, it consists of a linear model with an added regularization term. The objective function to minimize is:

min
𝑤

1

2𝑛samples
||𝑋𝑤 − 𝑦||22 + 𝛼||𝑤||1

The lasso estimate thus solves the minimization of the least-squares penalty with 𝛼||𝑤||1 added, where 𝛼 is a constant
and ||𝑤||1 is the ℓ1-norm of the coefficient vector.

The implementation in the class Lasso uses coordinate descent as the algorithm to fit the coefficients. See Least
Angle Regression for another implementation:

>>> from sklearn import linear_model
>>> reg = linear_model.Lasso(alpha=0.1)
>>> reg.fit([[0, 0], [1, 1]], [0, 1])
Lasso(alpha=0.1)
>>> reg.predict([[1, 1]])
array([0.8])

The function lasso_path is useful for lower-level tasks, as it computes the coefficients along the full path of
possible values.

Examples:

• Lasso and Elastic Net for Sparse Signals

• Compressive sensing: tomography reconstruction with L1 prior (Lasso)

• Common pitfalls in interpretation of coefficients of linear models

Note: Feature selection with Lasso

As the Lasso regression yields sparse models, it can thus be used to perform feature selection, as detailed in L1-based
feature selection.

The following two references explain the iterations used in the coordinate descent solver of scikit-learn, as well as the
duality gap computation used for convergence control.

234 Chapter 4. User Guide

http://cbcl.mit.edu/publications/ps/MIT-CSAIL-TR-2007-025.pdf
https://www.mit.edu/~9.520/spring07/Classes/rlsslides.pdf

scikit-learn user guide, Release 0.23.2

References

• “Regularization Path For Generalized linear Models by Coordinate Descent”, Friedman, Hastie & Tibshirani,
J Stat Softw, 2010 (Paper).

• “An Interior-Point Method for Large-Scale L1-Regularized Least Squares,” S. J. Kim, K. Koh, M. Lustig, S.
Boyd and D. Gorinevsky, in IEEE Journal of Selected Topics in Signal Processing, 2007 (Paper)

Setting regularization parameter

The alpha parameter controls the degree of sparsity of the estimated coefficients.

Using cross-validation

scikit-learn exposes objects that set the Lasso alpha parameter by cross-validation: LassoCV and LassoLarsCV .
LassoLarsCV is based on the Least Angle Regression algorithm explained below.

For high-dimensional datasets with many collinear features, LassoCV is most often preferable. However,
LassoLarsCV has the advantage of exploring more relevant values of alpha parameter, and if the number of
samples is very small compared to the number of features, it is often faster than LassoCV .

Information-criteria based model selection

Alternatively, the estimator LassoLarsIC proposes to use the Akaike information criterion (AIC) and the Bayes
Information criterion (BIC). It is a computationally cheaper alternative to find the optimal value of alpha as the regu-
larization path is computed only once instead of k+1 times when using k-fold cross-validation. However, such criteria
needs a proper estimation of the degrees of freedom of the solution, are derived for large samples (asymptotic results)
and assume the model is correct, i.e. that the data are actually generated by this model. They also tend to break when
the problem is badly conditioned (more features than samples).

Examples:

• Lasso model selection: Cross-Validation / AIC / BIC

4.1. Supervised learning 235

https://www.jstatsoft.org/article/view/v033i01/v33i01.pdf
https://web.stanford.edu/~boyd/papers/pdf/l1_ls.pdf
../auto_examples/linear_model/plot_lasso_model_selection.html
../auto_examples/linear_model/plot_lasso_model_selection.html

scikit-learn user guide, Release 0.23.2

Comparison with the regularization parameter of SVM

The equivalence between alpha and the regularization parameter of SVM, C is given by alpha = 1 / C or
alpha = 1 / (n_samples * C), depending on the estimator and the exact objective function optimized by
the model.

Multi-task Lasso

The MultiTaskLasso is a linear model that estimates sparse coefficients for multiple regression problems jointly:
y is a 2D array, of shape (n_samples, n_tasks). The constraint is that the selected features are the same for all
the regression problems, also called tasks.

The following figure compares the location of the non-zero entries in the coefficient matrix W obtained with a simple
Lasso or a MultiTaskLasso. The Lasso estimates yield scattered non-zeros while the non-zeros of the MultiTaskLasso
are full columns.

236 Chapter 4. User Guide

../auto_examples/linear_model/plot_lasso_model_selection.html
../auto_examples/linear_model/plot_multi_task_lasso_support.html

scikit-learn user guide, Release 0.23.2

Fitting a time-series model, imposing that any active feature be active at all times.

Examples:

• Joint feature selection with multi-task Lasso

Mathematically, it consists of a linear model trained with a mixed ℓ1 ℓ2-norm for regularization. The objective function
to minimize is:

min
𝑤

1

2𝑛samples
||𝑋𝑊 − 𝑌 ||2Fro + 𝛼||𝑊 ||21

where Fro indicates the Frobenius norm

||𝐴||Fro =

√︃∑︁
𝑖𝑗

𝑎2𝑖𝑗

and ℓ1 ℓ2 reads

||𝐴||21 =
∑︁
𝑖

√︃∑︁
𝑗

𝑎2𝑖𝑗 .

The implementation in the class MultiTaskLasso uses coordinate descent as the algorithm to fit the coefficients.

Elastic-Net

ElasticNet is a linear regression model trained with both ℓ1 and ℓ2-norm regularization of the coefficients. This
combination allows for learning a sparse model where few of the weights are non-zero like Lasso, while still main-
taining the regularization properties of Ridge. We control the convex combination of ℓ1 and ℓ2 using the l1_ratio
parameter.

Elastic-net is useful when there are multiple features which are correlated with one another. Lasso is likely to pick one
of these at random, while elastic-net is likely to pick both.

A practical advantage of trading-off between Lasso and Ridge is that it allows Elastic-Net to inherit some of Ridge’s
stability under rotation.

The objective function to minimize is in this case

min
𝑤

1

2𝑛samples
||𝑋𝑤 − 𝑦||22 + 𝛼𝜌||𝑤||1 +

𝛼(1− 𝜌)

2
||𝑤||22

4.1. Supervised learning 237

../auto_examples/linear_model/plot_multi_task_lasso_support.html

scikit-learn user guide, Release 0.23.2

The class ElasticNetCV can be used to set the parameters alpha (𝛼) and l1_ratio (𝜌) by cross-validation.

Examples:

• Lasso and Elastic Net for Sparse Signals

• Lasso and Elastic Net

The following two references explain the iterations used in the coordinate descent solver of scikit-learn, as well as the
duality gap computation used for convergence control.

References

• “Regularization Path For Generalized linear Models by Coordinate Descent”, Friedman, Hastie & Tibshirani,
J Stat Softw, 2010 (Paper).

• “An Interior-Point Method for Large-Scale L1-Regularized Least Squares,” S. J. Kim, K. Koh, M. Lustig, S.
Boyd and D. Gorinevsky, in IEEE Journal of Selected Topics in Signal Processing, 2007 (Paper)

Multi-task Elastic-Net

The MultiTaskElasticNet is an elastic-net model that estimates sparse coefficients for multiple regression prob-
lems jointly: Y is a 2D array of shape (n_samples, n_tasks). The constraint is that the selected features are
the same for all the regression problems, also called tasks.

Mathematically, it consists of a linear model trained with a mixed ℓ1 ℓ2-norm and ℓ2-norm for regularization. The
objective function to minimize is:

min
𝑊

1

2𝑛samples
||𝑋𝑊 − 𝑌 ||2Fro + 𝛼𝜌||𝑊 ||21 +

𝛼(1− 𝜌)

2
||𝑊 ||2Fro

The implementation in the class MultiTaskElasticNet uses coordinate descent as the algorithm to fit the coef-
ficients.

The class MultiTaskElasticNetCV can be used to set the parameters alpha (𝛼) and l1_ratio (𝜌) by cross-
validation.

238 Chapter 4. User Guide

../auto_examples/linear_model/plot_lasso_coordinate_descent_path.html
https://www.jstatsoft.org/article/view/v033i01/v33i01.pdf
https://web.stanford.edu/~boyd/papers/pdf/l1_ls.pdf

scikit-learn user guide, Release 0.23.2

Least Angle Regression

Least-angle regression (LARS) is a regression algorithm for high-dimensional data, developed by Bradley Efron,
Trevor Hastie, Iain Johnstone and Robert Tibshirani. LARS is similar to forward stepwise regression. At each step, it
finds the feature most correlated with the target. When there are multiple features having equal correlation, instead of
continuing along the same feature, it proceeds in a direction equiangular between the features.

The advantages of LARS are:

• It is numerically efficient in contexts where the number of features is significantly greater than the number of
samples.

• It is computationally just as fast as forward selection and has the same order of complexity as ordinary least
squares.

• It produces a full piecewise linear solution path, which is useful in cross-validation or similar attempts to tune
the model.

• If two features are almost equally correlated with the target, then their coefficients should increase at approxi-
mately the same rate. The algorithm thus behaves as intuition would expect, and also is more stable.

• It is easily modified to produce solutions for other estimators, like the Lasso.

The disadvantages of the LARS method include:

• Because LARS is based upon an iterative refitting of the residuals, it would appear to be especially sensitive to
the effects of noise. This problem is discussed in detail by Weisberg in the discussion section of the Efron et al.
(2004) Annals of Statistics article.

The LARS model can be used using estimator Lars, or its low-level implementation lars_path or
lars_path_gram.

LARS Lasso

LassoLars is a lasso model implemented using the LARS algorithm, and unlike the implementation based on
coordinate descent, this yields the exact solution, which is piecewise linear as a function of the norm of its coefficients.

>>> from sklearn import linear_model
>>> reg = linear_model.LassoLars(alpha=.1)
>>> reg.fit([[0, 0], [1, 1]], [0, 1])
LassoLars(alpha=0.1)

(continues on next page)

4.1. Supervised learning 239

../auto_examples/linear_model/plot_lasso_lars.html

scikit-learn user guide, Release 0.23.2

(continued from previous page)

>>> reg.coef_
array([0.717157..., 0.])

Examples:

• Lasso path using LARS

The Lars algorithm provides the full path of the coefficients along the regularization parameter almost for free, thus a
common operation is to retrieve the path with one of the functions lars_path or lars_path_gram.

Mathematical formulation

The algorithm is similar to forward stepwise regression, but instead of including features at each step, the estimated
coefficients are increased in a direction equiangular to each one’s correlations with the residual.

Instead of giving a vector result, the LARS solution consists of a curve denoting the solution for each value of the
ℓ1 norm of the parameter vector. The full coefficients path is stored in the array coef_path_, which has size
(n_features, max_features+1). The first column is always zero.

References:

• Original Algorithm is detailed in the paper Least Angle Regression by Hastie et al.

Orthogonal Matching Pursuit (OMP)

OrthogonalMatchingPursuit and orthogonal_mp implements the OMP algorithm for approximating the
fit of a linear model with constraints imposed on the number of non-zero coefficients (ie. the ℓ0 pseudo-norm).

Being a forward feature selection method like Least Angle Regression, orthogonal matching pursuit can approximate
the optimum solution vector with a fixed number of non-zero elements:

arg min
𝑤

||𝑦 −𝑋𝑤||22 subject to ||𝑤||0 ≤ 𝑛nonzero_coefs

Alternatively, orthogonal matching pursuit can target a specific error instead of a specific number of non-zero coeffi-
cients. This can be expressed as:

arg min
𝑤

||𝑤||0 subject to ||𝑦 −𝑋𝑤||22 ≤ tol

OMP is based on a greedy algorithm that includes at each step the atom most highly correlated with the current
residual. It is similar to the simpler matching pursuit (MP) method, but better in that at each iteration, the residual is
recomputed using an orthogonal projection on the space of the previously chosen dictionary elements.

Examples:

• Orthogonal Matching Pursuit

240 Chapter 4. User Guide

https://www-stat.stanford.edu/~hastie/Papers/LARS/LeastAngle_2002.pdf

scikit-learn user guide, Release 0.23.2

References:

• https://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf

• Matching pursuits with time-frequency dictionaries, S. G. Mallat, Z. Zhang,

Bayesian Regression

Bayesian regression techniques can be used to include regularization parameters in the estimation procedure: the
regularization parameter is not set in a hard sense but tuned to the data at hand.

This can be done by introducing uninformative priors over the hyper parameters of the model. The ℓ2 regularization
used in Ridge regression and classification is equivalent to finding a maximum a posteriori estimation under a Gaussian
prior over the coefficients 𝑤 with precision 𝜆−1. Instead of setting lambda manually, it is possible to treat it as a
random variable to be estimated from the data.

To obtain a fully probabilistic model, the output 𝑦 is assumed to be Gaussian distributed around 𝑋𝑤:

𝑝(𝑦|𝑋,𝑤, 𝛼) = 𝒩 (𝑦|𝑋𝑤,𝛼)

where 𝛼 is again treated as a random variable that is to be estimated from the data.

The advantages of Bayesian Regression are:

• It adapts to the data at hand.

• It can be used to include regularization parameters in the estimation procedure.

The disadvantages of Bayesian regression include:

• Inference of the model can be time consuming.

References

• A good introduction to Bayesian methods is given in C. Bishop: Pattern Recognition and Machine learning

• Original Algorithm is detailed in the book Bayesian learning for neural networks by Rad-
ford M. Neal

Bayesian Ridge Regression

BayesianRidge estimates a probabilistic model of the regression problem as described above. The prior for the
coefficient 𝑤 is given by a spherical Gaussian:

𝑝(𝑤|𝜆) = 𝒩 (𝑤|0, 𝜆−1I𝑝)

The priors over 𝛼 and 𝜆 are chosen to be gamma distributions, the conjugate prior for the precision of the Gaussian.
The resulting model is called Bayesian Ridge Regression, and is similar to the classical Ridge.

The parameters 𝑤, 𝛼 and 𝜆 are estimated jointly during the fit of the model, the regularization parameters 𝛼 and 𝜆
being estimated by maximizing the log marginal likelihood. The scikit-learn implementation is based on the algorithm
described in Appendix A of (Tipping, 2001) where the update of the parameters 𝛼 and 𝜆 is done as suggested in
(MacKay, 1992). The initial value of the maximization procedure can be set with the hyperparameters alpha_init
and lambda_init.

4.1. Supervised learning 241

https://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf
http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf
https://en.wikipedia.org/wiki/Non-informative_prior#Uninformative_priors
https://en.wikipedia.org/wiki/Gamma_distribution

scikit-learn user guide, Release 0.23.2

There are four more hyperparameters, 𝛼1, 𝛼2, 𝜆1 and 𝜆2 of the gamma prior distributions over 𝛼 and 𝜆. These are
usually chosen to be non-informative. By default 𝛼1 = 𝛼2 = 𝜆1 = 𝜆2 = 10−6.

Bayesian Ridge Regression is used for regression:

>>> from sklearn import linear_model
>>> X = [[0., 0.], [1., 1.], [2., 2.], [3., 3.]]
>>> Y = [0., 1., 2., 3.]
>>> reg = linear_model.BayesianRidge()
>>> reg.fit(X, Y)
BayesianRidge()

After being fitted, the model can then be used to predict new values:

>>> reg.predict([[1, 0.]])
array([0.50000013])

The coefficients 𝑤 of the model can be accessed:

>>> reg.coef_
array([0.49999993, 0.49999993])

Due to the Bayesian framework, the weights found are slightly different to the ones found by Ordinary Least Squares.
However, Bayesian Ridge Regression is more robust to ill-posed problems.

Examples:

• Bayesian Ridge Regression

• Curve Fitting with Bayesian Ridge Regression

References:

• Section 3.3 in Christopher M. Bishop: Pattern Recognition and Machine Learning, 2006

• David J. C. MacKay, Bayesian Interpolation, 1992.

• Michael E. Tipping, Sparse Bayesian Learning and the Relevance Vector Machine, 2001.

242 Chapter 4. User Guide

../auto_examples/linear_model/plot_bayesian_ridge.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.27.9072&rep=rep1&type=pdf
http://www.jmlr.org/papers/volume1/tipping01a/tipping01a.pdf

scikit-learn user guide, Release 0.23.2

Automatic Relevance Determination - ARD

ARDRegression is very similar to Bayesian Ridge Regression, but can lead to sparser coefficients 𝑤12.
ARDRegression poses a different prior over 𝑤, by dropping the assumption of the Gaussian being spherical.

Instead, the distribution over 𝑤 is assumed to be an axis-parallel, elliptical Gaussian distribution.

This means each coefficient 𝑤𝑖 is drawn from a Gaussian distribution, centered on zero and with a precision 𝜆𝑖:

𝑝(𝑤|𝜆) = 𝒩 (𝑤|0, 𝐴−1)

with diag(𝐴) = 𝜆 = {𝜆1, ..., 𝜆𝑝}.

In contrast to Bayesian Ridge Regression, each coordinate of 𝑤𝑖 has its own standard deviation 𝜆𝑖. The prior over all
𝜆𝑖 is chosen to be the same gamma distribution given by hyperparameters 𝜆1 and 𝜆2.

ARD is also known in the literature as Sparse Bayesian Learning and Relevance Vector Machine34.

Examples:

• Automatic Relevance Determination Regression (ARD)

References:

Logistic regression

Logistic regression, despite its name, is a linear model for classification rather than regression. Logistic regression is
also known in the literature as logit regression, maximum-entropy classification (MaxEnt) or the log-linear classifier.
In this model, the probabilities describing the possible outcomes of a single trial are modeled using a logistic function.

Logistic regression is implemented in LogisticRegression. This implementation can fit binary, One-vs-Rest, or
multinomial logistic regression with optional ℓ1, ℓ2 or Elastic-Net regularization.

1 Christopher M. Bishop: Pattern Recognition and Machine Learning, Chapter 7.2.1
2 David Wipf and Srikantan Nagarajan: A new view of automatic relevance determination
3 Michael E. Tipping: Sparse Bayesian Learning and the Relevance Vector Machine
4 Tristan Fletcher: Relevance Vector Machines explained

4.1. Supervised learning 243

../auto_examples/linear_model/plot_ard.html
https://en.wikipedia.org/wiki/Logistic_function
https://papers.nips.cc/paper/3372-a-new-view-of-automatic-relevance-determination.pdf
http://www.jmlr.org/papers/volume1/tipping01a/tipping01a.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.651.8603&rep=rep1&type=pdf

scikit-learn user guide, Release 0.23.2

Note: Regularization is applied by default, which is common in machine learning but not in statistics. Another
advantage of regularization is that it improves numerical stability. No regularization amounts to setting C to a very
high value.

As an optimization problem, binary class ℓ2 penalized logistic regression minimizes the following cost function:

min
𝑤,𝑐

1

2
𝑤𝑇𝑤 + 𝐶

𝑛∑︁
𝑖=1

log(exp(−𝑦𝑖(𝑋𝑇
𝑖 𝑤 + 𝑐)) + 1).

Similarly, ℓ1 regularized logistic regression solves the following optimization problem:

min
𝑤,𝑐
‖𝑤‖1 + 𝐶

𝑛∑︁
𝑖=1

log(exp(−𝑦𝑖(𝑋𝑇
𝑖 𝑤 + 𝑐)) + 1).

Elastic-Net regularization is a combination of ℓ1 and ℓ2, and minimizes the following cost function:

min
𝑤,𝑐

1− 𝜌
2

𝑤𝑇𝑤 + 𝜌‖𝑤‖1 + 𝐶

𝑛∑︁
𝑖=1

log(exp(−𝑦𝑖(𝑋𝑇
𝑖 𝑤 + 𝑐)) + 1),

where 𝜌 controls the strength of ℓ1 regularization vs. ℓ2 regularization (it corresponds to the l1_ratio parameter).

Note that, in this notation, it’s assumed that the target 𝑦𝑖 takes values in the set −1, 1 at trial 𝑖. We can also see that
Elastic-Net is equivalent to ℓ1 when 𝜌 = 1 and equivalent to ℓ2 when 𝜌 = 0.

The solvers implemented in the class LogisticRegression are “liblinear”, “newton-cg”, “lbfgs”, “sag” and
“saga”:

The solver “liblinear” uses a coordinate descent (CD) algorithm, and relies on the excellent C++ LIBLINEAR library,
which is shipped with scikit-learn. However, the CD algorithm implemented in liblinear cannot learn a true multi-
nomial (multiclass) model; instead, the optimization problem is decomposed in a “one-vs-rest” fashion so separate
binary classifiers are trained for all classes. This happens under the hood, so LogisticRegression instances us-
ing this solver behave as multiclass classifiers. For ℓ1 regularization sklearn.svm.l1_min_c allows to calculate
the lower bound for C in order to get a non “null” (all feature weights to zero) model.

The “lbfgs”, “sag” and “newton-cg” solvers only support ℓ2 regularization or no regularization, and are found to
converge faster for some high-dimensional data. Setting multi_class to “multinomial” with these solvers learns
a true multinomial logistic regression model5, which means that its probability estimates should be better calibrated
than the default “one-vs-rest” setting.

The “sag” solver uses Stochastic Average Gradient descent6. It is faster than other solvers for large datasets, when
both the number of samples and the number of features are large.

The “saga” solver7 is a variant of “sag” that also supports the non-smooth penalty="l1". This is there-
fore the solver of choice for sparse multinomial logistic regression. It is also the only solver that supports
penalty="elasticnet".

The “lbfgs” is an optimization algorithm that approximates the Broyden–Fletcher–Goldfarb–Shanno algorithm8,
which belongs to quasi-Newton methods. The “lbfgs” solver is recommended for use for small data-sets but for
larger datasets its performance suffers.9

The following table summarizes the penalties supported by each solver:

5 Christopher M. Bishop: Pattern Recognition and Machine Learning, Chapter 4.3.4
6 Mark Schmidt, Nicolas Le Roux, and Francis Bach: Minimizing Finite Sums with the Stochastic Average Gradient.
7 Aaron Defazio, Francis Bach, Simon Lacoste-Julien: SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex

Composite Objectives.
8 https://en.wikipedia.org/wiki/Broyden%E2%80%93Fletcher%E2%80%93Goldfarb%E2%80%93Shanno_algorithm
9 “Performance Evaluation of Lbfgs vs other solvers”

244 Chapter 4. User Guide

https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://hal.inria.fr/hal-00860051/document
https://arxiv.org/abs/1407.0202
https://arxiv.org/abs/1407.0202
https://en.wikipedia.org/wiki/Broyden%E2%80%93Fletcher%E2%80%93Goldfarb%E2%80%93Shanno_algorithm
http://www.fuzihao.org/blog/2016/01/16/Comparison-of-Gradient-Descent-Stochastic-Gradient-Descent-and-L-BFGS/

scikit-learn user guide, Release 0.23.2

Solvers
Penalties ‘liblinear’ ‘lbfgs’ ‘newton-cg’ ‘sag’ ‘saga’
Multinomial + L2 penalty no yes yes yes yes
OVR + L2 penalty yes yes yes yes yes
Multinomial + L1 penalty no no no no yes
OVR + L1 penalty yes no no no yes
Elastic-Net no no no no yes
No penalty (‘none’) no yes yes yes yes
Behaviors
Penalize the intercept (bad) yes no no no no
Faster for large datasets no no no yes yes
Robust to unscaled datasets yes yes yes no no

The “lbfgs” solver is used by default for its robustness. For large datasets the “saga” solver is usually faster. For large
dataset, you may also consider using SGDClassifier with ‘log’ loss, which might be even faster but requires more
tuning.

Examples:

• L1 Penalty and Sparsity in Logistic Regression

• Regularization path of L1- Logistic Regression

• Plot multinomial and One-vs-Rest Logistic Regression

• Multiclass sparse logistic regression on 20newgroups

• MNIST classification using multinomial logistic + L1

Differences from liblinear:

There might be a difference in the scores obtained between LogisticRegressionwith solver=liblinear
or LinearSVC and the external liblinear library directly, when fit_intercept=False and the fit coef_
(or) the data to be predicted are zeroes. This is because for the sample(s) with decision_function zero,
LogisticRegression and LinearSVC predict the negative class, while liblinear predicts the positive class.
Note that a model with fit_intercept=False and having many samples with decision_function zero,
is likely to be a underfit, bad model and you are advised to set fit_intercept=True and increase the inter-
cept_scaling.

Note: Feature selection with sparse logistic regression

A logistic regression with ℓ1 penalty yields sparse models, and can thus be used to perform feature selection, as
detailed in L1-based feature selection.

Note: P-value estimation

It is possible to obtain the p-values and confidence intervals for coefficients in cases of regression without penaliza-
tion. The statsmodels package <https://pypi.org/project/statsmodels/> natively supports
this. Within sklearn, one could use bootstrapping instead as well.

4.1. Supervised learning 245

scikit-learn user guide, Release 0.23.2

LogisticRegressionCV implements Logistic Regression with built-in cross-validation support, to find the opti-
mal C and l1_ratio parameters according to the scoring attribute. The “newton-cg”, “sag”, “saga” and “lbfgs”
solvers are found to be faster for high-dimensional dense data, due to warm-starting (see Glossary).

References:

Generalized Linear Regression

Generalized Linear Models (GLM) extend linear models in two ways10. First, the predicted values 𝑦 are linked to a
linear combination of the input variables 𝑋 via an inverse link function ℎ as

𝑦(𝑤,𝑋) = ℎ(𝑋𝑤).

Secondly, the squared loss function is replaced by the unit deviance 𝑑 of a distribution in the exponential family (or
more precisely, a reproductive exponential dispersion model (EDM)11).

The minimization problem becomes:

min
𝑤

1

2𝑛samples

∑︁
𝑖

𝑑(𝑦𝑖, 𝑦𝑖) +
𝛼

2
||𝑤||2,

where 𝛼 is the L2 regularization penalty. When sample weights are provided, the average becomes a weighted average.

The following table lists some specific EDMs and their unit deviance (all of these are instances of the Tweedie family):

Distribution Target Domain Unit Deviance 𝑑(𝑦, 𝑦)
Normal 𝑦 ∈ (−∞,∞) (𝑦 − 𝑦)2

Poisson 𝑦 ∈ [0,∞) 2(𝑦 log 𝑦
𝑦 − 𝑦 + 𝑦)

Gamma 𝑦 ∈ (0,∞) 2(log 𝑦
𝑦 + 𝑦

𝑦 − 1)

Inverse Gaussian 𝑦 ∈ (0,∞) (𝑦−𝑦)2

𝑦𝑦2

The Probability Density Functions (PDF) of these distributions are illustrated in the following figure,

The choice of the distribution depends on the problem at hand:

• If the target values 𝑦 are counts (non-negative integer valued) or relative frequencies (non-negative), you might
use a Poisson deviance with log-link.

• If the target values are positive valued and skewed, you might try a Gamma deviance with log-link.

• If the target values seem to be heavier tailed than a Gamma distribution, you might try an Inverse Gaussian
deviance (or even higher variance powers of the Tweedie family).

Examples of use cases include:

• Agriculture / weather modeling: number of rain events per year (Poisson), amount of rainfall per event (Gamma),
total rainfall per year (Tweedie / Compound Poisson Gamma).

• Risk modeling / insurance policy pricing: number of claim events / policyholder per year (Poisson), cost per
event (Gamma), total cost per policyholder per year (Tweedie / Compound Poisson Gamma).

10 McCullagh, Peter; Nelder, John (1989). Generalized Linear Models, Second Edition. Boca Raton: Chapman and Hall/CRC. ISBN 0-412-
31760-5.

11 Jørgensen, B. (1992). The theory of exponential dispersion models and analysis of deviance. Monografias de matemática, no. 51. See also
Exponential dispersion model.

246 Chapter 4. User Guide

https://en.wikipedia.org/wiki/Exponential_dispersion_model

scikit-learn user guide, Release 0.23.2

Fig. 1: PDF of a random variable Y following Poisson, Tweedie (power=1.5) and Gamma distributions with differ-
ent mean values (𝜇). Observe the point mass at 𝑌 = 0 for the Poisson distribution and the Tweedie (power=1.5)
distribution, but not for the Gamma distribution which has a strictly positive target domain.

• Predictive maintenance: number of production interruption events per year (Poisson), duration of interruption
(Gamma), total interruption time per year (Tweedie / Compound Poisson Gamma).

References:

Usage

TweedieRegressor implements a generalized linear model for the Tweedie distribution, that allows to model any
of the above mentioned distributions using the appropriate power parameter. In particular:

• power = 0: Normal distribution. Specific estimators such as Ridge, ElasticNet are generally more
appropriate in this case.

• power = 1: Poisson distribution. PoissonRegressor is exposed for convenience. However, it is strictly
equivalent to TweedieRegressor(power=1, link='log').

• power = 2: Gamma distribution. GammaRegressor is exposed for convenience. However, it is strictly
equivalent to TweedieRegressor(power=2, link='log').

• power = 3: Inverse Gaussian distribution.

The link function is determined by the link parameter.

Usage example:

>>> from sklearn.linear_model import TweedieRegressor
>>> reg = TweedieRegressor(power=1, alpha=0.5, link='log')
>>> reg.fit([[0, 0], [0, 1], [2, 2]], [0, 1, 2])
TweedieRegressor(alpha=0.5, link='log', power=1)
>>> reg.coef_
array([0.2463..., 0.4337...])
>>> reg.intercept_
-0.7638...

Examples:

4.1. Supervised learning 247

scikit-learn user guide, Release 0.23.2

• Poisson regression and non-normal loss

• Tweedie regression on insurance claims

Practical considerations

The feature matrix X should be standardized before fitting. This ensures that the penalty treats features equally.

Since the linear predictor 𝑋𝑤 can be negative and Poisson, Gamma and Inverse Gaussian distributions don’t support
negative values, it is necessary to apply an inverse link function that guarantees the non-negativeness. For example
with link='log', the inverse link function becomes ℎ(𝑋𝑤) = exp(𝑋𝑤).

If you want to model a relative frequency, i.e. counts per exposure (time, volume, . . .) you can do so by using a
Poisson distribution and passing 𝑦 = counts

exposure as target values together with exposure as sample weights. For a
concrete example see e.g. Tweedie regression on insurance claims.

When performing cross-validation for the power parameter of TweedieRegressor, it is advisable to specify an
explicit scoring function, because the default scorer TweedieRegressor.score is a function of power itself.

Stochastic Gradient Descent - SGD

Stochastic gradient descent is a simple yet very efficient approach to fit linear models. It is particularly useful when the
number of samples (and the number of features) is very large. The partial_fit method allows online/out-of-core
learning.

The classes SGDClassifier and SGDRegressor provide functionality to fit linear models for classifica-
tion and regression using different (convex) loss functions and different penalties. E.g., with loss="log",
SGDClassifier fits a logistic regression model, while with loss="hinge" it fits a linear support vector ma-
chine (SVM).

References

• Stochastic Gradient Descent

Perceptron

The Perceptron is another simple classification algorithm suitable for large scale learning. By default:

• It does not require a learning rate.

• It is not regularized (penalized).

• It updates its model only on mistakes.

The last characteristic implies that the Perceptron is slightly faster to train than SGD with the hinge loss and that the
resulting models are sparser.

Passive Aggressive Algorithms

The passive-aggressive algorithms are a family of algorithms for large-scale learning. They are similar to the Per-
ceptron in that they do not require a learning rate. However, contrary to the Perceptron, they include a regularization
parameter C.

248 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

For classification, PassiveAggressiveClassifier can be used with loss='hinge' (PA-I) or
loss='squared_hinge' (PA-II). For regression, PassiveAggressiveRegressor can be used with
loss='epsilon_insensitive' (PA-I) or loss='squared_epsilon_insensitive' (PA-II).

References:

• “Online Passive-Aggressive Algorithms” K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer -
JMLR 7 (2006)

Robustness regression: outliers and modeling errors

Robust regression aims to fit a regression model in the presence of corrupt data: either outliers, or error in the model.

Different scenario and useful concepts

There are different things to keep in mind when dealing with data corrupted by outliers:

• Outliers in X or in y?

Outliers in the y direction Outliers in the X direction

4.1. Supervised learning 249

http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf
../auto_examples/linear_model/plot_theilsen.html
../auto_examples/linear_model/plot_robust_fit.html
../auto_examples/linear_model/plot_robust_fit.html

scikit-learn user guide, Release 0.23.2

• Fraction of outliers versus amplitude of error

The number of outlying points matters, but also how much they are outliers.

Small outliers Large outliers

An important notion of robust fitting is that of breakdown point: the fraction of data that can be outlying for the fit to
start missing the inlying data.

Note that in general, robust fitting in high-dimensional setting (large n_features) is very hard. The robust models
here will probably not work in these settings.

Trade-offs: which estimator?

Scikit-learn provides 3 robust regression estimators: RANSAC, Theil Sen and HuberRegressor.

• HuberRegressor should be faster than RANSAC and Theil Sen unless the number of samples are
very large, i.e n_samples >> n_features. This is because RANSAC and Theil Sen fit on
smaller subsets of the data. However, both Theil Sen and RANSAC are unlikely to be as robust as
HuberRegressor for the default parameters.

• RANSAC is faster than Theil Sen and scales much better with the number of samples.

• RANSAC will deal better with large outliers in the y direction (most common situation).

• Theil Sen will cope better with medium-size outliers in the X direction, but this property will
disappear in high-dimensional settings.

When in doubt, use RANSAC.

RANSAC: RANdom SAmple Consensus

RANSAC (RANdom SAmple Consensus) fits a model from random subsets of inliers from the complete data set.

RANSAC is a non-deterministic algorithm producing only a reasonable result with a certain probability, which is
dependent on the number of iterations (see max_trials parameter). It is typically used for linear and non-linear
regression problems and is especially popular in the field of photogrammetric computer vision.

The algorithm splits the complete input sample data into a set of inliers, which may be subject to noise, and outliers,
which are e.g. caused by erroneous measurements or invalid hypotheses about the data. The resulting model is then
estimated only from the determined inliers.

250 Chapter 4. User Guide

../auto_examples/linear_model/plot_robust_fit.html
../auto_examples/linear_model/plot_robust_fit.html

scikit-learn user guide, Release 0.23.2

Details of the algorithm

Each iteration performs the following steps:

1. Select min_samples random samples from the original data and check whether the set of data is valid (see
is_data_valid).

2. Fit a model to the random subset (base_estimator.fit) and check whether the estimated model is valid
(see is_model_valid).

3. Classify all data as inliers or outliers by calculating the residuals to the estimated model (base_estimator.
predict(X) - y) - all data samples with absolute residuals smaller than the residual_threshold are
considered as inliers.

4. Save fitted model as best model if number of inlier samples is maximal. In case the current estimated model has
the same number of inliers, it is only considered as the best model if it has better score.

These steps are performed either a maximum number of times (max_trials) or until one of the special stop criteria
are met (see stop_n_inliers and stop_score). The final model is estimated using all inlier samples (consensus
set) of the previously determined best model.

The is_data_valid and is_model_valid functions allow to identify and reject degenerate combinations of
random sub-samples. If the estimated model is not needed for identifying degenerate cases, is_data_valid should
be used as it is called prior to fitting the model and thus leading to better computational performance.

Examples:

• Robust linear model estimation using RANSAC

• Robust linear estimator fitting

References:

• https://en.wikipedia.org/wiki/RANSAC

• “Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Auto-
mated Cartography” Martin A. Fischler and Robert C. Bolles - SRI International (1981)

• “Performance Evaluation of RANSAC Family” Sunglok Choi, Taemin Kim and Wonpil Yu - BMVC (2009)

4.1. Supervised learning 251

../auto_examples/linear_model/plot_ransac.html
https://en.wikipedia.org/wiki/RANSAC
https://www.sri.com/sites/default/files/publications/ransac-publication.pdf
https://www.sri.com/sites/default/files/publications/ransac-publication.pdf
http://www.bmva.org/bmvc/2009/Papers/Paper355/Paper355.pdf

scikit-learn user guide, Release 0.23.2

Theil-Sen estimator: generalized-median-based estimator

The TheilSenRegressor estimator uses a generalization of the median in multiple dimensions. It is thus robust
to multivariate outliers. Note however that the robustness of the estimator decreases quickly with the dimensionality of
the problem. It loses its robustness properties and becomes no better than an ordinary least squares in high dimension.

Examples:

• Theil-Sen Regression

• Robust linear estimator fitting

References:

• https://en.wikipedia.org/wiki/Theil%E2%80%93Sen_estimator

Theoretical considerations

TheilSenRegressor is comparable to the Ordinary Least Squares (OLS) in terms of asymptotic efficiency and as
an unbiased estimator. In contrast to OLS, Theil-Sen is a non-parametric method which means it makes no assumption
about the underlying distribution of the data. Since Theil-Sen is a median-based estimator, it is more robust against
corrupted data aka outliers. In univariate setting, Theil-Sen has a breakdown point of about 29.3% in case of a simple
linear regression which means that it can tolerate arbitrary corrupted data of up to 29.3%.

The implementation of TheilSenRegressor in scikit-learn follows a generalization to a multivariate linear re-
gression model12 using the spatial median which is a generalization of the median to multiple dimensions13.

In terms of time and space complexity, Theil-Sen scales according to(︂
𝑛samples

𝑛subsamples

)︂
12 Xin Dang, Hanxiang Peng, Xueqin Wang and Heping Zhang: Theil-Sen Estimators in a Multiple Linear Regression Model.
13

T. Kärkkäinen and S. Äyrämö: On Computation of Spatial Median for Robust Data Mining.

252 Chapter 4. User Guide

https://en.wikipedia.org/wiki/Theil%E2%80%93Sen_estimator
../auto_examples/linear_model/plot_theilsen.html
http://home.olemiss.edu/~xdang/papers/MTSE.pdf
http://users.jyu.fi/~samiayr/pdf/ayramo_eurogen05.pdf

scikit-learn user guide, Release 0.23.2

which makes it infeasible to be applied exhaustively to problems with a large number of samples and features. There-
fore, the magnitude of a subpopulation can be chosen to limit the time and space complexity by considering only a
random subset of all possible combinations.

Examples:

• Theil-Sen Regression

References:

Huber Regression

The HuberRegressor is different to Ridge because it applies a linear loss to samples that are classified as outliers.
A sample is classified as an inlier if the absolute error of that sample is lesser than a certain threshold. It differs from
TheilSenRegressor and RANSACRegressor because it does not ignore the effect of the outliers but gives a
lesser weight to them.

The loss function that HuberRegressor minimizes is given by

min
𝑤,𝜎

𝑛∑︁
𝑖=1

(︂
𝜎 +𝐻𝜖

(︂
𝑋𝑖𝑤 − 𝑦𝑖

𝜎

)︂
𝜎

)︂
+ 𝛼||𝑤||22

where

𝐻𝜖(𝑧) =

{︃
𝑧2, if |𝑧| < 𝜖,

2𝜖|𝑧| − 𝜖2, otherwise

It is advised to set the parameter epsilon to 1.35 to achieve 95% statistical efficiency.

Notes

The HuberRegressor differs from using SGDRegressor with loss set to huber in the following ways.

4.1. Supervised learning 253

../auto_examples/linear_model/plot_huber_vs_ridge.html

scikit-learn user guide, Release 0.23.2

• HuberRegressor is scaling invariant. Once epsilon is set, scaling X and y down or up by different values
would produce the same robustness to outliers as before. as compared to SGDRegressor where epsilon
has to be set again when X and y are scaled.

• HuberRegressor should be more efficient to use on data with small number of samples while
SGDRegressor needs a number of passes on the training data to produce the same robustness.

Examples:

• HuberRegressor vs Ridge on dataset with strong outliers

References:

• Peter J. Huber, Elvezio M. Ronchetti: Robust Statistics, Concomitant scale estimates, pg 172

Note that this estimator is different from the R implementation of Robust Regression (http://www.ats.ucla.edu/stat/r/
dae/rreg.htm) because the R implementation does a weighted least squares implementation with weights given to each
sample on the basis of how much the residual is greater than a certain threshold.

Polynomial regression: extending linear models with basis functions

One common pattern within machine learning is to use linear models trained on nonlinear functions of the data. This
approach maintains the generally fast performance of linear methods, while allowing them to fit a much wider range
of data.

For example, a simple linear regression can be extended by constructing polynomial features from the coefficients.
In the standard linear regression case, you might have a model that looks like this for two-dimensional data:

𝑦(𝑤, 𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2

If we want to fit a paraboloid to the data instead of a plane, we can combine the features in second-order polynomials,
so that the model looks like this:

𝑦(𝑤, 𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥1𝑥2 + 𝑤4𝑥
2
1 + 𝑤5𝑥

2
2

The (sometimes surprising) observation is that this is still a linear model: to see this, imagine creating a new set of
features

𝑧 = [𝑥1, 𝑥2, 𝑥1𝑥2, 𝑥
2
1, 𝑥

2
2]

With this re-labeling of the data, our problem can be written

𝑦(𝑤, 𝑧) = 𝑤0 + 𝑤1𝑧1 + 𝑤2𝑧2 + 𝑤3𝑧3 + 𝑤4𝑧4 + 𝑤5𝑧5

We see that the resulting polynomial regression is in the same class of linear models we considered above (i.e. the
model is linear in 𝑤) and can be solved by the same techniques. By considering linear fits within a higher-dimensional
space built with these basis functions, the model has the flexibility to fit a much broader range of data.

Here is an example of applying this idea to one-dimensional data, using polynomial features of varying degrees:

This figure is created using the PolynomialFeatures transformer, which transforms an input data matrix into a
new data matrix of a given degree. It can be used as follows:

254 Chapter 4. User Guide

http://www.ats.ucla.edu/stat/r/dae/rreg.htm
http://www.ats.ucla.edu/stat/r/dae/rreg.htm

scikit-learn user guide, Release 0.23.2

>>> from sklearn.preprocessing import PolynomialFeatures
>>> import numpy as np
>>> X = np.arange(6).reshape(3, 2)
>>> X
array([[0, 1],

[2, 3],
[4, 5]])

>>> poly = PolynomialFeatures(degree=2)
>>> poly.fit_transform(X)
array([[1., 0., 1., 0., 0., 1.],

[1., 2., 3., 4., 6., 9.],
[1., 4., 5., 16., 20., 25.]])

The features of X have been transformed from [𝑥1, 𝑥2] to [1, 𝑥1, 𝑥2, 𝑥
2
1, 𝑥1𝑥2, 𝑥

2
2], and can now be used within any

linear model.

This sort of preprocessing can be streamlined with the Pipeline tools. A single object representing a simple polynomial
regression can be created and used as follows:

>>> from sklearn.preprocessing import PolynomialFeatures
>>> from sklearn.linear_model import LinearRegression
>>> from sklearn.pipeline import Pipeline
>>> import numpy as np
>>> model = Pipeline([('poly', PolynomialFeatures(degree=3)),
... ('linear', LinearRegression(fit_intercept=False))])
>>> # fit to an order-3 polynomial data
>>> x = np.arange(5)
>>> y = 3 - 2 * x + x ** 2 - x ** 3
>>> model = model.fit(x[:, np.newaxis], y)
>>> model.named_steps['linear'].coef_
array([3., -2., 1., -1.])

The linear model trained on polynomial features is able to exactly recover the input polynomial coefficients.

In some cases it’s not necessary to include higher powers of any single feature, but only the so-called interaction
features that multiply together at most 𝑑 distinct features. These can be gotten from PolynomialFeatures with
the setting interaction_only=True.

For example, when dealing with boolean features, 𝑥𝑛𝑖 = 𝑥𝑖 for all 𝑛 and is therefore useless; but 𝑥𝑖𝑥𝑗 represents the
conjunction of two booleans. This way, we can solve the XOR problem with a linear classifier:

4.1. Supervised learning 255

../auto_examples/linear_model/plot_polynomial_interpolation.html

scikit-learn user guide, Release 0.23.2

>>> from sklearn.linear_model import Perceptron
>>> from sklearn.preprocessing import PolynomialFeatures
>>> import numpy as np
>>> X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
>>> y = X[:, 0] ^ X[:, 1]
>>> y
array([0, 1, 1, 0])
>>> X = PolynomialFeatures(interaction_only=True).fit_transform(X).astype(int)
>>> X
array([[1, 0, 0, 0],

[1, 0, 1, 0],
[1, 1, 0, 0],
[1, 1, 1, 1]])

>>> clf = Perceptron(fit_intercept=False, max_iter=10, tol=None,
... shuffle=False).fit(X, y)

And the classifier “predictions” are perfect:

>>> clf.predict(X)
array([0, 1, 1, 0])
>>> clf.score(X, y)
1.0

4.1.2 Linear and Quadratic Discriminant Analysis

Linear Discriminant Analysis (LinearDiscriminantAnalysis) and Quadratic Discriminant Analysis
(QuadraticDiscriminantAnalysis) are two classic classifiers, with, as their names suggest, a linear and
a quadratic decision surface, respectively.

These classifiers are attractive because they have closed-form solutions that can be easily computed, are inherently
multiclass, have proven to work well in practice, and have no hyperparameters to tune.

256 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

The plot shows decision boundaries for Linear Discriminant Analysis and Quadratic Discriminant Analysis. The
bottom row demonstrates that Linear Discriminant Analysis can only learn linear boundaries, while Quadratic Dis-
criminant Analysis can learn quadratic boundaries and is therefore more flexible.

Examples:

Linear and Quadratic Discriminant Analysis with covariance ellipsoid: Comparison of LDA and QDA on synthetic
data.

Dimensionality reduction using Linear Discriminant Analysis

LinearDiscriminantAnalysis can be used to perform supervised dimensionality reduction, by projecting the
input data to a linear subspace consisting of the directions which maximize the separation between classes (in a precise
sense discussed in the mathematics section below). The dimension of the output is necessarily less than the number of
classes, so this is in general a rather strong dimensionality reduction, and only makes sense in a multiclass setting.

This is implemented in the transform method. The desired dimensionality can be set using the n_components
parameter. This parameter has no influence on the fit and predict methods.

4.1. Supervised learning 257

../auto_examples/classification/plot_lda_qda.html

scikit-learn user guide, Release 0.23.2

Examples:

Comparison of LDA and PCA 2D projection of Iris dataset: Comparison of LDA and PCA for dimensionality
reduction of the Iris dataset

Mathematical formulation of the LDA and QDA classifiers

Both LDA and QDA can be derived from simple probabilistic models which model the class conditional distribution
of the data 𝑃 (𝑋|𝑦 = 𝑘) for each class 𝑘. Predictions can then be obtained by using Bayes’ rule, for each training
sample 𝑥 ∈ ℛ𝑑:

𝑃 (𝑦 = 𝑘|𝑥) =
𝑃 (𝑥|𝑦 = 𝑘)𝑃 (𝑦 = 𝑘)

𝑃 (𝑥)
=

𝑃 (𝑥|𝑦 = 𝑘)𝑃 (𝑦 = 𝑘)∑︀
𝑙 𝑃 (𝑥|𝑦 = 𝑙) · 𝑃 (𝑦 = 𝑙)

and we select the class 𝑘 which maximizes this posterior probability.

More specifically, for linear and quadratic discriminant analysis, 𝑃 (𝑥|𝑦) is modeled as a multivariate Gaussian distri-
bution with density:

𝑃 (𝑥|𝑦 = 𝑘) =
1

(2𝜋)𝑑/2|Σ𝑘|1/2
exp

(︂
−1

2
(𝑥− 𝜇𝑘)𝑡Σ−1

𝑘 (𝑥− 𝜇𝑘)

)︂
where 𝑑 is the number of features.

QDA

According to the model above, the log of the posterior is:

log𝑃 (𝑦 = 𝑘|𝑥) = log𝑃 (𝑥|𝑦 = 𝑘) + log𝑃 (𝑦 = 𝑘) + 𝐶𝑠𝑡

= −1

2
log |Σ𝑘| −

1

2
(𝑥− 𝜇𝑘)𝑡Σ−1

𝑘 (𝑥− 𝜇𝑘) + log𝑃 (𝑦 = 𝑘) + 𝐶𝑠𝑡,

where the constant term 𝐶𝑠𝑡 corresponds to the denominator 𝑃 (𝑥), in addition to other constant terms from the
Gaussian. The predicted class is the one that maximises this log-posterior.

Note: Relation with Gaussian Naive Bayes

If in the QDA model one assumes that the covariance matrices are diagonal, then the inputs are assumed to be con-
ditionally independent in each class, and the resulting classifier is equivalent to the Gaussian Naive Bayes classifier
naive_bayes.GaussianNB.

LDA

LDA is a special case of QDA, where the Gaussians for each class are assumed to share the same covariance matrix:
Σ𝑘 = Σ for all 𝑘. This reduces the log posterior to:

log𝑃 (𝑦 = 𝑘|𝑥) = −1

2
(𝑥− 𝜇𝑘)𝑡Σ−1(𝑥− 𝜇𝑘) + log𝑃 (𝑦 = 𝑘) + 𝐶𝑠𝑡.

The term (𝑥 − 𝜇𝑘)𝑡Σ−1(𝑥 − 𝜇𝑘) corresponds to the Mahalanobis Distance between the sample 𝑥 and the mean 𝜇𝑘.
The Mahalanobis distance tells how close 𝑥 is from 𝜇𝑘, while also accounting for the variance of each feature. We can

258 Chapter 4. User Guide

https://en.wikipedia.org/wiki/Mahalanobis_distance

scikit-learn user guide, Release 0.23.2

thus interpret LDA as assigning 𝑥 to the class whose mean is the closest in terms of Mahalanobis distance, while also
accounting for the class prior probabilities.

The log-posterior of LDA can also be written3 as:

log𝑃 (𝑦 = 𝑘|𝑥) = 𝜔𝑡
𝑘𝑥+ 𝜔𝑘0 + 𝐶𝑠𝑡.

where 𝜔𝑘 = Σ−1𝜇𝑘 and 𝜔𝑘0 = − 1
2𝜇

𝑡
𝑘Σ−1𝜇𝑘 + log𝑃 (𝑦 = 𝑘). These quantities correspond to the coef_ and

intercept_ attributes, respectively.

From the above formula, it is clear that LDA has a linear decision surface. In the case of QDA, there are no assumptions
on the covariance matrices Σ𝑘 of the Gaussians, leading to quadratic decision surfaces. See1 for more details.

Mathematical formulation of LDA dimensionality reduction

First note that the K means 𝜇𝑘 are vectors in ℛ𝑑, and they lie in an affine subspace 𝐻 of dimension at least 𝐾 − 1 (2
points lie on a line, 3 points lie on a plane, etc).

As mentioned above, we can interpret LDA as assigning 𝑥 to the class whose mean 𝜇𝑘 is the closest in terms of
Mahalanobis distance, while also accounting for the class prior probabilities. Alternatively, LDA is equivalent to first
sphering the data so that the covariance matrix is the identity, and then assigning 𝑥 to the closest mean in terms of
Euclidean distance (still accounting for the class priors).

Computing Euclidean distances in this d-dimensional space is equivalent to first projecting the data points into 𝐻 , and
computing the distances there (since the other dimensions will contribute equally to each class in terms of distance).
In other words, if 𝑥 is closest to 𝜇𝑘 in the original space, it will also be the case in 𝐻 . This shows that, implicit in the
LDA classifier, there is a dimensionality reduction by linear projection onto a 𝐾 − 1 dimensional space.

We can reduce the dimension even more, to a chosen 𝐿, by projecting onto the linear subspace 𝐻𝐿 which maximizes
the variance of the 𝜇*

𝑘 after projection (in effect, we are doing a form of PCA for the transformed class means 𝜇*
𝑘).

This 𝐿 corresponds to the n_components parameter used in the transform method. See1 for more details.

Shrinkage

Shrinkage is a form of regularization used to improve the estimation of covariance matrices in situations where the
number of training samples is small compared to the number of features. In this scenario, the empirical sample covari-
ance is a poor estimator, and shrinkage helps improving the generalization performance of the classifier. Shrinkage
LDA can be used by setting the shrinkage parameter of the LinearDiscriminantAnalysis class to ‘auto’.
This automatically determines the optimal shrinkage parameter in an analytic way following the lemma introduced by
Ledoit and Wolf2. Note that currently shrinkage only works when setting the solver parameter to ‘lsqr’ or ‘eigen’.

The shrinkage parameter can also be manually set between 0 and 1. In particular, a value of 0 corresponds to
no shrinkage (which means the empirical covariance matrix will be used) and a value of 1 corresponds to complete
shrinkage (which means that the diagonal matrix of variances will be used as an estimate for the covariance matrix).
Setting this parameter to a value between these two extrema will estimate a shrunk version of the covariance matrix.

3 R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification (Second Edition), section 2.6.2.
1 “The Elements of Statistical Learning”, Hastie T., Tibshirani R., Friedman J., Section 4.3, p.106-119, 2008.
2 Ledoit O, Wolf M. Honey, I Shrunk the Sample Covariance Matrix. The Journal of Portfolio Management 30(4), 110-119, 2004.

4.1. Supervised learning 259

scikit-learn user guide, Release 0.23.2

Estimation algorithms

Using LDA and QDA requires computing the log-posterior which depends on the class priors 𝑃 (𝑦 = 𝑘), the class
means 𝜇𝑘, and the covariance matrices.

The ‘svd’ solver is the default solver used for LinearDiscriminantAnalysis, and it is the only available solver
for QuadraticDiscriminantAnalysis. It can perform both classification and transform (for LDA). As it does
not rely on the calculation of the covariance matrix, the ‘svd’ solver may be preferable in situations where the number
of features is large. The ‘svd’ solver cannot be used with shrinkage. For QDA, the use of the SVD solver relies on
the fact that the covariance matrix Σ𝑘 is, by definition, equal to 1

𝑛−1𝑋
𝑡
𝑘𝑋𝑘 = 𝑉 𝑆2𝑉 𝑡 where 𝑉 comes from the SVD

of the (centered) matrix: 𝑋𝑘 = 𝑈𝑆𝑉 𝑡. It turns out that we can compute the log-posterior above without having to
explictly compute Σ: computing 𝑆 and 𝑉 via the SVD of 𝑋 is enough. For LDA, two SVDs are computed: the SVD
of the centered input matrix 𝑋 and the SVD of the class-wise mean vectors.

The ‘lsqr’ solver is an efficient algorithm that only works for classification. It needs to explicitly compute the covari-
ance matrix Σ, and supports shrinkage. This solver computes the coefficients 𝜔𝑘 = Σ−1𝜇𝑘 by solving for Σ𝜔 = 𝜇𝑘,
thus avoiding the explicit computation of the inverse Σ−1.

The ‘eigen’ solver is based on the optimization of the between class scatter to within class scatter ratio. It can be used
for both classification and transform, and it supports shrinkage. However, the ‘eigen’ solver needs to compute the
covariance matrix, so it might not be suitable for situations with a high number of features.

Examples:

Normal and Shrinkage Linear Discriminant Analysis for classification: Comparison of LDA classifiers with and
without shrinkage.

References:

260 Chapter 4. User Guide

../auto_examples/classification/plot_lda.html

scikit-learn user guide, Release 0.23.2

4.1.3 Kernel ridge regression

Kernel ridge regression (KRR) [M2012] combines Ridge regression and classification (linear least squares with l2-
norm regularization) with the kernel trick. It thus learns a linear function in the space induced by the respective kernel
and the data. For non-linear kernels, this corresponds to a non-linear function in the original space.

The form of the model learned by KernelRidge is identical to support vector regression (SVR). However, different
loss functions are used: KRR uses squared error loss while support vector regression uses 𝜖-insensitive loss, both
combined with l2 regularization. In contrast to SVR, fitting KernelRidge can be done in closed-form and is typically
faster for medium-sized datasets. On the other hand, the learned model is non-sparse and thus slower than SVR, which
learns a sparse model for 𝜖 > 0, at prediction-time.

The following figure compares KernelRidge and SVR on an artificial dataset, which consists of a sinusoidal target
function and strong noise added to every fifth datapoint. The learned model of KernelRidge and SVR is plotted,
where both complexity/regularization and bandwidth of the RBF kernel have been optimized using grid-search. The
learned functions are very similar; however, fitting KernelRidge is approximately seven times faster than fitting
SVR (both with grid-search). However, prediction of 100000 target values is more than three times faster with SVR
since it has learned a sparse model using only approximately 1/3 of the 100 training datapoints as support vectors.

The next figure compares the time for fitting and prediction of KernelRidge and SVR for different sizes of the
training set. Fitting KernelRidge is faster than SVR for medium-sized training sets (less than 1000 samples);
however, for larger training sets SVR scales better. With regard to prediction time, SVR is faster than KernelRidge
for all sizes of the training set because of the learned sparse solution. Note that the degree of sparsity and thus the
prediction time depends on the parameters 𝜖 and 𝐶 of the SVR; 𝜖 = 0 would correspond to a dense model.

4.1. Supervised learning 261

https://en.wikipedia.org/wiki/Kernel_method
../auto_examples/miscellaneous/plot_kernel_ridge_regression.html

scikit-learn user guide, Release 0.23.2

262 Chapter 4. User Guide

../auto_examples/miscellaneous/plot_kernel_ridge_regression.html

scikit-learn user guide, Release 0.23.2

References:

4.1.4 Support Vector Machines

Support vector machines (SVMs) are a set of supervised learning methods used for classification, regression and
outliers detection.

The advantages of support vector machines are:

• Effective in high dimensional spaces.

• Still effective in cases where number of dimensions is greater than the number of samples.

• Uses a subset of training points in the decision function (called support vectors), so it is also memory efficient.

• Versatile: different Kernel functions can be specified for the decision function. Common kernels are provided,
but it is also possible to specify custom kernels.

The disadvantages of support vector machines include:

• If the number of features is much greater than the number of samples, avoid over-fitting in choosing Kernel
functions and regularization term is crucial.

• SVMs do not directly provide probability estimates, these are calculated using an expensive five-fold cross-
validation (see Scores and probabilities, below).

The support vector machines in scikit-learn support both dense (numpy.ndarray and convertible to that by numpy.
asarray) and sparse (any scipy.sparse) sample vectors as input. However, to use an SVM to make predictions
for sparse data, it must have been fit on such data. For optimal performance, use C-ordered numpy.ndarray (dense)
or scipy.sparse.csr_matrix (sparse) with dtype=float64.

Classification

SVC, NuSVC and LinearSVC are classes capable of performing binary and multi-class classification on a dataset.

SVC and NuSVC are similar methods, but accept slightly different sets of parameters and have different mathematical
formulations (see section Mathematical formulation). On the other hand, LinearSVC is another (faster) implementa-
tion of Support Vector Classification for the case of a linear kernel. Note that LinearSVC does not accept parameter
kernel, as this is assumed to be linear. It also lacks some of the attributes of SVC and NuSVC, like support_.

As other classifiers, SVC, NuSVC and LinearSVC take as input two arrays: an array X of shape (n_samples,
n_features) holding the training samples, and an array y of class labels (strings or integers), of shape
(n_samples):

>>> from sklearn import svm
>>> X = [[0, 0], [1, 1]]
>>> y = [0, 1]
>>> clf = svm.SVC()
>>> clf.fit(X, y)
SVC()

After being fitted, the model can then be used to predict new values:

>>> clf.predict([[2., 2.]])
array([1])

4.1. Supervised learning 263

scikit-learn user guide, Release 0.23.2

264 Chapter 4. User Guide

../auto_examples/svm/plot_iris_svc.html

scikit-learn user guide, Release 0.23.2

SVMs decision function (detailed in the Mathematical formulation) depends on some subset of the training data,
called the support vectors. Some properties of these support vectors can be found in attributes support_vectors_,
support_ and n_support_:

>>> # get support vectors
>>> clf.support_vectors_
array([[0., 0.],

[1., 1.]])
>>> # get indices of support vectors
>>> clf.support_
array([0, 1]...)
>>> # get number of support vectors for each class
>>> clf.n_support_
array([1, 1]...)

Examples:

• SVM: Maximum margin separating hyperplane,

• Non-linear SVM

• SVM-Anova: SVM with univariate feature selection,

Multi-class classification

SVC and NuSVC implement the “one-versus-one” approach for multi-class classification. In total, n_classes
* (n_classes - 1) / 2 classifiers are constructed and each one trains data from two classes. To provide
a consistent interface with other classifiers, the decision_function_shape option allows to monotonically
transform the results of the “one-versus-one” classifiers to a “one-vs-rest” decision function of shape (n_samples,
n_classes).

>>> X = [[0], [1], [2], [3]]
>>> Y = [0, 1, 2, 3]
>>> clf = svm.SVC(decision_function_shape='ovo')
>>> clf.fit(X, Y)
SVC(decision_function_shape='ovo')
>>> dec = clf.decision_function([[1]])
>>> dec.shape[1] # 4 classes: 4*3/2 = 6
6
>>> clf.decision_function_shape = "ovr"
>>> dec = clf.decision_function([[1]])
>>> dec.shape[1] # 4 classes
4

On the other hand, LinearSVC implements “one-vs-the-rest” multi-class strategy, thus training n_classes mod-
els.

>>> lin_clf = svm.LinearSVC()
>>> lin_clf.fit(X, Y)
LinearSVC()
>>> dec = lin_clf.decision_function([[1]])
>>> dec.shape[1]
4

See Mathematical formulation for a complete description of the decision function.

4.1. Supervised learning 265

scikit-learn user guide, Release 0.23.2

Note that the LinearSVC also implements an alternative multi-class strategy, the so-called multi-class SVM formu-
lated by Crammer and Singer16, by using the option multi_class='crammer_singer'. In practice, one-vs-rest
classification is usually preferred, since the results are mostly similar, but the runtime is significantly less.

For “one-vs-rest” LinearSVC the attributes coef_ and intercept_ have the shape (n_classes,
n_features) and (n_classes,) respectively. Each row of the coefficients corresponds to one of the
n_classes “one-vs-rest” classifiers and similar for the intercepts, in the order of the “one” class.

In the case of “one-vs-one” SVC and NuSVC, the layout of the attributes is a little more involved. In the case of a
linear kernel, the attributes coef_ and intercept_ have the shape (n_classes * (n_classes - 1) /
2, n_features) and (n_classes * (n_classes - 1) / 2) respectively. This is similar to the layout
for LinearSVC described above, with each row now corresponding to a binary classifier. The order for classes 0 to
n is “0 vs 1”, “0 vs 2” , . . . “0 vs n”, “1 vs 2”, “1 vs 3”, “1 vs n”, . . . “n-1 vs n”.

The shape of dual_coef_ is (n_classes-1, n_SV) with a somewhat hard to grasp layout. The columns
correspond to the support vectors involved in any of the n_classes * (n_classes - 1) / 2 “one-vs-one”
classifiers. Each of the support vectors is used in n_classes - 1 classifiers. The n_classes - 1 entries in
each row correspond to the dual coefficients for these classifiers.

This might be clearer with an example: consider a three class problem with class 0 having three support vectors
𝑣00 , 𝑣

1
0 , 𝑣

2
0 and class 1 and 2 having two support vectors 𝑣01 , 𝑣

1
1 and 𝑣02 , 𝑣

1
2 respectively. For each support vector 𝑣𝑗𝑖 ,

there are two dual coefficients. Let’s call the coefficient of support vector 𝑣𝑗𝑖 in the classifier between classes 𝑖 and 𝑘
𝛼𝑗
𝑖,𝑘. Then dual_coef_ looks like this:

𝛼0
0,1 𝛼0

0,2 Coefficients for SVs of class 0
𝛼1
0,1 𝛼1

0,2

𝛼2
0,1 𝛼2

0,2

𝛼0
1,0 𝛼0

1,2 Coefficients for SVs of class 1
𝛼1
1,0 𝛼1

1,2

𝛼0
2,0 𝛼0

2,1 Coefficients for SVs of class 2
𝛼1
2,0 𝛼1

2,1

Examples:

• Plot different SVM classifiers in the iris dataset,

Scores and probabilities

The decision_function method of SVC and NuSVC gives per-class scores for each sample (or a single score
per sample in the binary case). When the constructor option probability is set to True, class membership
probability estimates (from the methods predict_proba and predict_log_proba) are enabled. In the binary
case, the probabilities are calibrated using Platt scaling9: logistic regression on the SVM’s scores, fit by an additional
cross-validation on the training data. In the multiclass case, this is extended as per10.

Note: The same probability calibration procedure is available for all estimators via the
CalibratedClassifierCV (see Probability calibration). In the case of SVC and NuSVC, this procedure is
builtin in libsvm which is used under the hood, so it does not rely on scikit-learn’s CalibratedClassifierCV .

16 Crammer and Singer On the Algorithmic Implementation ofMulticlass Kernel-based Vector Machines, JMLR 2001.
9 Platt “Probabilistic outputs for SVMs and comparisons to regularized likelihood methods”.

10 Wu, Lin and Weng, “Probability estimates for multi-class classification by pairwise coupling”, JMLR 5:975-1005, 2004.

266 Chapter 4. User Guide

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://jmlr.csail.mit.edu/papers/volume2/crammer01a/crammer01a.pdf
https://www.cs.colorado.edu/~mozer/Teaching/syllabi/6622/papers/Platt1999.pdf
https://www.csie.ntu.edu.tw/~cjlin/papers/svmprob/svmprob.pdf

scikit-learn user guide, Release 0.23.2

The cross-validation involved in Platt scaling is an expensive operation for large datasets. In addition, the probability
estimates may be inconsistent with the scores:

• the “argmax” of the scores may not be the argmax of the probabilities

• in binary classification, a sample may be labeled by predict as belonging to the positive class even if the
output of predict_proba is less than 0.5; and similarly, it could be labeled as negative even if the output of
predict_proba is more than 0.5.

Platt’s method is also known to have theoretical issues. If confidence scores are required, but these do not have
to be probabilities, then it is advisable to set probability=False and use decision_function instead of
predict_proba.

Please note that when decision_function_shape='ovr' and n_classes > 2, unlike
decision_function, the predict method does not try to break ties by default. You can set
break_ties=True for the output of predict to be the same as np.argmax(clf.decision_function(.
..), axis=1), otherwise the first class among the tied classes will always be returned; but have in mind that it
comes with a computational cost. See SVM Tie Breaking Example for an example on tie breaking.

Unbalanced problems

In problems where it is desired to give more importance to certain classes or certain individual samples, the parameters
class_weight and sample_weight can be used.

SVC (but not NuSVC) implements the parameter class_weight in the fit method. It’s a dictionary of the
form {class_label : value}, where value is a floating point number > 0 that sets the parameter C of class
class_label to C * value. The figure below illustrates the decision boundary of an unbalanced problem, with
and without weight correction.

SVC, NuSVC, SVR, NuSVR, LinearSVC, LinearSVR and OneClassSVM implement also weights for individual
samples in the fit method through the sample_weight parameter. Similar to class_weight, this sets the
parameter C for the i-th example to C * sample_weight[i], which will encourage the classifier to get these

4.1. Supervised learning 267

../auto_examples/svm/plot_separating_hyperplane_unbalanced.html

scikit-learn user guide, Release 0.23.2

samples right. The figure below illustrates the effect of sample weighting on the decision boundary. The size of the
circles is proportional to the sample weights:

Examples:

• SVM: Separating hyperplane for unbalanced classes

• SVM: Weighted samples,

Regression

The method of Support Vector Classification can be extended to solve regression problems. This method is called
Support Vector Regression.

The model produced by support vector classification (as described above) depends only on a subset of the training
data, because the cost function for building the model does not care about training points that lie beyond the margin.
Analogously, the model produced by Support Vector Regression depends only on a subset of the training data, because
the cost function ignores samples whose prediction is close to their target.

There are three different implementations of Support Vector Regression: SVR, NuSVR and LinearSVR.
LinearSVR provides a faster implementation than SVR but only considers the linear kernel, while NuSVR imple-
ments a slightly different formulation than SVR and LinearSVR. See Implementation details for further details.

As with classification classes, the fit method will take as argument vectors X, y, only that in this case y is expected to
have floating point values instead of integer values:

>>> from sklearn import svm
>>> X = [[0, 0], [2, 2]]
>>> y = [0.5, 2.5]
>>> regr = svm.SVR()
>>> regr.fit(X, y)
SVR()
>>> regr.predict([[1, 1]])
array([1.5])

268 Chapter 4. User Guide

../auto_examples/svm/plot_weighted_samples.html

scikit-learn user guide, Release 0.23.2

Examples:

• Support Vector Regression (SVR) using linear and non-linear kernels

Density estimation, novelty detection

The class OneClassSVM implements a One-Class SVM which is used in outlier detection.

See Novelty and Outlier Detection for the description and usage of OneClassSVM.

Complexity

Support Vector Machines are powerful tools, but their compute and storage requirements increase rapidly with the
number of training vectors. The core of an SVM is a quadratic programming problem (QP), separating support
vectors from the rest of the training data. The QP solver used by the libsvm-based implementation scales between
𝑂(𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 × 𝑛2𝑠𝑎𝑚𝑝𝑙𝑒𝑠) and 𝑂(𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 × 𝑛3𝑠𝑎𝑚𝑝𝑙𝑒𝑠) depending on how efficiently the libsvm cache is used in
practice (dataset dependent). If the data is very sparse 𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 should be replaced by the average number of non-
zero features in a sample vector.

For the linear case, the algorithm used in LinearSVC by the liblinear implementation is much more efficient than its
libsvm-based SVC counterpart and can scale almost linearly to millions of samples and/or features.

Tips on Practical Use

• Avoiding data copy: For SVC, SVR, NuSVC and NuSVR, if the data passed to certain methods
is not C-ordered contiguous and double precision, it will be copied before calling the underlying
C implementation. You can check whether a given numpy array is C-contiguous by inspecting its
flags attribute.

For LinearSVC (and LogisticRegression) any input passed as a numpy array will be
copied and converted to the liblinear internal sparse data representation (double precision floats
and int32 indices of non-zero components). If you want to fit a large-scale linear classifier with-
out copying a dense numpy C-contiguous double precision array as input, we suggest to use the
SGDClassifier class instead. The objective function can be configured to be almost the same as
the LinearSVC model.

• Kernel cache size: For SVC, SVR, NuSVC and NuSVR, the size of the kernel cache has a strong
impact on run times for larger problems. If you have enough RAM available, it is recommended to
set cache_size to a higher value than the default of 200(MB), such as 500(MB) or 1000(MB).

• Setting C: C is 1 by default and it’s a reasonable default choice. If you have a lot of noisy observa-
tions you should decrease it: decreasing C corresponds to more regularization.

LinearSVC and LinearSVR are less sensitive to C when it becomes large, and prediction results
stop improving after a certain threshold. Meanwhile, larger C values will take more time to train,
sometimes up to 10 times longer, as shown in11.

• Support Vector Machine algorithms are not scale invariant, so it is highly recommended to scale
your data. For example, scale each attribute on the input vector X to [0,1] or [-1,+1], or standardize
it to have mean 0 and variance 1. Note that the same scaling must be applied to the test vector to
obtain meaningful results. This can be done easily by using a Pipeline:

11 Fan, Rong-En, et al., “LIBLINEAR: A library for large linear classification.”, Journal of machine learning research 9.Aug (2008): 1871-1874.

4.1. Supervised learning 269

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/papers/liblinear.pdf

scikit-learn user guide, Release 0.23.2

>>> from sklearn.pipeline import make_pipeline
>>> from sklearn.preprocessing import StandardScaler
>>> from sklearn.svm import SVC

>>> clf = make_pipeline(StandardScaler(), SVC())

See section Preprocessing data for more details on scaling and normalization.

• Regarding the shrinking parameter, quoting12: We found that if the number of iterations is large,
then shrinking can shorten the training time. However, if we loosely solve the optimization problem
(e.g., by using a large stopping tolerance), the code without using shrinking may be much faster

• Parameter nu in NuSVC/OneClassSVM /NuSVR approximates the fraction of training errors and
support vectors.

• In SVC, if the data is unbalanced (e.g. many positive and few negative), set
class_weight='balanced' and/or try different penalty parameters C.

• Randomness of the underlying implementations: The underlying implementations of SVC and
NuSVC use a random number generator only to shuffle the data for probability estimation (when
probability is set to True). This randomness can be controlled with the random_state pa-
rameter. If probability is set to False these estimators are not random and random_state
has no effect on the results. The underlying OneClassSVM implementation is similar to the ones
of SVC and NuSVC. As no probability estimation is provided for OneClassSVM , it is not random.

The underlying LinearSVC implementation uses a random number generator to select features
when fitting the model with a dual coordinate descent (i.e when dual is set to True). It is thus
not uncommon to have slightly different results for the same input data. If that happens, try with a
smaller tol parameter. This randomness can also be controlled with the random_state parame-
ter. When dual is set to False the underlying implementation of LinearSVC is not random and
random_state has no effect on the results.

• Using L1 penalization as provided by LinearSVC(loss='l2', penalty='l1',
dual=False) yields a sparse solution, i.e. only a subset of feature weights is different
from zero and contribute to the decision function. Increasing C yields a more complex model (more
features are selected). The C value that yields a “null” model (all weights equal to zero) can be
calculated using l1_min_c.

Kernel functions

The kernel function can be any of the following:

• linear: ⟨𝑥, 𝑥′⟩.

• polynomial: (𝛾⟨𝑥, 𝑥′⟩+ 𝑟)𝑑, where 𝑑 is specified by parameter degree, 𝑟 by coef0.

• rbf: exp(−𝛾‖𝑥− 𝑥′‖2), where 𝛾 is specified by parameter gamma, must be greater than 0.

• sigmoid tanh(𝛾⟨𝑥, 𝑥′⟩+ 𝑟), where 𝑟 is specified by coef0.

Different kernels are specified by the kernel parameter:

>>> linear_svc = svm.SVC(kernel='linear')
>>> linear_svc.kernel
'linear'
>>> rbf_svc = svm.SVC(kernel='rbf')

(continues on next page)

12 Chang and Lin, LIBSVM: A Library for Support Vector Machines.

270 Chapter 4. User Guide

https://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf

scikit-learn user guide, Release 0.23.2

(continued from previous page)

>>> rbf_svc.kernel
'rbf'

Parameters of the RBF Kernel

When training an SVM with the Radial Basis Function (RBF) kernel, two parameters must be considered: C and
gamma. The parameter C, common to all SVM kernels, trades off misclassification of training examples against
simplicity of the decision surface. A low C makes the decision surface smooth, while a high C aims at classifying all
training examples correctly. gamma defines how much influence a single training example has. The larger gamma is,
the closer other examples must be to be affected.

Proper choice of C and gamma is critical to the SVM’s performance. One is advised to use sklearn.
model_selection.GridSearchCV with C and gamma spaced exponentially far apart to choose good values.

Examples:

• RBF SVM parameters

• Non-linear SVM

Custom Kernels

You can define your own kernels by either giving the kernel as a python function or by precomputing the Gram matrix.

Classifiers with custom kernels behave the same way as any other classifiers, except that:

• Field support_vectors_ is now empty, only indices of support vectors are stored in support_

• A reference (and not a copy) of the first argument in the fit() method is stored for future reference. If that
array changes between the use of fit() and predict() you will have unexpected results.

Using Python functions as kernels

You can use your own defined kernels by passing a function to the kernel parameter.

Your kernel must take as arguments two matrices of shape (n_samples_1, n_features), (n_samples_2,
n_features) and return a kernel matrix of shape (n_samples_1, n_samples_2).

The following code defines a linear kernel and creates a classifier instance that will use that kernel:

>>> import numpy as np
>>> from sklearn import svm
>>> def my_kernel(X, Y):
... return np.dot(X, Y.T)
...
>>> clf = svm.SVC(kernel=my_kernel)

Examples:

• SVM with custom kernel.

4.1. Supervised learning 271

scikit-learn user guide, Release 0.23.2

Using the Gram matrix

You can pass pre-computed kernels by using the kernel='precomputed' option. You should then pass Gram
matrix instead of X to the fit and predict methods. The kernel values between all training vectors and the test
vectors must be provided:

>>> import numpy as np
>>> from sklearn.datasets import make_classification
>>> from sklearn.model_selection import train_test_split
>>> from sklearn import svm
>>> X, y = make_classification(n_samples=10, random_state=0)
>>> X_train , X_test , y_train, y_test = train_test_split(X, y, random_state=0)
>>> clf = svm.SVC(kernel='precomputed')
>>> # linear kernel computation
>>> gram_train = np.dot(X_train, X_train.T)
>>> clf.fit(gram_train, y_train)
SVC(kernel='precomputed')
>>> # predict on training examples
>>> gram_test = np.dot(X_test, X_train.T)
>>> clf.predict(gram_test)
array([0, 1, 0])

Mathematical formulation

A support vector machine constructs a hyper-plane or set of hyper-planes in a high or infinite dimensional space, which
can be used for classification, regression or other tasks. Intuitively, a good separation is achieved by the hyper-plane
that has the largest distance to the nearest training data points of any class (so-called functional margin), since in
general the larger the margin the lower the generalization error of the classifier. The figure below shows the decision
function for a linearly separable problem, with three samples on the margin boundaries, called “support vectors”:

In general, when the problem isn’t linearly separable, the support vectors are the samples within the margin boundaries.

272 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

We recommend13 and14 as good references for the theory and practicalities of SVMs.

SVC

Given training vectors 𝑥𝑖 ∈ R𝑝, i=1,. . . , n, in two classes, and a vector 𝑦 ∈ {1,−1}𝑛, our goal is to find 𝑤 ∈ R𝑝 and
𝑏 ∈ R such that the prediction given by sign(𝑤𝑇𝜑(𝑥) + 𝑏) is correct for most samples.

SVC solves the following primal problem:

min
𝑤,𝑏,𝜁

1

2
𝑤𝑇𝑤 + 𝐶

𝑛∑︁
𝑖=1

𝜁𝑖

subject to 𝑦𝑖(𝑤𝑇𝜑(𝑥𝑖) + 𝑏) ≥ 1− 𝜁𝑖,
𝜁𝑖 ≥ 0, 𝑖 = 1, ..., 𝑛

Intuitively, we’re trying to maximize the margin (by minimizing ||𝑤||2 = 𝑤𝑇𝑤), while incurring a penalty when a
sample is misclassified or within the margin boundary. Ideally, the value 𝑦𝑖(𝑤𝑇𝜑(𝑥𝑖)+𝑏) would be≥ 1 for all samples,
which indicates a perfect prediction. But problems are usually not always perfectly separable with a hyperplane, so we
allow some samples to be at a distance 𝜁𝑖 from their correct margin boundary. The penalty term C controls the strengh
of this penalty, and as a result, acts as an inverse regularization parameter (see note below).

The dual problem to the primal is

min
𝛼

1

2
𝛼𝑇𝑄𝛼− 𝑒𝑇𝛼

subject to 𝑦𝑇𝛼 = 0

0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1, ..., 𝑛

where 𝑒 is the vector of all ones, and 𝑄 is an 𝑛 by 𝑛 positive semidefinite matrix, 𝑄𝑖𝑗 ≡ 𝑦𝑖𝑦𝑗𝐾(𝑥𝑖, 𝑥𝑗), where
𝐾(𝑥𝑖, 𝑥𝑗) = 𝜑(𝑥𝑖)

𝑇𝜑(𝑥𝑗) is the kernel. The terms 𝛼𝑖 are called the dual coefficients, and they are upper-bounded
by 𝐶. This dual representation highlights the fact that training vectors are implicitly mapped into a higher (maybe
infinite) dimensional space by the function 𝜑: see kernel trick.

Once the optimization problem is solved, the output of decision_function for a given sample 𝑥 becomes:∑︁
𝑖∈𝑆𝑉

𝑦𝑖𝛼𝑖𝐾(𝑥𝑖, 𝑥) + 𝑏,

and the predicted class correspond to its sign. We only need to sum over the support vectors (i.e. the samples that lie
within the margin) because the dual coefficients 𝛼𝑖 are zero for the other samples.

These parameters can be accessed through the attributes dual_coef_ which holds the product 𝑦𝑖𝛼𝑖,
support_vectors_ which holds the support vectors, and intercept_ which holds the independent term 𝑏

Note: While SVM models derived from libsvm and liblinear use C as regularization parameter, most other estimators
use alpha. The exact equivalence between the amount of regularization of two models depends on the exact objective
function optimized by the model. For example, when the estimator used is sklearn.linear_model.Ridge
regression, the relation between them is given as 𝐶 = 1

𝑎𝑙𝑝ℎ𝑎 .

13 Bishop, Pattern recognition and machine learning, chapter 7 Sparse Kernel Machines
14 “A Tutorial on Support Vector Regression”, Alex J. Smola, Bernhard Schölkopf - Statistics and Computing archive Volume 14 Issue 3, August

2004, p. 199-222.

4.1. Supervised learning 273

https://en.wikipedia.org/wiki/Kernel_method
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.114.4288

scikit-learn user guide, Release 0.23.2

LinearSVC

The primal problem can be equivalently formulated as

min
𝑤,𝑏

1

2
𝑤𝑇𝑤 + 𝐶

∑︁
𝑖=1

max(0, 𝑦𝑖(𝑤
𝑇𝜑(𝑥𝑖) + 𝑏)),

where we make use of the hinge loss. This is the form that is directly optimized by LinearSVC, but unlike the dual
form, this one does not involve inner products between samples, so the famous kernel trick cannot be applied. This is
why only the linear kernel is supported by LinearSVC (𝜑 is the identity function).

NuSVC

The 𝜈-SVC formulation15 is a reparameterization of the 𝐶-SVC and therefore mathematically equivalent.

We introduce a new parameter 𝜈 (instead of 𝐶) which controls the number of support vectors and margin errors:
𝜈 ∈ (0, 1] is an upper bound on the fraction of margin errors and a lower bound of the fraction of support vectors. A
margin error corresponds to a sample that lies on the wrong side of its margin boundary: it is either misclassified, or it
is correctly classified but does not lie beyond the margin.

SVR

Given training vectors 𝑥𝑖 ∈ R𝑝, i=1,. . . , n, and a vector 𝑦 ∈ R𝑛 𝜀-SVR solves the following primal problem:

min
𝑤,𝑏,𝜁,𝜁*

1

2
𝑤𝑇𝑤 + 𝐶

𝑛∑︁
𝑖=1

(𝜁𝑖 + 𝜁*𝑖)

subject to 𝑦𝑖 − 𝑤𝑇𝜑(𝑥𝑖)− 𝑏 ≤ 𝜀+ 𝜁𝑖,

𝑤𝑇𝜑(𝑥𝑖) + 𝑏− 𝑦𝑖 ≤ 𝜀+ 𝜁*𝑖 ,

𝜁𝑖, 𝜁
*
𝑖 ≥ 0, 𝑖 = 1, ..., 𝑛

Here, we are penalizing samples whose prediction is at least 𝜀 away from their true target. These samples penalize the
objective by 𝜁𝑖 or 𝜁*𝑖 , depending on whether their predictions lie above or below the 𝜀 tube.

The dual problem is

min
𝛼,𝛼*

1

2
(𝛼− 𝛼*)𝑇𝑄(𝛼− 𝛼*) + 𝜀𝑒𝑇 (𝛼+ 𝛼*)− 𝑦𝑇 (𝛼− 𝛼*)

subject to 𝑒𝑇 (𝛼− 𝛼*) = 0

0 ≤ 𝛼𝑖, 𝛼
*
𝑖 ≤ 𝐶, 𝑖 = 1, ..., 𝑛

where 𝑒 is the vector of all ones, 𝑄 is an 𝑛 by 𝑛 positive semidefinite matrix, 𝑄𝑖𝑗 ≡ 𝐾(𝑥𝑖, 𝑥𝑗) = 𝜑(𝑥𝑖)
𝑇𝜑(𝑥𝑗) is the

kernel. Here training vectors are implicitly mapped into a higher (maybe infinite) dimensional space by the function
𝜑.

The prediction is: ∑︁
𝑖∈𝑆𝑉

(𝛼𝑖 − 𝛼*
𝑖)𝐾(𝑥𝑖, 𝑥) + 𝑏

These parameters can be accessed through the attributes dual_coef_ which holds the difference 𝛼𝑖 − 𝛼*
𝑖 ,

support_vectors_ which holds the support vectors, and intercept_ which holds the independent term 𝑏

15 Schölkopf et. al New Support Vector Algorithms

274 Chapter 4. User Guide

https://en.wikipedia.org/wiki/Hinge_loss
https://www.stat.purdue.edu/~yuzhu/stat598m3/Papers/NewSVM.pdf

scikit-learn user guide, Release 0.23.2

LinearSVR

The primal problem can be equivalently formulated as

min
𝑤,𝑏

1

2
𝑤𝑇𝑤 + 𝐶

∑︁
𝑖=1

max(0, |𝑦𝑖 − (𝑤𝑇𝜑(𝑥𝑖) + 𝑏)| − 𝜀),

where we make use of the epsilon-insensitive loss, i.e. errors of less than 𝜀 are ignored. This is the form that is directly
optimized by LinearSVR.

Implementation details

Internally, we use libsvm12 and liblinear11 to handle all computations. These libraries are wrapped using C and Cython.
For a description of the implementation and details of the algorithms used, please refer to their respective papers.

References:

4.1.5 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is a simple yet very efficient approach to fitting linear classifiers and regressors
under convex loss functions such as (linear) Support Vector Machines and Logistic Regression. Even though SGD has
been around in the machine learning community for a long time, it has received a considerable amount of attention
just recently in the context of large-scale learning.

SGD has been successfully applied to large-scale and sparse machine learning problems often encountered in text
classification and natural language processing. Given that the data is sparse, the classifiers in this module easily scale
to problems with more than 10^5 training examples and more than 10^5 features.

Strictly speaking, SGD is merely an optimization technique and does not correspond to a specific family of
machine learning models. It is only a way to train a model. Often, an instance of SGDClassifier or
SGDRegressor will have an equivalent estimator in the scikit-learn API, potentially using a different optimiza-
tion technique. For example, using SGDClassifier(loss='log') results in logistic regression, i.e. a model
equivalent to LogisticRegression which is fitted via SGD instead of being fitted by one of the other solvers
in LogisticRegression. Similarly, SGDRegressor(loss='squared_loss', penalty='l2') and
Ridge solve the same optimization problem, via different means.

The advantages of Stochastic Gradient Descent are:

• Efficiency.

• Ease of implementation (lots of opportunities for code tuning).

The disadvantages of Stochastic Gradient Descent include:

• SGD requires a number of hyperparameters such as the regularization parameter and the number of iterations.

• SGD is sensitive to feature scaling.

Warning: Make sure you permute (shuffle) your training data before fitting the model or use shuffle=True
to shuffle after each iteration (used by default). Also, ideally, features should be standardized using e.g.
make_pipeline(StandardScaler(), SGDClassifier()) (see Pipelines).

4.1. Supervised learning 275

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://en.wikipedia.org/wiki/Support_vector_machine
https://en.wikipedia.org/wiki/Logistic_regression

scikit-learn user guide, Release 0.23.2

Classification

The class SGDClassifier implements a plain stochastic gradient descent learning routine which supports different
loss functions and penalties for classification. Below is the decision boundary of a SGDClassifier trained with
the hinge loss, equivalent to a linear SVM.

As other classifiers, SGD has to be fitted with two arrays: an array X of shape (n_samples, n_features) holding the
training samples, and an array y of shape (n_samples,) holding the target values (class labels) for the training samples:

>>> from sklearn.linear_model import SGDClassifier
>>> X = [[0., 0.], [1., 1.]]
>>> y = [0, 1]
>>> clf = SGDClassifier(loss="hinge", penalty="l2", max_iter=5)
>>> clf.fit(X, y)
SGDClassifier(max_iter=5)

After being fitted, the model can then be used to predict new values:

>>> clf.predict([[2., 2.]])
array([1])

SGD fits a linear model to the training data. The coef_ attribute holds the model parameters:

>>> clf.coef_
array([[9.9..., 9.9...]])

The intercept_ attribute holds the intercept (aka offset or bias):

>>> clf.intercept_
array([-9.9...])

Whether or not the model should use an intercept, i.e. a biased hyperplane, is controlled by the parameter
fit_intercept.

276 Chapter 4. User Guide

../auto_examples/linear_model/plot_sgd_separating_hyperplane.html

scikit-learn user guide, Release 0.23.2

The signed distance to the hyperplane (computed as the dot product between the coefficients and the input sample,
plus the intercept) is given by SGDClassifier.decision_function:

>>> clf.decision_function([[2., 2.]])
array([29.6...])

The concrete loss function can be set via the loss parameter. SGDClassifier supports the following loss func-
tions:

• loss="hinge": (soft-margin) linear Support Vector Machine,

• loss="modified_huber": smoothed hinge loss,

• loss="log": logistic regression,

• and all regression losses below. In this case the target is encoded as -1 or 1, and the problem is treated as a
regression problem. The predicted class then correspond to the sign of the predicted target.

Please refer to the mathematical section below for formulas. The first two loss functions are lazy, they only update the
model parameters if an example violates the margin constraint, which makes training very efficient and may result in
sparser models (i.e. with more zero coefficents), even when L2 penalty is used.

Using loss="log" or loss="modified_huber" enables the predict_proba method, which gives a vector
of probability estimates 𝑃 (𝑦|𝑥) per sample 𝑥:

>>> clf = SGDClassifier(loss="log", max_iter=5).fit(X, y)
>>> clf.predict_proba([[1., 1.]])
array([[0.00..., 0.99...]])

The concrete penalty can be set via the penalty parameter. SGD supports the following penalties:

• penalty="l2": L2 norm penalty on coef_.

• penalty="l1": L1 norm penalty on coef_.

• penalty="elasticnet": Convex combination of L2 and L1; (1 - l1_ratio) * L2 +
l1_ratio * L1.

The default setting is penalty="l2". The L1 penalty leads to sparse solutions, driving most coefficients to zero.
The Elastic Net11 solves some deficiencies of the L1 penalty in the presence of highly correlated attributes. The
parameter l1_ratio controls the convex combination of L1 and L2 penalty.

SGDClassifier supports multi-class classification by combining multiple binary classifiers in a “one versus all”
(OVA) scheme. For each of the 𝐾 classes, a binary classifier is learned that discriminates between that and all other
𝐾 − 1 classes. At testing time, we compute the confidence score (i.e. the signed distances to the hyperplane) for each
classifier and choose the class with the highest confidence. The Figure below illustrates the OVA approach on the iris
dataset. The dashed lines represent the three OVA classifiers; the background colors show the decision surface induced
by the three classifiers.

In the case of multi-class classification coef_ is a two-dimensional array of shape (n_classes, n_features) and
intercept_ is a one-dimensional array of shape (n_classes,). The i-th row of coef_ holds the weight vector
of the OVA classifier for the i-th class; classes are indexed in ascending order (see attribute classes_). Note that, in
principle, since they allow to create a probability model, loss="log" and loss="modified_huber" are more
suitable for one-vs-all classification.

SGDClassifier supports both weighted classes and weighted instances via the fit parameters class_weight
and sample_weight. See the examples below and the docstring of SGDClassifier.fit for further informa-
tion.

SGDClassifier supports averaged SGD (ASGD)10. Averaging can be enabled by setting average=True.
11 “Regularization and variable selection via the elastic net” H. Zou, T. Hastie - Journal of the Royal Statistical Society Series B, 67 (2), 301-320.
10 “Towards Optimal One Pass Large Scale Learning with Averaged Stochastic Gradient Descent” Xu, Wei

4.1. Supervised learning 277

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.124.4696
https://arxiv.org/pdf/1107.2490v2.pdf

scikit-learn user guide, Release 0.23.2

ASGD performs the same updates as the regular SGD (see Mathematical formulation), but instead of using the last
value of the coefficients as the coef_ attribute (i.e. the values of the last update), coef_ is set instead to the average
value of the coefficients across all updates. The same is done for the intercept_ attribute. When using ASGD the
learning rate can be larger and even constant, leading on some datasets to a speed up in training time.

For classification with a logistic loss, another variant of SGD with an averaging strategy is available with Stochastic
Average Gradient (SAG) algorithm, available as a solver in LogisticRegression.

Examples:

• SGD: Maximum margin separating hyperplane,

• Plot multi-class SGD on the iris dataset

• SGD: Weighted samples

• Comparing various online solvers

• SVM: Separating hyperplane for unbalanced classes (See the Note in the example)

Regression

The class SGDRegressor implements a plain stochastic gradient descent learning routine which supports different
loss functions and penalties to fit linear regression models. SGDRegressor is well suited for regression prob-
lems with a large number of training samples (> 10.000), for other problems we recommend Ridge, Lasso, or
ElasticNet.

The concrete loss function can be set via the loss parameter. SGDRegressor supports the following loss functions:

• loss="squared_loss": Ordinary least squares,

• loss="huber": Huber loss for robust regression,

278 Chapter 4. User Guide

../auto_examples/linear_model/plot_sgd_iris.html

scikit-learn user guide, Release 0.23.2

• loss="epsilon_insensitive": linear Support Vector Regression.

Please refer to the mathematical section below for formulas. The Huber and epsilon-insensitive loss functions can be
used for robust regression. The width of the insensitive region has to be specified via the parameter epsilon. This
parameter depends on the scale of the target variables.

The penalty parameter determines the regularization to be used (see description above in the classification section).

SGDRegressor also supports averaged SGD10 (here again, see description above in the classification section).

For regression with a squared loss and a l2 penalty, another variant of SGD with an averaging strategy is available with
Stochastic Average Gradient (SAG) algorithm, available as a solver in Ridge.

Stochastic Gradient Descent for sparse data

Note: The sparse implementation produces slightly different results from the dense implementation, due to a shrunk
learning rate for the intercept. See Implementation details.

There is built-in support for sparse data given in any matrix in a format supported by scipy.sparse. For maximum
efficiency, however, use the CSR matrix format as defined in scipy.sparse.csr_matrix.

Examples:

• Classification of text documents using sparse features

Complexity

The major advantage of SGD is its efficiency, which is basically linear in the number of training examples. If X is a
matrix of size (n, p) training has a cost of 𝑂(𝑘𝑛𝑝), where k is the number of iterations (epochs) and 𝑝 is the average
number of non-zero attributes per sample.

Recent theoretical results, however, show that the runtime to get some desired optimization accuracy does not increase
as the training set size increases.

Stopping criterion

The classes SGDClassifier and SGDRegressor provide two criteria to stop the algorithm when a given level of
convergence is reached:

• With early_stopping=True, the input data is split into a training set and a validation set. The model is
then fitted on the training set, and the stopping criterion is based on the prediction score (using the score
method) computed on the validation set. The size of the validation set can be changed with the parameter
validation_fraction.

• With early_stopping=False, the model is fitted on the entire input data and the stopping criterion is
based on the objective function computed on the training data.

In both cases, the criterion is evaluated once by epoch, and the algorithm stops when the criterion does not improve
n_iter_no_change times in a row. The improvement is evaluated with absolute tolerance tol, and the algorithm
stops in any case after a maximum number of iteration max_iter.

4.1. Supervised learning 279

https://docs.scipy.org/doc/scipy/reference/sparse.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html

scikit-learn user guide, Release 0.23.2

Tips on Practical Use

• Stochastic Gradient Descent is sensitive to feature scaling, so it is highly recommended to scale your data. For
example, scale each attribute on the input vector X to [0,1] or [-1,+1], or standardize it to have mean 0 and
variance 1. Note that the same scaling must be applied to the test vector to obtain meaningful results. This can
be easily done using StandardScaler:

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train) # Don't cheat - fit only on training data
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test) # apply same transformation to test data

Or better yet: use a pipeline!
from sklearn.pipeline import make_pipeline
est = make_pipeline(StandardScaler(), SGDClassifier())
est.fit(X_train)
est.predict(X_test)

If your attributes have an intrinsic scale (e.g. word frequencies or indicator features) scaling is not needed.

• Finding a reasonable regularization term 𝛼 is best done using automatic hyper-parameter search, e.g.
GridSearchCV or RandomizedSearchCV , usually in the range 10.0**-np.arange(1,7).

• Empirically, we found that SGD converges after observing approximately 10^6 training samples. Thus, a rea-
sonable first guess for the number of iterations is max_iter = np.ceil(10**6 / n), where n is the
size of the training set.

• If you apply SGD to features extracted using PCA we found that it is often wise to scale the feature values by
some constant c such that the average L2 norm of the training data equals one.

• We found that Averaged SGD works best with a larger number of features and a higher eta0

References:

• “Efficient BackProp” Y. LeCun, L. Bottou, G. Orr, K. Müller - In Neural Networks: Tricks of the Trade 1998.

Mathematical formulation

We describe here the mathematical details of the SGD procedure. A good overview with convergence rates can be
found in12.

Given a set of training examples (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛) where 𝑥𝑖 ∈ R𝑚 and 𝑦𝑖 ∈ ℛ (𝑦𝑖 ∈ −1, 1 for classification),
our goal is to learn a linear scoring function 𝑓(𝑥) = 𝑤𝑇𝑥+ 𝑏 with model parameters 𝑤 ∈ R𝑚 and intercept 𝑏 ∈ R. In
order to make predictions for binary classification, we simply look at the sign of 𝑓(𝑥). To find the model parameters,
we minimize the regularized training error given by

𝐸(𝑤, 𝑏) =
1

𝑛

𝑛∑︁
𝑖=1

𝐿(𝑦𝑖, 𝑓(𝑥𝑖)) + 𝛼𝑅(𝑤)

where 𝐿 is a loss function that measures model (mis)fit and 𝑅 is a regularization term (aka penalty) that penalizes
model complexity; 𝛼 > 0 is a non-negative hyperparameter that controls the regularization stength.

Different choices for 𝐿 entail different classifiers or regressors:

12 “Solving large scale linear prediction problems using stochastic gradient descent algorithms” T. Zhang - In Proceedings of ICML ‘04.

280 Chapter 4. User Guide

http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.58.7377

scikit-learn user guide, Release 0.23.2

• Hinge (soft-margin): equivalent to Support Vector Classification. 𝐿(𝑦𝑖, 𝑓(𝑥𝑖)) = max(0, 1− 𝑦𝑖𝑓(𝑥𝑖)).

• Perceptron: 𝐿(𝑦𝑖, 𝑓(𝑥𝑖)) = max(0,−𝑦𝑖𝑓(𝑥𝑖)).

• Modified Huber: 𝐿(𝑦𝑖, 𝑓(𝑥𝑖)) = max(0, 1 − 𝑦𝑖𝑓(𝑥𝑖))
2 if 𝑦𝑖𝑓(𝑥𝑖) > 1, and 𝐿(𝑦𝑖, 𝑓(𝑥𝑖)) = −4𝑦𝑖𝑓(𝑥𝑖) other-

wise.

• Log: equivalent to Logistic Regression. 𝐿(𝑦𝑖, 𝑓(𝑥𝑖)) = log(1 + exp(−𝑦𝑖𝑓(𝑥𝑖))).

• Least-Squares: Linear regression (Ridge or Lasso depending on 𝑅). 𝐿(𝑦𝑖, 𝑓(𝑥𝑖)) = 1
2 (𝑦𝑖 − 𝑓(𝑥𝑖))

2.

• Huber: less sensitive to outliers than least-squares. It is equivalent to least squares when |𝑦𝑖 − 𝑓(𝑥𝑖)| ≤ 𝜀, and
𝐿(𝑦𝑖, 𝑓(𝑥𝑖)) = 𝜀|𝑦𝑖 − 𝑓(𝑥𝑖)| − 1

2𝜀
2 otherwise.

• Epsilon-Insensitive: (soft-margin) equivalent to Support Vector Regression. 𝐿(𝑦𝑖, 𝑓(𝑥𝑖)) = max(0, |𝑦𝑖 −
𝑓(𝑥𝑖)| − 𝜀).

All of the above loss functions can be regarded as an upper bound on the misclassification error (Zero-one loss) as
shown in the Figure below.

Popular choices for the regularization term 𝑅 (the penalty parameter) include:

• L2 norm: 𝑅(𝑤) := 1
2

∑︀𝑚
𝑗=1 𝑤

2
𝑗 = ||𝑤||22,

• L1 norm: 𝑅(𝑤) :=
∑︀𝑚

𝑗=1 |𝑤𝑗 |, which leads to sparse solutions.

• Elastic Net: 𝑅(𝑤) := 𝜌
2

∑︀𝑛
𝑗=1 𝑤

2
𝑗 + (1 − 𝜌)

∑︀𝑚
𝑗=1 |𝑤𝑗 |, a convex combination of L2 and L1, where 𝜌 is given

by 1 - l1_ratio.

The Figure below shows the contours of the different regularization terms in a 2-dimensional parameter space (𝑚 = 2)
when 𝑅(𝑤) = 1.

SGD

Stochastic gradient descent is an optimization method for unconstrained optimization problems. In contrast to (batch)
gradient descent, SGD approximates the true gradient of 𝐸(𝑤, 𝑏) by considering a single training example at a time.

4.1. Supervised learning 281

../auto_examples/linear_model/plot_sgd_loss_functions.html

scikit-learn user guide, Release 0.23.2

282 Chapter 4. User Guide

../auto_examples/linear_model/plot_sgd_penalties.html

scikit-learn user guide, Release 0.23.2

The class SGDClassifier implements a first-order SGD learning routine. The algorithm iterates over the training
examples and for each example updates the model parameters according to the update rule given by

𝑤 ← 𝑤 − 𝜂
[︂
𝛼
𝜕𝑅(𝑤)

𝜕𝑤
+
𝜕𝐿(𝑤𝑇𝑥𝑖 + 𝑏, 𝑦𝑖)

𝜕𝑤

]︂
where 𝜂 is the learning rate which controls the step-size in the parameter space. The intercept 𝑏 is updated similarly
but without regularization (and with additional decay for sparse matrices, as detailed in Implementation details).

The learning rate 𝜂 can be either constant or gradually decaying. For classification, the default learning rate schedule
(learning_rate='optimal') is given by

𝜂(𝑡) =
1

𝛼(𝑡0 + 𝑡)

where 𝑡 is the time step (there are a total of n_samples * n_iter time steps), 𝑡0 is determined based on a heuristic
proposed by Léon Bottou such that the expected initial updates are comparable with the expected size of the weights
(this assuming that the norm of the training samples is approx. 1). The exact definition can be found in _init_t in
BaseSGD.

For regression the default learning rate schedule is inverse scaling (learning_rate='invscaling'), given by

𝜂(𝑡) =
𝑒𝑡𝑎0

𝑡𝑝𝑜𝑤𝑒𝑟_𝑡

where 𝑒𝑡𝑎0 and 𝑝𝑜𝑤𝑒𝑟_𝑡 are hyperparameters chosen by the user via eta0 and power_t, resp.

For a constant learning rate use learning_rate='constant' and use eta0 to specify the learning rate.

For an adaptively decreasing learning rate, use learning_rate='adaptive' and use eta0 to specify the start-
ing learning rate. When the stopping criterion is reached, the learning rate is divided by 5, and the algorithm does not
stop. The algorithm stops when the learning rate goes below 1e-6.

The model parameters can be accessed through the coef_ and intercept_ attributes: coef_ holds the weights
𝑤 and intercept_ holds 𝑏.

When using Averaged SGD (with the average parameter), coef_ is set to the average weight across all updates:
coef_ = 1

𝑇

∑︀𝑇−1
𝑡=0 𝑤(𝑡), where 𝑇 is the total number of updates, found in the t_ attribute.

Implementation details

The implementation of SGD is influenced by the Stochastic Gradient SVM of7. Similar to SvmSGD, the
weight vector is represented as the product of a scalar and a vector which allows an efficient weight update in the case
of L2 regularization. In the case of sparse input X, the intercept is updated with a smaller learning rate (multiplied
by 0.01) to account for the fact that it is updated more frequently. Training examples are picked up sequentially and
the learning rate is lowered after each observed example. We adopted the learning rate schedule from8. For multi-
class classification, a “one versus all” approach is used. We use the truncated gradient algorithm proposed in9 for L1
regularization (and the Elastic Net). The code is written in Cython.

References:

7 “Stochastic Gradient Descent” L. Bottou - Website, 2010.
8 “Pegasos: Primal estimated sub-gradient solver for svm” S. Shalev-Shwartz, Y. Singer, N. Srebro - In Proceedings of ICML ‘07.
9 “Stochastic gradient descent training for l1-regularized log-linear models with cumulative penalty” Y. Tsuruoka, J. Tsujii, S. Ananiadou - In

Proceedings of the AFNLP/ACL ‘09.

4.1. Supervised learning 283

https://leon.bottou.org/projects/sgd
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.74.8513
https://www.aclweb.org/anthology/P/P09/P09-1054.pdf

scikit-learn user guide, Release 0.23.2

4.1.6 Nearest Neighbors

sklearn.neighbors provides functionality for unsupervised and supervised neighbors-based learning methods.
Unsupervised nearest neighbors is the foundation of many other learning methods, notably manifold learning and
spectral clustering. Supervised neighbors-based learning comes in two flavors: classification for data with discrete
labels, and regression for data with continuous labels.

The principle behind nearest neighbor methods is to find a predefined number of training samples closest in distance
to the new point, and predict the label from these. The number of samples can be a user-defined constant (k-nearest
neighbor learning), or vary based on the local density of points (radius-based neighbor learning). The distance can,
in general, be any metric measure: standard Euclidean distance is the most common choice. Neighbors-based meth-
ods are known as non-generalizing machine learning methods, since they simply “remember” all of its training data
(possibly transformed into a fast indexing structure such as a Ball Tree or KD Tree).

Despite its simplicity, nearest neighbors has been successful in a large number of classification and regression prob-
lems, including handwritten digits and satellite image scenes. Being a non-parametric method, it is often successful in
classification situations where the decision boundary is very irregular.

The classes in sklearn.neighbors can handle either NumPy arrays or scipy.sparse matrices as input. For
dense matrices, a large number of possible distance metrics are supported. For sparse matrices, arbitrary Minkowski
metrics are supported for searches.

There are many learning routines which rely on nearest neighbors at their core. One example is kernel density estima-
tion, discussed in the density estimation section.

Unsupervised Nearest Neighbors

NearestNeighbors implements unsupervised nearest neighbors learning. It acts as a uniform interface to three
different nearest neighbors algorithms: BallTree, KDTree, and a brute-force algorithm based on routines in
sklearn.metrics.pairwise. The choice of neighbors search algorithm is controlled through the keyword
'algorithm', which must be one of ['auto', 'ball_tree', 'kd_tree', 'brute']. When the de-
fault value 'auto' is passed, the algorithm attempts to determine the best approach from the training data. For a
discussion of the strengths and weaknesses of each option, see Nearest Neighbor Algorithms.

Warning: Regarding the Nearest Neighbors algorithms, if two neighbors 𝑘 + 1 and 𝑘 have identical
distances but different labels, the result will depend on the ordering of the training data.

Finding the Nearest Neighbors

For the simple task of finding the nearest neighbors between two sets of data, the unsupervised algorithms within
sklearn.neighbors can be used:

>>> from sklearn.neighbors import NearestNeighbors
>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> nbrs = NearestNeighbors(n_neighbors=2, algorithm='ball_tree').fit(X)
>>> distances, indices = nbrs.kneighbors(X)
>>> indices
array([[0, 1],

[1, 0],
[2, 1],
[3, 4],
[4, 3],

(continues on next page)

284 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

(continued from previous page)

[5, 4]]...)
>>> distances
array([[0. , 1.],

[0. , 1.],
[0. , 1.41421356],
[0. , 1.],
[0. , 1.],
[0. , 1.41421356]])

Because the query set matches the training set, the nearest neighbor of each point is the point itself, at a distance of
zero.

It is also possible to efficiently produce a sparse graph showing the connections between neighboring points:

>>> nbrs.kneighbors_graph(X).toarray()
array([[1., 1., 0., 0., 0., 0.],

[1., 1., 0., 0., 0., 0.],
[0., 1., 1., 0., 0., 0.],
[0., 0., 0., 1., 1., 0.],
[0., 0., 0., 1., 1., 0.],
[0., 0., 0., 0., 1., 1.]])

The dataset is structured such that points nearby in index order are nearby in parameter space, leading to an ap-
proximately block-diagonal matrix of K-nearest neighbors. Such a sparse graph is useful in a variety of cir-
cumstances which make use of spatial relationships between points for unsupervised learning: in particular,
see sklearn.manifold.Isomap, sklearn.manifold.LocallyLinearEmbedding, and sklearn.
cluster.SpectralClustering.

KDTree and BallTree Classes

Alternatively, one can use the KDTree or BallTree classes directly to find nearest neighbors. This is the function-
ality wrapped by the NearestNeighbors class used above. The Ball Tree and KD Tree have the same interface;
we’ll show an example of using the KD Tree here:

>>> from sklearn.neighbors import KDTree
>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> kdt = KDTree(X, leaf_size=30, metric='euclidean')
>>> kdt.query(X, k=2, return_distance=False)
array([[0, 1],

[1, 0],
[2, 1],
[3, 4],
[4, 3],
[5, 4]]...)

Refer to the KDTree and BallTree class documentation for more information on the options available for nearest
neighbors searches, including specification of query strategies, distance metrics, etc. For a list of available metrics,
see the documentation of the DistanceMetric class.

Nearest Neighbors Classification

Neighbors-based classification is a type of instance-based learning or non-generalizing learning: it does not attempt
to construct a general internal model, but simply stores instances of the training data. Classification is computed from

4.1. Supervised learning 285

scikit-learn user guide, Release 0.23.2

a simple majority vote of the nearest neighbors of each point: a query point is assigned the data class which has the
most representatives within the nearest neighbors of the point.

scikit-learn implements two different nearest neighbors classifiers: KNeighborsClassifier implements learn-
ing based on the 𝑘 nearest neighbors of each query point, where 𝑘 is an integer value specified by the user.
RadiusNeighborsClassifier implements learning based on the number of neighbors within a fixed radius
𝑟 of each training point, where 𝑟 is a floating-point value specified by the user.

The 𝑘-neighbors classification in KNeighborsClassifier is the most commonly used technique. The optimal
choice of the value 𝑘 is highly data-dependent: in general a larger 𝑘 suppresses the effects of noise, but makes the
classification boundaries less distinct.

In cases where the data is not uniformly sampled, radius-based neighbors classification in
RadiusNeighborsClassifier can be a better choice. The user specifies a fixed radius 𝑟, such that
points in sparser neighborhoods use fewer nearest neighbors for the classification. For high-dimensional parameter
spaces, this method becomes less effective due to the so-called “curse of dimensionality”.

The basic nearest neighbors classification uses uniform weights: that is, the value assigned to a query point is computed
from a simple majority vote of the nearest neighbors. Under some circumstances, it is better to weight the neighbors
such that nearer neighbors contribute more to the fit. This can be accomplished through the weights keyword. The
default value, weights = 'uniform', assigns uniform weights to each neighbor. weights = 'distance'
assigns weights proportional to the inverse of the distance from the query point. Alternatively, a user-defined function
of the distance can be supplied to compute the weights.

Examples:

• Nearest Neighbors Classification: an example of classification using nearest neighbors.

Nearest Neighbors Regression

Neighbors-based regression can be used in cases where the data labels are continuous rather than discrete variables.
The label assigned to a query point is computed based on the mean of the labels of its nearest neighbors.

scikit-learn implements two different neighbors regressors: KNeighborsRegressor implements learning
based on the 𝑘 nearest neighbors of each query point, where 𝑘 is an integer value specified by the user.
RadiusNeighborsRegressor implements learning based on the neighbors within a fixed radius 𝑟 of the query
point, where 𝑟 is a floating-point value specified by the user.

The basic nearest neighbors regression uses uniform weights: that is, each point in the local neighborhood contributes
uniformly to the classification of a query point. Under some circumstances, it can be advantageous to weight points

286 Chapter 4. User Guide

../auto_examples/neighbors/plot_classification.html
../auto_examples/neighbors/plot_classification.html

scikit-learn user guide, Release 0.23.2

such that nearby points contribute more to the regression than faraway points. This can be accomplished through the
weights keyword. The default value, weights = 'uniform', assigns equal weights to all points. weights
= 'distance' assigns weights proportional to the inverse of the distance from the query point. Alternatively, a
user-defined function of the distance can be supplied, which will be used to compute the weights.

The use of multi-output nearest neighbors for regression is demonstrated in Face completion with a multi-output
estimators. In this example, the inputs X are the pixels of the upper half of faces and the outputs Y are the pixels of
the lower half of those faces.

Examples:

• Nearest Neighbors regression: an example of regression using nearest neighbors.

• Face completion with a multi-output estimators: an example of multi-output regression using nearest neigh-
bors.

Nearest Neighbor Algorithms

Brute Force

Fast computation of nearest neighbors is an active area of research in machine learning. The most naive neighbor
search implementation involves the brute-force computation of distances between all pairs of points in the dataset: for
𝑁 samples in 𝐷 dimensions, this approach scales as 𝑂[𝐷𝑁2]. Efficient brute-force neighbors searches can be very
competitive for small data samples. However, as the number of samples 𝑁 grows, the brute-force approach quickly
becomes infeasible. In the classes within sklearn.neighbors, brute-force neighbors searches are specified using
the keyword algorithm = 'brute', and are computed using the routines available in sklearn.metrics.
pairwise.

4.1. Supervised learning 287

../auto_examples/neighbors/plot_regression.html

scikit-learn user guide, Release 0.23.2

288 Chapter 4. User Guide

../auto_examples/miscellaneous/plot_multioutput_face_completion.html

scikit-learn user guide, Release 0.23.2

K-D Tree

To address the computational inefficiencies of the brute-force approach, a variety of tree-based data structures have
been invented. In general, these structures attempt to reduce the required number of distance calculations by efficiently
encoding aggregate distance information for the sample. The basic idea is that if point 𝐴 is very distant from point
𝐵, and point 𝐵 is very close to point 𝐶, then we know that points 𝐴 and 𝐶 are very distant, without having to
explicitly calculate their distance. In this way, the computational cost of a nearest neighbors search can be reduced to
𝑂[𝐷𝑁 log(𝑁)] or better. This is a significant improvement over brute-force for large 𝑁 .

An early approach to taking advantage of this aggregate information was the KD tree data structure (short for K-
dimensional tree), which generalizes two-dimensional Quad-trees and 3-dimensional Oct-trees to an arbitrary number
of dimensions. The KD tree is a binary tree structure which recursively partitions the parameter space along the data
axes, dividing it into nested orthotropic regions into which data points are filed. The construction of a KD tree is very
fast: because partitioning is performed only along the data axes, no 𝐷-dimensional distances need to be computed.
Once constructed, the nearest neighbor of a query point can be determined with only𝑂[log(𝑁)] distance computations.
Though the KD tree approach is very fast for low-dimensional (𝐷 < 20) neighbors searches, it becomes inefficient
as 𝐷 grows very large: this is one manifestation of the so-called “curse of dimensionality”. In scikit-learn, KD tree
neighbors searches are specified using the keyword algorithm = 'kd_tree', and are computed using the class
KDTree.

References:

• “Multidimensional binary search trees used for associative searching”, Bentley, J.L., Communications of the
ACM (1975)

Ball Tree

To address the inefficiencies of KD Trees in higher dimensions, the ball tree data structure was developed. Where KD
trees partition data along Cartesian axes, ball trees partition data in a series of nesting hyper-spheres. This makes tree
construction more costly than that of the KD tree, but results in a data structure which can be very efficient on highly
structured data, even in very high dimensions.

A ball tree recursively divides the data into nodes defined by a centroid 𝐶 and radius 𝑟, such that each point in the
node lies within the hyper-sphere defined by 𝑟 and 𝐶. The number of candidate points for a neighbor search is reduced
through use of the triangle inequality:

|𝑥+ 𝑦| ≤ |𝑥|+ |𝑦|

With this setup, a single distance calculation between a test point and the centroid is sufficient to determine a lower
and upper bound on the distance to all points within the node. Because of the spherical geometry of the ball tree nodes,
it can out-perform a KD-tree in high dimensions, though the actual performance is highly dependent on the structure
of the training data. In scikit-learn, ball-tree-based neighbors searches are specified using the keyword algorithm
= 'ball_tree', and are computed using the class sklearn.neighbors.BallTree. Alternatively, the user
can work with the BallTree class directly.

References:

• “Five balltree construction algorithms”, Omohundro, S.M., International Computer Science Institute Techni-
cal Report (1989)

4.1. Supervised learning 289

https://dl.acm.org/citation.cfm?doid=361002.361007
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.91.8209

scikit-learn user guide, Release 0.23.2

Choice of Nearest Neighbors Algorithm

The optimal algorithm for a given dataset is a complicated choice, and depends on a number of factors:

• number of samples 𝑁 (i.e. n_samples) and dimensionality 𝐷 (i.e. n_features).

– Brute force query time grows as 𝑂[𝐷𝑁]

– Ball tree query time grows as approximately 𝑂[𝐷 log(𝑁)]

– KD tree query time changes with 𝐷 in a way that is difficult to precisely characterise. For small 𝐷 (less
than 20 or so) the cost is approximately 𝑂[𝐷 log(𝑁)], and the KD tree query can be very efficient. For
larger𝐷, the cost increases to nearly𝑂[𝐷𝑁], and the overhead due to the tree structure can lead to queries
which are slower than brute force.

For small data sets (𝑁 less than 30 or so), log(𝑁) is comparable to 𝑁 , and brute force algorithms can be more
efficient than a tree-based approach. Both KDTree and BallTree address this through providing a leaf size
parameter: this controls the number of samples at which a query switches to brute-force. This allows both
algorithms to approach the efficiency of a brute-force computation for small 𝑁 .

• data structure: intrinsic dimensionality of the data and/or sparsity of the data. Intrinsic dimensionality refers
to the dimension 𝑑 ≤ 𝐷 of a manifold on which the data lies, which can be linearly or non-linearly embedded
in the parameter space. Sparsity refers to the degree to which the data fills the parameter space (this is to be
distinguished from the concept as used in “sparse” matrices. The data matrix may have no zero entries, but the
structure can still be “sparse” in this sense).

– Brute force query time is unchanged by data structure.

– Ball tree and KD tree query times can be greatly influenced by data structure. In general, sparser data with a
smaller intrinsic dimensionality leads to faster query times. Because the KD tree internal representation is
aligned with the parameter axes, it will not generally show as much improvement as ball tree for arbitrarily
structured data.

Datasets used in machine learning tend to be very structured, and are very well-suited for tree-based queries.

• number of neighbors 𝑘 requested for a query point.

– Brute force query time is largely unaffected by the value of 𝑘

– Ball tree and KD tree query time will become slower as 𝑘 increases. This is due to two effects: first, a
larger 𝑘 leads to the necessity to search a larger portion of the parameter space. Second, using 𝑘 > 1
requires internal queueing of results as the tree is traversed.

As 𝑘 becomes large compared to 𝑁 , the ability to prune branches in a tree-based query is reduced. In this
situation, Brute force queries can be more efficient.

• number of query points. Both the ball tree and the KD Tree require a construction phase. The cost of this
construction becomes negligible when amortized over many queries. If only a small number of queries will
be performed, however, the construction can make up a significant fraction of the total cost. If very few query
points will be required, brute force is better than a tree-based method.

Currently, algorithm = 'auto' selects 'brute' if 𝑘 >= 𝑁/2, the input data is sparse, or
effective_metric_ isn’t in the VALID_METRICS list for either 'kd_tree' or 'ball_tree'. Otherwise,
it selects the first out of 'kd_tree' and 'ball_tree' that has effective_metric_ in its VALID_METRICS
list. This choice is based on the assumption that the number of query points is at least the same order as the number of
training points, and that leaf_size is close to its default value of 30.

290 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

Effect of leaf_size

As noted above, for small sample sizes a brute force search can be more efficient than a tree-based query. This fact is
accounted for in the ball tree and KD tree by internally switching to brute force searches within leaf nodes. The level
of this switch can be specified with the parameter leaf_size. This parameter choice has many effects:

construction time A larger leaf_size leads to a faster tree construction time, because fewer nodes need to be
created

query time Both a large or small leaf_size can lead to suboptimal query cost. For leaf_size approaching
1, the overhead involved in traversing nodes can significantly slow query times. For leaf_size approach-
ing the size of the training set, queries become essentially brute force. A good compromise between these is
leaf_size = 30, the default value of the parameter.

memory As leaf_size increases, the memory required to store a tree structure decreases. This is especially
important in the case of ball tree, which stores a 𝐷-dimensional centroid for each node. The required storage
space for BallTree is approximately 1 / leaf_size times the size of the training set.

leaf_size is not referenced for brute force queries.

Nearest Centroid Classifier

The NearestCentroid classifier is a simple algorithm that represents each class by the centroid of its members. In
effect, this makes it similar to the label updating phase of the sklearn.cluster.KMeans algorithm. It also has
no parameters to choose, making it a good baseline classifier. It does, however, suffer on non-convex classes, as well as
when classes have drastically different variances, as equal variance in all dimensions is assumed. See Linear Discrim-
inant Analysis (sklearn.discriminant_analysis.LinearDiscriminantAnalysis) and Quadratic
Discriminant Analysis (sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis) for
more complex methods that do not make this assumption. Usage of the default NearestCentroid is simple:

>>> from sklearn.neighbors import NearestCentroid
>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> y = np.array([1, 1, 1, 2, 2, 2])
>>> clf = NearestCentroid()
>>> clf.fit(X, y)
NearestCentroid()
>>> print(clf.predict([[-0.8, -1]]))
[1]

Nearest Shrunken Centroid

The NearestCentroid classifier has a shrink_threshold parameter, which implements the nearest shrunken
centroid classifier. In effect, the value of each feature for each centroid is divided by the within-class variance of that
feature. The feature values are then reduced by shrink_threshold. Most notably, if a particular feature value
crosses zero, it is set to zero. In effect, this removes the feature from affecting the classification. This is useful, for
example, for removing noisy features.

In the example below, using a small shrink threshold increases the accuracy of the model from 0.81 to 0.82.

4.1. Supervised learning 291

scikit-learn user guide, Release 0.23.2

Examples:

• Nearest Centroid Classification: an example of classification using nearest centroid with different shrink
thresholds.

Nearest Neighbors Transformer

Many scikit-learn estimators rely on nearest neighbors: Several classifiers and regressors such as
KNeighborsClassifier and KNeighborsRegressor, but also some clustering methods such as DBSCAN
and SpectralClustering, and some manifold embeddings such as TSNE and Isomap.

All these estimators can compute internally the nearest neighbors, but most of them also accept precomputed near-
est neighbors sparse graph, as given by kneighbors_graph and radius_neighbors_graph. With mode
mode='connectivity', these functions return a binary adjacency sparse graph as required, for instance, in
SpectralClustering. Whereas with mode='distance', they return a distance sparse graph as required,
for instance, in DBSCAN . To include these functions in a scikit-learn pipeline, one can also use the corresponding
classes KNeighborsTransformer and RadiusNeighborsTransformer. The benefits of this sparse graph
API are multiple.

First, the precomputed graph can be re-used multiple times, for instance while varying a parameter of the estimator.
This can be done manually by the user, or using the caching properties of the scikit-learn pipeline:

>>> from sklearn.manifold import Isomap
>>> from sklearn.neighbors import KNeighborsTransformer
>>> from sklearn.pipeline import make_pipeline
>>> estimator = make_pipeline(
... KNeighborsTransformer(n_neighbors=5, mode='distance'),
... Isomap(neighbors_algorithm='precomputed'),
... memory='/path/to/cache')

Second, precomputing the graph can give finer control on the nearest neighbors estimation, for instance enabling
multiprocessing though the parameter n_jobs, which might not be available in all estimators.

Finally, the precomputation can be performed by custom estimators to use different implementations, such as approxi-
mate nearest neighbors methods, or implementation with special data types. The precomputed neighbors sparse graph
needs to be formatted as in radius_neighbors_graph output:

• a CSR matrix (although COO, CSC or LIL will be accepted).

292 Chapter 4. User Guide

../auto_examples/neighbors/plot_nearest_centroid.html
../auto_examples/neighbors/plot_nearest_centroid.html

scikit-learn user guide, Release 0.23.2

• only explicitly store nearest neighborhoods of each sample with respect to the training data. This should include
those at 0 distance from a query point, including the matrix diagonal when computing the nearest neighborhoods
between the training data and itself.

• each row’s data should store the distance in increasing order (optional. Unsorted data will be stable-sorted,
adding a computational overhead).

• all values in data should be non-negative.

• there should be no duplicate indices in any row (see https://github.com/scipy/scipy/issues/5807).

• if the algorithm being passed the precomputed matrix uses k nearest neighbors (as opposed to radius neighbor-
hood), at least k neighbors must be stored in each row (or k+1, as explained in the following note).

Note: When a specific number of neighbors is queried (using KNeighborsTransformer), the definition of
n_neighbors is ambiguous since it can either include each training point as its own neighbor, or exclude them.
Neither choice is perfect, since including them leads to a different number of non-self neighbors during training and
testing, while excluding them leads to a difference between fit(X).transform(X) and fit_transform(X),
which is against scikit-learn API. In KNeighborsTransformer we use the definition which includes each training
point as its own neighbor in the count of n_neighbors. However, for compatibility reasons with other estimators
which use the other definition, one extra neighbor will be computed when mode == 'distance'. To maximise
compatibility with all estimators, a safe choice is to always include one extra neighbor in a custom nearest neighbors
estimator, since unnecessary neighbors will be filtered by following estimators.

Examples:

• Approximate nearest neighbors in TSNE: an example of pipelining KNeighborsTransformer and
TSNE. Also proposes two custom nearest neighbors estimators based on external packages.

• Caching nearest neighbors: an example of pipelining KNeighborsTransformer and
KNeighborsClassifier to enable caching of the neighbors graph during a hyper-parameter
grid-search.

Neighborhood Components Analysis

Neighborhood Components Analysis (NCA, NeighborhoodComponentsAnalysis) is a distance metric learn-
ing algorithm which aims to improve the accuracy of nearest neighbors classification compared to the standard Eu-
clidean distance. The algorithm directly maximizes a stochastic variant of the leave-one-out k-nearest neighbors
(KNN) score on the training set. It can also learn a low-dimensional linear projection of data that can be used for data
visualization and fast classification.

4.1. Supervised learning 293

https://github.com/scipy/scipy/issues/5807

scikit-learn user guide, Release 0.23.2

In the above illustrating figure, we consider some points from a randomly generated dataset. We focus on the stochastic
KNN classification of point no. 3. The thickness of a link between sample 3 and another point is proportional to their
distance, and can be seen as the relative weight (or probability) that a stochastic nearest neighbor prediction rule would
assign to this point. In the original space, sample 3 has many stochastic neighbors from various classes, so the right
class is not very likely. However, in the projected space learned by NCA, the only stochastic neighbors with non-
negligible weight are from the same class as sample 3, guaranteeing that the latter will be well classified. See the
mathematical formulation for more details.

Classification

Combined with a nearest neighbors classifier (KNeighborsClassifier), NCA is attractive for classification be-
cause it can naturally handle multi-class problems without any increase in the model size, and does not introduce
additional parameters that require fine-tuning by the user.

NCA classification has been shown to work well in practice for data sets of varying size and difficulty. In contrast to
related methods such as Linear Discriminant Analysis, NCA does not make any assumptions about the class distribu-
tions. The nearest neighbor classification can naturally produce highly irregular decision boundaries.

To use this model for classification, one needs to combine a NeighborhoodComponentsAnalysis instance that
learns the optimal transformation with a KNeighborsClassifier instance that performs the classification in the
projected space. Here is an example using the two classes:

>>> from sklearn.neighbors import (NeighborhoodComponentsAnalysis,
... KNeighborsClassifier)
>>> from sklearn.datasets import load_iris
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.pipeline import Pipeline
>>> X, y = load_iris(return_X_y=True)
>>> X_train, X_test, y_train, y_test = train_test_split(X, y,
... stratify=y, test_size=0.7, random_state=42)
>>> nca = NeighborhoodComponentsAnalysis(random_state=42)
>>> knn = KNeighborsClassifier(n_neighbors=3)
>>> nca_pipe = Pipeline([('nca', nca), ('knn', knn)])
>>> nca_pipe.fit(X_train, y_train)
Pipeline(...)
>>> print(nca_pipe.score(X_test, y_test))
0.96190476...

294 Chapter 4. User Guide

../auto_examples/neighbors/plot_nca_illustration.html
../auto_examples/neighbors/plot_nca_illustration.html

scikit-learn user guide, Release 0.23.2

The plot shows decision boundaries for Nearest Neighbor Classification and Neighborhood Components Analysis
classification on the iris dataset, when training and scoring on only two features, for visualisation purposes.

Dimensionality reduction

NCA can be used to perform supervised dimensionality reduction. The input data are projected onto a linear sub-
space consisting of the directions which minimize the NCA objective. The desired dimensionality can be set us-
ing the parameter n_components. For instance, the following figure shows a comparison of dimensionality re-
duction with Principal Component Analysis (sklearn.decomposition.PCA), Linear Discriminant Analysis
(sklearn.discriminant_analysis.LinearDiscriminantAnalysis) and Neighborhood Component
Analysis (NeighborhoodComponentsAnalysis) on the Digits dataset, a dataset with size 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 1797
and 𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 64. The data set is split into a training and a test set of equal size, then standardized. For evalua-
tion the 3-nearest neighbor classification accuracy is computed on the 2-dimensional projected points found by each
method. Each data sample belongs to one of 10 classes.

Examples:

• Comparing Nearest Neighbors with and without Neighborhood Components Analysis

• Dimensionality Reduction with Neighborhood Components Analysis

• Manifold learning on handwritten digits: Locally Linear Embedding, Isomap. . .

4.1. Supervised learning 295

../auto_examples/neighbors/plot_nca_classification.html
../auto_examples/neighbors/plot_nca_classification.html
../auto_examples/neighbors/plot_nca_dim_reduction.html
../auto_examples/neighbors/plot_nca_dim_reduction.html
../auto_examples/neighbors/plot_nca_dim_reduction.html

scikit-learn user guide, Release 0.23.2

Mathematical formulation

The goal of NCA is to learn an optimal linear transformation matrix of size (n_components, n_features),
which maximises the sum over all samples 𝑖 of the probability 𝑝𝑖 that 𝑖 is correctly classified, i.e.:

arg max
𝐿

𝑁−1∑︁
𝑖=0

𝑝𝑖

with 𝑁 = n_samples and 𝑝𝑖 the probability of sample 𝑖 being correctly classified according to a stochastic nearest
neighbors rule in the learned embedded space:

𝑝𝑖 =
∑︁
𝑗∈𝐶𝑖

𝑝𝑖𝑗

where 𝐶𝑖 is the set of points in the same class as sample 𝑖, and 𝑝𝑖𝑗 is the softmax over Euclidean distances in the
embedded space:

𝑝𝑖𝑗 =
exp(−||𝐿𝑥𝑖 − 𝐿𝑥𝑗 ||2)∑︀

𝑘 ̸=𝑖

exp−(||𝐿𝑥𝑖 − 𝐿𝑥𝑘||2)
, 𝑝𝑖𝑖 = 0

Mahalanobis distance

NCA can be seen as learning a (squared) Mahalanobis distance metric:

||𝐿(𝑥𝑖 − 𝑥𝑗)||2 = (𝑥𝑖 − 𝑥𝑗)𝑇𝑀(𝑥𝑖 − 𝑥𝑗),

where 𝑀 = 𝐿𝑇𝐿 is a symmetric positive semi-definite matrix of size (n_features, n_features).

Implementation

This implementation follows what is explained in the original paper1. For the optimisation method, it currently uses
scipy’s L-BFGS-B with a full gradient computation at each iteration, to avoid to tune the learning rate and provide
stable learning.

See the examples below and the docstring of NeighborhoodComponentsAnalysis.fit for further informa-
tion.

Complexity

Training

NCA stores a matrix of pairwise distances, taking n_samples ** 2 memory. Time complexity depends on the
number of iterations done by the optimisation algorithm. However, one can set the maximum number of itera-
tions with the argument max_iter. For each iteration, time complexity is O(n_components x n_samples
x min(n_samples, n_features)).

1 “Neighbourhood Components Analysis”, J. Goldberger, S. Roweis, G. Hinton, R. Salakhutdinov, Advances in Neural Information Processing
Systems, Vol. 17, May 2005, pp. 513-520.

296 Chapter 4. User Guide

http://www.cs.nyu.edu/~roweis/papers/ncanips.pdf

scikit-learn user guide, Release 0.23.2

Transform

Here the transform operation returns 𝐿𝑋𝑇 , therefore its time complexity equals n_components *
n_features * n_samples_test. There is no added space complexity in the operation.

References:

Wikipedia entry on Neighborhood Components Analysis

4.1.7 Gaussian Processes

Gaussian Processes (GP) are a generic supervised learning method designed to solve regression and probabilistic
classification problems.

The advantages of Gaussian processes are:

• The prediction interpolates the observations (at least for regular kernels).

• The prediction is probabilistic (Gaussian) so that one can compute empirical confidence intervals and decide
based on those if one should refit (online fitting, adaptive fitting) the prediction in some region of interest.

• Versatile: different kernels can be specified. Common kernels are provided, but it is also possible to specify
custom kernels.

The disadvantages of Gaussian processes include:

• They are not sparse, i.e., they use the whole samples/features information to perform the prediction.

• They lose efficiency in high dimensional spaces – namely when the number of features exceeds a few dozens.

Gaussian Process Regression (GPR)

The GaussianProcessRegressor implements Gaussian processes (GP) for regression purposes. For this, the
prior of the GP needs to be specified. The prior mean is assumed to be constant and zero (for normalize_y=False)
or the training data’s mean (for normalize_y=True). The prior’s covariance is specified by passing a kernel object.
The hyperparameters of the kernel are optimized during fitting of GaussianProcessRegressor by maximizing the log-
marginal-likelihood (LML) based on the passed optimizer. As the LML may have multiple local optima, the
optimizer can be started repeatedly by specifying n_restarts_optimizer. The first run is always conducted
starting from the initial hyperparameter values of the kernel; subsequent runs are conducted from hyperparameter
values that have been chosen randomly from the range of allowed values. If the initial hyperparameters should be kept
fixed, None can be passed as optimizer.

The noise level in the targets can be specified by passing it via the parameter alpha, either globally as a scalar or
per datapoint. Note that a moderate noise level can also be helpful for dealing with numeric issues during fitting as
it is effectively implemented as Tikhonov regularization, i.e., by adding it to the diagonal of the kernel matrix. An
alternative to specifying the noise level explicitly is to include a WhiteKernel component into the kernel, which can
estimate the global noise level from the data (see example below).

The implementation is based on Algorithm 2.1 of [RW2006]. In addition to the API of standard scikit-learn estimators,
GaussianProcessRegressor:

• allows prediction without prior fitting (based on the GP prior)

• provides an additional method sample_y(X), which evaluates samples drawn from the GPR (prior or poste-
rior) at given inputs

4.1. Supervised learning 297

https://en.wikipedia.org/wiki/Neighbourhood_components_analysis

scikit-learn user guide, Release 0.23.2

• exposes a method log_marginal_likelihood(theta), which can be used externally for other ways of
selecting hyperparameters, e.g., via Markov chain Monte Carlo.

GPR examples

GPR with noise-level estimation

This example illustrates that GPR with a sum-kernel including a WhiteKernel can estimate the noise level of data. An
illustration of the log-marginal-likelihood (LML) landscape shows that there exist two local maxima of LML.

The first corresponds to a model with a high noise level and a large length scale, which explains all variations in the
data by noise.

The second one has a smaller noise level and shorter length scale, which explains most of the variation by the noise-
free functional relationship. The second model has a higher likelihood; however, depending on the initial value for the
hyperparameters, the gradient-based optimization might also converge to the high-noise solution. It is thus important
to repeat the optimization several times for different initializations.

Comparison of GPR and Kernel Ridge Regression

Both kernel ridge regression (KRR) and GPR learn a target function by employing internally the “kernel trick”. KRR
learns a linear function in the space induced by the respective kernel which corresponds to a non-linear function in
the original space. The linear function in the kernel space is chosen based on the mean-squared error loss with ridge

298 Chapter 4. User Guide

../auto_examples/gaussian_process/plot_gpr_noisy.html

scikit-learn user guide, Release 0.23.2

4.1. Supervised learning 299

../auto_examples/gaussian_process/plot_gpr_noisy.html

scikit-learn user guide, Release 0.23.2

300 Chapter 4. User Guide

../auto_examples/gaussian_process/plot_gpr_noisy.html

scikit-learn user guide, Release 0.23.2

regularization. GPR uses the kernel to define the covariance of a prior distribution over the target functions and uses
the observed training data to define a likelihood function. Based on Bayes theorem, a (Gaussian) posterior distribution
over target functions is defined, whose mean is used for prediction.

A major difference is that GPR can choose the kernel’s hyperparameters based on gradient-ascent on the marginal
likelihood function while KRR needs to perform a grid search on a cross-validated loss function (mean-squared error
loss). A further difference is that GPR learns a generative, probabilistic model of the target function and can thus
provide meaningful confidence intervals and posterior samples along with the predictions while KRR only provides
predictions.

The following figure illustrates both methods on an artificial dataset, which consists of a sinusoidal target function
and strong noise. The figure compares the learned model of KRR and GPR based on a ExpSineSquared kernel,
which is suited for learning periodic functions. The kernel’s hyperparameters control the smoothness (length_scale)
and periodicity of the kernel (periodicity). Moreover, the noise level of the data is learned explicitly by GPR by an
additional WhiteKernel component in the kernel and by the regularization parameter alpha of KRR.

The figure shows that both methods learn reasonable models of the target function. GPR correctly identifies the peri-
odicity of the function to be roughly 2*𝜋 (6.28), while KRR chooses the doubled periodicity 4*𝜋 . Besides that, GPR
provides reasonable confidence bounds on the prediction which are not available for KRR. A major difference between
the two methods is the time required for fitting and predicting: while fitting KRR is fast in principle, the grid-search
for hyperparameter optimization scales exponentially with the number of hyperparameters (“curse of dimensional-
ity”). The gradient-based optimization of the parameters in GPR does not suffer from this exponential scaling and is
thus considerable faster on this example with 3-dimensional hyperparameter space. The time for predicting is similar;
however, generating the variance of the predictive distribution of GPR takes considerable longer than just predicting
the mean.

GPR on Mauna Loa CO2 data

This example is based on Section 5.4.3 of [RW2006]. It illustrates an example of complex kernel engineering and
hyperparameter optimization using gradient ascent on the log-marginal-likelihood. The data consists of the monthly
average atmospheric CO2 concentrations (in parts per million by volume (ppmv)) collected at the Mauna Loa Obser-
vatory in Hawaii, between 1958 and 1997. The objective is to model the CO2 concentration as a function of the time
t.

4.1. Supervised learning 301

../auto_examples/gaussian_process/plot_compare_gpr_krr.html

scikit-learn user guide, Release 0.23.2

The kernel is composed of several terms that are responsible for explaining different properties of the signal:

• a long term, smooth rising trend is to be explained by an RBF kernel. The RBF kernel with a large length-scale
enforces this component to be smooth; it is not enforced that the trend is rising which leaves this choice to the
GP. The specific length-scale and the amplitude are free hyperparameters.

• a seasonal component, which is to be explained by the periodic ExpSineSquared kernel with a fixed periodicity
of 1 year. The length-scale of this periodic component, controlling its smoothness, is a free parameter. In order
to allow decaying away from exact periodicity, the product with an RBF kernel is taken. The length-scale of this
RBF component controls the decay time and is a further free parameter.

• smaller, medium term irregularities are to be explained by a RationalQuadratic kernel component, whose length-
scale and alpha parameter, which determines the diffuseness of the length-scales, are to be determined. Ac-
cording to [RW2006], these irregularities can better be explained by a RationalQuadratic than an RBF kernel
component, probably because it can accommodate several length-scales.

• a “noise” term, consisting of an RBF kernel contribution, which shall explain the correlated noise components
such as local weather phenomena, and a WhiteKernel contribution for the white noise. The relative amplitudes
and the RBF’s length scale are further free parameters.

Maximizing the log-marginal-likelihood after subtracting the target’s mean yields the following kernel with an LML
of -83.214:

34.4**2 * RBF(length_scale=41.8)
+ 3.27**2 * RBF(length_scale=180) * ExpSineSquared(length_scale=1.44,

periodicity=1)
+ 0.446**2 * RationalQuadratic(alpha=17.7, length_scale=0.957)
+ 0.197**2 * RBF(length_scale=0.138) + WhiteKernel(noise_level=0.0336)

Thus, most of the target signal (34.4ppm) is explained by a long-term rising trend (length-scale 41.8 years). The
periodic component has an amplitude of 3.27ppm, a decay time of 180 years and a length-scale of 1.44. The long
decay time indicates that we have a locally very close to periodic seasonal component. The correlated noise has an
amplitude of 0.197ppm with a length scale of 0.138 years and a white-noise contribution of 0.197ppm. Thus, the
overall noise level is very small, indicating that the data can be very well explained by the model. The figure shows
also that the model makes very confident predictions until around 2015

Gaussian Process Classification (GPC)

The GaussianProcessClassifier implements Gaussian processes (GP) for classification purposes, more
specifically for probabilistic classification, where test predictions take the form of class probabilities. GaussianPro-
cessClassifier places a GP prior on a latent function 𝑓 , which is then squashed through a link function to obtain the
probabilistic classification. The latent function 𝑓 is a so-called nuisance function, whose values are not observed and
are not relevant by themselves. Its purpose is to allow a convenient formulation of the model, and 𝑓 is removed (inte-
grated out) during prediction. GaussianProcessClassifier implements the logistic link function, for which the integral
cannot be computed analytically but is easily approximated in the binary case.

In contrast to the regression setting, the posterior of the latent function 𝑓 is not Gaussian even for a GP prior since
a Gaussian likelihood is inappropriate for discrete class labels. Rather, a non-Gaussian likelihood corresponding to
the logistic link function (logit) is used. GaussianProcessClassifier approximates the non-Gaussian posterior with a
Gaussian based on the Laplace approximation. More details can be found in Chapter 3 of [RW2006].

The GP prior mean is assumed to be zero. The prior’s covariance is specified by passing a kernel object. The hyper-
parameters of the kernel are optimized during fitting of GaussianProcessRegressor by maximizing the log-marginal-
likelihood (LML) based on the passed optimizer. As the LML may have multiple local optima, the optimizer can
be started repeatedly by specifying n_restarts_optimizer. The first run is always conducted starting from the
initial hyperparameter values of the kernel; subsequent runs are conducted from hyperparameter values that have been

302 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

4.1. Supervised learning 303

../auto_examples/gaussian_process/plot_gpr_co2.html

scikit-learn user guide, Release 0.23.2

chosen randomly from the range of allowed values. If the initial hyperparameters should be kept fixed, None can be
passed as optimizer.

GaussianProcessClassifier supports multi-class classification by performing either one-versus-rest or one-
versus-one based training and prediction. In one-versus-rest, one binary Gaussian process classifier is fitted for each
class, which is trained to separate this class from the rest. In “one_vs_one”, one binary Gaussian process classifier is
fitted for each pair of classes, which is trained to separate these two classes. The predictions of these binary predictors
are combined into multi-class predictions. See the section on multi-class classification for more details.

In the case of Gaussian process classification, “one_vs_one” might be computationally cheaper since it has to solve
many problems involving only a subset of the whole training set rather than fewer problems on the whole dataset. Since
Gaussian process classification scales cubically with the size of the dataset, this might be considerably faster. How-
ever, note that “one_vs_one” does not support predicting probability estimates but only plain predictions. Moreover,
note that GaussianProcessClassifier does not (yet) implement a true multi-class Laplace approximation in-
ternally, but as discussed above is based on solving several binary classification tasks internally, which are combined
using one-versus-rest or one-versus-one.

GPC examples

Probabilistic predictions with GPC

This example illustrates the predicted probability of GPC for an RBF kernel with different choices of the hyperparam-
eters. The first figure shows the predicted probability of GPC with arbitrarily chosen hyperparameters and with the
hyperparameters corresponding to the maximum log-marginal-likelihood (LML).

While the hyperparameters chosen by optimizing LML have a considerable larger LML, they perform slightly worse
according to the log-loss on test data. The figure shows that this is because they exhibit a steep change of the class
probabilities at the class boundaries (which is good) but have predicted probabilities close to 0.5 far away from the
class boundaries (which is bad) This undesirable effect is caused by the Laplace approximation used internally by
GPC.

The second figure shows the log-marginal-likelihood for different choices of the kernel’s hyperparameters, highlighting
the two choices of the hyperparameters used in the first figure by black dots.

Illustration of GPC on the XOR dataset

This example illustrates GPC on XOR data. Compared are a stationary, isotropic kernel (RBF) and a non-stationary
kernel (DotProduct). On this particular dataset, the DotProduct kernel obtains considerably better results be-
cause the class-boundaries are linear and coincide with the coordinate axes. In practice, however, stationary kernels
such as RBF often obtain better results.

Gaussian process classification (GPC) on iris dataset

This example illustrates the predicted probability of GPC for an isotropic and anisotropic RBF kernel on a two-
dimensional version for the iris-dataset. This illustrates the applicability of GPC to non-binary classification. The
anisotropic RBF kernel obtains slightly higher log-marginal-likelihood by assigning different length-scales to the two
feature dimensions.

Kernels for Gaussian Processes

Kernels (also called “covariance functions” in the context of GPs) are a crucial ingredient of GPs which determine
the shape of prior and posterior of the GP. They encode the assumptions on the function being learned by defining the

304 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

4.1. Supervised learning 305

../auto_examples/gaussian_process/plot_gpc.html

scikit-learn user guide, Release 0.23.2

306 Chapter 4. User Guide

../auto_examples/gaussian_process/plot_gpc.html
../auto_examples/gaussian_process/plot_gpc_xor.html

scikit-learn user guide, Release 0.23.2

“similarity” of two datapoints combined with the assumption that similar datapoints should have similar target values.
Two categories of kernels can be distinguished: stationary kernels depend only on the distance of two datapoints
and not on their absolute values 𝑘(𝑥𝑖, 𝑥𝑗) = 𝑘(𝑑(𝑥𝑖, 𝑥𝑗)) and are thus invariant to translations in the input space,
while non-stationary kernels depend also on the specific values of the datapoints. Stationary kernels can further be
subdivided into isotropic and anisotropic kernels, where isotropic kernels are also invariant to rotations in the input
space. For more details, we refer to Chapter 4 of [RW2006]. For guidance on how to best combine different kernels,
we refer to [Duv2014].

Gaussian Process Kernel API

The main usage of a Kernel is to compute the GP’s covariance between datapoints. For this, the method __call__
of the kernel can be called. This method can either be used to compute the “auto-covariance” of all pairs of datapoints
in a 2d array X, or the “cross-covariance” of all combinations of datapoints of a 2d array X with datapoints in a 2d
array Y. The following identity holds true for all kernels k (except for the WhiteKernel): k(X) == K(X, Y=X)

If only the diagonal of the auto-covariance is being used, the method diag() of a kernel can be called, which is more
computationally efficient than the equivalent call to __call__: np.diag(k(X, X)) == k.diag(X)

Kernels are parameterized by a vector 𝜃 of hyperparameters. These hyperparameters can for instance control length-
scales or periodicity of a kernel (see below). All kernels support computing analytic gradients of the kernel’s auto-
covariance with respect to 𝜃 via setting eval_gradient=True in the __call__ method. This gradient is used by
the Gaussian process (both regressor and classifier) in computing the gradient of the log-marginal-likelihood, which
in turn is used to determine the value of 𝜃, which maximizes the log-marginal-likelihood, via gradient ascent. For
each hyperparameter, the initial value and the bounds need to be specified when creating an instance of the kernel.
The current value of 𝜃 can be get and set via the property theta of the kernel object. Moreover, the bounds of the
hyperparameters can be accessed by the property bounds of the kernel. Note that both properties (theta and bounds)
return log-transformed values of the internally used values since those are typically more amenable to gradient-based
optimization. The specification of each hyperparameter is stored in the form of an instance of Hyperparameter
in the respective kernel. Note that a kernel using a hyperparameter with name “x” must have the attributes self.x and
self.x_bounds.

The abstract base class for all kernels is Kernel. Kernel implements a similar interface as Estimator, providing
the methods get_params(), set_params(), and clone(). This allows setting kernel values also via meta-

4.1. Supervised learning 307

../auto_examples/gaussian_process/plot_gpc_iris.html

scikit-learn user guide, Release 0.23.2

estimators such as Pipeline or GridSearch. Note that due to the nested structure of kernels (by applying kernel
operators, see below), the names of kernel parameters might become relatively complicated. In general, for a binary
kernel operator, parameters of the left operand are prefixed with k1__ and parameters of the right operand with k2__.
An additional convenience method is clone_with_theta(theta), which returns a cloned version of the kernel
but with the hyperparameters set to theta. An illustrative example:

>>> from sklearn.gaussian_process.kernels import ConstantKernel, RBF
>>> kernel = ConstantKernel(constant_value=1.0, constant_value_bounds=(0.0, 10.0)) *
→˓RBF(length_scale=0.5, length_scale_bounds=(0.0, 10.0)) + RBF(length_scale=2.0,
→˓length_scale_bounds=(0.0, 10.0))
>>> for hyperparameter in kernel.hyperparameters: print(hyperparameter)
Hyperparameter(name='k1__k1__constant_value', value_type='numeric', bounds=array([[0.
→˓, 10.]]), n_elements=1, fixed=False)
Hyperparameter(name='k1__k2__length_scale', value_type='numeric', bounds=array([[0.,
→˓10.]]), n_elements=1, fixed=False)
Hyperparameter(name='k2__length_scale', value_type='numeric', bounds=array([[0., 10.
→˓]]), n_elements=1, fixed=False)
>>> params = kernel.get_params()
>>> for key in sorted(params): print("%s : %s" % (key, params[key]))
k1 : 1**2 * RBF(length_scale=0.5)
k1__k1 : 1**2
k1__k1__constant_value : 1.0
k1__k1__constant_value_bounds : (0.0, 10.0)
k1__k2 : RBF(length_scale=0.5)
k1__k2__length_scale : 0.5
k1__k2__length_scale_bounds : (0.0, 10.0)
k2 : RBF(length_scale=2)
k2__length_scale : 2.0
k2__length_scale_bounds : (0.0, 10.0)
>>> print(kernel.theta) # Note: log-transformed
[0. -0.69314718 0.69314718]
>>> print(kernel.bounds) # Note: log-transformed
[[-inf 2.30258509]
[-inf 2.30258509]
[-inf 2.30258509]]

All Gaussian process kernels are interoperable with sklearn.metrics.pairwise and vice versa: instances
of subclasses of Kernel can be passed as metric to pairwise_kernels from sklearn.metrics.
pairwise. Moreover, kernel functions from pairwise can be used as GP kernels by using the wrapper class
PairwiseKernel. The only caveat is that the gradient of the hyperparameters is not analytic but numeric and
all those kernels support only isotropic distances. The parameter gamma is considered to be a hyperparameter and
may be optimized. The other kernel parameters are set directly at initialization and are kept fixed.

Basic kernels

The ConstantKernel kernel can be used as part of a Product kernel where it scales the magnitude of the other
factor (kernel) or as part of a Sum kernel, where it modifies the mean of the Gaussian process. It depends on a
parameter 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡_𝑣𝑎𝑙𝑢𝑒. It is defined as:

𝑘(𝑥𝑖, 𝑥𝑗) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡_𝑣𝑎𝑙𝑢𝑒 ∀ 𝑥1, 𝑥2

The main use-case of the WhiteKernel kernel is as part of a sum-kernel where it explains the noise-component of
the signal. Tuning its parameter 𝑛𝑜𝑖𝑠𝑒_𝑙𝑒𝑣𝑒𝑙 corresponds to estimating the noise-level. It is defined as:

𝑘(𝑥𝑖, 𝑥𝑗) = 𝑛𝑜𝑖𝑠𝑒_𝑙𝑒𝑣𝑒𝑙 if 𝑥𝑖 == 𝑥𝑗 else 0

308 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

Kernel operators

Kernel operators take one or two base kernels and combine them into a new kernel. The Sum kernel takes two kernels
𝑘1 and 𝑘2 and combines them via 𝑘𝑠𝑢𝑚(𝑋,𝑌) = 𝑘1(𝑋,𝑌) + 𝑘2(𝑋,𝑌). The Product kernel takes two kernels
𝑘1 and 𝑘2 and combines them via 𝑘𝑝𝑟𝑜𝑑𝑢𝑐𝑡(𝑋,𝑌) = 𝑘1(𝑋,𝑌) * 𝑘2(𝑋,𝑌). The Exponentiation kernel takes
one base kernel and a scalar parameter 𝑝 and combines them via 𝑘𝑒𝑥𝑝(𝑋,𝑌) = 𝑘(𝑋,𝑌)𝑝. Note that magic methods
__add__, __mul___ and __pow__ are overridden on the Kernel objects, so one can use e.g. RBF() + RBF()
as a shortcut for Sum(RBF(), RBF()).

Radial-basis function (RBF) kernel

The RBF kernel is a stationary kernel. It is also known as the “squared exponential” kernel. It is parameterized by a
length-scale parameter 𝑙 > 0, which can either be a scalar (isotropic variant of the kernel) or a vector with the same
number of dimensions as the inputs 𝑥 (anisotropic variant of the kernel). The kernel is given by:

𝑘(𝑥𝑖, 𝑥𝑗) = exp
(︂
−𝑑(𝑥𝑖, 𝑥𝑗)

2

2𝑙2

)︂
where 𝑑(·, ·) is the Euclidean distance. This kernel is infinitely differentiable, which implies that GPs with this kernel
as covariance function have mean square derivatives of all orders, and are thus very smooth. The prior and posterior
of a GP resulting from an RBF kernel are shown in the following figure:

Matérn kernel

The Matern kernel is a stationary kernel and a generalization of the RBF kernel. It has an additional parameter 𝜈
which controls the smoothness of the resulting function. It is parameterized by a length-scale parameter 𝑙 > 0, which
can either be a scalar (isotropic variant of the kernel) or a vector with the same number of dimensions as the inputs 𝑥
(anisotropic variant of the kernel). The kernel is given by:

𝑘(𝑥𝑖, 𝑥𝑗) =
1

Γ(𝜈)2𝜈−1

(︃√
2𝜈

𝑙
𝑑(𝑥𝑖, 𝑥𝑗)

)︃𝜈

𝐾𝜈

(︃√
2𝜈

𝑙
𝑑(𝑥𝑖, 𝑥𝑗)

)︃
,

where 𝑑(·, ·) is the Euclidean distance, 𝐾𝜈(·) is a modified Bessel function and Γ(·) is the gamma function. As
𝜈 → ∞, the Matérn kernel converges to the RBF kernel. When 𝜈 = 1/2, the Matérn kernel becomes identical to the
absolute exponential kernel, i.e.,

𝑘(𝑥𝑖, 𝑥𝑗) = exp

(︃
− 1

𝑙
𝑑(𝑥𝑖, 𝑥𝑗)

)︃
𝜈 = 1

2

In particular, 𝜈 = 3/2:

𝑘(𝑥𝑖, 𝑥𝑗) =

(︃
1 +

√
3

𝑙
𝑑(𝑥𝑖, 𝑥𝑗)

)︃
exp

(︃
−
√

3

𝑙
𝑑(𝑥𝑖, 𝑥𝑗)

)︃
𝜈 = 3

2

and 𝜈 = 5/2:

𝑘(𝑥𝑖, 𝑥𝑗) =

(︃
1 +

√
5

𝑙
𝑑(𝑥𝑖, 𝑥𝑗) +

5

3𝑙
𝑑(𝑥𝑖, 𝑥𝑗)

2

)︃
exp

(︃
−
√

5

𝑙
𝑑(𝑥𝑖, 𝑥𝑗)

)︃
𝜈 = 5

2

are popular choices for learning functions that are not infinitely differentiable (as assumed by the RBF kernel) but at
least once (𝜈 = 3/2) or twice differentiable (𝜈 = 5/2).

The flexibility of controlling the smoothness of the learned function via 𝜈 allows adapting to the properties of the
true underlying functional relation. The prior and posterior of a GP resulting from a Matérn kernel are shown in the
following figure:

See [RW2006], pp84 for further details regarding the different variants of the Matérn kernel.

4.1. Supervised learning 309

scikit-learn user guide, Release 0.23.2

310 Chapter 4. User Guide

../auto_examples/gaussian_process/plot_gpr_prior_posterior.html

scikit-learn user guide, Release 0.23.2

4.1. Supervised learning 311

../auto_examples/gaussian_process/plot_gpr_prior_posterior.html

scikit-learn user guide, Release 0.23.2

Rational quadratic kernel

The RationalQuadratic kernel can be seen as a scale mixture (an infinite sum) of RBF kernels with different
characteristic length-scales. It is parameterized by a length-scale parameter 𝑙 > 0 and a scale mixture parameter 𝛼 > 0
Only the isotropic variant where 𝑙 is a scalar is supported at the moment. The kernel is given by:

𝑘(𝑥𝑖, 𝑥𝑗) =

(︂
1 +

𝑑(𝑥𝑖, 𝑥𝑗)
2

2𝛼𝑙2

)︂−𝛼

The prior and posterior of a GP resulting from a RationalQuadratic kernel are shown in the following figure:

312 Chapter 4. User Guide

../auto_examples/gaussian_process/plot_gpr_prior_posterior.html

scikit-learn user guide, Release 0.23.2

Exp-Sine-Squared kernel

The ExpSineSquared kernel allows modeling periodic functions. It is parameterized by a length-scale parameter
𝑙 > 0 and a periodicity parameter 𝑝 > 0. Only the isotropic variant where 𝑙 is a scalar is supported at the moment.
The kernel is given by:

𝑘(𝑥𝑖, 𝑥𝑗) = exp
(︂
−2 sin2(𝜋𝑑(𝑥𝑖, 𝑥𝑗)/𝑝)

𝑙2

)︂
The prior and posterior of a GP resulting from an ExpSineSquared kernel are shown in the following figure:

4.1. Supervised learning 313

../auto_examples/gaussian_process/plot_gpr_prior_posterior.html

scikit-learn user guide, Release 0.23.2

Dot-Product kernel

The DotProduct kernel is non-stationary and can be obtained from linear regression by putting 𝑁(0, 1) priors on
the coefficients of 𝑥𝑑(𝑑 = 1, ..., 𝐷) and a prior of 𝑁(0, 𝜎2

0) on the bias. The DotProduct kernel is invariant to a
rotation of the coordinates about the origin, but not translations. It is parameterized by a parameter 𝜎2

0 . For 𝜎2
0 = 0,

the kernel is called the homogeneous linear kernel, otherwise it is inhomogeneous. The kernel is given by

𝑘(𝑥𝑖, 𝑥𝑗) = 𝜎2
0 + 𝑥𝑖 · 𝑥𝑗

The DotProduct kernel is commonly combined with exponentiation. An example with exponent 2 is shown in the
following figure:

314 Chapter 4. User Guide

../auto_examples/gaussian_process/plot_gpr_prior_posterior.html

scikit-learn user guide, Release 0.23.2

References

4.1.8 Cross decomposition

The cross decomposition module contains two main families of algorithms: the partial least squares (PLS) and the
canonical correlation analysis (CCA).

These families of algorithms are useful to find linear relations between two multivariate datasets: the X and Y argu-
ments of the fit method are 2D arrays.

Cross decomposition algorithms find the fundamental relations between two matrices (X and Y). They are latent
variable approaches to modeling the covariance structures in these two spaces. They will try to find the multidi-
mensional direction in the X space that explains the maximum multidimensional variance direction in the Y space.
PLS-regression is particularly suited when the matrix of predictors has more variables than observations, and when
there is multicollinearity among X values. By contrast, standard regression will fail in these cases.

Classes included in this module are PLSRegression PLSCanonical, CCA and PLSSVD

Reference:

• JA Wegelin A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case

Examples:

• Compare cross decomposition methods

4.1. Supervised learning 315

../auto_examples/cross_decomposition/plot_compare_cross_decomposition.html
https://www.stat.washington.edu/research/reports/2000/tr371.pdf

scikit-learn user guide, Release 0.23.2

4.1.9 Naive Bayes

Naive Bayes methods are a set of supervised learning algorithms based on applying Bayes’ theorem with the “naive”
assumption of conditional independence between every pair of features given the value of the class variable. Bayes’
theorem states the following relationship, given class variable 𝑦 and dependent feature vector 𝑥1 through 𝑥𝑛, :

𝑃 (𝑦 | 𝑥1, . . . , 𝑥𝑛) =
𝑃 (𝑦)𝑃 (𝑥1, . . . , 𝑥𝑛 | 𝑦)

𝑃 (𝑥1, . . . , 𝑥𝑛)

Using the naive conditional independence assumption that

𝑃 (𝑥𝑖|𝑦, 𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖+1, . . . , 𝑥𝑛) = 𝑃 (𝑥𝑖|𝑦),

for all 𝑖, this relationship is simplified to

𝑃 (𝑦 | 𝑥1, . . . , 𝑥𝑛) =
𝑃 (𝑦)

∏︀𝑛
𝑖=1 𝑃 (𝑥𝑖 | 𝑦)

𝑃 (𝑥1, . . . , 𝑥𝑛)

Since 𝑃 (𝑥1, . . . , 𝑥𝑛) is constant given the input, we can use the following classification rule:

𝑃 (𝑦 | 𝑥1, . . . , 𝑥𝑛) ∝ 𝑃 (𝑦)

𝑛∏︁
𝑖=1

𝑃 (𝑥𝑖 | 𝑦)

⇓

𝑦 = arg max
𝑦

𝑃 (𝑦)

𝑛∏︁
𝑖=1

𝑃 (𝑥𝑖 | 𝑦),

and we can use Maximum A Posteriori (MAP) estimation to estimate 𝑃 (𝑦) and 𝑃 (𝑥𝑖 | 𝑦); the former is then the
relative frequency of class 𝑦 in the training set.

The different naive Bayes classifiers differ mainly by the assumptions they make regarding the distribution of 𝑃 (𝑥𝑖 |
𝑦).

In spite of their apparently over-simplified assumptions, naive Bayes classifiers have worked quite well in many real-
world situations, famously document classification and spam filtering. They require a small amount of training data to
estimate the necessary parameters. (For theoretical reasons why naive Bayes works well, and on which types of data
it does, see the references below.)

Naive Bayes learners and classifiers can be extremely fast compared to more sophisticated methods. The decoupling
of the class conditional feature distributions means that each distribution can be independently estimated as a one
dimensional distribution. This in turn helps to alleviate problems stemming from the curse of dimensionality.

On the flip side, although naive Bayes is known as a decent classifier, it is known to be a bad estimator, so the
probability outputs from predict_proba are not to be taken too seriously.

References:

• H. Zhang (2004). The optimality of Naive Bayes. Proc. FLAIRS.

Gaussian Naive Bayes

GaussianNB implements the Gaussian Naive Bayes algorithm for classification. The likelihood of the features is
assumed to be Gaussian:

𝑃 (𝑥𝑖 | 𝑦) =
1√︁

2𝜋𝜎2
𝑦

exp

(︂
− (𝑥𝑖 − 𝜇𝑦)2

2𝜎2
𝑦

)︂
The parameters 𝜎𝑦 and 𝜇𝑦 are estimated using maximum likelihood.

316 Chapter 4. User Guide

https://www.cs.unb.ca/~hzhang/publications/FLAIRS04ZhangH.pdf

scikit-learn user guide, Release 0.23.2

>>> from sklearn.datasets import load_iris
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.naive_bayes import GaussianNB
>>> X, y = load_iris(return_X_y=True)
>>> X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_
→˓state=0)
>>> gnb = GaussianNB()
>>> y_pred = gnb.fit(X_train, y_train).predict(X_test)
>>> print("Number of mislabeled points out of a total %d points : %d"
... % (X_test.shape[0], (y_test != y_pred).sum()))
Number of mislabeled points out of a total 75 points : 4

Multinomial Naive Bayes

MultinomialNB implements the naive Bayes algorithm for multinomially distributed data, and is one of the two
classic naive Bayes variants used in text classification (where the data are typically represented as word vector counts,
although tf-idf vectors are also known to work well in practice). The distribution is parametrized by vectors 𝜃𝑦 =
(𝜃𝑦1, . . . , 𝜃𝑦𝑛) for each class 𝑦, where 𝑛 is the number of features (in text classification, the size of the vocabulary)
and 𝜃𝑦𝑖 is the probability 𝑃 (𝑥𝑖 | 𝑦) of feature 𝑖 appearing in a sample belonging to class 𝑦.

The parameters 𝜃𝑦 is estimated by a smoothed version of maximum likelihood, i.e. relative frequency counting:

𝜃𝑦𝑖 =
𝑁𝑦𝑖 + 𝛼

𝑁𝑦 + 𝛼𝑛

where 𝑁𝑦𝑖 =
∑︀

𝑥∈𝑇 𝑥𝑖 is the number of times feature 𝑖 appears in a sample of class 𝑦 in the training set 𝑇 , and
𝑁𝑦 =

∑︀𝑛
𝑖=1𝑁𝑦𝑖 is the total count of all features for class 𝑦.

The smoothing priors 𝛼 ≥ 0 accounts for features not present in the learning samples and prevents zero probabilities
in further computations. Setting 𝛼 = 1 is called Laplace smoothing, while 𝛼 < 1 is called Lidstone smoothing.

Complement Naive Bayes

ComplementNB implements the complement naive Bayes (CNB) algorithm. CNB is an adaptation of the standard
multinomial naive Bayes (MNB) algorithm that is particularly suited for imbalanced data sets. Specifically, CNB uses
statistics from the complement of each class to compute the model’s weights. The inventors of CNB show empirically
that the parameter estimates for CNB are more stable than those for MNB. Further, CNB regularly outperforms MNB
(often by a considerable margin) on text classification tasks. The procedure for calculating the weights is as follows:

𝜃𝑐𝑖 =
𝛼𝑖 +

∑︀
𝑗:𝑦𝑗 ̸=𝑐 𝑑𝑖𝑗

𝛼+
∑︀

𝑗:𝑦𝑗 ̸=𝑐

∑︀
𝑘 𝑑𝑘𝑗

𝑤𝑐𝑖 = log 𝜃𝑐𝑖

𝑤𝑐𝑖 =
𝑤𝑐𝑖∑︀
𝑗 |𝑤𝑐𝑗 |

where the summations are over all documents 𝑗 not in class 𝑐, 𝑑𝑖𝑗 is either the count or tf-idf value of term 𝑖 in
document 𝑗, 𝛼𝑖 is a smoothing hyperparameter like that found in MNB, and 𝛼 =

∑︀
𝑖 𝛼𝑖. The second normalization

addresses the tendency for longer documents to dominate parameter estimates in MNB. The classification rule is:

𝑐 = arg min
𝑐

∑︁
𝑖

𝑡𝑖𝑤𝑐𝑖

i.e., a document is assigned to the class that is the poorest complement match.

4.1. Supervised learning 317

scikit-learn user guide, Release 0.23.2

References:

• Rennie, J. D., Shih, L., Teevan, J., & Karger, D. R. (2003). Tackling the poor assumptions of naive bayes text
classifiers. In ICML (Vol. 3, pp. 616-623).

Bernoulli Naive Bayes

BernoulliNB implements the naive Bayes training and classification algorithms for data that is distributed ac-
cording to multivariate Bernoulli distributions; i.e., there may be multiple features but each one is assumed to be a
binary-valued (Bernoulli, boolean) variable. Therefore, this class requires samples to be represented as binary-valued
feature vectors; if handed any other kind of data, a BernoulliNB instance may binarize its input (depending on the
binarize parameter).

The decision rule for Bernoulli naive Bayes is based on

𝑃 (𝑥𝑖 | 𝑦) = 𝑃 (𝑖 | 𝑦)𝑥𝑖 + (1− 𝑃 (𝑖 | 𝑦))(1− 𝑥𝑖)

which differs from multinomial NB’s rule in that it explicitly penalizes the non-occurrence of a feature 𝑖 that is an
indicator for class 𝑦, where the multinomial variant would simply ignore a non-occurring feature.

In the case of text classification, word occurrence vectors (rather than word count vectors) may be used to train and
use this classifier. BernoulliNB might perform better on some datasets, especially those with shorter documents.
It is advisable to evaluate both models, if time permits.

References:

• C.D. Manning, P. Raghavan and H. Schütze (2008). Introduction to Information Retrieval. Cambridge Uni-
versity Press, pp. 234-265.

• A. McCallum and K. Nigam (1998). A comparison of event models for Naive Bayes text classification. Proc.
AAAI/ICML-98 Workshop on Learning for Text Categorization, pp. 41-48.

• V. Metsis, I. Androutsopoulos and G. Paliouras (2006). Spam filtering with Naive Bayes – Which Naive
Bayes? 3rd Conf. on Email and Anti-Spam (CEAS).

Categorical Naive Bayes

CategoricalNB implements the categorical naive Bayes algorithm for categorically distributed data. It assumes
that each feature, which is described by the index 𝑖, has its own categorical distribution.

For each feature 𝑖 in the training set 𝑋 , CategoricalNB estimates a categorical distribution for each feature i of
X conditioned on the class y. The index set of the samples is defined as 𝐽 = {1, . . . ,𝑚}, with 𝑚 as the number of
samples.

The probability of category 𝑡 in feature 𝑖 given class 𝑐 is estimated as:

𝑃 (𝑥𝑖 = 𝑡 | 𝑦 = 𝑐 ; 𝛼) =
𝑁𝑡𝑖𝑐 + 𝛼

𝑁𝑐 + 𝛼𝑛𝑖
,

where 𝑁𝑡𝑖𝑐 = |{𝑗 ∈ 𝐽 | 𝑥𝑖𝑗 = 𝑡, 𝑦𝑗 = 𝑐}| is the number of times category 𝑡 appears in the samples 𝑥𝑖, which belong
to class 𝑐, 𝑁𝑐 = |{𝑗 ∈ 𝐽 | 𝑦𝑗 = 𝑐}| is the number of samples with class c, 𝛼 is a smoothing parameter and 𝑛𝑖 is the
number of available categories of feature 𝑖.

318 Chapter 4. User Guide

https://people.csail.mit.edu/jrennie/papers/icml03-nb.pdf
https://people.csail.mit.edu/jrennie/papers/icml03-nb.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.46.1529
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.61.5542
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.61.5542

scikit-learn user guide, Release 0.23.2

CategoricalNB assumes that the sample matrix 𝑋 is encoded (for instance with the help of OrdinalEncoder)
such that all categories for each feature 𝑖 are represented with numbers 0, ..., 𝑛𝑖−1 where 𝑛𝑖 is the number of available
categories of feature 𝑖.

Out-of-core naive Bayes model fitting

Naive Bayes models can be used to tackle large scale classification problems for which the full training set might not fit
in memory. To handle this case, MultinomialNB, BernoulliNB, and GaussianNB expose a partial_fit
method that can be used incrementally as done with other classifiers as demonstrated in Out-of-core classification of
text documents. All naive Bayes classifiers support sample weighting.

Contrary to the fit method, the first call to partial_fit needs to be passed the list of all the expected class labels.

For an overview of available strategies in scikit-learn, see also the out-of-core learning documentation.

Note: The partial_fit method call of naive Bayes models introduces some computational overhead. It is
recommended to use data chunk sizes that are as large as possible, that is as the available RAM allows.

4.1.10 Decision Trees

Decision Trees (DTs) are a non-parametric supervised learning method used for classification and regression. The
goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the
data features.

For instance, in the example below, decision trees learn from data to approximate a sine curve with a set of if-then-else
decision rules. The deeper the tree, the more complex the decision rules and the fitter the model.

Some advantages of decision trees are:

• Simple to understand and to interpret. Trees can be visualised.

4.1. Supervised learning 319

../auto_examples/tree/plot_tree_regression.html

scikit-learn user guide, Release 0.23.2

• Requires little data preparation. Other techniques often require data normalisation, dummy variables need to be
created and blank values to be removed. Note however that this module does not support missing values.

• The cost of using the tree (i.e., predicting data) is logarithmic in the number of data points used to train the tree.

• Able to handle both numerical and categorical data. Other techniques are usually specialised in analysing
datasets that have only one type of variable. See algorithms for more information.

• Able to handle multi-output problems.

• Uses a white box model. If a given situation is observable in a model, the explanation for the condition is easily
explained by boolean logic. By contrast, in a black box model (e.g., in an artificial neural network), results may
be more difficult to interpret.

• Possible to validate a model using statistical tests. That makes it possible to account for the reliability of the
model.

• Performs well even if its assumptions are somewhat violated by the true model from which the data were
generated.

The disadvantages of decision trees include:

• Decision-tree learners can create over-complex trees that do not generalise the data well. This is called overfit-
ting. Mechanisms such as pruning, setting the minimum number of samples required at a leaf node or setting
the maximum depth of the tree are necessary to avoid this problem.

• Decision trees can be unstable because small variations in the data might result in a completely different tree
being generated. This problem is mitigated by using decision trees within an ensemble.

• The problem of learning an optimal decision tree is known to be NP-complete under several aspects of optimality
and even for simple concepts. Consequently, practical decision-tree learning algorithms are based on heuristic
algorithms such as the greedy algorithm where locally optimal decisions are made at each node. Such algorithms
cannot guarantee to return the globally optimal decision tree. This can be mitigated by training multiple trees in
an ensemble learner, where the features and samples are randomly sampled with replacement.

• There are concepts that are hard to learn because decision trees do not express them easily, such as XOR, parity
or multiplexer problems.

• Decision tree learners create biased trees if some classes dominate. It is therefore recommended to balance the
dataset prior to fitting with the decision tree.

Classification

DecisionTreeClassifier is a class capable of performing multi-class classification on a dataset.

As with other classifiers, DecisionTreeClassifier takes as input two arrays: an array X, sparse or dense,
of size [n_samples, n_features] holding the training samples, and an array Y of integer values, size
[n_samples], holding the class labels for the training samples:

>>> from sklearn import tree
>>> X = [[0, 0], [1, 1]]
>>> Y = [0, 1]
>>> clf = tree.DecisionTreeClassifier()
>>> clf = clf.fit(X, Y)

After being fitted, the model can then be used to predict the class of samples:

>>> clf.predict([[2., 2.]])
array([1])

320 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

Alternatively, the probability of each class can be predicted, which is the fraction of training samples of the same class
in a leaf:

>>> clf.predict_proba([[2., 2.]])
array([[0., 1.]])

DecisionTreeClassifier is capable of both binary (where the labels are [-1, 1]) classification and multiclass
(where the labels are [0, . . . , K-1]) classification.

Using the Iris dataset, we can construct a tree as follows:

>>> from sklearn.datasets import load_iris
>>> from sklearn import tree
>>> X, y = load_iris(return_X_y=True)
>>> clf = tree.DecisionTreeClassifier()
>>> clf = clf.fit(X, y)

Once trained, you can plot the tree with the plot_tree function:

>>> tree.plot_tree(clf)

We can also export the tree in Graphviz format using the export_graphviz exporter. If you use the
conda package manager, the graphviz binaries and the python package can be installed with conda install
python-graphviz.

Alternatively binaries for graphviz can be downloaded from the graphviz project homepage, and the Python wrapper
installed from pypi with pip install graphviz.

Below is an example graphviz export of the above tree trained on the entire iris dataset; the results are saved in an
output file iris.pdf:

>>> import graphviz
>>> dot_data = tree.export_graphviz(clf, out_file=None)

(continues on next page)

4.1. Supervised learning 321

../auto_examples/tree/plot_iris_dtc.html
https://www.graphviz.org/
https://conda.io

scikit-learn user guide, Release 0.23.2

(continued from previous page)

>>> graph = graphviz.Source(dot_data)
>>> graph.render("iris")

The export_graphviz exporter also supports a variety of aesthetic options, including coloring nodes by their class
(or value for regression) and using explicit variable and class names if desired. Jupyter notebooks also render these
plots inline automatically:

>>> dot_data = tree.export_graphviz(clf, out_file=None,
... feature_names=iris.feature_names,
... class_names=iris.target_names,
... filled=True, rounded=True,
... special_characters=True)
>>> graph = graphviz.Source(dot_data)
>>> graph

Alternatively, the tree can also be exported in textual format with the function export_text. This method doesn’t
require the installation of external libraries and is more compact:

>>> from sklearn.datasets import load_iris
>>> from sklearn.tree import DecisionTreeClassifier
>>> from sklearn.tree import export_text

(continues on next page)

322 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

(continued from previous page)

>>> iris = load_iris()
>>> decision_tree = DecisionTreeClassifier(random_state=0, max_depth=2)
>>> decision_tree = decision_tree.fit(iris.data, iris.target)
>>> r = export_text(decision_tree, feature_names=iris['feature_names'])
>>> print(r)
|--- petal width (cm) <= 0.80
| |--- class: 0
|--- petal width (cm) > 0.80
| |--- petal width (cm) <= 1.75
| | |--- class: 1
| |--- petal width (cm) > 1.75
| | |--- class: 2
<BLANKLINE>

Examples:

• Plot the decision surface of a decision tree on the iris dataset

• Understanding the decision tree structure

Regression

Decision trees can also be applied to regression problems, using the DecisionTreeRegressor class.

As in the classification setting, the fit method will take as argument arrays X and y, only that in this case y is expected
to have floating point values instead of integer values:

4.1. Supervised learning 323

../auto_examples/tree/plot_iris_dtc.html

scikit-learn user guide, Release 0.23.2

>>> from sklearn import tree
>>> X = [[0, 0], [2, 2]]
>>> y = [0.5, 2.5]
>>> clf = tree.DecisionTreeRegressor()
>>> clf = clf.fit(X, y)
>>> clf.predict([[1, 1]])
array([0.5])

Examples:

• Decision Tree Regression

Multi-output problems

A multi-output problem is a supervised learning problem with several outputs to predict, that is when Y is a 2d array
of size [n_samples, n_outputs].

When there is no correlation between the outputs, a very simple way to solve this kind of problem is to build n
independent models, i.e. one for each output, and then to use those models to independently predict each one of the
n outputs. However, because it is likely that the output values related to the same input are themselves correlated, an
often better way is to build a single model capable of predicting simultaneously all n outputs. First, it requires lower
training time since only a single estimator is built. Second, the generalization accuracy of the resulting estimator may
often be increased.

With regard to decision trees, this strategy can readily be used to support multi-output problems. This requires the
following changes:

• Store n output values in leaves, instead of 1;

• Use splitting criteria that compute the average reduction across all n outputs.

324 Chapter 4. User Guide

../auto_examples/tree/plot_tree_regression.html

scikit-learn user guide, Release 0.23.2

This module offers support for multi-output problems by implementing this strategy in both
DecisionTreeClassifier and DecisionTreeRegressor. If a decision tree is fit on an output
array Y of size [n_samples, n_outputs] then the resulting estimator will:

• Output n_output values upon predict;

• Output a list of n_output arrays of class probabilities upon predict_proba.

The use of multi-output trees for regression is demonstrated in Multi-output Decision Tree Regression. In this example,
the input X is a single real value and the outputs Y are the sine and cosine of X.

The use of multi-output trees for classification is demonstrated in Face completion with a multi-output estimators. In
this example, the inputs X are the pixels of the upper half of faces and the outputs Y are the pixels of the lower half of
those faces.

Examples:

• Multi-output Decision Tree Regression

• Face completion with a multi-output estimators

References:

• M. Dumont et al, Fast multi-class image annotation with random subwindows and multiple output randomized
trees, International Conference on Computer Vision Theory and Applications 2009

Complexity

In general, the run time cost to construct a balanced binary tree is 𝑂(𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 log(𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠)) and query
time 𝑂(log(𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠)). Although the tree construction algorithm attempts to generate balanced trees, they will not

4.1. Supervised learning 325

../auto_examples/tree/plot_tree_regression_multioutput.html
http://www.montefiore.ulg.ac.be/services/stochastic/pubs/2009/DMWG09/dumont-visapp09-shortpaper.pdf
http://www.montefiore.ulg.ac.be/services/stochastic/pubs/2009/DMWG09/dumont-visapp09-shortpaper.pdf

scikit-learn user guide, Release 0.23.2

326 Chapter 4. User Guide

../auto_examples/miscellaneous/plot_multioutput_face_completion.html

scikit-learn user guide, Release 0.23.2

always be balanced. Assuming that the subtrees remain approximately balanced, the cost at each node consists of
searching through 𝑂(𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) to find the feature that offers the largest reduction in entropy. This has a cost of
𝑂(𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 log(𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠)) at each node, leading to a total cost over the entire trees (by summing the cost at
each node) of 𝑂(𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑛

2
𝑠𝑎𝑚𝑝𝑙𝑒𝑠 log(𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠)).

Tips on practical use

• Decision trees tend to overfit on data with a large number of features. Getting the right ratio of samples to
number of features is important, since a tree with few samples in high dimensional space is very likely to
overfit.

• Consider performing dimensionality reduction (PCA, ICA, or Feature selection) beforehand to give your tree a
better chance of finding features that are discriminative.

• Understanding the decision tree structure will help in gaining more insights about how the decision tree makes
predictions, which is important for understanding the important features in the data.

• Visualise your tree as you are training by using the export function. Use max_depth=3 as an initial tree
depth to get a feel for how the tree is fitting to your data, and then increase the depth.

• Remember that the number of samples required to populate the tree doubles for each additional level the tree
grows to. Use max_depth to control the size of the tree to prevent overfitting.

• Use min_samples_split or min_samples_leaf to ensure that multiple samples inform every decision
in the tree, by controlling which splits will be considered. A very small number will usually mean the tree will
overfit, whereas a large number will prevent the tree from learning the data. Try min_samples_leaf=5 as an
initial value. If the sample size varies greatly, a float number can be used as percentage in these two parameters.
While min_samples_split can create arbitrarily small leaves, min_samples_leaf guarantees that each
leaf has a minimum size, avoiding low-variance, over-fit leaf nodes in regression problems. For classification
with few classes, min_samples_leaf=1 is often the best choice.

• Balance your dataset before training to prevent the tree from being biased toward the classes that are dominant.
Class balancing can be done by sampling an equal number of samples from each class, or preferably by nor-
malizing the sum of the sample weights (sample_weight) for each class to the same value. Also note that
weight-based pre-pruning criteria, such as min_weight_fraction_leaf, will then be less biased toward
dominant classes than criteria that are not aware of the sample weights, like min_samples_leaf.

• If the samples are weighted, it will be easier to optimize the tree structure using weight-based pre-pruning
criterion such as min_weight_fraction_leaf, which ensure that leaf nodes contain at least a fraction of
the overall sum of the sample weights.

• All decision trees use np.float32 arrays internally. If training data is not in this format, a copy of the dataset
will be made.

• If the input matrix X is very sparse, it is recommended to convert to sparse csc_matrix before calling fit and
sparse csr_matrix before calling predict. Training time can be orders of magnitude faster for a sparse matrix
input compared to a dense matrix when features have zero values in most of the samples.

Tree algorithms: ID3, C4.5, C5.0 and CART

What are all the various decision tree algorithms and how do they differ from each other? Which one is implemented
in scikit-learn?

ID3 (Iterative Dichotomiser 3) was developed in 1986 by Ross Quinlan. The algorithm creates a multiway tree, finding
for each node (i.e. in a greedy manner) the categorical feature that will yield the largest information gain for categorical
targets. Trees are grown to their maximum size and then a pruning step is usually applied to improve the ability of the
tree to generalise to unseen data.

4.1. Supervised learning 327

https://en.wikipedia.org/wiki/ID3_algorithm

scikit-learn user guide, Release 0.23.2

C4.5 is the successor to ID3 and removed the restriction that features must be categorical by dynamically defining
a discrete attribute (based on numerical variables) that partitions the continuous attribute value into a discrete set of
intervals. C4.5 converts the trained trees (i.e. the output of the ID3 algorithm) into sets of if-then rules. These accuracy
of each rule is then evaluated to determine the order in which they should be applied. Pruning is done by removing a
rule’s precondition if the accuracy of the rule improves without it.

C5.0 is Quinlan’s latest version release under a proprietary license. It uses less memory and builds smaller rulesets
than C4.5 while being more accurate.

CART (Classification and Regression Trees) is very similar to C4.5, but it differs in that it supports numerical target
variables (regression) and does not compute rule sets. CART constructs binary trees using the feature and threshold
that yield the largest information gain at each node.

scikit-learn uses an optimised version of the CART algorithm; however, scikit-learn implementation does not support
categorical variables for now.

Mathematical formulation

Given training vectors 𝑥𝑖 ∈ 𝑅𝑛, i=1,. . . , l and a label vector 𝑦 ∈ 𝑅𝑙, a decision tree recursively partitions the space
such that the samples with the same labels are grouped together.

Let the data at node𝑚 be represented by𝑄. For each candidate split 𝜃 = (𝑗, 𝑡𝑚) consisting of a feature 𝑗 and threshold
𝑡𝑚, partition the data into 𝑄𝑙𝑒𝑓𝑡(𝜃) and 𝑄𝑟𝑖𝑔ℎ𝑡(𝜃) subsets

𝑄𝑙𝑒𝑓𝑡(𝜃) = (𝑥, 𝑦)|𝑥𝑗 <= 𝑡𝑚

𝑄𝑟𝑖𝑔ℎ𝑡(𝜃) = 𝑄 ∖𝑄𝑙𝑒𝑓𝑡(𝜃)

The impurity at 𝑚 is computed using an impurity function 𝐻(), the choice of which depends on the task being solved
(classification or regression)

𝐺(𝑄, 𝜃) =
𝑛𝑙𝑒𝑓𝑡
𝑁𝑚

𝐻(𝑄𝑙𝑒𝑓𝑡(𝜃)) +
𝑛𝑟𝑖𝑔ℎ𝑡
𝑁𝑚

𝐻(𝑄𝑟𝑖𝑔ℎ𝑡(𝜃))

Select the parameters that minimises the impurity

𝜃* = argmin𝜃 𝐺(𝑄, 𝜃)

Recurse for subsets 𝑄𝑙𝑒𝑓𝑡(𝜃
*) and 𝑄𝑟𝑖𝑔ℎ𝑡(𝜃

*) until the maximum allowable depth is reached, 𝑁𝑚 < min𝑠𝑎𝑚𝑝𝑙𝑒𝑠 or
𝑁𝑚 = 1.

Classification criteria

If a target is a classification outcome taking on values 0,1,. . . ,K-1, for node 𝑚, representing a region 𝑅𝑚 with 𝑁𝑚

observations, let

𝑝𝑚𝑘 = 1/𝑁𝑚

∑︁
𝑥𝑖∈𝑅𝑚

𝐼(𝑦𝑖 = 𝑘)

be the proportion of class k observations in node 𝑚

Common measures of impurity are Gini

𝐻(𝑋𝑚) =
∑︁
𝑘

𝑝𝑚𝑘(1− 𝑝𝑚𝑘)

Entropy

𝐻(𝑋𝑚) = −
∑︁
𝑘

𝑝𝑚𝑘 log(𝑝𝑚𝑘)

328 Chapter 4. User Guide

https://en.wikipedia.org/wiki/Predictive_analytics#Classification_and_regression_trees_.28CART.29

scikit-learn user guide, Release 0.23.2

and Misclassification

𝐻(𝑋𝑚) = 1−max(𝑝𝑚𝑘)

where 𝑋𝑚 is the training data in node 𝑚

Regression criteria

If the target is a continuous value, then for node 𝑚, representing a region 𝑅𝑚 with 𝑁𝑚 observations, common criteria
to minimise as for determining locations for future splits are Mean Squared Error, which minimizes the L2 error
using mean values at terminal nodes, and Mean Absolute Error, which minimizes the L1 error using median values at
terminal nodes.

Mean Squared Error:

𝑦𝑚 =
1

𝑁𝑚

∑︁
𝑖∈𝑁𝑚

𝑦𝑖

𝐻(𝑋𝑚) =
1

𝑁𝑚

∑︁
𝑖∈𝑁𝑚

(𝑦𝑖 − 𝑦𝑚)2

Mean Absolute Error:

𝑚𝑒𝑑𝑖𝑎𝑛(𝑦)𝑚 = median
𝑖∈𝑁𝑚

(𝑦𝑖)

𝐻(𝑋𝑚) =
1

𝑁𝑚

∑︁
𝑖∈𝑁𝑚

|𝑦𝑖 −𝑚𝑒𝑑𝑖𝑎𝑛(𝑦)𝑚|

where 𝑋𝑚 is the training data in node 𝑚

Minimal Cost-Complexity Pruning

Minimal cost-complexity pruning is an algorithm used to prune a tree to avoid over-fitting, described in Chapter 3 of
[BRE]. This algorithm is parameterized by 𝛼 ≥ 0 known as the complexity parameter. The complexity parameter is
used to define the cost-complexity measure, 𝑅𝛼(𝑇) of a given tree 𝑇 :

𝑅𝛼(𝑇) = 𝑅(𝑇) + 𝛼|𝑇 |

where |𝑇 | is the number of terminal nodes in 𝑇 and 𝑅(𝑇) is traditionally defined as the total misclassification rate of
the terminal nodes. Alternatively, scikit-learn uses the total sample weighted impurity of the terminal nodes for 𝑅(𝑇).
As shown above, the impurity of a node depends on the criterion. Minimal cost-complexity pruning finds the subtree
of 𝑇 that minimizes 𝑅𝛼(𝑇).

The cost complexity measure of a single node is𝑅𝛼(𝑡) = 𝑅(𝑡)+𝛼. The branch, 𝑇𝑡, is defined to be a tree where node 𝑡
is its root. In general, the impurity of a node is greater than the sum of impurities of its terminal nodes, 𝑅(𝑇𝑡) < 𝑅(𝑡).
However, the cost complexity measure of a node, 𝑡, and its branch, 𝑇𝑡, can be equal depending on 𝛼. We define the
effective 𝛼 of a node to be the value where they are equal, 𝑅𝛼(𝑇𝑡) = 𝑅𝛼(𝑡) or 𝛼𝑒𝑓𝑓 (𝑡) = 𝑅(𝑡)−𝑅(𝑇𝑡)

|𝑇 |−1 . A non-terminal
node with the smallest value of 𝛼𝑒𝑓𝑓 is the weakest link and will be pruned. This process stops when the pruned tree’s
minimal 𝛼𝑒𝑓𝑓 is greater than the ccp_alpha parameter.

Examples:

• Post pruning decision trees with cost complexity pruning

4.1. Supervised learning 329

scikit-learn user guide, Release 0.23.2

References:

• https://en.wikipedia.org/wiki/Decision_tree_learning

• https://en.wikipedia.org/wiki/Predictive_analytics

• J.R. Quinlan. C4. 5: programs for machine learning. Morgan Kaufmann, 1993.

• T. Hastie, R. Tibshirani and J. Friedman. Elements of Statistical Learning, Springer, 2009.

4.1.11 Ensemble methods

The goal of ensemble methods is to combine the predictions of several base estimators built with a given learning
algorithm in order to improve generalizability / robustness over a single estimator.

Two families of ensemble methods are usually distinguished:

• In averaging methods, the driving principle is to build several estimators independently and then to average
their predictions. On average, the combined estimator is usually better than any of the single base estimator
because its variance is reduced.

Examples: Bagging methods, Forests of randomized trees, . . .

• By contrast, in boosting methods, base estimators are built sequentially and one tries to reduce the bias of the
combined estimator. The motivation is to combine several weak models to produce a powerful ensemble.

Examples: AdaBoost, Gradient Tree Boosting, . . .

Bagging meta-estimator

In ensemble algorithms, bagging methods form a class of algorithms which build several instances of a black-box
estimator on random subsets of the original training set and then aggregate their individual predictions to form a final
prediction. These methods are used as a way to reduce the variance of a base estimator (e.g., a decision tree), by
introducing randomization into its construction procedure and then making an ensemble out of it. In many cases,
bagging methods constitute a very simple way to improve with respect to a single model, without making it necessary
to adapt the underlying base algorithm. As they provide a way to reduce overfitting, bagging methods work best with
strong and complex models (e.g., fully developed decision trees), in contrast with boosting methods which usually
work best with weak models (e.g., shallow decision trees).

Bagging methods come in many flavours but mostly differ from each other by the way they draw random subsets of
the training set:

• When random subsets of the dataset are drawn as random subsets of the samples, then this algorithm is known
as Pasting [B1999].

• When samples are drawn with replacement, then the method is known as Bagging [B1996].

• When random subsets of the dataset are drawn as random subsets of the features, then the method is known as
Random Subspaces [H1998].

• Finally, when base estimators are built on subsets of both samples and features, then the method is known as
Random Patches [LG2012].

In scikit-learn, bagging methods are offered as a unified BaggingClassifier meta-estimator (resp.
BaggingRegressor), taking as input a user-specified base estimator along with parameters specifying the strategy
to draw random subsets. In particular, max_samples and max_features control the size of the subsets (in terms
of samples and features), while bootstrap and bootstrap_features control whether samples and features

330 Chapter 4. User Guide

https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Predictive_analytics

scikit-learn user guide, Release 0.23.2

are drawn with or without replacement. When using a subset of the available samples the generalization accuracy can
be estimated with the out-of-bag samples by setting oob_score=True. As an example, the snippet below illustrates
how to instantiate a bagging ensemble of KNeighborsClassifier base estimators, each built on random subsets
of 50% of the samples and 50% of the features.

>>> from sklearn.ensemble import BaggingClassifier
>>> from sklearn.neighbors import KNeighborsClassifier
>>> bagging = BaggingClassifier(KNeighborsClassifier(),
... max_samples=0.5, max_features=0.5)

Examples:

• Single estimator versus bagging: bias-variance decomposition

References

Forests of randomized trees

The sklearn.ensemble module includes two averaging algorithms based on randomized decision trees: the Ran-
domForest algorithm and the Extra-Trees method. Both algorithms are perturb-and-combine techniques [B1998]
specifically designed for trees. This means a diverse set of classifiers is created by introducing randomness in the
classifier construction. The prediction of the ensemble is given as the averaged prediction of the individual classifiers.

As other classifiers, forest classifiers have to be fitted with two arrays: a sparse or dense array X of size [n_samples,
n_features] holding the training samples, and an array Y of size [n_samples] holding the target values (class
labels) for the training samples:

>>> from sklearn.ensemble import RandomForestClassifier
>>> X = [[0, 0], [1, 1]]
>>> Y = [0, 1]
>>> clf = RandomForestClassifier(n_estimators=10)
>>> clf = clf.fit(X, Y)

Like decision trees, forests of trees also extend to multi-output problems (if Y is an array of size [n_samples,
n_outputs]).

Random Forests

In random forests (see RandomForestClassifier and RandomForestRegressor classes), each tree in the
ensemble is built from a sample drawn with replacement (i.e., a bootstrap sample) from the training set.

Furthermore, when splitting each node during the construction of a tree, the best split is found either from all input
features or a random subset of size max_features. (See the parameter tuning guidelines for more details).

The purpose of these two sources of randomness is to decrease the variance of the forest estimator. Indeed, individual
decision trees typically exhibit high variance and tend to overfit. The injected randomness in forests yield decision
trees with somewhat decoupled prediction errors. By taking an average of those predictions, some errors can cancel
out. Random forests achieve a reduced variance by combining diverse trees, sometimes at the cost of a slight increase
in bias. In practice the variance reduction is often significant hence yielding an overall better model.

In contrast to the original publication [B2001], the scikit-learn implementation combines classifiers by averaging their
probabilistic prediction, instead of letting each classifier vote for a single class.

4.1. Supervised learning 331

scikit-learn user guide, Release 0.23.2

Extremely Randomized Trees

In extremely randomized trees (see ExtraTreesClassifier and ExtraTreesRegressor classes), random-
ness goes one step further in the way splits are computed. As in random forests, a random subset of candidate features
is used, but instead of looking for the most discriminative thresholds, thresholds are drawn at random for each candi-
date feature and the best of these randomly-generated thresholds is picked as the splitting rule. This usually allows to
reduce the variance of the model a bit more, at the expense of a slightly greater increase in bias:

>>> from sklearn.model_selection import cross_val_score
>>> from sklearn.datasets import make_blobs
>>> from sklearn.ensemble import RandomForestClassifier
>>> from sklearn.ensemble import ExtraTreesClassifier
>>> from sklearn.tree import DecisionTreeClassifier

>>> X, y = make_blobs(n_samples=10000, n_features=10, centers=100,
... random_state=0)

>>> clf = DecisionTreeClassifier(max_depth=None, min_samples_split=2,
... random_state=0)
>>> scores = cross_val_score(clf, X, y, cv=5)
>>> scores.mean()
0.98...

>>> clf = RandomForestClassifier(n_estimators=10, max_depth=None,
... min_samples_split=2, random_state=0)
>>> scores = cross_val_score(clf, X, y, cv=5)
>>> scores.mean()
0.999...

>>> clf = ExtraTreesClassifier(n_estimators=10, max_depth=None,
... min_samples_split=2, random_state=0)
>>> scores = cross_val_score(clf, X, y, cv=5)
>>> scores.mean() > 0.999
True

Parameters

The main parameters to adjust when using these methods is n_estimators and max_features. The former
is the number of trees in the forest. The larger the better, but also the longer it will take to compute. In addition,
note that results will stop getting significantly better beyond a critical number of trees. The latter is the size of the
random subsets of features to consider when splitting a node. The lower the greater the reduction of variance, but also
the greater the increase in bias. Empirical good default values are max_features=None (always considering all
features instead of a random subset) for regression problems, and max_features="sqrt" (using a random subset
of size sqrt(n_features)) for classification tasks (where n_features is the number of features in the data).
Good results are often achieved when setting max_depth=None in combination with min_samples_split=2
(i.e., when fully developing the trees). Bear in mind though that these values are usually not optimal, and might result
in models that consume a lot of RAM. The best parameter values should always be cross-validated. In addition, note
that in random forests, bootstrap samples are used by default (bootstrap=True) while the default strategy for
extra-trees is to use the whole dataset (bootstrap=False). When using bootstrap sampling the generalization
accuracy can be estimated on the left out or out-of-bag samples. This can be enabled by setting oob_score=True.

Note: The size of the model with the default parameters is 𝑂(𝑀 * 𝑁 * 𝑙𝑜𝑔(𝑁)), where 𝑀 is the number of
trees and 𝑁 is the number of samples. In order to reduce the size of the model, you can change these parameters:

332 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

min_samples_split, max_leaf_nodes, max_depth and min_samples_leaf.

Parallelization

Finally, this module also features the parallel construction of the trees and the parallel computation of the predictions
through the n_jobs parameter. If n_jobs=k then computations are partitioned into k jobs, and run on k cores of
the machine. If n_jobs=-1 then all cores available on the machine are used. Note that because of inter-process
communication overhead, the speedup might not be linear (i.e., using k jobs will unfortunately not be k times as fast).
Significant speedup can still be achieved though when building a large number of trees, or when building a single tree
requires a fair amount of time (e.g., on large datasets).

Examples:

• Plot the decision surfaces of ensembles of trees on the iris dataset

• Pixel importances with a parallel forest of trees

• Face completion with a multi-output estimators

References

• P. Geurts, D. Ernst., and L. Wehenkel, “Extremely randomized trees”, Machine Learning, 63(1), 3-42, 2006.

4.1. Supervised learning 333

../auto_examples/ensemble/plot_forest_iris.html

scikit-learn user guide, Release 0.23.2

Feature importance evaluation

The relative rank (i.e. depth) of a feature used as a decision node in a tree can be used to assess the relative importance
of that feature with respect to the predictability of the target variable. Features used at the top of the tree contribute
to the final prediction decision of a larger fraction of the input samples. The expected fraction of the samples they
contribute to can thus be used as an estimate of the relative importance of the features. In scikit-learn, the fraction of
samples a feature contributes to is combined with the decrease in impurity from splitting them to create a normalized
estimate of the predictive power of that feature.

By averaging the estimates of predictive ability over several randomized trees one can reduce the variance of such
an estimate and use it for feature selection. This is known as the mean decrease in impurity, or MDI. Refer to [L2014]
for more information on MDI and feature importance evaluation with Random Forests.

Warning: The impurity-based feature importances computed on tree-based models suffer from two flaws that can
lead to misleading conclusions. First they are computed on statistics derived from the training dataset and therefore
do not necessarily inform us on which features are most important to make good predictions on held-out
dataset. Secondly, they favor high cardinality features, that is features with many unique values. Permutation
feature importance is an alternative to impurity-based feature importance that does not suffer from these flaws.
These two methods of obtaining feature importance are explored in: Permutation Importance vs Random Forest
Feature Importance (MDI).

The following example shows a color-coded representation of the relative importances of each individual pixel for a
face recognition task using a ExtraTreesClassifier model.

In practice those estimates are stored as an attribute named feature_importances_ on the fitted model. This
is an array with shape (n_features,) whose values are positive and sum to 1.0. The higher the value, the more
important is the contribution of the matching feature to the prediction function.

334 Chapter 4. User Guide

../auto_examples/ensemble/plot_forest_importances_faces.html

scikit-learn user guide, Release 0.23.2

Examples:

• Pixel importances with a parallel forest of trees

• Feature importances with forests of trees

References

Totally Random Trees Embedding

RandomTreesEmbedding implements an unsupervised transformation of the data. Using a forest of completely
random trees, RandomTreesEmbedding encodes the data by the indices of the leaves a data point ends up in. This
index is then encoded in a one-of-K manner, leading to a high dimensional, sparse binary coding. This coding can be
computed very efficiently and can then be used as a basis for other learning tasks. The size and sparsity of the code
can be influenced by choosing the number of trees and the maximum depth per tree. For each tree in the ensemble, the
coding contains one entry of one. The size of the coding is at most n_estimators * 2 ** max_depth, the
maximum number of leaves in the forest.

As neighboring data points are more likely to lie within the same leaf of a tree, the transformation performs an implicit,
non-parametric density estimation.

Examples:

• Hashing feature transformation using Totally Random Trees

• Manifold learning on handwritten digits: Locally Linear Embedding, Isomap. . . compares non-linear dimen-
sionality reduction techniques on handwritten digits.

• Feature transformations with ensembles of trees compares supervised and unsupervised tree based feature
transformations.

See also:

Manifold learning techniques can also be useful to derive non-linear representations of feature space, also these ap-
proaches focus also on dimensionality reduction.

AdaBoost

The module sklearn.ensemble includes the popular boosting algorithm AdaBoost, introduced in 1995 by Freund
and Schapire [FS1995].

The core principle of AdaBoost is to fit a sequence of weak learners (i.e., models that are only slightly better than
random guessing, such as small decision trees) on repeatedly modified versions of the data. The predictions from
all of them are then combined through a weighted majority vote (or sum) to produce the final prediction. The data
modifications at each so-called boosting iteration consist of applying weights 𝑤1, 𝑤2, . . . , 𝑤𝑁 to each of the training
samples. Initially, those weights are all set to 𝑤𝑖 = 1/𝑁 , so that the first step simply trains a weak learner on the
original data. For each successive iteration, the sample weights are individually modified and the learning algorithm is
reapplied to the reweighted data. At a given step, those training examples that were incorrectly predicted by the boosted
model induced at the previous step have their weights increased, whereas the weights are decreased for those that were
predicted correctly. As iterations proceed, examples that are difficult to predict receive ever-increasing influence. Each

4.1. Supervised learning 335

scikit-learn user guide, Release 0.23.2

subsequent weak learner is thereby forced to concentrate on the examples that are missed by the previous ones in the
sequence [HTF].

AdaBoost can be used both for classification and regression problems:

• For multi-class classification, AdaBoostClassifier implements AdaBoost-SAMME and AdaBoost-
SAMME.R [ZZRH2009].

• For regression, AdaBoostRegressor implements AdaBoost.R2 [D1997].

Usage

The following example shows how to fit an AdaBoost classifier with 100 weak learners:

>>> from sklearn.model_selection import cross_val_score
>>> from sklearn.datasets import load_iris
>>> from sklearn.ensemble import AdaBoostClassifier

>>> X, y = load_iris(return_X_y=True)
>>> clf = AdaBoostClassifier(n_estimators=100)
>>> scores = cross_val_score(clf, X, y, cv=5)
>>> scores.mean()
0.9...

The number of weak learners is controlled by the parameter n_estimators. The learning_rate parameter
controls the contribution of the weak learners in the final combination. By default, weak learners are decision stumps.
Different weak learners can be specified through the base_estimator parameter. The main parameters to tune to
obtain good results are n_estimators and the complexity of the base estimators (e.g., its depth max_depth or
minimum required number of samples to consider a split min_samples_split).

336 Chapter 4. User Guide

../auto_examples/ensemble/plot_adaboost_hastie_10_2.html

scikit-learn user guide, Release 0.23.2

Examples:

• Discrete versus Real AdaBoost compares the classification error of a decision stump, decision tree, and a
boosted decision stump using AdaBoost-SAMME and AdaBoost-SAMME.R.

• Multi-class AdaBoosted Decision Trees shows the performance of AdaBoost-SAMME and AdaBoost-
SAMME.R on a multi-class problem.

• Two-class AdaBoost shows the decision boundary and decision function values for a non-linearly separable
two-class problem using AdaBoost-SAMME.

• Decision Tree Regression with AdaBoost demonstrates regression with the AdaBoost.R2 algorithm.

References

Gradient Tree Boosting

Gradient Tree Boosting or Gradient Boosted Decision Trees (GBDT) is a generalization of boosting to arbitrary differ-
entiable loss functions. GBDT is an accurate and effective off-the-shelf procedure that can be used for both regression
and classification problems in a variety of areas including Web search ranking and ecology.

The module sklearn.ensemble provides methods for both classification and regression via gradient boosted
decision trees.

Note: Scikit-learn 0.21 introduces two new experimental implementations of gradient boosting trees, namely
HistGradientBoostingClassifier and HistGradientBoostingRegressor, inspired by LightGBM
(See [LightGBM]).

These histogram-based estimators can be orders of magnitude faster than GradientBoostingClassifier
and GradientBoostingRegressor when the number of samples is larger than tens of thousands of samples.

They also have built-in support for missing values, which avoids the need for an imputer.

These estimators are described in more detail below in Histogram-Based Gradient Boosting.

The following guide focuses on GradientBoostingClassifier and GradientBoostingRegressor,
which might be preferred for small sample sizes since binning may lead to split points that are too approximate in
this setting.

The usage and the parameters of GradientBoostingClassifier and GradientBoostingRegressor are
described below. The 2 most important parameters of these estimators are n_estimators and learning_rate.

Classification

GradientBoostingClassifier supports both binary and multi-class classification. The following example
shows how to fit a gradient boosting classifier with 100 decision stumps as weak learners:

>>> from sklearn.datasets import make_hastie_10_2
>>> from sklearn.ensemble import GradientBoostingClassifier

>>> X, y = make_hastie_10_2(random_state=0)
>>> X_train, X_test = X[:2000], X[2000:]

(continues on next page)

4.1. Supervised learning 337

https://en.wikipedia.org/wiki/Gradient_boosting
https://github.com/Microsoft/LightGBM

scikit-learn user guide, Release 0.23.2

(continued from previous page)

>>> y_train, y_test = y[:2000], y[2000:]

>>> clf = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0,
... max_depth=1, random_state=0).fit(X_train, y_train)
>>> clf.score(X_test, y_test)
0.913...

The number of weak learners (i.e. regression trees) is controlled by the parameter n_estimators; The size of each
tree can be controlled either by setting the tree depth via max_depth or by setting the number of leaf nodes via
max_leaf_nodes. The learning_rate is a hyper-parameter in the range (0.0, 1.0] that controls overfitting via
shrinkage .

Note: Classification with more than 2 classes requires the induction of n_classes regression trees at each iter-
ation, thus, the total number of induced trees equals n_classes * n_estimators. For datasets with a large
number of classes we strongly recommend to use HistGradientBoostingClassifier as an alternative to
GradientBoostingClassifier .

Regression

GradientBoostingRegressor supports a number of different loss functions for regression which can be speci-
fied via the argument loss; the default loss function for regression is least squares ('ls').

>>> import numpy as np
>>> from sklearn.metrics import mean_squared_error
>>> from sklearn.datasets import make_friedman1
>>> from sklearn.ensemble import GradientBoostingRegressor

>>> X, y = make_friedman1(n_samples=1200, random_state=0, noise=1.0)
>>> X_train, X_test = X[:200], X[200:]
>>> y_train, y_test = y[:200], y[200:]
>>> est = GradientBoostingRegressor(n_estimators=100, learning_rate=0.1,
... max_depth=1, random_state=0, loss='ls').fit(X_train, y_train)
>>> mean_squared_error(y_test, est.predict(X_test))
5.00...

The figure below shows the results of applying GradientBoostingRegressor with least squares loss and 500
base learners to the Boston house price dataset (sklearn.datasets.load_boston). The plot on the left shows
the train and test error at each iteration. The train error at each iteration is stored in the train_score_ attribute
of the gradient boosting model. The test error at each iterations can be obtained via the staged_predict method
which returns a generator that yields the predictions at each stage. Plots like these can be used to determine the
optimal number of trees (i.e. n_estimators) by early stopping. The plot on the right shows the impurity-based
feature importances which can be obtained via the feature_importances_ property.

Examples:

• Gradient Boosting regression

• Gradient Boosting Out-of-Bag estimates

338 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

Fitting additional weak-learners

Both GradientBoostingRegressor and GradientBoostingClassifier support
warm_start=True which allows you to add more estimators to an already fitted model.

>>> _ = est.set_params(n_estimators=200, warm_start=True) # set warm_start and new
→˓nr of trees
>>> _ = est.fit(X_train, y_train) # fit additional 100 trees to est
>>> mean_squared_error(y_test, est.predict(X_test))
3.84...

Controlling the tree size

The size of the regression tree base learners defines the level of variable interactions that can be captured by the
gradient boosting model. In general, a tree of depth h can capture interactions of order h . There are two ways in
which the size of the individual regression trees can be controlled.

If you specify max_depth=h then complete binary trees of depth h will be grown. Such trees will have (at most)
2**h leaf nodes and 2**h - 1 split nodes.

Alternatively, you can control the tree size by specifying the number of leaf nodes via the parameter
max_leaf_nodes. In this case, trees will be grown using best-first search where nodes with the highest improve-
ment in impurity will be expanded first. A tree with max_leaf_nodes=k has k - 1 split nodes and thus can
model interactions of up to order max_leaf_nodes - 1 .

4.1. Supervised learning 339

../auto_examples/ensemble/plot_gradient_boosting_regression.html

scikit-learn user guide, Release 0.23.2

We found that max_leaf_nodes=k gives comparable results to max_depth=k-1 but is significantly faster to
train at the expense of a slightly higher training error. The parameter max_leaf_nodes corresponds to the variable
J in the chapter on gradient boosting in [F2001] and is related to the parameter interaction.depth in R’s gbm
package where max_leaf_nodes == interaction.depth + 1 .

Mathematical formulation

We first present GBRT for regression, and then detail the classification case.

Regression

GBRT regressors are additive models whose prediction 𝑦𝑖 for a given input 𝑥𝑖 is of the following form:

𝑦𝑖 = 𝐹𝑀 (𝑥𝑖) =

𝑀∑︁
𝑚=1

ℎ𝑚(𝑥𝑖)

where the ℎ𝑚 are estimators called weak learners in the context of boosting. Gradient Tree Boosting uses decision
tree regressors of fixed size as weak learners. The constant M corresponds to the n_estimators parameter.

Similar to other boosting algorithms, a GBRT is built in a greedy fashion:

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + ℎ𝑚(𝑥),

where the newly added tree ℎ𝑚 is fitted in order to minimize a sum of losses 𝐿𝑚, given the previous ensemble 𝐹𝑚−1:

ℎ𝑚 = arg min
ℎ
𝐿𝑚 = arg min

ℎ

𝑛∑︁
𝑖=1

𝑙(𝑦𝑖, 𝐹𝑚−1(𝑥𝑖) + ℎ(𝑥𝑖)),

where 𝑙(𝑦𝑖, 𝐹 (𝑥𝑖)) is defined by the loss parameter, detailed in the next section.

By default, the initial model 𝐹0 is chosen as the constant that minimizes the loss: for a least-squares loss, this is the
empirical mean of the target values. The initial model can also be specified via the init argument.

Using a first-order Taylor approximation, the value of 𝑙 can be approximated as follows:

𝑙(𝑦𝑖, 𝐹𝑚−1(𝑥𝑖) + ℎ𝑚(𝑥𝑖)) ≈ 𝑙(𝑦𝑖, 𝐹𝑚−1(𝑥𝑖)) + ℎ𝑚(𝑥𝑖)

[︂
𝜕𝑙(𝑦𝑖, 𝐹 (𝑥𝑖))

𝜕𝐹 (𝑥𝑖)

]︂
𝐹=𝐹𝑚−1

.

Note: Briefly, a first-order Taylor approximation says that 𝑙(𝑧) ≈ 𝑙(𝑎) + (𝑧 − 𝑎)𝜕𝑙(𝑎)
𝜕𝑎 . Here, 𝑧 corresponds to

𝐹𝑚−1(𝑥𝑖) + ℎ𝑚(𝑥𝑖), and 𝑎 corresponds to 𝐹𝑚−1(𝑥𝑖)

The quantity
[︁
𝜕𝑙(𝑦𝑖,𝐹 (𝑥𝑖))

𝜕𝐹 (𝑥𝑖)

]︁
𝐹=𝐹𝑚−1

is the derivative of the loss with respect to its second parameter, evaluated at

𝐹𝑚−1(𝑥). It is easy to compute for any given 𝐹𝑚−1(𝑥𝑖) in a closed form since the loss is differentiable. We will
denote it by 𝑔𝑖.

Removing the constant terms, we have:

340 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

ℎ𝑚 ≈ arg min
ℎ

𝑛∑︁
𝑖=1

ℎ(𝑥𝑖)𝑔𝑖

This is minimized if ℎ(𝑥𝑖) is fitted to predict a value that is proportional to the negative gradient −𝑔𝑖. Therefore,
at each iteration, the estimator ℎ𝑚 is fitted to predict the negative gradients of the samples. The gradients are
updated at each iteration. This can be considered as some kind of gradient descent in a functional space.

Note: For some losses, e.g. the least absolute deviation (LAD) where the gradients are ±1, the values predicted by a
fitted ℎ𝑚 are not accurate enough: the tree can only output integer values. As a result, the leaves values of the tree ℎ𝑚
are modified once the tree is fitted, such that the leaves values minimize the loss 𝐿𝑚. The update is loss-dependent:
for the LAD loss, the value of a leaf is updated to the median of the samples in that leaf.

Classification

Gradient boosting for classification is very similar to the regression case. However, the sum of the trees 𝐹𝑀 (𝑥𝑖) =∑︀
𝑚 ℎ𝑚(𝑥𝑖) is not homogeneous to a prediction: it cannot be a class, since the trees predict continuous values.

The mapping from the value 𝐹𝑀 (𝑥𝑖) to a class or a probability is loss-dependent. For the deviance (or log-loss), the
probability that 𝑥𝑖 belongs to the positive class is modeled as 𝑝(𝑦𝑖 = 1|𝑥𝑖) = 𝜎(𝐹𝑀 (𝑥𝑖)) where 𝜎 is the sigmoid
function.

For multiclass classification, K trees (for K classes) are built at each of the 𝑀 iterations. The probability that 𝑥𝑖
belongs to class k is modeled as a softmax of the 𝐹𝑀,𝑘(𝑥𝑖) values.

Note that even for a classification task, the ℎ𝑚 sub-estimator is still a regressor, not a classifier. This is because the
sub-estimators are trained to predict (negative) gradients, which are always continuous quantities.

Loss Functions

The following loss functions are supported and can be specified using the parameter loss:

• Regression

– Least squares ('ls'): The natural choice for regression due to its superior computational properties. The
initial model is given by the mean of the target values.

– Least absolute deviation ('lad'): A robust loss function for regression. The initial model is given by the
median of the target values.

– Huber ('huber'): Another robust loss function that combines least squares and least absolute deviation;
use alpha to control the sensitivity with regards to outliers (see [F2001] for more details).

– Quantile ('quantile'): A loss function for quantile regression. Use 0 < alpha < 1 to specify the
quantile. This loss function can be used to create prediction intervals (see Prediction Intervals for Gradient
Boosting Regression).

• Classification

– Binomial deviance ('deviance'): The negative binomial log-likelihood loss function for binary classi-
fication (provides probability estimates). The initial model is given by the log odds-ratio.

– Multinomial deviance ('deviance'): The negative multinomial log-likelihood loss function for multi-
class classification with n_classes mutually exclusive classes. It provides probability estimates. The

4.1. Supervised learning 341

scikit-learn user guide, Release 0.23.2

initial model is given by the prior probability of each class. At each iteration n_classes regression trees
have to be constructed which makes GBRT rather inefficient for data sets with a large number of classes.

– Exponential loss ('exponential'): The same loss function as AdaBoostClassifier. Less robust
to mislabeled examples than 'deviance'; can only be used for binary classification.

Shrinkage via learning rate

[F2001] proposed a simple regularization strategy that scales the contribution of each weak learner by a constant factor
𝜈:

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝜈ℎ𝑚(𝑥)

The parameter 𝜈 is also called the learning rate because it scales the step length the gradient descent procedure; it can
be set via the learning_rate parameter.

The parameter learning_rate strongly interacts with the parameter n_estimators, the number of weak learn-
ers to fit. Smaller values of learning_rate require larger numbers of weak learners to maintain a constant training
error. Empirical evidence suggests that small values of learning_rate favor better test error. [HTF] recommend
to set the learning rate to a small constant (e.g. learning_rate <= 0.1) and choose n_estimators by early
stopping. For a more detailed discussion of the interaction between learning_rate and n_estimators see
[R2007].

Subsampling

[F1999] proposed stochastic gradient boosting, which combines gradient boosting with bootstrap averaging (bagging).
At each iteration the base classifier is trained on a fraction subsample of the available training data. The subsample
is drawn without replacement. A typical value of subsample is 0.5.

The figure below illustrates the effect of shrinkage and subsampling on the goodness-of-fit of the model. We can
clearly see that shrinkage outperforms no-shrinkage. Subsampling with shrinkage can further increase the accuracy of
the model. Subsampling without shrinkage, on the other hand, does poorly.

Another strategy to reduce the variance is by subsampling the features analogous to the random splits in
RandomForestClassifier . The number of subsampled features can be controlled via the max_features
parameter.

Note: Using a small max_features value can significantly decrease the runtime.

Stochastic gradient boosting allows to compute out-of-bag estimates of the test deviance by computing the improve-
ment in deviance on the examples that are not included in the bootstrap sample (i.e. the out-of-bag examples). The
improvements are stored in the attribute oob_improvement_. oob_improvement_[i] holds the improvement
in terms of the loss on the OOB samples if you add the i-th stage to the current predictions. Out-of-bag estimates can
be used for model selection, for example to determine the optimal number of iterations. OOB estimates are usually
very pessimistic thus we recommend to use cross-validation instead and only use OOB if cross-validation is too time
consuming.

Examples:

• Gradient Boosting regularization

• Gradient Boosting Out-of-Bag estimates

342 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

• OOB Errors for Random Forests

Interpretation with feature importance

Individual decision trees can be interpreted easily by simply visualizing the tree structure. Gradient boosting models,
however, comprise hundreds of regression trees thus they cannot be easily interpreted by visual inspection of the
individual trees. Fortunately, a number of techniques have been proposed to summarize and interpret gradient boosting
models.

Often features do not contribute equally to predict the target response; in many situations the majority of the features
are in fact irrelevant. When interpreting a model, the first question usually is: what are those important features and
how do they contributing in predicting the target response?

Individual decision trees intrinsically perform feature selection by selecting appropriate split points. This information
can be used to measure the importance of each feature; the basic idea is: the more often a feature is used in the
split points of a tree the more important that feature is. This notion of importance can be extended to decision tree
ensembles by simply averaging the impurity-based feature importance of each tree (see Feature importance evaluation
for more details).

The feature importance scores of a fit gradient boosting model can be accessed via the feature_importances_
property:

>>> from sklearn.datasets import make_hastie_10_2
>>> from sklearn.ensemble import GradientBoostingClassifier

>>> X, y = make_hastie_10_2(random_state=0)
>>> clf = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0,
... max_depth=1, random_state=0).fit(X, y)
>>> clf.feature_importances_
array([0.10..., 0.10..., 0.11..., ...

4.1. Supervised learning 343

../auto_examples/ensemble/plot_gradient_boosting_regularization.html

scikit-learn user guide, Release 0.23.2

Note that this computation of feature importance is based on entropy, and it is distinct from sklearn.
inspection.permutation_importance which is based on permutation of the features.

Examples:

• Gradient Boosting regression

Histogram-Based Gradient Boosting

Scikit-learn 0.21 introduced two new experimental implementations of gradient boosting trees, namely
HistGradientBoostingClassifier and HistGradientBoostingRegressor, inspired by LightGBM
(See [LightGBM]).

These histogram-based estimators can be orders of magnitude faster than GradientBoostingClassifier
and GradientBoostingRegressor when the number of samples is larger than tens of thousands of samples.

They also have built-in support for missing values, which avoids the need for an imputer.

These fast estimators first bin the input samples X into integer-valued bins (typically 256 bins) which tremen-
dously reduces the number of splitting points to consider, and allows the algorithm to leverage integer-based
data structures (histograms) instead of relying on sorted continuous values when building the trees. The API
of these estimators is slightly different, and some of the features from GradientBoostingClassifier and
GradientBoostingRegressor are not yet supported, for instance some loss functions.

These estimators are still experimental: their predictions and their API might change without any deprecation cycle.
To use them, you need to explicitly import enable_hist_gradient_boosting:

>>> # explicitly require this experimental feature
>>> from sklearn.experimental import enable_hist_gradient_boosting # noqa
>>> # now you can import normally from ensemble
>>> from sklearn.ensemble import HistGradientBoostingClassifier

Examples:

• Partial Dependence Plots

Usage

Most of the parameters are unchanged from GradientBoostingClassifier and
GradientBoostingRegressor. One exception is the max_iter parameter that replaces n_estimators,
and controls the number of iterations of the boosting process:

>>> from sklearn.experimental import enable_hist_gradient_boosting
>>> from sklearn.ensemble import HistGradientBoostingClassifier
>>> from sklearn.datasets import make_hastie_10_2

>>> X, y = make_hastie_10_2(random_state=0)
>>> X_train, X_test = X[:2000], X[2000:]
>>> y_train, y_test = y[:2000], y[2000:]

>>> clf = HistGradientBoostingClassifier(max_iter=100).fit(X_train, y_train)

(continues on next page)

344 Chapter 4. User Guide

https://github.com/Microsoft/LightGBM

scikit-learn user guide, Release 0.23.2

(continued from previous page)

>>> clf.score(X_test, y_test)
0.8965

Available losses for regression are ‘least_squares’, ‘least_absolute_deviation’, which is less sensitive to outliers, and
‘poisson’, which is well suited to model counts and frequencies. For classification, ‘binary_crossentropy’ is used for
binary classification and ‘categorical_crossentropy’ is used for multiclass classification. By default the loss is ‘auto’
and will select the appropriate loss depending on y passed to fit.

The size of the trees can be controlled through the max_leaf_nodes, max_depth, and min_samples_leaf
parameters.

The number of bins used to bin the data is controlled with the max_bins parameter. Using less bins acts as a form
of regularization. It is generally recommended to use as many bins as possible, which is the default.

The l2_regularization parameter is a regularizer on the loss function and corresponds to 𝜆 in equation (2) of
[XGBoost].

Note that early-stopping is enabled by default if the number of samples is larger than 10,000. The
early-stopping behaviour is controlled via the early-stopping, scoring, validation_fraction,
n_iter_no_change, and tol parameters. It is possible to early-stop using an arbitrary scorer, or just the training
or validation loss. Note that for technical reasons, using a scorer is significantly slower than using the loss. By default,
early-stopping is performed if there are at least 10,000 samples in the training set, using the validation loss.

Missing values support

HistGradientBoostingClassifier and HistGradientBoostingRegressor have built-in support
for missing values (NaNs).

During training, the tree grower learns at each split point whether samples with missing values should go to the left or
right child, based on the potential gain. When predicting, samples with missing values are assigned to the left or right
child consequently:

>>> from sklearn.experimental import enable_hist_gradient_boosting # noqa
>>> from sklearn.ensemble import HistGradientBoostingClassifier
>>> import numpy as np

>>> X = np.array([0, 1, 2, np.nan]).reshape(-1, 1)
>>> y = [0, 0, 1, 1]

>>> gbdt = HistGradientBoostingClassifier(min_samples_leaf=1).fit(X, y)
>>> gbdt.predict(X)
array([0, 0, 1, 1])

When the missingness pattern is predictive, the splits can be done on whether the feature value is missing or not:

>>> X = np.array([0, np.nan, 1, 2, np.nan]).reshape(-1, 1)
>>> y = [0, 1, 0, 0, 1]
>>> gbdt = HistGradientBoostingClassifier(min_samples_leaf=1,
... max_depth=2,
... learning_rate=1,
... max_iter=1).fit(X, y)
>>> gbdt.predict(X)
array([0, 1, 0, 0, 1])

If no missing values were encountered for a given feature during training, then samples with missing values are mapped
to whichever child has the most samples.

4.1. Supervised learning 345

scikit-learn user guide, Release 0.23.2

Sample weight support

HistGradientBoostingClassifier and HistGradientBoostingRegressor sample support weights
during fit.

The following toy example demonstrates how the model ignores the samples with zero sample weights:

>>> X = [[1, 0],
... [1, 0],
... [1, 0],
... [0, 1]]
>>> y = [0, 0, 1, 0]
>>> # ignore the first 2 training samples by setting their weight to 0
>>> sample_weight = [0, 0, 1, 1]
>>> gb = HistGradientBoostingClassifier(min_samples_leaf=1)
>>> gb.fit(X, y, sample_weight=sample_weight)
HistGradientBoostingClassifier(...)
>>> gb.predict([[1, 0]])
array([1])
>>> gb.predict_proba([[1, 0]])[0, 1]
0.99...

As you can see, the [1, 0] is comfortably classified as 1 since the first two samples are ignored due to their sample
weights.

Implementation detail: taking sample weights into account amounts to multiplying the gradients (and the hessians) by
the sample weights. Note that the binning stage (specifically the quantiles computation) does not take the weights into
account.

Monotonic Constraints

Depending on the problem at hand, you may have prior knowledge indicating that a given feature should in general
have a positive (or negative) effect on the target value. For example, all else being equal, a higher credit score should
increase the probability of getting approved for a loan. Monotonic constraints allow you to incorporate such prior
knowledge into the model.

A positive monotonic constraint is a constraint of the form:

𝑥1 ≤ 𝑥′1 =⇒ 𝐹 (𝑥1, 𝑥2) ≤ 𝐹 (𝑥′1, 𝑥2), where 𝐹 is the predictor with two features.

Similarly, a negative monotonic constraint is of the form:

𝑥1 ≤ 𝑥′1 =⇒ 𝐹 (𝑥1, 𝑥2) ≥ 𝐹 (𝑥′1, 𝑥2).

Note that monotonic constraints only constraint the output “all else being equal”. Indeed, the following relation is not
enforced by a positive constraint: 𝑥1 ≤ 𝑥′1 =⇒ 𝐹 (𝑥1, 𝑥2) ≤ 𝐹 (𝑥′1, 𝑥

′
2).

You can specify a monotonic constraint on each feature using the monotonic_cst parameter. For each feature, a
value of 0 indicates no constraint, while -1 and 1 indicate a negative and positive constraint, respectively:

>>> from sklearn.experimental import enable_hist_gradient_boosting # noqa
>>> from sklearn.ensemble import HistGradientBoostingRegressor

... # positive, negative, and no constraint on the 3 features
>>> gbdt = HistGradientBoostingRegressor(monotonic_cst=[1, -1, 0])

In a binary classification context, imposing a monotonic constraint means that the feature is supposed to have a
positive / negative effect on the probability to belong to the positive class. Monotonic constraints are not supported for
multiclass context.

346 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

Examples:

• Monotonic Constraints

Low-level parallelism

HistGradientBoostingClassifier and HistGradientBoostingRegressor have implementations
that use OpenMP for parallelization through Cython. For more details on how to control the number of threads, please
refer to our Parallelism notes.

The following parts are parallelized:

• mapping samples from real values to integer-valued bins (finding the bin thresholds is however sequential)

• building histograms is parallelized over features

• finding the best split point at a node is parallelized over features

• during fit, mapping samples into the left and right children is parallelized over samples

• gradient and hessians computations are parallelized over samples

• predicting is parallelized over samples

Why it’s faster

The bottleneck of a gradient boosting procedure is building the decision trees. Building a traditional decision tree (as in
the other GBDTs GradientBoostingClassifier and GradientBoostingRegressor) requires sorting
the samples at each node (for each feature). Sorting is needed so that the potential gain of a split point can be computed
efficiently. Splitting a single node has thus a complexity of 𝒪(𝑛features × 𝑛 log(𝑛)) where 𝑛 is the number of samples
at the node.

HistGradientBoostingClassifier and HistGradientBoostingRegressor, in contrast, do not re-
quire sorting the feature values and instead use a data-structure called a histogram, where the samples are implicitly
ordered. Building a histogram has a 𝒪(𝑛) complexity, so the node splitting procedure has a 𝒪(𝑛features × 𝑛) com-
plexity, much smaller than the previous one. In addition, instead of considering 𝑛 split points, we here consider only
max_bins split points, which is much smaller.

In order to build histograms, the input data X needs to be binned into integer-valued bins. This binning procedure does
require sorting the feature values, but it only happens once at the very beginning of the boosting process (not at each
node, like in GradientBoostingClassifier and GradientBoostingRegressor).

Finally, many parts of the implementation of HistGradientBoostingClassifier and
HistGradientBoostingRegressor are parallelized.

References

Voting Classifier

The idea behind the VotingClassifier is to combine conceptually different machine learning classifiers and use
a majority vote or the average predicted probabilities (soft vote) to predict the class labels. Such a classifier can be
useful for a set of equally well performing model in order to balance out their individual weaknesses.

4.1. Supervised learning 347

scikit-learn user guide, Release 0.23.2

Majority Class Labels (Majority/Hard Voting)

In majority voting, the predicted class label for a particular sample is the class label that represents the majority (mode)
of the class labels predicted by each individual classifier.

E.g., if the prediction for a given sample is

• classifier 1 -> class 1

• classifier 2 -> class 1

• classifier 3 -> class 2

the VotingClassifier (with voting='hard') would classify the sample as “class 1” based on the majority class label.

In the cases of a tie, the VotingClassifier will select the class based on the ascending sort order. E.g., in the
following scenario

• classifier 1 -> class 2

• classifier 2 -> class 1

the class label 1 will be assigned to the sample.

Usage

The following example shows how to fit the majority rule classifier:

>>> from sklearn import datasets
>>> from sklearn.model_selection import cross_val_score
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.naive_bayes import GaussianNB
>>> from sklearn.ensemble import RandomForestClassifier
>>> from sklearn.ensemble import VotingClassifier

>>> iris = datasets.load_iris()
>>> X, y = iris.data[:, 1:3], iris.target

>>> clf1 = LogisticRegression(random_state=1)
>>> clf2 = RandomForestClassifier(n_estimators=50, random_state=1)
>>> clf3 = GaussianNB()

>>> eclf = VotingClassifier(
... estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)],
... voting='hard')

>>> for clf, label in zip([clf1, clf2, clf3, eclf], ['Logistic Regression', 'Random
→˓Forest', 'naive Bayes', 'Ensemble']):
... scores = cross_val_score(clf, X, y, scoring='accuracy', cv=5)
... print("Accuracy: %0.2f (+/- %0.2f) [%s]" % (scores.mean(), scores.std(),
→˓label))
Accuracy: 0.95 (+/- 0.04) [Logistic Regression]
Accuracy: 0.94 (+/- 0.04) [Random Forest]
Accuracy: 0.91 (+/- 0.04) [naive Bayes]
Accuracy: 0.95 (+/- 0.04) [Ensemble]

348 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

Weighted Average Probabilities (Soft Voting)

In contrast to majority voting (hard voting), soft voting returns the class label as argmax of the sum of predicted
probabilities.

Specific weights can be assigned to each classifier via the weights parameter. When weights are provided, the
predicted class probabilities for each classifier are collected, multiplied by the classifier weight, and averaged. The
final class label is then derived from the class label with the highest average probability.

To illustrate this with a simple example, let’s assume we have 3 classifiers and a 3-class classification problems where
we assign equal weights to all classifiers: w1=1, w2=1, w3=1.

The weighted average probabilities for a sample would then be calculated as follows:

classifier class 1 class 2 class 3
classifier 1 w1 * 0.2 w1 * 0.5 w1 * 0.3
classifier 2 w2 * 0.6 w2 * 0.3 w2 * 0.1
classifier 3 w3 * 0.3 w3 * 0.4 w3 * 0.3
weighted average 0.37 0.4 0.23

Here, the predicted class label is 2, since it has the highest average probability.

The following example illustrates how the decision regions may change when a soft VotingClassifier is used
based on an linear Support Vector Machine, a Decision Tree, and a K-nearest neighbor classifier:

>>> from sklearn import datasets
>>> from sklearn.tree import DecisionTreeClassifier
>>> from sklearn.neighbors import KNeighborsClassifier
>>> from sklearn.svm import SVC
>>> from itertools import product
>>> from sklearn.ensemble import VotingClassifier

>>> # Loading some example data
>>> iris = datasets.load_iris()
>>> X = iris.data[:, [0, 2]]
>>> y = iris.target

>>> # Training classifiers
>>> clf1 = DecisionTreeClassifier(max_depth=4)
>>> clf2 = KNeighborsClassifier(n_neighbors=7)
>>> clf3 = SVC(kernel='rbf', probability=True)
>>> eclf = VotingClassifier(estimators=[('dt', clf1), ('knn', clf2), ('svc', clf3)],
... voting='soft', weights=[2, 1, 2])

>>> clf1 = clf1.fit(X, y)
>>> clf2 = clf2.fit(X, y)
>>> clf3 = clf3.fit(X, y)
>>> eclf = eclf.fit(X, y)

Using the VotingClassifier with GridSearchCV

The VotingClassifier can also be used together with GridSearchCV in order to tune the hyperparameters of
the individual estimators:

4.1. Supervised learning 349

scikit-learn user guide, Release 0.23.2

350 Chapter 4. User Guide

../auto_examples/ensemble/plot_voting_decision_regions.html

scikit-learn user guide, Release 0.23.2

>>> from sklearn.model_selection import GridSearchCV
>>> clf1 = LogisticRegression(random_state=1)
>>> clf2 = RandomForestClassifier(random_state=1)
>>> clf3 = GaussianNB()
>>> eclf = VotingClassifier(
... estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)],
... voting='soft'
...)

>>> params = {'lr__C': [1.0, 100.0], 'rf__n_estimators': [20, 200]}

>>> grid = GridSearchCV(estimator=eclf, param_grid=params, cv=5)
>>> grid = grid.fit(iris.data, iris.target)

Usage

In order to predict the class labels based on the predicted class-probabilities (scikit-learn estimators in the VotingClas-
sifier must support predict_proba method):

>>> eclf = VotingClassifier(
... estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)],
... voting='soft'
...)

Optionally, weights can be provided for the individual classifiers:

>>> eclf = VotingClassifier(
... estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)],
... voting='soft', weights=[2,5,1]
...)

Voting Regressor

The idea behind the VotingRegressor is to combine conceptually different machine learning regressors and return
the average predicted values. Such a regressor can be useful for a set of equally well performing models in order to
balance out their individual weaknesses.

Usage

The following example shows how to fit the VotingRegressor:

>>> from sklearn.datasets import load_boston
>>> from sklearn.ensemble import GradientBoostingRegressor
>>> from sklearn.ensemble import RandomForestRegressor
>>> from sklearn.linear_model import LinearRegression
>>> from sklearn.ensemble import VotingRegressor

>>> # Loading some example data
>>> X, y = load_boston(return_X_y=True)

>>> # Training classifiers
>>> reg1 = GradientBoostingRegressor(random_state=1, n_estimators=10)

(continues on next page)

4.1. Supervised learning 351

scikit-learn user guide, Release 0.23.2

(continued from previous page)

>>> reg2 = RandomForestRegressor(random_state=1, n_estimators=10)
>>> reg3 = LinearRegression()
>>> ereg = VotingRegressor(estimators=[('gb', reg1), ('rf', reg2), ('lr', reg3)])
>>> ereg = ereg.fit(X, y)

Examples:

• Plot individual and voting regression predictions

Stacked generalization

Stacked generalization is a method for combining estimators to reduce their biases [W1992] [HTF]. More precisely,
the predictions of each individual estimator are stacked together and used as input to a final estimator to compute the
prediction. This final estimator is trained through cross-validation.

The StackingClassifier and StackingRegressor provide such strategies which can be applied to classi-
fication and regression problems.

The estimators parameter corresponds to the list of the estimators which are stacked together in parallel on the
input data. It should be given as a list of names and estimators:

>>> from sklearn.linear_model import RidgeCV, LassoCV
>>> from sklearn.svm import SVR
>>> estimators = [('ridge', RidgeCV()),
... ('lasso', LassoCV(random_state=42)),
... ('svr', SVR(C=1, gamma=1e-6))]

The final_estimator will use the predictions of the estimators as input. It needs to be a classifier or a
regressor when using StackingClassifier or StackingRegressor, respectively:

352 Chapter 4. User Guide

../auto_examples/ensemble/plot_voting_regressor.html

scikit-learn user guide, Release 0.23.2

>>> from sklearn.ensemble import GradientBoostingRegressor
>>> from sklearn.ensemble import StackingRegressor
>>> reg = StackingRegressor(
... estimators=estimators,
... final_estimator=GradientBoostingRegressor(random_state=42))

To train the estimators and final_estimator, the fit method needs to be called on the training data:

>>> from sklearn.datasets import load_boston
>>> X, y = load_boston(return_X_y=True)
>>> from sklearn.model_selection import train_test_split
>>> X_train, X_test, y_train, y_test = train_test_split(X, y,
... random_state=42)
>>> reg.fit(X_train, y_train)
StackingRegressor(...)

During training, the estimators are fitted on the whole training data X_train. They will be used when calling
predict or predict_proba. To generalize and avoid over-fitting, the final_estimator is trained on out-
samples using sklearn.model_selection.cross_val_predict internally.

For StackingClassifier, note that the output of the estimators is controlled by the parameter
stack_method and it is called by each estimator. This parameter is either a string, being estimator method names,
or 'auto' which will automatically identify an available method depending on the availability, tested in the order of
preference: predict_proba, decision_function and predict.

A StackingRegressor and StackingClassifier can be used as any other regressor or classifier, exposing
a predict, predict_proba, and decision_function methods, e.g.:

>>> y_pred = reg.predict(X_test)
>>> from sklearn.metrics import r2_score
>>> print('R2 score: {:.2f}'.format(r2_score(y_test, y_pred)))
R2 score: 0.81

Note that it is also possible to get the output of the stacked estimators using the transform method:

>>> reg.transform(X_test[:5])
array([[28.78..., 28.43... , 22.62...],

[35.96..., 32.58..., 23.68...],
[14.97..., 14.05..., 16.45...],
[25.19..., 25.54..., 22.92...],
[18.93..., 19.26..., 17.03...]])

In practise, a stacking predictor predict as good as the best predictor of the base layer and even sometimes out-
putperform it by combining the different strength of the these predictors. However, training a stacking predictor is
computationally expensive.

Note: For StackingClassifier, when using stack_method_='predict_proba', the first column is
dropped when the problem is a binary classification problem. Indeed, both probability columns predicted by each
estimator are perfectly collinear.

Note: Multiple stacking layers can be achieved by assigning final_estimator to a StackingClassifier
or StackingRegressor:

4.1. Supervised learning 353

scikit-learn user guide, Release 0.23.2

>>> final_layer = StackingRegressor(
... estimators=[('rf', RandomForestRegressor(random_state=42)),
... ('gbrt', GradientBoostingRegressor(random_state=42))],
... final_estimator=RidgeCV()
...)
>>> multi_layer_regressor = StackingRegressor(
... estimators=[('ridge', RidgeCV()),
... ('lasso', LassoCV(random_state=42)),
... ('svr', SVR(C=1, gamma=1e-6, kernel='rbf'))],
... final_estimator=final_layer
...)
>>> multi_layer_regressor.fit(X_train, y_train)
StackingRegressor(...)
>>> print('R2 score: {:.2f}'
... .format(multi_layer_regressor.score(X_test, y_test)))
R2 score: 0.83

References

4.1.12 Multiclass and multilabel algorithms

Warning: All classifiers in scikit-learn do multiclass classification out-of-the-box. You don’t need to use the
sklearn.multiclass module unless you want to experiment with different multiclass strategies.

The sklearn.multiclass module implements meta-estimators to solve multiclass and multilabel clas-
sification problems by decomposing such problems into binary classification problems. multioutput regression is
also supported.

• Multiclass classification: classification task with more than two classes. Each sample can only be labelled as
one class.

For example, classification using features extracted from a set of images of fruit, where each image may either
be of an orange, an apple, or a pear. Each image is one sample and is labelled as one of the 3 possible classes.
Multiclass classification makes the assumption that each sample is assigned to one and only one label - one
sample cannot, for example, be both a pear and an apple.

Valid multiclass representations for type_of_target (y) are:

– 1d or column vector containing more than two discrete values. An example of a vector y for 3 samples:

>>> import numpy as np
>>> y = np.array(['apple', 'pear', 'apple'])
>>> print(y)
['apple' 'pear' 'apple']

– sparse binary matrix of shape (n_samples, n_classes) with a single element per row, where each
column represents one class. An example of a sparse binary matrix y for 3 samples, where the columns,
in order, are orange, apple and pear:

>>> from scipy import sparse
>>> row_ind = np.array([0, 1, 2])

(continues on next page)

354 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

(continued from previous page)

>>> col_ind = np.array([1, 2, 1])
>>> y_sparse = sparse.csr_matrix((np.ones(3), (row_ind, col_ind)))
>>> print(y_sparse)

(0, 1) 1.0
(1, 2) 1.0
(2, 1) 1.0

• Multilabel classification: classification task labelling each sample with x labels from n_classes possible
classes, where x can be 0 to n_classes inclusive. This can be thought of as predicting properties of a sample
that are not mutually exclusive. Formally, a binary output is assigned to each class, for every sample. Positive
classes are indicated with 1 and negative classes with 0 or -1. It is thus comparable to running n_classes bi-
nary classification tasks, for example with sklearn.multioutput.MultiOutputClassifier. This
approach treats each label independently whereas multilabel classifiers may treat the multiple classes simulta-
neously, accounting for correlated behavior among them.

For example, prediction of the topics relevant to a text document or video. The document or video may be about
one of ‘religion’, ‘politics’, ‘finance’ or ‘education’, several of the topic classes or all of the topic classes.

A valid representation of multilabel y is an either dense or sparse binary matrix of shape (n_samples,
n_classes). Each column represents a class. The 1’s in each row denote the positive classes a sample has
been labelled with. An example of a dense matrix y for 3 samples:

>>> y = np.array([[1, 0, 0, 1], [0, 0, 1, 1], [0, 0, 0, 0]])
>>> print(y)
[[1 0 0 1]
[0 0 1 1]
[0 0 0 0]]

An example of the same y in sparse matrix form:

>>> y_sparse = sparse.csr_matrix(y)
>>> print(y_sparse)
(0, 0) 1
(0, 3) 1
(1, 2) 1
(1, 3) 1

• Multioutput regression: predicts multiple numerical properties for each sample. Each property is a numerical
variable and the number of properties to be predicted for each sample is greater than or equal to 2. Some
estimators that support multioutput regression are faster than just running n_output estimators.

For example, prediction of both wind speed and wind direction, in degrees, using data obtained at a certain
location. Each sample would be data obtained at one location and both wind speed and direction would be
output for each sample.

A valid representation of multioutput y is a dense matrix of shape (n_samples, n_classes) of floats. A
column wise concatenation of continuous variables. An example of y for 3 samples:

>>> y = np.array([[31.4, 94], [40.5, 109], [25.0, 30]])
>>> print(y)
[[31.4 94.]
[40.5 109.]
[25. 30.]]

• Multioutput-multiclass classification (also known as multitask classification): classification task which la-
bels each sample with a set of non-binary properties. Both the number of properties and the number of classes
per property is greater than 2. A single estimator thus handles several joint classification tasks. This is both a

4.1. Supervised learning 355

scikit-learn user guide, Release 0.23.2

generalization of the multilabel classification task, which only considers binary attributes, as well as a general-
ization of the multiclass classification task, where only one property is considered.

For example, classification of the properties “type of fruit” and “colour” for a set of images of fruit. The property
“type of fruit” has the possible classes: “apple”, “pear” and “orange”. The property “colour” has the possible
classes: “green”, “red”, “yellow” and “orange”. Each sample is an image of a fruit, a label is output for both
properties and each label is one of the possible classes of the corresponding property.

A valid representation of multioutput y is a dense matrix of shape (n_samples, n_classes) of class
labels. A column wise concatenation of 1d multiclass variables. An example of y for 3 samples:

>>> y = np.array([['apple', 'green'], ['orange', 'orange'], ['pear', 'green']])
>>> print(y)
[['apple' 'green']
['orange' 'orange']
['pear' 'green']]

Note that all classifiers handling multioutput-multiclass (also known as multitask classification) tasks, support
the multilabel classification task as a special case. Multitask classification is similar to the multioutput classifi-
cation task with different model formulations. For more information, see the relevant estimator documentation.

All scikit-learn classifiers are capable of multiclass classification, but the meta-estimators offered by sklearn.
multiclass permit changing the way they handle more than two classes because this may have an effect on classifier
performance (either in terms of generalization error or required computational resources).

Summary

Number of targets Target cardinality Valid
type_of_target

Multiclass classification 1 >2
• ‘multiclass’

Multilabel classification >1 2 (0 or 1)
• ‘multilabel-

indicator’

Multioutput regression >1 Continuous
• ‘continuous-

multioutput’

Multioutput- multiclass
classification

>1 >2
• ‘multiclass-

multioutput’

Below is a summary of the classifiers supported by scikit-learn grouped by strategy; you don’t need the meta-estimators
in this class if you’re using one of these, unless you want custom multiclass behavior:

• Inherently multiclass:

– sklearn.naive_bayes.BernoulliNB

– sklearn.tree.DecisionTreeClassifier

– sklearn.tree.ExtraTreeClassifier

– sklearn.ensemble.ExtraTreesClassifier

– sklearn.naive_bayes.GaussianNB

– sklearn.neighbors.KNeighborsClassifier

356 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

– sklearn.semi_supervised.LabelPropagation

– sklearn.semi_supervised.LabelSpreading

– sklearn.discriminant_analysis.LinearDiscriminantAnalysis

– sklearn.svm.LinearSVC (setting multi_class=”crammer_singer”)

– sklearn.linear_model.LogisticRegression (setting multi_class=”multinomial”)

– sklearn.linear_model.LogisticRegressionCV (setting multi_class=”multinomial”)

– sklearn.neural_network.MLPClassifier

– sklearn.neighbors.NearestCentroid

– sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis

– sklearn.neighbors.RadiusNeighborsClassifier

– sklearn.ensemble.RandomForestClassifier

– sklearn.linear_model.RidgeClassifier

– sklearn.linear_model.RidgeClassifierCV

• Multiclass as One-Vs-One:

– sklearn.svm.NuSVC

– sklearn.svm.SVC.

– sklearn.gaussian_process.GaussianProcessClassifier (setting multi_class =
“one_vs_one”)

• Multiclass as One-Vs-The-Rest:

– sklearn.ensemble.GradientBoostingClassifier

– sklearn.gaussian_process.GaussianProcessClassifier (setting multi_class =
“one_vs_rest”)

– sklearn.svm.LinearSVC (setting multi_class=”ovr”)

– sklearn.linear_model.LogisticRegression (setting multi_class=”ovr”)

– sklearn.linear_model.LogisticRegressionCV (setting multi_class=”ovr”)

– sklearn.linear_model.SGDClassifier

– sklearn.linear_model.Perceptron

– sklearn.linear_model.PassiveAggressiveClassifier

• Support multilabel:

– sklearn.tree.DecisionTreeClassifier

– sklearn.tree.ExtraTreeClassifier

– sklearn.ensemble.ExtraTreesClassifier

– sklearn.neighbors.KNeighborsClassifier

– sklearn.neural_network.MLPClassifier

– sklearn.neighbors.RadiusNeighborsClassifier

– sklearn.ensemble.RandomForestClassifier

– sklearn.linear_model.RidgeClassifierCV

4.1. Supervised learning 357

scikit-learn user guide, Release 0.23.2

• Support multiclass-multioutput:

– sklearn.tree.DecisionTreeClassifier

– sklearn.tree.ExtraTreeClassifier

– sklearn.ensemble.ExtraTreesClassifier

– sklearn.neighbors.KNeighborsClassifier

– sklearn.neighbors.RadiusNeighborsClassifier

– sklearn.ensemble.RandomForestClassifier

Warning: At present, no metric in sklearn.metrics supports the multioutput-multiclass classification task.

Multilabel classification format

In multilabel learning, the joint set of binary classification tasks is expressed with label binary indicator array: each
sample is one row of a 2d array of shape (n_samples, n_classes) with binary values: the one, i.e. the non zero elements,
corresponds to the subset of labels. An array such as np.array([[1, 0, 0], [0, 1, 1], [0, 0, 0]])
represents label 0 in the first sample, labels 1 and 2 in the second sample, and no labels in the third sample.

Producing multilabel data as a list of sets of labels may be more intuitive. The MultiLabelBinarizer transformer
can be used to convert between a collection of collections of labels and the indicator format.

>>> from sklearn.preprocessing import MultiLabelBinarizer
>>> y = [[2, 3, 4], [2], [0, 1, 3], [0, 1, 2, 3, 4], [0, 1, 2]]
>>> MultiLabelBinarizer().fit_transform(y)
array([[0, 0, 1, 1, 1],

[0, 0, 1, 0, 0],
[1, 1, 0, 1, 0],
[1, 1, 1, 1, 1],
[1, 1, 1, 0, 0]])

One-Vs-The-Rest

This strategy, also known as one-vs-all, is implemented in OneVsRestClassifier. The strategy consists in fitting
one classifier per class. For each classifier, the class is fitted against all the other classes. In addition to its computa-
tional efficiency (only n_classes classifiers are needed), one advantage of this approach is its interpretability. Since
each class is represented by one and only one classifier, it is possible to gain knowledge about the class by inspecting
its corresponding classifier. This is the most commonly used strategy and is a fair default choice.

Multiclass learning

Below is an example of multiclass learning using OvR:

>>> from sklearn import datasets
>>> from sklearn.multiclass import OneVsRestClassifier
>>> from sklearn.svm import LinearSVC
>>> X, y = datasets.load_iris(return_X_y=True)
>>> OneVsRestClassifier(LinearSVC(random_state=0)).fit(X, y).predict(X)
array([0, 0,

0, 0,

(continues on next page)

358 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

(continued from previous page)

0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

Multilabel learning

OneVsRestClassifier also supports multilabel classification. To use this feature, feed the classifier an indicator
matrix, in which cell [i, j] indicates the presence of label j in sample i.

Examples:

• Multilabel classification

One-Vs-One

OneVsOneClassifier constructs one classifier per pair of classes. At prediction time, the class which received
the most votes is selected. In the event of a tie (among two classes with an equal number of votes), it selects the class
with the highest aggregate classification confidence by summing over the pair-wise classification confidence levels
computed by the underlying binary classifiers.

4.1. Supervised learning 359

../auto_examples/miscellaneous/plot_multilabel.html

scikit-learn user guide, Release 0.23.2

Since it requires to fit n_classes * (n_classes - 1) / 2 classifiers, this method is usually slower than
one-vs-the-rest, due to its O(n_classes^2) complexity. However, this method may be advantageous for algorithms
such as kernel algorithms which don’t scale well with n_samples. This is because each individual learning problem
only involves a small subset of the data whereas, with one-vs-the-rest, the complete dataset is used n_classes times.
The decision function is the result of a monotonic transformation of the one-versus-one classification.

Multiclass learning

Below is an example of multiclass learning using OvO:

>>> from sklearn import datasets
>>> from sklearn.multiclass import OneVsOneClassifier
>>> from sklearn.svm import LinearSVC
>>> X, y = datasets.load_iris(return_X_y=True)
>>> OneVsOneClassifier(LinearSVC(random_state=0)).fit(X, y).predict(X)
array([0, 0,

0, 0,
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

References:

• “Pattern Recognition and Machine Learning. Springer”, Christopher M. Bishop, page 183, (First Edition)

Error-Correcting Output-Codes

Output-code based strategies are fairly different from one-vs-the-rest and one-vs-one. With these strategies, each class
is represented in a Euclidean space, where each dimension can only be 0 or 1. Another way to put it is that each class
is represented by a binary code (an array of 0 and 1). The matrix which keeps track of the location/code of each class
is called the code book. The code size is the dimensionality of the aforementioned space. Intuitively, each class should
be represented by a code as unique as possible and a good code book should be designed to optimize classification
accuracy. In this implementation, we simply use a randomly-generated code book as advocated in3 although more
elaborate methods may be added in the future.

At fitting time, one binary classifier per bit in the code book is fitted. At prediction time, the classifiers are used to
project new points in the class space and the class closest to the points is chosen.

In OutputCodeClassifier, the code_size attribute allows the user to control the number of classifiers which
will be used. It is a percentage of the total number of classes.

A number between 0 and 1 will require fewer classifiers than one-vs-the-rest. In theory, log2(n_classes) /
n_classes is sufficient to represent each class unambiguously. However, in practice, it may not lead to good
accuracy since log2(n_classes) is much smaller than n_classes.

A number greater than 1 will require more classifiers than one-vs-the-rest. In this case, some classifiers will in theory
correct for the mistakes made by other classifiers, hence the name “error-correcting”. In practice, however, this may
not happen as classifier mistakes will typically be correlated. The error-correcting output codes have a similar effect
to bagging.

3 “The error coding method and PICTs”, James G., Hastie T., Journal of Computational and Graphical statistics 7, 1998.

360 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

Multiclass learning

Below is an example of multiclass learning using Output-Codes:

>>> from sklearn import datasets
>>> from sklearn.multiclass import OutputCodeClassifier
>>> from sklearn.svm import LinearSVC
>>> X, y = datasets.load_iris(return_X_y=True)
>>> clf = OutputCodeClassifier(LinearSVC(random_state=0),
... code_size=2, random_state=0)
>>> clf.fit(X, y).predict(X)
array([0, 0,

0, 0,
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1,
1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

References:

• “Solving multiclass learning problems via error-correcting output codes”, Dietterich T., Bakiri G., Journal of
Artificial Intelligence Research 2, 1995.

• “The Elements of Statistical Learning”, Hastie T., Tibshirani R., Friedman J., page 606 (second-edition) 2008.

Multioutput regression

Multioutput regression support can be added to any regressor with MultiOutputRegressor. This strategy con-
sists of fitting one regressor per target. Since each target is represented by exactly one regressor it is possible to
gain knowledge about the target by inspecting its corresponding regressor. As MultiOutputRegressor fits one
regressor per target it can not take advantage of correlations between targets.

Below is an example of multioutput regression:

>>> from sklearn.datasets import make_regression
>>> from sklearn.multioutput import MultiOutputRegressor
>>> from sklearn.ensemble import GradientBoostingRegressor
>>> X, y = make_regression(n_samples=10, n_targets=3, random_state=1)
>>> MultiOutputRegressor(GradientBoostingRegressor(random_state=0)).fit(X, y).
→˓predict(X)
array([[-154.75474165, -147.03498585, -50.03812219],

[7.12165031, 5.12914884, -81.46081961],
[-187.8948621 , -100.44373091, 13.88978285],
[-141.62745778, 95.02891072, -191.48204257],
[97.03260883, 165.34867495, 139.52003279],
[123.92529176, 21.25719016, -7.84253],
[-122.25193977, -85.16443186, -107.12274212],
[-30.170388 , -94.80956739, 12.16979946],
[140.72667194, 176.50941682, -17.50447799],
[149.37967282, -81.15699552, -5.72850319]])

4.1. Supervised learning 361

scikit-learn user guide, Release 0.23.2

Multioutput classification

Multioutput classification support can be added to any classifier with MultiOutputClassifier. This strategy
consists of fitting one classifier per target. This allows multiple target variable classifications. The purpose of this class
is to extend estimators to be able to estimate a series of target functions (f1,f2,f3. . . ,fn) that are trained on a single X
predictor matrix to predict a series of responses (y1,y2,y3. . . ,yn).

Below is an example of multioutput classification:

>>> from sklearn.datasets import make_classification
>>> from sklearn.multioutput import MultiOutputClassifier
>>> from sklearn.ensemble import RandomForestClassifier
>>> from sklearn.utils import shuffle
>>> import numpy as np
>>> X, y1 = make_classification(n_samples=10, n_features=100, n_informative=30, n_
→˓classes=3, random_state=1)
>>> y2 = shuffle(y1, random_state=1)
>>> y3 = shuffle(y1, random_state=2)
>>> Y = np.vstack((y1, y2, y3)).T
>>> n_samples, n_features = X.shape # 10,100
>>> n_outputs = Y.shape[1] # 3
>>> n_classes = 3
>>> forest = RandomForestClassifier(random_state=1)
>>> multi_target_forest = MultiOutputClassifier(forest, n_jobs=-1)
>>> multi_target_forest.fit(X, Y).predict(X)
array([[2, 2, 0],

[1, 2, 1],
[2, 1, 0],
[0, 0, 2],
[0, 2, 1],
[0, 0, 2],
[1, 1, 0],
[1, 1, 1],
[0, 0, 2],
[2, 0, 0]])

Classifier Chain

Classifier chains (see ClassifierChain) are a way of combining a number of binary classifiers into a single
multi-label model that is capable of exploiting correlations among targets.

For a multi-label classification problem with N classes, N binary classifiers are assigned an integer between 0 and N-1.
These integers define the order of models in the chain. Each classifier is then fit on the available training data plus the
true labels of the classes whose models were assigned a lower number.

When predicting, the true labels will not be available. Instead the predictions of each model are passed on to the
subsequent models in the chain to be used as features.

Clearly the order of the chain is important. The first model in the chain has no information about the other labels while
the last model in the chain has features indicating the presence of all of the other labels. In general one does not know
the optimal ordering of the models in the chain so typically many randomly ordered chains are fit and their predictions
are averaged together.

References:

362 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

Jesse Read, Bernhard Pfahringer, Geoff Holmes, Eibe Frank, “Classifier Chains for Multi-label Classifica-
tion”, 2009.

Regressor Chain

Regressor chains (see RegressorChain) is analogous to ClassifierChain as a way of combining a number of re-
gressions into a single multi-target model that is capable of exploiting correlations among targets.

4.1.13 Feature selection

The classes in the sklearn.feature_selection module can be used for feature selection/dimensionality re-
duction on sample sets, either to improve estimators’ accuracy scores or to boost their performance on very high-
dimensional datasets.

Removing features with low variance

VarianceThreshold is a simple baseline approach to feature selection. It removes all features whose variance
doesn’t meet some threshold. By default, it removes all zero-variance features, i.e. features that have the same value
in all samples.

As an example, suppose that we have a dataset with boolean features, and we want to remove all features that are
either one or zero (on or off) in more than 80% of the samples. Boolean features are Bernoulli random variables, and
the variance of such variables is given by

Var[𝑋] = 𝑝(1− 𝑝)

so we can select using the threshold .8 * (1 - .8):

>>> from sklearn.feature_selection import VarianceThreshold
>>> X = [[0, 0, 1], [0, 1, 0], [1, 0, 0], [0, 1, 1], [0, 1, 0], [0, 1, 1]]
>>> sel = VarianceThreshold(threshold=(.8 * (1 - .8)))
>>> sel.fit_transform(X)
array([[0, 1],

[1, 0],
[0, 0],
[1, 1],
[1, 0],
[1, 1]])

As expected, VarianceThreshold has removed the first column, which has a probability 𝑝 = 5/6 > .8 of
containing a zero.

Univariate feature selection

Univariate feature selection works by selecting the best features based on univariate statistical tests. It can be seen
as a preprocessing step to an estimator. Scikit-learn exposes feature selection routines as objects that implement the
transform method:

• SelectKBest removes all but the 𝑘 highest scoring features

• SelectPercentile removes all but a user-specified highest scoring percentage of features

4.1. Supervised learning 363

scikit-learn user guide, Release 0.23.2

• using common univariate statistical tests for each feature: false positive rate SelectFpr, false discovery rate
SelectFdr, or family wise error SelectFwe.

• GenericUnivariateSelect allows to perform univariate feature selection with a configurable strategy.
This allows to select the best univariate selection strategy with hyper-parameter search estimator.

For instance, we can perform a 𝜒2 test to the samples to retrieve only the two best features as follows:

>>> from sklearn.datasets import load_iris
>>> from sklearn.feature_selection import SelectKBest
>>> from sklearn.feature_selection import chi2
>>> X, y = load_iris(return_X_y=True)
>>> X.shape
(150, 4)
>>> X_new = SelectKBest(chi2, k=2).fit_transform(X, y)
>>> X_new.shape
(150, 2)

These objects take as input a scoring function that returns univariate scores and p-values (or only scores for
SelectKBest and SelectPercentile):

• For regression: f_regression, mutual_info_regression

• For classification: chi2, f_classif, mutual_info_classif

The methods based on F-test estimate the degree of linear dependency between two random variables. On the other
hand, mutual information methods can capture any kind of statistical dependency, but being nonparametric, they
require more samples for accurate estimation.

Feature selection with sparse data

If you use sparse data (i.e. data represented as sparse matrices), chi2, mutual_info_regression,
mutual_info_classif will deal with the data without making it dense.

Warning: Beware not to use a regression scoring function with a classification problem, you will get useless
results.

Examples:

• Univariate Feature Selection

• Comparison of F-test and mutual information

Recursive feature elimination

Given an external estimator that assigns weights to features (e.g., the coefficients of a linear model), recursive feature
elimination (RFE) is to select features by recursively considering smaller and smaller sets of features. First, the
estimator is trained on the initial set of features and the importance of each feature is obtained either through a coef_
attribute or through a feature_importances_ attribute. Then, the least important features are pruned from
current set of features.That procedure is recursively repeated on the pruned set until the desired number of features to
select is eventually reached.

RFECV performs RFE in a cross-validation loop to find the optimal number of features.

364 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

Examples:

• Recursive feature elimination: A recursive feature elimination example showing the relevance of pixels in a
digit classification task.

• Recursive feature elimination with cross-validation: A recursive feature elimination example with automatic
tuning of the number of features selected with cross-validation.

Feature selection using SelectFromModel

SelectFromModel is a meta-transformer that can be used along with any estimator that has a coef_ or
feature_importances_ attribute after fitting. The features are considered unimportant and removed, if the
corresponding coef_ or feature_importances_ values are below the provided threshold parameter. Apart
from specifying the threshold numerically, there are built-in heuristics for finding a threshold using a string argument.
Available heuristics are “mean”, “median” and float multiples of these like “0.1*mean”. In combination with the
threshold criteria, one can use the max_features parameter to set a limit on the number of features to select.

For examples on how it is to be used refer to the sections below.

Examples

• Feature selection using SelectFromModel and LassoCV: Selecting the two most important features from the
diabetes dataset without knowing the threshold beforehand.

L1-based feature selection

Linear models penalized with the L1 norm have sparse solutions: many of their estimated coefficients are zero.
When the goal is to reduce the dimensionality of the data to use with another classifier, they can be used along
with feature_selection.SelectFromModel to select the non-zero coefficients. In particular, sparse
estimators useful for this purpose are the linear_model.Lasso for regression, and of linear_model.
LogisticRegression and svm.LinearSVC for classification:

>>> from sklearn.svm import LinearSVC
>>> from sklearn.datasets import load_iris
>>> from sklearn.feature_selection import SelectFromModel
>>> X, y = load_iris(return_X_y=True)
>>> X.shape
(150, 4)
>>> lsvc = LinearSVC(C=0.01, penalty="l1", dual=False).fit(X, y)
>>> model = SelectFromModel(lsvc, prefit=True)
>>> X_new = model.transform(X)
>>> X_new.shape
(150, 3)

With SVMs and logistic-regression, the parameter C controls the sparsity: the smaller C the fewer features selected.
With Lasso, the higher the alpha parameter, the fewer features selected.

Examples:

4.1. Supervised learning 365

scikit-learn user guide, Release 0.23.2

• Classification of text documents using sparse features: Comparison of different algorithms for document
classification including L1-based feature selection.

L1-recovery and compressive sensing

For a good choice of alpha, the Lasso can fully recover the exact set of non-zero variables using only few obser-
vations, provided certain specific conditions are met. In particular, the number of samples should be “sufficiently
large”, or L1 models will perform at random, where “sufficiently large” depends on the number of non-zero co-
efficients, the logarithm of the number of features, the amount of noise, the smallest absolute value of non-zero
coefficients, and the structure of the design matrix X. In addition, the design matrix must display certain specific
properties, such as not being too correlated.

There is no general rule to select an alpha parameter for recovery of non-zero coefficients. It can by set by cross-
validation (LassoCV or LassoLarsCV), though this may lead to under-penalized models: including a small
number of non-relevant variables is not detrimental to prediction score. BIC (LassoLarsIC) tends, on the oppo-
site, to set high values of alpha.

Reference Richard G. Baraniuk “Compressive Sensing”, IEEE Signal Processing Magazine [120] July 2007 http:
//users.isr.ist.utl.pt/~aguiar/CS_notes.pdf

Tree-based feature selection

Tree-based estimators (see the sklearn.tree module and forest of trees in the sklearn.ensemble module)
can be used to compute impurity-based feature importances, which in turn can be used to discard irrelevant features
(when coupled with the sklearn.feature_selection.SelectFromModel meta-transformer):

>>> from sklearn.ensemble import ExtraTreesClassifier
>>> from sklearn.datasets import load_iris
>>> from sklearn.feature_selection import SelectFromModel
>>> X, y = load_iris(return_X_y=True)
>>> X.shape
(150, 4)
>>> clf = ExtraTreesClassifier(n_estimators=50)
>>> clf = clf.fit(X, y)
>>> clf.feature_importances_
array([0.04..., 0.05..., 0.4..., 0.4...])
>>> model = SelectFromModel(clf, prefit=True)
>>> X_new = model.transform(X)
>>> X_new.shape
(150, 2)

Examples:

• Feature importances with forests of trees: example on synthetic data showing the recovery of the actually
meaningful features.

• Pixel importances with a parallel forest of trees: example on face recognition data.

366 Chapter 4. User Guide

http://users.isr.ist.utl.pt/~aguiar/CS_notes.pdf
http://users.isr.ist.utl.pt/~aguiar/CS_notes.pdf

scikit-learn user guide, Release 0.23.2

Feature selection as part of a pipeline

Feature selection is usually used as a pre-processing step before doing the actual learning. The recommended way to
do this in scikit-learn is to use a sklearn.pipeline.Pipeline:

clf = Pipeline([
('feature_selection', SelectFromModel(LinearSVC(penalty="l1"))),
('classification', RandomForestClassifier())

])
clf.fit(X, y)

In this snippet we make use of a sklearn.svm.LinearSVC coupled with sklearn.feature_selection.
SelectFromModel to evaluate feature importances and select the most relevant features. Then, a sklearn.
ensemble.RandomForestClassifier is trained on the transformed output, i.e. using only relevant features.
You can perform similar operations with the other feature selection methods and also classifiers that provide a way to
evaluate feature importances of course. See the sklearn.pipeline.Pipeline examples for more details.

4.1.14 Semi-Supervised

Semi-supervised learning is a situation in which in your training data some of the samples are not labeled. The semi-
supervised estimators in sklearn.semi_supervised are able to make use of this additional unlabeled data to
better capture the shape of the underlying data distribution and generalize better to new samples. These algorithms
can perform well when we have a very small amount of labeled points and a large amount of unlabeled points.

Unlabeled entries in y

It is important to assign an identifier to unlabeled points along with the labeled data when training the model with
the fit method. The identifier that this implementation uses is the integer value −1.

Label Propagation

Label propagation denotes a few variations of semi-supervised graph inference algorithms.

A few features available in this model:

• Can be used for classification and regression tasks

• Kernel methods to project data into alternate dimensional spaces

scikit-learn provides two label propagation models: LabelPropagation and LabelSpreading. Both
work by constructing a similarity graph over all items in the input dataset.

LabelPropagation and LabelSpreading differ in modifications to the similarity matrix that graph and the
clamping effect on the label distributions. Clamping allows the algorithm to change the weight of the true ground
labeled data to some degree. The LabelPropagation algorithm performs hard clamping of input labels, which
means 𝛼 = 0. This clamping factor can be relaxed, to say 𝛼 = 0.2, which means that we will always retain 80 percent
of our original label distribution, but the algorithm gets to change its confidence of the distribution within 20 percent.

LabelPropagation uses the raw similarity matrix constructed from the data with no modifications. In contrast,
LabelSpreading minimizes a loss function that has regularization properties, as such it is often more robust to
noise. The algorithm iterates on a modified version of the original graph and normalizes the edge weights by computing
the normalized graph Laplacian matrix. This procedure is also used in Spectral clustering.

Label propagation models have two built-in kernel methods. Choice of kernel effects both scalability and performance
of the algorithms. The following are available:

4.1. Supervised learning 367

https://en.wikipedia.org/wiki/Semi-supervised_learning

scikit-learn user guide, Release 0.23.2

Fig. 2: An illustration of label-propagation: the structure of unlabeled observations is consistent with the class
structure, and thus the class label can be propagated to the unlabeled observations of the training set.

• rbf (exp(−𝛾|𝑥− 𝑦|2), 𝛾 > 0). 𝛾 is specified by keyword gamma.

• knn (1[𝑥′ ∈ 𝑘𝑁𝑁(𝑥)]). 𝑘 is specified by keyword n_neighbors.

The RBF kernel will produce a fully connected graph which is represented in memory by a dense matrix. This matrix
may be very large and combined with the cost of performing a full matrix multiplication calculation for each iteration
of the algorithm can lead to prohibitively long running times. On the other hand, the KNN kernel will produce a much
more memory-friendly sparse matrix which can drastically reduce running times.

Examples

• Decision boundary of label propagation versus SVM on the Iris dataset

• Label Propagation learning a complex structure

• Label Propagation digits: Demonstrating performance

• Label Propagation digits active learning

References

[1] Yoshua Bengio, Olivier Delalleau, Nicolas Le Roux. In Semi-Supervised Learning (2006), pp. 193-216

[2] Olivier Delalleau, Yoshua Bengio, Nicolas Le Roux. Efficient Non-Parametric Function Induction in Semi-
Supervised Learning. AISTAT 2005 https://research.microsoft.com/en-us/people/nicolasl/efficient_ssl.pdf

4.1.15 Isotonic regression

The class IsotonicRegression fits a non-decreasing real function to 1-dimensional data. It solves the following
problem:

minimize
∑︀

𝑖 𝑤𝑖(𝑦𝑖 − 𝑦𝑖)2

subject to 𝑦𝑖 ≤ 𝑦𝑗 whenever 𝑋𝑖 ≤ 𝑋𝑗 ,

368 Chapter 4. User Guide

../auto_examples/semi_supervised/plot_label_propagation_structure.html
https://research.microsoft.com/en-us/people/nicolasl/efficient_ssl.pdf

scikit-learn user guide, Release 0.23.2

where the weights 𝑤𝑖 are strictly positive, and both X and y are arbitrary real quantities.

The increasing parameter changes the constraint to 𝑦𝑖 ≥ 𝑦𝑗 whenever 𝑋𝑖 ≤ 𝑋𝑗 . Setting it to ‘auto’ will automat-
ically choose the constraint based on Spearman’s rank correlation coefficient.

IsotonicRegression produces a series of predictions 𝑦𝑖 for the training data which are the closest to the targets
𝑦 in terms of mean squared error. These predictions are interpolated for predicting to unseen data. The predictions of
IsotonicRegression thus form a function that is piecewise linear:

4.1.16 Probability calibration

When performing classification you often want not only to predict the class label, but also obtain a probability of the
respective label. This probability gives you some kind of confidence on the prediction. Some models can give you
poor estimates of the class probabilities and some even do not support probability prediction. The calibration module
allows you to better calibrate the probabilities of a given model, or to add support for probability prediction.

Well calibrated classifiers are probabilistic classifiers for which the output of the predict_proba method can be directly
interpreted as a confidence level. For instance, a well calibrated (binary) classifier should classify the samples such
that among the samples to which it gave a predict_proba value close to 0.8, approximately 80% actually belong to the
positive class.

4.1. Supervised learning 369

https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
../auto_examples/miscellaneous/plot_isotonic_regression.html

scikit-learn user guide, Release 0.23.2

Calibration curves

The following plot compares how well the probabilistic predictions of different classifiers are calibrated, using
calibration_curve. The x axis represents the average predicted probability in each bin. The y axis is the
fraction of positives, i.e. the proportion of samples whose class is the positive class (in each bin).

LogisticRegression returns well calibrated predictions by default as it directly optimizes log-loss. In contrast,
the other methods return biased probabilities; with different biases per method:

GaussianNB tends to push probabilities to 0 or 1 (note the counts in the histograms). This is mainly because it
makes the assumption that features are conditionally independent given the class, which is not the case in this dataset
which contains 2 redundant features.

RandomForestClassifier shows the opposite behavior: the histograms show peaks at approximately 0.2 and
0.9 probability, while probabilities close to 0 or 1 are very rare. An explanation for this is given by Niculescu-Mizil

370 Chapter 4. User Guide

../auto_examples/calibration/plot_compare_calibration.html

scikit-learn user guide, Release 0.23.2

and Caruana1: “Methods such as bagging and random forests that average predictions from a base set of models can
have difficulty making predictions near 0 and 1 because variance in the underlying base models will bias predictions
that should be near zero or one away from these values. Because predictions are restricted to the interval [0,1], errors
caused by variance tend to be one-sided near zero and one. For example, if a model should predict p = 0 for a case,
the only way bagging can achieve this is if all bagged trees predict zero. If we add noise to the trees that bagging is
averaging over, this noise will cause some trees to predict values larger than 0 for this case, thus moving the average
prediction of the bagged ensemble away from 0. We observe this effect most strongly with random forests because
the base-level trees trained with random forests have relatively high variance due to feature subsetting.” As a result,
the calibration curve also referred to as the reliability diagram (Wilks 19952) shows a characteristic sigmoid shape,
indicating that the classifier could trust its “intuition” more and return probabilities closer to 0 or 1 typically.

Linear Support Vector Classification (LinearSVC) shows an even more sigmoid curve as the RandomForestClassi-
fier, which is typical for maximum-margin methods (compare Niculescu-Mizil and Caruana1), which focus on hard
samples that are close to the decision boundary (the support vectors).

Calibrating a classifier

Calibrating a classifier consists in fitting a regressor (called a calibrator) that maps the output of the classifier (as
given by predict or predict_proba) to a calibrated probability in [0, 1]. Denoting the output of the classifier for a given
sample by 𝑓𝑖, the calibrator tries to predict 𝑝(𝑦𝑖 = 1|𝑓𝑖).

The samples that are used to train the calibrator should not be used to train the target classifier.

Usage

The CalibratedClassifierCV class is used to calibrate a classifier.

CalibratedClassifierCV uses a cross-validation approach to fit both the classifier and the regressor. For each
of the k (trainset, testset) couple, a classifier is trained on the train set, and its predictions on the test set
are used to fit a regressor. We end up with k (classifier, regressor) couples where each regressor maps
the output of its corresponding classifier into [0, 1]. Each couple is exposed in the calibrated_classifiers_
attribute, where each entry is a calibrated classifier with a predict_proba method that outputs calibrated probabilities.
The output of predict_proba for the main CalibratedClassifierCV instance corresponds to the average of the
predicted probabilities of the k estimators in the calibrated_classifiers_ list. The output of predict is the
class that has the highest probability.

The regressor that is used for calibration depends on the method parameter. 'sigmoid' corresponds to a parametric
approach based on Platt’s logistic model3, i.e. 𝑝(𝑦𝑖 = 1|𝑓𝑖) is modeled as 𝜎(𝐴𝑓𝑖 +𝐵) where 𝜎 is the logistic function,
and 𝐴 and 𝐵 are real numbers to be determined when fitting the regressor via maximum likelihood. 'isotonic'
will instead fit a non-parametric isotonic regressor, which outputs a step-wise non-decreasing function (see sklearn.
isotonic).

An already fitted classifier can be calibrated by setting cv="prefit". In this case, the data is only used to fit the
regressor. It is up to the user make sure that the data used for fitting the classifier is disjoint from the data used for
fitting the regressor.

CalibratedClassifierCV can calibrate probabilities in a multiclass setting if the base estimator supports mul-
ticlass predictions. The classifier is calibrated first for each class separately in a one-vs-rest fashion4. When predicting
probabilities, the calibrated probabilities for each class are predicted separately. As those probabilities do not neces-
sarily sum to one, a postprocessing is performed to normalize them.

The sklearn.metrics.brier_score_loss may be used to evaluate how well a classifier is calibrated.

1 Predicting Good Probabilities with Supervised Learning, A. Niculescu-Mizil & R. Caruana, ICML 2005
2 On the combination of forecast probabilities for consecutive precipitation periods. Wea. Forecasting, 5, 640–650., Wilks, D. S., 1990a
3 Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods, J. Platt, (1999)
4 Transforming Classifier Scores into Accurate Multiclass Probability Estimates, B. Zadrozny & C. Elkan, (KDD 2002)

4.1. Supervised learning 371

scikit-learn user guide, Release 0.23.2

Examples:

• Probability Calibration curves

• Probability Calibration for 3-class classification

• Probability calibration of classifiers

• Comparison of Calibration of Classifiers

References:

4.1.17 Neural network models (supervised)

Warning: This implementation is not intended for large-scale applications. In particular, scikit-learn offers no
GPU support. For much faster, GPU-based implementations, as well as frameworks offering much more flexibility
to build deep learning architectures, see Related Projects.

Multi-layer Perceptron

Multi-layer Perceptron (MLP) is a supervised learning algorithm that learns a function 𝑓(·) : 𝑅𝑚 → 𝑅𝑜 by training
on a dataset, where 𝑚 is the number of dimensions for input and 𝑜 is the number of dimensions for output. Given a set
of features 𝑋 = 𝑥1, 𝑥2, ..., 𝑥𝑚 and a target 𝑦, it can learn a non-linear function approximator for either classification
or regression. It is different from logistic regression, in that between the input and the output layer, there can be one
or more non-linear layers, called hidden layers. Figure 1 shows a one hidden layer MLP with scalar output.

Fig. 3: Figure 1 : One hidden layer MLP.

The leftmost layer, known as the input layer, consists of a set of neurons {𝑥𝑖|𝑥1, 𝑥2, ..., 𝑥𝑚} representing the input
features. Each neuron in the hidden layer transforms the values from the previous layer with a weighted linear sum-
mation 𝑤1𝑥1 + 𝑤2𝑥2 + ...+ 𝑤𝑚𝑥𝑚, followed by a non-linear activation function 𝑔(·) : 𝑅→ 𝑅 - like the hyperbolic
tan function. The output layer receives the values from the last hidden layer and transforms them into output values.

372 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

The module contains the public attributes coefs_ and intercepts_. coefs_ is a list of weight matrices, where
weight matrix at index 𝑖 represents the weights between layer 𝑖 and layer 𝑖+1. intercepts_ is a list of bias vectors,
where the vector at index 𝑖 represents the bias values added to layer 𝑖+ 1.

The advantages of Multi-layer Perceptron are:

• Capability to learn non-linear models.

• Capability to learn models in real-time (on-line learning) using partial_fit.

The disadvantages of Multi-layer Perceptron (MLP) include:

• MLP with hidden layers have a non-convex loss function where there exists more than one local minimum.
Therefore different random weight initializations can lead to different validation accuracy.

• MLP requires tuning a number of hyperparameters such as the number of hidden neurons, layers, and iterations.

• MLP is sensitive to feature scaling.

Please see Tips on Practical Use section that addresses some of these disadvantages.

Classification

Class MLPClassifier implements a multi-layer perceptron (MLP) algorithm that trains using Backpropagation.

MLP trains on two arrays: array X of size (n_samples, n_features), which holds the training samples represented as
floating point feature vectors; and array y of size (n_samples,), which holds the target values (class labels) for the
training samples:

>>> from sklearn.neural_network import MLPClassifier
>>> X = [[0., 0.], [1., 1.]]
>>> y = [0, 1]
>>> clf = MLPClassifier(solver='lbfgs', alpha=1e-5,
... hidden_layer_sizes=(5, 2), random_state=1)
...
>>> clf.fit(X, y)
MLPClassifier(alpha=1e-05, hidden_layer_sizes=(5, 2), random_state=1,

solver='lbfgs')

After fitting (training), the model can predict labels for new samples:

>>> clf.predict([[2., 2.], [-1., -2.]])
array([1, 0])

MLP can fit a non-linear model to the training data. clf.coefs_ contains the weight matrices that constitute the
model parameters:

>>> [coef.shape for coef in clf.coefs_]
[(2, 5), (5, 2), (2, 1)]

Currently, MLPClassifier supports only the Cross-Entropy loss function, which allows probability estimates by
running the predict_proba method.

MLP trains using Backpropagation. More precisely, it trains using some form of gradient descent and the gradients
are calculated using Backpropagation. For classification, it minimizes the Cross-Entropy loss function, giving a vector
of probability estimates 𝑃 (𝑦|𝑥) per sample 𝑥:

>>> clf.predict_proba([[2., 2.], [1., 2.]])
array([[1.967...e-04, 9.998...-01],

[1.967...e-04, 9.998...-01]])

4.1. Supervised learning 373

http://ufldl.stanford.edu/wiki/index.php/Backpropagation_Algorithm

scikit-learn user guide, Release 0.23.2

MLPClassifier supports multi-class classification by applying Softmax as the output function.

Further, the model supports multi-label classification in which a sample can belong to more than one class. For each
class, the raw output passes through the logistic function. Values larger or equal to 0.5 are rounded to 1, otherwise to
0. For a predicted output of a sample, the indices where the value is 1 represents the assigned classes of that sample:

>>> X = [[0., 0.], [1., 1.]]
>>> y = [[0, 1], [1, 1]]
>>> clf = MLPClassifier(solver='lbfgs', alpha=1e-5,
... hidden_layer_sizes=(15,), random_state=1)
...
>>> clf.fit(X, y)
MLPClassifier(alpha=1e-05, hidden_layer_sizes=(15,), random_state=1,

solver='lbfgs')
>>> clf.predict([[1., 2.]])
array([[1, 1]])
>>> clf.predict([[0., 0.]])
array([[0, 1]])

See the examples below and the docstring of MLPClassifier.fit for further information.

Examples:

• Compare Stochastic learning strategies for MLPClassifier

• Visualization of MLP weights on MNIST

Regression

Class MLPRegressor implements a multi-layer perceptron (MLP) that trains using backpropagation with no activa-
tion function in the output layer, which can also be seen as using the identity function as activation function. Therefore,
it uses the square error as the loss function, and the output is a set of continuous values.

MLPRegressor also supports multi-output regression, in which a sample can have more than one target.

Regularization

Both MLPRegressor and MLPClassifier use parameter alpha for regularization (L2 regularization) term
which helps in avoiding overfitting by penalizing weights with large magnitudes. Following plot displays varying
decision function with value of alpha.

See the examples below for further information.

Examples:

• Varying regularization in Multi-layer Perceptron

374 Chapter 4. User Guide

https://en.wikipedia.org/wiki/Softmax_activation_function

scikit-learn user guide, Release 0.23.2

Algorithms

MLP trains using Stochastic Gradient Descent, Adam, or L-BFGS. Stochastic Gradient Descent (SGD) updates pa-
rameters using the gradient of the loss function with respect to a parameter that needs adaptation, i.e.

𝑤 ← 𝑤 − 𝜂(𝛼
𝜕𝑅(𝑤)

𝜕𝑤
+
𝜕𝐿𝑜𝑠𝑠

𝜕𝑤
)

where 𝜂 is the learning rate which controls the step-size in the parameter space search. 𝐿𝑜𝑠𝑠 is the loss function used
for the network.

More details can be found in the documentation of SGD

Adam is similar to SGD in a sense that it is a stochastic optimizer, but it can automatically adjust the amount to update
parameters based on adaptive estimates of lower-order moments.

With SGD or Adam, training supports online and mini-batch learning.

L-BFGS is a solver that approximates the Hessian matrix which represents the second-order partial derivative of a
function. Further it approximates the inverse of the Hessian matrix to perform parameter updates. The implementation
uses the Scipy version of L-BFGS.

If the selected solver is ‘L-BFGS’, training does not support online nor mini-batch learning.

Complexity

Suppose there are 𝑛 training samples, 𝑚 features, 𝑘 hidden layers, each containing ℎ neurons - for simplicity, and 𝑜
output neurons. The time complexity of backpropagation is 𝑂(𝑛 ·𝑚 · ℎ𝑘 · 𝑜 · 𝑖), where 𝑖 is the number of iterations.
Since backpropagation has a high time complexity, it is advisable to start with smaller number of hidden neurons and
few hidden layers for training.

4.1. Supervised learning 375

../auto_examples/neural_networks/plot_mlp_alpha.html
https://en.wikipedia.org/wiki/Stochastic_gradient_descent
https://arxiv.org/abs/1412.6980
https://en.wikipedia.org/wiki/Limited-memory_BFGS
http://scikit-learn.org/stable/modules/sgd.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_l_bfgs_b.html

scikit-learn user guide, Release 0.23.2

Mathematical formulation

Given a set of training examples (𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑛, 𝑦𝑛) where 𝑥𝑖 ∈ R𝑛 and 𝑦𝑖 ∈ {0, 1}, a one hidden layer
one hidden neuron MLP learns the function 𝑓(𝑥) = 𝑊2𝑔(𝑊𝑇

1 𝑥+ 𝑏1) + 𝑏2 where 𝑊1 ∈ R𝑚 and 𝑊2, 𝑏1, 𝑏2 ∈ R are
model parameters. 𝑊1,𝑊2 represent the weights of the input layer and hidden layer, respectively; and 𝑏1, 𝑏2 represent
the bias added to the hidden layer and the output layer, respectively. 𝑔(·) : 𝑅 → 𝑅 is the activation function, set by
default as the hyperbolic tan. It is given as,

𝑔(𝑧) =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧

For binary classification, 𝑓(𝑥) passes through the logistic function 𝑔(𝑧) = 1/(1+𝑒−𝑧) to obtain output values between
zero and one. A threshold, set to 0.5, would assign samples of outputs larger or equal 0.5 to the positive class, and the
rest to the negative class.

If there are more than two classes, 𝑓(𝑥) itself would be a vector of size (n_classes,). Instead of passing through logistic
function, it passes through the softmax function, which is written as,

softmax(𝑧)𝑖 =
exp(𝑧𝑖)∑︀𝑘
𝑙=1 exp(𝑧𝑙)

where 𝑧𝑖 represents the 𝑖 th element of the input to softmax, which corresponds to class 𝑖, and 𝐾 is the number of
classes. The result is a vector containing the probabilities that sample 𝑥 belong to each class. The output is the class
with the highest probability.

In regression, the output remains as 𝑓(𝑥); therefore, output activation function is just the identity function.

MLP uses different loss functions depending on the problem type. The loss function for classification is Cross-Entropy,
which in binary case is given as,

𝐿𝑜𝑠𝑠(𝑦, 𝑦,𝑊) = −𝑦 ln 𝑦 − (1− 𝑦) ln (1− 𝑦) + 𝛼||𝑊 ||22

where 𝛼||𝑊 ||22 is an L2-regularization term (aka penalty) that penalizes complex models; and 𝛼 > 0 is a non-negative
hyperparameter that controls the magnitude of the penalty.

For regression, MLP uses the Square Error loss function; written as,

𝐿𝑜𝑠𝑠(𝑦, 𝑦,𝑊) =
1

2
||𝑦 − 𝑦||22 +

𝛼

2
||𝑊 ||22

Starting from initial random weights, multi-layer perceptron (MLP) minimizes the loss function by repeatedly updating
these weights. After computing the loss, a backward pass propagates it from the output layer to the previous layers,
providing each weight parameter with an update value meant to decrease the loss.

In gradient descent, the gradient ∇𝐿𝑜𝑠𝑠𝑊 of the loss with respect to the weights is computed and deducted from 𝑊 .
More formally, this is expressed as,

𝑊 𝑖+1 = 𝑊 𝑖 − 𝜖∇𝐿𝑜𝑠𝑠𝑖𝑊

where 𝑖 is the iteration step, and 𝜖 is the learning rate with a value larger than 0.

The algorithm stops when it reaches a preset maximum number of iterations; or when the improvement in loss is below
a certain, small number.

Tips on Practical Use

• Multi-layer Perceptron is sensitive to feature scaling, so it is highly recommended to scale your data. For
example, scale each attribute on the input vector X to [0, 1] or [-1, +1], or standardize it to have mean 0 and
variance 1. Note that you must apply the same scaling to the test set for meaningful results. You can use
StandardScaler for standardization.

376 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

>>> from sklearn.preprocessing import StandardScaler # doctest: +SKIP
>>> scaler = StandardScaler() # doctest: +SKIP
>>> # Don't cheat - fit only on training data
>>> scaler.fit(X_train) # doctest: +SKIP
>>> X_train = scaler.transform(X_train) # doctest: +SKIP
>>> # apply same transformation to test data
>>> X_test = scaler.transform(X_test) # doctest: +SKIP

An alternative and recommended approach is to use StandardScaler in a Pipeline

• Finding a reasonable regularization parameter 𝛼 is best done using GridSearchCV, usually in the range 10.0
** -np.arange(1, 7).

• Empirically, we observed that L-BFGS converges faster and with better solutions on small datasets. For rela-
tively large datasets, however, Adam is very robust. It usually converges quickly and gives pretty good perfor-
mance. SGD with momentum or nesterov’s momentum, on the other hand, can perform better than those two
algorithms if learning rate is correctly tuned.

More control with warm_start

If you want more control over stopping criteria or learning rate in SGD, or want to do additional monitoring, using
warm_start=True and max_iter=1 and iterating yourself can be helpful:

>>> X = [[0., 0.], [1., 1.]]
>>> y = [0, 1]
>>> clf = MLPClassifier(hidden_layer_sizes=(15,), random_state=1, max_iter=1, warm_
→˓start=True)
>>> for i in range(10):
... clf.fit(X, y)
... # additional monitoring / inspection
MLPClassifier(...

References:

• “Learning representations by back-propagating errors.” Rumelhart, David E., Geoffrey E. Hinton, and Ronald
J. Williams.

• “Stochastic Gradient Descent” L. Bottou - Website, 2010.

• “Backpropagation” Andrew Ng, Jiquan Ngiam, Chuan Yu Foo, Yifan Mai, Caroline Suen - Website, 2011.

• “Efficient BackProp” Y. LeCun, L. Bottou, G. Orr, K. Müller - In Neural Networks: Tricks of the Trade 1998.

• “Adam: A method for stochastic optimization.” Kingma, Diederik, and Jimmy Ba. arXiv preprint
arXiv:1412.6980 (2014).

4.2 Unsupervised learning

4.2.1 Gaussian mixture models

sklearn.mixture is a package which enables one to learn Gaussian Mixture Models (diagonal, spherical, tied
and full covariance matrices supported), sample them, and estimate them from data. Facilities to help determine the
appropriate number of components are also provided.

4.2. Unsupervised learning 377

https://www.iro.umontreal.ca/~pift6266/A06/refs/backprop_old.pdf
https://leon.bottou.org/projects/sgd
http://ufldl.stanford.edu/wiki/index.php/Backpropagation_Algorithm
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
https://arxiv.org/pdf/1412.6980v8.pdf

scikit-learn user guide, Release 0.23.2

Fig. 4: Two-component Gaussian mixture model: data points, and equi-probability surfaces of the model.

A Gaussian mixture model is a probabilistic model that assumes all the data points are generated from a mixture of a
finite number of Gaussian distributions with unknown parameters. One can think of mixture models as generalizing
k-means clustering to incorporate information about the covariance structure of the data as well as the centers of the
latent Gaussians.

Scikit-learn implements different classes to estimate Gaussian mixture models, that correspond to different estimation
strategies, detailed below.

Gaussian Mixture

The GaussianMixture object implements the expectation-maximization (EM) algorithm for fitting mixture-of-
Gaussian models. It can also draw confidence ellipsoids for multivariate models, and compute the Bayesian Infor-
mation Criterion to assess the number of clusters in the data. A GaussianMixture.fit method is provided that
learns a Gaussian Mixture Model from train data. Given test data, it can assign to each sample the Gaussian it mostly
probably belong to using the GaussianMixture.predict method.

The GaussianMixture comes with different options to constrain the covariance of the difference classes estimated:
spherical, diagonal, tied or full covariance.

Examples:

• See GMM covariances for an example of using the Gaussian mixture as clustering on the iris dataset.

• See Density Estimation for a Gaussian mixture for an example on plotting the density estimation.

Pros and cons of class GaussianMixture

Pros

Speed It is the fastest algorithm for learning mixture models

Agnostic As this algorithm maximizes only the likelihood, it will not bias the means towards zero, or
bias the cluster sizes to have specific structures that might or might not apply.

378 Chapter 4. User Guide

../auto_examples/mixture/plot_gmm_pdf.html

scikit-learn user guide, Release 0.23.2

Cons

Singularities When one has insufficiently many points per mixture, estimating the covariance matrices
becomes difficult, and the algorithm is known to diverge and find solutions with infinite likelihood
unless one regularizes the covariances artificially.

Number of components This algorithm will always use all the components it has access to, needing
held-out data or information theoretical criteria to decide how many components to use in the ab-
sence of external cues.

Selecting the number of components in a classical Gaussian Mixture Model

The BIC criterion can be used to select the number of components in a Gaussian Mixture in an efficient way. In theory,
it recovers the true number of components only in the asymptotic regime (i.e. if much data is available and assuming
that the data was actually generated i.i.d. from a mixture of Gaussian distribution). Note that using a Variational
Bayesian Gaussian mixture avoids the specification of the number of components for a Gaussian mixture model.

Examples:

• See Gaussian Mixture Model Selection for an example of model selection performed with classical Gaussian
mixture.

4.2. Unsupervised learning 379

../auto_examples/mixture/plot_gmm_covariances.html

scikit-learn user guide, Release 0.23.2

Estimation algorithm Expectation-maximization

The main difficulty in learning Gaussian mixture models from unlabeled data is that it is one usually doesn’t know
which points came from which latent component (if one has access to this information it gets very easy to fit a separate
Gaussian distribution to each set of points). Expectation-maximization is a well-founded statistical algorithm to get
around this problem by an iterative process. First one assumes random components (randomly centered on data points,
learned from k-means, or even just normally distributed around the origin) and computes for each point a probability
of being generated by each component of the model. Then, one tweaks the parameters to maximize the likelihood of
the data given those assignments. Repeating this process is guaranteed to always converge to a local optimum.

Variational Bayesian Gaussian Mixture

The BayesianGaussianMixture object implements a variant of the Gaussian mixture model with variational
inference algorithms. The API is similar as the one defined by GaussianMixture.

Estimation algorithm: variational inference

Variational inference is an extension of expectation-maximization that maximizes a lower bound on model evidence
(including priors) instead of data likelihood. The principle behind variational methods is the same as expectation-
maximization (that is both are iterative algorithms that alternate between finding the probabilities for each point to
be generated by each mixture and fitting the mixture to these assigned points), but variational methods add regular-
ization by integrating information from prior distributions. This avoids the singularities often found in expectation-
maximization solutions but introduces some subtle biases to the model. Inference is often notably slower, but not
usually as much so as to render usage unpractical.

Due to its Bayesian nature, the variational algorithm needs more hyper- parameters than expectation-maximization,
the most important of these being the concentration parameter weight_concentration_prior. Specifying a
low value for the concentration prior will make the model put most of the weight on few components set the remain-
ing components weights very close to zero. High values of the concentration prior will allow a larger number of
components to be active in the mixture.

The parameters implementation of the BayesianGaussianMixture class proposes two types of prior for the
weights distribution: a finite mixture model with Dirichlet distribution and an infinite mixture model with the Dirichlet

380 Chapter 4. User Guide

../auto_examples/mixture/plot_gmm_selection.html
https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm

scikit-learn user guide, Release 0.23.2

Process. In practice Dirichlet Process inference algorithm is approximated and uses a truncated distribution with a fixed
maximum number of components (called the Stick-breaking representation). The number of components actually used
almost always depends on the data.

The next figure compares the results obtained for the different type of the weight concentration prior (parameter
weight_concentration_prior_type) for different values of weight_concentration_prior. Here,
we can see the value of the weight_concentration_prior parameter has a strong impact on the effective
number of active components obtained. We can also notice that large values for the concentration weight prior lead
to more uniform weights when the type of prior is ‘dirichlet_distribution’ while this is not necessarily the case for the
‘dirichlet_process’ type (used by default).

4.2. Unsupervised learning 381

../auto_examples/mixture/plot_concentration_prior.html

scikit-learn user guide, Release 0.23.2

The examples below compare Gaussian mixture models with a fixed number of components, to the variational Gaus-
sian mixture models with a Dirichlet process prior. Here, a classical Gaussian mixture is fitted with 5 components on
a dataset composed of 2 clusters. We can see that the variational Gaussian mixture with a Dirichlet process prior is
able to limit itself to only 2 components whereas the Gaussian mixture fits the data with a fixed number of components
that has to be set a priori by the user. In this case the user has selected n_components=5 which does not match the
true generative distribution of this toy dataset. Note that with very little observations, the variational Gaussian mixture
models with a Dirichlet process prior can take a conservative stand, and fit only one component.

On the following figure we are fitting a dataset not well-depicted by a Gaussian mixture. Adjusting the
weight_concentration_prior, parameter of the BayesianGaussianMixture controls the number of

382 Chapter 4. User Guide

../auto_examples/mixture/plot_concentration_prior.html
../auto_examples/mixture/plot_gmm.html

scikit-learn user guide, Release 0.23.2

components used to fit this data. We also present on the last two plots a random sampling generated from the two
resulting mixtures.

Examples:

• See Gaussian Mixture Model Ellipsoids for an example on plotting the confidence ellipsoids for both
GaussianMixture and BayesianGaussianMixture.

• Gaussian Mixture Model Sine Curve shows using GaussianMixture and
BayesianGaussianMixture to fit a sine wave.

• See Concentration Prior Type Analysis of Variation Bayesian Gaussian Mixture for an ex-
ample plotting the confidence ellipsoids for the BayesianGaussianMixture with dif-

4.2. Unsupervised learning 383

../auto_examples/mixture/plot_gmm_sin.html

scikit-learn user guide, Release 0.23.2

ferent weight_concentration_prior_type for different values of the parameter
weight_concentration_prior.

Pros and cons of variational inference with BayesianGaussianMixture

Pros

Automatic selection when weight_concentration_prior is small enough and
n_components is larger than what is found necessary by the model, the Variational Bayesian
mixture model has a natural tendency to set some mixture weights values close to zero. This makes
it possible to let the model choose a suitable number of effective components automatically. Only an
upper bound of this number needs to be provided. Note however that the “ideal” number of active
components is very application specific and is typically ill-defined in a data exploration setting.

Less sensitivity to the number of parameters unlike finite models, which will almost always use
all components as much as they can, and hence will produce wildly different solutions for
different numbers of components, the variational inference with a Dirichlet process prior
(weight_concentration_prior_type='dirichlet_process') won’t change much
with changes to the parameters, leading to more stability and less tuning.

Regularization due to the incorporation of prior information, variational solutions have less pathological
special cases than expectation-maximization solutions.

Cons

Speed the extra parametrization necessary for variational inference make inference slower, although not
by much.

Hyperparameters this algorithm needs an extra hyperparameter that might need experimental tuning via
cross-validation.

Bias there are many implicit biases in the inference algorithms (and also in the Dirichlet process if used),
and whenever there is a mismatch between these biases and the data it might be possible to fit better
models using a finite mixture.

The Dirichlet Process

Here we describe variational inference algorithms on Dirichlet process mixture. The Dirichlet process is a prior
probability distribution on clusterings with an infinite, unbounded, number of partitions. Variational techniques let us
incorporate this prior structure on Gaussian mixture models at almost no penalty in inference time, comparing with a
finite Gaussian mixture model.

An important question is how can the Dirichlet process use an infinite, unbounded number of clusters and still be
consistent. While a full explanation doesn’t fit this manual, one can think of its stick breaking process analogy to help
understanding it. The stick breaking process is a generative story for the Dirichlet process. We start with a unit-length
stick and in each step we break off a portion of the remaining stick. Each time, we associate the length of the piece of
the stick to the proportion of points that falls into a group of the mixture. At the end, to represent the infinite mixture,
we associate the last remaining piece of the stick to the proportion of points that don’t fall into all the other groups. The
length of each piece is a random variable with probability proportional to the concentration parameter. Smaller value
of the concentration will divide the unit-length into larger pieces of the stick (defining more concentrated distribution).
Larger concentration values will create smaller pieces of the stick (increasing the number of components with non
zero weights).

384 Chapter 4. User Guide

https://en.wikipedia.org/wiki/Dirichlet_process#The_stick-breaking_process

scikit-learn user guide, Release 0.23.2

Variational inference techniques for the Dirichlet process still work with a finite approximation to this infinite mixture
model, but instead of having to specify a priori how many components one wants to use, one just specifies the concen-
tration parameter and an upper bound on the number of mixture components (this upper bound, assuming it is higher
than the “true” number of components, affects only algorithmic complexity, not the actual number of components
used).

4.2.2 Manifold learning

Look for the bare necessities
The simple bare necessities
Forget about your worries and your strife
I mean the bare necessities
Old Mother Nature’s recipes
That bring the bare necessities of life

– Baloo’s song [The Jungle Book]

Manifold learning is an approach to non-linear dimensionality reduction. Algorithms for this task are based on the
idea that the dimensionality of many data sets is only artificially high.

Introduction

High-dimensional datasets can be very difficult to visualize. While data in two or three dimensions can be plotted to
show the inherent structure of the data, equivalent high-dimensional plots are much less intuitive. To aid visualization
of the structure of a dataset, the dimension must be reduced in some way.

The simplest way to accomplish this dimensionality reduction is by taking a random projection of the data. Though
this allows some degree of visualization of the data structure, the randomness of the choice leaves much to be desired.
In a random projection, it is likely that the more interesting structure within the data will be lost.

4.2. Unsupervised learning 385

../auto_examples/manifold/plot_compare_methods.html

scikit-learn user guide, Release 0.23.2

To address this concern, a number of supervised and unsupervised linear dimensionality reduction frameworks have
been designed, such as Principal Component Analysis (PCA), Independent Component Analysis, Linear Discriminant
Analysis, and others. These algorithms define specific rubrics to choose an “interesting” linear projection of the data.
These methods can be powerful, but often miss important non-linear structure in the data.

Manifold Learning can be thought of as an attempt to generalize linear frameworks like PCA to be sensitive to non-
linear structure in data. Though supervised variants exist, the typical manifold learning problem is unsupervised: it
learns the high-dimensional structure of the data from the data itself, without the use of predetermined classifications.

Examples:

• See Manifold learning on handwritten digits: Locally Linear Embedding, Isomap. . . for an example of
dimensionality reduction on handwritten digits.

• See Comparison of Manifold Learning methods for an example of dimensionality reduction on a toy “S-
curve” dataset.

The manifold learning implementations available in scikit-learn are summarized below

Isomap

One of the earliest approaches to manifold learning is the Isomap algorithm, short for Isometric Mapping. Isomap can
be viewed as an extension of Multi-dimensional Scaling (MDS) or Kernel PCA. Isomap seeks a lower-dimensional

386 Chapter 4. User Guide

../auto_examples/manifold/plot_lle_digits.html
../auto_examples/manifold/plot_lle_digits.html
../auto_examples/manifold/plot_lle_digits.html
../auto_examples/manifold/plot_lle_digits.html

scikit-learn user guide, Release 0.23.2

embedding which maintains geodesic distances between all points. Isomap can be performed with the object Isomap.

Complexity

The Isomap algorithm comprises three stages:

1. Nearest neighbor search. Isomap uses sklearn.neighbors.BallTree for efficient neighbor search.
The cost is approximately 𝑂[𝐷 log(𝑘)𝑁 log(𝑁)], for 𝑘 nearest neighbors of 𝑁 points in 𝐷 dimensions.

2. Shortest-path graph search. The most efficient known algorithms for this are Dijkstra’s Algorithm, which is
approximately 𝑂[𝑁2(𝑘 + log(𝑁))], or the Floyd-Warshall algorithm, which is 𝑂[𝑁3]. The algorithm can be
selected by the user with the path_method keyword of Isomap. If unspecified, the code attempts to choose
the best algorithm for the input data.

3. Partial eigenvalue decomposition. The embedding is encoded in the eigenvectors corresponding to the 𝑑
largest eigenvalues of the 𝑁 × 𝑁 isomap kernel. For a dense solver, the cost is approximately 𝑂[𝑑𝑁2]. This
cost can often be improved using the ARPACK solver. The eigensolver can be specified by the user with the
eigen_solver keyword of Isomap. If unspecified, the code attempts to choose the best algorithm for the
input data.

The overall complexity of Isomap is 𝑂[𝐷 log(𝑘)𝑁 log(𝑁)] +𝑂[𝑁2(𝑘 + log(𝑁))] +𝑂[𝑑𝑁2].

• 𝑁 : number of training data points

• 𝐷 : input dimension

• 𝑘 : number of nearest neighbors

• 𝑑 : output dimension

References:

• “A global geometric framework for nonlinear dimensionality reduction” Tenenbaum, J.B.; De Silva, V.; &
Langford, J.C. Science 290 (5500)

Locally Linear Embedding

Locally linear embedding (LLE) seeks a lower-dimensional projection of the data which preserves distances within
local neighborhoods. It can be thought of as a series of local Principal Component Analyses which are globally

4.2. Unsupervised learning 387

../auto_examples/manifold/plot_lle_digits.html
http://science.sciencemag.org/content/290/5500/2319.full

scikit-learn user guide, Release 0.23.2

compared to find the best non-linear embedding.

Locally linear embedding can be performed with function locally_linear_embedding or its object-oriented
counterpart LocallyLinearEmbedding.

Complexity

The standard LLE algorithm comprises three stages:

1. Nearest Neighbors Search. See discussion under Isomap above.

2. Weight Matrix Construction. 𝑂[𝐷𝑁𝑘3]. The construction of the LLE weight matrix involves the solution of
a 𝑘 × 𝑘 linear equation for each of the 𝑁 local neighborhoods

3. Partial Eigenvalue Decomposition. See discussion under Isomap above.

The overall complexity of standard LLE is 𝑂[𝐷 log(𝑘)𝑁 log(𝑁)] +𝑂[𝐷𝑁𝑘3] +𝑂[𝑑𝑁2].

• 𝑁 : number of training data points

• 𝐷 : input dimension

• 𝑘 : number of nearest neighbors

• 𝑑 : output dimension

References:

• “Nonlinear dimensionality reduction by locally linear embedding” Roweis, S. & Saul, L. Science 290:2323
(2000)

Modified Locally Linear Embedding

One well-known issue with LLE is the regularization problem. When the number of neighbors is greater than the
number of input dimensions, the matrix defining each local neighborhood is rank-deficient. To address this, standard
LLE applies an arbitrary regularization parameter 𝑟, which is chosen relative to the trace of the local weight matrix.
Though it can be shown formally that as 𝑟 → 0, the solution converges to the desired embedding, there is no guarantee
that the optimal solution will be found for 𝑟 > 0. This problem manifests itself in embeddings which distort the
underlying geometry of the manifold.

388 Chapter 4. User Guide

../auto_examples/manifold/plot_lle_digits.html
http://www.sciencemag.org/content/290/5500/2323.full

scikit-learn user guide, Release 0.23.2

One method to address the regularization problem is to use multiple weight vectors in each neighborhood.
This is the essence of modified locally linear embedding (MLLE). MLLE can be performed with function
locally_linear_embedding or its object-oriented counterpart LocallyLinearEmbedding, with the key-
word method = 'modified'. It requires n_neighbors > n_components.

Complexity

The MLLE algorithm comprises three stages:

1. Nearest Neighbors Search. Same as standard LLE

2. Weight Matrix Construction. Approximately𝑂[𝐷𝑁𝑘3]+𝑂[𝑁(𝑘−𝐷)𝑘2]. The first term is exactly equivalent
to that of standard LLE. The second term has to do with constructing the weight matrix from multiple weights.
In practice, the added cost of constructing the MLLE weight matrix is relatively small compared to the cost of
stages 1 and 3.

3. Partial Eigenvalue Decomposition. Same as standard LLE

The overall complexity of MLLE is 𝑂[𝐷 log(𝑘)𝑁 log(𝑁)] +𝑂[𝐷𝑁𝑘3] +𝑂[𝑁(𝑘 −𝐷)𝑘2] +𝑂[𝑑𝑁2].

• 𝑁 : number of training data points

• 𝐷 : input dimension

• 𝑘 : number of nearest neighbors

• 𝑑 : output dimension

References:

• “MLLE: Modified Locally Linear Embedding Using Multiple Weights” Zhang, Z. & Wang, J.

Hessian Eigenmapping

Hessian Eigenmapping (also known as Hessian-based LLE: HLLE) is another method of solving the regularization
problem of LLE. It revolves around a hessian-based quadratic form at each neighborhood which is used to recover
the locally linear structure. Though other implementations note its poor scaling with data size, sklearn imple-
ments some algorithmic improvements which make its cost comparable to that of other LLE variants for small output

4.2. Unsupervised learning 389

../auto_examples/manifold/plot_lle_digits.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382

scikit-learn user guide, Release 0.23.2

dimension. HLLE can be performed with function locally_linear_embedding or its object-oriented counter-
part LocallyLinearEmbedding, with the keyword method = 'hessian'. It requires n_neighbors >
n_components * (n_components + 3) / 2.

Complexity

The HLLE algorithm comprises three stages:

1. Nearest Neighbors Search. Same as standard LLE

2. Weight Matrix Construction. Approximately 𝑂[𝐷𝑁𝑘3] + 𝑂[𝑁𝑑6]. The first term reflects a similar cost to
that of standard LLE. The second term comes from a QR decomposition of the local hessian estimator.

3. Partial Eigenvalue Decomposition. Same as standard LLE

The overall complexity of standard HLLE is 𝑂[𝐷 log(𝑘)𝑁 log(𝑁)] +𝑂[𝐷𝑁𝑘3] +𝑂[𝑁𝑑6] +𝑂[𝑑𝑁2].

• 𝑁 : number of training data points

• 𝐷 : input dimension

• 𝑘 : number of nearest neighbors

• 𝑑 : output dimension

References:

• “Hessian Eigenmaps: Locally linear embedding techniques for high-dimensional data” Donoho, D. &
Grimes, C. Proc Natl Acad Sci USA. 100:5591 (2003)

Spectral Embedding

Spectral Embedding is an approach to calculating a non-linear embedding. Scikit-learn implements Laplacian Eigen-
maps, which finds a low dimensional representation of the data using a spectral decomposition of the graph Laplacian.
The graph generated can be considered as a discrete approximation of the low dimensional manifold in the high dimen-
sional space. Minimization of a cost function based on the graph ensures that points close to each other on the manifold
are mapped close to each other in the low dimensional space, preserving local distances. Spectral embedding can be
performed with the function spectral_embedding or its object-oriented counterpart SpectralEmbedding.

390 Chapter 4. User Guide

../auto_examples/manifold/plot_lle_digits.html
http://www.pnas.org/content/100/10/5591

scikit-learn user guide, Release 0.23.2

Complexity

The Spectral Embedding (Laplacian Eigenmaps) algorithm comprises three stages:

1. Weighted Graph Construction. Transform the raw input data into graph representation using affinity (adja-
cency) matrix representation.

2. Graph Laplacian Construction. unnormalized Graph Laplacian is constructed as 𝐿 = 𝐷−𝐴 for and normal-
ized one as 𝐿 = 𝐷− 1

2 (𝐷 −𝐴)𝐷− 1
2 .

3. Partial Eigenvalue Decomposition. Eigenvalue decomposition is done on graph Laplacian

The overall complexity of spectral embedding is 𝑂[𝐷 log(𝑘)𝑁 log(𝑁)] +𝑂[𝐷𝑁𝑘3] +𝑂[𝑑𝑁2].

• 𝑁 : number of training data points

• 𝐷 : input dimension

• 𝑘 : number of nearest neighbors

• 𝑑 : output dimension

References:

• “Laplacian Eigenmaps for Dimensionality Reduction and Data Representation” M. Belkin, P. Niyogi, Neural
Computation, June 2003; 15 (6):1373-1396

Local Tangent Space Alignment

Though not technically a variant of LLE, Local tangent space alignment (LTSA) is algorithmically similar enough
to LLE that it can be put in this category. Rather than focusing on preserving neighborhood distances as in LLE,
LTSA seeks to characterize the local geometry at each neighborhood via its tangent space, and performs a global
optimization to align these local tangent spaces to learn the embedding. LTSA can be performed with function
locally_linear_embedding or its object-oriented counterpart LocallyLinearEmbedding, with the key-
word method = 'ltsa'.

Complexity

The LTSA algorithm comprises three stages:

4.2. Unsupervised learning 391

https://web.cse.ohio-state.edu/~mbelkin/papers/LEM_NC_03.pdf
../auto_examples/manifold/plot_lle_digits.html

scikit-learn user guide, Release 0.23.2

1. Nearest Neighbors Search. Same as standard LLE

2. Weight Matrix Construction. Approximately 𝑂[𝐷𝑁𝑘3] +𝑂[𝑘2𝑑]. The first term reflects a similar cost to that
of standard LLE.

3. Partial Eigenvalue Decomposition. Same as standard LLE

The overall complexity of standard LTSA is 𝑂[𝐷 log(𝑘)𝑁 log(𝑁)] +𝑂[𝐷𝑁𝑘3] +𝑂[𝑘2𝑑] +𝑂[𝑑𝑁2].

• 𝑁 : number of training data points

• 𝐷 : input dimension

• 𝑘 : number of nearest neighbors

• 𝑑 : output dimension

References:

• “Principal manifolds and nonlinear dimensionality reduction via tangent space alignment” Zhang, Z. & Zha,
H. Journal of Shanghai Univ. 8:406 (2004)

Multi-dimensional Scaling (MDS)

Multidimensional scaling (MDS) seeks a low-dimensional representation of the data in which the distances respect well
the distances in the original high-dimensional space.

In general, MDS is a technique used for analyzing similarity or dissimilarity data. It attempts to model similarity or
dissimilarity data as distances in a geometric spaces. The data can be ratings of similarity between objects, interaction
frequencies of molecules, or trade indices between countries.

There exists two types of MDS algorithm: metric and non metric. In the scikit-learn, the class MDS implements
both. In Metric MDS, the input similarity matrix arises from a metric (and thus respects the triangular inequality), the
distances between output two points are then set to be as close as possible to the similarity or dissimilarity data. In
the non-metric version, the algorithms will try to preserve the order of the distances, and hence seek for a monotonic
relationship between the distances in the embedded space and the similarities/dissimilarities.

Let 𝑆 be the similarity matrix, and 𝑋 the coordinates of the 𝑛 input points. Disparities 𝑑𝑖𝑗 are transformation of the
similarities chosen in some optimal ways. The objective, called the stress, is then defined by

∑︀
𝑖<𝑗 𝑑𝑖𝑗(𝑋)− 𝑑𝑖𝑗(𝑋)

392 Chapter 4. User Guide

http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.4.3693
https://en.wikipedia.org/wiki/Multidimensional_scaling
../auto_examples/manifold/plot_lle_digits.html

scikit-learn user guide, Release 0.23.2

Metric MDS

The simplest metric MDS model, called absolute MDS, disparities are defined by 𝑑𝑖𝑗 = 𝑆𝑖𝑗 . With absolute MDS, the
value 𝑆𝑖𝑗 should then correspond exactly to the distance between point 𝑖 and 𝑗 in the embedding point.

Most commonly, disparities are set to 𝑑𝑖𝑗 = 𝑏𝑆𝑖𝑗 .

Nonmetric MDS

Non metric MDS focuses on the ordination of the data. If 𝑆𝑖𝑗 < 𝑆𝑗𝑘, then the embedding should enforce 𝑑𝑖𝑗 < 𝑑𝑗𝑘.
A simple algorithm to enforce that is to use a monotonic regression of 𝑑𝑖𝑗 on 𝑆𝑖𝑗 , yielding disparities 𝑑𝑖𝑗 in the same
order as 𝑆𝑖𝑗 .

A trivial solution to this problem is to set all the points on the origin. In order to avoid that, the disparities 𝑑𝑖𝑗 are
normalized.

References:

• “Modern Multidimensional Scaling - Theory and Applications” Borg, I.; Groenen P. Springer Series in Statis-
tics (1997)

• “Nonmetric multidimensional scaling: a numerical method” Kruskal, J. Psychometrika, 29 (1964)

• “Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis” Kruskal, J. Psychome-
trika, 29, (1964)

t-distributed Stochastic Neighbor Embedding (t-SNE)

t-SNE (TSNE) converts affinities of data points to probabilities. The affinities in the original space are represented by
Gaussian joint probabilities and the affinities in the embedded space are represented by Student’s t-distributions. This
allows t-SNE to be particularly sensitive to local structure and has a few other advantages over existing techniques:

• Revealing the structure at many scales on a single map

4.2. Unsupervised learning 393

../auto_examples/manifold/plot_mds.html
https://www.springer.com/fr/book/9780387251509
https://link.springer.com/article/10.1007%2FBF02289694
https://link.springer.com/article/10.1007%2FBF02289565

scikit-learn user guide, Release 0.23.2

• Revealing data that lie in multiple, different, manifolds or clusters

• Reducing the tendency to crowd points together at the center

While Isomap, LLE and variants are best suited to unfold a single continuous low dimensional manifold, t-SNE will
focus on the local structure of the data and will tend to extract clustered local groups of samples as highlighted on the
S-curve example. This ability to group samples based on the local structure might be beneficial to visually disentangle
a dataset that comprises several manifolds at once as is the case in the digits dataset.

The Kullback-Leibler (KL) divergence of the joint probabilities in the original space and the embedded space will
be minimized by gradient descent. Note that the KL divergence is not convex, i.e. multiple restarts with different
initializations will end up in local minima of the KL divergence. Hence, it is sometimes useful to try different seeds
and select the embedding with the lowest KL divergence.

The disadvantages to using t-SNE are roughly:

• t-SNE is computationally expensive, and can take several hours on million-sample datasets where PCA will
finish in seconds or minutes

• The Barnes-Hut t-SNE method is limited to two or three dimensional embeddings.

• The algorithm is stochastic and multiple restarts with different seeds can yield different embeddings. However,
it is perfectly legitimate to pick the embedding with the least error.

• Global structure is not explicitly preserved. This problem is mitigated by initializing points with PCA (using
init='pca').

Optimizing t-SNE

The main purpose of t-SNE is visualization of high-dimensional data. Hence, it works best when the data will be
embedded on two or three dimensions.

Optimizing the KL divergence can be a little bit tricky sometimes. There are five parameters that control the optimiza-
tion of t-SNE and therefore possibly the quality of the resulting embedding:

• perplexity

• early exaggeration factor

• learning rate

• maximum number of iterations

• angle (not used in the exact method)

394 Chapter 4. User Guide

../auto_examples/manifold/plot_lle_digits.html

scikit-learn user guide, Release 0.23.2

The perplexity is defined as 𝑘 = 2(𝑆) where 𝑆 is the Shannon entropy of the conditional probability distribution.
The perplexity of a 𝑘-sided die is 𝑘, so that 𝑘 is effectively the number of nearest neighbors t-SNE considers when
generating the conditional probabilities. Larger perplexities lead to more nearest neighbors and less sensitive to small
structure. Conversely a lower perplexity considers a smaller number of neighbors, and thus ignores more global
information in favour of the local neighborhood. As dataset sizes get larger more points will be required to get a
reasonable sample of the local neighborhood, and hence larger perplexities may be required. Similarly noisier datasets
will require larger perplexity values to encompass enough local neighbors to see beyond the background noise.

The maximum number of iterations is usually high enough and does not need any tuning. The optimization consists of
two phases: the early exaggeration phase and the final optimization. During early exaggeration the joint probabilities
in the original space will be artificially increased by multiplication with a given factor. Larger factors result in larger
gaps between natural clusters in the data. If the factor is too high, the KL divergence could increase during this phase.
Usually it does not have to be tuned. A critical parameter is the learning rate. If it is too low gradient descent will get
stuck in a bad local minimum. If it is too high the KL divergence will increase during optimization. More tips can be
found in Laurens van der Maaten’s FAQ (see references). The last parameter, angle, is a tradeoff between performance
and accuracy. Larger angles imply that we can approximate larger regions by a single point, leading to better speed
but less accurate results.

“How to Use t-SNE Effectively” provides a good discussion of the effects of the various parameters, as well as
interactive plots to explore the effects of different parameters.

Barnes-Hut t-SNE

The Barnes-Hut t-SNE that has been implemented here is usually much slower than other manifold learning algo-
rithms. The optimization is quite difficult and the computation of the gradient is𝑂[𝑑𝑁𝑙𝑜𝑔(𝑁)], where 𝑑 is the number
of output dimensions and 𝑁 is the number of samples. The Barnes-Hut method improves on the exact method where
t-SNE complexity is 𝑂[𝑑𝑁2], but has several other notable differences:

• The Barnes-Hut implementation only works when the target dimensionality is 3 or less. The 2D case is typical
when building visualizations.

• Barnes-Hut only works with dense input data. Sparse data matrices can only be embedded with the exact method
or can be approximated by a dense low rank projection for instance using sklearn.decomposition.
TruncatedSVD

• Barnes-Hut is an approximation of the exact method. The approximation is parameterized with the angle pa-
rameter, therefore the angle parameter is unused when method=”exact”

• Barnes-Hut is significantly more scalable. Barnes-Hut can be used to embed hundred of thousands of data points
while the exact method can handle thousands of samples before becoming computationally intractable

For visualization purpose (which is the main use case of t-SNE), using the Barnes-Hut method is strongly recom-
mended. The exact t-SNE method is useful for checking the theoretically properties of the embedding possibly in
higher dimensional space but limit to small datasets due to computational constraints.

Also note that the digits labels roughly match the natural grouping found by t-SNE while the linear 2D projection of
the PCA model yields a representation where label regions largely overlap. This is a strong clue that this data can be
well separated by non linear methods that focus on the local structure (e.g. an SVM with a Gaussian RBF kernel).
However, failing to visualize well separated homogeneously labeled groups with t-SNE in 2D does not necessarily
imply that the data cannot be correctly classified by a supervised model. It might be the case that 2 dimensions are not
low enough to accurately represents the internal structure of the data.

References:

• “Visualizing High-Dimensional Data Using t-SNE” van der Maaten, L.J.P.; Hinton, G. Journal of Machine
Learning Research (2008)

4.2. Unsupervised learning 395

https://distill.pub/2016/misread-tsne/
http://jmlr.org/papers/v9/vandermaaten08a.html

scikit-learn user guide, Release 0.23.2

• “t-Distributed Stochastic Neighbor Embedding” van der Maaten, L.J.P.

• “Accelerating t-SNE using Tree-Based Algorithms.” L.J.P. van der Maaten. Journal of Machine Learning
Research 15(Oct):3221-3245, 2014.

Tips on practical use

• Make sure the same scale is used over all features. Because manifold learning methods are based on a nearest-
neighbor search, the algorithm may perform poorly otherwise. See StandardScaler for convenient ways of
scaling heterogeneous data.

• The reconstruction error computed by each routine can be used to choose the optimal output dimension. For a
𝑑-dimensional manifold embedded in a 𝐷-dimensional parameter space, the reconstruction error will decrease
as n_components is increased until n_components == d.

• Note that noisy data can “short-circuit” the manifold, in essence acting as a bridge between parts of the manifold
that would otherwise be well-separated. Manifold learning on noisy and/or incomplete data is an active area of
research.

• Certain input configurations can lead to singular weight matrices, for example when more than two points in the
dataset are identical, or when the data is split into disjointed groups. In this case, solver='arpack' will
fail to find the null space. The easiest way to address this is to use solver='dense' which will work on a
singular matrix, though it may be very slow depending on the number of input points. Alternatively, one can
attempt to understand the source of the singularity: if it is due to disjoint sets, increasing n_neighbors may
help. If it is due to identical points in the dataset, removing these points may help.

See also:

Totally Random Trees Embedding can also be useful to derive non-linear representations of feature space, also it does
not perform dimensionality reduction.

4.2.3 Clustering

Clustering of unlabeled data can be performed with the module sklearn.cluster.

Each clustering algorithm comes in two variants: a class, that implements the fit method to learn the clusters on train
data, and a function, that, given train data, returns an array of integer labels corresponding to the different clusters. For
the class, the labels over the training data can be found in the labels_ attribute.

Input data

One important thing to note is that the algorithms implemented in this module can take different kinds of matrix as
input. All the methods accept standard data matrices of shape [n_samples, n_features]. These can be ob-
tained from the classes in the sklearn.feature_extraction module. For AffinityPropagation,
SpectralClustering and DBSCAN one can also input similarity matrices of shape [n_samples,
n_samples]. These can be obtained from the functions in the sklearn.metrics.pairwise module.

396 Chapter 4. User Guide

https://lvdmaaten.github.io/tsne/
https://lvdmaaten.github.io/publications/papers/JMLR_2014.pdf
https://en.wikipedia.org/wiki/Cluster_analysis

scikit-learn user guide, Release 0.23.2

Fig. 5: A comparison of the clustering algorithms in scikit-learn

Overview of clustering methods

Method
name

Parameters Scalability Usecase Geometry (metric
used)

K-Means number of clus-
ters

Very large
n_samples,
medium
n_clusters
with MiniBatch code

General-purpose, even clus-
ter size, flat geometry, not
too many clusters

Distances between
points

Affinity propa-
gation

damping, sam-
ple preference

Not scalable with
n_samples

Many clusters, uneven clus-
ter size, non-flat geometry

Graph distance (e.g.
nearest-neighbor
graph)

Mean-shift bandwidth Not scalable with
n_samples

Many clusters, uneven clus-
ter size, non-flat geometry

Distances between
points

Spectral clus-
tering

number of clus-
ters

Medium
n_samples, small
n_clusters

Few clusters, even cluster
size, non-flat geometry

Graph distance (e.g.
nearest-neighbor
graph)

Ward hi-
erarchical
clustering

number of clus-
ters or distance
threshold

Large n_samples
and n_clusters

Many clusters, possibly con-
nectivity constraints

Distances between
points

Agglomerative
clustering

number of clus-
ters or distance
threshold, link-
age type, dis-
tance

Large n_samples
and n_clusters

Many clusters, possibly con-
nectivity constraints, non
Euclidean distances

Any pairwise distance

DBSCAN neighborhood
size

Very large
n_samples,
medium
n_clusters

Non-flat geometry, uneven
cluster sizes

Distances between
nearest points

OPTICS minimum clus-
ter membership

Very large
n_samples,
large n_clusters

Non-flat geometry, uneven
cluster sizes, variable cluster
density

Distances between
points

Gaussian mix-
tures

many Not scalable Flat geometry, good for den-
sity estimation

Mahalanobis dis-
tances to centers

Birch branching fac-
tor, threshold,
optional global
clusterer.

Large
n_clusters
and n_samples

Large dataset, outlier re-
moval, data reduction.

Euclidean distance
between points

4.2. Unsupervised learning 397

../auto_examples/cluster/plot_cluster_comparison.html

scikit-learn user guide, Release 0.23.2

Non-flat geometry clustering is useful when the clusters have a specific shape, i.e. a non-flat manifold, and the standard
euclidean distance is not the right metric. This case arises in the two top rows of the figure above.

Gaussian mixture models, useful for clustering, are described in another chapter of the documentation dedicated
to mixture models. KMeans can be seen as a special case of Gaussian mixture model with equal covariance per
component.

K-means

The KMeans algorithm clusters data by trying to separate samples in n groups of equal variance, minimizing a criterion
known as the inertia or within-cluster sum-of-squares (see below). This algorithm requires the number of clusters to
be specified. It scales well to large number of samples and has been used across a large range of application areas in
many different fields.

The k-means algorithm divides a set of 𝑁 samples 𝑋 into 𝐾 disjoint clusters 𝐶, each described by the mean 𝜇𝑗 of
the samples in the cluster. The means are commonly called the cluster “centroids”; note that they are not, in general,
points from 𝑋 , although they live in the same space.

The K-means algorithm aims to choose centroids that minimise the inertia, or within-cluster sum-of-squares crite-
rion:

𝑛∑︁
𝑖=0

min
𝜇𝑗∈𝐶

(||𝑥𝑖 − 𝜇𝑗 ||2)

Inertia can be recognized as a measure of how internally coherent clusters are. It suffers from various drawbacks:

• Inertia makes the assumption that clusters are convex and isotropic, which is not always the case. It responds
poorly to elongated clusters, or manifolds with irregular shapes.

• Inertia is not a normalized metric: we just know that lower values are better and zero is optimal. But in very
high-dimensional spaces, Euclidean distances tend to become inflated (this is an instance of the so-called “curse
of dimensionality”). Running a dimensionality reduction algorithm such as Principal component analysis (PCA)
prior to k-means clustering can alleviate this problem and speed up the computations.

398 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

K-means is often referred to as Lloyd’s algorithm. In basic terms, the algorithm has three steps. The first step chooses
the initial centroids, with the most basic method being to choose 𝑘 samples from the dataset 𝑋 . After initialization, K-
means consists of looping between the two other steps. The first step assigns each sample to its nearest centroid. The
second step creates new centroids by taking the mean value of all of the samples assigned to each previous centroid.
The difference between the old and the new centroids are computed and the algorithm repeats these last two steps until
this value is less than a threshold. In other words, it repeats until the centroids do not move significantly.

4.2. Unsupervised learning 399

../auto_examples/cluster/plot_kmeans_assumptions.html
../auto_examples/cluster/plot_kmeans_digits.html

scikit-learn user guide, Release 0.23.2

K-means is equivalent to the expectation-maximization algorithm with a small, all-equal, diagonal covariance matrix.

The algorithm can also be understood through the concept of Voronoi diagrams. First the Voronoi diagram of the points
is calculated using the current centroids. Each segment in the Voronoi diagram becomes a separate cluster. Secondly,
the centroids are updated to the mean of each segment. The algorithm then repeats this until a stopping criterion is
fulfilled. Usually, the algorithm stops when the relative decrease in the objective function between iterations is less
than the given tolerance value. This is not the case in this implementation: iteration stops when centroids move less
than the tolerance.

Given enough time, K-means will always converge, however this may be to a local minimum. This is highly depen-
dent on the initialization of the centroids. As a result, the computation is often done several times, with different
initializations of the centroids. One method to help address this issue is the k-means++ initialization scheme, which
has been implemented in scikit-learn (use the init='k-means++' parameter). This initializes the centroids to
be (generally) distant from each other, leading to provably better results than random initialization, as shown in the
reference.

The algorithm supports sample weights, which can be given by a parameter sample_weight. This allows to assign
more weight to some samples when computing cluster centers and values of inertia. For example, assigning a weight
of 2 to a sample is equivalent to adding a duplicate of that sample to the dataset 𝑋 .

K-means can be used for vector quantization. This is achieved using the transform method of a trained model of
KMeans.

Low-level parallelism

KMeans benefits from OpenMP based parallelism through Cython. Small chunks of data (256 samples) are processed
in parallel, which in addition yields a low memory footprint. For more details on how to control the number of threads,
please refer to our Parallelism notes.

Examples:

• Demonstration of k-means assumptions: Demonstrating when k-means performs intuitively and when it does
not

• A demo of K-Means clustering on the handwritten digits data: Clustering handwritten digits

References:

• “k-means++: The advantages of careful seeding” Arthur, David, and Sergei Vassilvitskii, Proceedings of
the eighteenth annual ACM-SIAM symposium on Discrete algorithms, Society for Industrial and Applied
Mathematics (2007)

Mini Batch K-Means

The MiniBatchKMeans is a variant of the KMeans algorithm which uses mini-batches to reduce the computation
time, while still attempting to optimise the same objective function. Mini-batches are subsets of the input data, ran-
domly sampled in each training iteration. These mini-batches drastically reduce the amount of computation required
to converge to a local solution. In contrast to other algorithms that reduce the convergence time of k-means, mini-batch
k-means produces results that are generally only slightly worse than the standard algorithm.

The algorithm iterates between two major steps, similar to vanilla k-means. In the first step, 𝑏 samples are drawn
randomly from the dataset, to form a mini-batch. These are then assigned to the nearest centroid. In the second step,

400 Chapter 4. User Guide

https://en.wikipedia.org/wiki/Voronoi_diagram
http://ilpubs.stanford.edu:8090/778/1/2006-13.pdf

scikit-learn user guide, Release 0.23.2

the centroids are updated. In contrast to k-means, this is done on a per-sample basis. For each sample in the mini-batch,
the assigned centroid is updated by taking the streaming average of the sample and all previous samples assigned to
that centroid. This has the effect of decreasing the rate of change for a centroid over time. These steps are performed
until convergence or a predetermined number of iterations is reached.

MiniBatchKMeans converges faster than KMeans, but the quality of the results is reduced. In practice this differ-
ence in quality can be quite small, as shown in the example and cited reference.

Examples:

• Comparison of the K-Means and MiniBatchKMeans clustering algorithms: Comparison of KMeans and
MiniBatchKMeans

• Clustering text documents using k-means: Document clustering using sparse MiniBatchKMeans

• Online learning of a dictionary of parts of faces

References:

• “Web Scale K-Means clustering” D. Sculley, Proceedings of the 19th international conference on World wide
web (2010)

Affinity Propagation

AffinityPropagation creates clusters by sending messages between pairs of samples until convergence. A
dataset is then described using a small number of exemplars, which are identified as those most representative of other
samples. The messages sent between pairs represent the suitability for one sample to be the exemplar of the other,
which is updated in response to the values from other pairs. This updating happens iteratively until convergence, at
which point the final exemplars are chosen, and hence the final clustering is given.

Affinity Propagation can be interesting as it chooses the number of clusters based on the data provided. For this pur-
pose, the two important parameters are the preference, which controls how many exemplars are used, and the damping
factor which damps the responsibility and availability messages to avoid numerical oscillations when updating these
messages.

The main drawback of Affinity Propagation is its complexity. The algorithm has a time complexity of the order
𝑂(𝑁2𝑇), where𝑁 is the number of samples and 𝑇 is the number of iterations until convergence. Further, the memory

4.2. Unsupervised learning 401

../auto_examples/cluster/plot_mini_batch_kmeans.html
https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf

scikit-learn user guide, Release 0.23.2

complexity is of the order 𝑂(𝑁2) if a dense similarity matrix is used, but reducible if a sparse similarity matrix is
used. This makes Affinity Propagation most appropriate for small to medium sized datasets.

Examples:

• Demo of affinity propagation clustering algorithm: Affinity Propagation on a synthetic 2D datasets with 3
classes.

• Visualizing the stock market structure Affinity Propagation on Financial time series to find groups of compa-
nies

Algorithm description: The messages sent between points belong to one of two categories. The first is the responsi-
bility 𝑟(𝑖, 𝑘), which is the accumulated evidence that sample 𝑘 should be the exemplar for sample 𝑖. The second is the
availability 𝑎(𝑖, 𝑘) which is the accumulated evidence that sample 𝑖 should choose sample 𝑘 to be its exemplar, and
considers the values for all other samples that 𝑘 should be an exemplar. In this way, exemplars are chosen by samples
if they are (1) similar enough to many samples and (2) chosen by many samples to be representative of themselves.

More formally, the responsibility of a sample 𝑘 to be the exemplar of sample 𝑖 is given by:

𝑟(𝑖, 𝑘)← 𝑠(𝑖, 𝑘)−𝑚𝑎𝑥[𝑎(𝑖, 𝑘′) + 𝑠(𝑖, 𝑘′)∀𝑘′ ̸= 𝑘]

Where 𝑠(𝑖, 𝑘) is the similarity between samples 𝑖 and 𝑘. The availability of sample 𝑘 to be the exemplar of sample 𝑖 is
given by:

𝑎(𝑖, 𝑘)← 𝑚𝑖𝑛[0, 𝑟(𝑘, 𝑘) +
∑︁

𝑖′ 𝑠.𝑡. 𝑖′ /∈{𝑖,𝑘}

𝑟(𝑖′, 𝑘)]

To begin with, all values for 𝑟 and 𝑎 are set to zero, and the calculation of each iterates until convergence. As discussed
above, in order to avoid numerical oscillations when updating the messages, the damping factor 𝜆 is introduced to
iteration process:

𝑟𝑡+1(𝑖, 𝑘) = 𝜆 · 𝑟𝑡(𝑖, 𝑘) + (1− 𝜆) · 𝑟𝑡+1(𝑖, 𝑘)

𝑎𝑡+1(𝑖, 𝑘) = 𝜆 · 𝑎𝑡(𝑖, 𝑘) + (1− 𝜆) · 𝑎𝑡+1(𝑖, 𝑘)

where 𝑡 indicates the iteration times.

402 Chapter 4. User Guide

../auto_examples/cluster/plot_affinity_propagation.html

scikit-learn user guide, Release 0.23.2

Mean Shift

MeanShift clustering aims to discover blobs in a smooth density of samples. It is a centroid based algorithm, which
works by updating candidates for centroids to be the mean of the points within a given region. These candidates are
then filtered in a post-processing stage to eliminate near-duplicates to form the final set of centroids.

Given a candidate centroid 𝑥𝑖 for iteration 𝑡, the candidate is updated according to the following equation:

𝑥𝑡+1
𝑖 = 𝑚(𝑥𝑡𝑖)

Where 𝑁(𝑥𝑖) is the neighborhood of samples within a given distance around 𝑥𝑖 and 𝑚 is the mean shift vector that
is computed for each centroid that points towards a region of the maximum increase in the density of points. This
is computed using the following equation, effectively updating a centroid to be the mean of the samples within its
neighborhood:

𝑚(𝑥𝑖) =

∑︀
𝑥𝑗∈𝑁(𝑥𝑖)

𝐾(𝑥𝑗 − 𝑥𝑖)𝑥𝑗∑︀
𝑥𝑗∈𝑁(𝑥𝑖)

𝐾(𝑥𝑗 − 𝑥𝑖)

The algorithm automatically sets the number of clusters, instead of relying on a parameter bandwidth, which dictates
the size of the region to search through. This parameter can be set manually, but can be estimated using the provided
estimate_bandwidth function, which is called if the bandwidth is not set.

The algorithm is not highly scalable, as it requires multiple nearest neighbor searches during the execution of the
algorithm. The algorithm is guaranteed to converge, however the algorithm will stop iterating when the change in
centroids is small.

Labelling a new sample is performed by finding the nearest centroid for a given sample.

Examples:

• A demo of the mean-shift clustering algorithm: Mean Shift clustering on a synthetic 2D datasets with 3
classes.

References:

• “Mean shift: A robust approach toward feature space analysis.” D. Comaniciu and P. Meer, IEEE Transactions
on Pattern Analysis and Machine Intelligence (2002)

4.2. Unsupervised learning 403

../auto_examples/cluster/plot_mean_shift.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.76.8968&rep=rep1&type=pdf

scikit-learn user guide, Release 0.23.2

Spectral clustering

SpectralClustering performs a low-dimension embedding of the affinity matrix between samples, followed
by clustering, e.g., by KMeans, of the components of the eigenvectors in the low dimensional space. It is especially
computationally efficient if the affinity matrix is sparse and the amg solver is used for the eigenvalue problem (Note,
the amg solver requires that the pyamg module is installed.)

The present version of SpectralClustering requires the number of clusters to be specified in advance. It works well for
a small number of clusters, but is not advised for many clusters.

For two clusters, SpectralClustering solves a convex relaxation of the normalised cuts problem on the similarity graph:
cutting the graph in two so that the weight of the edges cut is small compared to the weights of the edges inside each
cluster. This criteria is especially interesting when working on images, where graph vertices are pixels, and weights
of the edges of the similarity graph are computed using a function of a gradient of the image.

Warning: Transforming distance to well-behaved similarities

Note that if the values of your similarity matrix are not well distributed, e.g. with negative values or with a distance
matrix rather than a similarity, the spectral problem will be singular and the problem not solvable. In which case
it is advised to apply a transformation to the entries of the matrix. For instance, in the case of a signed distance
matrix, is common to apply a heat kernel:

similarity = np.exp(-beta * distance / distance.std())

See the examples for such an application.

Examples:

• Spectral clustering for image segmentation: Segmenting objects from a noisy background using spectral
clustering.

• Segmenting the picture of greek coins in regions: Spectral clustering to split the image of coins in regions.

Different label assignment strategies

Different label assignment strategies can be used, corresponding to the assign_labels parameter of
SpectralClustering. "kmeans" strategy can match finer details, but can be unstable. In particular, unless

404 Chapter 4. User Guide

https://github.com/pyamg/pyamg
https://people.eecs.berkeley.edu/~malik/papers/SM-ncut.pdf
../auto_examples/cluster/plot_segmentation_toy.html
../auto_examples/cluster/plot_segmentation_toy.html

scikit-learn user guide, Release 0.23.2

you control the random_state, it may not be reproducible from run-to-run, as it depends on random initializa-
tion. The alternative "discretize" strategy is 100% reproducible, but tends to create parcels of fairly even and
geometrical shape.

assign_labels="kmeans" assign_labels="discretize"

Spectral Clustering Graphs

Spectral Clustering can also be used to partition graphs via their spectral embeddings. In this case, the affinity matrix
is the adjacency matrix of the graph, and SpectralClustering is initialized with affinity='precomputed':

>>> from sklearn.cluster import SpectralClustering
>>> sc = SpectralClustering(3, affinity='precomputed', n_init=100,
... assign_labels='discretize')
>>> sc.fit_predict(adjacency_matrix)

References:

• “A Tutorial on Spectral Clustering” Ulrike von Luxburg, 2007

• “Normalized cuts and image segmentation” Jianbo Shi, Jitendra Malik, 2000

• “A Random Walks View of Spectral Segmentation” Marina Meila, Jianbo Shi, 2001

• “On Spectral Clustering: Analysis and an algorithm” Andrew Y. Ng, Michael I. Jordan, Yair Weiss, 2001

• “Preconditioned Spectral Clustering for Stochastic Block Partition Streaming Graph Challenge” David
Zhuzhunashvili, Andrew Knyazev

Hierarchical clustering

Hierarchical clustering is a general family of clustering algorithms that build nested clusters by merging or splitting
them successively. This hierarchy of clusters is represented as a tree (or dendrogram). The root of the tree is the unique

4.2. Unsupervised learning 405

../auto_examples/cluster/plot_coin_segmentation.html
../auto_examples/cluster/plot_coin_segmentation.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.9323
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.2324
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.1501
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.8100
https://arxiv.org/abs/1708.07481

scikit-learn user guide, Release 0.23.2

cluster that gathers all the samples, the leaves being the clusters with only one sample. See the Wikipedia page for
more details.

The AgglomerativeClustering object performs a hierarchical clustering using a bottom up approach: each
observation starts in its own cluster, and clusters are successively merged together. The linkage criteria determines the
metric used for the merge strategy:

• Ward minimizes the sum of squared differences within all clusters. It is a variance-minimizing approach and in
this sense is similar to the k-means objective function but tackled with an agglomerative hierarchical approach.

• Maximum or complete linkage minimizes the maximum distance between observations of pairs of clusters.

• Average linkage minimizes the average of the distances between all observations of pairs of clusters.

• Single linkage minimizes the distance between the closest observations of pairs of clusters.

AgglomerativeClustering can also scale to large number of samples when it is used jointly with a connectivity
matrix, but is computationally expensive when no connectivity constraints are added between samples: it considers at
each step all the possible merges.

FeatureAgglomeration

The FeatureAgglomeration uses agglomerative clustering to group together features that look very similar,
thus decreasing the number of features. It is a dimensionality reduction tool, see Unsupervised dimensionality
reduction.

Different linkage type: Ward, complete, average, and single linkage

AgglomerativeClustering supports Ward, single, average, and complete linkage strategies.

406 Chapter 4. User Guide

https://en.wikipedia.org/wiki/Hierarchical_clustering

scikit-learn user guide, Release 0.23.2

Agglomerative cluster has a “rich get richer” behavior that leads to uneven cluster sizes. In this regard, single linkage
is the worst strategy, and Ward gives the most regular sizes. However, the affinity (or distance used in clustering)
cannot be varied with Ward, thus for non Euclidean metrics, average linkage is a good alternative. Single linkage,
while not robust to noisy data, can be computed very efficiently and can therefore be useful to provide hierarchical
clustering of larger datasets. Single linkage can also perform well on non-globular data.

Examples:

• Various Agglomerative Clustering on a 2D embedding of digits: exploration of the different linkage strategies
in a real dataset.

4.2. Unsupervised learning 407

../auto_examples/cluster/plot_linkage_comparison.html

scikit-learn user guide, Release 0.23.2

Visualization of cluster hierarchy

It’s possible to visualize the tree representing the hierarchical merging of clusters as a dendrogram. Visual inspection
can often be useful for understanding the structure of the data, though more so in the case of small sample sizes.

Adding connectivity constraints

An interesting aspect of AgglomerativeClustering is that connectivity constraints can be added to this al-
gorithm (only adjacent clusters can be merged together), through a connectivity matrix that defines for each sample
the neighboring samples following a given structure of the data. For instance, in the swiss-roll example below, the
connectivity constraints forbid the merging of points that are not adjacent on the swiss roll, and thus avoid forming
clusters that extend across overlapping folds of the roll.

These constraint are useful to impose a certain local structure, but they also make the algorithm faster, especially when
the number of the samples is high.

The connectivity constraints are imposed via an connectivity matrix: a scipy sparse matrix that has elements only
at the intersection of a row and a column with indices of the dataset that should be connected. This matrix can
be constructed from a-priori information: for instance, you may wish to cluster web pages by only merging pages
with a link pointing from one to another. It can also be learned from the data, for instance using sklearn.
neighbors.kneighbors_graph to restrict merging to nearest neighbors as in this example, or using sklearn.
feature_extraction.image.grid_to_graph to enable only merging of neighboring pixels on an image,
as in the coin example.

408 Chapter 4. User Guide

../auto_examples/cluster/plot_agglomerative_dendrogram.html
../auto_examples/cluster/plot_ward_structured_vs_unstructured.html
../auto_examples/cluster/plot_ward_structured_vs_unstructured.html

scikit-learn user guide, Release 0.23.2

Examples:

• A demo of structured Ward hierarchical clustering on an image of coins: Ward clustering to split the image
of coins in regions.

• Hierarchical clustering: structured vs unstructured ward: Example of Ward algorithm on a swiss-roll, com-
parison of structured approaches versus unstructured approaches.

• Feature agglomeration vs. univariate selection: Example of dimensionality reduction with feature agglomer-
ation based on Ward hierarchical clustering.

• Agglomerative clustering with and without structure

Warning: Connectivity constraints with single, average and complete linkage

Connectivity constraints and single, complete or average linkage can enhance the ‘rich getting richer’ aspect of
agglomerative clustering, particularly so if they are built with sklearn.neighbors.kneighbors_graph.
In the limit of a small number of clusters, they tend to give a few macroscopically occupied clusters and almost
empty ones. (see the discussion in Agglomerative clustering with and without structure). Single linkage is the
most brittle linkage option with regard to this issue.

4.2. Unsupervised learning 409

../auto_examples/cluster/plot_agglomerative_clustering.html
../auto_examples/cluster/plot_agglomerative_clustering.html
../auto_examples/cluster/plot_agglomerative_clustering.html

scikit-learn user guide, Release 0.23.2

Varying the metric

Single, average and complete linkage can be used with a variety of distances (or affinities), in particular Euclidean
distance (l2), Manhattan distance (or Cityblock, or l1), cosine distance, or any precomputed affinity matrix.

• l1 distance is often good for sparse features, or sparse noise: i.e. many of the features are zero, as in text mining
using occurrences of rare words.

• cosine distance is interesting because it is invariant to global scalings of the signal.

The guidelines for choosing a metric is to use one that maximizes the distance between samples in different classes,
and minimizes that within each class.

410 Chapter 4. User Guide

../auto_examples/cluster/plot_agglomerative_clustering.html
../auto_examples/cluster/plot_agglomerative_clustering_metrics.html
../auto_examples/cluster/plot_agglomerative_clustering_metrics.html
../auto_examples/cluster/plot_agglomerative_clustering_metrics.html

scikit-learn user guide, Release 0.23.2

Examples:

• Agglomerative clustering with different metrics

DBSCAN

The DBSCAN algorithm views clusters as areas of high density separated by areas of low density. Due to this rather
generic view, clusters found by DBSCAN can be any shape, as opposed to k-means which assumes that clusters are
convex shaped. The central component to the DBSCAN is the concept of core samples, which are samples that are in
areas of high density. A cluster is therefore a set of core samples, each close to each other (measured by some distance
measure) and a set of non-core samples that are close to a core sample (but are not themselves core samples). There
are two parameters to the algorithm, min_samples and eps, which define formally what we mean when we say
dense. Higher min_samples or lower eps indicate higher density necessary to form a cluster.

More formally, we define a core sample as being a sample in the dataset such that there exist min_samples other
samples within a distance of eps, which are defined as neighbors of the core sample. This tells us that the core sample
is in a dense area of the vector space. A cluster is a set of core samples that can be built by recursively taking a core
sample, finding all of its neighbors that are core samples, finding all of their neighbors that are core samples, and so
on. A cluster also has a set of non-core samples, which are samples that are neighbors of a core sample in the cluster
but are not themselves core samples. Intuitively, these samples are on the fringes of a cluster.

Any core sample is part of a cluster, by definition. Any sample that is not a core sample, and is at least eps in distance
from any core sample, is considered an outlier by the algorithm.

While the parameter min_samples primarily controls how tolerant the algorithm is towards noise (on noisy and
large data sets it may be desirable to increase this parameter), the parameter eps is crucial to choose appropriately for
the data set and distance function and usually cannot be left at the default value. It controls the local neighborhood of
the points. When chosen too small, most data will not be clustered at all (and labeled as -1 for “noise”). When chosen
too large, it causes close clusters to be merged into one cluster, and eventually the entire data set to be returned as a
single cluster. Some heuristics for choosing this parameter have been discussed in the literature, for example based on
a knee in the nearest neighbor distances plot (as discussed in the references below).

In the figure below, the color indicates cluster membership, with large circles indicating core samples found by the
algorithm. Smaller circles are non-core samples that are still part of a cluster. Moreover, the outliers are indicated by
black points below.

4.2. Unsupervised learning 411

../auto_examples/cluster/plot_dbscan.html

scikit-learn user guide, Release 0.23.2

Examples:

• Demo of DBSCAN clustering algorithm

Implementation

The DBSCAN algorithm is deterministic, always generating the same clusters when given the same data in the
same order. However, the results can differ when data is provided in a different order. First, even though the core
samples will always be assigned to the same clusters, the labels of those clusters will depend on the order in which
those samples are encountered in the data. Second and more importantly, the clusters to which non-core samples
are assigned can differ depending on the data order. This would happen when a non-core sample has a distance
lower than eps to two core samples in different clusters. By the triangular inequality, those two core samples must
be more distant than eps from each other, or they would be in the same cluster. The non-core sample is assigned
to whichever cluster is generated first in a pass through the data, and so the results will depend on the data ordering.

The current implementation uses ball trees and kd-trees to determine the neighborhood of points, which avoids
calculating the full distance matrix (as was done in scikit-learn versions before 0.14). The possibility to use custom
metrics is retained; for details, see NearestNeighbors.

Memory consumption for large sample sizes

This implementation is by default not memory efficient because it constructs a full pairwise similarity matrix in the
case where kd-trees or ball-trees cannot be used (e.g., with sparse matrices). This matrix will consume n^2 floats.
A couple of mechanisms for getting around this are:

• Use OPTICS clustering in conjunction with the extract_dbscan method. OPTICS clustering also calcu-
lates the full pairwise matrix, but only keeps one row in memory at a time (memory complexity n).

• A sparse radius neighborhood graph (where missing entries are presumed to be out of eps) can be precom-
puted in a memory-efficient way and dbscan can be run over this with metric='precomputed'. See
sklearn.neighbors.NearestNeighbors.radius_neighbors_graph.

• The dataset can be compressed, either by removing exact duplicates if these occur in your data, or by using
BIRCH. Then you only have a relatively small number of representatives for a large number of points. You
can then provide a sample_weight when fitting DBSCAN.

References:

• “A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise” Ester, M., H. P.
Kriegel, J. Sander, and X. Xu, In Proceedings of the 2nd International Conference on Knowledge Discovery
and Data Mining, Portland, OR, AAAI Press, pp. 226–231. 1996

• “DBSCAN revisited, revisited: why and how you should (still) use DBSCAN. Schubert, E., Sander, J., Ester,
M., Kriegel, H. P., & Xu, X. (2017). In ACM Transactions on Database Systems (TODS), 42(3), 19.

OPTICS

The OPTICS algorithm shares many similarities with the DBSCAN algorithm, and can be considered a generalization
of DBSCAN that relaxes the eps requirement from a single value to a value range. The key difference between
DBSCAN and OPTICS is that the OPTICS algorithm builds a reachability graph, which assigns each sample both

412 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

a reachability_ distance, and a spot within the cluster ordering_ attribute; these two attributes are assigned
when the model is fitted, and are used to determine cluster membership. If OPTICS is run with the default value of inf
set for max_eps, then DBSCAN style cluster extraction can be performed repeatedly in linear time for any given eps
value using the cluster_optics_dbscan method. Setting max_eps to a lower value will result in shorter run
times, and can be thought of as the maximum neighborhood radius from each point to find other potential reachable
points.

The reachability distances generated by OPTICS allow for variable density extraction of clusters within a single data
set. As shown in the above plot, combining reachability distances and data set ordering_ produces a reachability
plot, where point density is represented on the Y-axis, and points are ordered such that nearby points are adjacent.
‘Cutting’ the reachability plot at a single value produces DBSCAN like results; all points above the ‘cut’ are classified
as noise, and each time that there is a break when reading from left to right signifies a new cluster. The default
cluster extraction with OPTICS looks at the steep slopes within the graph to find clusters, and the user can define
what counts as a steep slope using the parameter xi. There are also other possibilities for analysis on the graph itself,
such as generating hierarchical representations of the data through reachability-plot dendrograms, and the hierarchy
of clusters detected by the algorithm can be accessed through the cluster_hierarchy_ parameter. The plot
above has been color-coded so that cluster colors in planar space match the linear segment clusters of the reachability
plot. Note that the blue and red clusters are adjacent in the reachability plot, and can be hierarchically represented as
children of a larger parent cluster.

Examples:

• Demo of OPTICS clustering algorithm

Comparison with DBSCAN

The results from OPTICS cluster_optics_dbscan method and DBSCAN are very similar, but not always
identical; specifically, labeling of periphery and noise points. This is in part because the first samples of each dense
area processed by OPTICS have a large reachability value while being close to other points in their area, and will
thus sometimes be marked as noise rather than periphery. This affects adjacent points when they are considered as

4.2. Unsupervised learning 413

../auto_examples/cluster/plot_optics.html

scikit-learn user guide, Release 0.23.2

candidates for being marked as either periphery or noise.

Note that for any single value of eps, DBSCAN will tend to have a shorter run time than OPTICS; however, for
repeated runs at varying eps values, a single run of OPTICS may require less cumulative runtime than DBSCAN.
It is also important to note that OPTICS’ output is close to DBSCAN’s only if eps and max_eps are close.

Computational Complexity

Spatial indexing trees are used to avoid calculating the full distance matrix, and allow for efficient memory usage
on large sets of samples. Different distance metrics can be supplied via the metric keyword.

For large datasets, similar (but not identical) results can be obtained via HDBSCAN. The HDBSCAN implemen-
tation is multithreaded, and has better algorithmic runtime complexity than OPTICS, at the cost of worse memory
scaling. For extremely large datasets that exhaust system memory using HDBSCAN, OPTICS will maintain n (as
opposed to n^2) memory scaling; however, tuning of the max_eps parameter will likely need to be used to give a
solution in a reasonable amount of wall time.

References:

• “OPTICS: ordering points to identify the clustering structure.” Ankerst, Mihael, Markus M. Breunig, Hans-
Peter Kriegel, and Jörg Sander. In ACM Sigmod Record, vol. 28, no. 2, pp. 49-60. ACM, 1999.

Birch

The Birch builds a tree called the Clustering Feature Tree (CFT) for the given data. The data is essentially lossy
compressed to a set of Clustering Feature nodes (CF Nodes). The CF Nodes have a number of subclusters called
Clustering Feature subclusters (CF Subclusters) and these CF Subclusters located in the non-terminal CF Nodes can
have CF Nodes as children.

The CF Subclusters hold the necessary information for clustering which prevents the need to hold the entire input data
in memory. This information includes:

• Number of samples in a subcluster.

• Linear Sum - A n-dimensional vector holding the sum of all samples

• Squared Sum - Sum of the squared L2 norm of all samples.

• Centroids - To avoid recalculation linear sum / n_samples.

• Squared norm of the centroids.

The Birch algorithm has two parameters, the threshold and the branching factor. The branching factor limits the
number of subclusters in a node and the threshold limits the distance between the entering sample and the existing
subclusters.

This algorithm can be viewed as an instance or data reduction method, since it reduces the input data to a set of
subclusters which are obtained directly from the leaves of the CFT. This reduced data can be further processed by
feeding it into a global clusterer. This global clusterer can be set by n_clusters. If n_clusters is set to None,
the subclusters from the leaves are directly read off, otherwise a global clustering step labels these subclusters into
global clusters (labels) and the samples are mapped to the global label of the nearest subcluster.

Algorithm description:

414 Chapter 4. User Guide

https://hdbscan.readthedocs.io

scikit-learn user guide, Release 0.23.2

• A new sample is inserted into the root of the CF Tree which is a CF Node. It is then merged with the subcluster of
the root, that has the smallest radius after merging, constrained by the threshold and branching factor conditions.
If the subcluster has any child node, then this is done repeatedly till it reaches a leaf. After finding the nearest
subcluster in the leaf, the properties of this subcluster and the parent subclusters are recursively updated.

• If the radius of the subcluster obtained by merging the new sample and the nearest subcluster is greater than
the square of the threshold and if the number of subclusters is greater than the branching factor, then a space is
temporarily allocated to this new sample. The two farthest subclusters are taken and the subclusters are divided
into two groups on the basis of the distance between these subclusters.

• If this split node has a parent subcluster and there is room for a new subcluster, then the parent is split into two.
If there is no room, then this node is again split into two and the process is continued recursively, till it reaches
the root.

Birch or MiniBatchKMeans?

• Birch does not scale very well to high dimensional data. As a rule of thumb if n_features is greater than
twenty, it is generally better to use MiniBatchKMeans.

• If the number of instances of data needs to be reduced, or if one wants a large number of subclusters either as a
preprocessing step or otherwise, Birch is more useful than MiniBatchKMeans.

How to use partial_fit?

To avoid the computation of global clustering, for every call of partial_fit the user is advised

1. To set n_clusters=None initially

2. Train all data by multiple calls to partial_fit.

3. Set n_clusters to a required value using brc.set_params(n_clusters=n_clusters).

4. Call partial_fit finally with no arguments, i.e. brc.partial_fit() which performs the global clus-
tering.

References:

• Tian Zhang, Raghu Ramakrishnan, Maron Livny BIRCH: An efficient data clustering method for large
databases. https://www.cs.sfu.ca/CourseCentral/459/han/papers/zhang96.pdf

• Roberto Perdisci JBirch - Java implementation of BIRCH clustering algorithm https://code.google.com/
archive/p/jbirch

4.2. Unsupervised learning 415

../auto_examples/cluster/plot_birch_vs_minibatchkmeans.html
https://www.cs.sfu.ca/CourseCentral/459/han/papers/zhang96.pdf
https://code.google.com/archive/p/jbirch
https://code.google.com/archive/p/jbirch

scikit-learn user guide, Release 0.23.2

Clustering performance evaluation

Evaluating the performance of a clustering algorithm is not as trivial as counting the number of errors or the precision
and recall of a supervised classification algorithm. In particular any evaluation metric should not take the absolute
values of the cluster labels into account but rather if this clustering define separations of the data similar to some
ground truth set of classes or satisfying some assumption such that members belong to the same class are more similar
than members of different classes according to some similarity metric.

Adjusted Rand index

Given the knowledge of the ground truth class assignments labels_true and our clustering algorithm assignments
of the same samples labels_pred, the adjusted Rand index is a function that measures the similarity of the two
assignments, ignoring permutations and with chance normalization:

>>> from sklearn import metrics
>>> labels_true = [0, 0, 0, 1, 1, 1]
>>> labels_pred = [0, 0, 1, 1, 2, 2]

>>> metrics.adjusted_rand_score(labels_true, labels_pred)
0.24...

One can permute 0 and 1 in the predicted labels, rename 2 to 3, and get the same score:

>>> labels_pred = [1, 1, 0, 0, 3, 3]
>>> metrics.adjusted_rand_score(labels_true, labels_pred)
0.24...

Furthermore, adjusted_rand_score is symmetric: swapping the argument does not change the score. It can
thus be used as a consensus measure:

>>> metrics.adjusted_rand_score(labels_pred, labels_true)
0.24...

Perfect labeling is scored 1.0:

>>> labels_pred = labels_true[:]
>>> metrics.adjusted_rand_score(labels_true, labels_pred)
1.0

Bad (e.g. independent labelings) have negative or close to 0.0 scores:

>>> labels_true = [0, 1, 2, 0, 3, 4, 5, 1]
>>> labels_pred = [1, 1, 0, 0, 2, 2, 2, 2]
>>> metrics.adjusted_rand_score(labels_true, labels_pred)
-0.12...

Advantages

• Random (uniform) label assignments have a ARI score close to 0.0 for any value of n_clusters and
n_samples (which is not the case for raw Rand index or the V-measure for instance).

• Bounded range [-1, 1]: negative values are bad (independent labelings), similar clusterings have a positive ARI,
1.0 is the perfect match score.

416 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

• No assumption is made on the cluster structure: can be used to compare clustering algorithms such as k-
means which assumes isotropic blob shapes with results of spectral clustering algorithms which can find cluster
with “folded” shapes.

Drawbacks

• Contrary to inertia, ARI requires knowledge of the ground truth classes while is almost never available in
practice or requires manual assignment by human annotators (as in the supervised learning setting).

However ARI can also be useful in a purely unsupervised setting as a building block for a Consensus Index that
can be used for clustering model selection (TODO).

Examples:

• Adjustment for chance in clustering performance evaluation: Analysis of the impact of the dataset size on the
value of clustering measures for random assignments.

Mathematical formulation

If C is a ground truth class assignment and K the clustering, let us define 𝑎 and 𝑏 as:

• 𝑎, the number of pairs of elements that are in the same set in C and in the same set in K

• 𝑏, the number of pairs of elements that are in different sets in C and in different sets in K

The raw (unadjusted) Rand index is then given by:

RI =
𝑎+ 𝑏

𝐶
𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠

2

Where 𝐶𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠

2 is the total number of possible pairs in the dataset (without ordering).

However the RI score does not guarantee that random label assignments will get a value close to zero (esp. if the
number of clusters is in the same order of magnitude as the number of samples).

To counter this effect we can discount the expected RI 𝐸[RI] of random labelings by defining the adjusted Rand index
as follows:

ARI =
RI− 𝐸[RI]

max(RI)− 𝐸[RI]

References

• Comparing Partitions L. Hubert and P. Arabie, Journal of Classification 1985

• Wikipedia entry for the adjusted Rand index

Mutual Information based scores

Given the knowledge of the ground truth class assignments labels_true and our clustering algorithm assignments
of the same samples labels_pred, the Mutual Information is a function that measures the agreement of the two
assignments, ignoring permutations. Two different normalized versions of this measure are available, Normalized
Mutual Information (NMI) and Adjusted Mutual Information (AMI). NMI is often used in the literature, while
AMI was proposed more recently and is normalized against chance:

4.2. Unsupervised learning 417

https://link.springer.com/article/10.1007%2FBF01908075
https://en.wikipedia.org/wiki/Rand_index#Adjusted_Rand_index

scikit-learn user guide, Release 0.23.2

>>> from sklearn import metrics
>>> labels_true = [0, 0, 0, 1, 1, 1]
>>> labels_pred = [0, 0, 1, 1, 2, 2]

>>> metrics.adjusted_mutual_info_score(labels_true, labels_pred)
0.22504...

One can permute 0 and 1 in the predicted labels, rename 2 to 3 and get the same score:

>>> labels_pred = [1, 1, 0, 0, 3, 3]
>>> metrics.adjusted_mutual_info_score(labels_true, labels_pred)
0.22504...

All, mutual_info_score, adjusted_mutual_info_score and normalized_mutual_info_score
are symmetric: swapping the argument does not change the score. Thus they can be used as a consensus measure:

>>> metrics.adjusted_mutual_info_score(labels_pred, labels_true)
0.22504...

Perfect labeling is scored 1.0:

>>> labels_pred = labels_true[:]
>>> metrics.adjusted_mutual_info_score(labels_true, labels_pred)
1.0

>>> metrics.normalized_mutual_info_score(labels_true, labels_pred)
1.0

This is not true for mutual_info_score, which is therefore harder to judge:

>>> metrics.mutual_info_score(labels_true, labels_pred)
0.69...

Bad (e.g. independent labelings) have non-positive scores:

>>> labels_true = [0, 1, 2, 0, 3, 4, 5, 1]
>>> labels_pred = [1, 1, 0, 0, 2, 2, 2, 2]
>>> metrics.adjusted_mutual_info_score(labels_true, labels_pred)
-0.10526...

Advantages

• Random (uniform) label assignments have a AMI score close to 0.0 for any value of n_clusters and
n_samples (which is not the case for raw Mutual Information or the V-measure for instance).

• Upper bound of 1: Values close to zero indicate two label assignments that are largely independent, while
values close to one indicate significant agreement. Further, an AMI of exactly 1 indicates that the two label
assignments are equal (with or without permutation).

Drawbacks

• Contrary to inertia, MI-based measures require the knowledge of the ground truth classes while almost
never available in practice or requires manual assignment by human annotators (as in the supervised learning
setting).

418 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

However MI-based measures can also be useful in purely unsupervised setting as a building block for a Consen-
sus Index that can be used for clustering model selection.

• NMI and MI are not adjusted against chance.

Examples:

• Adjustment for chance in clustering performance evaluation: Analysis of the impact of the dataset size on the
value of clustering measures for random assignments. This example also includes the Adjusted Rand Index.

Mathematical formulation

Assume two label assignments (of the same N objects), 𝑈 and 𝑉 . Their entropy is the amount of uncertainty for a
partition set, defined by:

𝐻(𝑈) = −
|𝑈 |∑︁
𝑖=1

𝑃 (𝑖) log(𝑃 (𝑖))

where 𝑃 (𝑖) = |𝑈𝑖|/𝑁 is the probability that an object picked at random from 𝑈 falls into class 𝑈𝑖. Likewise for 𝑉 :

𝐻(𝑉) = −
|𝑉 |∑︁
𝑗=1

𝑃 ′(𝑗) log(𝑃 ′(𝑗))

With 𝑃 ′(𝑗) = |𝑉𝑗 |/𝑁 . The mutual information (MI) between 𝑈 and 𝑉 is calculated by:

MI(𝑈, 𝑉) =

|𝑈 |∑︁
𝑖=1

|𝑉 |∑︁
𝑗=1

𝑃 (𝑖, 𝑗) log

(︂
𝑃 (𝑖, 𝑗)

𝑃 (𝑖)𝑃 ′(𝑗)

)︂
where 𝑃 (𝑖, 𝑗) = |𝑈𝑖 ∩ 𝑉𝑗 |/𝑁 is the probability that an object picked at random falls into both classes 𝑈𝑖 and 𝑉𝑗 .

It also can be expressed in set cardinality formulation:

MI(𝑈, 𝑉) =

|𝑈 |∑︁
𝑖=1

|𝑉 |∑︁
𝑗=1

|𝑈𝑖 ∩ 𝑉𝑗 |
𝑁

log

(︂
𝑁 |𝑈𝑖 ∩ 𝑉𝑗 |
|𝑈𝑖||𝑉𝑗 |

)︂
The normalized mutual information is defined as

NMI(𝑈, 𝑉) =
MI(𝑈, 𝑉)

mean(𝐻(𝑈), 𝐻(𝑉))

This value of the mutual information and also the normalized variant is not adjusted for chance and will tend to increase
as the number of different labels (clusters) increases, regardless of the actual amount of “mutual information” between
the label assignments.

The expected value for the mutual information can be calculated using the following equation [VEB2009]. In this
equation, 𝑎𝑖 = |𝑈𝑖| (the number of elements in 𝑈𝑖) and 𝑏𝑗 = |𝑉𝑗 | (the number of elements in 𝑉𝑗).

𝐸[MI(𝑈, 𝑉)] =

|𝑈 |∑︁
𝑖=1

|𝑉 |∑︁
𝑗=1

min(𝑎𝑖,𝑏𝑗)∑︁
𝑛𝑖𝑗=(𝑎𝑖+𝑏𝑗−𝑁)+

𝑛𝑖𝑗
𝑁

log

(︂
𝑁.𝑛𝑖𝑗

𝑎𝑖𝑏𝑗

)︂
𝑎𝑖!𝑏𝑗 !(𝑁 − 𝑎𝑖)!(𝑁 − 𝑏𝑗)!

𝑁 !𝑛𝑖𝑗 !(𝑎𝑖 − 𝑛𝑖𝑗)!(𝑏𝑗 − 𝑛𝑖𝑗)!(𝑁 − 𝑎𝑖 − 𝑏𝑗 + 𝑛𝑖𝑗)!

Using the expected value, the adjusted mutual information can then be calculated using a similar form to that of the
adjusted Rand index:

AMI =
MI− 𝐸[MI]

mean(𝐻(𝑈), 𝐻(𝑉))− 𝐸[MI]

4.2. Unsupervised learning 419

scikit-learn user guide, Release 0.23.2

For normalized mutual information and adjusted mutual information, the normalizing value is typically some gener-
alized mean of the entropies of each clustering. Various generalized means exist, and no firm rules exist for preferring
one over the others. The decision is largely a field-by-field basis; for instance, in community detection, the arithmetic
mean is most common. Each normalizing method provides “qualitatively similar behaviours” [YAT2016]. In our
implementation, this is controlled by the average_method parameter.

Vinh et al. (2010) named variants of NMI and AMI by their averaging method [VEB2010]. Their ‘sqrt’ and ‘sum’
averages are the geometric and arithmetic means; we use these more broadly common names.

References

• Strehl, Alexander, and Joydeep Ghosh (2002). “Cluster ensembles – a knowledge reuse frame-
work for combining multiple partitions”. Journal of Machine Learning Research 3: 583–617.
doi:10.1162/153244303321897735.

• Wikipedia entry for the (normalized) Mutual Information

• Wikipedia entry for the Adjusted Mutual Information

Homogeneity, completeness and V-measure

Given the knowledge of the ground truth class assignments of the samples, it is possible to define some intuitive metric
using conditional entropy analysis.

In particular Rosenberg and Hirschberg (2007) define the following two desirable objectives for any cluster assign-
ment:

• homogeneity: each cluster contains only members of a single class.

• completeness: all members of a given class are assigned to the same cluster.

We can turn those concept as scores homogeneity_score and completeness_score. Both are bounded
below by 0.0 and above by 1.0 (higher is better):

>>> from sklearn import metrics
>>> labels_true = [0, 0, 0, 1, 1, 1]
>>> labels_pred = [0, 0, 1, 1, 2, 2]

>>> metrics.homogeneity_score(labels_true, labels_pred)
0.66...

>>> metrics.completeness_score(labels_true, labels_pred)
0.42...

Their harmonic mean called V-measure is computed by v_measure_score:

>>> metrics.v_measure_score(labels_true, labels_pred)
0.51...

This function’s formula is as follows:

𝑣 =
(1 + 𝛽)× homogeneity× completeness

(𝛽 × homogeneity + completeness)

beta defaults to a value of 1.0, but for using a value less than 1 for beta:

420 Chapter 4. User Guide

http://strehl.com/download/strehl-jmlr02.pdf
https://en.wikipedia.org/wiki/Mutual_Information
https://en.wikipedia.org/wiki/Adjusted_Mutual_Information

scikit-learn user guide, Release 0.23.2

>>> metrics.v_measure_score(labels_true, labels_pred, beta=0.6)
0.54...

more weight will be attributed to homogeneity, and using a value greater than 1:

>>> metrics.v_measure_score(labels_true, labels_pred, beta=1.8)
0.48...

more weight will be attributed to completeness.

The V-measure is actually equivalent to the mutual information (NMI) discussed above, with the aggregation function
being the arithmetic mean [B2011].

Homogeneity, completeness and V-measure can be computed at once using
homogeneity_completeness_v_measure as follows:

>>> metrics.homogeneity_completeness_v_measure(labels_true, labels_pred)
(0.66..., 0.42..., 0.51...)

The following clustering assignment is slightly better, since it is homogeneous but not complete:

>>> labels_pred = [0, 0, 0, 1, 2, 2]
>>> metrics.homogeneity_completeness_v_measure(labels_true, labels_pred)
(1.0, 0.68..., 0.81...)

Note: v_measure_score is symmetric: it can be used to evaluate the agreement of two independent assignments
on the same dataset.

This is not the case for completeness_score and homogeneity_score: both are bound by the relationship:

homogeneity_score(a, b) == completeness_score(b, a)

Advantages

• Bounded scores: 0.0 is as bad as it can be, 1.0 is a perfect score.

• Intuitive interpretation: clustering with bad V-measure can be qualitatively analyzed in terms of homogeneity
and completeness to better feel what ‘kind’ of mistakes is done by the assignment.

• No assumption is made on the cluster structure: can be used to compare clustering algorithms such as k-
means which assumes isotropic blob shapes with results of spectral clustering algorithms which can find cluster
with “folded” shapes.

Drawbacks

• The previously introduced metrics are not normalized with regards to random labeling: this means that
depending on the number of samples, clusters and ground truth classes, a completely random labeling will
not always yield the same values for homogeneity, completeness and hence v-measure. In particular random
labeling won’t yield zero scores especially when the number of clusters is large.

This problem can safely be ignored when the number of samples is more than a thousand and the number of
clusters is less than 10. For smaller sample sizes or larger number of clusters it is safer to use an adjusted
index such as the Adjusted Rand Index (ARI).

4.2. Unsupervised learning 421

scikit-learn user guide, Release 0.23.2

422 Chapter 4. User Guide

../auto_examples/cluster/plot_adjusted_for_chance_measures.html

scikit-learn user guide, Release 0.23.2

• These metrics require the knowledge of the ground truth classes while almost never available in practice or
requires manual assignment by human annotators (as in the supervised learning setting).

Examples:

• Adjustment for chance in clustering performance evaluation: Analysis of the impact of the dataset size on the
value of clustering measures for random assignments.

Mathematical formulation

Homogeneity and completeness scores are formally given by:

ℎ = 1− 𝐻(𝐶|𝐾)

𝐻(𝐶)

𝑐 = 1− 𝐻(𝐾|𝐶)

𝐻(𝐾)

where 𝐻(𝐶|𝐾) is the conditional entropy of the classes given the cluster assignments and is given by:

𝐻(𝐶|𝐾) = −
|𝐶|∑︁
𝑐=1

|𝐾|∑︁
𝑘=1

𝑛𝑐,𝑘
𝑛
· log

(︂
𝑛𝑐,𝑘
𝑛𝑘

)︂
and 𝐻(𝐶) is the entropy of the classes and is given by:

𝐻(𝐶) = −
|𝐶|∑︁
𝑐=1

𝑛𝑐
𝑛
· log

(︁𝑛𝑐
𝑛

)︁
with 𝑛 the total number of samples, 𝑛𝑐 and 𝑛𝑘 the number of samples respectively belonging to class 𝑐 and cluster 𝑘,
and finally 𝑛𝑐,𝑘 the number of samples from class 𝑐 assigned to cluster 𝑘.

The conditional entropy of clusters given class 𝐻(𝐾|𝐶) and the entropy of clusters 𝐻(𝐾) are defined in a sym-
metric manner.

Rosenberg and Hirschberg further define V-measure as the harmonic mean of homogeneity and completeness:

𝑣 = 2 · ℎ · 𝑐
ℎ+ 𝑐

References

• V-Measure: A conditional entropy-based external cluster evaluation measure Andrew Rosenberg and Julia
Hirschberg, 2007

Fowlkes-Mallows scores

The Fowlkes-Mallows index (sklearn.metrics.fowlkes_mallows_score) can be used when the ground
truth class assignments of the samples is known. The Fowlkes-Mallows score FMI is defined as the geometric mean
of the pairwise precision and recall:

FMI =
TP√︀

(TP + FP)(TP + FN)

4.2. Unsupervised learning 423

https://aclweb.org/anthology/D/D07/D07-1043.pdf

scikit-learn user guide, Release 0.23.2

Where TP is the number of True Positive (i.e. the number of pair of points that belong to the same clusters in both the
true labels and the predicted labels), FP is the number of False Positive (i.e. the number of pair of points that belong
to the same clusters in the true labels and not in the predicted labels) and FN is the number of False Negative (i.e the
number of pair of points that belongs in the same clusters in the predicted labels and not in the true labels).

The score ranges from 0 to 1. A high value indicates a good similarity between two clusters.

>>> from sklearn import metrics
>>> labels_true = [0, 0, 0, 1, 1, 1]
>>> labels_pred = [0, 0, 1, 1, 2, 2]

>>> metrics.fowlkes_mallows_score(labels_true, labels_pred)
0.47140...

One can permute 0 and 1 in the predicted labels, rename 2 to 3 and get the same score:

>>> labels_pred = [1, 1, 0, 0, 3, 3]

>>> metrics.fowlkes_mallows_score(labels_true, labels_pred)
0.47140...

Perfect labeling is scored 1.0:

>>> labels_pred = labels_true[:]
>>> metrics.fowlkes_mallows_score(labels_true, labels_pred)
1.0

Bad (e.g. independent labelings) have zero scores:

>>> labels_true = [0, 1, 2, 0, 3, 4, 5, 1]
>>> labels_pred = [1, 1, 0, 0, 2, 2, 2, 2]
>>> metrics.fowlkes_mallows_score(labels_true, labels_pred)
0.0

Advantages

• Random (uniform) label assignments have a FMI score close to 0.0 for any value of n_clusters and
n_samples (which is not the case for raw Mutual Information or the V-measure for instance).

• Upper-bounded at 1: Values close to zero indicate two label assignments that are largely independent, while
values close to one indicate significant agreement. Further, values of exactly 0 indicate purely independent
label assignments and a FMI of exactly 1 indicates that the two label assignments are equal (with or without
permutation).

• No assumption is made on the cluster structure: can be used to compare clustering algorithms such as k-
means which assumes isotropic blob shapes with results of spectral clustering algorithms which can find cluster
with “folded” shapes.

Drawbacks

• Contrary to inertia, FMI-based measures require the knowledge of the ground truth classes while almost
never available in practice or requires manual assignment by human annotators (as in the supervised learning
setting).

424 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

References

• E. B. Fowkles and C. L. Mallows, 1983. “A method for comparing two hierarchical clusterings”. Journal of
the American Statistical Association. http://wildfire.stat.ucla.edu/pdflibrary/fowlkes.pdf

• Wikipedia entry for the Fowlkes-Mallows Index

Silhouette Coefficient

If the ground truth labels are not known, evaluation must be performed using the model itself. The Silhouette Coeffi-
cient (sklearn.metrics.silhouette_score) is an example of such an evaluation, where a higher Silhouette
Coefficient score relates to a model with better defined clusters. The Silhouette Coefficient is defined for each sample
and is composed of two scores:

• a: The mean distance between a sample and all other points in the same class.

• b: The mean distance between a sample and all other points in the next nearest cluster.

The Silhouette Coefficient s for a single sample is then given as:

𝑠 =
𝑏− 𝑎

𝑚𝑎𝑥(𝑎, 𝑏)

The Silhouette Coefficient for a set of samples is given as the mean of the Silhouette Coefficient for each sample.

>>> from sklearn import metrics
>>> from sklearn.metrics import pairwise_distances
>>> from sklearn import datasets
>>> X, y = datasets.load_iris(return_X_y=True)

In normal usage, the Silhouette Coefficient is applied to the results of a cluster analysis.

>>> import numpy as np
>>> from sklearn.cluster import KMeans
>>> kmeans_model = KMeans(n_clusters=3, random_state=1).fit(X)
>>> labels = kmeans_model.labels_
>>> metrics.silhouette_score(X, labels, metric='euclidean')
0.55...

References

• Peter J. Rousseeuw (1987). “Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster
Analysis”. Computational and Applied Mathematics 20: 53–65. doi:10.1016/0377-0427(87)90125-7.

Advantages

• The score is bounded between -1 for incorrect clustering and +1 for highly dense clustering. Scores around zero
indicate overlapping clusters.

• The score is higher when clusters are dense and well separated, which relates to a standard concept of a cluster.

4.2. Unsupervised learning 425

http://wildfire.stat.ucla.edu/pdflibrary/fowlkes.pdf
https://en.wikipedia.org/wiki/Fowlkes-Mallows_index
https://doi.org/10.1016/0377-0427(87)90125-7

scikit-learn user guide, Release 0.23.2

Drawbacks

• The Silhouette Coefficient is generally higher for convex clusters than other concepts of clusters, such as density
based clusters like those obtained through DBSCAN.

Examples:

• Selecting the number of clusters with silhouette analysis on KMeans clustering : In this example the silhouette
analysis is used to choose an optimal value for n_clusters.

Calinski-Harabasz Index

If the ground truth labels are not known, the Calinski-Harabasz index (sklearn.metrics.
calinski_harabasz_score) - also known as the Variance Ratio Criterion - can be used to evaluate the
model, where a higher Calinski-Harabasz score relates to a model with better defined clusters.

The index is the ratio of the sum of between-clusters dispersion and of inter-cluster dispersion for all clusters (where
dispersion is defined as the sum of distances squared):

>>> from sklearn import metrics
>>> from sklearn.metrics import pairwise_distances
>>> from sklearn import datasets
>>> X, y = datasets.load_iris(return_X_y=True)

In normal usage, the Calinski-Harabasz index is applied to the results of a cluster analysis:

>>> import numpy as np
>>> from sklearn.cluster import KMeans
>>> kmeans_model = KMeans(n_clusters=3, random_state=1).fit(X)
>>> labels = kmeans_model.labels_
>>> metrics.calinski_harabasz_score(X, labels)
561.62...

Advantages

• The score is higher when clusters are dense and well separated, which relates to a standard concept of a cluster.

• The score is fast to compute.

Drawbacks

• The Calinski-Harabasz index is generally higher for convex clusters than other concepts of clusters, such as
density based clusters like those obtained through DBSCAN.

Mathematical formulation

For a set of data 𝐸 of size 𝑛𝐸 which has been clustered into 𝑘 clusters, the Calinski-Harabasz score 𝑠 is defined as the
ratio of the between-clusters dispersion mean and the within-cluster dispersion:

𝑠 =
tr(𝐵𝑘)

tr(𝑊𝑘)
× 𝑛𝐸 − 𝑘

𝑘 − 1

426 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

where tr(𝐵𝑘) is trace of the between group dispersion matrix and tr(𝑊𝑘) is the trace of the within-cluster dispersion
matrix defined by:

𝑊𝑘 =

𝑘∑︁
𝑞=1

∑︁
𝑥∈𝐶𝑞

(𝑥− 𝑐𝑞)(𝑥− 𝑐𝑞)𝑇

𝐵𝑘 =

𝑘∑︁
𝑞=1

𝑛𝑞(𝑐𝑞 − 𝑐𝐸)(𝑐𝑞 − 𝑐𝐸)𝑇

with 𝐶𝑞 the set of points in cluster 𝑞, 𝑐𝑞 the center of cluster 𝑞, 𝑐𝐸 the center of 𝐸, and 𝑛𝑞 the number of points in
cluster 𝑞.

References

• Caliński, T., & Harabasz, J. (1974). “A Dendrite Method for Cluster Analysis”. Communications in Statistics-
theory and Methods 3: 1-27. doi:10.1080/03610927408827101.

Davies-Bouldin Index

If the ground truth labels are not known, the Davies-Bouldin index (sklearn.metrics.
davies_bouldin_score) can be used to evaluate the model, where a lower Davies-Bouldin index relates
to a model with better separation between the clusters.

This index signifies the average ‘similarity’ between clusters, where the similarity is a measure that compares the
distance between clusters with the size of the clusters themselves.

Zero is the lowest possible score. Values closer to zero indicate a better partition.

In normal usage, the Davies-Bouldin index is applied to the results of a cluster analysis as follows:

>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> X = iris.data
>>> from sklearn.cluster import KMeans
>>> from sklearn.metrics import davies_bouldin_score
>>> kmeans = KMeans(n_clusters=3, random_state=1).fit(X)
>>> labels = kmeans.labels_
>>> davies_bouldin_score(X, labels)
0.6619...

Advantages

• The computation of Davies-Bouldin is simpler than that of Silhouette scores.

• The index is computed only quantities and features inherent to the dataset.

Drawbacks

• The Davies-Boulding index is generally higher for convex clusters than other concepts of clusters, such as
density based clusters like those obtained from DBSCAN.

• The usage of centroid distance limits the distance metric to Euclidean space.

4.2. Unsupervised learning 427

https://www.researchgate.net/publication/233096619_A_Dendrite_Method_for_Cluster_Analysis
https://doi.org/10.1080/03610927408827101

scikit-learn user guide, Release 0.23.2

Mathematical formulation

The index is defined as the average similarity between each cluster 𝐶𝑖 for 𝑖 = 1, ..., 𝑘 and its most similar one 𝐶𝑗 . In
the context of this index, similarity is defined as a measure 𝑅𝑖𝑗 that trades off:

• 𝑠𝑖, the average distance between each point of cluster 𝑖 and the centroid of that cluster – also know as cluster
diameter.

• 𝑑𝑖𝑗 , the distance between cluster centroids 𝑖 and 𝑗.

A simple choice to construct 𝑅𝑖𝑗 so that it is nonnegative and symmetric is:

𝑅𝑖𝑗 =
𝑠𝑖 + 𝑠𝑗
𝑑𝑖𝑗

Then the Davies-Bouldin index is defined as:

𝐷𝐵 =
1

𝑘

𝑘∑︁
𝑖=1

max
𝑖 ̸=𝑗

𝑅𝑖𝑗

References

• Davies, David L.; Bouldin, Donald W. (1979). “A Cluster Separation Measure” IEEE Transactions on Pattern
Analysis and Machine Intelligence. PAMI-1 (2): 224-227. doi:10.1109/TPAMI.1979.4766909.

• Halkidi, Maria; Batistakis, Yannis; Vazirgiannis, Michalis (2001). “On Clustering Validation Techniques”
Journal of Intelligent Information Systems, 17(2-3), 107-145. doi:10.1023/A:1012801612483.

• Wikipedia entry for Davies-Bouldin index.

Contingency Matrix

Contingency matrix (sklearn.metrics.cluster.contingency_matrix) reports the intersection cardi-
nality for every true/predicted cluster pair. The contingency matrix provides sufficient statistics for all clustering met-
rics where the samples are independent and identically distributed and one doesn’t need to account for some instances
not being clustered.

Here is an example:

>>> from sklearn.metrics.cluster import contingency_matrix
>>> x = ["a", "a", "a", "b", "b", "b"]
>>> y = [0, 0, 1, 1, 2, 2]
>>> contingency_matrix(x, y)
array([[2, 1, 0],

[0, 1, 2]])

The first row of output array indicates that there are three samples whose true cluster is “a”. Of them, two are in
predicted cluster 0, one is in 1, and none is in 2. And the second row indicates that there are three samples whose true
cluster is “b”. Of them, none is in predicted cluster 0, one is in 1 and two are in 2.

A confusion matrix for classification is a square contingency matrix where the order of rows and columns correspond
to a list of classes.

Advantages

• Allows to examine the spread of each true cluster across predicted clusters and vice versa.

428 Chapter 4. User Guide

https://doi.org/10.1109/TPAMI.1979.4766909
https://doi.org/10.1023/A:1012801612483
https://en.wikipedia.org/wiki/Davies\T1\textendash {}Bouldin_index

scikit-learn user guide, Release 0.23.2

• The contingency table calculated is typically utilized in the calculation of a similarity statistic (like the others
listed in this document) between the two clusterings.

Drawbacks

• Contingency matrix is easy to interpret for a small number of clusters, but becomes very hard to interpret for a
large number of clusters.

• It doesn’t give a single metric to use as an objective for clustering optimisation.

References

• Wikipedia entry for contingency matrix

4.2.4 Biclustering

Biclustering can be performed with the module sklearn.cluster.bicluster. Biclustering algorithms simul-
taneously cluster rows and columns of a data matrix. These clusters of rows and columns are known as biclusters.
Each determines a submatrix of the original data matrix with some desired properties.

For instance, given a matrix of shape (10, 10), one possible bicluster with three rows and two columns induces a
submatrix of shape (3, 2):

>>> import numpy as np
>>> data = np.arange(100).reshape(10, 10)
>>> rows = np.array([0, 2, 3])[:, np.newaxis]
>>> columns = np.array([1, 2])
>>> data[rows, columns]
array([[1, 2],

[21, 22],
[31, 32]])

For visualization purposes, given a bicluster, the rows and columns of the data matrix may be rearranged to make the
bicluster contiguous.

Algorithms differ in how they define biclusters. Some of the common types include:

• constant values, constant rows, or constant columns

• unusually high or low values

• submatrices with low variance

• correlated rows or columns

Algorithms also differ in how rows and columns may be assigned to biclusters, which leads to different bicluster
structures. Block diagonal or checkerboard structures occur when rows and columns are divided into partitions.

If each row and each column belongs to exactly one bicluster, then rearranging the rows and columns of the data matrix
reveals the biclusters on the diagonal. Here is an example of this structure where biclusters have higher average values
than the other rows and columns:

In the checkerboard case, each row belongs to all column clusters, and each column belongs to all row clusters. Here
is an example of this structure where the variance of the values within each bicluster is small:

4.2. Unsupervised learning 429

https://en.wikipedia.org/wiki/Contingency_table

scikit-learn user guide, Release 0.23.2

Fig. 6: An example of biclusters formed by partitioning rows and columns.

Fig. 7: An example of checkerboard biclusters.

430 Chapter 4. User Guide

../auto_examples/bicluster/images/sphx_glr_plot_spectral_coclustering_003.png
../auto_examples/bicluster/images/sphx_glr_plot_spectral_biclustering_003.png

scikit-learn user guide, Release 0.23.2

After fitting a model, row and column cluster membership can be found in the rows_ and columns_ attributes.
rows_[i] is a binary vector with nonzero entries corresponding to rows that belong to bicluster i. Similarly,
columns_[i] indicates which columns belong to bicluster i.

Some models also have row_labels_ and column_labels_ attributes. These models partition the rows and
columns, such as in the block diagonal and checkerboard bicluster structures.

Note: Biclustering has many other names in different fields including co-clustering, two-mode clustering, two-way
clustering, block clustering, coupled two-way clustering, etc. The names of some algorithms, such as the Spectral
Co-Clustering algorithm, reflect these alternate names.

Spectral Co-Clustering

The SpectralCoclustering algorithm finds biclusters with values higher than those in the corresponding other
rows and columns. Each row and each column belongs to exactly one bicluster, so rearranging the rows and columns
to make partitions contiguous reveals these high values along the diagonal:

Note: The algorithm treats the input data matrix as a bipartite graph: the rows and columns of the matrix correspond
to the two sets of vertices, and each entry corresponds to an edge between a row and a column. The algorithm
approximates the normalized cut of this graph to find heavy subgraphs.

Mathematical formulation

An approximate solution to the optimal normalized cut may be found via the generalized eigenvalue decomposition of
the Laplacian of the graph. Usually this would mean working directly with the Laplacian matrix. If the original data
matrix 𝐴 has shape 𝑚× 𝑛, the Laplacian matrix for the corresponding bipartite graph has shape (𝑚+ 𝑛)× (𝑚+ 𝑛).
However, in this case it is possible to work directly with 𝐴, which is smaller and more efficient.

The input matrix 𝐴 is preprocessed as follows:

𝐴𝑛 = 𝑅−1/2𝐴𝐶−1/2

Where 𝑅 is the diagonal matrix with entry 𝑖 equal to
∑︀

𝑗 𝐴𝑖𝑗 and 𝐶 is the diagonal matrix with entry 𝑗 equal to∑︀
𝑖𝐴𝑖𝑗 .

The singular value decomposition, 𝐴𝑛 = 𝑈Σ𝑉 ⊤, provides the partitions of the rows and columns of 𝐴. A subset of
the left singular vectors gives the row partitions, and a subset of the right singular vectors gives the column partitions.

The ℓ = ⌈log2 𝑘⌉ singular vectors, starting from the second, provide the desired partitioning information. They are
used to form the matrix 𝑍:

𝑍 =

⎡⎣𝑅−1/2𝑈

𝐶−1/2𝑉

⎤⎦
where the columns of 𝑈 are 𝑢2, . . . , 𝑢ℓ+1, and similarly for 𝑉 .

Then the rows of 𝑍 are clustered using k-means. The first n_rows labels provide the row partitioning, and the
remaining n_columns labels provide the column partitioning.

Examples:

4.2. Unsupervised learning 431

scikit-learn user guide, Release 0.23.2

• A demo of the Spectral Co-Clustering algorithm: A simple example showing how to generate a data matrix
with biclusters and apply this method to it.

• Biclustering documents with the Spectral Co-clustering algorithm: An example of finding biclusters in the
twenty newsgroup dataset.

References:

• Dhillon, Inderjit S, 2001. Co-clustering documents and words using bipartite spectral graph partitioning.

Spectral Biclustering

The SpectralBiclustering algorithm assumes that the input data matrix has a hidden checkerboard structure.
The rows and columns of a matrix with this structure may be partitioned so that the entries of any bicluster in the
Cartesian product of row clusters and column clusters are approximately constant. For instance, if there are two row
partitions and three column partitions, each row will belong to three biclusters, and each column will belong to two
biclusters.

The algorithm partitions the rows and columns of a matrix so that a corresponding blockwise-constant checkerboard
matrix provides a good approximation to the original matrix.

Mathematical formulation

The input matrix 𝐴 is first normalized to make the checkerboard pattern more obvious. There are three possible
methods:

1. Independent row and column normalization, as in Spectral Co-Clustering. This method makes the rows sum to
a constant and the columns sum to a different constant.

2. Bistochastization: repeated row and column normalization until convergence. This method makes both rows
and columns sum to the same constant.

3. Log normalization: the log of the data matrix is computed: 𝐿 = log𝐴. Then the column mean 𝐿𝑖·, row mean
𝐿·𝑗 , and overall mean 𝐿·· of 𝐿 are computed. The final matrix is computed according to the formula

𝐾𝑖𝑗 = 𝐿𝑖𝑗 − 𝐿𝑖· − 𝐿·𝑗 + 𝐿··

After normalizing, the first few singular vectors are computed, just as in the Spectral Co-Clustering algorithm.

If log normalization was used, all the singular vectors are meaningful. However, if independent normalization or
bistochastization were used, the first singular vectors, 𝑢1 and 𝑣1. are discarded. From now on, the “first” singular
vectors refers to 𝑢2 . . . 𝑢𝑝+1 and 𝑣2 . . . 𝑣𝑝+1 except in the case of log normalization.

Given these singular vectors, they are ranked according to which can be best approximated by a piecewise-constant
vector. The approximations for each vector are found using one-dimensional k-means and scored using the Euclidean
distance. Some subset of the best left and right singular vector are selected. Next, the data is projected to this best
subset of singular vectors and clustered.

For instance, if 𝑝 singular vectors were calculated, the 𝑞 best are found as described, where 𝑞 < 𝑝. Let 𝑈 be the matrix
with columns the 𝑞 best left singular vectors, and similarly 𝑉 for the right. To partition the rows, the rows of 𝐴 are
projected to a 𝑞 dimensional space: 𝐴 * 𝑉 . Treating the 𝑚 rows of this 𝑚× 𝑞 matrix as samples and clustering using
k-means yields the row labels. Similarly, projecting the columns to 𝐴⊤ *𝑈 and clustering this 𝑛× 𝑞 matrix yields the
column labels.

432 Chapter 4. User Guide

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.140.3011

scikit-learn user guide, Release 0.23.2

Examples:

• A demo of the Spectral Biclustering algorithm: a simple example showing how to generate a checkerboard
matrix and bicluster it.

References:

• Kluger, Yuval, et. al., 2003. Spectral biclustering of microarray data: coclustering genes and conditions.

Biclustering evaluation

There are two ways of evaluating a biclustering result: internal and external. Internal measures, such as cluster
stability, rely only on the data and the result themselves. Currently there are no internal bicluster measures in scikit-
learn. External measures refer to an external source of information, such as the true solution. When working with
real data the true solution is usually unknown, but biclustering artificial data may be useful for evaluating algorithms
precisely because the true solution is known.

To compare a set of found biclusters to the set of true biclusters, two similarity measures are needed: a similarity
measure for individual biclusters, and a way to combine these individual similarities into an overall score.

To compare individual biclusters, several measures have been used. For now, only the Jaccard index is implemented:

𝐽(𝐴,𝐵) =
|𝐴 ∩𝐵|

|𝐴|+ |𝐵| − |𝐴 ∩𝐵|

where 𝐴 and 𝐵 are biclusters, |𝐴 ∩ 𝐵| is the number of elements in their intersection. The Jaccard index achieves its
minimum of 0 when the biclusters to not overlap at all and its maximum of 1 when they are identical.

Several methods have been developed to compare two sets of biclusters. For now, only consensus_score (Hochre-
iter et. al., 2010) is available:

1. Compute bicluster similarities for pairs of biclusters, one in each set, using the Jaccard index or a similar
measure.

2. Assign biclusters from one set to another in a one-to-one fashion to maximize the sum of their similarities. This
step is performed using the Hungarian algorithm.

3. The final sum of similarities is divided by the size of the larger set.

The minimum consensus score, 0, occurs when all pairs of biclusters are totally dissimilar. The maximum score, 1,
occurs when both sets are identical.

References:

• Hochreiter, Bodenhofer, et. al., 2010. FABIA: factor analysis for bicluster acquisition.

4.2.5 Decomposing signals in components (matrix factorization problems)

Principal component analysis (PCA)

4.2. Unsupervised learning 433

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.135.1608
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2881408/

scikit-learn user guide, Release 0.23.2

Exact PCA and probabilistic interpretation

PCA is used to decompose a multivariate dataset in a set of successive orthogonal components that explain a maximum
amount of the variance. In scikit-learn, PCA is implemented as a transformer object that learns 𝑛 components in its
fit method, and can be used on new data to project it on these components.

PCA centers but does not scale the input data for each feature before applying the SVD. The optional parameter
whiten=True makes it possible to project the data onto the singular space while scaling each component to unit
variance. This is often useful if the models down-stream make strong assumptions on the isotropy of the signal: this
is for example the case for Support Vector Machines with the RBF kernel and the K-Means clustering algorithm.

Below is an example of the iris dataset, which is comprised of 4 features, projected on the 2 dimensions that explain
most variance:

The PCA object also provides a probabilistic interpretation of the PCA that can give a likelihood of data based on the
amount of variance it explains. As such it implements a score method that can be used in cross-validation:

Examples:

• Comparison of LDA and PCA 2D projection of Iris dataset

• Model selection with Probabilistic PCA and Factor Analysis (FA)

Incremental PCA

The PCA object is very useful, but has certain limitations for large datasets. The biggest limitation is that PCA only sup-
ports batch processing, which means all of the data to be processed must fit in main memory. The IncrementalPCA
object uses a different form of processing and allows for partial computations which almost exactly match the results
of PCA while processing the data in a minibatch fashion. IncrementalPCA makes it possible to implement out-of-
core Principal Component Analysis either by:

434 Chapter 4. User Guide

../auto_examples/decomposition/plot_pca_vs_lda.html

scikit-learn user guide, Release 0.23.2

• Using its partial_fit method on chunks of data fetched sequentially from the local hard drive or a network
database.

• Calling its fit method on a sparse matrix or a memory mapped file using numpy.memmap.

IncrementalPCA only stores estimates of component and noise variances, in order update
explained_variance_ratio_ incrementally. This is why memory usage depends on the number of
samples per batch, rather than the number of samples to be processed in the dataset.

As in PCA, IncrementalPCA centers but does not scale the input data for each feature before applying the SVD.

Examples:

• Incremental PCA

PCA using randomized SVD

It is often interesting to project data to a lower-dimensional space that preserves most of the variance, by dropping the
singular vector of components associated with lower singular values.

For instance, if we work with 64x64 pixel gray-level pictures for face recognition, the dimensionality of the data is
4096 and it is slow to train an RBF support vector machine on such wide data. Furthermore we know that the intrinsic
dimensionality of the data is much lower than 4096 since all pictures of human faces look somewhat alike. The
samples lie on a manifold of much lower dimension (say around 200 for instance). The PCA algorithm can be used to
linearly transform the data while both reducing the dimensionality and preserve most of the explained variance at the
same time.

The class PCA used with the optional parameter svd_solver='randomized' is very useful in that case: since
we are going to drop most of the singular vectors it is much more efficient to limit the computation to an approximated
estimate of the singular vectors we will keep to actually perform the transform.

4.2. Unsupervised learning 435

../auto_examples/decomposition/plot_pca_vs_fa_model_selection.html

scikit-learn user guide, Release 0.23.2

436 Chapter 4. User Guide

../auto_examples/decomposition/plot_incremental_pca.html

scikit-learn user guide, Release 0.23.2

4.2. Unsupervised learning 437

../auto_examples/decomposition/plot_incremental_pca.html

scikit-learn user guide, Release 0.23.2

For instance, the following shows 16 sample portraits (centered around 0.0) from the Olivetti dataset. On the right
hand side are the first 16 singular vectors reshaped as portraits. Since we only require the top 16 singular vectors of a
dataset with size 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 400 and 𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 64× 64 = 4096, the computation time is less than 1s:

If we note 𝑛max = max(𝑛samples, 𝑛features) and 𝑛min = min(𝑛samples, 𝑛features), the time complexity of the random-
ized PCA is 𝑂(𝑛2max · 𝑛components) instead of 𝑂(𝑛2max · 𝑛min) for the exact method implemented in PCA.

The memory footprint of randomized PCA is also proportional to 2 · 𝑛max · 𝑛components instead of 𝑛max · 𝑛min for the
exact method.

Note: the implementation of inverse_transform in PCA with svd_solver='randomized' is not the exact
inverse transform of transform even when whiten=False (default).

Examples:

• Faces recognition example using eigenfaces and SVMs

• Faces dataset decompositions

438 Chapter 4. User Guide

../auto_examples/decomposition/plot_faces_decomposition.html
../auto_examples/decomposition/plot_faces_decomposition.html

scikit-learn user guide, Release 0.23.2

References:

• “Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decomposi-
tions” Halko, et al., 2009

Kernel PCA

KernelPCA is an extension of PCA which achieves non-linear dimensionality reduction through the use of
kernels (see Pairwise metrics, Affinities and Kernels). It has many applications including denoising, compres-
sion and structured prediction (kernel dependency estimation). KernelPCA supports both transform and
inverse_transform.

Examples:

• Kernel PCA

Sparse principal components analysis (SparsePCA and MiniBatchSparsePCA)

SparsePCA is a variant of PCA, with the goal of extracting the set of sparse components that best reconstruct the
data.

Mini-batch sparse PCA (MiniBatchSparsePCA) is a variant of SparsePCA that is faster but less accurate. The
increased speed is reached by iterating over small chunks of the set of features, for a given number of iterations.

Principal component analysis (PCA) has the disadvantage that the components extracted by this method have exclu-
sively dense expressions, i.e. they have non-zero coefficients when expressed as linear combinations of the original
variables. This can make interpretation difficult. In many cases, the real underlying components can be more naturally
imagined as sparse vectors; for example in face recognition, components might naturally map to parts of faces.

4.2. Unsupervised learning 439

https://arxiv.org/abs/0909.4061
https://arxiv.org/abs/0909.4061
../auto_examples/decomposition/plot_kernel_pca.html

scikit-learn user guide, Release 0.23.2

Sparse principal components yields a more parsimonious, interpretable representation, clearly emphasizing which of
the original features contribute to the differences between samples.

The following example illustrates 16 components extracted using sparse PCA from the Olivetti faces dataset. It can
be seen how the regularization term induces many zeros. Furthermore, the natural structure of the data causes the
non-zero coefficients to be vertically adjacent. The model does not enforce this mathematically: each component is
a vector ℎ ∈ R4096, and there is no notion of vertical adjacency except during the human-friendly visualization as
64x64 pixel images. The fact that the components shown below appear local is the effect of the inherent structure of
the data, which makes such local patterns minimize reconstruction error. There exist sparsity-inducing norms that take
into account adjacency and different kinds of structure; see [Jen09] for a review of such methods. For more details on
how to use Sparse PCA, see the Examples section, below.

Note that there are many different formulations for the Sparse PCA problem. The one implemented here is based
on [Mrl09] . The optimization problem solved is a PCA problem (dictionary learning) with an ℓ1 penalty on the
components:

(𝑈*, 𝑉 *) = arg min
𝑈,𝑉

1

2
||𝑋 − 𝑈𝑉 ||22 + 𝛼||𝑉 ||1

subject to ||𝑈𝑘||2 = 1 for all 0 ≤ 𝑘 < 𝑛𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

The sparsity-inducing ℓ1 norm also prevents learning components from noise when few training samples are available.
The degree of penalization (and thus sparsity) can be adjusted through the hyperparameter alpha. Small values lead

440 Chapter 4. User Guide

../auto_examples/decomposition/plot_faces_decomposition.html
../auto_examples/decomposition/plot_faces_decomposition.html

scikit-learn user guide, Release 0.23.2

to a gently regularized factorization, while larger values shrink many coefficients to zero.

Note: While in the spirit of an online algorithm, the class MiniBatchSparsePCA does not implement
partial_fit because the algorithm is online along the features direction, not the samples direction.

Examples:

• Faces dataset decompositions

References:

Truncated singular value decomposition and latent semantic analysis

TruncatedSVD implements a variant of singular value decomposition (SVD) that only computes the 𝑘 largest
singular values, where 𝑘 is a user-specified parameter.

When truncated SVD is applied to term-document matrices (as returned by CountVectorizer or
TfidfVectorizer), this transformation is known as latent semantic analysis (LSA), because it transforms such
matrices to a “semantic” space of low dimensionality. In particular, LSA is known to combat the effects of synonymy
and polysemy (both of which roughly mean there are multiple meanings per word), which cause term-document ma-
trices to be overly sparse and exhibit poor similarity under measures such as cosine similarity.

Note: LSA is also known as latent semantic indexing, LSI, though strictly that refers to its use in persistent indexes
for information retrieval purposes.

Mathematically, truncated SVD applied to training samples 𝑋 produces a low-rank approximation 𝑋:

𝑋 ≈ 𝑋𝑘 = 𝑈𝑘Σ𝑘𝑉
⊤
𝑘

After this operation, 𝑈𝑘Σ⊤
𝑘 is the transformed training set with 𝑘 features (called n_components in the API).

To also transform a test set 𝑋 , we multiply it with 𝑉𝑘:

𝑋 ′ = 𝑋𝑉𝑘

Note: Most treatments of LSA in the natural language processing (NLP) and information retrieval (IR) literature
swap the axes of the matrix 𝑋 so that it has shape n_features × n_samples. We present LSA in a different way
that matches the scikit-learn API better, but the singular values found are the same.

TruncatedSVD is very similar to PCA, but differs in that the matrix 𝑋 does not need to be centered. When the
columnwise (per-feature) means of 𝑋 are subtracted from the feature values, truncated SVD on the resulting matrix
is equivalent to PCA. In practical terms, this means that the TruncatedSVD transformer accepts scipy.sparse
matrices without the need to densify them, as densifying may fill up memory even for medium-sized document col-
lections.

While the TruncatedSVD transformer works with any feature matrix, using it on tf–idf matrices is recommended
over raw frequency counts in an LSA/document processing setting. In particular, sublinear scaling and inverse docu-
ment frequency should be turned on (sublinear_tf=True, use_idf=True) to bring the feature values closer
to a Gaussian distribution, compensating for LSA’s erroneous assumptions about textual data.

4.2. Unsupervised learning 441

https://nlp.stanford.edu/IR-book/pdf/18lsi.pdf

scikit-learn user guide, Release 0.23.2

Examples:

• Clustering text documents using k-means

References:

• Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze (2008), Introduction to Information Re-
trieval, Cambridge University Press, chapter 18: Matrix decompositions & latent semantic indexing

Dictionary Learning

Sparse coding with a precomputed dictionary

The SparseCoder object is an estimator that can be used to transform signals into sparse linear combination of
atoms from a fixed, precomputed dictionary such as a discrete wavelet basis. This object therefore does not implement
a fit method. The transformation amounts to a sparse coding problem: finding a representation of the data as a linear
combination of as few dictionary atoms as possible. All variations of dictionary learning implement the following
transform methods, controllable via the transform_method initialization parameter:

• Orthogonal matching pursuit (Orthogonal Matching Pursuit (OMP))

• Least-angle regression (Least Angle Regression)

• Lasso computed by least-angle regression

• Lasso using coordinate descent (Lasso)

• Thresholding

Thresholding is very fast but it does not yield accurate reconstructions. They have been shown useful in literature for
classification tasks. For image reconstruction tasks, orthogonal matching pursuit yields the most accurate, unbiased
reconstruction.

The dictionary learning objects offer, via the split_code parameter, the possibility to separate the positive and
negative values in the results of sparse coding. This is useful when dictionary learning is used for extracting features
that will be used for supervised learning, because it allows the learning algorithm to assign different weights to negative
loadings of a particular atom, from to the corresponding positive loading.

The split code for a single sample has length 2 * n_components and is constructed using the following rule:
First, the regular code of length n_components is computed. Then, the first n_components entries of the
split_code are filled with the positive part of the regular code vector. The second half of the split code is filled
with the negative part of the code vector, only with a positive sign. Therefore, the split_code is non-negative.

Examples:

• Sparse coding with a precomputed dictionary

Generic dictionary learning

Dictionary learning (DictionaryLearning) is a matrix factorization problem that amounts to finding a (usually
overcomplete) dictionary that will perform well at sparsely encoding the fitted data.

442 Chapter 4. User Guide

https://nlp.stanford.edu/IR-book/pdf/18lsi.pdf

scikit-learn user guide, Release 0.23.2

Representing data as sparse combinations of atoms from an overcomplete dictionary is suggested to be the way the
mammalian primary visual cortex works. Consequently, dictionary learning applied on image patches has been shown
to give good results in image processing tasks such as image completion, inpainting and denoising, as well as for
supervised recognition tasks.

Dictionary learning is an optimization problem solved by alternatively updating the sparse code, as a solution to
multiple Lasso problems, considering the dictionary fixed, and then updating the dictionary to best fit the sparse code.

(𝑈*, 𝑉 *) = arg min
𝑈,𝑉

1

2
||𝑋 − 𝑈𝑉 ||22 + 𝛼||𝑈 ||1

subject to ||𝑉𝑘||2 = 1 for all 0 ≤ 𝑘 < 𝑛atoms

After using such a procedure to fit the dictionary, the transform is simply a sparse coding step that shares the same
implementation with all dictionary learning objects (see Sparse coding with a precomputed dictionary).

It is also possible to constrain the dictionary and/or code to be positive to match constraints that may be present in the
data. Below are the faces with different positivity constraints applied. Red indicates negative values, blue indicates
positive values, and white represents zeros.

4.2. Unsupervised learning 443

../auto_examples/decomposition/plot_faces_decomposition.html
../auto_examples/decomposition/plot_faces_decomposition.html

scikit-learn user guide, Release 0.23.2

444 Chapter 4. User Guide

../auto_examples/decomposition/plot_image_denoising.html
../auto_examples/decomposition/plot_image_denoising.html
../auto_examples/decomposition/plot_image_denoising.html

scikit-learn user guide, Release 0.23.2

The following image shows how a dictionary learned from 4x4 pixel image patches extracted from part of the image
of a raccoon face looks like.

Examples:

• Image denoising using dictionary learning

References:

• “Online dictionary learning for sparse coding” J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009

Mini-batch dictionary learning

MiniBatchDictionaryLearning implements a faster, but less accurate version of the dictionary learning algo-
rithm that is better suited for large datasets.

By default, MiniBatchDictionaryLearning divides the data into mini-batches and optimizes in an online
manner by cycling over the mini-batches for the specified number of iterations. However, at the moment it does not
implement a stopping condition.

4.2. Unsupervised learning 445

../auto_examples/decomposition/plot_image_denoising.html
../auto_examples/decomposition/plot_image_denoising.html
https://www.di.ens.fr/sierra/pdfs/icml09.pdf

scikit-learn user guide, Release 0.23.2

The estimator also implements partial_fit, which updates the dictionary by iterating only once over a mini-batch.
This can be used for online learning when the data is not readily available from the start, or for when the data does not
fit into the memory.

Clustering for dictionary learning

Note that when using dictionary learning to extract a representation (e.g. for sparse coding) clustering can be a
good proxy to learn the dictionary. For instance the MiniBatchKMeans estimator is computationally efficient
and implements on-line learning with a partial_fit method.

Example: Online learning of a dictionary of parts of faces

Factor Analysis

In unsupervised learning we only have a dataset 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}. How can this dataset be described mathemat-
ically? A very simple continuous latent variable model for 𝑋 is

𝑥𝑖 = 𝑊ℎ𝑖 + 𝜇+ 𝜖

The vector ℎ𝑖 is called “latent” because it is unobserved. 𝜖 is considered a noise term distributed according to a
Gaussian with mean 0 and covariance Ψ (i.e. 𝜖 ∼ 𝒩 (0,Ψ)), 𝜇 is some arbitrary offset vector. Such a model is called
“generative” as it describes how 𝑥𝑖 is generated from ℎ𝑖. If we use all the 𝑥𝑖’s as columns to form a matrix X and all
the ℎ𝑖’s as columns of a matrix H then we can write (with suitably defined M and E):

X = 𝑊H + M + E

In other words, we decomposed matrix X.

If ℎ𝑖 is given, the above equation automatically implies the following probabilistic interpretation:

𝑝(𝑥𝑖|ℎ𝑖) = 𝒩 (𝑊ℎ𝑖 + 𝜇,Ψ)

For a complete probabilistic model we also need a prior distribution for the latent variable ℎ. The most straightforward
assumption (based on the nice properties of the Gaussian distribution) is ℎ ∼ 𝒩 (0, I). This yields a Gaussian as the
marginal distribution of 𝑥:

𝑝(𝑥) = 𝒩 (𝜇,𝑊𝑊𝑇 + Ψ)

Now, without any further assumptions the idea of having a latent variable ℎ would be superfluous – 𝑥 can be com-
pletely modelled with a mean and a covariance. We need to impose some more specific structure on one of these two
parameters. A simple additional assumption regards the structure of the error covariance Ψ:

446 Chapter 4. User Guide

../auto_examples/cluster/plot_dict_face_patches.html

scikit-learn user guide, Release 0.23.2

• Ψ = 𝜎2I: This assumption leads to the probabilistic model of PCA.

• Ψ = diag(𝜓1, 𝜓2, . . . , 𝜓𝑛): This model is called FactorAnalysis, a classical statistical model. The matrix
W is sometimes called the “factor loading matrix”.

Both models essentially estimate a Gaussian with a low-rank covariance matrix. Because both models are probabilistic
they can be integrated in more complex models, e.g. Mixture of Factor Analysers. One gets very different models (e.g.
FastICA) if non-Gaussian priors on the latent variables are assumed.

Factor analysis can produce similar components (the columns of its loading matrix) to PCA. However, one can not
make any general statements about these components (e.g. whether they are orthogonal):

The main advantage for Factor Analysis over PCA is that it can model the variance in every direction of the input space
independently (heteroscedastic noise):

This allows better model selection than probabilistic PCA in the presence of heteroscedastic noise:

Examples:

• Model selection with Probabilistic PCA and Factor Analysis (FA)

4.2. Unsupervised learning 447

../auto_examples/decomposition/plot_faces_decomposition.html
../auto_examples/decomposition/plot_faces_decomposition.html

scikit-learn user guide, Release 0.23.2

448 Chapter 4. User Guide

../auto_examples/decomposition/plot_faces_decomposition.html
../auto_examples/decomposition/plot_pca_vs_fa_model_selection.html

scikit-learn user guide, Release 0.23.2

Independent component analysis (ICA)

Independent component analysis separates a multivariate signal into additive subcomponents that are maximally in-
dependent. It is implemented in scikit-learn using the Fast ICA algorithm. Typically, ICA is not used for reducing
dimensionality but for separating superimposed signals. Since the ICA model does not include a noise term, for the
model to be correct, whitening must be applied. This can be done internally using the whiten argument or manually
using one of the PCA variants.

It is classically used to separate mixed signals (a problem known as blind source separation), as in the example below:

ICA can also be used as yet another non linear decomposition that finds components with some sparsity:

4.2. Unsupervised learning 449

../auto_examples/decomposition/plot_ica_blind_source_separation.html
../auto_examples/decomposition/plot_faces_decomposition.html

scikit-learn user guide, Release 0.23.2

Examples:

• Blind source separation using FastICA

• FastICA on 2D point clouds

• Faces dataset decompositions

Non-negative matrix factorization (NMF or NNMF)

NMF with the Frobenius norm

NMF1 is an alternative approach to decomposition that assumes that the data and the components are non-negative.
NMF can be plugged in instead of PCA or its variants, in the cases where the data matrix does not contain negative
values. It finds a decomposition of samples𝑋 into two matrices𝑊 and𝐻 of non-negative elements, by optimizing the
distance 𝑑 between 𝑋 and the matrix product 𝑊𝐻 . The most widely used distance function is the squared Frobenius
norm, which is an obvious extension of the Euclidean norm to matrices:

𝑑Fro(𝑋,𝑌) =
1

2
||𝑋 − 𝑌 ||2Fro =

1

2

∑︁
𝑖,𝑗

(𝑋𝑖𝑗 − 𝑌𝑖𝑗)2

Unlike PCA, the representation of a vector is obtained in an additive fashion, by superimposing the components,
without subtracting. Such additive models are efficient for representing images and text.

It has been observed in [Hoyer, 2004]2 that, when carefully constrained, NMF can produce a parts-based representation
of the dataset, resulting in interpretable models. The following example displays 16 sparse components found by NMF
from the images in the Olivetti faces dataset, in comparison with the PCA eigenfaces.

1 “Learning the parts of objects by non-negative matrix factorization” D. Lee, S. Seung, 1999
2 “Non-negative Matrix Factorization with Sparseness Constraints” P. Hoyer, 2004

450 Chapter 4. User Guide

../auto_examples/decomposition/plot_faces_decomposition.html
http://www.columbia.edu/~jwp2128/Teaching/E4903/papers/nmf_nature.pdf
http://www.jmlr.org/papers/volume5/hoyer04a/hoyer04a.pdf

scikit-learn user guide, Release 0.23.2

The init attribute determines the initialization method applied, which has a great impact on the performance of the
method. NMF implements the method Nonnegative Double Singular Value Decomposition. NNDSVD4 is based on
two SVD processes, one approximating the data matrix, the other approximating positive sections of the resulting
partial SVD factors utilizing an algebraic property of unit rank matrices. The basic NNDSVD algorithm is better fit
for sparse factorization. Its variants NNDSVDa (in which all zeros are set equal to the mean of all elements of the
data), and NNDSVDar (in which the zeros are set to random perturbations less than the mean of the data divided by
100) are recommended in the dense case.

Note that the Multiplicative Update (‘mu’) solver cannot update zeros present in the initialization, so it leads to poorer
results when used jointly with the basic NNDSVD algorithm which introduces a lot of zeros; in this case, NNDSVDa
or NNDSVDar should be preferred.

NMF can also be initialized with correctly scaled random non-negative matrices by setting init="random". An
integer seed or a RandomState can also be passed to random_state to control reproducibility.

In NMF, L1 and L2 priors can be added to the loss function in order to regularize the model. The L2 prior uses the
Frobenius norm, while the L1 prior uses an elementwise L1 norm. As in ElasticNet, we control the combination
of L1 and L2 with the l1_ratio (𝜌) parameter, and the intensity of the regularization with the alpha (𝛼) parameter.
Then the priors terms are:

𝛼𝜌||𝑊 ||1 + 𝛼𝜌||𝐻||1 +
𝛼(1− 𝜌)

2
||𝑊 ||2Fro +

𝛼(1− 𝜌)

2
||𝐻||2Fro

4 “SVD based initialization: A head start for nonnegative matrix factorization” C. Boutsidis, E. Gallopoulos, 2008

4.2. Unsupervised learning 451

../auto_examples/decomposition/plot_faces_decomposition.html
../auto_examples/decomposition/plot_faces_decomposition.html
http://scgroup.hpclab.ceid.upatras.gr/faculty/stratis/Papers/HPCLAB020107.pdf

scikit-learn user guide, Release 0.23.2

and the regularized objective function is:

𝑑Fro(𝑋,𝑊𝐻) + 𝛼𝜌||𝑊 ||1 + 𝛼𝜌||𝐻||1 +
𝛼(1− 𝜌)

2
||𝑊 ||2Fro +

𝛼(1− 𝜌)

2
||𝐻||2Fro

NMF regularizes both W and H. The public function non_negative_factorization allows a finer control
through the regularization attribute, and may regularize only W, only H, or both.

NMF with a beta-divergence

As described previously, the most widely used distance function is the squared Frobenius norm, which is an obvious
extension of the Euclidean norm to matrices:

𝑑Fro(𝑋,𝑌) =
1

2
||𝑋 − 𝑌 ||2𝐹𝑟𝑜 =

1

2

∑︁
𝑖,𝑗

(𝑋𝑖𝑗 − 𝑌𝑖𝑗)2

Other distance functions can be used in NMF as, for example, the (generalized) Kullback-Leibler (KL) divergence,
also referred as I-divergence:

𝑑𝐾𝐿(𝑋,𝑌) =
∑︁
𝑖,𝑗

(𝑋𝑖𝑗 log(
𝑋𝑖𝑗

𝑌𝑖𝑗
)−𝑋𝑖𝑗 + 𝑌𝑖𝑗)

Or, the Itakura-Saito (IS) divergence:

𝑑𝐼𝑆(𝑋,𝑌) =
∑︁
𝑖,𝑗

(
𝑋𝑖𝑗

𝑌𝑖𝑗
− log(

𝑋𝑖𝑗

𝑌𝑖𝑗
)− 1)

These three distances are special cases of the beta-divergence family, with 𝛽 = 2, 1, 0 respectively6. The beta-
divergence are defined by :

𝑑𝛽(𝑋,𝑌) =
∑︁
𝑖,𝑗

1

𝛽(𝛽 − 1)
(𝑋𝛽

𝑖𝑗 + (𝛽 − 1)𝑌 𝛽
𝑖𝑗 − 𝛽𝑋𝑖𝑗𝑌

𝛽−1
𝑖𝑗)

Note that this definition is not valid if 𝛽 ∈ (0; 1), yet it can be continuously extended to the definitions of 𝑑𝐾𝐿 and
𝑑𝐼𝑆 respectively.

NMF implements two solvers, using Coordinate Descent (‘cd’)5, and Multiplicative Update (‘mu’)6. The ‘mu’ solver
can optimize every beta-divergence, including of course the Frobenius norm (𝛽 = 2), the (generalized) Kullback-
Leibler divergence (𝛽 = 1) and the Itakura-Saito divergence (𝛽 = 0). Note that for 𝛽 ∈ (1; 2), the ‘mu’ solver is
significantly faster than for other values of 𝛽. Note also that with a negative (or 0, i.e. ‘itakura-saito’) 𝛽, the input
matrix cannot contain zero values.

The ‘cd’ solver can only optimize the Frobenius norm. Due to the underlying non-convexity of NMF, the different
solvers may converge to different minima, even when optimizing the same distance function.

NMF is best used with the fit_transform method, which returns the matrix W. The matrix H is stored into the
fitted model in the components_ attribute; the method transform will decompose a new matrix X_new based on
these stored components:

>>> import numpy as np
>>> X = np.array([[1, 1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]])
>>> from sklearn.decomposition import NMF

(continues on next page)

6 “Algorithms for nonnegative matrix factorization with the beta-divergence” C. Fevotte, J. Idier, 2011
5 “Fast local algorithms for large scale nonnegative matrix and tensor factorizations.” A. Cichocki, A. Phan, 2009

452 Chapter 4. User Guide

https://arxiv.org/pdf/1010.1763.pdf
http://www.bsp.brain.riken.jp/publications/2009/Cichocki-Phan-IEICE_col.pdf

scikit-learn user guide, Release 0.23.2

(continued from previous page)

>>> model = NMF(n_components=2, init='random', random_state=0)
>>> W = model.fit_transform(X)
>>> H = model.components_
>>> X_new = np.array([[1, 0], [1, 6.1], [1, 0], [1, 4], [3.2, 1], [0, 4]])
>>> W_new = model.transform(X_new)

Examples:

• Faces dataset decompositions

• Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet Allocation

• Beta-divergence loss functions

References:

Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation is a generative probabilistic model for collections of discrete dataset such as text corpora.
It is also a topic model that is used for discovering abstract topics from a collection of documents.

The graphical model of LDA is a three-level generative model:

4.2. Unsupervised learning 453

../auto_examples/decomposition/plot_beta_divergence.html

scikit-learn user guide, Release 0.23.2

Note on notations presented in the graphical model above, which can be found in Hoffman et al. (2013):

• The corpus is a collection of 𝐷 documents.

• A document is a sequence of 𝑁 words.

• There are 𝐾 topics in the corpus.

• The boxes represent repeated sampling.

In the graphical model, each node is a random variable and has a role in the generative process. A shaded node
indicates an observed variable and an unshaded node indicates a hidden (latent) variable. In this case, words in the
corpus are the only data that we observe. The latent variables determine the random mixture of topics in the corpus
and the distribution of words in the documents. The goal of LDA is to use the observed words to infer the hidden topic
structure.

When modeling text corpora, the model assumes the following generative process for a corpus with 𝐷 documents and
𝐾 topics, with 𝐾 corresponding to n_components in the API:

1. For each topic 𝑘 ∈ 𝐾, draw 𝛽𝑘 ∼ Dirichlet(𝜂). This provides a distribution over the words, i.e. the
probability of a word appearing in topic 𝑘. 𝜂 corresponds to topic_word_prior.

2. For each document 𝑑 ∈ 𝐷, draw the topic proportions 𝜃𝑑 ∼ Dirichlet(𝛼). 𝛼 corresponds to
doc_topic_prior.

3. For each word 𝑖 in document 𝑑:

a. Draw the topic assignment 𝑧𝑑𝑖 ∼ Multinomial(𝜃𝑑)

b. Draw the observed word 𝑤𝑖𝑗 ∼ Multinomial(𝛽𝑧𝑑𝑖)

For parameter estimation, the posterior distribution is:

𝑝(𝑧, 𝜃, 𝛽|𝑤,𝛼, 𝜂) =
𝑝(𝑧, 𝜃, 𝛽|𝛼, 𝜂)

𝑝(𝑤|𝛼, 𝜂)

Since the posterior is intractable, variational Bayesian method uses a simpler distribution 𝑞(𝑧, 𝜃, 𝛽|𝜆, 𝜑, 𝛾) to approx-
imate it, and those variational parameters 𝜆, 𝜑, 𝛾 are optimized to maximize the Evidence Lower Bound (ELBO):

log 𝑃 (𝑤|𝛼, 𝜂) ≥ 𝐿(𝑤, 𝜑, 𝛾, 𝜆)
△
= 𝐸𝑞[log 𝑝(𝑤, 𝑧, 𝜃, 𝛽|𝛼, 𝜂)]− 𝐸𝑞[log 𝑞(𝑧, 𝜃, 𝛽)]

Maximizing ELBO is equivalent to minimizing the Kullback-Leibler(KL) divergence between 𝑞(𝑧, 𝜃, 𝛽) and the true
posterior 𝑝(𝑧, 𝜃, 𝛽|𝑤,𝛼, 𝜂).

LatentDirichletAllocation implements the online variational Bayes algorithm and supports both online and
batch update methods. While the batch method updates variational variables after each full pass through the data, the
online method updates variational variables from mini-batch data points.

Note: Although the online method is guaranteed to converge to a local optimum point, the quality of the optimum
point and the speed of convergence may depend on mini-batch size and attributes related to learning rate setting.

454 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

When LatentDirichletAllocation is applied on a “document-term” matrix, the matrix will be decomposed
into a “topic-term” matrix and a “document-topic” matrix. While “topic-term” matrix is stored as components_ in
the model, “document-topic” matrix can be calculated from transform method.

LatentDirichletAllocation also implements partial_fitmethod. This is used when data can be fetched
sequentially.

Examples:

• Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet Allocation

References:

• “Latent Dirichlet Allocation” D. Blei, A. Ng, M. Jordan, 2003

• “Online Learning for Latent Dirichlet Allocation” M. Hoffman, D. Blei, F. Bach, 2010

• “Stochastic Variational Inference” M. Hoffman, D. Blei, C. Wang, J. Paisley, 2013

See also Dimensionality reduction for dimensionality reduction with Neighborhood Components Analysis.

4.2.6 Covariance estimation

Many statistical problems require the estimation of a population’s covariance matrix, which can be seen as an estima-
tion of data set scatter plot shape. Most of the time, such an estimation has to be done on a sample whose properties
(size, structure, homogeneity) have a large influence on the estimation’s quality. The sklearn.covariance pack-
age provides tools for accurately estimating a population’s covariance matrix under various settings.

We assume that the observations are independent and identically distributed (i.i.d.).

Empirical covariance

The covariance matrix of a data set is known to be well approximated by the classical maximum likelihood estimator
(or “empirical covariance”), provided the number of observations is large enough compared to the number of features
(the variables describing the observations). More precisely, the Maximum Likelihood Estimator of a sample is an
unbiased estimator of the corresponding population’s covariance matrix.

The empirical covariance matrix of a sample can be computed using the empirical_covariance function of the
package, or by fitting an EmpiricalCovariance object to the data sample with the EmpiricalCovariance.
fit method. Be careful that results depend on whether the data are centered, so one may want to use the
assume_centered parameter accurately. More precisely, if assume_centered=False, then the test set
is supposed to have the same mean vector as the training set. If not, both should be centered by the user, and
assume_centered=True should be used.

Examples:

• See Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood for an example on how to fit an
EmpiricalCovariance object to data.

4.2. Unsupervised learning 455

http://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf
https://papers.nips.cc/paper/3902-online-learning-for-latent-dirichlet-allocation.pdf
http://www.columbia.edu/~jwp2128/Papers/HoffmanBleiWangPaisley2013.pdf

scikit-learn user guide, Release 0.23.2

Shrunk Covariance

Basic shrinkage

Despite being an unbiased estimator of the covariance matrix, the Maximum Likelihood Estimator is not a good esti-
mator of the eigenvalues of the covariance matrix, so the precision matrix obtained from its inversion is not accurate.
Sometimes, it even occurs that the empirical covariance matrix cannot be inverted for numerical reasons. To avoid
such an inversion problem, a transformation of the empirical covariance matrix has been introduced: the shrinkage.

In scikit-learn, this transformation (with a user-defined shrinkage coefficient) can be directly applied to a pre-computed
covariance with the shrunk_covariance method. Also, a shrunk estimator of the covariance can be fitted to data
with a ShrunkCovariance object and its ShrunkCovariance.fit method. Again, results depend on whether
the data are centered, so one may want to use the assume_centered parameter accurately.

Mathematically, this shrinkage consists in reducing the ratio between the smallest and the largest eigenvalues of the
empirical covariance matrix. It can be done by simply shifting every eigenvalue according to a given offset, which is
equivalent of finding the l2-penalized Maximum Likelihood Estimator of the covariance matrix. In practice, shrinkage
boils down to a simple a convex transformation : Σshrunk = (1− 𝛼)Σ̂ + 𝛼TrΣ̂

𝑝 Id.

Choosing the amount of shrinkage, 𝛼 amounts to setting a bias/variance trade-off, and is discussed below.

Examples:

• See Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood for an example on how to fit a
ShrunkCovariance object to data.

Ledoit-Wolf shrinkage

In their 2004 paper1, O. Ledoit and M. Wolf propose a formula to compute the optimal shrinkage coefficient 𝛼 that
minimizes the Mean Squared Error between the estimated and the real covariance matrix.

The Ledoit-Wolf estimator of the covariance matrix can be computed on a sample with the ledoit_wolf function
of the sklearn.covariance package, or it can be otherwise obtained by fitting a LedoitWolf object to the
same sample.

Note: Case when population covariance matrix is isotropic

It is important to note that when the number of samples is much larger than the number of features, one would expect
that no shrinkage would be necessary. The intuition behind this is that if the population covariance is full rank, when
the number of sample grows, the sample covariance will also become positive definite. As a result, no shrinkage would
necessary and the method should automatically do this.

This, however, is not the case in the Ledoit-Wolf procedure when the population covariance happens to be a multiple of
the identity matrix. In this case, the Ledoit-Wolf shrinkage estimate approaches 1 as the number of samples increases.
This indicates that the optimal estimate of the covariance matrix in the Ledoit-Wolf sense is multiple of the identity.
Since the population covariance is already a multiple of the identity matrix, the Ledoit-Wolf solution is indeed a
reasonable estimate.

1 O. Ledoit and M. Wolf, “A Well-Conditioned Estimator for Large-Dimensional Covariance Matrices”, Journal of Multivariate Analysis, Vol-
ume 88, Issue 2, February 2004, pages 365-411.

456 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

Examples:

• See Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood for an example on how to fit a
LedoitWolf object to data and for visualizing the performances of the Ledoit-Wolf estimator in terms of
likelihood.

References:

Oracle Approximating Shrinkage

Under the assumption that the data are Gaussian distributed, Chen et al.2 derived a formula aimed at choosing a
shrinkage coefficient that yields a smaller Mean Squared Error than the one given by Ledoit and Wolf’s formula. The
resulting estimator is known as the Oracle Shrinkage Approximating estimator of the covariance.

The OAS estimator of the covariance matrix can be computed on a sample with the oas function of the sklearn.
covariance package, or it can be otherwise obtained by fitting an OAS object to the same sample.

Fig. 8: Bias-variance trade-off when setting the shrinkage: comparing the choices of Ledoit-Wolf and OAS estimators

References:

Examples:

• See Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood for an example on how to fit an
OAS object to data.

2 Chen et al., “Shrinkage Algorithms for MMSE Covariance Estimation”, IEEE Trans. on Sign. Proc., Volume 58, Issue 10, October 2010.

4.2. Unsupervised learning 457

../auto_examples/covariance/plot_covariance_estimation.html

scikit-learn user guide, Release 0.23.2

• See Ledoit-Wolf vs OAS estimation to visualize the Mean Squared Error difference between a LedoitWolf
and an OAS estimator of the covariance.

Sparse inverse covariance

The matrix inverse of the covariance matrix, often called the precision matrix, is proportional to the partial correlation
matrix. It gives the partial independence relationship. In other words, if two features are independent conditionally on
the others, the corresponding coefficient in the precision matrix will be zero. This is why it makes sense to estimate
a sparse precision matrix: the estimation of the covariance matrix is better conditioned by learning independence
relations from the data. This is known as covariance selection.

In the small-samples situation, in which n_samples is on the order of n_features or smaller, sparse inverse
covariance estimators tend to work better than shrunk covariance estimators. However, in the opposite situation, or for
very correlated data, they can be numerically unstable. In addition, unlike shrinkage estimators, sparse estimators are
able to recover off-diagonal structure.

The GraphicalLasso estimator uses an l1 penalty to enforce sparsity on the precision matrix: the higher its
alpha parameter, the more sparse the precision matrix. The corresponding GraphicalLassoCV object uses
cross-validation to automatically set the alpha parameter.

Note: Structure recovery

Recovering a graphical structure from correlations in the data is a challenging thing. If you are interested in such
recovery keep in mind that:

• Recovery is easier from a correlation matrix than a covariance matrix: standardize your observations before
running GraphicalLasso

• If the underlying graph has nodes with much more connections than the average node, the algorithm will miss
some of these connections.

458 Chapter 4. User Guide

../auto_examples/covariance/plot_lw_vs_oas.html

scikit-learn user guide, Release 0.23.2

Fig. 9: A comparison of maximum likelihood, shrinkage and sparse estimates of the covariance and precision matrix
in the very small samples settings.

• If your number of observations is not large compared to the number of edges in your underlying graph, you will
not recover it.

• Even if you are in favorable recovery conditions, the alpha parameter chosen by cross-validation (e.g. using the
GraphicalLassoCV object) will lead to selecting too many edges. However, the relevant edges will have
heavier weights than the irrelevant ones.

The mathematical formulation is the following:

𝐾̂ = argmin𝐾

(︀
tr𝑆𝐾 − logdet𝐾 + 𝛼‖𝐾‖1

)︀
Where 𝐾 is the precision matrix to be estimated, and 𝑆 is the sample covariance matrix. ‖𝐾‖1 is the sum of the abso-
lute values of off-diagonal coefficients of 𝐾. The algorithm employed to solve this problem is the GLasso algorithm,
from the Friedman 2008 Biostatistics paper. It is the same algorithm as in the R glasso package.

Examples:

• Sparse inverse covariance estimation: example on synthetic data showing some recovery of a structure, and
comparing to other covariance estimators.

• Visualizing the stock market structure: example on real stock market data, finding which symbols are most
linked.

References:

• Friedman et al, “Sparse inverse covariance estimation with the graphical lasso”, Biostatistics 9, pp 432, 2008

4.2. Unsupervised learning 459

../auto_examples/covariance/plot_sparse_cov.html
https://biostatistics.oxfordjournals.org/content/9/3/432.short

scikit-learn user guide, Release 0.23.2

Robust Covariance Estimation

Real data sets are often subject to measurement or recording errors. Regular but uncommon observations may also
appear for a variety of reasons. Observations which are very uncommon are called outliers. The empirical covariance
estimator and the shrunk covariance estimators presented above are very sensitive to the presence of outliers in the data.
Therefore, one should use robust covariance estimators to estimate the covariance of its real data sets. Alternatively,
robust covariance estimators can be used to perform outlier detection and discard/downweight some observations
according to further processing of the data.

The sklearn.covariance package implements a robust estimator of covariance, the Minimum Covariance De-
terminant3.

Minimum Covariance Determinant

The Minimum Covariance Determinant estimator is a robust estimator of a data set’s covariance introduced by P.J.
Rousseeuw in3. The idea is to find a given proportion (h) of “good” observations which are not outliers and compute
their empirical covariance matrix. This empirical covariance matrix is then rescaled to compensate the performed
selection of observations (“consistency step”). Having computed the Minimum Covariance Determinant estimator,
one can give weights to observations according to their Mahalanobis distance, leading to a reweighted estimate of the
covariance matrix of the data set (“reweighting step”).

Rousseeuw and Van Driessen4 developed the FastMCD algorithm in order to compute the Minimum Covariance
Determinant. This algorithm is used in scikit-learn when fitting an MCD object to data. The FastMCD algorithm also
computes a robust estimate of the data set location at the same time.

Raw estimates can be accessed as raw_location_ and raw_covariance_ attributes of a MinCovDet robust
covariance estimator object.

References:

Examples:

• See Robust vs Empirical covariance estimate for an example on how to fit a MinCovDet object to data and
see how the estimate remains accurate despite the presence of outliers.

• See Robust covariance estimation and Mahalanobis distances relevance to visualize the difference between
EmpiricalCovariance and MinCovDet covariance estimators in terms of Mahalanobis distance (so
we get a better estimate of the precision matrix too).

3 P. J. Rousseeuw. Least median of squares regression. J. Am Stat Ass, 79:871, 1984.
4 A Fast Algorithm for the Minimum Covariance Determinant Estimator, 1999, American Statistical Association and the American Society for

Quality, TECHNOMETRICS.

460 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

Influence of outliers on location and covariance
estimates

Separating inliers from outliers using a Mahalanobis
distance

4.2.7 Novelty and Outlier Detection

Many applications require being able to decide whether a new observation belongs to the same distribution as existing
observations (it is an inlier), or should be considered as different (it is an outlier). Often, this ability is used to clean
real data sets. Two important distinctions must be made:

outlier detection The training data contains outliers which are defined as observations that are far from
the others. Outlier detection estimators thus try to fit the regions where the training data is the most
concentrated, ignoring the deviant observations.

novelty detection The training data is not polluted by outliers and we are interested in detecting whether
a new observation is an outlier. In this context an outlier is also called a novelty.

Outlier detection and novelty detection are both used for anomaly detection, where one is interested in detecting
abnormal or unusual observations. Outlier detection is then also known as unsupervised anomaly detection and novelty
detection as semi-supervised anomaly detection. In the context of outlier detection, the outliers/anomalies cannot form
a dense cluster as available estimators assume that the outliers/anomalies are located in low density regions. On the
contrary, in the context of novelty detection, novelties/anomalies can form a dense cluster as long as they are in a low
density region of the training data, considered as normal in this context.

The scikit-learn project provides a set of machine learning tools that can be used both for novelty or outlier detection.
This strategy is implemented with objects learning in an unsupervised way from the data:

estimator.fit(X_train)

new observations can then be sorted as inliers or outliers with a predict method:

estimator.predict(X_test)

Inliers are labeled 1, while outliers are labeled -1. The predict method makes use of a threshold on the raw scoring
function computed by the estimator. This scoring function is accessible through the score_samples method, while
the threshold can be controlled by the contamination parameter.

The decision_function method is also defined from the scoring function, in such a way that negative values are
outliers and non-negative ones are inliers:

estimator.decision_function(X_test)

4.2. Unsupervised learning 461

../auto_examples/covariance/plot_robust_vs_empirical_covariance.html
../auto_examples/covariance/plot_mahalanobis_distances.html

scikit-learn user guide, Release 0.23.2

Note that neighbors.LocalOutlierFactor does not support predict, decision_function and
score_samples methods by default but only a fit_predict method, as this estimator was originally meant
to be applied for outlier detection. The scores of abnormality of the training samples are accessible through the
negative_outlier_factor_ attribute.

If you really want to use neighbors.LocalOutlierFactor for novelty detection, i.e. predict labels or compute
the score of abnormality of new unseen data, you can instantiate the estimator with the novelty parameter set to
True before fitting the estimator. In this case, fit_predict is not available.

Warning: Novelty detection with Local Outlier Factor

When novelty is set to True be aware that you must only use predict, decision_function
and score_samples on new unseen data and not on the training samples as this would lead to
wrong results. The scores of abnormality of the training samples are always accessible through the
negative_outlier_factor_ attribute.

The behavior of neighbors.LocalOutlierFactor is summarized in the following table.

Method Outlier detection Novelty detection
fit_predict OK Not available
predict Not available Use only on new data
decision_function Not available Use only on new data
score_samples Use negative_outlier_factor_ Use only on new data

Overview of outlier detection methods

A comparison of the outlier detection algorithms in scikit-learn. Local Outlier Factor (LOF) does not show a decision
boundary in black as it has no predict method to be applied on new data when it is used for outlier detection.

ensemble.IsolationForest and neighbors.LocalOutlierFactor perform reasonably well on the
data sets considered here. The svm.OneClassSVM is known to be sensitive to outliers and thus does not perform
very well for outlier detection. Finally, covariance.EllipticEnvelope assumes the data is Gaussian and
learns an ellipse. For more details on the different estimators refer to the example Comparing anomaly detection
algorithms for outlier detection on toy datasets and the sections hereunder.

Examples:

• See Comparing anomaly detection algorithms for outlier detection on toy datasets for a com-
parison of the svm.OneClassSVM , the ensemble.IsolationForest, the neighbors.
LocalOutlierFactor and covariance.EllipticEnvelope.

Novelty Detection

Consider a data set of 𝑛 observations from the same distribution described by 𝑝 features. Consider now that we add one
more observation to that data set. Is the new observation so different from the others that we can doubt it is regular?
(i.e. does it come from the same distribution?) Or on the contrary, is it so similar to the other that we cannot distinguish
it from the original observations? This is the question addressed by the novelty detection tools and methods.

In general, it is about to learn a rough, close frontier delimiting the contour of the initial observations distribution,
plotted in embedding 𝑝-dimensional space. Then, if further observations lay within the frontier-delimited subspace,

462 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

4.2. Unsupervised learning 463

../auto_examples/miscellaneous/plot_anomaly_comparison.html

scikit-learn user guide, Release 0.23.2

they are considered as coming from the same population than the initial observations. Otherwise, if they lay outside
the frontier, we can say that they are abnormal with a given confidence in our assessment.

The One-Class SVM has been introduced by Schölkopf et al. for that purpose and implemented in the Support Vector
Machines module in the svm.OneClassSVM object. It requires the choice of a kernel and a scalar parameter to
define a frontier. The RBF kernel is usually chosen although there exists no exact formula or algorithm to set its
bandwidth parameter. This is the default in the scikit-learn implementation. The 𝜈 parameter, also known as the
margin of the One-Class SVM, corresponds to the probability of finding a new, but regular, observation outside the
frontier.

References:

• Estimating the support of a high-dimensional distribution Schölkopf, Bernhard, et al. Neural computation
13.7 (2001): 1443-1471.

Examples:

• See One-class SVM with non-linear kernel (RBF) for visualizing the frontier learned around some data by a
svm.OneClassSVM object.

• Species distribution modeling

Outlier Detection

Outlier detection is similar to novelty detection in the sense that the goal is to separate a core of regular observa-
tions from some polluting ones, called outliers. Yet, in the case of outlier detection, we don’t have a clean data set
representing the population of regular observations that can be used to train any tool.

464 Chapter 4. User Guide

https://dl.acm.org/citation.cfm?id=1119749
../auto_examples/svm/plot_oneclass.html

scikit-learn user guide, Release 0.23.2

Fitting an elliptic envelope

One common way of performing outlier detection is to assume that the regular data come from a known distribution
(e.g. data are Gaussian distributed). From this assumption, we generally try to define the “shape” of the data, and can
define outlying observations as observations which stand far enough from the fit shape.

The scikit-learn provides an object covariance.EllipticEnvelope that fits a robust covariance estimate to
the data, and thus fits an ellipse to the central data points, ignoring points outside the central mode.

For instance, assuming that the inlier data are Gaussian distributed, it will estimate the inlier location and covariance
in a robust way (i.e. without being influenced by outliers). The Mahalanobis distances obtained from this estimate is
used to derive a measure of outlyingness. This strategy is illustrated below.

Examples:

• See Robust covariance estimation and Mahalanobis distances relevance for an illustration of the dif-
ference between using a standard (covariance.EmpiricalCovariance) or a robust estimate
(covariance.MinCovDet) of location and covariance to assess the degree of outlyingness of an ob-
servation.

References:

• Rousseeuw, P.J., Van Driessen, K. “A fast algorithm for the minimum covariance determinant estimator”
Technometrics 41(3), 212 (1999)

4.2. Unsupervised learning 465

../auto_examples/covariance/plot_mahalanobis_distances.html

scikit-learn user guide, Release 0.23.2

Isolation Forest

One efficient way of performing outlier detection in high-dimensional datasets is to use random forests. The
ensemble.IsolationForest ‘isolates’ observations by randomly selecting a feature and then randomly se-
lecting a split value between the maximum and minimum values of the selected feature.

Since recursive partitioning can be represented by a tree structure, the number of splittings required to isolate a sample
is equivalent to the path length from the root node to the terminating node.

This path length, averaged over a forest of such random trees, is a measure of normality and our decision function.

Random partitioning produces noticeably shorter paths for anomalies. Hence, when a forest of random trees collec-
tively produce shorter path lengths for particular samples, they are highly likely to be anomalies.

The implementation of ensemble.IsolationForest is based on an ensemble of tree.
ExtraTreeRegressor. Following Isolation Forest original paper, the maximum depth of each tree is set
to ⌈log2(𝑛)⌉ where 𝑛 is the number of samples used to build the tree (see (Liu et al., 2008) for more details).

This algorithm is illustrated below.

The ensemble.IsolationForest supports warm_start=True which allows you to add more trees to an
already fitted model:

>>> from sklearn.ensemble import IsolationForest
>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [0, 0], [-20, 50], [3, 5]])
>>> clf = IsolationForest(n_estimators=10, warm_start=True)
>>> clf.fit(X) # fit 10 trees
>>> clf.set_params(n_estimators=20) # add 10 more trees
>>> clf.fit(X) # fit the added trees

466 Chapter 4. User Guide

../auto_examples/ensemble/plot_isolation_forest.html

scikit-learn user guide, Release 0.23.2

Examples:

• See IsolationForest example for an illustration of the use of IsolationForest.

• See Comparing anomaly detection algorithms for outlier detection on toy datasets for a comparison of
ensemble.IsolationForest with neighbors.LocalOutlierFactor, svm.OneClassSVM
(tuned to perform like an outlier detection method) and a covariance-based outlier detection with
covariance.EllipticEnvelope.

References:

• Liu, Fei Tony, Ting, Kai Ming and Zhou, Zhi-Hua. “Isolation forest.” Data Mining, 2008. ICDM’08. Eighth
IEEE International Conference on.

Local Outlier Factor

Another efficient way to perform outlier detection on moderately high dimensional datasets is to use the Local Outlier
Factor (LOF) algorithm.

The neighbors.LocalOutlierFactor (LOF) algorithm computes a score (called local outlier factor) reflect-
ing the degree of abnormality of the observations. It measures the local density deviation of a given data point with
respect to its neighbors. The idea is to detect the samples that have a substantially lower density than their neighbors.

In practice the local density is obtained from the k-nearest neighbors. The LOF score of an observation is equal to the
ratio of the average local density of his k-nearest neighbors, and its own local density: a normal instance is expected
to have a local density similar to that of its neighbors, while abnormal data are expected to have much smaller local
density.

The number k of neighbors considered, (alias parameter n_neighbors) is typically chosen 1) greater than the minimum
number of objects a cluster has to contain, so that other objects can be local outliers relative to this cluster, and 2)
smaller than the maximum number of close by objects that can potentially be local outliers. In practice, such informa-
tions are generally not available, and taking n_neighbors=20 appears to work well in general. When the proportion of
outliers is high (i.e. greater than 10 %, as in the example below), n_neighbors should be greater (n_neighbors=35 in
the example below).

The strength of the LOF algorithm is that it takes both local and global properties of datasets into consideration: it can
perform well even in datasets where abnormal samples have different underlying densities. The question is not, how
isolated the sample is, but how isolated it is with respect to the surrounding neighborhood.

When applying LOF for outlier detection, there are no predict, decision_function and score_samples
methods but only a fit_predict method. The scores of abnormality of the training samples are accessi-
ble through the negative_outlier_factor_ attribute. Note that predict, decision_function and
score_samples can be used on new unseen data when LOF is applied for novelty detection, i.e. when the
novelty parameter is set to True. See Novelty detection with Local Outlier Factor.

This strategy is illustrated below.

Examples:

• See Outlier detection with Local Outlier Factor (LOF) for an illustration of the use of neighbors.
LocalOutlierFactor.

4.2. Unsupervised learning 467

scikit-learn user guide, Release 0.23.2

• See Comparing anomaly detection algorithms for outlier detection on toy datasets for a comparison with
other anomaly detection methods.

References:

• Breunig, Kriegel, Ng, and Sander (2000) LOF: identifying density-based local outliers. Proc. ACM SIGMOD

Novelty detection with Local Outlier Factor

To use neighbors.LocalOutlierFactor for novelty detection, i.e. predict labels or compute the score of
abnormality of new unseen data, you need to instantiate the estimator with the novelty parameter set to True
before fitting the estimator:

lof = LocalOutlierFactor(novelty=True)
lof.fit(X_train)

Note that fit_predict is not available in this case.

Warning: Novelty detection with Local Outlier Factor‘

When novelty is set to True be aware that you must only use predict, decision_function
and score_samples on new unseen data and not on the training samples as this would lead to
wrong results. The scores of abnormality of the training samples are always accessible through the
negative_outlier_factor_ attribute.

Novelty detection with Local Outlier Factor is illustrated below.

468 Chapter 4. User Guide

../auto_examples/neighbors/sphx_glr_plot_lof_outlier_detection.html
http://www.dbs.ifi.lmu.de/Publikationen/Papers/LOF.pdf

scikit-learn user guide, Release 0.23.2

4.2.8 Density Estimation

Density estimation walks the line between unsupervised learning, feature engineering, and data modeling. Some of
the most popular and useful density estimation techniques are mixture models such as Gaussian Mixtures (sklearn.
mixture.GaussianMixture), and neighbor-based approaches such as the kernel density estimate (sklearn.
neighbors.KernelDensity). Gaussian Mixtures are discussed more fully in the context of clustering, because
the technique is also useful as an unsupervised clustering scheme.

Density estimation is a very simple concept, and most people are already familiar with one common density estimation
technique: the histogram.

Density Estimation: Histograms

A histogram is a simple visualization of data where bins are defined, and the number of data points within each bin is
tallied. An example of a histogram can be seen in the upper-left panel of the following figure:

4.2. Unsupervised learning 469

../auto_examples/neighbors/sphx_glr_plot_lof_novelty_detection.html

scikit-learn user guide, Release 0.23.2

A major problem with histograms, however, is that the choice of binning can have a disproportionate effect on the
resulting visualization. Consider the upper-right panel of the above figure. It shows a histogram over the same data,
with the bins shifted right. The results of the two visualizations look entirely different, and might lead to different
interpretations of the data.

Intuitively, one can also think of a histogram as a stack of blocks, one block per point. By stacking the blocks in the
appropriate grid space, we recover the histogram. But what if, instead of stacking the blocks on a regular grid, we
center each block on the point it represents, and sum the total height at each location? This idea leads to the lower-left
visualization. It is perhaps not as clean as a histogram, but the fact that the data drive the block locations mean that it
is a much better representation of the underlying data.

This visualization is an example of a kernel density estimation, in this case with a top-hat kernel (i.e. a square block
at each point). We can recover a smoother distribution by using a smoother kernel. The bottom-right plot shows a
Gaussian kernel density estimate, in which each point contributes a Gaussian curve to the total. The result is a smooth
density estimate which is derived from the data, and functions as a powerful non-parametric model of the distribution
of points.

Kernel Density Estimation

Kernel density estimation in scikit-learn is implemented in the sklearn.neighbors.KernelDensity esti-
mator, which uses the Ball Tree or KD Tree for efficient queries (see Nearest Neighbors for a discussion of these).
Though the above example uses a 1D data set for simplicity, kernel density estimation can be performed in any number
of dimensions, though in practice the curse of dimensionality causes its performance to degrade in high dimensions.

In the following figure, 100 points are drawn from a bimodal distribution, and the kernel density estimates are shown
for three choices of kernels:

470 Chapter 4. User Guide

../auto_examples/neighbors/plot_kde_1d.html

scikit-learn user guide, Release 0.23.2

It’s clear how the kernel shape affects the smoothness of the resulting distribution. The scikit-learn kernel density
estimator can be used as follows:

>>> from sklearn.neighbors import KernelDensity
>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> kde = KernelDensity(kernel='gaussian', bandwidth=0.2).fit(X)
>>> kde.score_samples(X)
array([-0.41075698, -0.41075698, -0.41076071, -0.41075698, -0.41075698,

-0.41076071])

Here we have used kernel='gaussian', as seen above. Mathematically, a kernel is a positive function 𝐾(𝑥;ℎ)
which is controlled by the bandwidth parameter ℎ. Given this kernel form, the density estimate at a point 𝑦 within a
group of points 𝑥𝑖; 𝑖 = 1 · · ·𝑁 is given by:

𝜌𝐾(𝑦) =

𝑁∑︁
𝑖=1

𝐾(𝑦 − 𝑥𝑖;ℎ)

The bandwidth here acts as a smoothing parameter, controlling the tradeoff between bias and variance in the result. A
large bandwidth leads to a very smooth (i.e. high-bias) density distribution. A small bandwidth leads to an unsmooth
(i.e. high-variance) density distribution.

sklearn.neighbors.KernelDensity implements several common kernel forms, which are shown in the
following figure:

4.2. Unsupervised learning 471

../auto_examples/neighbors/plot_kde_1d.html

scikit-learn user guide, Release 0.23.2

The form of these kernels is as follows:

• Gaussian kernel (kernel = 'gaussian')

𝐾(𝑥;ℎ) ∝ exp(− 𝑥2

2ℎ2)

• Tophat kernel (kernel = 'tophat')

𝐾(𝑥;ℎ) ∝ 1 if 𝑥 < ℎ

• Epanechnikov kernel (kernel = 'epanechnikov')

𝐾(𝑥;ℎ) ∝ 1− 𝑥2

ℎ2

• Exponential kernel (kernel = 'exponential')

𝐾(𝑥;ℎ) ∝ exp(−𝑥/ℎ)

• Linear kernel (kernel = 'linear')

𝐾(𝑥;ℎ) ∝ 1− 𝑥/ℎ if 𝑥 < ℎ

• Cosine kernel (kernel = 'cosine')

𝐾(𝑥;ℎ) ∝ cos(𝜋𝑥
2ℎ) if 𝑥 < ℎ

The kernel density estimator can be used with any of the valid distance metrics (see sklearn.neighbors.
DistanceMetric for a list of available metrics), though the results are properly normalized only for the Euclidean
metric. One particularly useful metric is the Haversine distance which measures the angular distance between points
on a sphere. Here is an example of using a kernel density estimate for a visualization of geospatial data, in this case
the distribution of observations of two different species on the South American continent:

472 Chapter 4. User Guide

../auto_examples/neighbors/plot_kde_1d.html
https://en.wikipedia.org/wiki/Haversine_formula

scikit-learn user guide, Release 0.23.2

One other useful application of kernel density estimation is to learn a non-parametric generative model of a dataset in
order to efficiently draw new samples from this generative model. Here is an example of using this process to create a
new set of hand-written digits, using a Gaussian kernel learned on a PCA projection of the data:

The “new” data consists of linear combinations of the input data, with weights probabilistically drawn given the KDE
model.

4.2. Unsupervised learning 473

../auto_examples/neighbors/plot_species_kde.html
../auto_examples/neighbors/plot_digits_kde_sampling.html

scikit-learn user guide, Release 0.23.2

Examples:

• Simple 1D Kernel Density Estimation: computation of simple kernel density estimates in one dimension.

• Kernel Density Estimation: an example of using Kernel Density estimation to learn a generative model of the
hand-written digits data, and drawing new samples from this model.

• Kernel Density Estimate of Species Distributions: an example of Kernel Density estimation using the Haver-
sine distance metric to visualize geospatial data

4.2.9 Neural network models (unsupervised)

Restricted Boltzmann machines

Restricted Boltzmann machines (RBM) are unsupervised nonlinear feature learners based on a probabilistic model.
The features extracted by an RBM or a hierarchy of RBMs often give good results when fed into a linear classifier
such as a linear SVM or a perceptron.

The model makes assumptions regarding the distribution of inputs. At the moment, scikit-learn only provides
BernoulliRBM , which assumes the inputs are either binary values or values between 0 and 1, each encoding the
probability that the specific feature would be turned on.

The RBM tries to maximize the likelihood of the data using a particular graphical model. The parameter learning
algorithm used (Stochastic Maximum Likelihood) prevents the representations from straying far from the input data,
which makes them capture interesting regularities, but makes the model less useful for small datasets, and usually not
useful for density estimation.

The method gained popularity for initializing deep neural networks with the weights of independent RBMs. This
method is known as unsupervised pre-training.

Examples:

• Restricted Boltzmann Machine features for digit classification

Graphical model and parametrization

The graphical model of an RBM is a fully-connected bipartite graph.

474 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

The nodes are random variables whose states depend on the state of the other nodes they are connected to. The model
is therefore parameterized by the weights of the connections, as well as one intercept (bias) term for each visible and
hidden unit, omitted from the image for simplicity.

The energy function measures the quality of a joint assignment:

𝐸(v,h) = −
∑︁
𝑖

∑︁
𝑗

𝑤𝑖𝑗𝑣𝑖ℎ𝑗 −
∑︁
𝑖

𝑏𝑖𝑣𝑖 −
∑︁
𝑗

𝑐𝑗ℎ𝑗

In the formula above, b and c are the intercept vectors for the visible and hidden layers, respectively. The joint

4.2. Unsupervised learning 475

../auto_examples/neural_networks/plot_rbm_logistic_classification.html

scikit-learn user guide, Release 0.23.2

probability of the model is defined in terms of the energy:

𝑃 (v,h) =
𝑒−𝐸(v,h)

𝑍

The word restricted refers to the bipartite structure of the model, which prohibits direct interaction between hidden
units, or between visible units. This means that the following conditional independencies are assumed:

ℎ𝑖⊥ℎ𝑗 |v
𝑣𝑖⊥𝑣𝑗 |h

The bipartite structure allows for the use of efficient block Gibbs sampling for inference.

Bernoulli Restricted Boltzmann machines

In the BernoulliRBM , all units are binary stochastic units. This means that the input data should either be binary, or
real-valued between 0 and 1 signifying the probability that the visible unit would turn on or off. This is a good model
for character recognition, where the interest is on which pixels are active and which aren’t. For images of natural
scenes it no longer fits because of background, depth and the tendency of neighbouring pixels to take the same values.

The conditional probability distribution of each unit is given by the logistic sigmoid activation function of the input it
receives:

𝑃 (𝑣𝑖 = 1|h) = 𝜎(
∑︁
𝑗

𝑤𝑖𝑗ℎ𝑗 + 𝑏𝑖)

𝑃 (ℎ𝑖 = 1|v) = 𝜎(
∑︁
𝑖

𝑤𝑖𝑗𝑣𝑖 + 𝑐𝑗)

where 𝜎 is the logistic sigmoid function:

𝜎(𝑥) =
1

1 + 𝑒−𝑥

Stochastic Maximum Likelihood learning

The training algorithm implemented in BernoulliRBM is known as Stochastic Maximum Likelihood (SML) or
Persistent Contrastive Divergence (PCD). Optimizing maximum likelihood directly is infeasible because of the form
of the data likelihood:

log𝑃 (𝑣) = log
∑︁
ℎ

𝑒−𝐸(𝑣,ℎ) − log
∑︁
𝑥,𝑦

𝑒−𝐸(𝑥,𝑦)

For simplicity the equation above is written for a single training example. The gradient with respect to the weights is
formed of two terms corresponding to the ones above. They are usually known as the positive gradient and the negative
gradient, because of their respective signs. In this implementation, the gradients are estimated over mini-batches of
samples.

In maximizing the log-likelihood, the positive gradient makes the model prefer hidden states that are compatible with
the observed training data. Because of the bipartite structure of RBMs, it can be computed efficiently. The negative
gradient, however, is intractable. Its goal is to lower the energy of joint states that the model prefers, therefore making
it stay true to the data. It can be approximated by Markov chain Monte Carlo using block Gibbs sampling by iteratively
sampling each of 𝑣 and ℎ given the other, until the chain mixes. Samples generated in this way are sometimes referred
as fantasy particles. This is inefficient and it is difficult to determine whether the Markov chain mixes.

The Contrastive Divergence method suggests to stop the chain after a small number of iterations, 𝑘, usually even 1.
This method is fast and has low variance, but the samples are far from the model distribution.

476 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

Persistent Contrastive Divergence addresses this. Instead of starting a new chain each time the gradient is needed, and
performing only one Gibbs sampling step, in PCD we keep a number of chains (fantasy particles) that are updated 𝑘
Gibbs steps after each weight update. This allows the particles to explore the space more thoroughly.

References:

• “A fast learning algorithm for deep belief nets” G. Hinton, S. Osindero, Y.-W. Teh, 2006

• “Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient” T. Tieleman,
2008

4.3 Model selection and evaluation

4.3.1 Cross-validation: evaluating estimator performance

Learning the parameters of a prediction function and testing it on the same data is a methodological mistake: a model
that would just repeat the labels of the samples that it has just seen would have a perfect score but would fail to predict
anything useful on yet-unseen data. This situation is called overfitting. To avoid it, it is common practice when
performing a (supervised) machine learning experiment to hold out part of the available data as a test set X_test,
y_test. Note that the word “experiment” is not intended to denote academic use only, because even in commercial
settings machine learning usually starts out experimentally. Here is a flowchart of typical cross validation workflow in
model training. The best parameters can be determined by grid search techniques.

In scikit-learn a random split into training and test sets can be quickly computed with the train_test_split
helper function. Let’s load the iris data set to fit a linear support vector machine on it:

>>> import numpy as np
>>> from sklearn.model_selection import train_test_split
>>> from sklearn import datasets
>>> from sklearn import svm

>>> X, y = datasets.load_iris(return_X_y=True)
>>> X.shape, y.shape
((150, 4), (150,))

We can now quickly sample a training set while holding out 40% of the data for testing (evaluating) our classifier:

4.3. Model selection and evaluation 477

https://www.cs.toronto.edu/~hinton/absps/fastnc.pdf
https://www.cs.toronto.edu/~tijmen/pcd/pcd.pdf

scikit-learn user guide, Release 0.23.2

>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, test_size=0.4, random_state=0)

>>> X_train.shape, y_train.shape
((90, 4), (90,))
>>> X_test.shape, y_test.shape
((60, 4), (60,))

>>> clf = svm.SVC(kernel='linear', C=1).fit(X_train, y_train)
>>> clf.score(X_test, y_test)
0.96...

When evaluating different settings (“hyperparameters”) for estimators, such as the C setting that must be manually set
for an SVM, there is still a risk of overfitting on the test set because the parameters can be tweaked until the estimator
performs optimally. This way, knowledge about the test set can “leak” into the model and evaluation metrics no longer
report on generalization performance. To solve this problem, yet another part of the dataset can be held out as a so-
called “validation set”: training proceeds on the training set, after which evaluation is done on the validation set, and
when the experiment seems to be successful, final evaluation can be done on the test set.

However, by partitioning the available data into three sets, we drastically reduce the number of samples which can be
used for learning the model, and the results can depend on a particular random choice for the pair of (train, validation)
sets.

A solution to this problem is a procedure called cross-validation (CV for short). A test set should still be held out for
final evaluation, but the validation set is no longer needed when doing CV. In the basic approach, called k-fold CV, the
training set is split into k smaller sets (other approaches are described below, but generally follow the same principles).
The following procedure is followed for each of the k “folds”:

• A model is trained using 𝑘 − 1 of the folds as training data;

• the resulting model is validated on the remaining part of the data (i.e., it is used as a test set to compute a
performance measure such as accuracy).

The performance measure reported by k-fold cross-validation is then the average of the values computed in the loop.
This approach can be computationally expensive, but does not waste too much data (as is the case when fixing an
arbitrary validation set), which is a major advantage in problems such as inverse inference where the number of
samples is very small.

478 Chapter 4. User Guide

https://en.wikipedia.org/wiki/Cross-validation_(statistics)

scikit-learn user guide, Release 0.23.2

Computing cross-validated metrics

The simplest way to use cross-validation is to call the cross_val_score helper function on the estimator and the
dataset.

The following example demonstrates how to estimate the accuracy of a linear kernel support vector machine on the
iris dataset by splitting the data, fitting a model and computing the score 5 consecutive times (with different splits each
time):

>>> from sklearn.model_selection import cross_val_score
>>> clf = svm.SVC(kernel='linear', C=1)
>>> scores = cross_val_score(clf, X, y, cv=5)
>>> scores
array([0.96..., 1. ..., 0.96..., 0.96..., 1.])

The mean score and the 95% confidence interval of the score estimate are hence given by:

>>> print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
Accuracy: 0.98 (+/- 0.03)

By default, the score computed at each CV iteration is the score method of the estimator. It is possible to change
this by using the scoring parameter:

>>> from sklearn import metrics
>>> scores = cross_val_score(
... clf, X, y, cv=5, scoring='f1_macro')
>>> scores
array([0.96..., 1. ..., 0.96..., 0.96..., 1.])

See The scoring parameter: defining model evaluation rules for details. In the case of the Iris dataset, the samples are
balanced across target classes hence the accuracy and the F1-score are almost equal.

When the cv argument is an integer, cross_val_score uses the KFold or StratifiedKFold strategies by
default, the latter being used if the estimator derives from ClassifierMixin.

It is also possible to use other cross validation strategies by passing a cross validation iterator instead, for instance:

>>> from sklearn.model_selection import ShuffleSplit
>>> n_samples = X.shape[0]
>>> cv = ShuffleSplit(n_splits=5, test_size=0.3, random_state=0)
>>> cross_val_score(clf, X, y, cv=cv)
array([0.977..., 0.977..., 1. ..., 0.955..., 1.])

Another option is to use an iterable yielding (train, test) splits as arrays of indices, for example:

>>> def custom_cv_2folds(X):
... n = X.shape[0]
... i = 1
... while i <= 2:
... idx = np.arange(n * (i - 1) / 2, n * i / 2, dtype=int)
... yield idx, idx
... i += 1
...
>>> custom_cv = custom_cv_2folds(X)
>>> cross_val_score(clf, X, y, cv=custom_cv)
array([1. , 0.973...])

4.3. Model selection and evaluation 479

scikit-learn user guide, Release 0.23.2

Data transformation with held out data

Just as it is important to test a predictor on data held-out from training, preprocessing (such as standardization,
feature selection, etc.) and similar data transformations similarly should be learnt from a training set and applied
to held-out data for prediction:

>>> from sklearn import preprocessing
>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, test_size=0.4, random_state=0)
>>> scaler = preprocessing.StandardScaler().fit(X_train)
>>> X_train_transformed = scaler.transform(X_train)
>>> clf = svm.SVC(C=1).fit(X_train_transformed, y_train)
>>> X_test_transformed = scaler.transform(X_test)
>>> clf.score(X_test_transformed, y_test)
0.9333...

A Pipeline makes it easier to compose estimators, providing this behavior under cross-validation:

>>> from sklearn.pipeline import make_pipeline
>>> clf = make_pipeline(preprocessing.StandardScaler(), svm.SVC(C=1))
>>> cross_val_score(clf, X, y, cv=cv)
array([0.977..., 0.933..., 0.955..., 0.933..., 0.977...])

See Pipelines and composite estimators.

The cross_validate function and multiple metric evaluation

The cross_validate function differs from cross_val_score in two ways:

• It allows specifying multiple metrics for evaluation.

• It returns a dict containing fit-times, score-times (and optionally training scores as well as fitted estimators) in
addition to the test score.

For single metric evaluation, where the scoring parameter is a string, callable or None, the keys will be -
['test_score', 'fit_time', 'score_time']

And for multiple metric evaluation, the return value is a dict with the following keys -
['test_<scorer1_name>', 'test_<scorer2_name>', 'test_<scorer...>', 'fit_time',
'score_time']

return_train_score is set to False by default to save computation time. To evaluate the scores on the training
set as well you need to be set to True.

You may also retain the estimator fitted on each training set by setting return_estimator=True.

The multiple metrics can be specified either as a list, tuple or set of predefined scorer names:

>>> from sklearn.model_selection import cross_validate
>>> from sklearn.metrics import recall_score
>>> scoring = ['precision_macro', 'recall_macro']
>>> clf = svm.SVC(kernel='linear', C=1, random_state=0)
>>> scores = cross_validate(clf, X, y, scoring=scoring)
>>> sorted(scores.keys())
['fit_time', 'score_time', 'test_precision_macro', 'test_recall_macro']
>>> scores['test_recall_macro']
array([0.96..., 1. ..., 0.96..., 0.96..., 1.])

Or as a dict mapping scorer name to a predefined or custom scoring function:

480 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

>>> from sklearn.metrics import make_scorer
>>> scoring = {'prec_macro': 'precision_macro',
... 'rec_macro': make_scorer(recall_score, average='macro')}
>>> scores = cross_validate(clf, X, y, scoring=scoring,
... cv=5, return_train_score=True)
>>> sorted(scores.keys())
['fit_time', 'score_time', 'test_prec_macro', 'test_rec_macro',
'train_prec_macro', 'train_rec_macro']

>>> scores['train_rec_macro']
array([0.97..., 0.97..., 0.99..., 0.98..., 0.98...])

Here is an example of cross_validate using a single metric:

>>> scores = cross_validate(clf, X, y,
... scoring='precision_macro', cv=5,
... return_estimator=True)
>>> sorted(scores.keys())
['estimator', 'fit_time', 'score_time', 'test_score']

Obtaining predictions by cross-validation

The function cross_val_predict has a similar interface to cross_val_score, but returns, for each element
in the input, the prediction that was obtained for that element when it was in the test set. Only cross-validation
strategies that assign all elements to a test set exactly once can be used (otherwise, an exception is raised).

Warning: Note on inappropriate usage of cross_val_predict

The result of cross_val_predict may be different from those obtained using cross_val_score as the
elements are grouped in different ways. The function cross_val_score takes an average over cross-validation
folds, whereas cross_val_predict simply returns the labels (or probabilities) from several distinct models
undistinguished. Thus, cross_val_predict is not an appropriate measure of generalisation error.

The function cross_val_predict is appropriate for:

• Visualization of predictions obtained from different models.

• Model blending: When predictions of one supervised estimator are used to train another estimator in
ensemble methods.

The available cross validation iterators are introduced in the following section.

Examples

• Receiver Operating Characteristic (ROC) with cross validation,

• Recursive feature elimination with cross-validation,

• Parameter estimation using grid search with cross-validation,

• Sample pipeline for text feature extraction and evaluation,

• Plotting Cross-Validated Predictions,

• Nested versus non-nested cross-validation.

4.3. Model selection and evaluation 481

scikit-learn user guide, Release 0.23.2

Cross validation iterators

The following sections list utilities to generate indices that can be used to generate dataset splits according to different
cross validation strategies.

Cross-validation iterators for i.i.d. data

Assuming that some data is Independent and Identically Distributed (i.i.d.) is making the assumption that all samples
stem from the same generative process and that the generative process is assumed to have no memory of past generated
samples.

The following cross-validators can be used in such cases.

NOTE

While i.i.d. data is a common assumption in machine learning theory, it rarely holds in practice. If one knows that the
samples have been generated using a time-dependent process, it is safer to use a time-series aware cross-validation
scheme. Similarly, if we know that the generative process has a group structure (samples collected from different
subjects, experiments, measurement devices), it is safer to use group-wise cross-validation.

K-fold

KFold divides all the samples in 𝑘 groups of samples, called folds (if 𝑘 = 𝑛, this is equivalent to the Leave One Out
strategy), of equal sizes (if possible). The prediction function is learned using 𝑘− 1 folds, and the fold left out is used
for test.

Example of 2-fold cross-validation on a dataset with 4 samples:

>>> import numpy as np
>>> from sklearn.model_selection import KFold

>>> X = ["a", "b", "c", "d"]
>>> kf = KFold(n_splits=2)
>>> for train, test in kf.split(X):
... print("%s %s" % (train, test))
[2 3] [0 1]
[0 1] [2 3]

Here is a visualization of the cross-validation behavior. Note that KFold is not affected by classes or groups.

482 Chapter 4. User Guide

../auto_examples/model_selection/plot_cv_indices.html

scikit-learn user guide, Release 0.23.2

Each fold is constituted by two arrays: the first one is related to the training set, and the second one to the test set.
Thus, one can create the training/test sets using numpy indexing:

>>> X = np.array([[0., 0.], [1., 1.], [-1., -1.], [2., 2.]])
>>> y = np.array([0, 1, 0, 1])
>>> X_train, X_test, y_train, y_test = X[train], X[test], y[train], y[test]

Repeated K-Fold

RepeatedKFold repeats K-Fold n times. It can be used when one requires to run KFold n times, producing
different splits in each repetition.

Example of 2-fold K-Fold repeated 2 times:

>>> import numpy as np
>>> from sklearn.model_selection import RepeatedKFold
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
>>> random_state = 12883823
>>> rkf = RepeatedKFold(n_splits=2, n_repeats=2, random_state=random_state)
>>> for train, test in rkf.split(X):
... print("%s %s" % (train, test))
...
[2 3] [0 1]
[0 1] [2 3]
[0 2] [1 3]
[1 3] [0 2]

Similarly, RepeatedStratifiedKFold repeats Stratified K-Fold n times with different randomization in each
repetition.

Leave One Out (LOO)

LeaveOneOut (or LOO) is a simple cross-validation. Each learning set is created by taking all the samples except
one, the test set being the sample left out. Thus, for 𝑛 samples, we have 𝑛 different training sets and 𝑛 different tests
set. This cross-validation procedure does not waste much data as only one sample is removed from the training set:

>>> from sklearn.model_selection import LeaveOneOut

>>> X = [1, 2, 3, 4]
>>> loo = LeaveOneOut()
>>> for train, test in loo.split(X):
... print("%s %s" % (train, test))
[1 2 3] [0]
[0 2 3] [1]
[0 1 3] [2]
[0 1 2] [3]

Potential users of LOO for model selection should weigh a few known caveats. When compared with 𝑘-fold cross
validation, one builds 𝑛 models from 𝑛 samples instead of 𝑘 models, where 𝑛 > 𝑘. Moreover, each is trained on 𝑛− 1
samples rather than (𝑘 − 1)𝑛/𝑘. In both ways, assuming 𝑘 is not too large and 𝑘 < 𝑛, LOO is more computationally
expensive than 𝑘-fold cross validation.

In terms of accuracy, LOO often results in high variance as an estimator for the test error. Intuitively, since 𝑛 − 1 of
the 𝑛 samples are used to build each model, models constructed from folds are virtually identical to each other and to
the model built from the entire training set.

4.3. Model selection and evaluation 483

scikit-learn user guide, Release 0.23.2

However, if the learning curve is steep for the training size in question, then 5- or 10- fold cross validation can
overestimate the generalization error.

As a general rule, most authors, and empirical evidence, suggest that 5- or 10- fold cross validation should be preferred
to LOO.

References:

• http://www.faqs.org/faqs/ai-faq/neural-nets/part3/section-12.html;

• T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, Springer 2009

• L. Breiman, P. Spector Submodel selection and evaluation in regression: The X-random case, International
Statistical Review 1992;

• R. Kohavi, A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection, Intl.
Jnt. Conf. AI

• R. Bharat Rao, G. Fung, R. Rosales, On the Dangers of Cross-Validation. An Experimental Evaluation, SIAM
2008;

• G. James, D. Witten, T. Hastie, R Tibshirani, An Introduction to Statistical Learning, Springer 2013.

Leave P Out (LPO)

LeavePOut is very similar to LeaveOneOut as it creates all the possible training/test sets by removing 𝑝 samples
from the complete set. For 𝑛 samples, this produces

(︀
𝑛
𝑝

)︀
train-test pairs. Unlike LeaveOneOut and KFold, the test

sets will overlap for 𝑝 > 1.

Example of Leave-2-Out on a dataset with 4 samples:

>>> from sklearn.model_selection import LeavePOut

>>> X = np.ones(4)
>>> lpo = LeavePOut(p=2)
>>> for train, test in lpo.split(X):
... print("%s %s" % (train, test))
[2 3] [0 1]
[1 3] [0 2]
[1 2] [0 3]
[0 3] [1 2]
[0 2] [1 3]
[0 1] [2 3]

Random permutations cross-validation a.k.a. Shuffle & Split

ShuffleSplit

The ShuffleSplit iterator will generate a user defined number of independent train / test dataset splits. Samples
are first shuffled and then split into a pair of train and test sets.

It is possible to control the randomness for reproducibility of the results by explicitly seeding the random_state
pseudo random number generator.

Here is a usage example:

484 Chapter 4. User Guide

http://www.faqs.org/faqs/ai-faq/neural-nets/part3/section-12.html
https://web.stanford.edu/~hastie/ElemStatLearn/
http://digitalassets.lib.berkeley.edu/sdtr/ucb/text/197.pdf
http://web.cs.iastate.edu/~jtian/cs573/Papers/Kohavi-IJCAI-95.pdf
https://people.csail.mit.edu/romer/papers/CrossVal_SDM08.pdf
https://www-bcf.usc.edu/~gareth/ISL/

scikit-learn user guide, Release 0.23.2

>>> from sklearn.model_selection import ShuffleSplit
>>> X = np.arange(10)
>>> ss = ShuffleSplit(n_splits=5, test_size=0.25, random_state=0)
>>> for train_index, test_index in ss.split(X):
... print("%s %s" % (train_index, test_index))
[9 1 6 7 3 0 5] [2 8 4]
[2 9 8 0 6 7 4] [3 5 1]
[4 5 1 0 6 9 7] [2 3 8]
[2 7 5 8 0 3 4] [6 1 9]
[4 1 0 6 8 9 3] [5 2 7]

Here is a visualization of the cross-validation behavior. Note that ShuffleSplit is not affected by classes or
groups.

ShuffleSplit is thus a good alternative to KFold cross validation that allows a finer control on the number of
iterations and the proportion of samples on each side of the train / test split.

Cross-validation iterators with stratification based on class labels.

Some classification problems can exhibit a large imbalance in the distribution of the target classes: for instance there
could be several times more negative samples than positive samples. In such cases it is recommended to use stratified
sampling as implemented in StratifiedKFold and StratifiedShuffleSplit to ensure that relative class
frequencies is approximately preserved in each train and validation fold.

Stratified k-fold

StratifiedKFold is a variation of k-fold which returns stratified folds: each set contains approximately the same
percentage of samples of each target class as the complete set.

Here is an example of stratified 3-fold cross-validation on a dataset with 50 samples from two unbalanced classes. We
show the number of samples in each class and compare with KFold.

>>> from sklearn.model_selection import StratifiedKFold, KFold
>>> import numpy as np
>>> X, y = np.ones((50, 1)), np.hstack(([0] * 45, [1] * 5))
>>> skf = StratifiedKFold(n_splits=3)
>>> for train, test in skf.split(X, y):
... print('train - {} | test - {}'.format(

(continues on next page)

4.3. Model selection and evaluation 485

../auto_examples/model_selection/plot_cv_indices.html

scikit-learn user guide, Release 0.23.2

(continued from previous page)

... np.bincount(y[train]), np.bincount(y[test])))
train - [30 3] | test - [15 2]
train - [30 3] | test - [15 2]
train - [30 4] | test - [15 1]
>>> kf = KFold(n_splits=3)
>>> for train, test in kf.split(X, y):
... print('train - {} | test - {}'.format(
... np.bincount(y[train]), np.bincount(y[test])))
train - [28 5] | test - [17]
train - [28 5] | test - [17]
train - [34] | test - [11 5]

We can see that StratifiedKFold preserves the class ratios (approximately 1 / 10) in both train and test dataset.

Here is a visualization of the cross-validation behavior.

RepeatedStratifiedKFold can be used to repeat Stratified K-Fold n times with different randomization in each
repetition.

Stratified Shuffle Split

StratifiedShuffleSplit is a variation of ShuffleSplit, which returns stratified splits, i.e which creates splits
by preserving the same percentage for each target class as in the complete set.

Here is a visualization of the cross-validation behavior.

Cross-validation iterators for grouped data.

The i.i.d. assumption is broken if the underlying generative process yield groups of dependent samples.

Such a grouping of data is domain specific. An example would be when there is medical data collected from multiple
patients, with multiple samples taken from each patient. And such data is likely to be dependent on the individual
group. In our example, the patient id for each sample will be its group identifier.

In this case we would like to know if a model trained on a particular set of groups generalizes well to the unseen
groups. To measure this, we need to ensure that all the samples in the validation fold come from groups that are not
represented at all in the paired training fold.

The following cross-validation splitters can be used to do that. The grouping identifier for the samples is specified via
the groups parameter.

486 Chapter 4. User Guide

../auto_examples/model_selection/plot_cv_indices.html

scikit-learn user guide, Release 0.23.2

Group k-fold

GroupKFold is a variation of k-fold which ensures that the same group is not represented in both testing and training
sets. For example if the data is obtained from different subjects with several samples per-subject and if the model is
flexible enough to learn from highly person specific features it could fail to generalize to new subjects. GroupKFold
makes it possible to detect this kind of overfitting situations.

Imagine you have three subjects, each with an associated number from 1 to 3:

>>> from sklearn.model_selection import GroupKFold

>>> X = [0.1, 0.2, 2.2, 2.4, 2.3, 4.55, 5.8, 8.8, 9, 10]
>>> y = ["a", "b", "b", "b", "c", "c", "c", "d", "d", "d"]
>>> groups = [1, 1, 1, 2, 2, 2, 3, 3, 3, 3]

>>> gkf = GroupKFold(n_splits=3)
>>> for train, test in gkf.split(X, y, groups=groups):
... print("%s %s" % (train, test))
[0 1 2 3 4 5] [6 7 8 9]
[0 1 2 6 7 8 9] [3 4 5]
[3 4 5 6 7 8 9] [0 1 2]

Each subject is in a different testing fold, and the same subject is never in both testing and training. Notice that the
folds do not have exactly the same size due to the imbalance in the data.

Here is a visualization of the cross-validation behavior.

4.3. Model selection and evaluation 487

../auto_examples/model_selection/plot_cv_indices.html
../auto_examples/model_selection/plot_cv_indices.html

scikit-learn user guide, Release 0.23.2

Leave One Group Out

LeaveOneGroupOut is a cross-validation scheme which holds out the samples according to a third-party provided
array of integer groups. This group information can be used to encode arbitrary domain specific pre-defined cross-
validation folds.

Each training set is thus constituted by all the samples except the ones related to a specific group.

For example, in the cases of multiple experiments, LeaveOneGroupOut can be used to create a cross-validation
based on the different experiments: we create a training set using the samples of all the experiments except one:

>>> from sklearn.model_selection import LeaveOneGroupOut

>>> X = [1, 5, 10, 50, 60, 70, 80]
>>> y = [0, 1, 1, 2, 2, 2, 2]
>>> groups = [1, 1, 2, 2, 3, 3, 3]
>>> logo = LeaveOneGroupOut()
>>> for train, test in logo.split(X, y, groups=groups):
... print("%s %s" % (train, test))
[2 3 4 5 6] [0 1]
[0 1 4 5 6] [2 3]
[0 1 2 3] [4 5 6]

Another common application is to use time information: for instance the groups could be the year of collection of the
samples and thus allow for cross-validation against time-based splits.

Leave P Groups Out

LeavePGroupsOut is similar as LeaveOneGroupOut, but removes samples related to 𝑃 groups for each train-
ing/test set.

Example of Leave-2-Group Out:

>>> from sklearn.model_selection import LeavePGroupsOut

>>> X = np.arange(6)
>>> y = [1, 1, 1, 2, 2, 2]
>>> groups = [1, 1, 2, 2, 3, 3]
>>> lpgo = LeavePGroupsOut(n_groups=2)
>>> for train, test in lpgo.split(X, y, groups=groups):
... print("%s %s" % (train, test))
[4 5] [0 1 2 3]
[2 3] [0 1 4 5]
[0 1] [2 3 4 5]

Group Shuffle Split

The GroupShuffleSplit iterator behaves as a combination of ShuffleSplit and LeavePGroupsOut, and
generates a sequence of randomized partitions in which a subset of groups are held out for each split.

Here is a usage example:

>>> from sklearn.model_selection import GroupShuffleSplit

>>> X = [0.1, 0.2, 2.2, 2.4, 2.3, 4.55, 5.8, 0.001]

(continues on next page)

488 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

(continued from previous page)

>>> y = ["a", "b", "b", "b", "c", "c", "c", "a"]
>>> groups = [1, 1, 2, 2, 3, 3, 4, 4]
>>> gss = GroupShuffleSplit(n_splits=4, test_size=0.5, random_state=0)
>>> for train, test in gss.split(X, y, groups=groups):
... print("%s %s" % (train, test))
...
[0 1 2 3] [4 5 6 7]
[2 3 6 7] [0 1 4 5]
[2 3 4 5] [0 1 6 7]
[4 5 6 7] [0 1 2 3]

Here is a visualization of the cross-validation behavior.

This class is useful when the behavior of LeavePGroupsOut is desired, but the number of groups is large enough
that generating all possible partitions with 𝑃 groups withheld would be prohibitively expensive. In such a sce-
nario, GroupShuffleSplit provides a random sample (with replacement) of the train / test splits generated by
LeavePGroupsOut.

Predefined Fold-Splits / Validation-Sets

For some datasets, a pre-defined split of the data into training- and validation fold or into several cross-validation folds
already exists. Using PredefinedSplit it is possible to use these folds e.g. when searching for hyperparameters.

For example, when using a validation set, set the test_fold to 0 for all samples that are part of the validation set,
and to -1 for all other samples.

Cross validation of time series data

Time series data is characterised by the correlation between observations that are near in time (autocorrelation). How-
ever, classical cross-validation techniques such as KFold and ShuffleSplit assume the samples are independent
and identically distributed, and would result in unreasonable correlation between training and testing instances (yield-
ing poor estimates of generalisation error) on time series data. Therefore, it is very important to evaluate our model
for time series data on the “future” observations least like those that are used to train the model. To achieve this, one
solution is provided by TimeSeriesSplit.

4.3. Model selection and evaluation 489

../auto_examples/model_selection/plot_cv_indices.html

scikit-learn user guide, Release 0.23.2

Time Series Split

TimeSeriesSplit is a variation of k-fold which returns first 𝑘 folds as train set and the (𝑘 + 1) th fold as test set.
Note that unlike standard cross-validation methods, successive training sets are supersets of those that come before
them. Also, it adds all surplus data to the first training partition, which is always used to train the model.

This class can be used to cross-validate time series data samples that are observed at fixed time intervals.

Example of 3-split time series cross-validation on a dataset with 6 samples:

>>> from sklearn.model_selection import TimeSeriesSplit

>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([1, 2, 3, 4, 5, 6])
>>> tscv = TimeSeriesSplit(n_splits=3)
>>> print(tscv)
TimeSeriesSplit(max_train_size=None, n_splits=3)
>>> for train, test in tscv.split(X):
... print("%s %s" % (train, test))
[0 1 2] [3]
[0 1 2 3] [4]
[0 1 2 3 4] [5]

Here is a visualization of the cross-validation behavior.

A note on shuffling

If the data ordering is not arbitrary (e.g. samples with the same class label are contiguous), shuffling it first may
be essential to get a meaningful cross- validation result. However, the opposite may be true if the samples are not
independently and identically distributed. For example, if samples correspond to news articles, and are ordered by
their time of publication, then shuffling the data will likely lead to a model that is overfit and an inflated validation
score: it will be tested on samples that are artificially similar (close in time) to training samples.

Some cross validation iterators, such as KFold, have an inbuilt option to shuffle the data indices before splitting them.
Note that:

• This consumes less memory than shuffling the data directly.

• By default no shuffling occurs, including for the (stratified) K fold cross- validation performed by specifying
cv=some_integer to cross_val_score, grid search, etc. Keep in mind that train_test_split
still returns a random split.

490 Chapter 4. User Guide

../auto_examples/model_selection/plot_cv_indices.html

scikit-learn user guide, Release 0.23.2

• The random_state parameter defaults to None, meaning that the shuffling will be different every time
KFold(..., shuffle=True) is iterated. However, GridSearchCV will use the same shuffling for
each set of parameters validated by a single call to its fit method.

• To get identical results for each split, set random_state to an integer.

Cross validation and model selection

Cross validation iterators can also be used to directly perform model selection using Grid Search for the optimal
hyperparameters of the model. This is the topic of the next section: Tuning the hyper-parameters of an estimator.

4.3.2 Tuning the hyper-parameters of an estimator

Hyper-parameters are parameters that are not directly learnt within estimators. In scikit-learn they are passed as
arguments to the constructor of the estimator classes. Typical examples include C, kernel and gamma for Support
Vector Classifier, alpha for Lasso, etc.

It is possible and recommended to search the hyper-parameter space for the best cross validation score.

Any parameter provided when constructing an estimator may be optimized in this manner. Specifically, to find the
names and current values for all parameters for a given estimator, use:

estimator.get_params()

A search consists of:

• an estimator (regressor or classifier such as sklearn.svm.SVC());

• a parameter space;

• a method for searching or sampling candidates;

• a cross-validation scheme; and

• a score function.

Some models allow for specialized, efficient parameter search strategies, outlined below. Two generic approaches to
sampling search candidates are provided in scikit-learn: for given values, GridSearchCV exhaustively considers all
parameter combinations, while RandomizedSearchCV can sample a given number of candidates from a parameter
space with a specified distribution. After describing these tools we detail best practice applicable to both approaches.

Note that it is common that a small subset of those parameters can have a large impact on the predictive or computation
performance of the model while others can be left to their default values. It is recommended to read the docstring of
the estimator class to get a finer understanding of their expected behavior, possibly by reading the enclosed reference
to the literature.

Exhaustive Grid Search

The grid search provided by GridSearchCV exhaustively generates candidates from a grid of parameter values
specified with the param_grid parameter. For instance, the following param_grid:

param_grid = [
{'C': [1, 10, 100, 1000], 'kernel': ['linear']},
{'C': [1, 10, 100, 1000], 'gamma': [0.001, 0.0001], 'kernel': ['rbf']},

]

4.3. Model selection and evaluation 491

scikit-learn user guide, Release 0.23.2

specifies that two grids should be explored: one with a linear kernel and C values in [1, 10, 100, 1000], and the second
one with an RBF kernel, and the cross-product of C values ranging in [1, 10, 100, 1000] and gamma values in [0.001,
0.0001].

The GridSearchCV instance implements the usual estimator API: when “fitting” it on a dataset all the possible
combinations of parameter values are evaluated and the best combination is retained.

Examples:

• See Parameter estimation using grid search with cross-validation for an example of Grid Search computation
on the digits dataset.

• See Sample pipeline for text feature extraction and evaluation for an example of Grid Search coupling pa-
rameters from a text documents feature extractor (n-gram count vectorizer and TF-IDF transformer) with a
classifier (here a linear SVM trained with SGD with either elastic net or L2 penalty) using a pipeline.
Pipeline instance.

• See Nested versus non-nested cross-validation for an example of Grid Search within a cross validation loop
on the iris dataset. This is the best practice for evaluating the performance of a model with grid search.

• See Demonstration of multi-metric evaluation on cross_val_score and GridSearchCV for an example of
GridSearchCV being used to evaluate multiple metrics simultaneously.

• See Balance model complexity and cross-validated score for an example of using refit=callable in-
terface in GridSearchCV . The example shows how this interface adds certain amount of flexibility in
identifying the “best” estimator. This interface can also be used in multiple metrics evaluation.

Randomized Parameter Optimization

While using a grid of parameter settings is currently the most widely used method for parameter optimization, other
search methods have more favourable properties. RandomizedSearchCV implements a randomized search over
parameters, where each setting is sampled from a distribution over possible parameter values. This has two main
benefits over an exhaustive search:

• A budget can be chosen independent of the number of parameters and possible values.

• Adding parameters that do not influence the performance does not decrease efficiency.

Specifying how parameters should be sampled is done using a dictionary, very similar to specifying parameters for
GridSearchCV . Additionally, a computation budget, being the number of sampled candidates or sampling itera-
tions, is specified using the n_iter parameter. For each parameter, either a distribution over possible values or a list
of discrete choices (which will be sampled uniformly) can be specified:

{'C': scipy.stats.expon(scale=100), 'gamma': scipy.stats.expon(scale=.1),
'kernel': ['rbf'], 'class_weight':['balanced', None]}

This example uses the scipy.stats module, which contains many useful distributions for sampling parameters,
such as expon, gamma, uniform or randint.

In principle, any function can be passed that provides a rvs (random variate sample) method to sample a value. A
call to the rvs function should provide independent random samples from possible parameter values on consecutive
calls.

492 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

Warning: The distributions in scipy.stats prior to version scipy 0.16 do not allow specifying a
random state. Instead, they use the global numpy random state, that can be seeded via np.random.
seed or set using np.random.set_state. However, beginning scikit-learn 0.18, the sklearn.
model_selection module sets the random state provided by the user if scipy >= 0.16 is also
available.

For continuous parameters, such as C above, it is important to specify a continuous distribution to take full advantage
of the randomization. This way, increasing n_iter will always lead to a finer search.

A continuous log-uniform random variable is available through loguniform. This is a continuous version of log-
spaced parameters. For example to specify C above, loguniform(1, 100) can be used instead of [1, 10,
100] or np.logspace(0, 2, num=1000). This is an alias to SciPy’s stats.reciprocal.

Mirroring the example above in grid search, we can specify a continuous random variable that is log-uniformly dis-
tributed between 1e0 and 1e3:

from sklearn.utils.fixes import loguniform
{'C': loguniform(1e0, 1e3),
'gamma': loguniform(1e-4, 1e-3),
'kernel': ['rbf'],
'class_weight':['balanced', None]}

Examples:

• Comparing randomized search and grid search for hyperparameter estimation compares the usage and effi-
ciency of randomized search and grid search.

References:

• Bergstra, J. and Bengio, Y., Random search for hyper-parameter optimization, The Journal of Machine Learn-
ing Research (2012)

Tips for parameter search

Specifying an objective metric

By default, parameter search uses the score function of the estimator to evaluate a parameter setting. These are
the sklearn.metrics.accuracy_score for classification and sklearn.metrics.r2_score for regres-
sion. For some applications, other scoring functions are better suited (for example in unbalanced classification, the
accuracy score is often uninformative). An alternative scoring function can be specified via the scoring parameter
to GridSearchCV , RandomizedSearchCV and many of the specialized cross-validation tools described below.
See The scoring parameter: defining model evaluation rules for more details.

Specifying multiple metrics for evaluation

GridSearchCV and RandomizedSearchCV allow specifying multiple metrics for the scoring parameter.

Multimetric scoring can either be specified as a list of strings of predefined scores names or a dict mapping the scorer
name to the scorer function and/or the predefined scorer name(s). See Using multiple metric evaluation for more
details.

4.3. Model selection and evaluation 493

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.reciprocal.html

scikit-learn user guide, Release 0.23.2

When specifying multiple metrics, the refit parameter must be set to the metric (string) for which the
best_params_ will be found and used to build the best_estimator_ on the whole dataset. If the search
should not be refit, set refit=False. Leaving refit to the default value None will result in an error when using
multiple metrics.

See Demonstration of multi-metric evaluation on cross_val_score and GridSearchCV for an example usage.

Composite estimators and parameter spaces

GridSearchCV and RandomizedSearchCV allow searching over parameters of composite or nested estimators
such as Pipeline, ColumnTransformer, VotingClassifier or CalibratedClassifierCV using a
dedicated <estimator>__<parameter> syntax:

>>> from sklearn.model_selection import GridSearchCV
>>> from sklearn.calibration import CalibratedClassifierCV
>>> from sklearn.ensemble import RandomForestClassifier
>>> from sklearn.datasets import make_moons
>>> X, y = make_moons()
>>> calibrated_forest = CalibratedClassifierCV(
... base_estimator=RandomForestClassifier(n_estimators=10))
>>> param_grid = {
... 'base_estimator__max_depth': [2, 4, 6, 8]}
>>> search = GridSearchCV(calibrated_forest, param_grid, cv=5)
>>> search.fit(X, y)
GridSearchCV(cv=5,

estimator=CalibratedClassifierCV(...),
param_grid={'base_estimator__max_depth': [2, 4, 6, 8]})

Here, <estimator> is the parameter name of the nested estimator, in this case base_estimator. If the meta-
estimator is constructed as a collection of estimators as in pipeline.Pipeline, then <estimator> refers to
the name of the estimator, see Nested parameters. In practice, there can be several levels of nesting:

>>> from sklearn.pipeline import Pipeline
>>> from sklearn.feature_selection import SelectKBest
>>> pipe = Pipeline([
... ('select', SelectKBest()),
... ('model', calibrated_forest)])
>>> param_grid = {
... 'select__k': [1, 2],
... 'model__base_estimator__max_depth': [2, 4, 6, 8]}
>>> search = GridSearchCV(pipe, param_grid, cv=5).fit(X, y)

Model selection: development and evaluation

Model selection by evaluating various parameter settings can be seen as a way to use the labeled data to “train” the
parameters of the grid.

When evaluating the resulting model it is important to do it on held-out samples that were not seen during the grid
search process: it is recommended to split the data into a development set (to be fed to the GridSearchCV instance)
and an evaluation set to compute performance metrics.

This can be done by using the train_test_split utility function.

494 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

Parallelism

GridSearchCV and RandomizedSearchCV evaluate each parameter setting independently. Computations can
be run in parallel if your OS supports it, by using the keyword n_jobs=-1. See function signature for more details.

Robustness to failure

Some parameter settings may result in a failure to fit one or more folds of the data. By default, this will cause the
entire search to fail, even if some parameter settings could be fully evaluated. Setting error_score=0 (or =np.
NaN) will make the procedure robust to such failure, issuing a warning and setting the score for that fold to 0 (or NaN),
but completing the search.

Alternatives to brute force parameter search

Model specific cross-validation

Some models can fit data for a range of values of some parameter almost as efficiently as fitting the estimator for
a single value of the parameter. This feature can be leveraged to perform a more efficient cross-validation used for
model selection of this parameter.

The most common parameter amenable to this strategy is the parameter encoding the strength of the regularizer. In
this case we say that we compute the regularization path of the estimator.

Here is the list of such models:

linear_model.ElasticNetCV (*[, l1_ratio, . . .]) Elastic Net model with iterative fitting along a regular-
ization path.

linear_model.LarsCV (*[, fit_intercept, . . .]) Cross-validated Least Angle Regression model.
linear_model.LassoCV (*[, eps, n_alphas, . . .]) Lasso linear model with iterative fitting along a regular-

ization path.
linear_model.LassoLarsCV (*[, fit_intercept,
. . .])

Cross-validated Lasso, using the LARS algorithm.

linear_model.LogisticRegressionCV (*[,
Cs, . . .])

Logistic Regression CV (aka logit, MaxEnt) classifier.

linear_model.MultiTaskElasticNetCV (*[,
. . .])

Multi-task L1/L2 ElasticNet with built-in cross-
validation.

linear_model.MultiTaskLassoCV (*[, eps,
. . .])

Multi-task Lasso model trained with L1/L2 mixed-norm
as regularizer.

linear_model.OrthogonalMatchingPursuitCV (*)Cross-validated Orthogonal Matching Pursuit model
(OMP).

linear_model.RidgeCV ([alphas, . . .]) Ridge regression with built-in cross-validation.
linear_model.RidgeClassifierCV ([alphas,
. . .])

Ridge classifier with built-in cross-validation.

4.3. Model selection and evaluation 495

scikit-learn user guide, Release 0.23.2

sklearn.linear_model.ElasticNetCV

class sklearn.linear_model.ElasticNetCV(*, l1_ratio=0.5, eps=0.001, n_alphas=100,
alphas=None, fit_intercept=True, normal-
ize=False, precompute=’auto’, max_iter=1000,
tol=0.0001, cv=None, copy_X=True, ver-
bose=0, n_jobs=None, positive=False, ran-
dom_state=None, selection=’cyclic’)

Elastic Net model with iterative fitting along a regularization path.

See glossary entry for cross-validation estimator.

Read more in the User Guide.

Parameters

l1_ratio [float or list of float, default=0.5] float between 0 and 1 passed to ElasticNet (scal-
ing between l1 and l2 penalties). For l1_ratio = 0 the penalty is an L2 penalty. For
l1_ratio = 1 it is an L1 penalty. For 0 < l1_ratio < 1, the penalty is a com-
bination of L1 and L2 This parameter can be a list, in which case the different values are
tested by cross-validation and the one giving the best prediction score is used. Note that a
good choice of list of values for l1_ratio is often to put more values close to 1 (i.e. Lasso)
and less close to 0 (i.e. Ridge), as in [.1, .5, .7, .9, .95, .99, 1]

eps [float, default=1e-3] Length of the path. eps=1e-3 means that alpha_min /
alpha_max = 1e-3.

n_alphas [int, default=100] Number of alphas along the regularization path, used for each
l1_ratio.

alphas [ndarray, default=None] List of alphas where to compute the models. If None alphas are
set automatically

fit_intercept [bool, default=True] whether to calculate the intercept for this model. If set to
false, no intercept will be used in calculations (i.e. data is expected to be centered).

normalize [bool, default=False] This parameter is ignored when fit_intercept is set
to False. If True, the regressors X will be normalized before regression by subtract-
ing the mean and dividing by the l2-norm. If you wish to standardize, please use
sklearn.preprocessing.StandardScaler before calling fit on an estimator
with normalize=False.

precompute [‘auto’, bool or array-like of shape (n_features, n_features), default=’auto’]
Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto'
let us decide. The Gram matrix can also be passed as argument.

max_iter [int, default=1000] The maximum number of iterations

tol [float, default=1e-4] The tolerance for the optimization: if the updates are smaller than tol,
the optimization code checks the dual gap for optimality and continues until it is smaller
than tol.

cv [int, cross-validation generator or iterable, default=None] Determines the cross-validation
splitting strategy. Possible inputs for cv are:

• None, to use the default 5-fold cross-validation,

• int, to specify the number of folds.

• CV splitter,

• An iterable yielding (train, test) splits as arrays of indices.

496 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

For int/None inputs, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

Changed in version 0.22: cv default value if None changed from 3-fold to 5-fold.

copy_X [bool, default=True] If True, X will be copied; else, it may be overwritten.

verbose [bool or int, default=0] Amount of verbosity.

n_jobs [int, default=None] Number of CPUs to use during the cross validation. None means 1
unless in a joblib.parallel_backend context. -1 means using all processors. See
Glossary for more details.

positive [bool, default=False] When set to True, forces the coefficients to be positive.

random_state [int, RandomState instance, default=None] The seed of the pseudo random num-
ber generator that selects a random feature to update. Used when selection == ‘random’.
Pass an int for reproducible output across multiple function calls. See Glossary.

selection [{‘cyclic’, ‘random’}, default=’cyclic’] If set to ‘random’, a random coefficient is up-
dated every iteration rather than looping over features sequentially by default. This (setting
to ‘random’) often leads to significantly faster convergence especially when tol is higher
than 1e-4.

Attributes

alpha_ [float] The amount of penalization chosen by cross validation

l1_ratio_ [float] The compromise between l1 and l2 penalization chosen by cross validation

coef_ [ndarray of shape (n_features,) or (n_targets, n_features)] Parameter vector (w in the cost
function formula),

intercept_ [float or ndarray of shape (n_targets, n_features)] Independent term in the decision
function.

mse_path_ [ndarray of shape (n_l1_ratio, n_alpha, n_folds)] Mean square error for the test set
on each fold, varying l1_ratio and alpha.

alphas_ [ndarray of shape (n_alphas,) or (n_l1_ratio, n_alphas)] The grid of alphas used for
fitting, for each l1_ratio.

n_iter_ [int] number of iterations run by the coordinate descent solver to reach the specified
tolerance for the optimal alpha.

See also:

enet_path

ElasticNet

Notes

For an example, see examples/linear_model/plot_lasso_model_selection.py.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
Fortran-contiguous numpy array.

The parameter l1_ratio corresponds to alpha in the glmnet R package while alpha corresponds to the lambda
parameter in glmnet. More specifically, the optimization objective is:

4.3. Model selection and evaluation 497

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

1 / (2 * n_samples) * ||y - Xw||^2_2
+ alpha * l1_ratio * ||w||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2

If you are interested in controlling the L1 and L2 penalty separately, keep in mind that this is equivalent to:

a * L1 + b * L2

for:

alpha = a + b and l1_ratio = a / (a + b).

Examples

>>> from sklearn.linear_model import ElasticNetCV
>>> from sklearn.datasets import make_regression

>>> X, y = make_regression(n_features=2, random_state=0)
>>> regr = ElasticNetCV(cv=5, random_state=0)
>>> regr.fit(X, y)
ElasticNetCV(cv=5, random_state=0)
>>> print(regr.alpha_)
0.199...
>>> print(regr.intercept_)
0.398...
>>> print(regr.predict([[0, 0]]))
[0.398...]

Methods

fit(X, y) Fit linear model with coordinate descent
get_params([deep]) Get parameters for this estimator.
path(X, y, *[, l1_ratio, eps, n_alphas, . . .]) Compute elastic net path with coordinate descent.
predict(X) Predict using the linear model.
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.

__init__(*, l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, normal-
ize=False, precompute=’auto’, max_iter=1000, tol=0.0001, cv=None, copy_X=True, ver-
bose=0, n_jobs=None, positive=False, random_state=None, selection=’cyclic’)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y)
Fit linear model with coordinate descent

Fit is on grid of alphas and best alpha estimated by cross-validation.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training data. Pass directly
as Fortran-contiguous data to avoid unnecessary memory duplication. If y is mono-output,
X can be sparse.

498 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

y [array-like of shape (n_samples,) or (n_samples, n_targets)] Target values

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

static path(X, y, *, l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, precompute=’auto’,
Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, posi-
tive=False, check_input=True, **params)

Compute elastic net path with coordinate descent.

The elastic net optimization function varies for mono and multi-outputs.

For mono-output tasks it is:

1 / (2 * n_samples) * ||y - Xw||^2_2
+ alpha * l1_ratio * ||w||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2

For multi-output tasks it is:

(1 / (2 * n_samples)) * ||Y - XW||^Fro_2
+ alpha * l1_ratio * ||W||_21
+ 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training data. Pass directly
as Fortran-contiguous data to avoid unnecessary memory duplication. If y is mono-output
then X can be sparse.

y [{array-like, sparse matrix} of shape (n_samples,) or (n_samples, n_outputs)] Target val-
ues.

l1_ratio [float, default=0.5] Number between 0 and 1 passed to elastic net (scaling between
l1 and l2 penalties). l1_ratio=1 corresponds to the Lasso.

eps [float, default=1e-3] Length of the path. eps=1e-3 means that alpha_min /
alpha_max = 1e-3.

n_alphas [int, default=100] Number of alphas along the regularization path.

alphas [ndarray, default=None] List of alphas where to compute the models. If None alphas
are set automatically.

precompute [‘auto’, bool or array-like of shape (n_features, n_features), default=’auto’]
Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto' let
us decide. The Gram matrix can also be passed as argument.

4.3. Model selection and evaluation 499

scikit-learn user guide, Release 0.23.2

Xy [array-like of shape (n_features,) or (n_features, n_outputs), default=None] Xy =
np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is pre-
computed.

copy_X [bool, default=True] If True, X will be copied; else, it may be overwritten.

coef_init [ndarray of shape (n_features,), default=None] The initial values of the coeffi-
cients.

verbose [bool or int, default=False] Amount of verbosity.

return_n_iter [bool, default=False] Whether to return the number of iterations or not.

positive [bool, default=False] If set to True, forces coefficients to be positive. (Only allowed
when y.ndim == 1).

check_input [bool, default=True] Skip input validation checks, including the Gram matrix
when provided assuming there are handled by the caller when check_input=False.

**params [kwargs] Keyword arguments passed to the coordinate descent solver.

Returns

alphas [ndarray of shape (n_alphas,)] The alphas along the path where models are com-
puted.

coefs [ndarray of shape (n_features, n_alphas) or (n_outputs, n_features, n_alphas)] Coeffi-
cients along the path.

dual_gaps [ndarray of shape (n_alphas,)] The dual gaps at the end of the optimization for
each alpha.

n_iters [list of int] The number of iterations taken by the coordinate descent optimizer to
reach the specified tolerance for each alpha. (Is returned when return_n_iter is set
to True).

See also:

MultiTaskElasticNet

MultiTaskElasticNetCV

ElasticNet

ElasticNetCV

Notes

For an example, see examples/linear_model/plot_lasso_coordinate_descent_path.py.

predict(X)
Predict using the linear model.

Parameters

X [array_like or sparse matrix, shape (n_samples, n_features)] Samples.

Returns

C [array, shape (n_samples,)] Returns predicted values.

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

500 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

sklearn.linear_model.LarsCV

class sklearn.linear_model.LarsCV(*, fit_intercept=True, verbose=False,
max_iter=500, normalize=True, precompute=’auto’,
cv=None, max_n_alphas=1000, n_jobs=None,
eps=2.220446049250313e-16, copy_X=True)

Cross-validated Least Angle Regression model.

See glossary entry for cross-validation estimator.

Read more in the User Guide.

Parameters

fit_intercept [bool, default=True] whether to calculate the intercept for this model. If set to
false, no intercept will be used in calculations (i.e. data is expected to be centered).

verbose [bool or int, default=False] Sets the verbosity amount

max_iter [int, default=500] Maximum number of iterations to perform.

4.3. Model selection and evaluation 501

scikit-learn user guide, Release 0.23.2

normalize [bool, default=True] This parameter is ignored when fit_intercept is set
to False. If True, the regressors X will be normalized before regression by subtract-
ing the mean and dividing by the l2-norm. If you wish to standardize, please use
sklearn.preprocessing.StandardScaler before calling fit on an estimator
with normalize=False.

precompute [bool, ‘auto’ or array-like , default=’auto’] Whether to use a precomputed Gram
matrix to speed up calculations. If set to 'auto' let us decide. The Gram matrix cannot be
passed as argument since we will use only subsets of X.

cv [int, cross-validation generator or an iterable, default=None] Determines the cross-validation
splitting strategy. Possible inputs for cv are:

• None, to use the default 5-fold cross-validation,

• integer, to specify the number of folds.

• CV splitter,

• An iterable yielding (train, test) splits as arrays of indices.

For integer/None inputs, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

Changed in version 0.22: cv default value if None changed from 3-fold to 5-fold.

max_n_alphas [int, default=1000] The maximum number of points on the path used to com-
pute the residuals in the cross-validation

n_jobs [int or None, default=None] Number of CPUs to use during the cross validation. None
means 1 unless in a joblib.parallel_backend context. -1 means using all proces-
sors. See Glossary for more details.

eps [float, optional] The machine-precision regularization in the computation of the Cholesky
diagonal factors. Increase this for very ill-conditioned systems. By default, np.
finfo(np.float).eps is used.

copy_X [bool, default=True] If True, X will be copied; else, it may be overwritten.

Attributes

coef_ [array-like of shape (n_features,)] parameter vector (w in the formulation formula)

intercept_ [float] independent term in decision function

coef_path_ [array-like of shape (n_features, n_alphas)] the varying values of the coefficients
along the path

alpha_ [float] the estimated regularization parameter alpha

alphas_ [array-like of shape (n_alphas,)] the different values of alpha along the path

cv_alphas_ [array-like of shape (n_cv_alphas,)] all the values of alpha along the path for the
different folds

mse_path_ [array-like of shape (n_folds, n_cv_alphas)] the mean square error on left-out for
each fold along the path (alpha values given by cv_alphas)

n_iter_ [array-like or int] the number of iterations run by Lars with the optimal alpha.

See also:

lars_path, LassoLars, LassoLarsCV

502 Chapter 4. User Guide

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

Examples

>>> from sklearn.linear_model import LarsCV
>>> from sklearn.datasets import make_regression
>>> X, y = make_regression(n_samples=200, noise=4.0, random_state=0)
>>> reg = LarsCV(cv=5).fit(X, y)
>>> reg.score(X, y)
0.9996...
>>> reg.alpha_
0.0254...
>>> reg.predict(X[:1,])
array([154.0842...])

Methods

fit(X, y) Fit the model using X, y as training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model.
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.

__init__(*, fit_intercept=True, verbose=False, max_iter=500, normalize=True, precom-
pute=’auto’, cv=None, max_n_alphas=1000, n_jobs=None, eps=2.220446049250313e-16,
copy_X=True)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y)
Fit the model using X, y as training data.

Parameters

X [array-like of shape (n_samples, n_features)] Training data.

y [array-like of shape (n_samples,)] Target values.

Returns

self [object] returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict using the linear model.

Parameters

X [array_like or sparse matrix, shape (n_samples, n_features)] Samples.

Returns

4.3. Model selection and evaluation 503

scikit-learn user guide, Release 0.23.2

C [array, shape (n_samples,)] Returns predicted values.

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

sklearn.linear_model.LassoCV

class sklearn.linear_model.LassoCV(*, eps=0.001, n_alphas=100, alphas=None,
fit_intercept=True, normalize=False, precompute=’auto’,
max_iter=1000, tol=0.0001, copy_X=True, cv=None,
verbose=False, n_jobs=None, positive=False, ran-
dom_state=None, selection=’cyclic’)

Lasso linear model with iterative fitting along a regularization path.

See glossary entry for cross-validation estimator.

The best model is selected by cross-validation.

The optimization objective for Lasso is:

504 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

Read more in the User Guide.

Parameters

eps [float, default=1e-3] Length of the path. eps=1e-3 means that alpha_min /
alpha_max = 1e-3.

n_alphas [int, default=100] Number of alphas along the regularization path

alphas [ndarray, default=None] List of alphas where to compute the models. If None alphas
are set automatically

fit_intercept [bool, default=True] whether to calculate the intercept for this model. If set to
false, no intercept will be used in calculations (i.e. data is expected to be centered).

normalize [bool, default=False] This parameter is ignored when fit_intercept is set
to False. If True, the regressors X will be normalized before regression by subtract-
ing the mean and dividing by the l2-norm. If you wish to standardize, please use
sklearn.preprocessing.StandardScaler before calling fit on an estimator
with normalize=False.

precompute [‘auto’, bool or array-like of shape (n_features, n_features), default=’auto’]
Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto'
let us decide. The Gram matrix can also be passed as argument.

max_iter [int, default=1000] The maximum number of iterations

tol [float, default=1e-4] The tolerance for the optimization: if the updates are smaller than tol,
the optimization code checks the dual gap for optimality and continues until it is smaller
than tol.

copy_X [bool, default=True] If True, X will be copied; else, it may be overwritten.

cv [int, cross-validation generator or iterable, default=None] Determines the cross-validation
splitting strategy. Possible inputs for cv are:

• None, to use the default 5-fold cross-validation,

• int, to specify the number of folds.

• CV splitter,

• An iterable yielding (train, test) splits as arrays of indices.

For int/None inputs, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

Changed in version 0.22: cv default value if None changed from 3-fold to 5-fold.

verbose [bool or int, default=False] Amount of verbosity.

n_jobs [int, default=None] Number of CPUs to use during the cross validation. None means 1
unless in a joblib.parallel_backend context. -1 means using all processors. See
Glossary for more details.

positive [bool, default=False] If positive, restrict regression coefficients to be positive

random_state [int, RandomState instance, default=None] The seed of the pseudo random num-
ber generator that selects a random feature to update. Used when selection == ‘random’.
Pass an int for reproducible output across multiple function calls. See Glossary.

4.3. Model selection and evaluation 505

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

selection [{‘cyclic’, ‘random’}, default=’cyclic’] If set to ‘random’, a random coefficient is up-
dated every iteration rather than looping over features sequentially by default. This (setting
to ‘random’) often leads to significantly faster convergence especially when tol is higher
than 1e-4.

Attributes

alpha_ [float] The amount of penalization chosen by cross validation

coef_ [ndarray of shape (n_features,) or (n_targets, n_features)] parameter vector (w in the cost
function formula)

intercept_ [float or ndarray of shape (n_targets,)] independent term in decision function.

mse_path_ [ndarray of shape (n_alphas, n_folds)] mean square error for the test set on each
fold, varying alpha

alphas_ [ndarray of shape (n_alphas,)] The grid of alphas used for fitting

dual_gap_ [float or ndarray of shape (n_targets,)] The dual gap at the end of the optimization
for the optimal alpha (alpha_).

n_iter_ [int] number of iterations run by the coordinate descent solver to reach the specified
tolerance for the optimal alpha.

See also:

lars_path

lasso_path

LassoLars

Lasso

LassoLarsCV

Notes

For an example, see examples/linear_model/plot_lasso_model_selection.py.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
Fortran-contiguous numpy array.

Examples

>>> from sklearn.linear_model import LassoCV
>>> from sklearn.datasets import make_regression
>>> X, y = make_regression(noise=4, random_state=0)
>>> reg = LassoCV(cv=5, random_state=0).fit(X, y)
>>> reg.score(X, y)
0.9993...
>>> reg.predict(X[:1,])
array([-78.4951...])

Methods

506 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

fit(X, y) Fit linear model with coordinate descent
get_params([deep]) Get parameters for this estimator.
path(X, y, *[, eps, n_alphas, alphas, . . .]) Compute Lasso path with coordinate descent
predict(X) Predict using the linear model.
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.

__init__(*, eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, pre-
compute=’auto’, max_iter=1000, tol=0.0001, copy_X=True, cv=None, verbose=False,
n_jobs=None, positive=False, random_state=None, selection=’cyclic’)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y)
Fit linear model with coordinate descent

Fit is on grid of alphas and best alpha estimated by cross-validation.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training data. Pass directly
as Fortran-contiguous data to avoid unnecessary memory duplication. If y is mono-output,
X can be sparse.

y [array-like of shape (n_samples,) or (n_samples, n_targets)] Target values

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

static path(X, y, *, eps=0.001, n_alphas=100, alphas=None, precompute=’auto’, Xy=None,
copy_X=True, coef_init=None, verbose=False, return_n_iter=False, positive=False,
**params)

Compute Lasso path with coordinate descent

The Lasso optimization function varies for mono and multi-outputs.

For mono-output tasks it is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

For multi-output tasks it is:

(1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

4.3. Model selection and evaluation 507

scikit-learn user guide, Release 0.23.2

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training data. Pass directly
as Fortran-contiguous data to avoid unnecessary memory duplication. If y is mono-output
then X can be sparse.

y [{array-like, sparse matrix} of shape (n_samples,) or (n_samples, n_outputs)] Target val-
ues

eps [float, default=1e-3] Length of the path. eps=1e-3 means that alpha_min /
alpha_max = 1e-3

n_alphas [int, default=100] Number of alphas along the regularization path

alphas [ndarray, default=None] List of alphas where to compute the models. If None alphas
are set automatically

precompute [‘auto’, bool or array-like of shape (n_features, n_features), default=’auto’]
Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto' let
us decide. The Gram matrix can also be passed as argument.

Xy [array-like of shape (n_features,) or (n_features, n_outputs), default=None] Xy =
np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is pre-
computed.

copy_X [bool, default=True] If True, X will be copied; else, it may be overwritten.

coef_init [ndarray of shape (n_features,), default=None] The initial values of the coeffi-
cients.

verbose [bool or int, default=False] Amount of verbosity.

return_n_iter [bool, default=False] whether to return the number of iterations or not.

positive [bool, default=False] If set to True, forces coefficients to be positive. (Only allowed
when y.ndim == 1).

**params [kwargs] keyword arguments passed to the coordinate descent solver.

Returns

alphas [ndarray of shape (n_alphas,)] The alphas along the path where models are com-
puted.

coefs [ndarray of shape (n_features, n_alphas) or (n_outputs, n_features, n_alphas)] Coeffi-
cients along the path.

dual_gaps [ndarray of shape (n_alphas,)] The dual gaps at the end of the optimization for
each alpha.

n_iters [list of int] The number of iterations taken by the coordinate descent optimizer to
reach the specified tolerance for each alpha.

See also:

lars_path

Lasso

LassoLars

LassoCV

LassoLarsCV

sklearn.decomposition.sparse_encode

508 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

Notes

For an example, see examples/linear_model/plot_lasso_coordinate_descent_path.py.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
Fortran-contiguous numpy array.

Note that in certain cases, the Lars solver may be significantly faster to implement this functionality. In
particular, linear interpolation can be used to retrieve model coefficients between the values output by
lars_path

Examples

Comparing lasso_path and lars_path with interpolation:

>>> X = np.array([[1, 2, 3.1], [2.3, 5.4, 4.3]]).T
>>> y = np.array([1, 2, 3.1])
>>> # Use lasso_path to compute a coefficient path
>>> _, coef_path, _ = lasso_path(X, y, alphas=[5., 1., .5])
>>> print(coef_path)
[[0. 0. 0.46874778]
[0.2159048 0.4425765 0.23689075]]

>>> # Now use lars_path and 1D linear interpolation to compute the
>>> # same path
>>> from sklearn.linear_model import lars_path
>>> alphas, active, coef_path_lars = lars_path(X, y, method='lasso')
>>> from scipy import interpolate
>>> coef_path_continuous = interpolate.interp1d(alphas[::-1],
... coef_path_lars[:, ::-1])
>>> print(coef_path_continuous([5., 1., .5]))
[[0. 0. 0.46915237]
[0.2159048 0.4425765 0.23668876]]

predict(X)
Predict using the linear model.

Parameters

X [array_like or sparse matrix, shape (n_samples, n_features)] Samples.

Returns

C [array, shape (n_samples,)] Returns predicted values.

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

4.3. Model selection and evaluation 509

scikit-learn user guide, Release 0.23.2

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.linear_model.LassoCV

• Combine predictors using stacking

• Feature selection using SelectFromModel and LassoCV

• Lasso model selection: Cross-Validation / AIC / BIC

• Common pitfalls in interpretation of coefficients of linear models

• Cross-validation on diabetes Dataset Exercise

sklearn.linear_model.LassoLarsCV

class sklearn.linear_model.LassoLarsCV(*, fit_intercept=True, verbose=False,
max_iter=500, normalize=True, precom-
pute=’auto’, cv=None, max_n_alphas=1000,
n_jobs=None, eps=2.220446049250313e-16,
copy_X=True, positive=False)

Cross-validated Lasso, using the LARS algorithm.

See glossary entry for cross-validation estimator.

The optimization objective for Lasso is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

Read more in the User Guide.

Parameters

510 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

fit_intercept [bool, default=True] whether to calculate the intercept for this model. If set to
false, no intercept will be used in calculations (i.e. data is expected to be centered).

verbose [bool or int, default=False] Sets the verbosity amount

max_iter [int, default=500] Maximum number of iterations to perform.

normalize [bool, default=True] This parameter is ignored when fit_intercept is set
to False. If True, the regressors X will be normalized before regression by subtract-
ing the mean and dividing by the l2-norm. If you wish to standardize, please use
sklearn.preprocessing.StandardScaler before calling fit on an estimator
with normalize=False.

precompute [bool or ‘auto’ , default=’auto’] Whether to use a precomputed Gram matrix to
speed up calculations. If set to 'auto' let us decide. The Gram matrix cannot be passed
as argument since we will use only subsets of X.

cv [int, cross-validation generator or an iterable, default=None] Determines the cross-validation
splitting strategy. Possible inputs for cv are:

• None, to use the default 5-fold cross-validation,

• integer, to specify the number of folds.

• CV splitter,

• An iterable yielding (train, test) splits as arrays of indices.

For integer/None inputs, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

Changed in version 0.22: cv default value if None changed from 3-fold to 5-fold.

max_n_alphas [int, default=1000] The maximum number of points on the path used to com-
pute the residuals in the cross-validation

n_jobs [int or None, default=None] Number of CPUs to use during the cross validation. None
means 1 unless in a joblib.parallel_backend context. -1 means using all proces-
sors. See Glossary for more details.

eps [float, optional] The machine-precision regularization in the computation of the Cholesky
diagonal factors. Increase this for very ill-conditioned systems. By default, np.
finfo(np.float).eps is used.

copy_X [bool, default=True] If True, X will be copied; else, it may be overwritten.

positive [bool, default=False] Restrict coefficients to be >= 0. Be aware that you might want to
remove fit_intercept which is set True by default. Under the positive restriction the model
coefficients do not converge to the ordinary-least-squares solution for small values of alpha.
Only coefficients up to the smallest alpha value (alphas_[alphas_ > 0.].min()
when fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congru-
ence with the solution of the coordinate descent Lasso estimator. As a consequence using
LassoLarsCV only makes sense for problems where a sparse solution is expected and/or
reached.

Attributes

coef_ [array-like of shape (n_features,)] parameter vector (w in the formulation formula)

intercept_ [float] independent term in decision function.

coef_path_ [array-like of shape (n_features, n_alphas)] the varying values of the coefficients
along the path

4.3. Model selection and evaluation 511

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

alpha_ [float] the estimated regularization parameter alpha

alphas_ [array-like of shape (n_alphas,)] the different values of alpha along the path

cv_alphas_ [array-like of shape (n_cv_alphas,)] all the values of alpha along the path for the
different folds

mse_path_ [array-like of shape (n_folds, n_cv_alphas)] the mean square error on left-out for
each fold along the path (alpha values given by cv_alphas)

n_iter_ [array-like or int] the number of iterations run by Lars with the optimal alpha.

See also:

lars_path, LassoLars, LarsCV , LassoCV

Notes

The object solves the same problem as the LassoCV object. However, unlike the LassoCV, it find the relevant
alphas values by itself. In general, because of this property, it will be more stable. However, it is more fragile to
heavily multicollinear datasets.

It is more efficient than the LassoCV if only a small number of features are selected compared to the total
number, for instance if there are very few samples compared to the number of features.

Examples

>>> from sklearn.linear_model import LassoLarsCV
>>> from sklearn.datasets import make_regression
>>> X, y = make_regression(noise=4.0, random_state=0)
>>> reg = LassoLarsCV(cv=5).fit(X, y)
>>> reg.score(X, y)
0.9992...
>>> reg.alpha_
0.0484...
>>> reg.predict(X[:1,])
array([-77.8723...])

Methods

fit(X, y) Fit the model using X, y as training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model.
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.

__init__(*, fit_intercept=True, verbose=False, max_iter=500, normalize=True, precom-
pute=’auto’, cv=None, max_n_alphas=1000, n_jobs=None, eps=2.220446049250313e-16,
copy_X=True, positive=False)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y)
Fit the model using X, y as training data.

512 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

Parameters

X [array-like of shape (n_samples, n_features)] Training data.

y [array-like of shape (n_samples,)] Target values.

Returns

self [object] returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict using the linear model.

Parameters

X [array_like or sparse matrix, shape (n_samples, n_features)] Samples.

Returns

C [array, shape (n_samples,)] Returns predicted values.

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

4.3. Model selection and evaluation 513

scikit-learn user guide, Release 0.23.2

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.linear_model.LassoLarsCV

• Lasso model selection: Cross-Validation / AIC / BIC

sklearn.linear_model.LogisticRegressionCV

class sklearn.linear_model.LogisticRegressionCV(*, Cs=10, fit_intercept=True,
cv=None, dual=False,
penalty=’l2’, scoring=None,
solver=’lbfgs’, tol=0.0001,
max_iter=100, class_weight=None,
n_jobs=None, verbose=0, re-
fit=True, intercept_scaling=1.0,
multi_class=’auto’, ran-
dom_state=None, l1_ratios=None)

Logistic Regression CV (aka logit, MaxEnt) classifier.

See glossary entry for cross-validation estimator.

This class implements logistic regression using liblinear, newton-cg, sag of lbfgs optimizer. The newton-cg, sag
and lbfgs solvers support only L2 regularization with primal formulation. The liblinear solver supports both L1
and L2 regularization, with a dual formulation only for the L2 penalty. Elastic-Net penalty is only supported by
the saga solver.

For the grid of Cs values and l1_ratios values, the best hyperparameter is selected by the cross-validator
StratifiedKFold, but it can be changed using the cv parameter. The ‘newton-cg’, ‘sag’, ‘saga’ and ‘lbfgs’
solvers can warm-start the coefficients (see Glossary).

Read more in the User Guide.

Parameters

Cs [int or list of floats, default=10] Each of the values in Cs describes the inverse of regulariza-
tion strength. If Cs is as an int, then a grid of Cs values are chosen in a logarithmic scale
between 1e-4 and 1e4. Like in support vector machines, smaller values specify stronger
regularization.

fit_intercept [bool, default=True] Specifies if a constant (a.k.a. bias or intercept) should be
added to the decision function.

cv [int or cross-validation generator, default=None] The default cross-validation generator used
is Stratified K-Folds. If an integer is provided, then it is the number of folds used. See the
module sklearn.model_selection module for the list of possible cross-validation
objects.

514 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

Changed in version 0.22: cv default value if None changed from 3-fold to 5-fold.

dual [bool, default=False] Dual or primal formulation. Dual formulation is only implemented
for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features.

penalty [{‘l1’, ‘l2’, ‘elasticnet’}, default=’l2’] Used to specify the norm used in the penaliza-
tion. The ‘newton-cg’, ‘sag’ and ‘lbfgs’ solvers support only l2 penalties. ‘elasticnet’ is
only supported by the ‘saga’ solver.

scoring [str or callable, default=None] A string (see model evaluation documentation) or a
scorer callable object / function with signature scorer(estimator, X, y). For a list
of scoring functions that can be used, look at sklearn.metrics. The default scoring
option used is ‘accuracy’.

solver [{‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’, ‘saga’}, default=’lbfgs’] Algorithm to use in
the optimization problem.

• For small datasets, ‘liblinear’ is a good choice, whereas ‘sag’ and ‘saga’ are faster for
large ones.

• For multiclass problems, only ‘newton-cg’, ‘sag’, ‘saga’ and ‘lbfgs’ handle multinomial
loss; ‘liblinear’ is limited to one-versus-rest schemes.

• ‘newton-cg’, ‘lbfgs’ and ‘sag’ only handle L2 penalty, whereas ‘liblinear’ and ‘saga’
handle L1 penalty.

• ‘liblinear’ might be slower in LogisticRegressionCV because it does not handle warm-
starting.

Note that ‘sag’ and ‘saga’ fast convergence is only guaranteed on features with approxi-
mately the same scale. You can preprocess the data with a scaler from sklearn.preprocessing.

New in version 0.17: Stochastic Average Gradient descent solver.

New in version 0.19: SAGA solver.

tol [float, default=1e-4] Tolerance for stopping criteria.

max_iter [int, default=100] Maximum number of iterations of the optimization algorithm.

class_weight [dict or ‘balanced’, default=None] Weights associated with classes in the form
{class_label: weight}. If not given, all classes are supposed to have weight one.

The “balanced” mode uses the values of y to automatically adjust weights inversely pro-
portional to class frequencies in the input data as n_samples / (n_classes * np.
bincount(y)).

Note that these weights will be multiplied with sample_weight (passed through the fit
method) if sample_weight is specified.

New in version 0.17: class_weight == ‘balanced’

n_jobs [int, default=None] Number of CPU cores used during the cross-validation loop. None
means 1 unless in a joblib.parallel_backend context. -1 means using all proces-
sors. See Glossary for more details.

verbose [int, default=0] For the ‘liblinear’, ‘sag’ and ‘lbfgs’ solvers set verbose to any positive
number for verbosity.

refit [bool, default=True] If set to True, the scores are averaged across all folds, and the coefs
and the C that corresponds to the best score is taken, and a final refit is done using these
parameters. Otherwise the coefs, intercepts and C that correspond to the best scores across
folds are averaged.

4.3. Model selection and evaluation 515

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

intercept_scaling [float, default=1] Useful only when the solver ‘liblinear’ is used and
self.fit_intercept is set to True. In this case, x becomes [x, self.intercept_scaling],
i.e. a “synthetic” feature with constant value equal to intercept_scaling is ap-
pended to the instance vector. The intercept becomes intercept_scaling *
synthetic_feature_weight.

Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To
lessen the effect of regularization on synthetic feature weight (and therefore on the intercept)
intercept_scaling has to be increased.

multi_class [{‘auto, ‘ovr’, ‘multinomial’}, default=’auto’] If the option chosen is ‘ovr’, then a
binary problem is fit for each label. For ‘multinomial’ the loss minimised is the multinomial
loss fit across the entire probability distribution, even when the data is binary. ‘multino-
mial’ is unavailable when solver=’liblinear’. ‘auto’ selects ‘ovr’ if the data is binary, or if
solver=’liblinear’, and otherwise selects ‘multinomial’.

New in version 0.18: Stochastic Average Gradient descent solver for ‘multinomial’ case.

Changed in version 0.22: Default changed from ‘ovr’ to ‘auto’ in 0.22.

random_state [int, RandomState instance, default=None] Used when solver='sag',
‘saga’ or ‘liblinear’ to shuffle the data. Note that this only applies to the solver and not
the cross-validation generator. See Glossary for details.

l1_ratios [list of float, default=None] The list of Elastic-Net mixing parameter, with 0 <=
l1_ratio <= 1. Only used if penalty='elasticnet'. A value of 0 is equiva-
lent to using penalty='l2', while 1 is equivalent to using penalty='l1'. For 0 <
l1_ratio <1, the penalty is a combination of L1 and L2.

Attributes

classes_ [ndarray of shape (n_classes,)] A list of class labels known to the classifier.

coef_ [ndarray of shape (1, n_features) or (n_classes, n_features)] Coefficient of the features in
the decision function.

coef_ is of shape (1, n_features) when the given problem is binary.

intercept_ [ndarray of shape (1,) or (n_classes,)] Intercept (a.k.a. bias) added to the decision
function.

If fit_intercept is set to False, the intercept is set to zero. intercept_ is of
shape(1,) when the problem is binary.

Cs_ [ndarray of shape (n_cs)] Array of C i.e. inverse of regularization parameter values used
for cross-validation.

l1_ratios_ [ndarray of shape (n_l1_ratios)] Array of l1_ratios used for cross-validation. If no
l1_ratio is used (i.e. penalty is not ‘elasticnet’), this is set to [None]

coefs_paths_ [ndarray of shape (n_folds, n_cs, n_features) or (n_folds, n_cs, n_features +
1)] dict with classes as the keys, and the path of coefficients obtained during cross-
validating across each fold and then across each Cs after doing an OvR for the corre-
sponding class as values. If the ‘multi_class’ option is set to ‘multinomial’, then the
coefs_paths are the coefficients corresponding to each class. Each dict value has shape
(n_folds, n_cs, n_features) or (n_folds, n_cs, n_features + 1)
depending on whether the intercept is fit or not. If penalty='elasticnet', the shape
is (n_folds, n_cs, n_l1_ratios_, n_features) or (n_folds, n_cs,
n_l1_ratios_, n_features + 1).

scores_ [dict] dict with classes as the keys, and the values as the grid of scores obtained dur-
ing cross-validating each fold, after doing an OvR for the corresponding class. If the

516 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

‘multi_class’ option given is ‘multinomial’ then the same scores are repeated across all
classes, since this is the multinomial class. Each dict value has shape (n_folds, n_cs
or (n_folds, n_cs, n_l1_ratios) if penalty='elasticnet'.

C_ [ndarray of shape (n_classes,) or (n_classes - 1,)] Array of C that maps to the best scores
across every class. If refit is set to False, then for each class, the best C is the average of
the C’s that correspond to the best scores for each fold. C_ is of shape(n_classes,) when the
problem is binary.

l1_ratio_ [ndarray of shape (n_classes,) or (n_classes - 1,)] Array of l1_ratio that maps to the
best scores across every class. If refit is set to False, then for each class, the best l1_ratio is
the average of the l1_ratio’s that correspond to the best scores for each fold. l1_ratio_
is of shape(n_classes,) when the problem is binary.

n_iter_ [ndarray of shape (n_classes, n_folds, n_cs) or (1, n_folds, n_cs)] Actual number of
iterations for all classes, folds and Cs. In the binary or multinomial cases, the first dimension
is equal to 1. If penalty='elasticnet', the shape is (n_classes, n_folds,
n_cs, n_l1_ratios) or (1, n_folds, n_cs, n_l1_ratios).

See also:

LogisticRegression

Examples

>>> from sklearn.datasets import load_iris
>>> from sklearn.linear_model import LogisticRegressionCV
>>> X, y = load_iris(return_X_y=True)
>>> clf = LogisticRegressionCV(cv=5, random_state=0).fit(X, y)
>>> clf.predict(X[:2, :])
array([0, 0])
>>> clf.predict_proba(X[:2, :]).shape
(2, 3)
>>> clf.score(X, y)
0.98...

Methods

decision_function(X) Predict confidence scores for samples.
densify() Convert coefficient matrix to dense array format.
fit(X, y[, sample_weight]) Fit the model according to the given training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict class labels for samples in X.
predict_log_proba(X) Predict logarithm of probability estimates.
predict_proba(X) Probability estimates.
score(X, y[, sample_weight]) Returns the score using the scoring option on the

given test data and labels.
set_params(**params) Set the parameters of this estimator.
sparsify() Convert coefficient matrix to sparse format.

4.3. Model selection and evaluation 517

scikit-learn user guide, Release 0.23.2

__init__(*, Cs=10, fit_intercept=True, cv=None, dual=False, penalty=’l2’, scoring=None,
solver=’lbfgs’, tol=0.0001, max_iter=100, class_weight=None, n_jobs=None, ver-
bose=0, refit=True, intercept_scaling=1.0, multi_class=’auto’, random_state=None,
l1_ratios=None)

Initialize self. See help(type(self)) for accurate signature.

decision_function(X)
Predict confidence scores for samples.

The confidence score for a sample is the signed distance of that sample to the hyperplane.

Parameters

X [array_like or sparse matrix, shape (n_samples, n_features)] Samples.

Returns

array, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes) Confidence
scores per (sample, class) combination. In the binary case, confidence score for
self.classes_[1] where >0 means this class would be predicted.

densify()
Convert coefficient matrix to dense array format.

Converts the coef_ member (back) to a numpy.ndarray. This is the default format of coef_ and is
required for fitting, so calling this method is only required on models that have previously been sparsified;
otherwise, it is a no-op.

Returns

self Fitted estimator.

fit(X, y, sample_weight=None)
Fit the model according to the given training data.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training vector, where
n_samples is the number of samples and n_features is the number of features.

y [array-like of shape (n_samples,)] Target vector relative to X.

sample_weight [array-like of shape (n_samples,) default=None] Array of weights that are
assigned to individual samples. If not provided, then each sample is given unit weight.

Returns

self [object]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict class labels for samples in X.

Parameters

X [array_like or sparse matrix, shape (n_samples, n_features)] Samples.

518 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

Returns

C [array, shape [n_samples]] Predicted class label per sample.

predict_log_proba(X)
Predict logarithm of probability estimates.

The returned estimates for all classes are ordered by the label of classes.

Parameters

X [array-like of shape (n_samples, n_features)] Vector to be scored, where n_samples is
the number of samples and n_features is the number of features.

Returns

T [array-like of shape (n_samples, n_classes)] Returns the log-probability of the sample for
each class in the model, where classes are ordered as they are in self.classes_.

predict_proba(X)
Probability estimates.

The returned estimates for all classes are ordered by the label of classes.

For a multi_class problem, if multi_class is set to be “multinomial” the softmax function is used to find
the predicted probability of each class. Else use a one-vs-rest approach, i.e calculate the probability of
each class assuming it to be positive using the logistic function. and normalize these values across all the
classes.

Parameters

X [array-like of shape (n_samples, n_features)] Vector to be scored, where n_samples is
the number of samples and n_features is the number of features.

Returns

T [array-like of shape (n_samples, n_classes)] Returns the probability of the sample for each
class in the model, where classes are ordered as they are in self.classes_.

score(X, y, sample_weight=None)
Returns the score using the scoring option on the given test data and labels.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples.

y [array-like of shape (n_samples,)] True labels for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] Score of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

4.3. Model selection and evaluation 519

scikit-learn user guide, Release 0.23.2

self [object] Estimator instance.

sparsify()
Convert coefficient matrix to sparse format.

Converts the coef_ member to a scipy.sparse matrix, which for L1-regularized models can be much more
memory- and storage-efficient than the usual numpy.ndarray representation.

The intercept_ member is not converted.

Returns

self Fitted estimator.

Notes

For non-sparse models, i.e. when there are not many zeros in coef_, this may actually increase memory
usage, so use this method with care. A rule of thumb is that the number of zero elements, which can be
computed with (coef_ == 0).sum(), must be more than 50% for this to provide significant benefits.

After calling this method, further fitting with the partial_fit method (if any) will not work until you call
densify.

sklearn.linear_model.MultiTaskElasticNetCV

class sklearn.linear_model.MultiTaskElasticNetCV(*, l1_ratio=0.5, eps=0.001,
n_alphas=100, alphas=None,
fit_intercept=True, normalize=False,
max_iter=1000, tol=0.0001,
cv=None, copy_X=True, verbose=0,
n_jobs=None, random_state=None,
selection=’cyclic’)

Multi-task L1/L2 ElasticNet with built-in cross-validation.

See glossary entry for cross-validation estimator.

The optimization objective for MultiTaskElasticNet is:

(1 / (2 * n_samples)) * ||Y - XW||^Fro_2
+ alpha * l1_ratio * ||W||_21
+ 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

New in version 0.15.

Parameters

l1_ratio [float or list of float, default=0.5] The ElasticNet mixing parameter, with 0 < l1_ratio
<= 1. For l1_ratio = 1 the penalty is an L1/L2 penalty. For l1_ratio = 0 it is an L2 penalty.
For 0 < l1_ratio < 1, the penalty is a combination of L1/L2 and L2. This parameter
can be a list, in which case the different values are tested by cross-validation and the one
giving the best prediction score is used. Note that a good choice of list of values for l1_ratio

520 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

is often to put more values close to 1 (i.e. Lasso) and less close to 0 (i.e. Ridge), as in [.1,
.5, .7, .9, .95, .99, 1]

eps [float, default=1e-3] Length of the path. eps=1e-3 means that alpha_min /
alpha_max = 1e-3.

n_alphas [int, default=100] Number of alphas along the regularization path

alphas [array-like, default=None] List of alphas where to compute the models. If not provided,
set automatically.

fit_intercept [bool, default=True] whether to calculate the intercept for this model. If set to
false, no intercept will be used in calculations (i.e. data is expected to be centered).

normalize [bool, default=False] This parameter is ignored when fit_intercept is set
to False. If True, the regressors X will be normalized before regression by subtract-
ing the mean and dividing by the l2-norm. If you wish to standardize, please use
sklearn.preprocessing.StandardScaler before calling fit on an estimator
with normalize=False.

max_iter [int, default=1000] The maximum number of iterations

tol [float, default=1e-4] The tolerance for the optimization: if the updates are smaller than tol,
the optimization code checks the dual gap for optimality and continues until it is smaller
than tol.

cv [int, cross-validation generator or iterable, default=None] Determines the cross-validation
splitting strategy. Possible inputs for cv are:

• None, to use the default 5-fold cross-validation,

• int, to specify the number of folds.

• CV splitter,

• An iterable yielding (train, test) splits as arrays of indices.

For int/None inputs, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

Changed in version 0.22: cv default value if None changed from 3-fold to 5-fold.

copy_X [bool, default=True] If True, X will be copied; else, it may be overwritten.

verbose [bool or int, default=0] Amount of verbosity.

n_jobs [int, default=None] Number of CPUs to use during the cross validation. Note that this
is used only if multiple values for l1_ratio are given. None means 1 unless in a joblib.
parallel_backend context. -1 means using all processors. See Glossary for more
details.

random_state [int, RandomState instance, default=None] The seed of the pseudo random num-
ber generator that selects a random feature to update. Used when selection == ‘random’.
Pass an int for reproducible output across multiple function calls. See Glossary.

selection [{‘cyclic’, ‘random’}, default=’cyclic’] If set to ‘random’, a random coefficient is up-
dated every iteration rather than looping over features sequentially by default. This (setting
to ‘random’) often leads to significantly faster convergence especially when tol is higher
than 1e-4.

Attributes

intercept_ [ndarray of shape (n_tasks,)] Independent term in decision function.

4.3. Model selection and evaluation 521

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend
https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

coef_ [ndarray of shape (n_tasks, n_features)] Parameter vector (W in the cost function for-
mula). Note that coef_ stores the transpose of W, W.T.

alpha_ [float] The amount of penalization chosen by cross validation

mse_path_ [ndarray of shape (n_alphas, n_folds) or (n_l1_ratio, n_alphas, n_folds)] mean
square error for the test set on each fold, varying alpha

alphas_ [ndarray of shape (n_alphas,) or (n_l1_ratio, n_alphas)] The grid of alphas used for
fitting, for each l1_ratio

l1_ratio_ [float] best l1_ratio obtained by cross-validation.

n_iter_ [int] number of iterations run by the coordinate descent solver to reach the specified
tolerance for the optimal alpha.

See also:

MultiTaskElasticNet

ElasticNetCV

MultiTaskLassoCV

Notes

The algorithm used to fit the model is coordinate descent.

To avoid unnecessary memory duplication the X and y arguments of the fit method should be directly passed as
Fortran-contiguous numpy arrays.

Examples

>>> from sklearn import linear_model
>>> clf = linear_model.MultiTaskElasticNetCV(cv=3)
>>> clf.fit([[0,0], [1, 1], [2, 2]],
... [[0, 0], [1, 1], [2, 2]])
MultiTaskElasticNetCV(cv=3)
>>> print(clf.coef_)
[[0.52875032 0.46958558]
[0.52875032 0.46958558]]
>>> print(clf.intercept_)
[0.00166409 0.00166409]

Methods

fit(X, y) Fit linear model with coordinate descent
get_params([deep]) Get parameters for this estimator.
path(X, y, *[, l1_ratio, eps, n_alphas, . . .]) Compute elastic net path with coordinate descent.
predict(X) Predict using the linear model.
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.

522 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

__init__(*, l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, normal-
ize=False, max_iter=1000, tol=0.0001, cv=None, copy_X=True, verbose=0, n_jobs=None,
random_state=None, selection=’cyclic’)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y)
Fit linear model with coordinate descent

Fit is on grid of alphas and best alpha estimated by cross-validation.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training data. Pass directly
as Fortran-contiguous data to avoid unnecessary memory duplication. If y is mono-output,
X can be sparse.

y [array-like of shape (n_samples,) or (n_samples, n_targets)] Target values

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

static path(X, y, *, l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, precompute=’auto’,
Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, posi-
tive=False, check_input=True, **params)

Compute elastic net path with coordinate descent.

The elastic net optimization function varies for mono and multi-outputs.

For mono-output tasks it is:

1 / (2 * n_samples) * ||y - Xw||^2_2
+ alpha * l1_ratio * ||w||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2

For multi-output tasks it is:

(1 / (2 * n_samples)) * ||Y - XW||^Fro_2
+ alpha * l1_ratio * ||W||_21
+ 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training data. Pass directly
as Fortran-contiguous data to avoid unnecessary memory duplication. If y is mono-output
then X can be sparse.

4.3. Model selection and evaluation 523

scikit-learn user guide, Release 0.23.2

y [{array-like, sparse matrix} of shape (n_samples,) or (n_samples, n_outputs)] Target val-
ues.

l1_ratio [float, default=0.5] Number between 0 and 1 passed to elastic net (scaling between
l1 and l2 penalties). l1_ratio=1 corresponds to the Lasso.

eps [float, default=1e-3] Length of the path. eps=1e-3 means that alpha_min /
alpha_max = 1e-3.

n_alphas [int, default=100] Number of alphas along the regularization path.

alphas [ndarray, default=None] List of alphas where to compute the models. If None alphas
are set automatically.

precompute [‘auto’, bool or array-like of shape (n_features, n_features), default=’auto’]
Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto' let
us decide. The Gram matrix can also be passed as argument.

Xy [array-like of shape (n_features,) or (n_features, n_outputs), default=None] Xy =
np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is pre-
computed.

copy_X [bool, default=True] If True, X will be copied; else, it may be overwritten.

coef_init [ndarray of shape (n_features,), default=None] The initial values of the coeffi-
cients.

verbose [bool or int, default=False] Amount of verbosity.

return_n_iter [bool, default=False] Whether to return the number of iterations or not.

positive [bool, default=False] If set to True, forces coefficients to be positive. (Only allowed
when y.ndim == 1).

check_input [bool, default=True] Skip input validation checks, including the Gram matrix
when provided assuming there are handled by the caller when check_input=False.

**params [kwargs] Keyword arguments passed to the coordinate descent solver.

Returns

alphas [ndarray of shape (n_alphas,)] The alphas along the path where models are com-
puted.

coefs [ndarray of shape (n_features, n_alphas) or (n_outputs, n_features, n_alphas)] Coeffi-
cients along the path.

dual_gaps [ndarray of shape (n_alphas,)] The dual gaps at the end of the optimization for
each alpha.

n_iters [list of int] The number of iterations taken by the coordinate descent optimizer to
reach the specified tolerance for each alpha. (Is returned when return_n_iter is set
to True).

See also:

MultiTaskElasticNet

MultiTaskElasticNetCV

ElasticNet

ElasticNetCV

524 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

Notes

For an example, see examples/linear_model/plot_lasso_coordinate_descent_path.py.

predict(X)
Predict using the linear model.

Parameters

X [array_like or sparse matrix, shape (n_samples, n_features)] Samples.

Returns

C [array, shape (n_samples,)] Returns predicted values.

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

4.3. Model selection and evaluation 525

scikit-learn user guide, Release 0.23.2

sklearn.linear_model.MultiTaskLassoCV

class sklearn.linear_model.MultiTaskLassoCV(*, eps=0.001, n_alphas=100, alphas=None,
fit_intercept=True, normalize=False,
max_iter=1000, tol=0.0001, copy_X=True,
cv=None, verbose=False, n_jobs=None,
random_state=None, selection=’cyclic’)

Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer.

See glossary entry for cross-validation estimator.

The optimization objective for MultiTaskLasso is:

(1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * ||W||_21

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

New in version 0.15.

Parameters

eps [float, default=1e-3] Length of the path. eps=1e-3 means that alpha_min /
alpha_max = 1e-3.

n_alphas [int, default=100] Number of alphas along the regularization path

alphas [array-like, default=None] List of alphas where to compute the models. If not provided,
set automatically.

fit_intercept [bool, default=True] whether to calculate the intercept for this model. If set to
false, no intercept will be used in calculations (i.e. data is expected to be centered).

normalize [bool, default=False] This parameter is ignored when fit_intercept is set
to False. If True, the regressors X will be normalized before regression by subtract-
ing the mean and dividing by the l2-norm. If you wish to standardize, please use
sklearn.preprocessing.StandardScaler before calling fit on an estimator
with normalize=False.

max_iter [int, default=1000] The maximum number of iterations.

tol [float, default=1e-4] The tolerance for the optimization: if the updates are smaller than tol,
the optimization code checks the dual gap for optimality and continues until it is smaller
than tol.

copy_X [bool, default=True] If True, X will be copied; else, it may be overwritten.

cv [int, cross-validation generator or iterable, default=None] Determines the cross-validation
splitting strategy. Possible inputs for cv are:

• None, to use the default 5-fold cross-validation,

• int, to specify the number of folds.

• CV splitter,

• An iterable yielding (train, test) splits as arrays of indices.

526 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

For int/None inputs, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

Changed in version 0.22: cv default value if None changed from 3-fold to 5-fold.

verbose [bool or int, default=False] Amount of verbosity.

n_jobs [int, default=None] Number of CPUs to use during the cross validation. Note that this
is used only if multiple values for l1_ratio are given. None means 1 unless in a joblib.
parallel_backend context. -1 means using all processors. See Glossary for more
details.

random_state [int, RandomState instance, default=None] The seed of the pseudo random num-
ber generator that selects a random feature to update. Used when selection == ‘random’.
Pass an int for reproducible output across multiple function calls. See Glossary.

selection [{‘cyclic’, ‘random’}, default=’cyclic’] If set to ‘random’, a random coefficient is up-
dated every iteration rather than looping over features sequentially by default. This (setting
to ‘random’) often leads to significantly faster convergence especially when tol is higher
than 1e-4.

Attributes

intercept_ [ndarray of shape (n_tasks,)] Independent term in decision function.

coef_ [ndarray of shape (n_tasks, n_features)] Parameter vector (W in the cost function for-
mula). Note that coef_ stores the transpose of W, W.T.

alpha_ [float] The amount of penalization chosen by cross validation

mse_path_ [ndarray of shape (n_alphas, n_folds)] mean square error for the test set on each
fold, varying alpha

alphas_ [ndarray of shape (n_alphas,)] The grid of alphas used for fitting.

n_iter_ [int] number of iterations run by the coordinate descent solver to reach the specified
tolerance for the optimal alpha.

See also:

MultiTaskElasticNet

ElasticNetCV

MultiTaskElasticNetCV

Notes

The algorithm used to fit the model is coordinate descent.

To avoid unnecessary memory duplication the X and y arguments of the fit method should be directly passed as
Fortran-contiguous numpy arrays.

Examples

>>> from sklearn.linear_model import MultiTaskLassoCV
>>> from sklearn.datasets import make_regression
>>> from sklearn.metrics import r2_score
>>> X, y = make_regression(n_targets=2, noise=4, random_state=0)

(continues on next page)

4.3. Model selection and evaluation 527

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend
https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

(continued from previous page)

>>> reg = MultiTaskLassoCV(cv=5, random_state=0).fit(X, y)
>>> r2_score(y, reg.predict(X))
0.9994...
>>> reg.alpha_
0.5713...
>>> reg.predict(X[:1,])
array([[153.7971..., 94.9015...]])

Methods

fit(X, y) Fit linear model with coordinate descent
get_params([deep]) Get parameters for this estimator.
path(X, y, *[, eps, n_alphas, alphas, . . .]) Compute Lasso path with coordinate descent
predict(X) Predict using the linear model.
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.

__init__(*, eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, normalize=False,
max_iter=1000, tol=0.0001, copy_X=True, cv=None, verbose=False, n_jobs=None, ran-
dom_state=None, selection=’cyclic’)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y)
Fit linear model with coordinate descent

Fit is on grid of alphas and best alpha estimated by cross-validation.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training data. Pass directly
as Fortran-contiguous data to avoid unnecessary memory duplication. If y is mono-output,
X can be sparse.

y [array-like of shape (n_samples,) or (n_samples, n_targets)] Target values

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

static path(X, y, *, eps=0.001, n_alphas=100, alphas=None, precompute=’auto’, Xy=None,
copy_X=True, coef_init=None, verbose=False, return_n_iter=False, positive=False,
**params)

Compute Lasso path with coordinate descent

The Lasso optimization function varies for mono and multi-outputs.

For mono-output tasks it is:

528 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

For multi-output tasks it is:

(1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training data. Pass directly
as Fortran-contiguous data to avoid unnecessary memory duplication. If y is mono-output
then X can be sparse.

y [{array-like, sparse matrix} of shape (n_samples,) or (n_samples, n_outputs)] Target val-
ues

eps [float, default=1e-3] Length of the path. eps=1e-3 means that alpha_min /
alpha_max = 1e-3

n_alphas [int, default=100] Number of alphas along the regularization path

alphas [ndarray, default=None] List of alphas where to compute the models. If None alphas
are set automatically

precompute [‘auto’, bool or array-like of shape (n_features, n_features), default=’auto’]
Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto' let
us decide. The Gram matrix can also be passed as argument.

Xy [array-like of shape (n_features,) or (n_features, n_outputs), default=None] Xy =
np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is pre-
computed.

copy_X [bool, default=True] If True, X will be copied; else, it may be overwritten.

coef_init [ndarray of shape (n_features,), default=None] The initial values of the coeffi-
cients.

verbose [bool or int, default=False] Amount of verbosity.

return_n_iter [bool, default=False] whether to return the number of iterations or not.

positive [bool, default=False] If set to True, forces coefficients to be positive. (Only allowed
when y.ndim == 1).

**params [kwargs] keyword arguments passed to the coordinate descent solver.

Returns

alphas [ndarray of shape (n_alphas,)] The alphas along the path where models are com-
puted.

coefs [ndarray of shape (n_features, n_alphas) or (n_outputs, n_features, n_alphas)] Coeffi-
cients along the path.

dual_gaps [ndarray of shape (n_alphas,)] The dual gaps at the end of the optimization for
each alpha.

4.3. Model selection and evaluation 529

scikit-learn user guide, Release 0.23.2

n_iters [list of int] The number of iterations taken by the coordinate descent optimizer to
reach the specified tolerance for each alpha.

See also:

lars_path

Lasso

LassoLars

LassoCV

LassoLarsCV

sklearn.decomposition.sparse_encode

Notes

For an example, see examples/linear_model/plot_lasso_coordinate_descent_path.py.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
Fortran-contiguous numpy array.

Note that in certain cases, the Lars solver may be significantly faster to implement this functionality. In
particular, linear interpolation can be used to retrieve model coefficients between the values output by
lars_path

Examples

Comparing lasso_path and lars_path with interpolation:

>>> X = np.array([[1, 2, 3.1], [2.3, 5.4, 4.3]]).T
>>> y = np.array([1, 2, 3.1])
>>> # Use lasso_path to compute a coefficient path
>>> _, coef_path, _ = lasso_path(X, y, alphas=[5., 1., .5])
>>> print(coef_path)
[[0. 0. 0.46874778]
[0.2159048 0.4425765 0.23689075]]

>>> # Now use lars_path and 1D linear interpolation to compute the
>>> # same path
>>> from sklearn.linear_model import lars_path
>>> alphas, active, coef_path_lars = lars_path(X, y, method='lasso')
>>> from scipy import interpolate
>>> coef_path_continuous = interpolate.interp1d(alphas[::-1],
... coef_path_lars[:, ::-1])
>>> print(coef_path_continuous([5., 1., .5]))
[[0. 0. 0.46915237]
[0.2159048 0.4425765 0.23668876]]

predict(X)
Predict using the linear model.

Parameters

X [array_like or sparse matrix, shape (n_samples, n_features)] Samples.

Returns

530 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

C [array, shape (n_samples,)] Returns predicted values.

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

sklearn.linear_model.OrthogonalMatchingPursuitCV

class sklearn.linear_model.OrthogonalMatchingPursuitCV(*, copy=True,
fit_intercept=True, normal-
ize=True, max_iter=None,
cv=None, n_jobs=None,
verbose=False)

Cross-validated Orthogonal Matching Pursuit model (OMP).

See glossary entry for cross-validation estimator.

Read more in the User Guide.

Parameters

4.3. Model selection and evaluation 531

scikit-learn user guide, Release 0.23.2

copy [bool, optional] Whether the design matrix X must be copied by the algorithm. A false
value is only helpful if X is already Fortran-ordered, otherwise a copy is made anyway.

fit_intercept [boolean, optional] whether to calculate the intercept for this model. If set to false,
no intercept will be used in calculations (i.e. data is expected to be centered).

normalize [boolean, optional, default True] This parameter is ignored when fit_intercept
is set to False. If True, the regressors X will be normalized before regression by sub-
tracting the mean and dividing by the l2-norm. If you wish to standardize, please use
sklearn.preprocessing.StandardScaler before calling fit on an estimator
with normalize=False.

max_iter [integer, optional] Maximum numbers of iterations to perform, therefore maximum
features to include. 10% of n_features but at least 5 if available.

cv [int, cross-validation generator or an iterable, optional] Determines the cross-validation split-
ting strategy. Possible inputs for cv are:

• None, to use the default 5-fold cross-validation,

• integer, to specify the number of folds.

• CV splitter,

• An iterable yielding (train, test) splits as arrays of indices.

For integer/None inputs, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

Changed in version 0.22: cv default value if None changed from 3-fold to 5-fold.

n_jobs [int or None, optional (default=None)] Number of CPUs to use during the cross valida-
tion. None means 1 unless in a joblib.parallel_backend context. -1 means using
all processors. See Glossary for more details.

verbose [boolean or integer, optional] Sets the verbosity amount

Attributes

intercept_ [float or array, shape (n_targets,)] Independent term in decision function.

coef_ [array, shape (n_features,) or (n_targets, n_features)] Parameter vector (w in the problem
formulation).

n_nonzero_coefs_ [int] Estimated number of non-zero coefficients giving the best mean
squared error over the cross-validation folds.

n_iter_ [int or array-like] Number of active features across every target for the model refit with
the best hyperparameters got by cross-validating across all folds.

See also:

orthogonal_mp

orthogonal_mp_gram

lars_path

Lars

LassoLars

OrthogonalMatchingPursuit

LarsCV

532 Chapter 4. User Guide

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

LassoLarsCV

decomposition.sparse_encode

Examples

>>> from sklearn.linear_model import OrthogonalMatchingPursuitCV
>>> from sklearn.datasets import make_regression
>>> X, y = make_regression(n_features=100, n_informative=10,
... noise=4, random_state=0)
>>> reg = OrthogonalMatchingPursuitCV(cv=5).fit(X, y)
>>> reg.score(X, y)
0.9991...
>>> reg.n_nonzero_coefs_
10
>>> reg.predict(X[:1,])
array([-78.3854...])

Methods

fit(X, y) Fit the model using X, y as training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model.
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.

__init__(*, copy=True, fit_intercept=True, normalize=True, max_iter=None, cv=None,
n_jobs=None, verbose=False)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y)
Fit the model using X, y as training data.

Parameters

X [array-like, shape [n_samples, n_features]] Training data.

y [array-like, shape [n_samples]] Target values. Will be cast to X’s dtype if necessary

Returns

self [object] returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict using the linear model.

4.3. Model selection and evaluation 533

scikit-learn user guide, Release 0.23.2

Parameters

X [array_like or sparse matrix, shape (n_samples, n_features)] Samples.

Returns

C [array, shape (n_samples,)] Returns predicted values.

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.linear_model.OrthogonalMatchingPursuitCV

• Orthogonal Matching Pursuit

534 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

sklearn.linear_model.RidgeCV

class sklearn.linear_model.RidgeCV(alphas=(0.1, 1.0, 10.0), *, fit_intercept=True, normal-
ize=False, scoring=None, cv=None, gcv_mode=None,
store_cv_values=False)

Ridge regression with built-in cross-validation.

See glossary entry for cross-validation estimator.

By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-
validation.

Read more in the User Guide.

Parameters

alphas [ndarray of shape (n_alphas,), default=(0.1, 1.0, 10.0)] Array of alpha values to try.
Regularization strength; must be a positive float. Regularization improves the condi-
tioning of the problem and reduces the variance of the estimates. Larger values specify
stronger regularization. Alpha corresponds to 1 / (2C) in other linear models such as
LogisticRegression or sklearn.svm.LinearSVC. If using generalized cross-
validation, alphas must be positive.

fit_intercept [bool, default=True] Whether to calculate the intercept for this model. If set to
false, no intercept will be used in calculations (i.e. data is expected to be centered).

normalize [bool, default=False] This parameter is ignored when fit_intercept is set
to False. If True, the regressors X will be normalized before regression by subtract-
ing the mean and dividing by the l2-norm. If you wish to standardize, please use
sklearn.preprocessing.StandardScaler before calling fit on an estimator
with normalize=False.

scoring [string, callable, default=None] A string (see model evaluation documentation) or a
scorer callable object / function with signature scorer(estimator, X, y). If None,
the negative mean squared error if cv is ‘auto’ or None (i.e. when using generalized cross-
validation), and r2 score otherwise.

cv [int, cross-validation generator or an iterable, default=None] Determines the cross-validation
splitting strategy. Possible inputs for cv are:

• None, to use the efficient Leave-One-Out cross-validation (also known as Generalized
Cross-Validation).

• integer, to specify the number of folds.

• CV splitter,

• An iterable yielding (train, test) splits as arrays of indices.

For integer/None inputs, if y is binary or multiclass, sklearn.model_selection.
StratifiedKFold is used, else, sklearn.model_selection.KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

gcv_mode [{‘auto’, ‘svd’, eigen’}, default=’auto’] Flag indicating which strategy to use when
performing Generalized Cross-Validation. Options are:

'auto' : use 'svd' if n_samples > n_features, otherwise use 'eigen'
'svd' : force use of singular value decomposition of X when X is

dense, eigenvalue decomposition of X^T.X when X is sparse.
'eigen' : force computation via eigendecomposition of X.X^T

4.3. Model selection and evaluation 535

scikit-learn user guide, Release 0.23.2

The ‘auto’ mode is the default and is intended to pick the cheaper option of the two depend-
ing on the shape of the training data.

store_cv_values [bool, default=False] Flag indicating if the cross-validation values correspond-
ing to each alpha should be stored in the cv_values_ attribute (see below). This flag is
only compatible with cv=None (i.e. using Generalized Cross-Validation).

Attributes

cv_values_ [ndarray of shape (n_samples, n_alphas) or shape (n_samples, n_targets,
n_alphas), optional] Cross-validation values for each alpha (only available if
store_cv_values=True and cv=None). After fit() has been called, this at-
tribute will contain the mean squared errors (by default) or the values of the {loss,
score}_func function (if provided in the constructor).

coef_ [ndarray of shape (n_features) or (n_targets, n_features)] Weight vector(s).

intercept_ [float or ndarray of shape (n_targets,)] Independent term in decision function. Set to
0.0 if fit_intercept = False.

alpha_ [float] Estimated regularization parameter.

best_score_ [float] Score of base estimator with best alpha.

See also:

Ridge Ridge regression

RidgeClassifier Ridge classifier

RidgeClassifierCV Ridge classifier with built-in cross validation

Examples

>>> from sklearn.datasets import load_diabetes
>>> from sklearn.linear_model import RidgeCV
>>> X, y = load_diabetes(return_X_y=True)
>>> clf = RidgeCV(alphas=[1e-3, 1e-2, 1e-1, 1]).fit(X, y)
>>> clf.score(X, y)
0.5166...

Methods

fit(X, y[, sample_weight]) Fit Ridge regression model with cv.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model.
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.

__init__(alphas=(0.1, 1.0, 10.0), *, fit_intercept=True, normalize=False, scoring=None, cv=None,
gcv_mode=None, store_cv_values=False)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y, sample_weight=None)
Fit Ridge regression model with cv.

536 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

Parameters

X [ndarray of shape (n_samples, n_features)] Training data. If using GCV, will be cast to
float64 if necessary.

y [ndarray of shape (n_samples,) or (n_samples, n_targets)] Target values. Will be cast to
X’s dtype if necessary.

sample_weight [float or ndarray of shape (n_samples,), default=None] Individual weights
for each sample. If given a float, every sample will have the same weight.

Returns

self [object]

Notes

When sample_weight is provided, the selected hyperparameter may depend on whether we use generalized
cross-validation (cv=None or cv=’auto’) or another form of cross-validation, because only generalized
cross-validation takes the sample weights into account when computing the validation score.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict using the linear model.

Parameters

X [array_like or sparse matrix, shape (n_samples, n_features)] Samples.

Returns

C [array, shape (n_samples,)] Returns predicted values.

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

4.3. Model selection and evaluation 537

scikit-learn user guide, Release 0.23.2

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.linear_model.RidgeCV

• Combine predictors using stacking

• Common pitfalls in interpretation of coefficients of linear models

• Face completion with a multi-output estimators

• Effect of transforming the targets in regression model

sklearn.linear_model.RidgeClassifierCV

class sklearn.linear_model.RidgeClassifierCV(alphas=(0.1, 1.0, 10.0), *,
fit_intercept=True, normalize=False, scor-
ing=None, cv=None, class_weight=None,
store_cv_values=False)

Ridge classifier with built-in cross-validation.

See glossary entry for cross-validation estimator.

By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-
validation. Currently, only the n_features > n_samples case is handled efficiently.

Read more in the User Guide.

Parameters

alphas [ndarray of shape (n_alphas,), default=(0.1, 1.0, 10.0)] Array of alpha values to try.
Regularization strength; must be a positive float. Regularization improves the condi-
tioning of the problem and reduces the variance of the estimates. Larger values specify
stronger regularization. Alpha corresponds to 1 / (2C) in other linear models such as
LogisticRegression or sklearn.svm.LinearSVC.

fit_intercept [bool, default=True] Whether to calculate the intercept for this model. If set to
false, no intercept will be used in calculations (i.e. data is expected to be centered).

538 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

normalize [bool, default=False] This parameter is ignored when fit_intercept is set
to False. If True, the regressors X will be normalized before regression by subtract-
ing the mean and dividing by the l2-norm. If you wish to standardize, please use
sklearn.preprocessing.StandardScaler before calling fit on an estimator
with normalize=False.

scoring [string, callable, default=None] A string (see model evaluation documentation) or a
scorer callable object / function with signature scorer(estimator, X, y).

cv [int, cross-validation generator or an iterable, default=None] Determines the cross-validation
splitting strategy. Possible inputs for cv are:

• None, to use the efficient Leave-One-Out cross-validation

• integer, to specify the number of folds.

• CV splitter,

• An iterable yielding (train, test) splits as arrays of indices.

Refer User Guide for the various cross-validation strategies that can be used here.

class_weight [dict or ‘balanced’, default=None] Weights associated with classes in the form
{class_label: weight}. If not given, all classes are supposed to have weight one.

The “balanced” mode uses the values of y to automatically adjust weights inversely pro-
portional to class frequencies in the input data as n_samples / (n_classes * np.
bincount(y))

store_cv_values [bool, default=False] Flag indicating if the cross-validation values correspond-
ing to each alpha should be stored in the cv_values_ attribute (see below). This flag is
only compatible with cv=None (i.e. using Generalized Cross-Validation).

Attributes

cv_values_ [ndarray of shape (n_samples, n_targets, n_alphas), optional] Cross-validation val-
ues for each alpha (if store_cv_values=True and cv=None). After fit() has been
called, this attribute will contain the mean squared errors (by default) or the values of the
{loss,score}_func function (if provided in the constructor). This attribute exists only
when store_cv_values is True.

coef_ [ndarray of shape (1, n_features) or (n_targets, n_features)] Coefficient of the features in
the decision function.

coef_ is of shape (1, n_features) when the given problem is binary.

intercept_ [float or ndarray of shape (n_targets,)] Independent term in decision function. Set to
0.0 if fit_intercept = False.

alpha_ [float] Estimated regularization parameter.

best_score_ [float] Score of base estimator with best alpha.

classes_ [ndarray of shape (n_classes,)] The classes labels.

See also:

Ridge Ridge regression

RidgeClassifier Ridge classifier

RidgeCV Ridge regression with built-in cross validation

4.3. Model selection and evaluation 539

scikit-learn user guide, Release 0.23.2

Notes

For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is
implemented by taking advantage of the multi-variate response support in Ridge.

Examples

>>> from sklearn.datasets import load_breast_cancer
>>> from sklearn.linear_model import RidgeClassifierCV
>>> X, y = load_breast_cancer(return_X_y=True)
>>> clf = RidgeClassifierCV(alphas=[1e-3, 1e-2, 1e-1, 1]).fit(X, y)
>>> clf.score(X, y)
0.9630...

Methods

decision_function(X) Predict confidence scores for samples.
fit(X, y[, sample_weight]) Fit Ridge classifier with cv.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict class labels for samples in X.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(alphas=(0.1, 1.0, 10.0), *, fit_intercept=True, normalize=False, scoring=None, cv=None,
class_weight=None, store_cv_values=False)

Initialize self. See help(type(self)) for accurate signature.

decision_function(X)
Predict confidence scores for samples.

The confidence score for a sample is the signed distance of that sample to the hyperplane.

Parameters

X [array_like or sparse matrix, shape (n_samples, n_features)] Samples.

Returns

array, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes) Confidence
scores per (sample, class) combination. In the binary case, confidence score for
self.classes_[1] where >0 means this class would be predicted.

fit(X, y, sample_weight=None)
Fit Ridge classifier with cv.

Parameters

X [ndarray of shape (n_samples, n_features)] Training vectors, where n_samples is the num-
ber of samples and n_features is the number of features. When using GCV, will be cast to
float64 if necessary.

y [ndarray of shape (n_samples,)] Target values. Will be cast to X’s dtype if necessary.

sample_weight [float or ndarray of shape (n_samples,), default=None] Individual weights
for each sample. If given a float, every sample will have the same weight.

540 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

Returns

self [object]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict class labels for samples in X.

Parameters

X [array_like or sparse matrix, shape (n_samples, n_features)] Samples.

Returns

C [array, shape [n_samples]] Predicted class label per sample.

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Information Criterion

Some models can offer an information-theoretic closed-form formula of the optimal estimate of the regularization
parameter by computing a single regularization path (instead of several when using cross-validation).

4.3. Model selection and evaluation 541

scikit-learn user guide, Release 0.23.2

Here is the list of models benefiting from the Akaike Information Criterion (AIC) or the Bayesian Information Criterion
(BIC) for automated model selection:

linear_model.LassoLarsIC([criterion, . . .]) Lasso model fit with Lars using BIC or AIC for model
selection

sklearn.linear_model.LassoLarsIC

class sklearn.linear_model.LassoLarsIC(criterion=’aic’, *, fit_intercept=True, ver-
bose=False, normalize=True, precompute=’auto’,
max_iter=500, eps=2.220446049250313e-16,
copy_X=True, positive=False)

Lasso model fit with Lars using BIC or AIC for model selection

The optimization objective for Lasso is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

AIC is the Akaike information criterion and BIC is the Bayes Information criterion. Such criteria are useful
to select the value of the regularization parameter by making a trade-off between the goodness of fit and the
complexity of the model. A good model should explain well the data while being simple.

Read more in the User Guide.

Parameters

criterion [{‘bic’ , ‘aic’}, default=’aic’] The type of criterion to use.

fit_intercept [bool, default=True] whether to calculate the intercept for this model. If set to
false, no intercept will be used in calculations (i.e. data is expected to be centered).

verbose [bool or int, default=False] Sets the verbosity amount

normalize [bool, default=True] This parameter is ignored when fit_intercept is set
to False. If True, the regressors X will be normalized before regression by subtract-
ing the mean and dividing by the l2-norm. If you wish to standardize, please use
sklearn.preprocessing.StandardScaler before calling fit on an estimator
with normalize=False.

precompute [bool, ‘auto’ or array-like, default=’auto’] Whether to use a precomputed Gram
matrix to speed up calculations. If set to 'auto' let us decide. The Gram matrix can also
be passed as argument.

max_iter [int, default=500] Maximum number of iterations to perform. Can be used for early
stopping.

eps [float, optional] The machine-precision regularization in the computation of the Cholesky
diagonal factors. Increase this for very ill-conditioned systems. Unlike the tol parameter in
some iterative optimization-based algorithms, this parameter does not control the tolerance
of the optimization. By default, np.finfo(np.float).eps is used

copy_X [bool, default=True] If True, X will be copied; else, it may be overwritten.

positive [bool, default=False] Restrict coefficients to be >= 0. Be aware that you might want to
remove fit_intercept which is set True by default. Under the positive restriction the model
coefficients do not converge to the ordinary-least-squares solution for small values of alpha.
Only coefficients up to the smallest alpha value (alphas_[alphas_ > 0.].min()
when fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congru-
ence with the solution of the coordinate descent Lasso estimator. As a consequence using

542 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

LassoLarsIC only makes sense for problems where a sparse solution is expected and/or
reached.

Attributes

coef_ [array-like of shape (n_features,)] parameter vector (w in the formulation formula)

intercept_ [float] independent term in decision function.

alpha_ [float] the alpha parameter chosen by the information criterion

n_iter_ [int] number of iterations run by lars_path to find the grid of alphas.

criterion_ [array-like of shape (n_alphas,)] The value of the information criteria (‘aic’, ‘bic’)
across all alphas. The alpha which has the smallest information criterion is chosen. This
value is larger by a factor of n_samples compared to Eqns. 2.15 and 2.16 in (Zou et al,
2007).

See also:

lars_path, LassoLars, LassoLarsCV

Notes

The estimation of the number of degrees of freedom is given by:

“On the degrees of freedom of the lasso” Hui Zou, Trevor Hastie, and Robert Tibshirani Ann. Statist. Volume
35, Number 5 (2007), 2173-2192.

https://en.wikipedia.org/wiki/Akaike_information_criterion https://en.wikipedia.org/wiki/Bayesian_
information_criterion

Examples

>>> from sklearn import linear_model
>>> reg = linear_model.LassoLarsIC(criterion='bic')
>>> reg.fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111])
LassoLarsIC(criterion='bic')
>>> print(reg.coef_)
[0. -1.11...]

Methods

fit(X, y[, copy_X]) Fit the model using X, y as training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model.
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.

__init__(criterion=’aic’, *, fit_intercept=True, verbose=False, normalize=True, precompute=’auto’,
max_iter=500, eps=2.220446049250313e-16, copy_X=True, positive=False)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y, copy_X=None)

4.3. Model selection and evaluation 543

https://en.wikipedia.org/wiki/Akaike_information_criterion
https://en.wikipedia.org/wiki/Bayesian_information_criterion
https://en.wikipedia.org/wiki/Bayesian_information_criterion

scikit-learn user guide, Release 0.23.2

Fit the model using X, y as training data.

Parameters

X [array-like of shape (n_samples, n_features)] training data.

y [array-like of shape (n_samples,)] target values. Will be cast to X’s dtype if necessary

copy_X [bool, default=None] If provided, this parameter will override the choice of copy_X
made at instance creation. If True, X will be copied; else, it may be overwritten.

Returns

self [object] returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict using the linear model.

Parameters

X [array_like or sparse matrix, shape (n_samples, n_features)] Samples.

Returns

C [array, shape (n_samples,)] Returns predicted values.

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

544 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.linear_model.LassoLarsIC

• Lasso model selection: Cross-Validation / AIC / BIC

Out of Bag Estimates

When using ensemble methods base upon bagging, i.e. generating new training sets using sampling with replacement,
part of the training set remains unused. For each classifier in the ensemble, a different part of the training set is left
out.

This left out portion can be used to estimate the generalization error without having to rely on a separate validation
set. This estimate comes “for free” as no additional data is needed and can be used for model selection.

This is currently implemented in the following classes:

ensemble.RandomForestClassifier([. . .]) A random forest classifier.
ensemble.RandomForestRegressor([. . .]) A random forest regressor.
ensemble.ExtraTreesClassifier([. . .]) An extra-trees classifier.
ensemble.ExtraTreesRegressor([n_estimators,
. . .])

An extra-trees regressor.

ensemble.GradientBoostingClassifier(*[,
. . .])

Gradient Boosting for classification.

ensemble.GradientBoostingRegressor(*[,
. . .])

Gradient Boosting for regression.

4.3. Model selection and evaluation 545

scikit-learn user guide, Release 0.23.2

sklearn.ensemble.RandomForestClassifier

class sklearn.ensemble.RandomForestClassifier(n_estimators=100, *, criterion=’gini’,
max_depth=None, min_samples_split=2,
min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_features=’auto’,
max_leaf_nodes=None,
min_impurity_decrease=0.0,
min_impurity_split=None, boot-
strap=True, oob_score=False,
n_jobs=None, random_state=None,
verbose=0, warm_start=False,
class_weight=None, ccp_alpha=0.0,
max_samples=None)

A random forest classifier.

A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the
dataset and uses averaging to improve the predictive accuracy and control over-fitting. The sub-sample size is
controlled with the max_samples parameter if bootstrap=True (default), otherwise the whole dataset is
used to build each tree.

Read more in the User Guide.

Parameters

n_estimators [int, default=100] The number of trees in the forest.

Changed in version 0.22: The default value of n_estimators changed from 10 to 100 in
0.22.

criterion [{“gini”, “entropy”}, default=”gini”] The function to measure the quality of a split.
Supported criteria are “gini” for the Gini impurity and “entropy” for the information gain.
Note: this parameter is tree-specific.

max_depth [int, default=None] The maximum depth of the tree. If None, then nodes are ex-
panded until all leaves are pure or until all leaves contain less than min_samples_split sam-
ples.

min_samples_split [int or float, default=2] The minimum number of samples required to split
an internal node:

• If int, then consider min_samples_split as the minimum number.

• If float, then min_samples_split is a fraction and ceil(min_samples_split
* n_samples) are the minimum number of samples for each split.

Changed in version 0.18: Added float values for fractions.

min_samples_leaf [int or float, default=1] The minimum number of samples required to be
at a leaf node. A split point at any depth will only be considered if it leaves at least
min_samples_leaf training samples in each of the left and right branches. This may
have the effect of smoothing the model, especially in regression.

• If int, then consider min_samples_leaf as the minimum number.

• If float, then min_samples_leaf is a fraction and ceil(min_samples_leaf *
n_samples) are the minimum number of samples for each node.

Changed in version 0.18: Added float values for fractions.

546 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

min_weight_fraction_leaf [float, default=0.0] The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Samples have equal weight
when sample_weight is not provided.

max_features [{“auto”, “sqrt”, “log2”}, int or float, default=”auto”] The number of features to
consider when looking for the best split:

• If int, then consider max_features features at each split.

• If float, then max_features is a fraction and int(max_features *
n_features) features are considered at each split.

• If “auto”, then max_features=sqrt(n_features).

• If “sqrt”, then max_features=sqrt(n_features) (same as “auto”).

• If “log2”, then max_features=log2(n_features).

• If None, then max_features=n_features.

Note: the search for a split does not stop until at least one valid partition of the node samples
is found, even if it requires to effectively inspect more than max_features features.

max_leaf_nodes [int, default=None] Grow trees with max_leaf_nodes in best-first fashion.
Best nodes are defined as relative reduction in impurity. If None then unlimited number of
leaf nodes.

min_impurity_decrease [float, default=0.0] A node will be split if this split induces a decrease
of the impurity greater than or equal to this value.

The weighted impurity decrease equation is the following:

N_t / N * (impurity - N_t_R / N_t * right_impurity
- N_t_L / N_t * left_impurity)

where N is the total number of samples, N_t is the number of samples at the current node,
N_t_L is the number of samples in the left child, and N_t_R is the number of samples in
the right child.

N, N_t, N_t_R and N_t_L all refer to the weighted sum, if sample_weight is passed.

New in version 0.19.

min_impurity_split [float, default=None] Threshold for early stopping in tree growth. A node
will split if its impurity is above the threshold, otherwise it is a leaf.

Deprecated since version 0.19: min_impurity_split has been deprecated in favor of
min_impurity_decrease in 0.19. The default value of min_impurity_split
has changed from 1e-7 to 0 in 0.23 and it will be removed in 0.25. Use
min_impurity_decrease instead.

bootstrap [bool, default=True] Whether bootstrap samples are used when building trees. If
False, the whole dataset is used to build each tree.

oob_score [bool, default=False] Whether to use out-of-bag samples to estimate the generaliza-
tion accuracy.

n_jobs [int, default=None] The number of jobs to run in parallel. fit, predict,
decision_path and apply are all parallelized over the trees. None means 1 unless
in a joblib.parallel_backend context. -1 means using all processors. See Glos-
sary for more details.

random_state [int or RandomState, default=None] Controls both the randomness of the boot-
strapping of the samples used when building trees (if bootstrap=True) and the sampling

4.3. Model selection and evaluation 547

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

of the features to consider when looking for the best split at each node (if max_features
< n_features). See Glossary for details.

verbose [int, default=0] Controls the verbosity when fitting and predicting.

warm_start [bool, default=False] When set to True, reuse the solution of the previous call to
fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. See the
Glossary.

class_weight [{“balanced”, “balanced_subsample”}, dict or list of dicts, default=None]
Weights associated with classes in the form {class_label: weight}. If not given,
all classes are supposed to have weight one. For multi-output problems, a list of dicts can
be provided in the same order as the columns of y.

Note that for multioutput (including multilabel) weights should be defined for each class of
every column in its own dict. For example, for four-class multilabel classification weights
should be [{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}] instead of [{1:1}, {2:5},
{3:1}, {4:1}].

The “balanced” mode uses the values of y to automatically adjust weights inversely pro-
portional to class frequencies in the input data as n_samples / (n_classes * np.
bincount(y))

The “balanced_subsample” mode is the same as “balanced” except that weights are com-
puted based on the bootstrap sample for every tree grown.

For multi-output, the weights of each column of y will be multiplied.

Note that these weights will be multiplied with sample_weight (passed through the fit
method) if sample_weight is specified.

ccp_alpha [non-negative float, default=0.0] Complexity parameter used for Minimal Cost-
Complexity Pruning. The subtree with the largest cost complexity that is smaller than
ccp_alpha will be chosen. By default, no pruning is performed. See Minimal Cost-
Complexity Pruning for details.

New in version 0.22.

max_samples [int or float, default=None] If bootstrap is True, the number of samples to draw
from X to train each base estimator.

• If None (default), then draw X.shape[0] samples.

• If int, then draw max_samples samples.

• If float, then draw max_samples * X.shape[0] samples. Thus, max_samples
should be in the interval (0, 1).

New in version 0.22.

Attributes

base_estimator_ [DecisionTreeClassifier] The child estimator template used to create the col-
lection of fitted sub-estimators.

estimators_ [list of DecisionTreeClassifier] The collection of fitted sub-estimators.

classes_ [ndarray of shape (n_classes,) or a list of such arrays] The classes labels (single output
problem), or a list of arrays of class labels (multi-output problem).

n_classes_ [int or list] The number of classes (single output problem), or a list containing the
number of classes for each output (multi-output problem).

n_features_ [int] The number of features when fit is performed.

548 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

n_outputs_ [int] The number of outputs when fit is performed.

feature_importances_ [ndarray of shape (n_features,)] The impurity-based feature im-
portances.

oob_score_ [float] Score of the training dataset obtained using an out-of-bag estimate. This
attribute exists only when oob_score is True.

oob_decision_function_ [ndarray of shape (n_samples, n_classes)] Decision function com-
puted with out-of-bag estimate on the training set. If n_estimators is small it might
be possible that a data point was never left out during the bootstrap. In this case,
oob_decision_function_ might contain NaN. This attribute exists only when
oob_score is True.

See also:

DecisionTreeClassifier, ExtraTreesClassifier

Notes

The default values for the parameters controlling the size of the trees (e.g. max_depth,
min_samples_leaf, etc.) lead to fully grown and unpruned trees which can potentially be very large on
some data sets. To reduce memory consumption, the complexity and size of the trees should be controlled by
setting those parameter values.

The features are always randomly permuted at each split. Therefore, the best found split may vary, even with
the same training data, max_features=n_features and bootstrap=False, if the improvement of the
criterion is identical for several splits enumerated during the search of the best split. To obtain a deterministic
behaviour during fitting, random_state has to be fixed.

References

[1]

Examples

>>> from sklearn.ensemble import RandomForestClassifier
>>> from sklearn.datasets import make_classification
>>> X, y = make_classification(n_samples=1000, n_features=4,
... n_informative=2, n_redundant=0,
... random_state=0, shuffle=False)
>>> clf = RandomForestClassifier(max_depth=2, random_state=0)
>>> clf.fit(X, y)
RandomForestClassifier(...)
>>> print(clf.predict([[0, 0, 0, 0]]))
[1]

Methods

apply(X) Apply trees in the forest to X, return leaf indices.
decision_path(X) Return the decision path in the forest.
fit(X, y[, sample_weight]) Build a forest of trees from the training set (X, y).

Continued on next page

4.3. Model selection and evaluation 549

scikit-learn user guide, Release 0.23.2

Table 15 – continued from previous page
get_params([deep]) Get parameters for this estimator.
predict(X) Predict class for X.
predict_log_proba(X) Predict class log-probabilities for X.
predict_proba(X) Predict class probabilities for X.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(n_estimators=100, *, criterion=’gini’, max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=’auto’,
max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None,
bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0,
warm_start=False, class_weight=None, ccp_alpha=0.0, max_samples=None)

Initialize self. See help(type(self)) for accurate signature.

apply(X)
Apply trees in the forest to X, return leaf indices.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, its dtype will be converted to dtype=np.float32. If a sparse matrix is provided,
it will be converted into a sparse csr_matrix.

Returns

X_leaves [ndarray of shape (n_samples, n_estimators)] For each datapoint x in X and for
each tree in the forest, return the index of the leaf x ends up in.

decision_path(X)
Return the decision path in the forest.

New in version 0.18.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, its dtype will be converted to dtype=np.float32. If a sparse matrix is provided,
it will be converted into a sparse csr_matrix.

Returns

indicator [sparse matrix of shape (n_samples, n_nodes)] Return a node indicator matrix
where non zero elements indicates that the samples goes through the nodes. The matrix is
of CSR format.

n_nodes_ptr [ndarray of shape (n_estimators + 1,)] The columns from indica-
tor[n_nodes_ptr[i]:n_nodes_ptr[i+1]] gives the indicator value for the i-th estimator.

property feature_importances_
The impurity-based feature importances.

The higher, the more important the feature. The importance of a feature is computed as the (normalized)
total reduction of the criterion brought by that feature. It is also known as the Gini importance.

Warning: impurity-based feature importances can be misleading for high cardinality features (many unique
values). See sklearn.inspection.permutation_importance as an alternative.

Returns

550 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

feature_importances_ [ndarray of shape (n_features,)] The values of this array sum to 1,
unless all trees are single node trees consisting of only the root node, in which case it will
be an array of zeros.

fit(X, y, sample_weight=None)
Build a forest of trees from the training set (X, y).

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The training input samples.
Internally, its dtype will be converted to dtype=np.float32. If a sparse matrix is
provided, it will be converted into a sparse csc_matrix.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] The target values (class labels
in classification, real numbers in regression).

sample_weight [array-like of shape (n_samples,), default=None] Sample weights. If None,
then samples are equally weighted. Splits that would create child nodes with net zero
or negative weight are ignored while searching for a split in each node. In the case of
classification, splits are also ignored if they would result in any single class carrying a
negative weight in either child node.

Returns

self [object]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict class for X.

The predicted class of an input sample is a vote by the trees in the forest, weighted by their probability
estimates. That is, the predicted class is the one with highest mean probability estimate across the trees.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, its dtype will be converted to dtype=np.float32. If a sparse matrix is provided,
it will be converted into a sparse csr_matrix.

Returns

y [ndarray of shape (n_samples,) or (n_samples, n_outputs)] The predicted classes.

predict_log_proba(X)
Predict class log-probabilities for X.

The predicted class log-probabilities of an input sample is computed as the log of the mean predicted class
probabilities of the trees in the forest.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, its dtype will be converted to dtype=np.float32. If a sparse matrix is provided,
it will be converted into a sparse csr_matrix.

4.3. Model selection and evaluation 551

scikit-learn user guide, Release 0.23.2

Returns

p [ndarray of shape (n_samples, n_classes), or a list of n_outputs] such arrays if n_outputs
> 1. The class probabilities of the input samples. The order of the classes corresponds to
that in the attribute classes_.

predict_proba(X)
Predict class probabilities for X.

The predicted class probabilities of an input sample are computed as the mean predicted class probabilities
of the trees in the forest. The class probability of a single tree is the fraction of samples of the same class
in a leaf.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, its dtype will be converted to dtype=np.float32. If a sparse matrix is provided,
it will be converted into a sparse csr_matrix.

Returns

p [ndarray of shape (n_samples, n_classes), or a list of n_outputs] such arrays if n_outputs
> 1. The class probabilities of the input samples. The order of the classes corresponds to
that in the attribute classes_.

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.ensemble.RandomForestClassifier

• Release Highlights for scikit-learn 0.22

• Comparison of Calibration of Classifiers

552 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

• Probability Calibration for 3-class classification

• Classifier comparison

• Inductive Clustering

• Plot class probabilities calculated by the VotingClassifier

• OOB Errors for Random Forests

• Feature transformations with ensembles of trees

• Plot the decision surfaces of ensembles of trees on the iris dataset

• Permutation Importance with Multicollinear or Correlated Features

• Permutation Importance vs Random Forest Feature Importance (MDI)

• ROC Curve with Visualization API

• Classification of text documents using sparse features

sklearn.ensemble.RandomForestRegressor

class sklearn.ensemble.RandomForestRegressor(n_estimators=100, *, criterion=’mse’,
max_depth=None, min_samples_split=2,
min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_features=’auto’,
max_leaf_nodes=None,
min_impurity_decrease=0.0,
min_impurity_split=None, bootstrap=True,
oob_score=False, n_jobs=None,
random_state=None, verbose=0,
warm_start=False, ccp_alpha=0.0,
max_samples=None)

A random forest regressor.

A random forest is a meta estimator that fits a number of classifying decision trees on various sub-samples of
the dataset and uses averaging to improve the predictive accuracy and control over-fitting. The sub-sample size
is controlled with the max_samples parameter if bootstrap=True (default), otherwise the whole dataset
is used to build each tree.

Read more in the User Guide.

Parameters

n_estimators [int, default=100] The number of trees in the forest.

Changed in version 0.22: The default value of n_estimators changed from 10 to 100 in
0.22.

criterion [{“mse”, “mae”}, default=”mse”] The function to measure the quality of a split. Sup-
ported criteria are “mse” for the mean squared error, which is equal to variance reduction as
feature selection criterion, and “mae” for the mean absolute error.

New in version 0.18: Mean Absolute Error (MAE) criterion.

max_depth [int, default=None] The maximum depth of the tree. If None, then nodes are ex-
panded until all leaves are pure or until all leaves contain less than min_samples_split sam-
ples.

4.3. Model selection and evaluation 553

scikit-learn user guide, Release 0.23.2

min_samples_split [int or float, default=2] The minimum number of samples required to split
an internal node:

• If int, then consider min_samples_split as the minimum number.

• If float, then min_samples_split is a fraction and ceil(min_samples_split
* n_samples) are the minimum number of samples for each split.

Changed in version 0.18: Added float values for fractions.

min_samples_leaf [int or float, default=1] The minimum number of samples required to be
at a leaf node. A split point at any depth will only be considered if it leaves at least
min_samples_leaf training samples in each of the left and right branches. This may
have the effect of smoothing the model, especially in regression.

• If int, then consider min_samples_leaf as the minimum number.

• If float, then min_samples_leaf is a fraction and ceil(min_samples_leaf *
n_samples) are the minimum number of samples for each node.

Changed in version 0.18: Added float values for fractions.

min_weight_fraction_leaf [float, default=0.0] The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Samples have equal weight
when sample_weight is not provided.

max_features [{“auto”, “sqrt”, “log2”}, int or float, default=”auto”] The number of features to
consider when looking for the best split:

• If int, then consider max_features features at each split.

• If float, then max_features is a fraction and int(max_features *
n_features) features are considered at each split.

• If “auto”, then max_features=n_features.

• If “sqrt”, then max_features=sqrt(n_features).

• If “log2”, then max_features=log2(n_features).

• If None, then max_features=n_features.

Note: the search for a split does not stop until at least one valid partition of the node samples
is found, even if it requires to effectively inspect more than max_features features.

max_leaf_nodes [int, default=None] Grow trees with max_leaf_nodes in best-first fashion.
Best nodes are defined as relative reduction in impurity. If None then unlimited number of
leaf nodes.

min_impurity_decrease [float, default=0.0] A node will be split if this split induces a decrease
of the impurity greater than or equal to this value.

The weighted impurity decrease equation is the following:

N_t / N * (impurity - N_t_R / N_t * right_impurity
- N_t_L / N_t * left_impurity)

where N is the total number of samples, N_t is the number of samples at the current node,
N_t_L is the number of samples in the left child, and N_t_R is the number of samples in
the right child.

N, N_t, N_t_R and N_t_L all refer to the weighted sum, if sample_weight is passed.

New in version 0.19.

554 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

min_impurity_split [float, default=None] Threshold for early stopping in tree growth. A node
will split if its impurity is above the threshold, otherwise it is a leaf.

Deprecated since version 0.19: min_impurity_split has been deprecated in favor of
min_impurity_decrease in 0.19. The default value of min_impurity_split
has changed from 1e-7 to 0 in 0.23 and it will be removed in 0.25. Use
min_impurity_decrease instead.

bootstrap [bool, default=True] Whether bootstrap samples are used when building trees. If
False, the whole dataset is used to build each tree.

oob_score [bool, default=False] whether to use out-of-bag samples to estimate the R^2 on un-
seen data.

n_jobs [int, default=None] The number of jobs to run in parallel. fit, predict,
decision_path and apply are all parallelized over the trees. None means 1 unless
in a joblib.parallel_backend context. -1 means using all processors. See Glos-
sary for more details.

random_state [int or RandomState, default=None] Controls both the randomness of the boot-
strapping of the samples used when building trees (if bootstrap=True) and the sampling
of the features to consider when looking for the best split at each node (if max_features
< n_features). See Glossary for details.

verbose [int, default=0] Controls the verbosity when fitting and predicting.

warm_start [bool, default=False] When set to True, reuse the solution of the previous call to
fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. See the
Glossary.

ccp_alpha [non-negative float, default=0.0] Complexity parameter used for Minimal Cost-
Complexity Pruning. The subtree with the largest cost complexity that is smaller than
ccp_alpha will be chosen. By default, no pruning is performed. See Minimal Cost-
Complexity Pruning for details.

New in version 0.22.

max_samples [int or float, default=None] If bootstrap is True, the number of samples to draw
from X to train each base estimator.

• If None (default), then draw X.shape[0] samples.

• If int, then draw max_samples samples.

• If float, then draw max_samples * X.shape[0] samples. Thus, max_samples
should be in the interval (0, 1).

New in version 0.22.

Attributes

base_estimator_ [DecisionTreeRegressor] The child estimator template used to create the col-
lection of fitted sub-estimators.

estimators_ [list of DecisionTreeRegressor] The collection of fitted sub-estimators.

feature_importances_ [ndarray of shape (n_features,)] The impurity-based feature im-
portances.

n_features_ [int] The number of features when fit is performed.

n_outputs_ [int] The number of outputs when fit is performed.

4.3. Model selection and evaluation 555

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

oob_score_ [float] Score of the training dataset obtained using an out-of-bag estimate. This
attribute exists only when oob_score is True.

oob_prediction_ [ndarray of shape (n_samples,)] Prediction computed with out-of-bag esti-
mate on the training set. This attribute exists only when oob_score is True.

See also:

DecisionTreeRegressor, ExtraTreesRegressor

Notes

The default values for the parameters controlling the size of the trees (e.g. max_depth,
min_samples_leaf, etc.) lead to fully grown and unpruned trees which can potentially be very large on
some data sets. To reduce memory consumption, the complexity and size of the trees should be controlled by
setting those parameter values.

The features are always randomly permuted at each split. Therefore, the best found split may vary, even with
the same training data, max_features=n_features and bootstrap=False, if the improvement of the
criterion is identical for several splits enumerated during the search of the best split. To obtain a deterministic
behaviour during fitting, random_state has to be fixed.

The default value max_features="auto" uses n_features rather than n_features / 3. The latter
was originally suggested in [1], whereas the former was more recently justified empirically in [2].

References

[1], [2]

Examples

>>> from sklearn.ensemble import RandomForestRegressor
>>> from sklearn.datasets import make_regression
>>> X, y = make_regression(n_features=4, n_informative=2,
... random_state=0, shuffle=False)
>>> regr = RandomForestRegressor(max_depth=2, random_state=0)
>>> regr.fit(X, y)
RandomForestRegressor(...)
>>> print(regr.predict([[0, 0, 0, 0]]))
[-8.32987858]

Methods

apply(X) Apply trees in the forest to X, return leaf indices.
decision_path(X) Return the decision path in the forest.
fit(X, y[, sample_weight]) Build a forest of trees from the training set (X, y).
get_params([deep]) Get parameters for this estimator.
predict(X) Predict regression target for X.
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.

556 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

__init__(n_estimators=100, *, criterion=’mse’, max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=’auto’,
max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None,
bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0,
warm_start=False, ccp_alpha=0.0, max_samples=None)

Initialize self. See help(type(self)) for accurate signature.

apply(X)
Apply trees in the forest to X, return leaf indices.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, its dtype will be converted to dtype=np.float32. If a sparse matrix is provided,
it will be converted into a sparse csr_matrix.

Returns

X_leaves [ndarray of shape (n_samples, n_estimators)] For each datapoint x in X and for
each tree in the forest, return the index of the leaf x ends up in.

decision_path(X)
Return the decision path in the forest.

New in version 0.18.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, its dtype will be converted to dtype=np.float32. If a sparse matrix is provided,
it will be converted into a sparse csr_matrix.

Returns

indicator [sparse matrix of shape (n_samples, n_nodes)] Return a node indicator matrix
where non zero elements indicates that the samples goes through the nodes. The matrix is
of CSR format.

n_nodes_ptr [ndarray of shape (n_estimators + 1,)] The columns from indica-
tor[n_nodes_ptr[i]:n_nodes_ptr[i+1]] gives the indicator value for the i-th estimator.

property feature_importances_
The impurity-based feature importances.

The higher, the more important the feature. The importance of a feature is computed as the (normalized)
total reduction of the criterion brought by that feature. It is also known as the Gini importance.

Warning: impurity-based feature importances can be misleading for high cardinality features (many unique
values). See sklearn.inspection.permutation_importance as an alternative.

Returns

feature_importances_ [ndarray of shape (n_features,)] The values of this array sum to 1,
unless all trees are single node trees consisting of only the root node, in which case it will
be an array of zeros.

fit(X, y, sample_weight=None)
Build a forest of trees from the training set (X, y).

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The training input samples.
Internally, its dtype will be converted to dtype=np.float32. If a sparse matrix is
provided, it will be converted into a sparse csc_matrix.

4.3. Model selection and evaluation 557

scikit-learn user guide, Release 0.23.2

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] The target values (class labels
in classification, real numbers in regression).

sample_weight [array-like of shape (n_samples,), default=None] Sample weights. If None,
then samples are equally weighted. Splits that would create child nodes with net zero
or negative weight are ignored while searching for a split in each node. In the case of
classification, splits are also ignored if they would result in any single class carrying a
negative weight in either child node.

Returns

self [object]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict regression target for X.

The predicted regression target of an input sample is computed as the mean predicted regression targets of
the trees in the forest.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, its dtype will be converted to dtype=np.float32. If a sparse matrix is provided,
it will be converted into a sparse csr_matrix.

Returns

y [ndarray of shape (n_samples,) or (n_samples, n_outputs)] The predicted values.

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

558 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.ensemble.RandomForestRegressor

• Plot individual and voting regression predictions

• Comparing random forests and the multi-output meta estimator

• Combine predictors using stacking

• Prediction Latency

• Imputing missing values with variants of IterativeImputer

• Imputing missing values before building an estimator

sklearn.ensemble.ExtraTreesClassifier

class sklearn.ensemble.ExtraTreesClassifier(n_estimators=100, *, crite-
rion=’gini’, max_depth=None,
min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_features=’auto’,
max_leaf_nodes=None,
min_impurity_decrease=0.0,
min_impurity_split=None, bootstrap=False,
oob_score=False, n_jobs=None,
random_state=None, verbose=0,
warm_start=False, class_weight=None,
ccp_alpha=0.0, max_samples=None)

An extra-trees classifier.

This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on
various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting.

Read more in the User Guide.

Parameters

4.3. Model selection and evaluation 559

scikit-learn user guide, Release 0.23.2

n_estimators [int, default=100] The number of trees in the forest.

Changed in version 0.22: The default value of n_estimators changed from 10 to 100 in
0.22.

criterion [{“gini”, “entropy”}, default=”gini”] The function to measure the quality of a split.
Supported criteria are “gini” for the Gini impurity and “entropy” for the information gain.

max_depth [int, default=None] The maximum depth of the tree. If None, then nodes are ex-
panded until all leaves are pure or until all leaves contain less than min_samples_split sam-
ples.

min_samples_split [int or float, default=2] The minimum number of samples required to split
an internal node:

• If int, then consider min_samples_split as the minimum number.

• If float, then min_samples_split is a fraction and ceil(min_samples_split
* n_samples) are the minimum number of samples for each split.

Changed in version 0.18: Added float values for fractions.

min_samples_leaf [int or float, default=1] The minimum number of samples required to be
at a leaf node. A split point at any depth will only be considered if it leaves at least
min_samples_leaf training samples in each of the left and right branches. This may
have the effect of smoothing the model, especially in regression.

• If int, then consider min_samples_leaf as the minimum number.

• If float, then min_samples_leaf is a fraction and ceil(min_samples_leaf *
n_samples) are the minimum number of samples for each node.

Changed in version 0.18: Added float values for fractions.

min_weight_fraction_leaf [float, default=0.0] The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Samples have equal weight
when sample_weight is not provided.

max_features [{“auto”, “sqrt”, “log2”}, int or float, default=”auto”] The number of features to
consider when looking for the best split:

• If int, then consider max_features features at each split.

• If float, then max_features is a fraction and int(max_features *
n_features) features are considered at each split.

• If “auto”, then max_features=sqrt(n_features).

• If “sqrt”, then max_features=sqrt(n_features).

• If “log2”, then max_features=log2(n_features).

• If None, then max_features=n_features.

Note: the search for a split does not stop until at least one valid partition of the node samples
is found, even if it requires to effectively inspect more than max_features features.

max_leaf_nodes [int, default=None] Grow trees with max_leaf_nodes in best-first fashion.
Best nodes are defined as relative reduction in impurity. If None then unlimited number of
leaf nodes.

min_impurity_decrease [float, default=0.0] A node will be split if this split induces a decrease
of the impurity greater than or equal to this value.

The weighted impurity decrease equation is the following:

560 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

N_t / N * (impurity - N_t_R / N_t * right_impurity
- N_t_L / N_t * left_impurity)

where N is the total number of samples, N_t is the number of samples at the current node,
N_t_L is the number of samples in the left child, and N_t_R is the number of samples in
the right child.

N, N_t, N_t_R and N_t_L all refer to the weighted sum, if sample_weight is passed.

New in version 0.19.

min_impurity_split [float, default=None] Threshold for early stopping in tree growth. A node
will split if its impurity is above the threshold, otherwise it is a leaf.

Deprecated since version 0.19: min_impurity_split has been deprecated in favor of
min_impurity_decrease in 0.19. The default value of min_impurity_split
has changed from 1e-7 to 0 in 0.23 and it will be removed in 0.25. Use
min_impurity_decrease instead.

bootstrap [bool, default=False] Whether bootstrap samples are used when building trees. If
False, the whole dataset is used to build each tree.

oob_score [bool, default=False] Whether to use out-of-bag samples to estimate the generaliza-
tion accuracy.

n_jobs [int, default=None] The number of jobs to run in parallel. fit, predict,
decision_path and apply are all parallelized over the trees. None means 1 unless
in a joblib.parallel_backend context. -1 means using all processors. See Glos-
sary for more details.

random_state [int, RandomState, default=None] Controls 3 sources of randomness:

• the bootstrapping of the samples used when building trees (if bootstrap=True)

• the sampling of the features to consider when looking for the best split at each node (if
max_features < n_features)

• the draw of the splits for each of the max_features

See Glossary for details.

verbose [int, default=0] Controls the verbosity when fitting and predicting.

warm_start [bool, default=False] When set to True, reuse the solution of the previous call to
fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. See the
Glossary.

class_weight [{“balanced”, “balanced_subsample”}, dict or list of dicts, default=None]
Weights associated with classes in the form {class_label: weight}. If not given,
all classes are supposed to have weight one. For multi-output problems, a list of dicts can
be provided in the same order as the columns of y.

Note that for multioutput (including multilabel) weights should be defined for each class of
every column in its own dict. For example, for four-class multilabel classification weights
should be [{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}] instead of [{1:1}, {2:5},
{3:1}, {4:1}].

The “balanced” mode uses the values of y to automatically adjust weights inversely pro-
portional to class frequencies in the input data as n_samples / (n_classes * np.
bincount(y))

4.3. Model selection and evaluation 561

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

The “balanced_subsample” mode is the same as “balanced” except that weights are com-
puted based on the bootstrap sample for every tree grown.

For multi-output, the weights of each column of y will be multiplied.

Note that these weights will be multiplied with sample_weight (passed through the fit
method) if sample_weight is specified.

ccp_alpha [non-negative float, default=0.0] Complexity parameter used for Minimal Cost-
Complexity Pruning. The subtree with the largest cost complexity that is smaller than
ccp_alpha will be chosen. By default, no pruning is performed. See Minimal Cost-
Complexity Pruning for details.

New in version 0.22.

max_samples [int or float, default=None] If bootstrap is True, the number of samples to draw
from X to train each base estimator.

• If None (default), then draw X.shape[0] samples.

• If int, then draw max_samples samples.

• If float, then draw max_samples * X.shape[0] samples. Thus, max_samples
should be in the interval (0, 1).

New in version 0.22.

Attributes

base_estimator_ [ExtraTreesClassifier] The child estimator template used to create the collec-
tion of fitted sub-estimators.

estimators_ [list of DecisionTreeClassifier] The collection of fitted sub-estimators.

classes_ [ndarray of shape (n_classes,) or a list of such arrays] The classes labels (single output
problem), or a list of arrays of class labels (multi-output problem).

n_classes_ [int or list] The number of classes (single output problem), or a list containing the
number of classes for each output (multi-output problem).

feature_importances_ [ndarray of shape (n_features,)] The impurity-based feature im-
portances.

n_features_ [int] The number of features when fit is performed.

n_outputs_ [int] The number of outputs when fit is performed.

oob_score_ [float] Score of the training dataset obtained using an out-of-bag estimate. This
attribute exists only when oob_score is True.

oob_decision_function_ [ndarray of shape (n_samples, n_classes)] Decision function com-
puted with out-of-bag estimate on the training set. If n_estimators is small it might
be possible that a data point was never left out during the bootstrap. In this case,
oob_decision_function_ might contain NaN. This attribute exists only when
oob_score is True.

See also:

sklearn.tree.ExtraTreeClassifier Base classifier for this ensemble.

RandomForestClassifier Ensemble Classifier based on trees with optimal splits.

562 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

Notes

The default values for the parameters controlling the size of the trees (e.g. max_depth,
min_samples_leaf, etc.) lead to fully grown and unpruned trees which can potentially be very large on
some data sets. To reduce memory consumption, the complexity and size of the trees should be controlled by
setting those parameter values.

References

[1]

Examples

>>> from sklearn.ensemble import ExtraTreesClassifier
>>> from sklearn.datasets import make_classification
>>> X, y = make_classification(n_features=4, random_state=0)
>>> clf = ExtraTreesClassifier(n_estimators=100, random_state=0)
>>> clf.fit(X, y)
ExtraTreesClassifier(random_state=0)
>>> clf.predict([[0, 0, 0, 0]])
array([1])

Methods

apply(X) Apply trees in the forest to X, return leaf indices.
decision_path(X) Return the decision path in the forest.
fit(X, y[, sample_weight]) Build a forest of trees from the training set (X, y).
get_params([deep]) Get parameters for this estimator.
predict(X) Predict class for X.
predict_log_proba(X) Predict class log-probabilities for X.
predict_proba(X) Predict class probabilities for X.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(n_estimators=100, *, criterion=’gini’, max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=’auto’,
max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, boot-
strap=False, oob_score=False, n_jobs=None, random_state=None, verbose=0,
warm_start=False, class_weight=None, ccp_alpha=0.0, max_samples=None)

Initialize self. See help(type(self)) for accurate signature.

apply(X)
Apply trees in the forest to X, return leaf indices.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, its dtype will be converted to dtype=np.float32. If a sparse matrix is provided,
it will be converted into a sparse csr_matrix.

Returns

4.3. Model selection and evaluation 563

scikit-learn user guide, Release 0.23.2

X_leaves [ndarray of shape (n_samples, n_estimators)] For each datapoint x in X and for
each tree in the forest, return the index of the leaf x ends up in.

decision_path(X)
Return the decision path in the forest.

New in version 0.18.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, its dtype will be converted to dtype=np.float32. If a sparse matrix is provided,
it will be converted into a sparse csr_matrix.

Returns

indicator [sparse matrix of shape (n_samples, n_nodes)] Return a node indicator matrix
where non zero elements indicates that the samples goes through the nodes. The matrix is
of CSR format.

n_nodes_ptr [ndarray of shape (n_estimators + 1,)] The columns from indica-
tor[n_nodes_ptr[i]:n_nodes_ptr[i+1]] gives the indicator value for the i-th estimator.

property feature_importances_
The impurity-based feature importances.

The higher, the more important the feature. The importance of a feature is computed as the (normalized)
total reduction of the criterion brought by that feature. It is also known as the Gini importance.

Warning: impurity-based feature importances can be misleading for high cardinality features (many unique
values). See sklearn.inspection.permutation_importance as an alternative.

Returns

feature_importances_ [ndarray of shape (n_features,)] The values of this array sum to 1,
unless all trees are single node trees consisting of only the root node, in which case it will
be an array of zeros.

fit(X, y, sample_weight=None)
Build a forest of trees from the training set (X, y).

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The training input samples.
Internally, its dtype will be converted to dtype=np.float32. If a sparse matrix is
provided, it will be converted into a sparse csc_matrix.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] The target values (class labels
in classification, real numbers in regression).

sample_weight [array-like of shape (n_samples,), default=None] Sample weights. If None,
then samples are equally weighted. Splits that would create child nodes with net zero
or negative weight are ignored while searching for a split in each node. In the case of
classification, splits are also ignored if they would result in any single class carrying a
negative weight in either child node.

Returns

self [object]

get_params(deep=True)
Get parameters for this estimator.

Parameters

564 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict class for X.

The predicted class of an input sample is a vote by the trees in the forest, weighted by their probability
estimates. That is, the predicted class is the one with highest mean probability estimate across the trees.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, its dtype will be converted to dtype=np.float32. If a sparse matrix is provided,
it will be converted into a sparse csr_matrix.

Returns

y [ndarray of shape (n_samples,) or (n_samples, n_outputs)] The predicted classes.

predict_log_proba(X)
Predict class log-probabilities for X.

The predicted class log-probabilities of an input sample is computed as the log of the mean predicted class
probabilities of the trees in the forest.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, its dtype will be converted to dtype=np.float32. If a sparse matrix is provided,
it will be converted into a sparse csr_matrix.

Returns

p [ndarray of shape (n_samples, n_classes), or a list of n_outputs] such arrays if n_outputs
> 1. The class probabilities of the input samples. The order of the classes corresponds to
that in the attribute classes_.

predict_proba(X)
Predict class probabilities for X.

The predicted class probabilities of an input sample are computed as the mean predicted class probabilities
of the trees in the forest. The class probability of a single tree is the fraction of samples of the same class
in a leaf.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, its dtype will be converted to dtype=np.float32. If a sparse matrix is provided,
it will be converted into a sparse csr_matrix.

Returns

p [ndarray of shape (n_samples, n_classes), or a list of n_outputs] such arrays if n_outputs
> 1. The class probabilities of the input samples. The order of the classes corresponds to
that in the attribute classes_.

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

4.3. Model selection and evaluation 565

scikit-learn user guide, Release 0.23.2

Parameters

X [array-like of shape (n_samples, n_features)] Test samples.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.ensemble.ExtraTreesClassifier

• Pixel importances with a parallel forest of trees

• Feature importances with forests of trees

• Hashing feature transformation using Totally Random Trees

• Plot the decision surfaces of ensembles of trees on the iris dataset

sklearn.ensemble.ExtraTreesRegressor

class sklearn.ensemble.ExtraTreesRegressor(n_estimators=100, *, crite-
rion=’mse’, max_depth=None,
min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_features=’auto’, max_leaf_nodes=None,
min_impurity_decrease=0.0,
min_impurity_split=None, bootstrap=False,
oob_score=False, n_jobs=None,
random_state=None, verbose=0,
warm_start=False, ccp_alpha=0.0,
max_samples=None)

An extra-trees regressor.

This class implements a meta estimator that fits a number of randomized decision trees (a.k.a. extra-trees) on
various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting.

Read more in the User Guide.

Parameters

566 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

n_estimators [int, default=100] The number of trees in the forest.

Changed in version 0.22: The default value of n_estimators changed from 10 to 100 in
0.22.

criterion [{“mse”, “mae”}, default=”mse”] The function to measure the quality of a split. Sup-
ported criteria are “mse” for the mean squared error, which is equal to variance reduction as
feature selection criterion, and “mae” for the mean absolute error.

New in version 0.18: Mean Absolute Error (MAE) criterion.

max_depth [int, default=None] The maximum depth of the tree. If None, then nodes are ex-
panded until all leaves are pure or until all leaves contain less than min_samples_split sam-
ples.

min_samples_split [int or float, default=2] The minimum number of samples required to split
an internal node:

• If int, then consider min_samples_split as the minimum number.

• If float, then min_samples_split is a fraction and ceil(min_samples_split
* n_samples) are the minimum number of samples for each split.

Changed in version 0.18: Added float values for fractions.

min_samples_leaf [int or float, default=1] The minimum number of samples required to be
at a leaf node. A split point at any depth will only be considered if it leaves at least
min_samples_leaf training samples in each of the left and right branches. This may
have the effect of smoothing the model, especially in regression.

• If int, then consider min_samples_leaf as the minimum number.

• If float, then min_samples_leaf is a fraction and ceil(min_samples_leaf *
n_samples) are the minimum number of samples for each node.

Changed in version 0.18: Added float values for fractions.

min_weight_fraction_leaf [float, default=0.0] The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Samples have equal weight
when sample_weight is not provided.

max_features [{“auto”, “sqrt”, “log2”} int or float, default=”auto”] The number of features to
consider when looking for the best split:

• If int, then consider max_features features at each split.

• If float, then max_features is a fraction and int(max_features *
n_features) features are considered at each split.

• If “auto”, then max_features=n_features.

• If “sqrt”, then max_features=sqrt(n_features).

• If “log2”, then max_features=log2(n_features).

• If None, then max_features=n_features.

Note: the search for a split does not stop until at least one valid partition of the node samples
is found, even if it requires to effectively inspect more than max_features features.

max_leaf_nodes [int, default=None] Grow trees with max_leaf_nodes in best-first fashion.
Best nodes are defined as relative reduction in impurity. If None then unlimited number of
leaf nodes.

4.3. Model selection and evaluation 567

scikit-learn user guide, Release 0.23.2

min_impurity_decrease [float, default=0.0] A node will be split if this split induces a decrease
of the impurity greater than or equal to this value.

The weighted impurity decrease equation is the following:

N_t / N * (impurity - N_t_R / N_t * right_impurity
- N_t_L / N_t * left_impurity)

where N is the total number of samples, N_t is the number of samples at the current node,
N_t_L is the number of samples in the left child, and N_t_R is the number of samples in
the right child.

N, N_t, N_t_R and N_t_L all refer to the weighted sum, if sample_weight is passed.

New in version 0.19.

min_impurity_split [float, default=None] Threshold for early stopping in tree growth. A node
will split if its impurity is above the threshold, otherwise it is a leaf.

Deprecated since version 0.19: min_impurity_split has been deprecated in favor of
min_impurity_decrease in 0.19. The default value of min_impurity_split
has changed from 1e-7 to 0 in 0.23 and it will be removed in 0.25. Use
min_impurity_decrease instead.

bootstrap [bool, default=False] Whether bootstrap samples are used when building trees. If
False, the whole dataset is used to build each tree.

oob_score [bool, default=False] Whether to use out-of-bag samples to estimate the R^2 on
unseen data.

n_jobs [int, default=None] The number of jobs to run in parallel. fit, predict,
decision_path and apply are all parallelized over the trees. None means 1 unless
in a joblib.parallel_backend context. -1 means using all processors. See Glos-
sary for more details.

random_state [int or RandomState, default=None] Controls 3 sources of randomness:

• the bootstrapping of the samples used when building trees (if bootstrap=True)

• the sampling of the features to consider when looking for the best split at each node (if
max_features < n_features)

• the draw of the splits for each of the max_features

See Glossary for details.

verbose [int, default=0] Controls the verbosity when fitting and predicting.

warm_start [bool, default=False] When set to True, reuse the solution of the previous call to
fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. See the
Glossary.

ccp_alpha [non-negative float, default=0.0] Complexity parameter used for Minimal Cost-
Complexity Pruning. The subtree with the largest cost complexity that is smaller than
ccp_alpha will be chosen. By default, no pruning is performed. See Minimal Cost-
Complexity Pruning for details.

New in version 0.22.

max_samples [int or float, default=None] If bootstrap is True, the number of samples to draw
from X to train each base estimator.

• If None (default), then draw X.shape[0] samples.

568 Chapter 4. User Guide

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

• If int, then draw max_samples samples.

• If float, then draw max_samples * X.shape[0] samples. Thus, max_samples
should be in the interval (0, 1).

New in version 0.22.

Attributes

base_estimator_ [ExtraTreeRegressor] The child estimator template used to create the collec-
tion of fitted sub-estimators.

estimators_ [list of DecisionTreeRegressor] The collection of fitted sub-estimators.

feature_importances_ [ndarray of shape (n_features,)] The impurity-based feature im-
portances.

n_features_ [int] The number of features.

n_outputs_ [int] The number of outputs.

oob_score_ [float] Score of the training dataset obtained using an out-of-bag estimate. This
attribute exists only when oob_score is True.

oob_prediction_ [ndarray of shape (n_samples,)] Prediction computed with out-of-bag esti-
mate on the training set. This attribute exists only when oob_score is True.

See also:

sklearn.tree.ExtraTreeRegressor Base estimator for this ensemble.

RandomForestRegressor Ensemble regressor using trees with optimal splits.

Notes

The default values for the parameters controlling the size of the trees (e.g. max_depth,
min_samples_leaf, etc.) lead to fully grown and unpruned trees which can potentially be very large on
some data sets. To reduce memory consumption, the complexity and size of the trees should be controlled by
setting those parameter values.

References

[1]

Examples

>>> from sklearn.datasets import load_diabetes
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.ensemble import ExtraTreesRegressor
>>> X, y = load_diabetes(return_X_y=True)
>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, random_state=0)
>>> reg = ExtraTreesRegressor(n_estimators=100, random_state=0).fit(
... X_train, y_train)
>>> reg.score(X_test, y_test)
0.2708...

4.3. Model selection and evaluation 569

scikit-learn user guide, Release 0.23.2

Methods

apply(X) Apply trees in the forest to X, return leaf indices.
decision_path(X) Return the decision path in the forest.
fit(X, y[, sample_weight]) Build a forest of trees from the training set (X, y).
get_params([deep]) Get parameters for this estimator.
predict(X) Predict regression target for X.
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.

__init__(n_estimators=100, *, criterion=’mse’, max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=’auto’,
max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, boot-
strap=False, oob_score=False, n_jobs=None, random_state=None, verbose=0,
warm_start=False, ccp_alpha=0.0, max_samples=None)

Initialize self. See help(type(self)) for accurate signature.

apply(X)
Apply trees in the forest to X, return leaf indices.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, its dtype will be converted to dtype=np.float32. If a sparse matrix is provided,
it will be converted into a sparse csr_matrix.

Returns

X_leaves [ndarray of shape (n_samples, n_estimators)] For each datapoint x in X and for
each tree in the forest, return the index of the leaf x ends up in.

decision_path(X)
Return the decision path in the forest.

New in version 0.18.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, its dtype will be converted to dtype=np.float32. If a sparse matrix is provided,
it will be converted into a sparse csr_matrix.

Returns

indicator [sparse matrix of shape (n_samples, n_nodes)] Return a node indicator matrix
where non zero elements indicates that the samples goes through the nodes. The matrix is
of CSR format.

n_nodes_ptr [ndarray of shape (n_estimators + 1,)] The columns from indica-
tor[n_nodes_ptr[i]:n_nodes_ptr[i+1]] gives the indicator value for the i-th estimator.

property feature_importances_
The impurity-based feature importances.

The higher, the more important the feature. The importance of a feature is computed as the (normalized)
total reduction of the criterion brought by that feature. It is also known as the Gini importance.

Warning: impurity-based feature importances can be misleading for high cardinality features (many unique
values). See sklearn.inspection.permutation_importance as an alternative.

570 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

Returns

feature_importances_ [ndarray of shape (n_features,)] The values of this array sum to 1,
unless all trees are single node trees consisting of only the root node, in which case it will
be an array of zeros.

fit(X, y, sample_weight=None)
Build a forest of trees from the training set (X, y).

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The training input samples.
Internally, its dtype will be converted to dtype=np.float32. If a sparse matrix is
provided, it will be converted into a sparse csc_matrix.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] The target values (class labels
in classification, real numbers in regression).

sample_weight [array-like of shape (n_samples,), default=None] Sample weights. If None,
then samples are equally weighted. Splits that would create child nodes with net zero
or negative weight are ignored while searching for a split in each node. In the case of
classification, splits are also ignored if they would result in any single class carrying a
negative weight in either child node.

Returns

self [object]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict regression target for X.

The predicted regression target of an input sample is computed as the mean predicted regression targets of
the trees in the forest.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, its dtype will be converted to dtype=np.float32. If a sparse matrix is provided,
it will be converted into a sparse csr_matrix.

Returns

y [ndarray of shape (n_samples,) or (n_samples, n_outputs)] The predicted values.

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

4.3. Model selection and evaluation 571

scikit-learn user guide, Release 0.23.2

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.ensemble.ExtraTreesRegressor

• Face completion with a multi-output estimators

• Imputing missing values with variants of IterativeImputer

572 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

sklearn.ensemble.GradientBoostingClassifier

class sklearn.ensemble.GradientBoostingClassifier(*, loss=’deviance’, learn-
ing_rate=0.1, n_estimators=100,
subsample=1.0, crite-
rion=’friedman_mse’,
min_samples_split=2,
min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_depth=3,
min_impurity_decrease=0.0,
min_impurity_split=None,
init=None, random_state=None,
max_features=None, ver-
bose=0, max_leaf_nodes=None,
warm_start=False, pre-
sort=’deprecated’, val-
idation_fraction=0.1,
n_iter_no_change=None,
tol=0.0001, ccp_alpha=0.0)

Gradient Boosting for classification.

GB builds an additive model in a forward stage-wise fashion; it allows for the optimization of arbitrary differen-
tiable loss functions. In each stage n_classes_ regression trees are fit on the negative gradient of the binomial
or multinomial deviance loss function. Binary classification is a special case where only a single regression tree
is induced.

Read more in the User Guide.

Parameters

loss [{‘deviance’, ‘exponential’}, default=’deviance’] loss function to be optimized. ‘deviance’
refers to deviance (= logistic regression) for classification with probabilistic outputs. For
loss ‘exponential’ gradient boosting recovers the AdaBoost algorithm.

learning_rate [float, default=0.1] learning rate shrinks the contribution of each tree by
learning_rate. There is a trade-off between learning_rate and n_estimators.

n_estimators [int, default=100] The number of boosting stages to perform. Gradient boosting
is fairly robust to over-fitting so a large number usually results in better performance.

subsample [float, default=1.0] The fraction of samples to be used for fitting the individual base
learners. If smaller than 1.0 this results in Stochastic Gradient Boosting. subsample
interacts with the parameter n_estimators. Choosing subsample < 1.0 leads to a
reduction of variance and an increase in bias.

criterion [{‘friedman_mse’, ‘mse’, ‘mae’}, default=’friedman_mse’] The function to measure
the quality of a split. Supported criteria are ‘friedman_mse’ for the mean squared error with
improvement score by Friedman, ‘mse’ for mean squared error, and ‘mae’ for the mean
absolute error. The default value of ‘friedman_mse’ is generally the best as it can provide a
better approximation in some cases.

New in version 0.18.

min_samples_split [int or float, default=2] The minimum number of samples required to split
an internal node:

• If int, then consider min_samples_split as the minimum number.

4.3. Model selection and evaluation 573

scikit-learn user guide, Release 0.23.2

• If float, then min_samples_split is a fraction and ceil(min_samples_split
* n_samples) are the minimum number of samples for each split.

Changed in version 0.18: Added float values for fractions.

min_samples_leaf [int or float, default=1] The minimum number of samples required to be
at a leaf node. A split point at any depth will only be considered if it leaves at least
min_samples_leaf training samples in each of the left and right branches. This may
have the effect of smoothing the model, especially in regression.

• If int, then consider min_samples_leaf as the minimum number.

• If float, then min_samples_leaf is a fraction and ceil(min_samples_leaf *
n_samples) are the minimum number of samples for each node.

Changed in version 0.18: Added float values for fractions.

min_weight_fraction_leaf [float, default=0.0] The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Samples have equal weight
when sample_weight is not provided.

max_depth [int, default=3] maximum depth of the individual regression estimators. The maxi-
mum depth limits the number of nodes in the tree. Tune this parameter for best performance;
the best value depends on the interaction of the input variables.

min_impurity_decrease [float, default=0.0] A node will be split if this split induces a decrease
of the impurity greater than or equal to this value.

The weighted impurity decrease equation is the following:

N_t / N * (impurity - N_t_R / N_t * right_impurity
- N_t_L / N_t * left_impurity)

where N is the total number of samples, N_t is the number of samples at the current node,
N_t_L is the number of samples in the left child, and N_t_R is the number of samples in
the right child.

N, N_t, N_t_R and N_t_L all refer to the weighted sum, if sample_weight is passed.

New in version 0.19.

min_impurity_split [float, default=None] Threshold for early stopping in tree growth. A node
will split if its impurity is above the threshold, otherwise it is a leaf.

Deprecated since version 0.19: min_impurity_split has been deprecated in favor of
min_impurity_decrease in 0.19. The default value of min_impurity_split
has changed from 1e-7 to 0 in 0.23 and it will be removed in 0.25. Use
min_impurity_decrease instead.

init [estimator or ‘zero’, default=None] An estimator object that is used to compute the initial
predictions. init has to provide fit and predict_proba. If ‘zero’, the initial raw
predictions are set to zero. By default, a DummyEstimator predicting the classes priors
is used.

random_state [int or RandomState, default=None] Controls the random seed given to each
Tree estimator at each boosting iteration. In addition, it controls the random permutation of
the features at each split (see Notes for more details). It also controls the random spliting of
the training data to obtain a validation set if n_iter_no_change is not None. Pass an
int for reproducible output across multiple function calls. See Glossary.

max_features [{‘auto’, ‘sqrt’, ‘log2’}, int or float, default=None] The number of features to
consider when looking for the best split:

574 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

• If int, then consider max_features features at each split.

• If float, then max_features is a fraction and int(max_features *
n_features) features are considered at each split.

• If ‘auto’, then max_features=sqrt(n_features).

• If ‘sqrt’, then max_features=sqrt(n_features).

• If ‘log2’, then max_features=log2(n_features).

• If None, then max_features=n_features.

Choosing max_features < n_features leads to a reduction of variance and an in-
crease in bias.

Note: the search for a split does not stop until at least one valid partition of the node samples
is found, even if it requires to effectively inspect more than max_features features.

verbose [int, default=0] Enable verbose output. If 1 then it prints progress and performance
once in a while (the more trees the lower the frequency). If greater than 1 then it prints
progress and performance for every tree.

max_leaf_nodes [int, default=None] Grow trees with max_leaf_nodes in best-first fashion.
Best nodes are defined as relative reduction in impurity. If None then unlimited number of
leaf nodes.

warm_start [bool, default=False] When set to True, reuse the solution of the previous call to
fit and add more estimators to the ensemble, otherwise, just erase the previous solution. See
the Glossary.

presort [deprecated, default=’deprecated’] This parameter is deprecated and will be removed
in v0.24.

Deprecated since version 0.22.

validation_fraction [float, default=0.1] The proportion of training data to set aside as validation
set for early stopping. Must be between 0 and 1. Only used if n_iter_no_change is set
to an integer.

New in version 0.20.

n_iter_no_change [int, default=None] n_iter_no_change is used to decide if early stop-
ping will be used to terminate training when validation score is not improving. By de-
fault it is set to None to disable early stopping. If set to a number, it will set aside
validation_fraction size of the training data as validation and terminate training
when validation score is not improving in all of the previous n_iter_no_change num-
bers of iterations. The split is stratified.

New in version 0.20.

tol [float, default=1e-4] Tolerance for the early stopping. When the loss is not improving by at
least tol for n_iter_no_change iterations (if set to a number), the training stops.

New in version 0.20.

ccp_alpha [non-negative float, default=0.0] Complexity parameter used for Minimal Cost-
Complexity Pruning. The subtree with the largest cost complexity that is smaller than
ccp_alpha will be chosen. By default, no pruning is performed. See Minimal Cost-
Complexity Pruning for details.

New in version 0.22.

Attributes

4.3. Model selection and evaluation 575

scikit-learn user guide, Release 0.23.2

n_estimators_ [int] The number of estimators as selected by early stopping (if
n_iter_no_change is specified). Otherwise it is set to n_estimators.

New in version 0.20.

feature_importances_ [ndarray of shape (n_features,)] The impurity-based feature im-
portances.

oob_improvement_ [ndarray of shape (n_estimators,)] The improvement in loss (= deviance)
on the out-of-bag samples relative to the previous iteration. oob_improvement_[0]
is the improvement in loss of the first stage over the init estimator. Only available if
subsample < 1.0

train_score_ [ndarray of shape (n_estimators,)] The i-th score train_score_[i] is the
deviance (= loss) of the model at iteration i on the in-bag sample. If subsample == 1
this is the deviance on the training data.

loss_ [LossFunction] The concrete LossFunction object.

init_ [estimator] The estimator that provides the initial predictions. Set via the init argument
or loss.init_estimator.

estimators_ [ndarray of DecisionTreeRegressor of shape (n_estimators, loss_.K)] The col-
lection of fitted sub-estimators. loss_.K is 1 for binary classification, otherwise n_classes.

classes_ [ndarray of shape (n_classes,)] The classes labels.

n_features_ [int] The number of data features.

n_classes_ [int] The number of classes.

max_features_ [int] The inferred value of max_features.

See also:

sklearn.ensemble.HistGradientBoostingClassifier

sklearn.tree.DecisionTreeClassifier, RandomForestClassifier

AdaBoostClassifier

Notes

The features are always randomly permuted at each split. Therefore, the best found split may vary, even with
the same training data and max_features=n_features, if the improvement of the criterion is identical for
several splits enumerated during the search of the best split. To obtain a deterministic behaviour during fitting,
random_state has to be fixed.

References

J. Friedman, Greedy Function Approximation: A Gradient Boosting Machine, The Annals of Statistics, Vol. 29,
No. 5, 2001.

J. Friedman, Stochastic Gradient Boosting, 1999

T. Hastie, R. Tibshirani and J. Friedman. Elements of Statistical Learning Ed. 2, Springer, 2009.

576 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

Examples

>>> from sklearn.datasets import make_classification
>>> from sklearn.ensemble import GradientBoostingClassifier
>>> from sklearn.model_selection import train_test_split
>>> X, y = make_classification(random_state=0)
>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, random_state=0)
>>> clf = GradientBoostingClassifier(random_state=0)
>>> clf.fit(X_train, y_train)
GradientBoostingClassifier(random_state=0)
>>> clf.predict(X_test[:2])
array([1, 0])
>>> clf.score(X_test, y_test)
0.88

Methods

apply(X) Apply trees in the ensemble to X, return leaf indices.
decision_function(X) Compute the decision function of X.
fit(X, y[, sample_weight, monitor]) Fit the gradient boosting model.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict class for X.
predict_log_proba(X) Predict class log-probabilities for X.
predict_proba(X) Predict class probabilities for X.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.
staged_decision_function(X) Compute decision function of X for each iteration.
staged_predict(X) Predict class at each stage for X.
staged_predict_proba(X) Predict class probabilities at each stage for X.

__init__(*, loss=’deviance’, learning_rate=0.1, n_estimators=100, subsample=1.0,
criterion=’friedman_mse’, min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0, max_depth=3, min_impurity_decrease=0.0,
min_impurity_split=None, init=None, random_state=None, max_features=None, ver-
bose=0, max_leaf_nodes=None, warm_start=False, presort=’deprecated’, valida-
tion_fraction=0.1, n_iter_no_change=None, tol=0.0001, ccp_alpha=0.0)

Initialize self. See help(type(self)) for accurate signature.

apply(X)
Apply trees in the ensemble to X, return leaf indices.

New in version 0.17.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, its dtype will be converted to dtype=np.float32. If a sparse matrix is provided,
it will be converted to a sparse csr_matrix.

Returns

X_leaves [array-like of shape (n_samples, n_estimators, n_classes)] For each datapoint x in
X and for each tree in the ensemble, return the index of the leaf x ends up in each estimator.

4.3. Model selection and evaluation 577

scikit-learn user guide, Release 0.23.2

In the case of binary classification n_classes is 1.

decision_function(X)
Compute the decision function of X.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, it will be converted to dtype=np.float32 and if a sparse matrix is provided to
a sparse csr_matrix.

Returns

score [ndarray of shape (n_samples, n_classes) or (n_samples,)] The decision function of
the input samples, which corresponds to the raw values predicted from the trees of the
ensemble . The order of the classes corresponds to that in the attribute classes_. Regression
and binary classification produce an array of shape [n_samples].

property feature_importances_
The impurity-based feature importances.

The higher, the more important the feature. The importance of a feature is computed as the (normalized)
total reduction of the criterion brought by that feature. It is also known as the Gini importance.

Warning: impurity-based feature importances can be misleading for high cardinality features (many unique
values). See sklearn.inspection.permutation_importance as an alternative.

Returns

feature_importances_ [array, shape (n_features,)] The values of this array sum to 1, unless
all trees are single node trees consisting of only the root node, in which case it will be an
array of zeros.

fit(X, y, sample_weight=None, monitor=None)
Fit the gradient boosting model.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, it will be converted to dtype=np.float32 and if a sparse matrix is provided to
a sparse csr_matrix.

y [array-like of shape (n_samples,)] Target values (strings or integers in classification, real
numbers in regression) For classification, labels must correspond to classes.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights. If None,
then samples are equally weighted. Splits that would create child nodes with net zero
or negative weight are ignored while searching for a split in each node. In the case of
classification, splits are also ignored if they would result in any single class carrying a
negative weight in either child node.

monitor [callable, default=None] The monitor is called after each iteration with the current
iteration, a reference to the estimator and the local variables of _fit_stages as key-
word arguments callable(i, self, locals()). If the callable returns True the
fitting procedure is stopped. The monitor can be used for various things such as computing
held-out estimates, early stopping, model introspect, and snapshoting.

Returns

self [object]

get_params(deep=True)
Get parameters for this estimator.

578 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict class for X.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, it will be converted to dtype=np.float32 and if a sparse matrix is provided to
a sparse csr_matrix.

Returns

y [ndarray of shape (n_samples,)] The predicted values.

predict_log_proba(X)
Predict class log-probabilities for X.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, it will be converted to dtype=np.float32 and if a sparse matrix is provided to
a sparse csr_matrix.

Returns

p [ndarray of shape (n_samples, n_classes)] The class log-probabilities of the input samples.
The order of the classes corresponds to that in the attribute classes_.

Raises

AttributeError If the loss does not support probabilities.

predict_proba(X)
Predict class probabilities for X.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, it will be converted to dtype=np.float32 and if a sparse matrix is provided to
a sparse csr_matrix.

Returns

p [ndarray of shape (n_samples, n_classes)] The class probabilities of the input samples.
The order of the classes corresponds to that in the attribute classes_.

Raises

AttributeError If the loss does not support probabilities.

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples.

4.3. Model selection and evaluation 579

scikit-learn user guide, Release 0.23.2

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

staged_decision_function(X)
Compute decision function of X for each iteration.

This method allows monitoring (i.e. determine error on testing set) after each stage.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, it will be converted to dtype=np.float32 and if a sparse matrix is provided to
a sparse csr_matrix.

Returns

score [generator of ndarray of shape (n_samples, k)] The decision function of the input sam-
ples, which corresponds to the raw values predicted from the trees of the ensemble . The
classes corresponds to that in the attribute classes_. Regression and binary classification
are special cases with k == 1, otherwise k==n_classes.

staged_predict(X)
Predict class at each stage for X.

This method allows monitoring (i.e. determine error on testing set) after each stage.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, it will be converted to dtype=np.float32 and if a sparse matrix is provided to
a sparse csr_matrix.

Returns

y [generator of ndarray of shape (n_samples,)] The predicted value of the input samples.

staged_predict_proba(X)
Predict class probabilities at each stage for X.

This method allows monitoring (i.e. determine error on testing set) after each stage.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, it will be converted to dtype=np.float32 and if a sparse matrix is provided to
a sparse csr_matrix.

580 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

Returns

y [generator of ndarray of shape (n_samples,)] The predicted value of the input samples.

Examples using sklearn.ensemble.GradientBoostingClassifier

• Gradient Boosting regularization

• Early stopping of Gradient Boosting

• Feature transformations with ensembles of trees

• Gradient Boosting Out-of-Bag estimates

• Feature discretization

sklearn.ensemble.GradientBoostingRegressor

class sklearn.ensemble.GradientBoostingRegressor(*, loss=’ls’, learning_rate=0.1,
n_estimators=100, subsam-
ple=1.0, criterion=’friedman_mse’,
min_samples_split=2,
min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_depth=3,
min_impurity_decrease=0.0,
min_impurity_split=None,
init=None, random_state=None,
max_features=None, alpha=0.9, ver-
bose=0, max_leaf_nodes=None,
warm_start=False, pre-
sort=’deprecated’, val-
idation_fraction=0.1,
n_iter_no_change=None,
tol=0.0001, ccp_alpha=0.0)

Gradient Boosting for regression.

GB builds an additive model in a forward stage-wise fashion; it allows for the optimization of arbitrary differ-
entiable loss functions. In each stage a regression tree is fit on the negative gradient of the given loss function.

Read more in the User Guide.

Parameters

loss [{‘ls’, ‘lad’, ‘huber’, ‘quantile’}, default=’ls’] loss function to be optimized. ‘ls’ refers
to least squares regression. ‘lad’ (least absolute deviation) is a highly robust loss function
solely based on order information of the input variables. ‘huber’ is a combination of the
two. ‘quantile’ allows quantile regression (use alpha to specify the quantile).

learning_rate [float, default=0.1] learning rate shrinks the contribution of each tree by
learning_rate. There is a trade-off between learning_rate and n_estimators.

n_estimators [int, default=100] The number of boosting stages to perform. Gradient boosting
is fairly robust to over-fitting so a large number usually results in better performance.

subsample [float, default=1.0] The fraction of samples to be used for fitting the individual base
learners. If smaller than 1.0 this results in Stochastic Gradient Boosting. subsample

4.3. Model selection and evaluation 581

scikit-learn user guide, Release 0.23.2

interacts with the parameter n_estimators. Choosing subsample < 1.0 leads to a
reduction of variance and an increase in bias.

criterion [{‘friedman_mse’, ‘mse’, ‘mae’}, default=’friedman_mse’] The function to measure
the quality of a split. Supported criteria are “friedman_mse” for the mean squared error
with improvement score by Friedman, “mse” for mean squared error, and “mae” for the
mean absolute error. The default value of “friedman_mse” is generally the best as it can
provide a better approximation in some cases.

New in version 0.18.

min_samples_split [int or float, default=2] The minimum number of samples required to split
an internal node:

• If int, then consider min_samples_split as the minimum number.

• If float, then min_samples_split is a fraction and ceil(min_samples_split
* n_samples) are the minimum number of samples for each split.

Changed in version 0.18: Added float values for fractions.

min_samples_leaf [int or float, default=1] The minimum number of samples required to be
at a leaf node. A split point at any depth will only be considered if it leaves at least
min_samples_leaf training samples in each of the left and right branches. This may
have the effect of smoothing the model, especially in regression.

• If int, then consider min_samples_leaf as the minimum number.

• If float, then min_samples_leaf is a fraction and ceil(min_samples_leaf *
n_samples) are the minimum number of samples for each node.

Changed in version 0.18: Added float values for fractions.

min_weight_fraction_leaf [float, default=0.0] The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Samples have equal weight
when sample_weight is not provided.

max_depth [int, default=3] maximum depth of the individual regression estimators. The maxi-
mum depth limits the number of nodes in the tree. Tune this parameter for best performance;
the best value depends on the interaction of the input variables.

min_impurity_decrease [float, default=0.0] A node will be split if this split induces a decrease
of the impurity greater than or equal to this value.

The weighted impurity decrease equation is the following:

N_t / N * (impurity - N_t_R / N_t * right_impurity
- N_t_L / N_t * left_impurity)

where N is the total number of samples, N_t is the number of samples at the current node,
N_t_L is the number of samples in the left child, and N_t_R is the number of samples in
the right child.

N, N_t, N_t_R and N_t_L all refer to the weighted sum, if sample_weight is passed.

New in version 0.19.

min_impurity_split [float, default=None] Threshold for early stopping in tree growth. A node
will split if its impurity is above the threshold, otherwise it is a leaf.

Deprecated since version 0.19: min_impurity_split has been deprecated in favor of
min_impurity_decrease in 0.19. The default value of min_impurity_split

582 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

has changed from 1e-7 to 0 in 0.23 and it will be removed in 0.25. Use
min_impurity_decrease instead.

init [estimator or ‘zero’, default=None] An estimator object that is used to compute the initial
predictions. init has to provide fit and predict. If ‘zero’, the initial raw predictions are set
to zero. By default a DummyEstimator is used, predicting either the average target value
(for loss=’ls’), or a quantile for the other losses.

random_state [int or RandomState, default=None] Controls the random seed given to each
Tree estimator at each boosting iteration. In addition, it controls the random permutation of
the features at each split (see Notes for more details). It also controls the random spliting of
the training data to obtain a validation set if n_iter_no_change is not None. Pass an
int for reproducible output across multiple function calls. See Glossary.

max_features [{‘auto’, ‘sqrt’, ‘log2’}, int or float, default=None] The number of features to
consider when looking for the best split:

• If int, then consider max_features features at each split.

• If float, then max_features is a fraction and int(max_features *
n_features) features are considered at each split.

• If “auto”, then max_features=n_features.

• If “sqrt”, then max_features=sqrt(n_features).

• If “log2”, then max_features=log2(n_features).

• If None, then max_features=n_features.

Choosing max_features < n_features leads to a reduction of variance and an in-
crease in bias.

Note: the search for a split does not stop until at least one valid partition of the node samples
is found, even if it requires to effectively inspect more than max_features features.

alpha [float, default=0.9] The alpha-quantile of the huber loss function and the quantile loss
function. Only if loss='huber' or loss='quantile'.

verbose [int, default=0] Enable verbose output. If 1 then it prints progress and performance
once in a while (the more trees the lower the frequency). If greater than 1 then it prints
progress and performance for every tree.

max_leaf_nodes [int, default=None] Grow trees with max_leaf_nodes in best-first fashion.
Best nodes are defined as relative reduction in impurity. If None then unlimited number of
leaf nodes.

warm_start [bool, default=False] When set to True, reuse the solution of the previous call to
fit and add more estimators to the ensemble, otherwise, just erase the previous solution. See
the Glossary.

presort [deprecated, default=’deprecated’] This parameter is deprecated and will be removed
in v0.24.

Deprecated since version 0.22.

validation_fraction [float, default=0.1] The proportion of training data to set aside as validation
set for early stopping. Must be between 0 and 1. Only used if n_iter_no_change is set
to an integer.

New in version 0.20.

4.3. Model selection and evaluation 583

scikit-learn user guide, Release 0.23.2

n_iter_no_change [int, default=None] n_iter_no_change is used to decide if early stop-
ping will be used to terminate training when validation score is not improving. By de-
fault it is set to None to disable early stopping. If set to a number, it will set aside
validation_fraction size of the training data as validation and terminate training
when validation score is not improving in all of the previous n_iter_no_change num-
bers of iterations.

New in version 0.20.

tol [float, default=1e-4] Tolerance for the early stopping. When the loss is not improving by at
least tol for n_iter_no_change iterations (if set to a number), the training stops.

New in version 0.20.

ccp_alpha [non-negative float, default=0.0] Complexity parameter used for Minimal Cost-
Complexity Pruning. The subtree with the largest cost complexity that is smaller than
ccp_alpha will be chosen. By default, no pruning is performed. See Minimal Cost-
Complexity Pruning for details.

New in version 0.22.

Attributes

feature_importances_ [ndarray of shape (n_features,)] The impurity-based feature im-
portances.

oob_improvement_ [ndarray of shape (n_estimators,)] The improvement in loss (= deviance)
on the out-of-bag samples relative to the previous iteration. oob_improvement_[0]
is the improvement in loss of the first stage over the init estimator. Only available if
subsample < 1.0

train_score_ [ndarray of shape (n_estimators,)] The i-th score train_score_[i] is the
deviance (= loss) of the model at iteration i on the in-bag sample. If subsample == 1
this is the deviance on the training data.

loss_ [LossFunction] The concrete LossFunction object.

init_ [estimator] The estimator that provides the initial predictions. Set via the init argument
or loss.init_estimator.

estimators_ [ndarray of DecisionTreeRegressor of shape (n_estimators, 1)] The collection of
fitted sub-estimators.

n_features_ [int] The number of data features.

max_features_ [int] The inferred value of max_features.

See also:

sklearn.ensemble.HistGradientBoostingRegressor

sklearn.tree.DecisionTreeRegressor, RandomForestRegressor

Notes

The features are always randomly permuted at each split. Therefore, the best found split may vary, even with
the same training data and max_features=n_features, if the improvement of the criterion is identical for
several splits enumerated during the search of the best split. To obtain a deterministic behaviour during fitting,
random_state has to be fixed.

584 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

References

J. Friedman, Greedy Function Approximation: A Gradient Boosting Machine, The Annals of Statistics, Vol. 29,
No. 5, 2001.

J. Friedman, Stochastic Gradient Boosting, 1999

T. Hastie, R. Tibshirani and J. Friedman. Elements of Statistical Learning Ed. 2, Springer, 2009.

Examples

>>> from sklearn.datasets import make_regression
>>> from sklearn.ensemble import GradientBoostingRegressor
>>> from sklearn.model_selection import train_test_split
>>> X, y = make_regression(random_state=0)
>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, random_state=0)
>>> reg = GradientBoostingRegressor(random_state=0)
>>> reg.fit(X_train, y_train)
GradientBoostingRegressor(random_state=0)
>>> reg.predict(X_test[1:2])
array([-61...])
>>> reg.score(X_test, y_test)
0.4...

Methods

apply(X) Apply trees in the ensemble to X, return leaf indices.
fit(X, y[, sample_weight, monitor]) Fit the gradient boosting model.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict regression target for X.
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.
staged_predict(X) Predict regression target at each stage for X.

__init__(*, loss=’ls’, learning_rate=0.1, n_estimators=100, subsample=1.0, cri-
terion=’friedman_mse’, min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0, max_depth=3, min_impurity_decrease=0.0,
min_impurity_split=None, init=None, random_state=None, max_features=None, al-
pha=0.9, verbose=0, max_leaf_nodes=None, warm_start=False, presort=’deprecated’,
validation_fraction=0.1, n_iter_no_change=None, tol=0.0001, ccp_alpha=0.0)

Initialize self. See help(type(self)) for accurate signature.

apply(X)
Apply trees in the ensemble to X, return leaf indices.

New in version 0.17.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, its dtype will be converted to dtype=np.float32. If a sparse matrix is provided,
it will be converted to a sparse csr_matrix.

4.3. Model selection and evaluation 585

scikit-learn user guide, Release 0.23.2

Returns

X_leaves [array-like of shape (n_samples, n_estimators)] For each datapoint x in X and for
each tree in the ensemble, return the index of the leaf x ends up in each estimator.

property feature_importances_
The impurity-based feature importances.

The higher, the more important the feature. The importance of a feature is computed as the (normalized)
total reduction of the criterion brought by that feature. It is also known as the Gini importance.

Warning: impurity-based feature importances can be misleading for high cardinality features (many unique
values). See sklearn.inspection.permutation_importance as an alternative.

Returns

feature_importances_ [array, shape (n_features,)] The values of this array sum to 1, unless
all trees are single node trees consisting of only the root node, in which case it will be an
array of zeros.

fit(X, y, sample_weight=None, monitor=None)
Fit the gradient boosting model.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, it will be converted to dtype=np.float32 and if a sparse matrix is provided to
a sparse csr_matrix.

y [array-like of shape (n_samples,)] Target values (strings or integers in classification, real
numbers in regression) For classification, labels must correspond to classes.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights. If None,
then samples are equally weighted. Splits that would create child nodes with net zero
or negative weight are ignored while searching for a split in each node. In the case of
classification, splits are also ignored if they would result in any single class carrying a
negative weight in either child node.

monitor [callable, default=None] The monitor is called after each iteration with the current
iteration, a reference to the estimator and the local variables of _fit_stages as key-
word arguments callable(i, self, locals()). If the callable returns True the
fitting procedure is stopped. The monitor can be used for various things such as computing
held-out estimates, early stopping, model introspect, and snapshoting.

Returns

self [object]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict regression target for X.

Parameters

586 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, it will be converted to dtype=np.float32 and if a sparse matrix is provided to
a sparse csr_matrix.

Returns

y [ndarray of shape (n_samples,)] The predicted values.

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

staged_predict(X)
Predict regression target at each stage for X.

This method allows monitoring (i.e. determine error on testing set) after each stage.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, it will be converted to dtype=np.float32 and if a sparse matrix is provided to
a sparse csr_matrix.

Returns

4.3. Model selection and evaluation 587

scikit-learn user guide, Release 0.23.2

y [generator of ndarray of shape (n_samples,)] The predicted value of the input samples.

Examples using sklearn.ensemble.GradientBoostingRegressor

• Plot individual and voting regression predictions

• Prediction Intervals for Gradient Boosting Regression

• Gradient Boosting regression

• Model Complexity Influence

4.3.3 Metrics and scoring: quantifying the quality of predictions

There are 3 different APIs for evaluating the quality of a model’s predictions:

• Estimator score method: Estimators have a score method providing a default evaluation criterion for the
problem they are designed to solve. This is not discussed on this page, but in each estimator’s documentation.

• Scoring parameter: Model-evaluation tools using cross-validation (such as model_selection.
cross_val_score and model_selection.GridSearchCV) rely on an internal scoring strategy. This
is discussed in the section The scoring parameter: defining model evaluation rules.

• Metric functions: The metricsmodule implements functions assessing prediction error for specific purposes.
These metrics are detailed in sections on Classification metrics, Multilabel ranking metrics, Regression metrics
and Clustering metrics.

Finally, Dummy estimators are useful to get a baseline value of those metrics for random predictions.

See also:

For “pairwise” metrics, between samples and not estimators or predictions, see the Pairwise metrics, Affinities and
Kernels section.

The scoring parameter: defining model evaluation rules

Model selection and evaluation using tools, such as model_selection.GridSearchCV and
model_selection.cross_val_score, take a scoring parameter that controls what metric they ap-
ply to the estimators evaluated.

Common cases: predefined values

For the most common use cases, you can designate a scorer object with the scoring parameter; the table below
shows all possible values. All scorer objects follow the convention that higher return values are better than
lower return values. Thus metrics which measure the distance between the model and the data, like metrics.
mean_squared_error, are available as neg_mean_squared_error which return the negated value of the metric.

Scoring Function Comment
Classification
‘accuracy’ metrics.accuracy_score
‘balanced_accuracy’ metrics.balanced_accuracy_score
‘average_precision’ metrics.average_precision_score
‘neg_brier_score’ metrics.brier_score_loss

Continued on next page

588 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

Table 21 – continued from previous page
Scoring Function Comment
‘f1’ metrics.f1_score for binary targets
‘f1_micro’ metrics.f1_score micro-averaged
‘f1_macro’ metrics.f1_score macro-averaged
‘f1_weighted’ metrics.f1_score weighted average
‘f1_samples’ metrics.f1_score by multilabel sample
‘neg_log_loss’ metrics.log_loss requires predict_proba support
‘precision’ etc. metrics.precision_score suffixes apply as with ‘f1’
‘recall’ etc. metrics.recall_score suffixes apply as with ‘f1’
‘jaccard’ etc. metrics.jaccard_score suffixes apply as with ‘f1’
‘roc_auc’ metrics.roc_auc_score
‘roc_auc_ovr’ metrics.roc_auc_score
‘roc_auc_ovo’ metrics.roc_auc_score
‘roc_auc_ovr_weighted’ metrics.roc_auc_score
‘roc_auc_ovo_weighted’ metrics.roc_auc_score
Clustering
‘adjusted_mutual_info_score’ metrics.adjusted_mutual_info_score
‘adjusted_rand_score’ metrics.adjusted_rand_score
‘completeness_score’ metrics.completeness_score
‘fowlkes_mallows_score’ metrics.fowlkes_mallows_score
‘homogeneity_score’ metrics.homogeneity_score
‘mutual_info_score’ metrics.mutual_info_score
‘normalized_mutual_info_score’ metrics.normalized_mutual_info_score
‘v_measure_score’ metrics.v_measure_score
Regression
‘explained_variance’ metrics.explained_variance_score
‘max_error’ metrics.max_error
‘neg_mean_absolute_error’ metrics.mean_absolute_error
‘neg_mean_squared_error’ metrics.mean_squared_error
‘neg_root_mean_squared_error’ metrics.mean_squared_error
‘neg_mean_squared_log_error’ metrics.mean_squared_log_error
‘neg_median_absolute_error’ metrics.median_absolute_error
‘r2’ metrics.r2_score
‘neg_mean_poisson_deviance’ metrics.mean_poisson_deviance
‘neg_mean_gamma_deviance’ metrics.mean_gamma_deviance

Usage examples:

>>> from sklearn import svm, datasets
>>> from sklearn.model_selection import cross_val_score
>>> X, y = datasets.load_iris(return_X_y=True)
>>> clf = svm.SVC(random_state=0)
>>> cross_val_score(clf, X, y, cv=5, scoring='recall_macro')
array([0.96..., 0.96..., 0.96..., 0.93..., 1.])
>>> model = svm.SVC()
>>> cross_val_score(model, X, y, cv=5, scoring='wrong_choice')
Traceback (most recent call last):
ValueError: 'wrong_choice' is not a valid scoring value. Use sorted(sklearn.metrics.
→˓SCORERS.keys()) to get valid options.

Note: The values listed by the ValueError exception correspond to the functions measuring prediction accuracy
described in the following sections. The scorer objects for those functions are stored in the dictionary sklearn.

4.3. Model selection and evaluation 589

scikit-learn user guide, Release 0.23.2

metrics.SCORERS.

Defining your scoring strategy from metric functions

The module sklearn.metrics also exposes a set of simple functions measuring a prediction error given ground
truth and prediction:

• functions ending with _score return a value to maximize, the higher the better.

• functions ending with _error or _loss return a value to minimize, the lower the better. When converting into
a scorer object using make_scorer, set the greater_is_better parameter to False (True by default; see
the parameter description below).

Metrics available for various machine learning tasks are detailed in sections below.

Many metrics are not given names to be used as scoring values, sometimes because they require additional param-
eters, such as fbeta_score. In such cases, you need to generate an appropriate scoring object. The simplest way
to generate a callable object for scoring is by using make_scorer. That function converts metrics into callables that
can be used for model evaluation.

One typical use case is to wrap an existing metric function from the library with non-default values for its parameters,
such as the beta parameter for the fbeta_score function:

>>> from sklearn.metrics import fbeta_score, make_scorer
>>> ftwo_scorer = make_scorer(fbeta_score, beta=2)
>>> from sklearn.model_selection import GridSearchCV
>>> from sklearn.svm import LinearSVC
>>> grid = GridSearchCV(LinearSVC(), param_grid={'C': [1, 10]},
... scoring=ftwo_scorer, cv=5)

The second use case is to build a completely custom scorer object from a simple python function using
make_scorer, which can take several parameters:

• the python function you want to use (my_custom_loss_func in the example below)

• whether the python function returns a score (greater_is_better=True, the default) or a loss
(greater_is_better=False). If a loss, the output of the python function is negated by the scorer ob-
ject, conforming to the cross validation convention that scorers return higher values for better models.

• for classification metrics only: whether the python function you provided requires continuous decision certain-
ties (needs_threshold=True). The default value is False.

• any additional parameters, such as beta or labels in f1_score.

Here is an example of building custom scorers, and of using the greater_is_better parameter:

>>> import numpy as np
>>> def my_custom_loss_func(y_true, y_pred):
... diff = np.abs(y_true - y_pred).max()
... return np.log1p(diff)
...
>>> # score will negate the return value of my_custom_loss_func,
>>> # which will be np.log(2), 0.693, given the values for X
>>> # and y defined below.
>>> score = make_scorer(my_custom_loss_func, greater_is_better=False)
>>> X = [[1], [1]]
>>> y = [0, 1]
>>> from sklearn.dummy import DummyClassifier

(continues on next page)

590 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

(continued from previous page)

>>> clf = DummyClassifier(strategy='most_frequent', random_state=0)
>>> clf = clf.fit(X, y)
>>> my_custom_loss_func(clf.predict(X), y)
0.69...
>>> score(clf, X, y)
-0.69...

Implementing your own scoring object

You can generate even more flexible model scorers by constructing your own scoring object from scratch, without using
the make_scorer factory. For a callable to be a scorer, it needs to meet the protocol specified by the following two
rules:

• It can be called with parameters (estimator, X, y), where estimator is the model that should be
evaluated, X is validation data, and y is the ground truth target for X (in the supervised case) or None (in the
unsupervised case).

• It returns a floating point number that quantifies the estimator prediction quality on X, with reference to y.
Again, by convention higher numbers are better, so if your scorer returns loss, that value should be negated.

Note: Using custom scorers in functions where n_jobs > 1

While defining the custom scoring function alongside the calling function should work out of the box with the default
joblib backend (loky), importing it from another module will be a more robust approach and work independently of
the joblib backend.

For example, to use n_jobs greater than 1 in the example below, custom_scoring_function function is saved
in a user-created module (custom_scorer_module.py) and imported:

>>> from custom_scorer_module import custom_scoring_function
>>> cross_val_score(model,
... X_train,
... y_train,
... scoring=make_scorer(custom_scoring_function, greater_is_better=False),
... cv=5,
... n_jobs=-1)

Using multiple metric evaluation

Scikit-learn also permits evaluation of multiple metrics in GridSearchCV, RandomizedSearchCV and
cross_validate.

There are two ways to specify multiple scoring metrics for the scoring parameter:

• As an iterable of string metrics::

>>> scoring = ['accuracy', 'precision']

• As a dict mapping the scorer name to the scoring function::

>>> from sklearn.metrics import accuracy_score
>>> from sklearn.metrics import make_scorer

(continues on next page)

4.3. Model selection and evaluation 591

scikit-learn user guide, Release 0.23.2

(continued from previous page)

>>> scoring = {'accuracy': make_scorer(accuracy_score),
... 'prec': 'precision'}

Note that the dict values can either be scorer functions or one of the predefined metric strings.

Currently only those scorer functions that return a single score can be passed inside the dict. Scorer functions that
return multiple values are not permitted and will require a wrapper to return a single metric:

>>> from sklearn.model_selection import cross_validate
>>> from sklearn.metrics import confusion_matrix
>>> # A sample toy binary classification dataset
>>> X, y = datasets.make_classification(n_classes=2, random_state=0)
>>> svm = LinearSVC(random_state=0)
>>> def tn(y_true, y_pred): return confusion_matrix(y_true, y_pred)[0, 0]
>>> def fp(y_true, y_pred): return confusion_matrix(y_true, y_pred)[0, 1]
>>> def fn(y_true, y_pred): return confusion_matrix(y_true, y_pred)[1, 0]
>>> def tp(y_true, y_pred): return confusion_matrix(y_true, y_pred)[1, 1]
>>> scoring = {'tp': make_scorer(tp), 'tn': make_scorer(tn),
... 'fp': make_scorer(fp), 'fn': make_scorer(fn)}
>>> cv_results = cross_validate(svm.fit(X, y), X, y, cv=5, scoring=scoring)
>>> # Getting the test set true positive scores
>>> print(cv_results['test_tp'])
[10 9 8 7 8]
>>> # Getting the test set false negative scores
>>> print(cv_results['test_fn'])
[0 1 2 3 2]

Classification metrics

The sklearn.metrics module implements several loss, score, and utility functions to measure classification per-
formance. Some metrics might require probability estimates of the positive class, confidence values, or binary deci-
sions values. Most implementations allow each sample to provide a weighted contribution to the overall score, through
the sample_weight parameter.

Some of these are restricted to the binary classification case:

precision_recall_curve(y_true, probas_pred,
*)

Compute precision-recall pairs for different probability
thresholds

roc_curve(y_true, y_score, *[, pos_label, . . .]) Compute Receiver operating characteristic (ROC)

Others also work in the multiclass case:

balanced_accuracy_score(y_true, y_pred, *[,
. . .])

Compute the balanced accuracy

cohen_kappa_score(y1, y2, *[, labels, . . .]) Cohen’s kappa: a statistic that measures inter-annotator
agreement.

confusion_matrix(y_true, y_pred, *[, . . .]) Compute confusion matrix to evaluate the accuracy of a
classification.

hinge_loss(y_true, pred_decision, *[, . . .]) Average hinge loss (non-regularized)
matthews_corrcoef(y_true, y_pred, *[, . . .]) Compute the Matthews correlation coefficient (MCC)
roc_auc_score(y_true, y_score, *[, average, . . .]) Compute Area Under the Receiver Operating Charac-

teristic Curve (ROC AUC) from prediction scores.

592 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

Some also work in the multilabel case:

accuracy_score(y_true, y_pred, *[, . . .]) Accuracy classification score.
classification_report(y_true, y_pred, *[,
. . .])

Build a text report showing the main classification met-
rics.

f1_score(y_true, y_pred, *[, labels, . . .]) Compute the F1 score, also known as balanced F-score
or F-measure

fbeta_score(y_true, y_pred, *, beta[, . . .]) Compute the F-beta score
hamming_loss(y_true, y_pred, *[, sample_weight]) Compute the average Hamming loss.
jaccard_score(y_true, y_pred, *[, labels, . . .]) Jaccard similarity coefficient score
log_loss(y_true, y_pred, *[, eps, . . .]) Log loss, aka logistic loss or cross-entropy loss.
multilabel_confusion_matrix(y_true,
y_pred, *)

Compute a confusion matrix for each class or sample

precision_recall_fscore_support(y_true,
. . .)

Compute precision, recall, F-measure and support for
each class

precision_score(y_true, y_pred, *[, labels, . . .]) Compute the precision
recall_score(y_true, y_pred, *[, labels, . . .]) Compute the recall
roc_auc_score(y_true, y_score, *[, average, . . .]) Compute Area Under the Receiver Operating Charac-

teristic Curve (ROC AUC) from prediction scores.
zero_one_loss(y_true, y_pred, *[, . . .]) Zero-one classification loss.

And some work with binary and multilabel (but not multiclass) problems:

average_precision_score(y_true, y_score, *) Compute average precision (AP) from prediction scores

In the following sub-sections, we will describe each of those functions, preceded by some notes on common API and
metric definition.

From binary to multiclass and multilabel

Some metrics are essentially defined for binary classification tasks (e.g. f1_score, roc_auc_score). In these
cases, by default only the positive label is evaluated, assuming by default that the positive class is labelled 1 (though
this may be configurable through the pos_label parameter).

In extending a binary metric to multiclass or multilabel problems, the data is treated as a collection of binary problems,
one for each class. There are then a number of ways to average binary metric calculations across the set of classes,
each of which may be useful in some scenario. Where available, you should select among these using the average
parameter.

• "macro" simply calculates the mean of the binary metrics, giving equal weight to each class. In problems
where infrequent classes are nonetheless important, macro-averaging may be a means of highlighting their
performance. On the other hand, the assumption that all classes are equally important is often untrue, such that
macro-averaging will over-emphasize the typically low performance on an infrequent class.

• "weighted" accounts for class imbalance by computing the average of binary metrics in which each class’s
score is weighted by its presence in the true data sample.

• "micro" gives each sample-class pair an equal contribution to the overall metric (except as a result of sample-
weight). Rather than summing the metric per class, this sums the dividends and divisors that make up the
per-class metrics to calculate an overall quotient. Micro-averaging may be preferred in multilabel settings,
including multiclass classification where a majority class is to be ignored.

• "samples" applies only to multilabel problems. It does not calculate a per-class measure, instead calculat-
ing the metric over the true and predicted classes for each sample in the evaluation data, and returning their

4.3. Model selection and evaluation 593

scikit-learn user guide, Release 0.23.2

(sample_weight-weighted) average.

• Selecting average=None will return an array with the score for each class.

While multiclass data is provided to the metric, like binary targets, as an array of class labels, multilabel data is
specified as an indicator matrix, in which cell [i, j] has value 1 if sample i has label j and value 0 otherwise.

Accuracy score

The accuracy_score function computes the accuracy, either the fraction (default) or the count (normalize=False)
of correct predictions.

In multilabel classification, the function returns the subset accuracy. If the entire set of predicted labels for a sample
strictly match with the true set of labels, then the subset accuracy is 1.0; otherwise it is 0.0.

If 𝑦𝑖 is the predicted value of the 𝑖-th sample and 𝑦𝑖 is the corresponding true value, then the fraction of correct
predictions over 𝑛samples is defined as

accuracy(𝑦, 𝑦) =
1

𝑛samples

𝑛samples−1∑︁
𝑖=0

1(𝑦𝑖 = 𝑦𝑖)

where 1(𝑥) is the indicator function.

>>> import numpy as np
>>> from sklearn.metrics import accuracy_score
>>> y_pred = [0, 2, 1, 3]
>>> y_true = [0, 1, 2, 3]
>>> accuracy_score(y_true, y_pred)
0.5
>>> accuracy_score(y_true, y_pred, normalize=False)
2

In the multilabel case with binary label indicators:

>>> accuracy_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
0.5

Example:

• See Test with permutations the significance of a classification score for an example of accuracy score usage
using permutations of the dataset.

Balanced accuracy score

The balanced_accuracy_score function computes the balanced accuracy, which avoids inflated performance
estimates on imbalanced datasets. It is the macro-average of recall scores per class or, equivalently, raw accuracy
where each sample is weighted according to the inverse prevalence of its true class. Thus for balanced datasets, the
score is equal to accuracy.

In the binary case, balanced accuracy is equal to the arithmetic mean of sensitivity (true positive rate) and specificity
(true negative rate), or the area under the ROC curve with binary predictions rather than scores:

balanced-accuracy =
1

2

(︂
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+

𝑇𝑁

𝑇𝑁 + 𝐹𝑃

)︂

594 Chapter 4. User Guide

https://en.wikipedia.org/wiki/Accuracy_and_precision
https://en.wikipedia.org/wiki/Indicator_function
https://en.wikipedia.org/wiki/Accuracy_and_precision
https://en.wikipedia.org/wiki/Sensitivity_and_specificity
https://en.wikipedia.org/wiki/Sensitivity_and_specificity

scikit-learn user guide, Release 0.23.2

If the classifier performs equally well on either class, this term reduces to the conventional accuracy (i.e., the number
of correct predictions divided by the total number of predictions).

In contrast, if the conventional accuracy is above chance only because the classifier takes advantage of an imbalanced
test set, then the balanced accuracy, as appropriate, will drop to 1

𝑛_𝑐𝑙𝑎𝑠𝑠𝑒𝑠 .

The score ranges from 0 to 1, or when adjusted=True is used, it rescaled to the range 1
1−𝑛_𝑐𝑙𝑎𝑠𝑠𝑒𝑠 to 1, inclusive,

with performance at random scoring 0.

If 𝑦𝑖 is the true value of the 𝑖-th sample, and 𝑤𝑖 is the corresponding sample weight, then we adjust the sample weight
to:

𝑤̂𝑖 =
𝑤𝑖∑︀

𝑗 1(𝑦𝑗 = 𝑦𝑖)𝑤𝑗

where 1(𝑥) is the indicator function. Given predicted 𝑦𝑖 for sample 𝑖, balanced accuracy is defined as:

balanced-accuracy(𝑦, 𝑦, 𝑤) =
1∑︀
𝑤̂𝑖

∑︁
𝑖

1(𝑦𝑖 = 𝑦𝑖)𝑤̂𝑖

With adjusted=True, balanced accuracy reports the relative increase from balanced-accuracy(𝑦,0, 𝑤) =
1

𝑛_𝑐𝑙𝑎𝑠𝑠𝑒𝑠 . In the binary case, this is also known as *Youden’s J statistic*, or informedness.

Note: The multiclass definition here seems the most reasonable extension of the metric used in binary classification,
though there is no certain consensus in the literature:

• Our definition: [Mosley2013], [Kelleher2015] and [Guyon2015], where [Guyon2015] adopt the adjusted version
to ensure that random predictions have a score of 0 and perfect predictions have a score of 1..

• Class balanced accuracy as described in [Mosley2013]: the minimum between the precision and the recall for
each class is computed. Those values are then averaged over the total number of classes to get the balanced
accuracy.

• Balanced Accuracy as described in [Urbanowicz2015]: the average of sensitivity and specificity is computed
for each class and then averaged over total number of classes.

References:

Cohen’s kappa

The function cohen_kappa_score computes Cohen’s kappa statistic. This measure is intended to compare label-
ings by different human annotators, not a classifier versus a ground truth.

The kappa score (see docstring) is a number between -1 and 1. Scores above .8 are generally considered good agree-
ment; zero or lower means no agreement (practically random labels).

Kappa scores can be computed for binary or multiclass problems, but not for multilabel problems (except by manually
computing a per-label score) and not for more than two annotators.

>>> from sklearn.metrics import cohen_kappa_score
>>> y_true = [2, 0, 2, 2, 0, 1]
>>> y_pred = [0, 0, 2, 2, 0, 2]
>>> cohen_kappa_score(y_true, y_pred)
0.4285714285714286

4.3. Model selection and evaluation 595

https://en.wikipedia.org/wiki/Indicator_function
https://en.wikipedia.org/wiki/Youden%27s_J_statistic
https://en.wikipedia.org/wiki/Cohen%27s_kappa

scikit-learn user guide, Release 0.23.2

Confusion matrix

The confusion_matrix function evaluates classification accuracy by computing the confusion matrix with each
row corresponding to the true class (Wikipedia and other references may use different convention for axes).

By definition, entry 𝑖, 𝑗 in a confusion matrix is the number of observations actually in group 𝑖, but predicted to be in
group 𝑗. Here is an example:

>>> from sklearn.metrics import confusion_matrix
>>> y_true = [2, 0, 2, 2, 0, 1]
>>> y_pred = [0, 0, 2, 2, 0, 2]
>>> confusion_matrix(y_true, y_pred)
array([[2, 0, 0],

[0, 0, 1],
[1, 0, 2]])

plot_confusion_matrix can be used to visually represent a confusion matrix as shown in the Confusion matrix
example, which creates the following figure:

The parameter normalize allows to report ratios instead of counts. The confusion matrix can be normalized in 3
different ways: 'pred', 'true', and 'all' which will divide the counts by the sum of each columns, rows, or
the entire matrix, respectively.

>>> y_true = [0, 0, 0, 1, 1, 1, 1, 1]
>>> y_pred = [0, 1, 0, 1, 0, 1, 0, 1]
>>> confusion_matrix(y_true, y_pred, normalize='all')
array([[0.25 , 0.125],

[0.25 , 0.375]])

For binary problems, we can get counts of true negatives, false positives, false negatives and true positives as follows:

>>> y_true = [0, 0, 0, 1, 1, 1, 1, 1]
>>> y_pred = [0, 1, 0, 1, 0, 1, 0, 1]

(continues on next page)

596 Chapter 4. User Guide

https://en.wikipedia.org/wiki/Confusion_matrix
../auto_examples/model_selection/plot_confusion_matrix.html

scikit-learn user guide, Release 0.23.2

(continued from previous page)

>>> tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()
>>> tn, fp, fn, tp
(2, 1, 2, 3)

Example:

• See Confusion matrix for an example of using a confusion matrix to evaluate classifier output quality.

• See Recognizing hand-written digits for an example of using a confusion matrix to classify hand-written
digits.

• See Classification of text documents using sparse features for an example of using a confusion matrix to
classify text documents.

Classification report

The classification_report function builds a text report showing the main classification metrics. Here is a
small example with custom target_names and inferred labels:

>>> from sklearn.metrics import classification_report
>>> y_true = [0, 1, 2, 2, 0]
>>> y_pred = [0, 0, 2, 1, 0]
>>> target_names = ['class 0', 'class 1', 'class 2']
>>> print(classification_report(y_true, y_pred, target_names=target_names))

precision recall f1-score support

class 0 0.67 1.00 0.80 2
class 1 0.00 0.00 0.00 1
class 2 1.00 0.50 0.67 2

accuracy 0.60 5
macro avg 0.56 0.50 0.49 5

weighted avg 0.67 0.60 0.59 5

Example:

• See Recognizing hand-written digits for an example of classification report usage for hand-written digits.

• See Classification of text documents using sparse features for an example of classification report usage for
text documents.

• See Parameter estimation using grid search with cross-validation for an example of classification report usage
for grid search with nested cross-validation.

Hamming loss

The hamming_loss computes the average Hamming loss or Hamming distance between two sets of samples.

If 𝑦𝑗 is the predicted value for the 𝑗-th label of a given sample, 𝑦𝑗 is the corresponding true value, and 𝑛labels is the

4.3. Model selection and evaluation 597

https://en.wikipedia.org/wiki/Hamming_distance

scikit-learn user guide, Release 0.23.2

number of classes or labels, then the Hamming loss 𝐿𝐻𝑎𝑚𝑚𝑖𝑛𝑔 between two samples is defined as:

𝐿𝐻𝑎𝑚𝑚𝑖𝑛𝑔(𝑦, 𝑦) =
1

𝑛labels

𝑛labels−1∑︁
𝑗=0

1(𝑦𝑗 ̸= 𝑦𝑗)

where 1(𝑥) is the indicator function.

>>> from sklearn.metrics import hamming_loss
>>> y_pred = [1, 2, 3, 4]
>>> y_true = [2, 2, 3, 4]
>>> hamming_loss(y_true, y_pred)
0.25

In the multilabel case with binary label indicators:

>>> hamming_loss(np.array([[0, 1], [1, 1]]), np.zeros((2, 2)))
0.75

Note: In multiclass classification, the Hamming loss corresponds to the Hamming distance between y_true and
y_pred which is similar to the Zero one loss function. However, while zero-one loss penalizes prediction sets that
do not strictly match true sets, the Hamming loss penalizes individual labels. Thus the Hamming loss, upper bounded
by the zero-one loss, is always between zero and one, inclusive; and predicting a proper subset or superset of the true
labels will give a Hamming loss between zero and one, exclusive.

Precision, recall and F-measures

Intuitively, precision is the ability of the classifier not to label as positive a sample that is negative, and recall is the
ability of the classifier to find all the positive samples.

The F-measure (𝐹𝛽 and 𝐹1 measures) can be interpreted as a weighted harmonic mean of the precision and recall. A
𝐹𝛽 measure reaches its best value at 1 and its worst score at 0. With 𝛽 = 1, 𝐹𝛽 and 𝐹1 are equivalent, and the recall
and the precision are equally important.

The precision_recall_curve computes a precision-recall curve from the ground truth label and a score given
by the classifier by varying a decision threshold.

The average_precision_score function computes the average precision (AP) from prediction scores. The
value is between 0 and 1 and higher is better. AP is defined as

AP =
∑︁
𝑛

(𝑅𝑛 −𝑅𝑛−1)𝑃𝑛

where 𝑃𝑛 and 𝑅𝑛 are the precision and recall at the nth threshold. With random predictions, the AP is the fraction of
positive samples.

References [Manning2008] and [Everingham2010] present alternative variants of AP that interpolate the precision-
recall curve. Currently, average_precision_score does not implement any interpolated variant. References
[Davis2006] and [Flach2015] describe why a linear interpolation of points on the precision-recall curve provides an
overly-optimistic measure of classifier performance. This linear interpolation is used when computing area under the
curve with the trapezoidal rule in auc.

Several functions allow you to analyze the precision, recall and F-measures score:

598 Chapter 4. User Guide

https://en.wikipedia.org/wiki/Indicator_function
https://en.wikipedia.org/wiki/Precision_and_recall#Precision
https://en.wikipedia.org/wiki/Precision_and_recall#Recall
https://en.wikipedia.org/wiki/F1_score
https://en.wikipedia.org/w/index.php?title=Information_retrieval&oldid=793358396#Average_precision

scikit-learn user guide, Release 0.23.2

average_precision_score(y_true, y_score, *) Compute average precision (AP) from prediction scores
f1_score(y_true, y_pred, *[, labels, . . .]) Compute the F1 score, also known as balanced F-score

or F-measure
fbeta_score(y_true, y_pred, *, beta[, . . .]) Compute the F-beta score
precision_recall_curve(y_true, probas_pred,
*)

Compute precision-recall pairs for different probability
thresholds

precision_recall_fscore_support(y_true,
. . .)

Compute precision, recall, F-measure and support for
each class

precision_score(y_true, y_pred, *[, labels, . . .]) Compute the precision
recall_score(y_true, y_pred, *[, labels, . . .]) Compute the recall

Note that the precision_recall_curve function is restricted to the binary case. The
average_precision_score function works only in binary classification and multilabel indicator format.
The plot_precision_recall_curve function plots the precision recall as follows.

Examples:

• See Classification of text documents using sparse features for an example of f1_score usage to classify
text documents.

• See Parameter estimation using grid search with cross-validation for an example of precision_score
and recall_score usage to estimate parameters using grid search with nested cross-validation.

• See Precision-Recall for an example of precision_recall_curve usage to evaluate classifier output
quality.

References:

4.3. Model selection and evaluation 599

../auto_examples/model_selection/plot_precision_recall.html#plot-the-precision-recall-curve

scikit-learn user guide, Release 0.23.2

Binary classification

In a binary classification task, the terms ‘’positive” and ‘’negative” refer to the classifier’s prediction, and the terms
‘’true” and ‘’false” refer to whether that prediction corresponds to the external judgment (sometimes known as the
‘’observation”). Given these definitions, we can formulate the following table:

Actual class (observation)
Predicted class (expectation) tp (true positive) Correct result fp (false positive) Unexpected result

fn (false negative) Missing result tn (true negative) Correct absence of result

In this context, we can define the notions of precision, recall and F-measure:

precision =
𝑡𝑝

𝑡𝑝+ 𝑓𝑝
,

recall =
𝑡𝑝

𝑡𝑝+ 𝑓𝑛
,

𝐹𝛽 = (1 + 𝛽2)
precision× recall
𝛽2precision + recall

.

Here are some small examples in binary classification:

>>> from sklearn import metrics
>>> y_pred = [0, 1, 0, 0]
>>> y_true = [0, 1, 0, 1]
>>> metrics.precision_score(y_true, y_pred)
1.0
>>> metrics.recall_score(y_true, y_pred)
0.5
>>> metrics.f1_score(y_true, y_pred)
0.66...
>>> metrics.fbeta_score(y_true, y_pred, beta=0.5)
0.83...
>>> metrics.fbeta_score(y_true, y_pred, beta=1)
0.66...
>>> metrics.fbeta_score(y_true, y_pred, beta=2)
0.55...
>>> metrics.precision_recall_fscore_support(y_true, y_pred, beta=0.5)
(array([0.66..., 1.]), array([1. , 0.5]), array([0.71..., 0.83...]), array([2,
→˓ 2]))

>>> import numpy as np
>>> from sklearn.metrics import precision_recall_curve
>>> from sklearn.metrics import average_precision_score
>>> y_true = np.array([0, 0, 1, 1])
>>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> precision, recall, threshold = precision_recall_curve(y_true, y_scores)
>>> precision
array([0.66..., 0.5 , 1. , 1.])
>>> recall
array([1. , 0.5, 0.5, 0.])
>>> threshold
array([0.35, 0.4 , 0.8])
>>> average_precision_score(y_true, y_scores)
0.83...

600 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

Multiclass and multilabel classification

In multiclass and multilabel classification task, the notions of precision, recall, and F-measures can be ap-
plied to each label independently. There are a few ways to combine results across labels, specified by the
average argument to the average_precision_score (multilabel only), f1_score, fbeta_score,
precision_recall_fscore_support, precision_score and recall_score functions, as described
above. Note that if all labels are included, “micro”-averaging in a multiclass setting will produce precision, recall and
𝐹 that are all identical to accuracy. Also note that “weighted” averaging may produce an F-score that is not between
precision and recall.

To make this more explicit, consider the following notation:

• 𝑦 the set of predicted (𝑠𝑎𝑚𝑝𝑙𝑒, 𝑙𝑎𝑏𝑒𝑙) pairs

• 𝑦 the set of true (𝑠𝑎𝑚𝑝𝑙𝑒, 𝑙𝑎𝑏𝑒𝑙) pairs

• 𝐿 the set of labels

• 𝑆 the set of samples

• 𝑦𝑠 the subset of 𝑦 with sample 𝑠, i.e. 𝑦𝑠 := {(𝑠′, 𝑙) ∈ 𝑦|𝑠′ = 𝑠}

• 𝑦𝑙 the subset of 𝑦 with label 𝑙

• similarly, 𝑦𝑠 and 𝑦𝑙 are subsets of 𝑦

• 𝑃 (𝐴,𝐵) := |𝐴∩𝐵|
|𝐴| for some sets 𝐴 and 𝐵

• 𝑅(𝐴,𝐵) := |𝐴∩𝐵|
|𝐵| (Conventions vary on handling 𝐵 = ∅; this implementation uses 𝑅(𝐴,𝐵) := 0, and similar

for 𝑃 .)

• 𝐹𝛽(𝐴,𝐵) :=
(︀
1 + 𝛽2

)︀ 𝑃 (𝐴,𝐵)×𝑅(𝐴,𝐵)
𝛽2𝑃 (𝐴,𝐵)+𝑅(𝐴,𝐵)

Then the metrics are defined as:

average Precision Recall F_beta
"micro" 𝑃 (𝑦, 𝑦) 𝑅(𝑦, 𝑦) 𝐹𝛽(𝑦, 𝑦)
"samples" 1

|𝑆|
∑︀

𝑠∈𝑆 𝑃 (𝑦𝑠, 𝑦𝑠)
1
|𝑆|
∑︀

𝑠∈𝑆 𝑅(𝑦𝑠, 𝑦𝑠)
1
|𝑆|
∑︀

𝑠∈𝑆 𝐹𝛽(𝑦𝑠, 𝑦𝑠)

"macro" 1
|𝐿|
∑︀

𝑙∈𝐿 𝑃 (𝑦𝑙, 𝑦𝑙)
1
|𝐿|
∑︀

𝑙∈𝐿𝑅(𝑦𝑙, 𝑦𝑙)
1
|𝐿|
∑︀

𝑙∈𝐿 𝐹𝛽(𝑦𝑙, 𝑦𝑙)

"weighted" 1∑︀
𝑙∈𝐿|𝑦𝑙|

∑︀
𝑙∈𝐿 |𝑦𝑙|𝑃 (𝑦𝑙, 𝑦𝑙)

1∑︀
𝑙∈𝐿|𝑦𝑙|

∑︀
𝑙∈𝐿 |𝑦𝑙|𝑅(𝑦𝑙, 𝑦𝑙)

1∑︀
𝑙∈𝐿|𝑦𝑙|

∑︀
𝑙∈𝐿 |𝑦𝑙|𝐹𝛽(𝑦𝑙, 𝑦𝑙)

None ⟨𝑃 (𝑦𝑙, 𝑦𝑙)|𝑙 ∈ 𝐿⟩ ⟨𝑅(𝑦𝑙, 𝑦𝑙)|𝑙 ∈ 𝐿⟩ ⟨𝐹𝛽(𝑦𝑙, 𝑦𝑙)|𝑙 ∈ 𝐿⟩

>>> from sklearn import metrics
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> metrics.precision_score(y_true, y_pred, average='macro')
0.22...
>>> metrics.recall_score(y_true, y_pred, average='micro')
0.33...
>>> metrics.f1_score(y_true, y_pred, average='weighted')
0.26...
>>> metrics.fbeta_score(y_true, y_pred, average='macro', beta=0.5)
0.23...
>>> metrics.precision_recall_fscore_support(y_true, y_pred, beta=0.5, average=None)
(array([0.66..., 0. , 0.]), array([1., 0., 0.]), array([0.71..., 0.
→˓ , 0.]), array([2, 2, 2]...))

For multiclass classification with a “negative class”, it is possible to exclude some labels:

4.3. Model selection and evaluation 601

scikit-learn user guide, Release 0.23.2

>>> metrics.recall_score(y_true, y_pred, labels=[1, 2], average='micro')
... # excluding 0, no labels were correctly recalled
0.0

Similarly, labels not present in the data sample may be accounted for in macro-averaging.

>>> metrics.precision_score(y_true, y_pred, labels=[0, 1, 2, 3], average='macro')
0.166...

Jaccard similarity coefficient score

The jaccard_score function computes the average of Jaccard similarity coefficients, also called the Jaccard index,
between pairs of label sets.

The Jaccard similarity coefficient of the 𝑖-th samples, with a ground truth label set 𝑦𝑖 and predicted label set 𝑦𝑖, is
defined as

𝐽(𝑦𝑖, 𝑦𝑖) =
|𝑦𝑖 ∩ 𝑦𝑖|
|𝑦𝑖 ∪ 𝑦𝑖|

.

jaccard_score works like precision_recall_fscore_support as a naively set-wise measure applying
natively to binary targets, and extended to apply to multilabel and multiclass through the use of average (see above).

In the binary case:

>>> import numpy as np
>>> from sklearn.metrics import jaccard_score
>>> y_true = np.array([[0, 1, 1],
... [1, 1, 0]])
>>> y_pred = np.array([[1, 1, 1],
... [1, 0, 0]])
>>> jaccard_score(y_true[0], y_pred[0])
0.6666...

In the multilabel case with binary label indicators:

>>> jaccard_score(y_true, y_pred, average='samples')
0.5833...
>>> jaccard_score(y_true, y_pred, average='macro')
0.6666...
>>> jaccard_score(y_true, y_pred, average=None)
array([0.5, 0.5, 1.])

Multiclass problems are binarized and treated like the corresponding multilabel problem:

>>> y_pred = [0, 2, 1, 2]
>>> y_true = [0, 1, 2, 2]
>>> jaccard_score(y_true, y_pred, average=None)
array([1. , 0. , 0.33...])
>>> jaccard_score(y_true, y_pred, average='macro')
0.44...
>>> jaccard_score(y_true, y_pred, average='micro')
0.33...

602 Chapter 4. User Guide

https://en.wikipedia.org/wiki/Jaccard_index

scikit-learn user guide, Release 0.23.2

Hinge loss

The hinge_loss function computes the average distance between the model and the data using hinge loss, a one-
sided metric that considers only prediction errors. (Hinge loss is used in maximal margin classifiers such as support
vector machines.)

If the labels are encoded with +1 and -1, 𝑦: is the true value, and 𝑤 is the predicted decisions as output by
decision_function, then the hinge loss is defined as:

𝐿Hinge(𝑦, 𝑤) = max {1− 𝑤𝑦, 0} = |1− 𝑤𝑦|+

If there are more than two labels, hinge_loss uses a multiclass variant due to Crammer & Singer. Here is the paper
describing it.

If 𝑦𝑤 is the predicted decision for true label and 𝑦𝑡 is the maximum of the predicted decisions for all other labels,
where predicted decisions are output by decision function, then multiclass hinge loss is defined by:

𝐿Hinge(𝑦𝑤, 𝑦𝑡) = max {1 + 𝑦𝑡 − 𝑦𝑤, 0}

Here a small example demonstrating the use of the hinge_loss function with a svm classifier in a binary class
problem:

>>> from sklearn import svm
>>> from sklearn.metrics import hinge_loss
>>> X = [[0], [1]]
>>> y = [-1, 1]
>>> est = svm.LinearSVC(random_state=0)
>>> est.fit(X, y)
LinearSVC(random_state=0)
>>> pred_decision = est.decision_function([[-2], [3], [0.5]])
>>> pred_decision
array([-2.18..., 2.36..., 0.09...])
>>> hinge_loss([-1, 1, 1], pred_decision)
0.3...

Here is an example demonstrating the use of the hinge_loss function with a svm classifier in a multiclass problem:

>>> X = np.array([[0], [1], [2], [3]])
>>> Y = np.array([0, 1, 2, 3])
>>> labels = np.array([0, 1, 2, 3])
>>> est = svm.LinearSVC()
>>> est.fit(X, Y)
LinearSVC()
>>> pred_decision = est.decision_function([[-1], [2], [3]])
>>> y_true = [0, 2, 3]
>>> hinge_loss(y_true, pred_decision, labels)
0.56...

Log loss

Log loss, also called logistic regression loss or cross-entropy loss, is defined on probability estimates. It is commonly
used in (multinomial) logistic regression and neural networks, as well as in some variants of expectation-maximization,
and can be used to evaluate the probability outputs (predict_proba) of a classifier instead of its discrete predic-
tions.

4.3. Model selection and evaluation 603

https://en.wikipedia.org/wiki/Hinge_loss
http://jmlr.csail.mit.edu/papers/volume2/crammer01a/crammer01a.pdf

scikit-learn user guide, Release 0.23.2

For binary classification with a true label 𝑦 ∈ {0, 1} and a probability estimate 𝑝 = Pr(𝑦 = 1), the log loss per sample
is the negative log-likelihood of the classifier given the true label:

𝐿log(𝑦, 𝑝) = − log Pr(𝑦|𝑝) = −(𝑦 log(𝑝) + (1− 𝑦) log(1− 𝑝))

This extends to the multiclass case as follows. Let the true labels for a set of samples be encoded as a 1-of-K binary
indicator matrix 𝑌 , i.e., 𝑦𝑖,𝑘 = 1 if sample 𝑖 has label 𝑘 taken from a set of 𝐾 labels. Let 𝑃 be a matrix of probability
estimates, with 𝑝𝑖,𝑘 = Pr(𝑡𝑖,𝑘 = 1). Then the log loss of the whole set is

𝐿log(𝑌, 𝑃) = − log Pr(𝑌 |𝑃) = − 1

𝑁

𝑁−1∑︁
𝑖=0

𝐾−1∑︁
𝑘=0

𝑦𝑖,𝑘 log 𝑝𝑖,𝑘

To see how this generalizes the binary log loss given above, note that in the binary case, 𝑝𝑖,0 = 1 − 𝑝𝑖,1 and 𝑦𝑖,0 =
1− 𝑦𝑖,1, so expanding the inner sum over 𝑦𝑖,𝑘 ∈ {0, 1} gives the binary log loss.

The log_loss function computes log loss given a list of ground-truth labels and a probability matrix, as returned by
an estimator’s predict_proba method.

>>> from sklearn.metrics import log_loss
>>> y_true = [0, 0, 1, 1]
>>> y_pred = [[.9, .1], [.8, .2], [.3, .7], [.01, .99]]
>>> log_loss(y_true, y_pred)
0.1738...

The first [.9, .1] in y_pred denotes 90% probability that the first sample has label 0. The log loss is non-negative.

Matthews correlation coefficient

The matthews_corrcoef function computes the Matthew’s correlation coefficient (MCC) for binary classes.
Quoting Wikipedia:

“The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary
(two-class) classifications. It takes into account true and false positives and negatives and is generally
regarded as a balanced measure which can be used even if the classes are of very different sizes. The
MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents
a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also
known as the phi coefficient.”

In the binary (two-class) case, 𝑡𝑝, 𝑡𝑛, 𝑓𝑝 and 𝑓𝑛 are respectively the number of true positives, true negatives, false
positives and false negatives, the MCC is defined as

𝑀𝐶𝐶 =
𝑡𝑝× 𝑡𝑛− 𝑓𝑝× 𝑓𝑛√︀

(𝑡𝑝+ 𝑓𝑝)(𝑡𝑝+ 𝑓𝑛)(𝑡𝑛+ 𝑓𝑝)(𝑡𝑛+ 𝑓𝑛)
.

In the multiclass case, the Matthews correlation coefficient can be defined in terms of a confusion_matrix 𝐶 for
𝐾 classes. To simplify the definition consider the following intermediate variables:

• 𝑡𝑘 =
∑︀𝐾

𝑖 𝐶𝑖𝑘 the number of times class 𝑘 truly occurred,

• 𝑝𝑘 =
∑︀𝐾

𝑖 𝐶𝑘𝑖 the number of times class 𝑘 was predicted,

• 𝑐 =
∑︀𝐾

𝑘 𝐶𝑘𝑘 the total number of samples correctly predicted,

• 𝑠 =
∑︀𝐾

𝑖

∑︀𝐾
𝑗 𝐶𝑖𝑗 the total number of samples.

Then the multiclass MCC is defined as:

𝑀𝐶𝐶 =
𝑐× 𝑠−

∑︀𝐾
𝑘 𝑝𝑘 × 𝑡𝑘√︁

(𝑠2 −
∑︀𝐾

𝑘 𝑝2𝑘)× (𝑠2 −
∑︀𝐾

𝑘 𝑡2𝑘)

604 Chapter 4. User Guide

https://en.wikipedia.org/wiki/Matthews_correlation_coefficient
http://rk.kvl.dk/introduction/index.html

scikit-learn user guide, Release 0.23.2

When there are more than two labels, the value of the MCC will no longer range between -1 and +1. Instead the
minimum value will be somewhere between -1 and 0 depending on the number and distribution of ground true labels.
The maximum value is always +1.

Here is a small example illustrating the usage of the matthews_corrcoef function:

>>> from sklearn.metrics import matthews_corrcoef
>>> y_true = [+1, +1, +1, -1]
>>> y_pred = [+1, -1, +1, +1]
>>> matthews_corrcoef(y_true, y_pred)
-0.33...

Multi-label confusion matrix

The multilabel_confusion_matrix function computes class-wise (default) or sample-wise (sample-
wise=True) multilabel confusion matrix to evaluate the accuracy of a classification. multilabel_confusion_matrix
also treats multiclass data as if it were multilabel, as this is a transformation commonly applied to evaluate multiclass
problems with binary classification metrics (such as precision, recall, etc.).

When calculating class-wise multilabel confusion matrix 𝐶, the count of true negatives for class 𝑖 is 𝐶𝑖,0,0, false
negatives is 𝐶𝑖,1,0, true positives is 𝐶𝑖,1,1 and false positives is 𝐶𝑖,0,1.

Here is an example demonstrating the use of the multilabel_confusion_matrix function with multilabel
indicator matrix input:

>>> import numpy as np
>>> from sklearn.metrics import multilabel_confusion_matrix
>>> y_true = np.array([[1, 0, 1],
... [0, 1, 0]])
>>> y_pred = np.array([[1, 0, 0],
... [0, 1, 1]])
>>> multilabel_confusion_matrix(y_true, y_pred)
array([[[1, 0],

[0, 1]],

[[1, 0],
[0, 1]],

[[0, 1],
[1, 0]]])

Or a confusion matrix can be constructed for each sample’s labels:

>>> multilabel_confusion_matrix(y_true, y_pred, samplewise=True)
array([[[1, 0],

[1, 1]],
<BLANKLINE>

[[1, 1],
[0, 1]]])

Here is an example demonstrating the use of the multilabel_confusion_matrix function with multiclass
input:

>>> y_true = ["cat", "ant", "cat", "cat", "ant", "bird"]
>>> y_pred = ["ant", "ant", "cat", "cat", "ant", "cat"]
>>> multilabel_confusion_matrix(y_true, y_pred,

(continues on next page)

4.3. Model selection and evaluation 605

scikit-learn user guide, Release 0.23.2

(continued from previous page)

... labels=["ant", "bird", "cat"])
array([[[3, 1],

[0, 2]],

[[5, 0],
[1, 0]],

[[2, 1],
[1, 2]]])

Here are some examples demonstrating the use of the multilabel_confusion_matrix function to calculate
recall (or sensitivity), specificity, fall out and miss rate for each class in a problem with multilabel indicator matrix
input.

Calculating recall (also called the true positive rate or the sensitivity) for each class:

>>> y_true = np.array([[0, 0, 1],
... [0, 1, 0],
... [1, 1, 0]])
>>> y_pred = np.array([[0, 1, 0],
... [0, 0, 1],
... [1, 1, 0]])
>>> mcm = multilabel_confusion_matrix(y_true, y_pred)
>>> tn = mcm[:, 0, 0]
>>> tp = mcm[:, 1, 1]
>>> fn = mcm[:, 1, 0]
>>> fp = mcm[:, 0, 1]
>>> tp / (tp + fn)
array([1. , 0.5, 0.])

Calculating specificity (also called the true negative rate) for each class:

>>> tn / (tn + fp)
array([1. , 0. , 0.5])

Calculating fall out (also called the false positive rate) for each class:

>>> fp / (fp + tn)
array([0. , 1. , 0.5])

Calculating miss rate (also called the false negative rate) for each class:

>>> fn / (fn + tp)
array([0. , 0.5, 1.])

Receiver operating characteristic (ROC)

The function roc_curve computes the receiver operating characteristic curve, or ROC curve. Quoting Wikipedia :

“A receiver operating characteristic (ROC), or simply ROC curve, is a graphical plot which illustrates
the performance of a binary classifier system as its discrimination threshold is varied. It is created by
plotting the fraction of true positives out of the positives (TPR = true positive rate) vs. the fraction of false
positives out of the negatives (FPR = false positive rate), at various threshold settings. TPR is also known
as sensitivity, and FPR is one minus the specificity or true negative rate.”

606 Chapter 4. User Guide

https://en.wikipedia.org/wiki/Sensitivity_and_specificity
https://en.wikipedia.org/wiki/Sensitivity_and_specificity
https://en.wikipedia.org/wiki/False_positive_rate
https://en.wikipedia.org/wiki/False_positives_and_false_negatives
https://en.wikipedia.org/wiki/Receiver_operating_characteristic

scikit-learn user guide, Release 0.23.2

This function requires the true binary value and the target scores, which can either be probability estimates of the
positive class, confidence values, or binary decisions. Here is a small example of how to use the roc_curve function:

>>> import numpy as np
>>> from sklearn.metrics import roc_curve
>>> y = np.array([1, 1, 2, 2])
>>> scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> fpr, tpr, thresholds = roc_curve(y, scores, pos_label=2)
>>> fpr
array([0. , 0. , 0.5, 0.5, 1.])
>>> tpr
array([0. , 0.5, 0.5, 1. , 1.])
>>> thresholds
array([1.8 , 0.8 , 0.4 , 0.35, 0.1])

This figure shows an example of such an ROC curve:

The roc_auc_score function computes the area under the receiver operating characteristic (ROC) curve, which is
also denoted by AUC or AUROC. By computing the area under the roc curve, the curve information is summarized in
one number. For more information see the Wikipedia article on AUC.

>>> import numpy as np
>>> from sklearn.metrics import roc_auc_score
>>> y_true = np.array([0, 0, 1, 1])
>>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> roc_auc_score(y_true, y_scores)
0.75

In multi-label classification, the roc_auc_score function is extended by averaging over the labels as above.

Compared to metrics such as the subset accuracy, the Hamming loss, or the F1 score, ROC doesn’t require optimizing
a threshold for each label.

The roc_auc_score function can also be used in multi-class classification. Two averaging strategies are currently
supported: the one-vs-one algorithm computes the average of the pairwise ROC AUC scores, and the one-vs-rest

4.3. Model selection and evaluation 607

../auto_examples/model_selection/plot_roc.html
https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve

scikit-learn user guide, Release 0.23.2

algorithm computes the average of the ROC AUC scores for each class against all other classes. In both cases,
the predicted labels are provided in an array with values from 0 to n_classes, and the scores correspond to the
probability estimates that a sample belongs to a particular class. The OvO and OvR algorithms support weighting
uniformly (average='macro') and by prevalence (average='weighted').

One-vs-one Algorithm: Computes the average AUC of all possible pairwise combinations of classes. [HT2001]
defines a multiclass AUC metric weighted uniformly:

2

𝑐(𝑐− 1)

𝑐∑︁
𝑗=1

𝑐∑︁
𝑘>𝑗

(AUC(𝑗|𝑘) + AUC(𝑘|𝑗))

where 𝑐 is the number of classes and AUC(𝑗|𝑘) is the AUC with class 𝑗 as the positive class and class 𝑘 as the negative
class. In general, AUC(𝑗|𝑘) ̸= AUC(𝑘|𝑗)) in the multiclass case. This algorithm is used by setting the keyword
argument multiclass to 'ovo' and average to 'macro'.

The [HT2001] multiclass AUC metric can be extended to be weighted by the prevalence:

2

𝑐(𝑐− 1)

𝑐∑︁
𝑗=1

𝑐∑︁
𝑘>𝑗

𝑝(𝑗 ∪ 𝑘)(AUC(𝑗|𝑘) + AUC(𝑘|𝑗))

where 𝑐 is the number of classes. This algorithm is used by setting the keyword argument multiclass to 'ovo'
and average to 'weighted'. The 'weighted' option returns a prevalence-weighted average as described in
[FC2009].

One-vs-rest Algorithm: Computes the AUC of each class against the rest [PD2000]. The algorithm is functionally
the same as the multilabel case. To enable this algorithm set the keyword argument multiclass to 'ovr'. Like
OvO, OvR supports two types of averaging: 'macro' [F2006] and 'weighted' [F2001].

In applications where a high false positive rate is not tolerable the parameter max_fpr of roc_auc_score can be
used to summarize the ROC curve up to the given limit.

Examples:

608 Chapter 4. User Guide

../auto_examples/model_selection/plot_roc.html

scikit-learn user guide, Release 0.23.2

• See Receiver Operating Characteristic (ROC) for an example of using ROC to evaluate the quality of the
output of a classifier.

• See Receiver Operating Characteristic (ROC) with cross validation for an example of using ROC to evaluate
classifier output quality, using cross-validation.

• See Species distribution modeling for an example of using ROC to model species distribution.

References:

Zero one loss

The zero_one_loss function computes the sum or the average of the 0-1 classification loss (𝐿0−1) over 𝑛samples.
By default, the function normalizes over the sample. To get the sum of the 𝐿0−1, set normalize to False.

In multilabel classification, the zero_one_loss scores a subset as one if its labels strictly match the predictions,
and as a zero if there are any errors. By default, the function returns the percentage of imperfectly predicted subsets.
To get the count of such subsets instead, set normalize to False

If 𝑦𝑖 is the predicted value of the 𝑖-th sample and 𝑦𝑖 is the corresponding true value, then the 0-1 loss 𝐿0−1 is defined
as:

𝐿0−1(𝑦𝑖, 𝑦𝑖) = 1(𝑦𝑖 ̸= 𝑦𝑖)

where 1(𝑥) is the indicator function.

>>> from sklearn.metrics import zero_one_loss
>>> y_pred = [1, 2, 3, 4]
>>> y_true = [2, 2, 3, 4]
>>> zero_one_loss(y_true, y_pred)
0.25
>>> zero_one_loss(y_true, y_pred, normalize=False)
1

In the multilabel case with binary label indicators, where the first label set [0,1] has an error:

>>> zero_one_loss(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
0.5

>>> zero_one_loss(np.array([[0, 1], [1, 1]]), np.ones((2, 2)), normalize=False)
1

Example:

• See Recursive feature elimination with cross-validation for an example of zero one loss usage to perform
recursive feature elimination with cross-validation.

Brier score loss

The brier_score_loss function computes the Brier score for binary classes. Quoting Wikipedia:

4.3. Model selection and evaluation 609

https://en.wikipedia.org/wiki/Indicator_function
https://en.wikipedia.org/wiki/Brier_score

scikit-learn user guide, Release 0.23.2

“The Brier score is a proper score function that measures the accuracy of probabilistic predictions. It is
applicable to tasks in which predictions must assign probabilities to a set of mutually exclusive discrete
outcomes.”

This function returns a score of the mean square difference between the actual outcome and the predicted probability
of the possible outcome. The actual outcome has to be 1 or 0 (true or false), while the predicted probability of the
actual outcome can be a value between 0 and 1.

The brier score loss is also between 0 to 1 and the lower the score (the mean square difference is smaller), the more
accurate the prediction is. It can be thought of as a measure of the “calibration” of a set of probabilistic predictions.

𝐵𝑆 =
1

𝑁

𝑁∑︁
𝑡=1

(𝑓𝑡 − 𝑜𝑡)2

where : 𝑁 is the total number of predictions, 𝑓𝑡 is the predicted probability of the actual outcome 𝑜𝑡.

Here is a small example of usage of this function::

>>> import numpy as np
>>> from sklearn.metrics import brier_score_loss
>>> y_true = np.array([0, 1, 1, 0])
>>> y_true_categorical = np.array(["spam", "ham", "ham", "spam"])
>>> y_prob = np.array([0.1, 0.9, 0.8, 0.4])
>>> y_pred = np.array([0, 1, 1, 0])
>>> brier_score_loss(y_true, y_prob)
0.055
>>> brier_score_loss(y_true, 1 - y_prob, pos_label=0)
0.055
>>> brier_score_loss(y_true_categorical, y_prob, pos_label="ham")
0.055
>>> brier_score_loss(y_true, y_prob > 0.5)
0.0

Example:

• See Probability calibration of classifiers for an example of Brier score loss usage to perform probability
calibration of classifiers.

References:

• G. Brier, Verification of forecasts expressed in terms of probability, Monthly weather review 78.1 (1950)

Multilabel ranking metrics

In multilabel learning, each sample can have any number of ground truth labels associated with it. The goal is to give
high scores and better rank to the ground truth labels.

Coverage error

The coverage_error function computes the average number of labels that have to be included in the final predic-
tion such that all true labels are predicted. This is useful if you want to know how many top-scored-labels you have

610 Chapter 4. User Guide

ftp://ftp.library.noaa.gov/docs.lib/htdocs/rescue/mwr/078/mwr-078-01-0001.pdf

scikit-learn user guide, Release 0.23.2

to predict in average without missing any true one. The best value of this metrics is thus the average number of true
labels.

Note: Our implementation’s score is 1 greater than the one given in Tsoumakas et al., 2010. This extends it to handle
the degenerate case in which an instance has 0 true labels.

Formally, given a binary indicator matrix of the ground truth labels 𝑦 ∈ {0, 1}𝑛samples×𝑛labels and the score associated
with each label 𝑓 ∈ R𝑛samples×𝑛labels , the coverage is defined as

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑦, 𝑓) =
1

𝑛samples

𝑛samples−1∑︁
𝑖=0

max
𝑗:𝑦𝑖𝑗=1

rank𝑖𝑗

with rank𝑖𝑗 =
⃒⃒⃒{︁
𝑘 : 𝑓𝑖𝑘 ≥ 𝑓𝑖𝑗

}︁⃒⃒⃒
. Given the rank definition, ties in y_scores are broken by giving the maximal rank

that would have been assigned to all tied values.

Here is a small example of usage of this function:

>>> import numpy as np
>>> from sklearn.metrics import coverage_error
>>> y_true = np.array([[1, 0, 0], [0, 0, 1]])
>>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]])
>>> coverage_error(y_true, y_score)
2.5

Label ranking average precision

The label_ranking_average_precision_score function implements label ranking average precision
(LRAP). This metric is linked to the average_precision_score function, but is based on the notion of la-
bel ranking instead of precision and recall.

Label ranking average precision (LRAP) averages over the samples the answer to the following question: for each
ground truth label, what fraction of higher-ranked labels were true labels? This performance measure will be higher if
you are able to give better rank to the labels associated with each sample. The obtained score is always strictly greater
than 0, and the best value is 1. If there is exactly one relevant label per sample, label ranking average precision is
equivalent to the mean reciprocal rank.

Formally, given a binary indicator matrix of the ground truth labels 𝑦 ∈ {0, 1}𝑛samples×𝑛labels and the score associated
with each label 𝑓 ∈ R𝑛samples×𝑛labels , the average precision is defined as

𝐿𝑅𝐴𝑃 (𝑦, 𝑓) =
1

𝑛samples

𝑛samples−1∑︁
𝑖=0

1

||𝑦𝑖||0

∑︁
𝑗:𝑦𝑖𝑗=1

|ℒ𝑖𝑗 |
rank𝑖𝑗

where ℒ𝑖𝑗 =
{︁
𝑘 : 𝑦𝑖𝑘 = 1, 𝑓𝑖𝑘 ≥ 𝑓𝑖𝑗

}︁
, rank𝑖𝑗 =

⃒⃒⃒{︁
𝑘 : 𝑓𝑖𝑘 ≥ 𝑓𝑖𝑗

}︁⃒⃒⃒
, | · | computes the cardinality of the set (i.e., the

number of elements in the set), and || · ||0 is the ℓ0 “norm” (which computes the number of nonzero elements in a
vector).

Here is a small example of usage of this function:

>>> import numpy as np
>>> from sklearn.metrics import label_ranking_average_precision_score
>>> y_true = np.array([[1, 0, 0], [0, 0, 1]])
>>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]])
>>> label_ranking_average_precision_score(y_true, y_score)
0.416...

4.3. Model selection and evaluation 611

https://en.wikipedia.org/wiki/Mean_reciprocal_rank

scikit-learn user guide, Release 0.23.2

Ranking loss

The label_ranking_loss function computes the ranking loss which averages over the samples the number of
label pairs that are incorrectly ordered, i.e. true labels have a lower score than false labels, weighted by the inverse of
the number of ordered pairs of false and true labels. The lowest achievable ranking loss is zero.

Formally, given a binary indicator matrix of the ground truth labels 𝑦 ∈ {0, 1}𝑛samples×𝑛labels and the score associated
with each label 𝑓 ∈ R𝑛samples×𝑛labels , the ranking loss is defined as

𝑟𝑎𝑛𝑘𝑖𝑛𝑔_𝑙𝑜𝑠𝑠(𝑦, 𝑓) =
1

𝑛samples

𝑛samples−1∑︁
𝑖=0

1

||𝑦𝑖||0(𝑛labels − ||𝑦𝑖||0)

⃒⃒⃒{︁
(𝑘, 𝑙) : 𝑓𝑖𝑘 ≤ 𝑓𝑖𝑙, 𝑦𝑖𝑘 = 1, 𝑦𝑖𝑙 = 0

}︁⃒⃒⃒
where | · | computes the cardinality of the set (i.e., the number of elements in the set) and || · ||0 is the ℓ0 “norm” (which
computes the number of nonzero elements in a vector).

Here is a small example of usage of this function:

>>> import numpy as np
>>> from sklearn.metrics import label_ranking_loss
>>> y_true = np.array([[1, 0, 0], [0, 0, 1]])
>>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]])
>>> label_ranking_loss(y_true, y_score)
0.75...
>>> # With the following prediction, we have perfect and minimal loss
>>> y_score = np.array([[1.0, 0.1, 0.2], [0.1, 0.2, 0.9]])
>>> label_ranking_loss(y_true, y_score)
0.0

References:

• Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010). Mining multi-label data. In Data mining and knowledge
discovery handbook (pp. 667-685). Springer US.

Normalized Discounted Cumulative Gain

Discounted Cumulative Gain (DCG) and Normalized Discounted Cumulative Gain (NDCG) are ranking metrics; they
compare a predicted order to ground-truth scores, such as the relevance of answers to a query.

From the Wikipedia page for Discounted Cumulative Gain:

“Discounted cumulative gain (DCG) is a measure of ranking quality. In information retrieval, it is often used to
measure effectiveness of web search engine algorithms or related applications. Using a graded relevance scale of
documents in a search-engine result set, DCG measures the usefulness, or gain, of a document based on its position
in the result list. The gain is accumulated from the top of the result list to the bottom, with the gain of each result
discounted at lower ranks”

DCG orders the true targets (e.g. relevance of query answers) in the predicted order, then multiplies them by a
logarithmic decay and sums the result. The sum can be truncated after the first 𝐾 results, in which case we call it
DCG@K. NDCG, or NDCG@K is DCG divided by the DCG obtained by a perfect prediction, so that it is always
between 0 and 1. Usually, NDCG is preferred to DCG.

Compared with the ranking loss, NDCG can take into account relevance scores, rather than a ground-truth ranking. So
if the ground-truth consists only of an ordering, the ranking loss should be preferred; if the ground-truth consists of
actual usefulness scores (e.g. 0 for irrelevant, 1 for relevant, 2 for very relevant), NDCG can be used.

612 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

For one sample, given the vector of continuous ground-truth values for each target 𝑦 ∈ R𝑀 , where 𝑀 is the number
of outputs, and the prediction 𝑦, which induces the ranking function 𝑓 , the DCG score is

min(𝐾,𝑀)∑︁
𝑟=1

𝑦𝑓(𝑟)

log(1 + 𝑟)

and the NDCG score is the DCG score divided by the DCG score obtained for 𝑦.

References:

• Wikipedia entry for Discounted Cumulative Gain

• Jarvelin, K., & Kekalainen, J. (2002). Cumulated gain-based evaluation of IR techniques. ACM Transactions
on Information Systems (TOIS), 20(4), 422-446.

• Wang, Y., Wang, L., Li, Y., He, D., Chen, W., & Liu, T. Y. (2013, May). A theoretical analysis of NDCG
ranking measures. In Proceedings of the 26th Annual Conference on Learning Theory (COLT 2013)

• McSherry, F., & Najork, M. (2008, March). Computing information retrieval performance measures ef-
ficiently in the presence of tied scores. In European conference on information retrieval (pp. 414-421).
Springer, Berlin, Heidelberg.

Regression metrics

The sklearn.metrics module implements several loss, score, and utility functions to measure regression
performance. Some of those have been enhanced to handle the multioutput case: mean_squared_error,
mean_absolute_error, explained_variance_score and r2_score.

These functions have an multioutput keyword argument which specifies the way the scores or losses for each
individual target should be averaged. The default is 'uniform_average', which specifies a uniformly weighted
mean over outputs. If an ndarray of shape (n_outputs,) is passed, then its entries are interpreted as weights
and an according weighted average is returned. If multioutput is 'raw_values' is specified, then all unaltered
individual scores or losses will be returned in an array of shape (n_outputs,).

The r2_score and explained_variance_score accept an additional value 'variance_weighted' for
the multioutput parameter. This option leads to a weighting of each individual score by the variance of the
corresponding target variable. This setting quantifies the globally captured unscaled variance. If the target vari-
ables are of different scale, then this score puts more importance on well explaining the higher variance variables.
multioutput='variance_weighted' is the default value for r2_score for backward compatibility. This
will be changed to uniform_average in the future.

Explained variance score

The explained_variance_score computes the explained variance regression score.

If 𝑦 is the estimated target output, 𝑦 the corresponding (correct) target output, and 𝑉 𝑎𝑟 is Variance, the square of the
standard deviation, then the explained variance is estimated as follow:

𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑_𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑦, 𝑦) = 1− 𝑉 𝑎𝑟{𝑦 − 𝑦}
𝑉 𝑎𝑟{𝑦}

The best possible score is 1.0, lower values are worse.

Here is a small example of usage of the explained_variance_score function:

4.3. Model selection and evaluation 613

https://en.wikipedia.org/wiki/Discounted_cumulative_gain
https://en.wikipedia.org/wiki/Explained_variation
https://en.wikipedia.org/wiki/Variance

scikit-learn user guide, Release 0.23.2

>>> from sklearn.metrics import explained_variance_score
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> explained_variance_score(y_true, y_pred)
0.957...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> explained_variance_score(y_true, y_pred, multioutput='raw_values')
array([0.967..., 1.])
>>> explained_variance_score(y_true, y_pred, multioutput=[0.3, 0.7])
0.990...

Max error

The max_error function computes the maximum residual error , a metric that captures the worst case error between
the predicted value and the true value. In a perfectly fitted single output regression model, max_error would be 0
on the training set and though this would be highly unlikely in the real world, this metric shows the extent of error that
the model had when it was fitted.

If 𝑦𝑖 is the predicted value of the 𝑖-th sample, and 𝑦𝑖 is the corresponding true value, then the max error is defined as

Max Error(𝑦, 𝑦) = 𝑚𝑎𝑥(|𝑦𝑖 − 𝑦𝑖|)

Here is a small example of usage of the max_error function:

>>> from sklearn.metrics import max_error
>>> y_true = [3, 2, 7, 1]
>>> y_pred = [9, 2, 7, 1]
>>> max_error(y_true, y_pred)
6

The max_error does not support multioutput.

Mean absolute error

The mean_absolute_error function computes mean absolute error, a risk metric corresponding to the expected
value of the absolute error loss or 𝑙1-norm loss.

If 𝑦𝑖 is the predicted value of the 𝑖-th sample, and 𝑦𝑖 is the corresponding true value, then the mean absolute error
(MAE) estimated over 𝑛samples is defined as

MAE(𝑦, 𝑦) =
1

𝑛samples

𝑛samples−1∑︁
𝑖=0

|𝑦𝑖 − 𝑦𝑖| .

Here is a small example of usage of the mean_absolute_error function:

>>> from sklearn.metrics import mean_absolute_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_absolute_error(y_true, y_pred)
0.5
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> mean_absolute_error(y_true, y_pred)

(continues on next page)

614 Chapter 4. User Guide

https://en.wikipedia.org/wiki/Errors_and_residuals
https://en.wikipedia.org/wiki/Mean_absolute_error

scikit-learn user guide, Release 0.23.2

(continued from previous page)

0.75
>>> mean_absolute_error(y_true, y_pred, multioutput='raw_values')
array([0.5, 1.])
>>> mean_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7])
0.85...

Mean squared error

The mean_squared_error function computes mean square error, a risk metric corresponding to the expected
value of the squared (quadratic) error or loss.

If 𝑦𝑖 is the predicted value of the 𝑖-th sample, and 𝑦𝑖 is the corresponding true value, then the mean squared error
(MSE) estimated over 𝑛samples is defined as

MSE(𝑦, 𝑦) =
1

𝑛samples

𝑛samples−1∑︁
𝑖=0

(𝑦𝑖 − 𝑦𝑖)2.

Here is a small example of usage of the mean_squared_error function:

>>> from sklearn.metrics import mean_squared_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_squared_error(y_true, y_pred)
0.375
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> mean_squared_error(y_true, y_pred)
0.7083...

Examples:

• See Gradient Boosting regression for an example of mean squared error usage to evaluate gradient boosting
regression.

Mean squared logarithmic error

The mean_squared_log_error function computes a risk metric corresponding to the expected value of the
squared logarithmic (quadratic) error or loss.

If 𝑦𝑖 is the predicted value of the 𝑖-th sample, and 𝑦𝑖 is the corresponding true value, then the mean squared logarithmic
error (MSLE) estimated over 𝑛samples is defined as

MSLE(𝑦, 𝑦) =
1

𝑛samples

𝑛samples−1∑︁
𝑖=0

(log𝑒(1 + 𝑦𝑖)− log𝑒(1 + 𝑦𝑖))
2.

Where log𝑒(𝑥) means the natural logarithm of 𝑥. This metric is best to use when targets having exponential growth,
such as population counts, average sales of a commodity over a span of years etc. Note that this metric penalizes an
under-predicted estimate greater than an over-predicted estimate.

Here is a small example of usage of the mean_squared_log_error function:

4.3. Model selection and evaluation 615

https://en.wikipedia.org/wiki/Mean_squared_error

scikit-learn user guide, Release 0.23.2

>>> from sklearn.metrics import mean_squared_log_error
>>> y_true = [3, 5, 2.5, 7]
>>> y_pred = [2.5, 5, 4, 8]
>>> mean_squared_log_error(y_true, y_pred)
0.039...
>>> y_true = [[0.5, 1], [1, 2], [7, 6]]
>>> y_pred = [[0.5, 2], [1, 2.5], [8, 8]]
>>> mean_squared_log_error(y_true, y_pred)
0.044...

Median absolute error

The median_absolute_error is particularly interesting because it is robust to outliers. The loss is calculated by
taking the median of all absolute differences between the target and the prediction.

If 𝑦𝑖 is the predicted value of the 𝑖-th sample and 𝑦𝑖 is the corresponding true value, then the median absolute error
(MedAE) estimated over 𝑛samples is defined as

MedAE(𝑦, 𝑦) = median(| 𝑦1 − 𝑦1 |, . . . , | 𝑦𝑛 − 𝑦𝑛 |).

The median_absolute_error does not support multioutput.

Here is a small example of usage of the median_absolute_error function:

>>> from sklearn.metrics import median_absolute_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> median_absolute_error(y_true, y_pred)
0.5

R2 score, the coefficient of determination

The r2_score function computes the coefficient of determination, usually denoted as R2.

It represents the proportion of variance (of y) that has been explained by the independent variables in the model. It
provides an indication of goodness of fit and therefore a measure of how well unseen samples are likely to be predicted
by the model, through the proportion of explained variance.

As such variance is dataset dependent, R2 may not be meaningfully comparable across different datasets. Best possible
score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts
the expected value of y, disregarding the input features, would get a R2 score of 0.0.

If 𝑦𝑖 is the predicted value of the 𝑖-th sample and 𝑦𝑖 is the corresponding true value for total 𝑛 samples, the estimated
R2 is defined as:

𝑅2(𝑦, 𝑦) = 1−
∑︀𝑛

𝑖=1(𝑦𝑖 − 𝑦𝑖)2∑︀𝑛
𝑖=1(𝑦𝑖 − 𝑦)2

where 𝑦 = 1
𝑛

∑︀𝑛
𝑖=1 𝑦𝑖 and

∑︀𝑛
𝑖=1(𝑦𝑖 − 𝑦𝑖)2 =

∑︀𝑛
𝑖=1 𝜖

2
𝑖 .

Note that r2_score calculates unadjusted R2 without correcting for bias in sample variance of y.

Here is a small example of usage of the r2_score function:

616 Chapter 4. User Guide

https://en.wikipedia.org/wiki/Coefficient_of_determination

scikit-learn user guide, Release 0.23.2

>>> from sklearn.metrics import r2_score
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> r2_score(y_true, y_pred)
0.948...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> r2_score(y_true, y_pred, multioutput='variance_weighted')
0.938...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> r2_score(y_true, y_pred, multioutput='uniform_average')
0.936...
>>> r2_score(y_true, y_pred, multioutput='raw_values')
array([0.965..., 0.908...])
>>> r2_score(y_true, y_pred, multioutput=[0.3, 0.7])
0.925...

Example:

• See Lasso and Elastic Net for Sparse Signals for an example of R2 score usage to evaluate Lasso and Elastic
Net on sparse signals.

Mean Poisson, Gamma, and Tweedie deviances

The mean_tweedie_deviance function computes the mean Tweedie deviance error with a power parameter (𝑝).
This is a metric that elicits predicted expectation values of regression targets.

Following special cases exist,

• when power=0 it is equivalent to mean_squared_error.

• when power=1 it is equivalent to mean_poisson_deviance.

• when power=2 it is equivalent to mean_gamma_deviance.

If 𝑦𝑖 is the predicted value of the 𝑖-th sample, and 𝑦𝑖 is the corresponding true value, then the mean Tweedie deviance
error (D) for power 𝑝, estimated over 𝑛samples is defined as

D(𝑦, 𝑦) =
1

𝑛samples

𝑛samples−1∑︁
𝑖=0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(𝑦𝑖 − 𝑦𝑖)2, for 𝑝 = 0 (Normal)
2(𝑦𝑖 log(𝑦/𝑦𝑖) + 𝑦𝑖 − 𝑦𝑖), for𝑝 = 1 (Poisson)
2(log(𝑦𝑖/𝑦𝑖) + 𝑦𝑖/𝑦𝑖 − 1), for𝑝 = 2 (Gamma)

2
(︁

max(𝑦𝑖,0)
2−𝑝

(1−𝑝)(2−𝑝) −
𝑦 𝑦1−𝑝

𝑖

1−𝑝 +
𝑦2−𝑝
𝑖

2−𝑝

)︁
, otherwise

Tweedie deviance is a homogeneous function of degree 2-power. Thus, Gamma distribution with power=2 means
that simultaneously scaling y_true and y_pred has no effect on the deviance. For Poisson distribution power=1
the deviance scales linearly, and for Normal distribution (power=0), quadratically. In general, the higher power the
less weight is given to extreme deviations between true and predicted targets.

For instance, let’s compare the two predictions 1.0 and 100 that are both 50% of their corresponding true value.

The mean squared error (power=0) is very sensitive to the prediction difference of the second point,:

4.3. Model selection and evaluation 617

https://en.wikipedia.org/wiki/Tweedie_distribution#The_Tweedie_deviance

scikit-learn user guide, Release 0.23.2

>>> from sklearn.metrics import mean_tweedie_deviance
>>> mean_tweedie_deviance([1.0], [1.5], power=0)
0.25
>>> mean_tweedie_deviance([100.], [150.], power=0)
2500.0

If we increase power to 1,:

>>> mean_tweedie_deviance([1.0], [1.5], power=1)
0.18...
>>> mean_tweedie_deviance([100.], [150.], power=1)
18.9...

the difference in errors decreases. Finally, by setting, power=2:

>>> mean_tweedie_deviance([1.0], [1.5], power=2)
0.14...
>>> mean_tweedie_deviance([100.], [150.], power=2)
0.14...

we would get identical errors. The deviance when power=2 is thus only sensitive to relative errors.

Clustering metrics

The sklearn.metrics module implements several loss, score, and utility functions. For more information see the
Clustering performance evaluation section for instance clustering, and Biclustering evaluation for biclustering.

Dummy estimators

When doing supervised learning, a simple sanity check consists of comparing one’s estimator against simple rules of
thumb. DummyClassifier implements several such simple strategies for classification:

• stratified generates random predictions by respecting the training set class distribution.

• most_frequent always predicts the most frequent label in the training set.

• prior always predicts the class that maximizes the class prior (like most_frequent) and
predict_proba returns the class prior.

• uniform generates predictions uniformly at random.

• constant always predicts a constant label that is provided by the user. A major motivation of this
method is F1-scoring, when the positive class is in the minority.

Note that with all these strategies, the predict method completely ignores the input data!

To illustrate DummyClassifier, first let’s create an imbalanced dataset:

>>> from sklearn.datasets import load_iris
>>> from sklearn.model_selection import train_test_split
>>> X, y = load_iris(return_X_y=True)
>>> y[y != 1] = -1
>>> X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

Next, let’s compare the accuracy of SVC and most_frequent:

618 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

>>> from sklearn.dummy import DummyClassifier
>>> from sklearn.svm import SVC
>>> clf = SVC(kernel='linear', C=1).fit(X_train, y_train)
>>> clf.score(X_test, y_test)
0.63...
>>> clf = DummyClassifier(strategy='most_frequent', random_state=0)
>>> clf.fit(X_train, y_train)
DummyClassifier(random_state=0, strategy='most_frequent')
>>> clf.score(X_test, y_test)
0.57...

We see that SVC doesn’t do much better than a dummy classifier. Now, let’s change the kernel:

>>> clf = SVC(kernel='rbf', C=1).fit(X_train, y_train)
>>> clf.score(X_test, y_test)
0.94...

We see that the accuracy was boosted to almost 100%. A cross validation strategy is recommended for a better
estimate of the accuracy, if it is not too CPU costly. For more information see the Cross-validation: evaluating
estimator performance section. Moreover if you want to optimize over the parameter space, it is highly recommended
to use an appropriate methodology; see the Tuning the hyper-parameters of an estimator section for details.

More generally, when the accuracy of a classifier is too close to random, it probably means that something went wrong:
features are not helpful, a hyperparameter is not correctly tuned, the classifier is suffering from class imbalance, etc. . .

DummyRegressor also implements four simple rules of thumb for regression:

• mean always predicts the mean of the training targets.

• median always predicts the median of the training targets.

• quantile always predicts a user provided quantile of the training targets.

• constant always predicts a constant value that is provided by the user.

In all these strategies, the predict method completely ignores the input data.

4.3.4 Model persistence

After training a scikit-learn model, it is desirable to have a way to persist the model for future use without having to
retrain. The following section gives you an example of how to persist a model with pickle. We’ll also review a few
security and maintainability issues when working with pickle serialization.

An alternative to pickling is to export the model to another format using one of the model export tools listed under
Related Projects. Unlike pickling, once exported you cannot recover the full Scikit-learn estimator object, but you can
deploy the model for prediction, usually by using tools supporting open model interchange formats such as ONNX or
PMML.

Persistence example

It is possible to save a model in scikit-learn by using Python’s built-in persistence model, namely pickle:

>>> from sklearn import svm
>>> from sklearn import datasets
>>> clf = svm.SVC()
>>> X, y= datasets.load_iris(return_X_y=True)
>>> clf.fit(X, y)

(continues on next page)

4.3. Model selection and evaluation 619

https://onnx.ai/
http://dmg.org/pmml/v4-4/GeneralStructure.html
https://docs.python.org/3/library/pickle.html

scikit-learn user guide, Release 0.23.2

(continued from previous page)

SVC()

>>> import pickle
>>> s = pickle.dumps(clf)
>>> clf2 = pickle.loads(s)
>>> clf2.predict(X[0:1])
array([0])
>>> y[0]
0

In the specific case of scikit-learn, it may be better to use joblib’s replacement of pickle (dump & load), which is
more efficient on objects that carry large numpy arrays internally as is often the case for fitted scikit-learn estimators,
but can only pickle to the disk and not to a string:

>>> from joblib import dump, load
>>> dump(clf, 'filename.joblib')

Later you can load back the pickled model (possibly in another Python process) with:

>>> clf = load('filename.joblib')

Note: dump and load functions also accept file-like object instead of filenames. More information on data persis-
tence with Joblib is available here.

Security & maintainability limitations

pickle (and joblib by extension), has some issues regarding maintainability and security. Because of this,

• Never unpickle untrusted data as it could lead to malicious code being executed upon loading.

• While models saved using one version of scikit-learn might load in other versions, this is entirely unsupported
and inadvisable. It should also be kept in mind that operations performed on such data could give different and
unexpected results.

In order to rebuild a similar model with future versions of scikit-learn, additional metadata should be saved along the
pickled model:

• The training data, e.g. a reference to an immutable snapshot

• The python source code used to generate the model

• The versions of scikit-learn and its dependencies

• The cross validation score obtained on the training data

This should make it possible to check that the cross-validation score is in the same range as before.

Since a model internal representation may be different on two different architectures, dumping a model on one archi-
tecture and loading it on another architecture is not supported.

If you want to know more about these issues and explore other possible serialization methods, please refer to this talk
by Alex Gaynor.

620 Chapter 4. User Guide

https://joblib.readthedocs.io/en/latest/persistence.html
https://pyvideo.org/video/2566/pickles-are-for-delis-not-software
https://pyvideo.org/video/2566/pickles-are-for-delis-not-software

scikit-learn user guide, Release 0.23.2

4.3.5 Validation curves: plotting scores to evaluate models

Every estimator has its advantages and drawbacks. Its generalization error can be decomposed in terms of bias,
variance and noise. The bias of an estimator is its average error for different training sets. The variance of an
estimator indicates how sensitive it is to varying training sets. Noise is a property of the data.

In the following plot, we see a function 𝑓(𝑥) = cos(3
2𝜋𝑥) and some noisy samples from that function. We use three

different estimators to fit the function: linear regression with polynomial features of degree 1, 4 and 15. We see that
the first estimator can at best provide only a poor fit to the samples and the true function because it is too simple
(high bias), the second estimator approximates it almost perfectly and the last estimator approximates the training data
perfectly but does not fit the true function very well, i.e. it is very sensitive to varying training data (high variance).

Bias and variance are inherent properties of estimators and we usually have to select learning algorithms and hyper-
parameters so that both bias and variance are as low as possible (see Bias-variance dilemma). Another way to reduce
the variance of a model is to use more training data. However, you should only collect more training data if the true
function is too complex to be approximated by an estimator with a lower variance.

In the simple one-dimensional problem that we have seen in the example it is easy to see whether the estimator suffers
from bias or variance. However, in high-dimensional spaces, models can become very difficult to visualize. For this
reason, it is often helpful to use the tools described below.

Examples:

• Underfitting vs. Overfitting

• Plotting Validation Curves

• Plotting Learning Curves

Validation curve

To validate a model we need a scoring function (see Metrics and scoring: quantifying the quality of predictions), for
example accuracy for classifiers. The proper way of choosing multiple hyperparameters of an estimator are of course
grid search or similar methods (see Tuning the hyper-parameters of an estimator) that select the hyperparameter with
the maximum score on a validation set or multiple validation sets. Note that if we optimized the hyperparameters
based on a validation score the validation score is biased and not a good estimate of the generalization any longer. To
get a proper estimate of the generalization we have to compute the score on another test set.

However, it is sometimes helpful to plot the influence of a single hyperparameter on the training score and the valida-
tion score to find out whether the estimator is overfitting or underfitting for some hyperparameter values.

4.3. Model selection and evaluation 621

../auto_examples/model_selection/plot_underfitting_overfitting.html
https://en.wikipedia.org/wiki/Bias-variance_dilemma

scikit-learn user guide, Release 0.23.2

The function validation_curve can help in this case:

>>> import numpy as np
>>> from sklearn.model_selection import validation_curve
>>> from sklearn.datasets import load_iris
>>> from sklearn.linear_model import Ridge

>>> np.random.seed(0)
>>> X, y = load_iris(return_X_y=True)
>>> indices = np.arange(y.shape[0])
>>> np.random.shuffle(indices)
>>> X, y = X[indices], y[indices]

>>> train_scores, valid_scores = validation_curve(Ridge(), X, y, "alpha",
... np.logspace(-7, 3, 3),
... cv=5)
>>> train_scores
array([[0.93..., 0.94..., 0.92..., 0.91..., 0.92...],

[0.93..., 0.94..., 0.92..., 0.91..., 0.92...],
[0.51..., 0.52..., 0.49..., 0.47..., 0.49...]])

>>> valid_scores
array([[0.90..., 0.84..., 0.94..., 0.96..., 0.93...],

[0.90..., 0.84..., 0.94..., 0.96..., 0.93...],
[0.46..., 0.25..., 0.50..., 0.49..., 0.52...]])

If the training score and the validation score are both low, the estimator will be underfitting. If the training score is
high and the validation score is low, the estimator is overfitting and otherwise it is working very well. A low training
score and a high validation score is usually not possible. All three cases can be found in the plot below where we vary
the parameter 𝛾 of an SVM on the digits dataset.

Learning curve

A learning curve shows the validation and training score of an estimator for varying numbers of training samples. It
is a tool to find out how much we benefit from adding more training data and whether the estimator suffers more from
a variance error or a bias error. Consider the following example where we plot the learning curve of a naive Bayes
classifier and an SVM.

For the naive Bayes, both the validation score and the training score converge to a value that is quite low with increasing
size of the training set. Thus, we will probably not benefit much from more training data.

622 Chapter 4. User Guide

../auto_examples/model_selection/plot_validation_curve.html

scikit-learn user guide, Release 0.23.2

In contrast, for small amounts of data, the training score of the SVM is much greater than the validation score. Adding
more training samples will most likely increase generalization.

We can use the function learning_curve to generate the values that are required to plot such a learning curve
(number of samples that have been used, the average scores on the training sets and the average scores on the validation
sets):

>>> from sklearn.model_selection import learning_curve
>>> from sklearn.svm import SVC

>>> train_sizes, train_scores, valid_scores = learning_curve(
... SVC(kernel='linear'), X, y, train_sizes=[50, 80, 110], cv=5)
>>> train_sizes
array([50, 80, 110])
>>> train_scores
array([[0.98..., 0.98 , 0.98..., 0.98..., 0.98...],

[0.98..., 1. , 0.98..., 0.98..., 0.98...],
[0.98..., 1. , 0.98..., 0.98..., 0.99...]])

>>> valid_scores
array([[1. , 0.93..., 1. , 1. , 0.96...],

[1. , 0.96..., 1. , 1. , 0.96...],
[1. , 0.96..., 1. , 1. , 0.96...]])

4.4 Inspection

Predictive performance is often the main goal of developing machine learning models. Yet summarising performance
with an evaluation metric is often insufficient: it assumes that the evaluation metric and test dataset perfectly reflect
the target domain, which is rarely true. In certain domains, a model needs a certain level of interpretability before
it can be deployed. A model that is exhibiting performance issues needs to be debugged for one to understand the
model’s underlying issue. The sklearn.inspection module provides tools to help understand the predictions
from a model and what affects them. This can be used to evaluate assumptions and biases of a model, design a better
model, or to diagnose issues with model performance.

Examples:

• Common pitfalls in interpretation of coefficients of linear models

4.4.1 Partial dependence plots

Partial dependence plots (PDP) show the dependence between the target response1 and a set of ‘target’ features,
marginalizing over the values of all other features (the ‘complement’ features). Intuitively, we can interpret the partial
dependence as the expected target response as a function of the ‘target’ features.

Due to the limits of human perception the size of the target feature set must be small (usually, one or two) thus the
target features are usually chosen among the most important features.

The figure below shows four one-way and one two-way partial dependence plots for the California housing dataset,
with a GradientBoostingRegressor:

One-way PDPs tell us about the interaction between the target response and the target feature (e.g. linear, non-linear).
The upper left plot in the above figure shows the effect of the median income in a district on the median house price;

1 For classification, the target response may be the probability of a class (the positive class for binary classification), or the decision function.

4.4. Inspection 623

scikit-learn user guide, Release 0.23.2

624 Chapter 4. User Guide

../auto_examples/model_selection/plot_learning_curve.html

scikit-learn user guide, Release 0.23.2

we can clearly see a linear relationship among them. Note that PDPs assume that the target features are independent
from the complement features, and this assumption is often violated in practice.

PDPs with two target features show the interactions among the two features. For example, the two-variable PDP in
the above figure shows the dependence of median house price on joint values of house age and average occupants per
household. We can clearly see an interaction between the two features: for an average occupancy greater than two, the
house price is nearly independent of the house age, whereas for values less than 2 there is a strong dependence on age.

The sklearn.inspection module provides a convenience function plot_partial_dependence to cre-
ate one-way and two-way partial dependence plots. In the below example we show how to create a grid of partial
dependence plots: two one-way PDPs for the features 0 and 1 and a two-way PDP between the two features:

>>> from sklearn.datasets import make_hastie_10_2
>>> from sklearn.ensemble import GradientBoostingClassifier
>>> from sklearn.inspection import plot_partial_dependence

>>> X, y = make_hastie_10_2(random_state=0)
>>> clf = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0,
... max_depth=1, random_state=0).fit(X, y)
>>> features = [0, 1, (0, 1)]
>>> plot_partial_dependence(clf, X, features)

You can access the newly created figure and Axes objects using plt.gcf() and plt.gca().

For multi-class classification, you need to set the class label for which the PDPs should be created via the target
argument:

>>> from sklearn.datasets import load_iris
>>> iris = load_iris()
>>> mc_clf = GradientBoostingClassifier(n_estimators=10,
... max_depth=1).fit(iris.data, iris.target)
>>> features = [3, 2, (3, 2)]
>>> plot_partial_dependence(mc_clf, X, features, target=0)

The same parameter target is used to specify the target in multi-output regression settings.

4.4. Inspection 625

../auto_examples/inspection/plot_partial_dependence.html

scikit-learn user guide, Release 0.23.2

If you need the raw values of the partial dependence function rather than the plots, you can use the sklearn.
inspection.partial_dependence function:

>>> from sklearn.inspection import partial_dependence

>>> pdp, axes = partial_dependence(clf, X, [0])
>>> pdp
array([[2.466..., 2.466..., ...
>>> axes
[array([-1.624..., -1.592..., ...

The values at which the partial dependence should be evaluated are directly generated from X. For 2-way par-
tial dependence, a 2D-grid of values is generated. The values field returned by sklearn.inspection.
partial_dependence gives the actual values used in the grid for each target feature. They also correspond
to the axis of the plots.

Mathematical Definition

Let 𝑋𝑆 be the set of target features (i.e. the features parameter) and let 𝑋𝐶 be its complement.

The partial dependence of the response 𝑓 at a point 𝑥𝑆 is defined as:

𝑝𝑑𝑋𝑆
(𝑥𝑆)

𝑑𝑒𝑓
= E𝑋𝐶

[𝑓(𝑥𝑆 , 𝑋𝐶)]

=

∫︁
𝑓(𝑥𝑆 , 𝑥𝐶)𝑝(𝑥𝐶)𝑑𝑥𝐶 ,

where 𝑓(𝑥𝑆 , 𝑥𝐶) is the response function (predict, predict_proba or decision_function) for a given sample whose
values are defined by 𝑥𝑆 for the features in 𝑋𝑆 , and by 𝑥𝐶 for the features in 𝑋𝐶 . Note that 𝑥𝑆 and 𝑥𝐶 may be tuples.

Computing this integral for various values of 𝑥𝑆 produces a plot as above.

Computation methods

There are two main methods to approximate the integral above, namely the ‘brute’ and ‘recursion’ methods. The
method parameter controls which method to use.

The ‘brute’ method is a generic method that works with any estimator. It approximates the above integral by computing
an average over the data X:

𝑝𝑑𝑋𝑆
(𝑥𝑆) ≈ 1

𝑛samples

𝑛∑︁
𝑖=1

𝑓(𝑥𝑆 , 𝑥
(𝑖)
𝐶),

where 𝑥(𝑖)𝐶 is the value of the i-th sample for the features in 𝑋𝐶 . For each value of 𝑥𝑆 , this method requires a full pass
over the dataset X which is computationally intensive.

The ‘recursion’ method is faster than the ‘brute’ method, but it is only supported by some tree-based estimators. It is
computed as follows. For a given point 𝑥𝑆 , a weighted tree traversal is performed: if a split node involves a ‘target’
feature, the corresponding left or right branch is followed; otherwise both branches are followed, each branch being
weighted by the fraction of training samples that entered that branch. Finally, the partial dependence is given by a
weighted average of all the visited leaves values.

With the ‘brute’ method, the parameter X is used both for generating the grid of values 𝑥𝑆 and the complement feature
values 𝑥𝐶 . However with the ‘recursion’ method, X is only used for the grid values: implicitly, the 𝑥𝐶 values are those
of the training data.

By default, the ‘recursion’ method is used on tree-based estimators that support it, and ‘brute’ is used for the rest.

626 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

Note: While both methods should be close in general, they might differ in some specific settings. The ‘brute’ method
assumes the existence of the data points (𝑥𝑆 , 𝑥

(𝑖)
𝐶). When the features are correlated, such artificial samples may

have a very low probability mass. The ‘brute’ and ‘recursion’ methods will likely disagree regarding the value of the
partial dependence, because they will treat these unlikely samples differently. Remember, however, that the primary
assumption for interpreting PDPs is that the features should be independent.

Examples:

• Partial Dependence Plots

References

T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning, Second Edition, Section 10.13.2,
Springer, 2009.

C. Molnar, Interpretable Machine Learning, Section 5.1, 2019.

4.4.2 Permutation feature importance

Permutation feature importance is a model inspection technique that can be used for any fitted estimator when the
data is tabular. This is especially useful for non-linear or opaque estimators. The permutation feature importance is
defined to be the decrease in a model score when a single feature value is randomly shuffled1. This procedure breaks
the relationship between the feature and the target, thus the drop in the model score is indicative of how much the
model depends on the feature. This technique benefits from being model agnostic and can be calculated many times
with different permutations of the feature.

The permutation_importance function calculates the feature importance of estimators for a given dataset.
The n_repeats parameter sets the number of times a feature is randomly shuffled and returns a sample of feature
importances.

Let’s consider the following trained regression model:

>>> from sklearn.datasets import load_diabetes
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.linear_model import Ridge
>>> diabetes = load_diabetes()
>>> X_train, X_val, y_train, y_val = train_test_split(
... diabetes.data, diabetes.target, random_state=0)
...
>>> model = Ridge(alpha=1e-2).fit(X_train, y_train)
>>> model.score(X_val, y_val)
0.356...

Its validation performance, measured via the 𝑅2 score, is significantly larger than the chance level. This makes it
possible to use the permutation_importance function to probe which features are most predictive:

>>> from sklearn.inspection import permutation_importance
>>> r = permutation_importance(model, X_val, y_val,
... n_repeats=30,

(continues on next page)

1 L. Breiman, “Random Forests”, Machine Learning, 45(1), 5-32, 2001. https://doi.org/10.1023/A:1010933404324

4.4. Inspection 627

https://web.stanford.edu/~hastie/ElemStatLearn//
https://christophm.github.io/interpretable-ml-book/
https://doi.org/10.1023/A:1010933404324

scikit-learn user guide, Release 0.23.2

(continued from previous page)

... random_state=0)

...
>>> for i in r.importances_mean.argsort()[::-1]:
... if r.importances_mean[i] - 2 * r.importances_std[i] > 0:
... print(f"{diabetes.feature_names[i]:<8}"
... f"{r.importances_mean[i]:.3f}"
... f" +/- {r.importances_std[i]:.3f}")
...
s5 0.204 +/- 0.050
bmi 0.176 +/- 0.048
bp 0.088 +/- 0.033
sex 0.056 +/- 0.023

Note that the importance values for the top features represent a large fraction of the reference score of 0.356.

Permutation importances can be computed either on the training set or on a held-out testing or validation set. Using
a held-out set makes it possible to highlight which features contribute the most to the generalization power of the
inspected model. Features that are important on the training set but not on the held-out set might cause the model to
overfit.

Warning: Features that are deemed of low importance for a bad model (low cross-validation score) could be
very important for a good model. Therefore it is always important to evaluate the predictive power of a model
using a held-out set (or better with cross-validation) prior to computing importances. Permutation importance does
not reflect to the intrinsic predictive value of a feature by itself but how important this feature is for a particular
model.

Outline of the permutation importance algorithm

• Inputs: fitted predictive model 𝑚, tabular dataset (training or validation) 𝐷.

• Compute the reference score 𝑠 of the model 𝑚 on data 𝐷 (for instance the accuracy for a classifier or the 𝑅2 for
a regressor).

• For each feature 𝑗 (column of 𝐷):

– For each repetition 𝑘 in 1, ...,𝐾:

* Randomly shuffle column 𝑗 of dataset 𝐷 to generate a corrupted version of the data named 𝐷̃𝑘,𝑗 .

* Compute the score 𝑠𝑘,𝑗 of model 𝑚 on corrupted data 𝐷̃𝑘,𝑗 .

– Compute importance 𝑖𝑗 for feature 𝑓𝑗 defined as:

𝑖𝑗 = 𝑠− 1

𝐾

𝐾∑︁
𝑘=1

𝑠𝑘,𝑗

Relation to impurity-based importance in trees

Tree-based models provide an alternative measure of feature importances based on the mean decrease in impurity
(MDI). Impurity is quantified by the splitting criterion of the decision trees (Gini, Entropy or Mean Squared Error).
However, this method can give high importance to features that may not be predictive on unseen data when the model
is overfitting. Permutation-based feature importance, on the other hand, avoids this issue, since it can be computed on
unseen data.

628 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

Furthermore, impurity-based feature importance for trees are strongly biased and favor high cardinality features
(typically numerical features) over low cardinality features such as binary features or categorical variables with a
small number of possible categories.

Permutation-based feature importances do not exhibit such a bias. Additionally, the permutation feature importance
may be computed performance metric on the model predictions predictions and can be used to analyze any model
class (not just tree-based models).

The following example highlights the limitations of impurity-based feature importance in contrast to permutation-
based feature importance: Permutation Importance vs Random Forest Feature Importance (MDI).

Misleading values on strongly correlated features

When two features are correlated and one of the features is permuted, the model will still have access to the feature
through its correlated feature. This will result in a lower importance value for both features, where they might actually
be important.

One way to handle this is to cluster features that are correlated and only keep one feature from each cluster. This
strategy is explored in the following example: Permutation Importance with Multicollinear or Correlated Features.

Examples:

• Permutation Importance vs Random Forest Feature Importance (MDI)

• Permutation Importance with Multicollinear or Correlated Features

References:

4.5 Visualizations

Scikit-learn defines a simple API for creating visualizations for machine learning. The key feature of this API is to
allow for quick plotting and visual adjustments without recalculation. In the following example, we plot a ROC curve
for a fitted support vector machine:

from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import plot_roc_curve
from sklearn.datasets import load_wine

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)
svc = SVC(random_state=42)
svc.fit(X_train, y_train)

svc_disp = plot_roc_curve(svc, X_test, y_test)

The returned svc_disp object allows us to continue using the already computed ROC curve for SVC in future plots.
In this case, the svc_disp is a RocCurveDisplay that stores the computed values as attributes called roc_auc,
fpr, and tpr. Next, we train a random forest classifier and plot the previously computed roc curve again by using
the plot method of the Display object.

4.5. Visualizations 629

scikit-learn user guide, Release 0.23.2

import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestClassifier

rfc = RandomForestClassifier(random_state=42)
rfc.fit(X_train, y_train)

ax = plt.gca()
rfc_disp = plot_roc_curve(rfc, X_test, y_test, ax=ax, alpha=0.8)
svc_disp.plot(ax=ax, alpha=0.8)

Notice that we pass alpha=0.8 to the plot functions to adjust the alpha values of the curves.

Examples:

• ROC Curve with Visualization API

• Advanced Plotting With Partial Dependence

• Visualizations with Display Objects

4.5.1 Available Plotting Utilities

Functions

inspection.plot_partial_dependence(. . . [,
. . .])

Partial dependence plots.

Continued on next page

630 Chapter 4. User Guide

auto_examples/miscellaneous/plot_roc_curve_visualization_api.html

scikit-learn user guide, Release 0.23.2

Table 27 – continued from previous page
metrics.plot_confusion_matrix(estimator,
X, . . .)

Plot Confusion Matrix.

metrics.plot_precision_recall_curve(. . . [,
. . .])

Plot Precision Recall Curve for binary classifiers.

metrics.plot_roc_curve(estimator, X, y, *[,
. . .])

Plot Receiver operating characteristic (ROC) curve.

Display Objects

inspection.PartialDependenceDisplay(. . .) Partial Dependence Plot (PDP) visualization.
metrics.ConfusionMatrixDisplay(. . . [,
. . .])

Confusion Matrix visualization.

metrics.PrecisionRecallDisplay(precision,
. . .)

Precision Recall visualization.

metrics.RocCurveDisplay(*, fpr, tpr[, . . .]) ROC Curve visualization.

4.6 Dataset transformations

scikit-learn provides a library of transformers, which may clean (see Preprocessing data), reduce (see Unsupervised
dimensionality reduction), expand (see Kernel Approximation) or generate (see Feature extraction) feature representa-
tions.

Like other estimators, these are represented by classes with a fit method, which learns model parameters (e.g.
mean and standard deviation for normalization) from a training set, and a transform method which applies this
transformation model to unseen data. fit_transform may be more convenient and efficient for modelling and
transforming the training data simultaneously.

Combining such transformers, either in parallel or series is covered in Pipelines and composite estimators. Pair-
wise metrics, Affinities and Kernels covers transforming feature spaces into affinity matrices, while Transforming the
prediction target (y) considers transformations of the target space (e.g. categorical labels) for use in scikit-learn.

4.6.1 Pipelines and composite estimators

Transformers are usually combined with classifiers, regressors or other estimators to build a composite estimator. The
most common tool is a Pipeline. Pipeline is often used in combination with FeatureUnion which concatenates the
output of transformers into a composite feature space. TransformedTargetRegressor deals with transforming the target
(i.e. log-transform y). In contrast, Pipelines only transform the observed data (X).

Pipeline: chaining estimators

Pipeline can be used to chain multiple estimators into one. This is useful as there is often a fixed sequence of steps
in processing the data, for example feature selection, normalization and classification. Pipeline serves multiple
purposes here:

Convenience and encapsulation You only have to call fit and predict once on your data to fit a whole sequence of
estimators.

Joint parameter selection You can grid search over parameters of all estimators in the pipeline at once.

Safety Pipelines help avoid leaking statistics from your test data into the trained model in cross-validation, by ensuring
that the same samples are used to train the transformers and predictors.

4.6. Dataset transformations 631

scikit-learn user guide, Release 0.23.2

All estimators in a pipeline, except the last one, must be transformers (i.e. must have a transform method). The last
estimator may be any type (transformer, classifier, etc.).

Usage

Construction

The Pipeline is built using a list of (key, value) pairs, where the key is a string containing the name you
want to give this step and value is an estimator object:

>>> from sklearn.pipeline import Pipeline
>>> from sklearn.svm import SVC
>>> from sklearn.decomposition import PCA
>>> estimators = [('reduce_dim', PCA()), ('clf', SVC())]
>>> pipe = Pipeline(estimators)
>>> pipe
Pipeline(steps=[('reduce_dim', PCA()), ('clf', SVC())])

The utility function make_pipeline is a shorthand for constructing pipelines; it takes a variable number of estima-
tors and returns a pipeline, filling in the names automatically:

>>> from sklearn.pipeline import make_pipeline
>>> from sklearn.naive_bayes import MultinomialNB
>>> from sklearn.preprocessing import Binarizer
>>> make_pipeline(Binarizer(), MultinomialNB())
Pipeline(steps=[('binarizer', Binarizer()), ('multinomialnb', MultinomialNB())])

632 Chapter 4. User Guide

auto_examples/miscellaneous/plot_roc_curve_visualization_api.html

scikit-learn user guide, Release 0.23.2

Accessing steps

The estimators of a pipeline are stored as a list in the steps attribute, but can be accessed by index or name by
indexing (with [idx]) the Pipeline:

>>> pipe.steps[0]
('reduce_dim', PCA())
>>> pipe[0]
PCA()
>>> pipe['reduce_dim']
PCA()

Pipeline’s named_steps attribute allows accessing steps by name with tab completion in interactive environments:

>>> pipe.named_steps.reduce_dim is pipe['reduce_dim']
True

A sub-pipeline can also be extracted using the slicing notation commonly used for Python Sequences such as lists or
strings (although only a step of 1 is permitted). This is convenient for performing only some of the transformations
(or their inverse):

>>> pipe[:1]
Pipeline(steps=[('reduce_dim', PCA())])
>>> pipe[-1:]
Pipeline(steps=[('clf', SVC())])

Nested parameters

Parameters of the estimators in the pipeline can be accessed using the <estimator>__<parameter> syntax:

>>> pipe.set_params(clf__C=10)
Pipeline(steps=[('reduce_dim', PCA()), ('clf', SVC(C=10))])

This is particularly important for doing grid searches:

>>> from sklearn.model_selection import GridSearchCV
>>> param_grid = dict(reduce_dim__n_components=[2, 5, 10],
... clf__C=[0.1, 10, 100])
>>> grid_search = GridSearchCV(pipe, param_grid=param_grid)

Individual steps may also be replaced as parameters, and non-final steps may be ignored by setting them to
'passthrough':

>>> from sklearn.linear_model import LogisticRegression
>>> param_grid = dict(reduce_dim=['passthrough', PCA(5), PCA(10)],
... clf=[SVC(), LogisticRegression()],
... clf__C=[0.1, 10, 100])
>>> grid_search = GridSearchCV(pipe, param_grid=param_grid)

The estimators of the pipeline can be retrieved by index:

>>> pipe[0]
PCA()

or by name:

4.6. Dataset transformations 633

scikit-learn user guide, Release 0.23.2

>>> pipe['reduce_dim']
PCA()

Examples:

• Pipeline Anova SVM

• Sample pipeline for text feature extraction and evaluation

• Pipelining: chaining a PCA and a logistic regression

• Explicit feature map approximation for RBF kernels

• SVM-Anova: SVM with univariate feature selection

• Selecting dimensionality reduction with Pipeline and GridSearchCV

See also:

• Composite estimators and parameter spaces

Notes

Calling fit on the pipeline is the same as calling fit on each estimator in turn, transform the input and pass it
on to the next step. The pipeline has all the methods that the last estimator in the pipeline has, i.e. if the last estimator
is a classifier, the Pipeline can be used as a classifier. If the last estimator is a transformer, again, so is the pipeline.

Caching transformers: avoid repeated computation

Fitting transformers may be computationally expensive. With its memory parameter set, Pipeline will cache each
transformer after calling fit. This feature is used to avoid computing the fit transformers within a pipeline if the
parameters and input data are identical. A typical example is the case of a grid search in which the transformers can
be fitted only once and reused for each configuration.

The parameter memory is needed in order to cache the transformers. memory can be either a string containing the
directory where to cache the transformers or a joblib.Memory object:

>>> from tempfile import mkdtemp
>>> from shutil import rmtree
>>> from sklearn.decomposition import PCA
>>> from sklearn.svm import SVC
>>> from sklearn.pipeline import Pipeline
>>> estimators = [('reduce_dim', PCA()), ('clf', SVC())]
>>> cachedir = mkdtemp()
>>> pipe = Pipeline(estimators, memory=cachedir)
>>> pipe
Pipeline(memory=...,

steps=[('reduce_dim', PCA()), ('clf', SVC())])
>>> # Clear the cache directory when you don't need it anymore
>>> rmtree(cachedir)

634 Chapter 4. User Guide

https://pythonhosted.org/joblib/memory.html

scikit-learn user guide, Release 0.23.2

Warning: Side effect of caching transformers

Using a Pipeline without cache enabled, it is possible to inspect the original instance such as:

>>> from sklearn.datasets import load_digits
>>> X_digits, y_digits = load_digits(return_X_y=True)
>>> pca1 = PCA()
>>> svm1 = SVC()
>>> pipe = Pipeline([('reduce_dim', pca1), ('clf', svm1)])
>>> pipe.fit(X_digits, y_digits)
Pipeline(steps=[('reduce_dim', PCA()), ('clf', SVC())])
>>> # The pca instance can be inspected directly
>>> print(pca1.components_)

[[-1.77484909e-19 ... 4.07058917e-18]]

Enabling caching triggers a clone of the transformers before fitting. Therefore, the transformer instance given to
the pipeline cannot be inspected directly. In following example, accessing the PCA instance pca2 will raise an
AttributeError since pca2 will be an unfitted transformer. Instead, use the attribute named_steps to
inspect estimators within the pipeline:

>>> cachedir = mkdtemp()
>>> pca2 = PCA()
>>> svm2 = SVC()
>>> cached_pipe = Pipeline([('reduce_dim', pca2), ('clf', svm2)],
... memory=cachedir)
>>> cached_pipe.fit(X_digits, y_digits)
Pipeline(memory=...,

steps=[('reduce_dim', PCA()), ('clf', SVC())])
>>> print(cached_pipe.named_steps['reduce_dim'].components_)

[[-1.77484909e-19 ... 4.07058917e-18]]
>>> # Remove the cache directory
>>> rmtree(cachedir)

Examples:

• Selecting dimensionality reduction with Pipeline and GridSearchCV

Transforming target in regression

TransformedTargetRegressor transforms the targets y before fitting a regression model. The predictions are
mapped back to the original space via an inverse transform. It takes as an argument the regressor that will be used for
prediction, and the transformer that will be applied to the target variable:

>>> import numpy as np
>>> from sklearn.datasets import load_boston
>>> from sklearn.compose import TransformedTargetRegressor
>>> from sklearn.preprocessing import QuantileTransformer
>>> from sklearn.linear_model import LinearRegression
>>> from sklearn.model_selection import train_test_split
>>> X, y = load_boston(return_X_y=True)
>>> transformer = QuantileTransformer(output_distribution='normal')
>>> regressor = LinearRegression()
>>> regr = TransformedTargetRegressor(regressor=regressor,
... transformer=transformer)

(continues on next page)

4.6. Dataset transformations 635

scikit-learn user guide, Release 0.23.2

(continued from previous page)

>>> X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
>>> regr.fit(X_train, y_train)
TransformedTargetRegressor(...)
>>> print('R2 score: {0:.2f}'.format(regr.score(X_test, y_test)))
R2 score: 0.67
>>> raw_target_regr = LinearRegression().fit(X_train, y_train)
>>> print('R2 score: {0:.2f}'.format(raw_target_regr.score(X_test, y_test)))
R2 score: 0.64

For simple transformations, instead of a Transformer object, a pair of functions can be passed, defining the transfor-
mation and its inverse mapping:

>>> def func(x):
... return np.log(x)
>>> def inverse_func(x):
... return np.exp(x)

Subsequently, the object is created as:

>>> regr = TransformedTargetRegressor(regressor=regressor,
... func=func,
... inverse_func=inverse_func)
>>> regr.fit(X_train, y_train)
TransformedTargetRegressor(...)
>>> print('R2 score: {0:.2f}'.format(regr.score(X_test, y_test)))
R2 score: 0.65

By default, the provided functions are checked at each fit to be the inverse of each other. However, it is possible to
bypass this checking by setting check_inverse to False:

>>> def inverse_func(x):
... return x
>>> regr = TransformedTargetRegressor(regressor=regressor,
... func=func,
... inverse_func=inverse_func,
... check_inverse=False)
>>> regr.fit(X_train, y_train)
TransformedTargetRegressor(...)
>>> print('R2 score: {0:.2f}'.format(regr.score(X_test, y_test)))
R2 score: -4.50

Note: The transformation can be triggered by setting either transformer or the pair of functions func and
inverse_func. However, setting both options will raise an error.

Examples:

• Effect of transforming the targets in regression model

FeatureUnion: composite feature spaces

FeatureUnion combines several transformer objects into a new transformer that combines their output. A
FeatureUnion takes a list of transformer objects. During fitting, each of these is fit to the data independently.

636 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

The transformers are applied in parallel, and the feature matrices they output are concatenated side-by-side into a
larger matrix.

When you want to apply different transformations to each field of the data, see the related class sklearn.compose.
ColumnTransformer (see user guide).

FeatureUnion serves the same purposes as Pipeline - convenience and joint parameter estimation and valida-
tion.

FeatureUnion and Pipeline can be combined to create complex models.

(A FeatureUnion has no way of checking whether two transformers might produce identical features. It only
produces a union when the feature sets are disjoint, and making sure they are the caller’s responsibility.)

Usage

A FeatureUnion is built using a list of (key, value) pairs, where the key is the name you want to give to a
given transformation (an arbitrary string; it only serves as an identifier) and value is an estimator object:

>>> from sklearn.pipeline import FeatureUnion
>>> from sklearn.decomposition import PCA
>>> from sklearn.decomposition import KernelPCA
>>> estimators = [('linear_pca', PCA()), ('kernel_pca', KernelPCA())]
>>> combined = FeatureUnion(estimators)
>>> combined
FeatureUnion(transformer_list=[('linear_pca', PCA()),

('kernel_pca', KernelPCA())])

Like pipelines, feature unions have a shorthand constructor called make_union that does not require explicit naming
of the components.

Like Pipeline, individual steps may be replaced using set_params, and ignored by setting to 'drop':

>>> combined.set_params(kernel_pca='drop')
FeatureUnion(transformer_list=[('linear_pca', PCA()),

('kernel_pca', 'drop')])

Examples:

• Concatenating multiple feature extraction methods

ColumnTransformer for heterogeneous data

Many datasets contain features of different types, say text, floats, and dates, where each type of feature requires
separate preprocessing or feature extraction steps. Often it is easiest to preprocess data before applying scikit-learn
methods, for example using pandas. Processing your data before passing it to scikit-learn might be problematic for
one of the following reasons:

1. Incorporating statistics from test data into the preprocessors makes cross-validation scores unreliable (known as
data leakage), for example in the case of scalers or imputing missing values.

2. You may want to include the parameters of the preprocessors in a parameter search.

The ColumnTransformer helps performing different transformations for different columns of the data, within a
Pipeline that is safe from data leakage and that can be parametrized. ColumnTransformer works on arrays,
sparse matrices, and pandas DataFrames.

4.6. Dataset transformations 637

https://pandas.pydata.org/
https://pandas.pydata.org/pandas-docs/stable/

scikit-learn user guide, Release 0.23.2

To each column, a different transformation can be applied, such as preprocessing or a specific feature extraction
method:

>>> import pandas as pd
>>> X = pd.DataFrame(
... {'city': ['London', 'London', 'Paris', 'Sallisaw'],
... 'title': ["His Last Bow", "How Watson Learned the Trick",
... "A Moveable Feast", "The Grapes of Wrath"],
... 'expert_rating': [5, 3, 4, 5],
... 'user_rating': [4, 5, 4, 3]})

For this data, we might want to encode the 'city' column as a categorical variable using preprocessing.
OneHotEncoder but apply a feature_extraction.text.CountVectorizer to the 'title' column.
As we might use multiple feature extraction methods on the same column, we give each transformer a unique
name, say 'city_category' and 'title_bow'. By default, the remaining rating columns are ignored
(remainder='drop'):

>>> from sklearn.compose import ColumnTransformer
>>> from sklearn.feature_extraction.text import CountVectorizer
>>> from sklearn.preprocessing import OneHotEncoder
>>> column_trans = ColumnTransformer(
... [('city_category', OneHotEncoder(dtype='int'),['city']),
... ('title_bow', CountVectorizer(), 'title')],
... remainder='drop')

>>> column_trans.fit(X)
ColumnTransformer(transformers=[('city_category', OneHotEncoder(dtype='int'),

['city']),
('title_bow', CountVectorizer(), 'title')])

>>> column_trans.get_feature_names()
['city_category__x0_London', 'city_category__x0_Paris', 'city_category__x0_Sallisaw',
'title_bow__bow', 'title_bow__feast', 'title_bow__grapes', 'title_bow__his',
'title_bow__how', 'title_bow__last', 'title_bow__learned', 'title_bow__moveable',
'title_bow__of', 'title_bow__the', 'title_bow__trick', 'title_bow__watson',
'title_bow__wrath']

>>> column_trans.transform(X).toarray()
array([[1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0],

[1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0],
[0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1]]...)

In the above example, the CountVectorizer expects a 1D array as input and therefore the columns were specified
as a string ('title'). However, preprocessing.OneHotEncoder as most of other transformers expects 2D
data, therefore in that case you need to specify the column as a list of strings (['city']).

Apart from a scalar or a single item list, the column selection can be specified as a list of multiple items, an integer
array, a slice, a boolean mask, or with a make_column_selector. The make_column_selector is used to
select columns based on data type or column name:

>>> from sklearn.preprocessing import StandardScaler
>>> from sklearn.compose import make_column_selector
>>> ct = ColumnTransformer([
... ('scale', StandardScaler(),
... make_column_selector(dtype_include=np.number)),
... ('onehot',
... OneHotEncoder(),

(continues on next page)

638 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

(continued from previous page)

... make_column_selector(pattern='city', dtype_include=object))])
>>> ct.fit_transform(X)
array([[0.904..., 0. , 1. , 0. , 0.],

[-1.507..., 1.414..., 1. , 0. , 0.],
[-0.301..., 0. , 0. , 1. , 0.],
[0.904..., -1.414..., 0. , 0. , 1.]])

Strings can reference columns if the input is a DataFrame, integers are always interpreted as the positional columns.

We can keep the remaining rating columns by setting remainder='passthrough'. The values are appended to
the end of the transformation:

>>> column_trans = ColumnTransformer(
... [('city_category', OneHotEncoder(dtype='int'),['city']),
... ('title_bow', CountVectorizer(), 'title')],
... remainder='passthrough')

>>> column_trans.fit_transform(X)
array([[1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 5, 4],

[1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 3, 5],
[0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 4, 4],
[0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 5, 3]]...)

The remainder parameter can be set to an estimator to transform the remaining rating columns. The transformed
values are appended to the end of the transformation:

>>> from sklearn.preprocessing import MinMaxScaler
>>> column_trans = ColumnTransformer(
... [('city_category', OneHotEncoder(), ['city']),
... ('title_bow', CountVectorizer(), 'title')],
... remainder=MinMaxScaler())

>>> column_trans.fit_transform(X)[:, -2:]
array([[1. , 0.5],

[0. , 1.],
[0.5, 0.5],
[1. , 0.]])

The make_column_transformer function is available to more easily create a ColumnTransformer object.
Specifically, the names will be given automatically. The equivalent for the above example would be:

>>> from sklearn.compose import make_column_transformer
>>> column_trans = make_column_transformer(
... (OneHotEncoder(), ['city']),
... (CountVectorizer(), 'title'),
... remainder=MinMaxScaler())
>>> column_trans
ColumnTransformer(remainder=MinMaxScaler(),

transformers=[('onehotencoder', OneHotEncoder(), ['city']),
('countvectorizer', CountVectorizer(),
'title')])

Visualizing Composite Estimators

Estimators can be displayed with a HTML representation when shown in a jupyter notebook. This can be useful to
diagnose or visualize a Pipeline with many estimators. This visualization is activated by setting the display option

4.6. Dataset transformations 639

scikit-learn user guide, Release 0.23.2

in sklearn.set_config:

>>> from sklearn import set_config
>>> set_config(display='diagram')
>>> # diplays HTML representation in a jupyter context
>>> column_trans

An example of the HTML output can be seen in the HTML representation of Pipeline section of Column Transformer
with Mixed Types. As an alternative, the HTML can be written to a file using estimator_html_repr:

>>> from sklearn.utils import estimator_html_repr
>>> with open('my_estimator.html', 'w') as f:
... f.write(estimator_html_repr(clf))

Examples:

• Column Transformer with Heterogeneous Data Sources

• Column Transformer with Mixed Types

4.6.2 Feature extraction

The sklearn.feature_extraction module can be used to extract features in a format supported by machine
learning algorithms from datasets consisting of formats such as text and image.

Note: Feature extraction is very different from Feature selection: the former consists in transforming arbitrary data,
such as text or images, into numerical features usable for machine learning. The latter is a machine learning technique
applied on these features.

Loading features from dicts

The class DictVectorizer can be used to convert feature arrays represented as lists of standard Python dict
objects to the NumPy/SciPy representation used by scikit-learn estimators.

While not particularly fast to process, Python’s dict has the advantages of being convenient to use, being sparse
(absent features need not be stored) and storing feature names in addition to values.

DictVectorizer implements what is called one-of-K or “one-hot” coding for categorical (aka nominal, discrete)
features. Categorical features are “attribute-value” pairs where the value is restricted to a list of discrete of possibilities
without ordering (e.g. topic identifiers, types of objects, tags, names. . .).

In the following, “city” is a categorical attribute while “temperature” is a traditional numerical feature:

>>> measurements = [
... {'city': 'Dubai', 'temperature': 33.},
... {'city': 'London', 'temperature': 12.},
... {'city': 'San Francisco', 'temperature': 18.},
...]

>>> from sklearn.feature_extraction import DictVectorizer
>>> vec = DictVectorizer()

(continues on next page)

640 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

(continued from previous page)

>>> vec.fit_transform(measurements).toarray()
array([[1., 0., 0., 33.],

[0., 1., 0., 12.],
[0., 0., 1., 18.]])

>>> vec.get_feature_names()
['city=Dubai', 'city=London', 'city=San Francisco', 'temperature']

DictVectorizer is also a useful representation transformation for training sequence classifiers in Natural Lan-
guage Processing models that typically work by extracting feature windows around a particular word of interest.

For example, suppose that we have a first algorithm that extracts Part of Speech (PoS) tags that we want to use as
complementary tags for training a sequence classifier (e.g. a chunker). The following dict could be such a window of
features extracted around the word ‘sat’ in the sentence ‘The cat sat on the mat.’:

>>> pos_window = [
... {
... 'word-2': 'the',
... 'pos-2': 'DT',
... 'word-1': 'cat',
... 'pos-1': 'NN',
... 'word+1': 'on',
... 'pos+1': 'PP',
... },
... # in a real application one would extract many such dictionaries
...]

This description can be vectorized into a sparse two-dimensional matrix suitable for feeding into a classifier (maybe
after being piped into a text.TfidfTransformer for normalization):

>>> vec = DictVectorizer()
>>> pos_vectorized = vec.fit_transform(pos_window)
>>> pos_vectorized
<1x6 sparse matrix of type '<... 'numpy.float64'>'

with 6 stored elements in Compressed Sparse ... format>
>>> pos_vectorized.toarray()
array([[1., 1., 1., 1., 1., 1.]])
>>> vec.get_feature_names()
['pos+1=PP', 'pos-1=NN', 'pos-2=DT', 'word+1=on', 'word-1=cat', 'word-2=the']

As you can imagine, if one extracts such a context around each individual word of a corpus of documents the resulting
matrix will be very wide (many one-hot-features) with most of them being valued to zero most of the time. So as to
make the resulting data structure able to fit in memory the DictVectorizer class uses a scipy.sparse matrix
by default instead of a numpy.ndarray.

Feature hashing

The class FeatureHasher is a high-speed, low-memory vectorizer that uses a technique known as feature hashing,
or the “hashing trick”. Instead of building a hash table of the features encountered in training, as the vectorizers
do, instances of FeatureHasher apply a hash function to the features to determine their column index in sample
matrices directly. The result is increased speed and reduced memory usage, at the expense of inspectability; the hasher
does not remember what the input features looked like and has no inverse_transform method.

Since the hash function might cause collisions between (unrelated) features, a signed hash function is used and the
sign of the hash value determines the sign of the value stored in the output matrix for a feature. This way, collisions
are likely to cancel out rather than accumulate error, and the expected mean of any output feature’s value is zero.

4.6. Dataset transformations 641

https://en.wikipedia.org/wiki/Feature_hashing

scikit-learn user guide, Release 0.23.2

This mechanism is enabled by default with alternate_sign=True and is particularly useful for small hash table
sizes (n_features < 10000). For large hash table sizes, it can be disabled, to allow the output to be passed
to estimators like sklearn.naive_bayes.MultinomialNB or sklearn.feature_selection.chi2
feature selectors that expect non-negative inputs.

FeatureHasher accepts either mappings (like Python’s dict and its variants in the collections module),
(feature, value) pairs, or strings, depending on the constructor parameter input_type. Mapping are treated
as lists of (feature, value) pairs, while single strings have an implicit value of 1, so ['feat1', 'feat2',
'feat3'] is interpreted as [('feat1', 1), ('feat2', 1), ('feat3', 1)]. If a single feature occurs
multiple times in a sample, the associated values will be summed (so ('feat', 2) and ('feat', 3.5) become
('feat', 5.5)). The output from FeatureHasher is always a scipy.sparse matrix in the CSR format.

Feature hashing can be employed in document classification, but unlike text.CountVectorizer,
FeatureHasher does not do word splitting or any other preprocessing except Unicode-to-UTF-8 encoding; see
Vectorizing a large text corpus with the hashing trick, below, for a combined tokenizer/hasher.

As an example, consider a word-level natural language processing task that needs features extracted from (token,
part_of_speech) pairs. One could use a Python generator function to extract features:

def token_features(token, part_of_speech):
if token.isdigit():

yield "numeric"
else:

yield "token={}".format(token.lower())
yield "token,pos={},{}".format(token, part_of_speech)

if token[0].isupper():
yield "uppercase_initial"

if token.isupper():
yield "all_uppercase"

yield "pos={}".format(part_of_speech)

Then, the raw_X to be fed to FeatureHasher.transform can be constructed using:

raw_X = (token_features(tok, pos_tagger(tok)) for tok in corpus)

and fed to a hasher with:

hasher = FeatureHasher(input_type='string')
X = hasher.transform(raw_X)

to get a scipy.sparse matrix X.

Note the use of a generator comprehension, which introduces laziness into the feature extraction: tokens are only
processed on demand from the hasher.

Implementation details

FeatureHasher uses the signed 32-bit variant of MurmurHash3. As a result (and because of limitations in scipy.
sparse), the maximum number of features supported is currently 231 − 1.

The original formulation of the hashing trick by Weinberger et al. used two separate hash functions ℎ and 𝜉 to deter-
mine the column index and sign of a feature, respectively. The present implementation works under the assumption
that the sign bit of MurmurHash3 is independent of its other bits.

Since a simple modulo is used to transform the hash function to a column index, it is advisable to use a power of two
as the n_features parameter; otherwise the features will not be mapped evenly to the columns.

642 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

References:

• Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola and Josh Attenberg (2009). Feature hash-
ing for large scale multitask learning. Proc. ICML.

• MurmurHash3.

Text feature extraction

The Bag of Words representation

Text Analysis is a major application field for machine learning algorithms. However the raw data, a sequence of
symbols cannot be fed directly to the algorithms themselves as most of them expect numerical feature vectors with a
fixed size rather than the raw text documents with variable length.

In order to address this, scikit-learn provides utilities for the most common ways to extract numerical features from
text content, namely:

• tokenizing strings and giving an integer id for each possible token, for instance by using white-spaces and
punctuation as token separators.

• counting the occurrences of tokens in each document.

• normalizing and weighting with diminishing importance tokens that occur in the majority of samples / docu-
ments.

In this scheme, features and samples are defined as follows:

• each individual token occurrence frequency (normalized or not) is treated as a feature.

• the vector of all the token frequencies for a given document is considered a multivariate sample.

A corpus of documents can thus be represented by a matrix with one row per document and one column per token
(e.g. word) occurring in the corpus.

We call vectorization the general process of turning a collection of text documents into numerical feature vectors. This
specific strategy (tokenization, counting and normalization) is called the Bag of Words or “Bag of n-grams” represen-
tation. Documents are described by word occurrences while completely ignoring the relative position information of
the words in the document.

Sparsity

As most documents will typically use a very small subset of the words used in the corpus, the resulting matrix will
have many feature values that are zeros (typically more than 99% of them).

For instance a collection of 10,000 short text documents (such as emails) will use a vocabulary with a size in the order
of 100,000 unique words in total while each document will use 100 to 1000 unique words individually.

In order to be able to store such a matrix in memory but also to speed up algebraic operations matrix / vector, imple-
mentations will typically use a sparse representation such as the implementations available in the scipy.sparse
package.

Common Vectorizer usage

CountVectorizer implements both tokenization and occurrence counting in a single class:

4.6. Dataset transformations 643

https://alex.smola.org/papers/2009/Weinbergeretal09.pdf
https://alex.smola.org/papers/2009/Weinbergeretal09.pdf
https://github.com/aappleby/smhasher

scikit-learn user guide, Release 0.23.2

>>> from sklearn.feature_extraction.text import CountVectorizer

This model has many parameters, however the default values are quite reasonable (please see the reference documen-
tation for the details):

>>> vectorizer = CountVectorizer()
>>> vectorizer
CountVectorizer()

Let’s use it to tokenize and count the word occurrences of a minimalistic corpus of text documents:

>>> corpus = [
... 'This is the first document.',
... 'This is the second second document.',
... 'And the third one.',
... 'Is this the first document?',
...]
>>> X = vectorizer.fit_transform(corpus)
>>> X
<4x9 sparse matrix of type '<... 'numpy.int64'>'

with 19 stored elements in Compressed Sparse ... format>

The default configuration tokenizes the string by extracting words of at least 2 letters. The specific function that does
this step can be requested explicitly:

>>> analyze = vectorizer.build_analyzer()
>>> analyze("This is a text document to analyze.") == (
... ['this', 'is', 'text', 'document', 'to', 'analyze'])
True

Each term found by the analyzer during the fit is assigned a unique integer index corresponding to a column in the
resulting matrix. This interpretation of the columns can be retrieved as follows:

>>> vectorizer.get_feature_names() == (
... ['and', 'document', 'first', 'is', 'one',
... 'second', 'the', 'third', 'this'])
True

>>> X.toarray()
array([[0, 1, 1, 1, 0, 0, 1, 0, 1],

[0, 1, 0, 1, 0, 2, 1, 0, 1],
[1, 0, 0, 0, 1, 0, 1, 1, 0],
[0, 1, 1, 1, 0, 0, 1, 0, 1]]...)

The converse mapping from feature name to column index is stored in the vocabulary_ attribute of the vectorizer:

>>> vectorizer.vocabulary_.get('document')
1

Hence words that were not seen in the training corpus will be completely ignored in future calls to the transform
method:

>>> vectorizer.transform(['Something completely new.']).toarray()
array([[0, 0, 0, 0, 0, 0, 0, 0, 0]]...)

Note that in the previous corpus, the first and the last documents have exactly the same words hence are encoded in
equal vectors. In particular we lose the information that the last document is an interrogative form. To preserve some
of the local ordering information we can extract 2-grams of words in addition to the 1-grams (individual words):

644 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

>>> bigram_vectorizer = CountVectorizer(ngram_range=(1, 2),
... token_pattern=r'\b\w+\b', min_df=1)
>>> analyze = bigram_vectorizer.build_analyzer()
>>> analyze('Bi-grams are cool!') == (
... ['bi', 'grams', 'are', 'cool', 'bi grams', 'grams are', 'are cool'])
True

The vocabulary extracted by this vectorizer is hence much bigger and can now resolve ambiguities encoded in local
positioning patterns:

>>> X_2 = bigram_vectorizer.fit_transform(corpus).toarray()
>>> X_2
array([[0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0],

[0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0],
[1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1]]...)

In particular the interrogative form “Is this” is only present in the last document:

>>> feature_index = bigram_vectorizer.vocabulary_.get('is this')
>>> X_2[:, feature_index]
array([0, 0, 0, 1]...)

Using stop words

Stop words are words like “and”, “the”, “him”, which are presumed to be uninformative in representing the content
of a text, and which may be removed to avoid them being construed as signal for prediction. Sometimes, however,
similar words are useful for prediction, such as in classifying writing style or personality.

There are several known issues in our provided ‘english’ stop word list. It does not aim to be a general, ‘one-size-fits-
all’ solution as some tasks may require a more custom solution. See [NQY18] for more details.

Please take care in choosing a stop word list. Popular stop word lists may include words that are highly informative to
some tasks, such as computer.

You should also make sure that the stop word list has had the same preprocessing and tokenization applied as the one
used in the vectorizer. The word we’ve is split into we and ve by CountVectorizer’s default tokenizer, so if we’ve is in
stop_words, but ve is not, ve will be retained from we’ve in transformed text. Our vectorizers will try to identify
and warn about some kinds of inconsistencies.

References

Tf–idf term weighting

In a large text corpus, some words will be very present (e.g. “the”, “a”, “is” in English) hence carrying very little
meaningful information about the actual contents of the document. If we were to feed the direct count data directly to
a classifier those very frequent terms would shadow the frequencies of rarer yet more interesting terms.

In order to re-weight the count features into floating point values suitable for usage by a classifier it is very common
to use the tf–idf transform.

Tf means term-frequency while tf–idf means term-frequency times inverse document-frequency: tf-idf(t,d) =
tf(t,d)× idf(t).

4.6. Dataset transformations 645

scikit-learn user guide, Release 0.23.2

Using the TfidfTransformer’s default settings, TfidfTransformer(norm='l2', use_idf=True,
smooth_idf=True, sublinear_tf=False) the term frequency, the number of times a term occurs in a
given document, is multiplied with idf component, which is computed as

idf(𝑡) = log 1+𝑛
1+df(𝑡) + 1,

where 𝑛 is the total number of documents in the document set, and df(𝑡) is the number of documents in the document
set that contain term 𝑡. The resulting tf-idf vectors are then normalized by the Euclidean norm:

𝑣𝑛𝑜𝑟𝑚 = 𝑣
||𝑣||2 = 𝑣√

𝑣1
2+𝑣2

2+···+𝑣𝑛
2 .

This was originally a term weighting scheme developed for information retrieval (as a ranking function for search
engines results) that has also found good use in document classification and clustering.

The following sections contain further explanations and examples that illustrate how the tf-idfs are computed exactly
and how the tf-idfs computed in scikit-learn’s TfidfTransformer and TfidfVectorizer differ slightly from
the standard textbook notation that defines the idf as

idf(𝑡) = log 𝑛
1+df(𝑡) .

In the TfidfTransformer and TfidfVectorizer with smooth_idf=False, the “1” count is added to the
idf instead of the idf’s denominator:

idf(𝑡) = log 𝑛
df(𝑡) + 1

This normalization is implemented by the TfidfTransformer class:

>>> from sklearn.feature_extraction.text import TfidfTransformer
>>> transformer = TfidfTransformer(smooth_idf=False)
>>> transformer
TfidfTransformer(smooth_idf=False)

Again please see the reference documentation for the details on all the parameters.

Let’s take an example with the following counts. The first term is present 100% of the time hence not very interesting.
The two other features only in less than 50% of the time hence probably more representative of the content of the
documents:

>>> counts = [[3, 0, 1],
... [2, 0, 0],
... [3, 0, 0],
... [4, 0, 0],
... [3, 2, 0],
... [3, 0, 2]]
...
>>> tfidf = transformer.fit_transform(counts)
>>> tfidf
<6x3 sparse matrix of type '<... 'numpy.float64'>'

with 9 stored elements in Compressed Sparse ... format>

>>> tfidf.toarray()
array([[0.81940995, 0. , 0.57320793],

[1. , 0. , 0.],
[1. , 0. , 0.],
[1. , 0. , 0.],
[0.47330339, 0.88089948, 0.],
[0.58149261, 0. , 0.81355169]])

Each row is normalized to have unit Euclidean norm:

𝑣𝑛𝑜𝑟𝑚 = 𝑣
||𝑣||2 = 𝑣√

𝑣1
2+𝑣2

2+···+𝑣𝑛
2

646 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

For example, we can compute the tf-idf of the first term in the first document in the counts array as follows:

𝑛 = 6

df(𝑡)term1 = 6

idf(𝑡)term1 = log 𝑛
df(𝑡) + 1 = log(1) + 1 = 1

tf-idfterm1 = tf× idf = 3× 1 = 3

Now, if we repeat this computation for the remaining 2 terms in the document, we get

tf-idfterm2 = 0× (log(6/1) + 1) = 0

tf-idfterm3 = 1× (log(6/2) + 1) ≈ 2.0986

and the vector of raw tf-idfs:

tf-idfraw = [3, 0, 2.0986].

Then, applying the Euclidean (L2) norm, we obtain the following tf-idfs for document 1:
[3,0,2.0986]√︂(︀
32+02+2.09862

)︀ = [0.819, 0, 0.573].

Furthermore, the default parameter smooth_idf=True adds “1” to the numerator and denominator as if an extra
document was seen containing every term in the collection exactly once, which prevents zero divisions:

idf(𝑡) = log 1+𝑛
1+df(𝑡) + 1

Using this modification, the tf-idf of the third term in document 1 changes to 1.8473:

tf-idfterm3 = 1× log(7/3) + 1 ≈ 1.8473

And the L2-normalized tf-idf changes to
[3,0,1.8473]√︂(︀
32+02+1.84732

)︀ = [0.8515, 0, 0.5243]:

>>> transformer = TfidfTransformer()
>>> transformer.fit_transform(counts).toarray()
array([[0.85151335, 0. , 0.52433293],

[1. , 0. , 0.],
[1. , 0. , 0.],
[1. , 0. , 0.],
[0.55422893, 0.83236428, 0.],
[0.63035731, 0. , 0.77630514]])

The weights of each feature computed by the fit method call are stored in a model attribute:

>>> transformer.idf_
array([1. ..., 2.25..., 1.84...])

As tf–idf is very often used for text features, there is also another class called TfidfVectorizer that combines all
the options of CountVectorizer and TfidfTransformer in a single model:

>>> from sklearn.feature_extraction.text import TfidfVectorizer
>>> vectorizer = TfidfVectorizer()
>>> vectorizer.fit_transform(corpus)
<4x9 sparse matrix of type '<... 'numpy.float64'>'

with 19 stored elements in Compressed Sparse ... format>

While the tf–idf normalization is often very useful, there might be cases where the binary occurrence markers might
offer better features. This can be achieved by using the binary parameter of CountVectorizer. In particular,

4.6. Dataset transformations 647

scikit-learn user guide, Release 0.23.2

some estimators such as Bernoulli Naive Bayes explicitly model discrete boolean random variables. Also, very short
texts are likely to have noisy tf–idf values while the binary occurrence info is more stable.

As usual the best way to adjust the feature extraction parameters is to use a cross-validated grid search, for instance by
pipelining the feature extractor with a classifier:

• Sample pipeline for text feature extraction and evaluation

Decoding text files

Text is made of characters, but files are made of bytes. These bytes represent characters according to some encoding.
To work with text files in Python, their bytes must be decoded to a character set called Unicode. Common encodings
are ASCII, Latin-1 (Western Europe), KOI8-R (Russian) and the universal encodings UTF-8 and UTF-16. Many
others exist.

Note: An encoding can also be called a ‘character set’, but this term is less accurate: several encodings can exist for
a single character set.

The text feature extractors in scikit-learn know how to decode text files, but only if you tell them what encoding the
files are in. The CountVectorizer takes an encoding parameter for this purpose. For modern text files, the
correct encoding is probably UTF-8, which is therefore the default (encoding="utf-8").

If the text you are loading is not actually encoded with UTF-8, however, you will get a UnicodeDecodeError.
The vectorizers can be told to be silent about decoding errors by setting the decode_error parameter to either
"ignore" or "replace". See the documentation for the Python function bytes.decode for more details (type
help(bytes.decode) at the Python prompt).

If you are having trouble decoding text, here are some things to try:

• Find out what the actual encoding of the text is. The file might come with a header or README that tells you
the encoding, or there might be some standard encoding you can assume based on where the text comes from.

• You may be able to find out what kind of encoding it is in general using the UNIX command file. The Python
chardet module comes with a script called chardetect.py that will guess the specific encoding, though
you cannot rely on its guess being correct.

• You could try UTF-8 and disregard the errors. You can decode byte strings with bytes.
decode(errors='replace') to replace all decoding errors with a meaningless character, or set
decode_error='replace' in the vectorizer. This may damage the usefulness of your features.

• Real text may come from a variety of sources that may have used different encodings, or even be sloppily
decoded in a different encoding than the one it was encoded with. This is common in text retrieved from the
Web. The Python package ftfy can automatically sort out some classes of decoding errors, so you could try
decoding the unknown text as latin-1 and then using ftfy to fix errors.

• If the text is in a mish-mash of encodings that is simply too hard to sort out (which is the case for the 20
Newsgroups dataset), you can fall back on a simple single-byte encoding such as latin-1. Some text may
display incorrectly, but at least the same sequence of bytes will always represent the same feature.

For example, the following snippet uses chardet (not shipped with scikit-learn, must be installed separately) to
figure out the encoding of three texts. It then vectorizes the texts and prints the learned vocabulary. The output is not
shown here.

>>> import chardet # doctest: +SKIP
>>> text1 = b"Sei mir gegr\xc3\xbc\xc3\x9ft mein Sauerkraut"
>>> text2 = b"holdselig sind deine Ger\xfcche"
>>> text3 = b"\xff\xfeA\x00u\x00f\x00 \x00F\x00l\x00\xfc\x00g\x00e\x00l\x00n\x00
→˓\x00d\x00e\x00s\x00 \x00G\x00e\x00s\x00a\x00n\x00g\x00e\x00s\x00,\x00
→˓\x00H\x00e\x00r\x00z\x00l\x00i\x00e\x00b\x00c\x00h\x00e\x00n\x00,\x00
→˓\x00t\x00r\x00a\x00g\x00 \x00i\x00c\x00h\x00 \x00d\x00i\x00c\x00h\x00
→˓\x00f\x00o\x00r\x00t\x00"

(continues on next page)

648 Chapter 4. User Guide

https://github.com/LuminosoInsight/python-ftfy

scikit-learn user guide, Release 0.23.2

(continued from previous page)

>>> decoded = [x.decode(chardet.detect(x)['encoding'])
... for x in (text1, text2, text3)] # doctest: +SKIP
>>> v = CountVectorizer().fit(decoded).vocabulary_ # doctest: +SKIP
>>> for term in v: print(v) # doctest: +SKIP

(Depending on the version of chardet, it might get the first one wrong.)

For an introduction to Unicode and character encodings in general, see Joel Spolsky’s Absolute Minimum Every
Software Developer Must Know About Unicode.

Applications and examples

The bag of words representation is quite simplistic but surprisingly useful in practice.

In particular in a supervised setting it can be successfully combined with fast and scalable linear models to train
document classifiers, for instance:

• Classification of text documents using sparse features

In an unsupervised setting it can be used to group similar documents together by applying clustering algorithms such
as K-means:

• Clustering text documents using k-means

Finally it is possible to discover the main topics of a corpus by relaxing the hard assignment constraint of clustering,
for instance by using Non-negative matrix factorization (NMF or NNMF):

• Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet Allocation

Limitations of the Bag of Words representation

A collection of unigrams (what bag of words is) cannot capture phrases and multi-word expressions, effectively disre-
garding any word order dependence. Additionally, the bag of words model doesn’t account for potential misspellings
or word derivations.

N-grams to the rescue! Instead of building a simple collection of unigrams (n=1), one might prefer a collection of
bigrams (n=2), where occurrences of pairs of consecutive words are counted.

One might alternatively consider a collection of character n-grams, a representation resilient against misspellings and
derivations.

For example, let’s say we’re dealing with a corpus of two documents: ['words', 'wprds']. The second docu-
ment contains a misspelling of the word ‘words’. A simple bag of words representation would consider these two as
very distinct documents, differing in both of the two possible features. A character 2-gram representation, however,
would find the documents matching in 4 out of 8 features, which may help the preferred classifier decide better:

>>> ngram_vectorizer = CountVectorizer(analyzer='char_wb', ngram_range=(2, 2))
>>> counts = ngram_vectorizer.fit_transform(['words', 'wprds'])
>>> ngram_vectorizer.get_feature_names() == (
... [' w', 'ds', 'or', 'pr', 'rd', 's ', 'wo', 'wp'])
True
>>> counts.toarray().astype(int)
array([[1, 1, 1, 0, 1, 1, 1, 0],

[1, 1, 0, 1, 1, 1, 0, 1]])

In the above example, char_wb analyzer is used, which creates n-grams only from characters inside word boundaries
(padded with space on each side). The char analyzer, alternatively, creates n-grams that span across words:

4.6. Dataset transformations 649

https://www.joelonsoftware.com/articles/Unicode.html
https://www.joelonsoftware.com/articles/Unicode.html

scikit-learn user guide, Release 0.23.2

>>> ngram_vectorizer = CountVectorizer(analyzer='char_wb', ngram_range=(5, 5))
>>> ngram_vectorizer.fit_transform(['jumpy fox'])
<1x4 sparse matrix of type '<... 'numpy.int64'>'

with 4 stored elements in Compressed Sparse ... format>
>>> ngram_vectorizer.get_feature_names() == (
... [' fox ', ' jump', 'jumpy', 'umpy '])
True

>>> ngram_vectorizer = CountVectorizer(analyzer='char', ngram_range=(5, 5))
>>> ngram_vectorizer.fit_transform(['jumpy fox'])
<1x5 sparse matrix of type '<... 'numpy.int64'>'

with 5 stored elements in Compressed Sparse ... format>
>>> ngram_vectorizer.get_feature_names() == (
... ['jumpy', 'mpy f', 'py fo', 'umpy ', 'y fox'])
True

The word boundaries-aware variant char_wb is especially interesting for languages that use white-spaces for word
separation as it generates significantly less noisy features than the raw char variant in that case. For such languages
it can increase both the predictive accuracy and convergence speed of classifiers trained using such features while
retaining the robustness with regards to misspellings and word derivations.

While some local positioning information can be preserved by extracting n-grams instead of individual words, bag of
words and bag of n-grams destroy most of the inner structure of the document and hence most of the meaning carried
by that internal structure.

In order to address the wider task of Natural Language Understanding, the local structure of sentences and paragraphs
should thus be taken into account. Many such models will thus be casted as “Structured output” problems which are
currently outside of the scope of scikit-learn.

Vectorizing a large text corpus with the hashing trick

The above vectorization scheme is simple but the fact that it holds an in- memory mapping from the string tokens
to the integer feature indices (the vocabulary_ attribute) causes several problems when dealing with large
datasets:

• the larger the corpus, the larger the vocabulary will grow and hence the memory use too,

• fitting requires the allocation of intermediate data structures of size proportional to that of the original dataset.

• building the word-mapping requires a full pass over the dataset hence it is not possible to fit text classifiers in a
strictly online manner.

• pickling and un-pickling vectorizers with a large vocabulary_ can be very slow (typically much slower than
pickling / un-pickling flat data structures such as a NumPy array of the same size),

• it is not easily possible to split the vectorization work into concurrent sub tasks as the vocabulary_ attribute
would have to be a shared state with a fine grained synchronization barrier: the mapping from token string
to feature index is dependent on ordering of the first occurrence of each token hence would have to be shared,
potentially harming the concurrent workers’ performance to the point of making them slower than the sequential
variant.

It is possible to overcome those limitations by combining the “hashing trick” (Feature hashing) implemented by the
sklearn.feature_extraction.FeatureHasher class and the text preprocessing and tokenization features
of the CountVectorizer.

This combination is implementing in HashingVectorizer, a transformer class that is mostly API compatible with
CountVectorizer. HashingVectorizer is stateless, meaning that you don’t have to call fit on it:

650 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

>>> from sklearn.feature_extraction.text import HashingVectorizer
>>> hv = HashingVectorizer(n_features=10)
>>> hv.transform(corpus)
<4x10 sparse matrix of type '<... 'numpy.float64'>'

with 16 stored elements in Compressed Sparse ... format>

You can see that 16 non-zero feature tokens were extracted in the vector output: this is less than the 19 non-zeros
extracted previously by the CountVectorizer on the same toy corpus. The discrepancy comes from hash function
collisions because of the low value of the n_features parameter.

In a real world setting, the n_features parameter can be left to its default value of 2 ** 20 (roughly one million
possible features). If memory or downstream models size is an issue selecting a lower value such as 2 ** 18 might
help without introducing too many additional collisions on typical text classification tasks.

Note that the dimensionality does not affect the CPU training time of algorithms which operate on CSR matrices
(LinearSVC(dual=True), Perceptron, SGDClassifier, PassiveAggressive) but it does for algo-
rithms that work with CSC matrices (LinearSVC(dual=False), Lasso(), etc).

Let’s try again with the default setting:

>>> hv = HashingVectorizer()
>>> hv.transform(corpus)
<4x1048576 sparse matrix of type '<... 'numpy.float64'>'

with 19 stored elements in Compressed Sparse ... format>

We no longer get the collisions, but this comes at the expense of a much larger dimensionality of the output space. Of
course, other terms than the 19 used here might still collide with each other.

The HashingVectorizer also comes with the following limitations:

• it is not possible to invert the model (no inverse_transform method), nor to access the original string
representation of the features, because of the one-way nature of the hash function that performs the mapping.

• it does not provide IDF weighting as that would introduce statefulness in the model. A TfidfTransformer
can be appended to it in a pipeline if required.

Performing out-of-core scaling with HashingVectorizer

An interesting development of using a HashingVectorizer is the ability to perform out-of-core scaling. This
means that we can learn from data that does not fit into the computer’s main memory.

A strategy to implement out-of-core scaling is to stream data to the estimator in mini-batches. Each mini-batch is
vectorized using HashingVectorizer so as to guarantee that the input space of the estimator has always the same
dimensionality. The amount of memory used at any time is thus bounded by the size of a mini-batch. Although there is
no limit to the amount of data that can be ingested using such an approach, from a practical point of view the learning
time is often limited by the CPU time one wants to spend on the task.

For a full-fledged example of out-of-core scaling in a text classification task see Out-of-core classification of text
documents.

Customizing the vectorizer classes

It is possible to customize the behavior by passing a callable to the vectorizer constructor:

4.6. Dataset transformations 651

https://en.wikipedia.org/wiki/Out-of-core_algorithm

scikit-learn user guide, Release 0.23.2

>>> def my_tokenizer(s):
... return s.split()
...
>>> vectorizer = CountVectorizer(tokenizer=my_tokenizer)
>>> vectorizer.build_analyzer()(u"Some... punctuation!") == (
... ['some...', 'punctuation!'])
True

In particular we name:

• preprocessor: a callable that takes an entire document as input (as a single string), and returns a possibly
transformed version of the document, still as an entire string. This can be used to remove HTML tags, lowercase
the entire document, etc.

• tokenizer: a callable that takes the output from the preprocessor and splits it into tokens, then returns a list
of these.

• analyzer: a callable that replaces the preprocessor and tokenizer. The default analyzers all call the prepro-
cessor and tokenizer, but custom analyzers will skip this. N-gram extraction and stop word filtering take place
at the analyzer level, so a custom analyzer may have to reproduce these steps.

(Lucene users might recognize these names, but be aware that scikit-learn concepts may not map one-to-one onto
Lucene concepts.)

To make the preprocessor, tokenizer and analyzers aware of the model parameters it is possible to derive from the class
and override the build_preprocessor, build_tokenizer and build_analyzer factory methods instead
of passing custom functions.

Some tips and tricks:

• If documents are pre-tokenized by an external package, then store them in files (or strings) with the tokens
separated by whitespace and pass analyzer=str.split

• Fancy token-level analysis such as stemming, lemmatizing, compound splitting, filtering based on part-of-
speech, etc. are not included in the scikit-learn codebase, but can be added by customizing either the tokenizer
or the analyzer. Here’s a CountVectorizer with a tokenizer and lemmatizer using NLTK:

>>> from nltk import word_tokenize
>>> from nltk.stem import WordNetLemmatizer
>>> class LemmaTokenizer:
... def __init__(self):
... self.wnl = WordNetLemmatizer()
... def __call__(self, doc):
... return [self.wnl.lemmatize(t) for t in word_tokenize(doc)]
...
>>> vect = CountVectorizer(tokenizer=LemmaTokenizer())

(Note that this will not filter out punctuation.)

The following example will, for instance, transform some British spelling to American spelling:

>>> import re
>>> def to_british(tokens):
... for t in tokens:
... t = re.sub(r"(...)our$", r"\1or", t)
... t = re.sub(r"([bt])re$", r"\1er", t)
... t = re.sub(r"([iy])s(e$|ing|ation)", r"\1z\2", t)
... t = re.sub(r"ogue$", "og", t)
... yield t

(continues on next page)

652 Chapter 4. User Guide

https://www.nltk.org/

scikit-learn user guide, Release 0.23.2

(continued from previous page)

...
>>> class CustomVectorizer(CountVectorizer):
... def build_tokenizer(self):
... tokenize = super().build_tokenizer()
... return lambda doc: list(to_british(tokenize(doc)))
...
>>> print(CustomVectorizer().build_analyzer()(u"color colour"))
[...'color', ...'color']

for other styles of preprocessing; examples include stemming, lemmatization, or normalizing numerical tokens,
with the latter illustrated in:

– Biclustering documents with the Spectral Co-clustering algorithm

Customizing the vectorizer can also be useful when handling Asian languages that do not use an explicit word separator
such as whitespace.

Image feature extraction

Patch extraction

The extract_patches_2d function extracts patches from an image stored as a two-dimensional array, or
three-dimensional with color information along the third axis. For rebuilding an image from all its patches, use
reconstruct_from_patches_2d. For example let use generate a 4x4 pixel picture with 3 color channels (e.g.
in RGB format):

>>> import numpy as np
>>> from sklearn.feature_extraction import image

>>> one_image = np.arange(4 * 4 * 3).reshape((4, 4, 3))
>>> one_image[:, :, 0] # R channel of a fake RGB picture
array([[0, 3, 6, 9],

[12, 15, 18, 21],
[24, 27, 30, 33],
[36, 39, 42, 45]])

>>> patches = image.extract_patches_2d(one_image, (2, 2), max_patches=2,
... random_state=0)
>>> patches.shape
(2, 2, 2, 3)
>>> patches[:, :, :, 0]
array([[[0, 3],

[12, 15]],

[[15, 18],
[27, 30]]])

>>> patches = image.extract_patches_2d(one_image, (2, 2))
>>> patches.shape
(9, 2, 2, 3)
>>> patches[4, :, :, 0]
array([[15, 18],

[27, 30]])

Let us now try to reconstruct the original image from the patches by averaging on overlapping areas:

4.6. Dataset transformations 653

scikit-learn user guide, Release 0.23.2

>>> reconstructed = image.reconstruct_from_patches_2d(patches, (4, 4, 3))
>>> np.testing.assert_array_equal(one_image, reconstructed)

The PatchExtractor class works in the same way as extract_patches_2d, only it supports multiple images
as input. It is implemented as an estimator, so it can be used in pipelines. See:

>>> five_images = np.arange(5 * 4 * 4 * 3).reshape(5, 4, 4, 3)
>>> patches = image.PatchExtractor(patch_size=(2, 2)).transform(five_images)
>>> patches.shape
(45, 2, 2, 3)

Connectivity graph of an image

Several estimators in the scikit-learn can use connectivity information between features or samples. For instance Ward
clustering (Hierarchical clustering) can cluster together only neighboring pixels of an image, thus forming contiguous
patches:

For this purpose, the estimators use a ‘connectivity’ matrix, giving which samples are connected.

The function img_to_graph returns such a matrix from a 2D or 3D image. Similarly, grid_to_graph build a
connectivity matrix for images given the shape of these image.

These matrices can be used to impose connectivity in estimators that use connectivity information, such as Ward
clustering (Hierarchical clustering), but also to build precomputed kernels, or similarity matrices.

Note: Examples

• A demo of structured Ward hierarchical clustering on an image of coins

• Spectral clustering for image segmentation

• Feature agglomeration vs. univariate selection

4.6.3 Preprocessing data

The sklearn.preprocessing package provides several common utility functions and transformer classes to
change raw feature vectors into a representation that is more suitable for the downstream estimators.

In general, learning algorithms benefit from standardization of the data set. If some outliers are present in the set, robust
scalers or transformers are more appropriate. The behaviors of the different scalers, transformers, and normalizers on
a dataset containing marginal outliers is highlighted in Compare the effect of different scalers on data with outliers.

654 Chapter 4. User Guide

../auto_examples/cluster/plot_coin_ward_segmentation.html

scikit-learn user guide, Release 0.23.2

Standardization, or mean removal and variance scaling

Standardization of datasets is a common requirement for many machine learning estimators implemented in
scikit-learn; they might behave badly if the individual features do not more or less look like standard normally dis-
tributed data: Gaussian with zero mean and unit variance.

In practice we often ignore the shape of the distribution and just transform the data to center it by removing the mean
value of each feature, then scale it by dividing non-constant features by their standard deviation.

For instance, many elements used in the objective function of a learning algorithm (such as the RBF kernel of Support
Vector Machines or the l1 and l2 regularizers of linear models) assume that all features are centered around zero and
have variance in the same order. If a feature has a variance that is orders of magnitude larger than others, it might
dominate the objective function and make the estimator unable to learn from other features correctly as expected.

The function scale provides a quick and easy way to perform this operation on a single array-like dataset:

>>> from sklearn import preprocessing
>>> import numpy as np
>>> X_train = np.array([[1., -1., 2.],
... [2., 0., 0.],
... [0., 1., -1.]])
>>> X_scaled = preprocessing.scale(X_train)

>>> X_scaled
array([[0. ..., -1.22..., 1.33...],

[1.22..., 0. ..., -0.26...],
[-1.22..., 1.22..., -1.06...]])

Scaled data has zero mean and unit variance:

>>> X_scaled.mean(axis=0)
array([0., 0., 0.])

>>> X_scaled.std(axis=0)
array([1., 1., 1.])

The preprocessing module further provides a utility class StandardScaler that implements the
Transformer API to compute the mean and standard deviation on a training set so as to be able to later reapply
the same transformation on the testing set. This class is hence suitable for use in the early steps of a sklearn.
pipeline.Pipeline:

>>> scaler = preprocessing.StandardScaler().fit(X_train)
>>> scaler
StandardScaler()

>>> scaler.mean_
array([1. ..., 0. ..., 0.33...])

>>> scaler.scale_
array([0.81..., 0.81..., 1.24...])

>>> scaler.transform(X_train)
array([[0. ..., -1.22..., 1.33...],

[1.22..., 0. ..., -0.26...],
[-1.22..., 1.22..., -1.06...]])

The scaler instance can then be used on new data to transform it the same way it did on the training set:

4.6. Dataset transformations 655

scikit-learn user guide, Release 0.23.2

>>> X_test = [[-1., 1., 0.]]
>>> scaler.transform(X_test)
array([[-2.44..., 1.22..., -0.26...]])

It is possible to disable either centering or scaling by either passing with_mean=False or with_std=False to
the constructor of StandardScaler.

Scaling features to a range

An alternative standardization is scaling features to lie between a given minimum and maximum value, often between
zero and one, or so that the maximum absolute value of each feature is scaled to unit size. This can be achieved using
MinMaxScaler or MaxAbsScaler, respectively.

The motivation to use this scaling include robustness to very small standard deviations of features and preserving zero
entries in sparse data.

Here is an example to scale a toy data matrix to the [0, 1] range:

>>> X_train = np.array([[1., -1., 2.],
... [2., 0., 0.],
... [0., 1., -1.]])
...
>>> min_max_scaler = preprocessing.MinMaxScaler()
>>> X_train_minmax = min_max_scaler.fit_transform(X_train)
>>> X_train_minmax
array([[0.5 , 0. , 1.],

[1. , 0.5 , 0.33333333],
[0. , 1. , 0.]])

The same instance of the transformer can then be applied to some new test data unseen during the fit call: the same
scaling and shifting operations will be applied to be consistent with the transformation performed on the train data:

>>> X_test = np.array([[-3., -1., 4.]])
>>> X_test_minmax = min_max_scaler.transform(X_test)
>>> X_test_minmax
array([[-1.5 , 0. , 1.66666667]])

It is possible to introspect the scaler attributes to find about the exact nature of the transformation learned on the
training data:

>>> min_max_scaler.scale_
array([0.5 , 0.5 , 0.33...])

>>> min_max_scaler.min_
array([0. , 0.5 , 0.33...])

If MinMaxScaler is given an explicit feature_range=(min, max) the full formula is:

X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))

X_scaled = X_std * (max - min) + min

MaxAbsScaler works in a very similar fashion, but scales in a way that the training data lies within the range [-1,
1] by dividing through the largest maximum value in each feature. It is meant for data that is already centered at zero
or sparse data.

Here is how to use the toy data from the previous example with this scaler:

656 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

>>> X_train = np.array([[1., -1., 2.],
... [2., 0., 0.],
... [0., 1., -1.]])
...
>>> max_abs_scaler = preprocessing.MaxAbsScaler()
>>> X_train_maxabs = max_abs_scaler.fit_transform(X_train)
>>> X_train_maxabs
array([[0.5, -1. , 1.],

[1. , 0. , 0.],
[0. , 1. , -0.5]])

>>> X_test = np.array([[-3., -1., 4.]])
>>> X_test_maxabs = max_abs_scaler.transform(X_test)
>>> X_test_maxabs
array([[-1.5, -1. , 2.]])
>>> max_abs_scaler.scale_
array([2., 1., 2.])

As with scale, the module further provides convenience functions minmax_scale and maxabs_scale if you
don’t want to create an object.

Scaling sparse data

Centering sparse data would destroy the sparseness structure in the data, and thus rarely is a sensible thing to do.
However, it can make sense to scale sparse inputs, especially if features are on different scales.

MaxAbsScaler and maxabs_scale were specifically designed for scaling sparse data, and are the recommended
way to go about this. However, scale and StandardScaler can accept scipy.sparse matrices as input, as
long as with_mean=False is explicitly passed to the constructor. Otherwise a ValueError will be raised as
silently centering would break the sparsity and would often crash the execution by allocating excessive amounts of
memory unintentionally. RobustScaler cannot be fitted to sparse inputs, but you can use the transform method
on sparse inputs.

Note that the scalers accept both Compressed Sparse Rows and Compressed Sparse Columns format (see scipy.
sparse.csr_matrix and scipy.sparse.csc_matrix). Any other sparse input will be converted to the
Compressed Sparse Rows representation. To avoid unnecessary memory copies, it is recommended to choose the
CSR or CSC representation upstream.

Finally, if the centered data is expected to be small enough, explicitly converting the input to an array using the
toarray method of sparse matrices is another option.

Scaling data with outliers

If your data contains many outliers, scaling using the mean and variance of the data is likely to not work very well.
In these cases, you can use robust_scale and RobustScaler as drop-in replacements instead. They use more
robust estimates for the center and range of your data.

References:

Further discussion on the importance of centering and scaling data is available on this FAQ: Should I normal-
ize/standardize/rescale the data?

4.6. Dataset transformations 657

http://www.faqs.org/faqs/ai-faq/neural-nets/part2/section-16.html
http://www.faqs.org/faqs/ai-faq/neural-nets/part2/section-16.html

scikit-learn user guide, Release 0.23.2

Scaling vs Whitening

It is sometimes not enough to center and scale the features independently, since a downstream model can further
make some assumption on the linear independence of the features.

To address this issue you can use sklearn.decomposition.PCA with whiten=True to further remove the
linear correlation across features.

Scaling a 1D array

All above functions (i.e. scale, minmax_scale, maxabs_scale, and robust_scale) accept 1D array
which can be useful in some specific case.

Centering kernel matrices

If you have a kernel matrix of a kernel 𝐾 that computes a dot product in a feature space defined by function 𝜑, a
KernelCenterer can transform the kernel matrix so that it contains inner products in the feature space defined by
𝜑 followed by removal of the mean in that space.

Non-linear transformation

Two types of transformations are available: quantile transforms and power transforms. Both quantile and power
transforms are based on monotonic transformations of the features and thus preserve the rank of the values along each
feature.

Quantile transforms put all features into the same desired distribution based on the formula 𝐺−1(𝐹 (𝑋)) where 𝐹 is
the cumulative distribution function of the feature and 𝐺−1 the quantile function of the desired output distribution 𝐺.
This formula is using the two following facts: (i) if 𝑋 is a random variable with a continuous cumulative distribution
function 𝐹 then 𝐹 (𝑋) is uniformly distributed on [0, 1]; (ii) if 𝑈 is a random variable with uniform distribution on
[0, 1] then𝐺−1(𝑈) has distribution𝐺. By performing a rank transformation, a quantile transform smooths out unusual
distributions and is less influenced by outliers than scaling methods. It does, however, distort correlations and distances
within and across features.

Power transforms are a family of parametric transformations that aim to map data from any distribution to as close to
a Gaussian distribution.

Mapping to a Uniform distribution

QuantileTransformer and quantile_transform provide a non-parametric transformation to map the data
to a uniform distribution with values between 0 and 1:

>>> from sklearn.datasets import load_iris
>>> from sklearn.model_selection import train_test_split
>>> X, y = load_iris(return_X_y=True)
>>> X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
>>> quantile_transformer = preprocessing.QuantileTransformer(random_state=0)
>>> X_train_trans = quantile_transformer.fit_transform(X_train)
>>> X_test_trans = quantile_transformer.transform(X_test)
>>> np.percentile(X_train[:, 0], [0, 25, 50, 75, 100])
array([4.3, 5.1, 5.8, 6.5, 7.9])

658 Chapter 4. User Guide

https://en.wikipedia.org/wiki/Quantile_function

scikit-learn user guide, Release 0.23.2

This feature corresponds to the sepal length in cm. Once the quantile transformation applied, those landmarks approach
closely the percentiles previously defined:

>>> np.percentile(X_train_trans[:, 0], [0, 25, 50, 75, 100])
...
array([0.00... , 0.24..., 0.49..., 0.73..., 0.99...])

This can be confirmed on a independent testing set with similar remarks:

>>> np.percentile(X_test[:, 0], [0, 25, 50, 75, 100])
...
array([4.4 , 5.125, 5.75 , 6.175, 7.3])
>>> np.percentile(X_test_trans[:, 0], [0, 25, 50, 75, 100])
...
array([0.01..., 0.25..., 0.46..., 0.60... , 0.94...])

Mapping to a Gaussian distribution

In many modeling scenarios, normality of the features in a dataset is desirable. Power transforms are a family of
parametric, monotonic transformations that aim to map data from any distribution to as close to a Gaussian distribution
as possible in order to stabilize variance and minimize skewness.

PowerTransformer currently provides two such power transformations, the Yeo-Johnson transform and the Box-
Cox transform.

The Yeo-Johnson transform is given by:

𝑥
(𝜆)
𝑖 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[(𝑥𝑖 + 1)𝜆 − 1]/𝜆 if 𝜆 ̸= 0, 𝑥𝑖 ≥ 0,

ln (𝑥𝑖 + 1) if 𝜆 = 0, 𝑥𝑖 ≥ 0

−[(−𝑥𝑖 + 1)2−𝜆 − 1]/(2− 𝜆) if 𝜆 ̸= 2, 𝑥𝑖 < 0,

− ln(−𝑥𝑖 + 1) if 𝜆 = 2, 𝑥𝑖 < 0

while the Box-Cox transform is given by:

𝑥
(𝜆)
𝑖 =

⎧⎪⎨⎪⎩
𝑥𝜆𝑖 − 1

𝜆
if 𝜆 ̸= 0,

ln (𝑥𝑖) if 𝜆 = 0,

Box-Cox can only be applied to strictly positive data. In both methods, the transformation is parameterized by 𝜆,
which is determined through maximum likelihood estimation. Here is an example of using Box-Cox to map samples
drawn from a lognormal distribution to a normal distribution:

>>> pt = preprocessing.PowerTransformer(method='box-cox', standardize=False)
>>> X_lognormal = np.random.RandomState(616).lognormal(size=(3, 3))
>>> X_lognormal
array([[1.28..., 1.18..., 0.84...],

[0.94..., 1.60..., 0.38...],
[1.35..., 0.21..., 1.09...]])

>>> pt.fit_transform(X_lognormal)
array([[0.49..., 0.17..., -0.15...],

[-0.05..., 0.58..., -0.57...],
[0.69..., -0.84..., 0.10...]])

4.6. Dataset transformations 659

scikit-learn user guide, Release 0.23.2

While the above example sets the standardize option to False, PowerTransformer will apply zero-mean,
unit-variance normalization to the transformed output by default.

Below are examples of Box-Cox and Yeo-Johnson applied to various probability distributions. Note that when applied
to certain distributions, the power transforms achieve very Gaussian-like results, but with others, they are ineffective.
This highlights the importance of visualizing the data before and after transformation.

It is also possible to map data to a normal distribution using QuantileTransformer by setting
output_distribution='normal'. Using the earlier example with the iris dataset:

>>> quantile_transformer = preprocessing.QuantileTransformer(
... output_distribution='normal', random_state=0)
>>> X_trans = quantile_transformer.fit_transform(X)
>>> quantile_transformer.quantiles_
array([[4.3, 2. , 1. , 0.1],

[4.4, 2.2, 1.1, 0.1],
[4.4, 2.2, 1.2, 0.1],
...,
[7.7, 4.1, 6.7, 2.5],
[7.7, 4.2, 6.7, 2.5],
[7.9, 4.4, 6.9, 2.5]])

Thus the median of the input becomes the mean of the output, centered at 0. The normal output is clipped so that the
input’s minimum and maximum — corresponding to the 1e-7 and 1 - 1e-7 quantiles respectively — do not become
infinite under the transformation.

Normalization

Normalization is the process of scaling individual samples to have unit norm. This process can be useful if you plan
to use a quadratic form such as the dot-product or any other kernel to quantify the similarity of any pair of samples.

This assumption is the base of the Vector Space Model often used in text classification and clustering contexts.

The function normalize provides a quick and easy way to perform this operation on a single array-like dataset,
either using the l1 or l2 norms:

>>> X = [[1., -1., 2.],
... [2., 0., 0.],
... [0., 1., -1.]]
>>> X_normalized = preprocessing.normalize(X, norm='l2')

>>> X_normalized
array([[0.40..., -0.40..., 0.81...],

[1. ..., 0. ..., 0. ...],
[0. ..., 0.70..., -0.70...]])

The preprocessing module further provides a utility class Normalizer that implements the same operation
using the Transformer API (even though the fit method is useless in this case: the class is stateless as this
operation treats samples independently).

This class is hence suitable for use in the early steps of a sklearn.pipeline.Pipeline:

>>> normalizer = preprocessing.Normalizer().fit(X) # fit does nothing
>>> normalizer
Normalizer()

The normalizer instance can then be used on sample vectors as any transformer:

660 Chapter 4. User Guide

https://en.wikipedia.org/wiki/Vector_Space_Model

scikit-learn user guide, Release 0.23.2

4.6. Dataset transformations 661

../auto_examples/preprocessing/plot_map_data_to_normal.html

scikit-learn user guide, Release 0.23.2

>>> normalizer.transform(X)
array([[0.40..., -0.40..., 0.81...],

[1. ..., 0. ..., 0. ...],
[0. ..., 0.70..., -0.70...]])

>>> normalizer.transform([[-1., 1., 0.]])
array([[-0.70..., 0.70..., 0. ...]])

Note: L2 normalization is also known as spatial sign preprocessing.

Sparse input

normalize and Normalizer accept both dense array-like and sparse matrices from scipy.sparse as input.

For sparse input the data is converted to the Compressed Sparse Rows representation (see scipy.sparse.
csr_matrix) before being fed to efficient Cython routines. To avoid unnecessary memory copies, it is recom-
mended to choose the CSR representation upstream.

Encoding categorical features

Often features are not given as continuous values but categorical. For example a person could have fea-
tures ["male", "female"], ["from Europe", "from US", "from Asia"], ["uses Firefox",
"uses Chrome", "uses Safari", "uses Internet Explorer"]. Such features can be efficiently
coded as integers, for instance ["male", "from US", "uses Internet Explorer"] could be expressed
as [0, 1, 3] while ["female", "from Asia", "uses Chrome"] would be [1, 2, 1].

To convert categorical features to such integer codes, we can use the OrdinalEncoder. This estimator transforms
each categorical feature to one new feature of integers (0 to n_categories - 1):

>>> enc = preprocessing.OrdinalEncoder()
>>> X = [['male', 'from US', 'uses Safari'], ['female', 'from Europe', 'uses Firefox
→˓']]
>>> enc.fit(X)
OrdinalEncoder()
>>> enc.transform([['female', 'from US', 'uses Safari']])
array([[0., 1., 1.]])

Such integer representation can, however, not be used directly with all scikit-learn estimators, as these expect continu-
ous input, and would interpret the categories as being ordered, which is often not desired (i.e. the set of browsers was
ordered arbitrarily).

Another possibility to convert categorical features to features that can be used with scikit-learn estimators is
to use a one-of-K, also known as one-hot or dummy encoding. This type of encoding can be obtained with
the OneHotEncoder, which transforms each categorical feature with n_categories possible values into
n_categories binary features, with one of them 1, and all others 0.

Continuing the example above:

>>> enc = preprocessing.OneHotEncoder()
>>> X = [['male', 'from US', 'uses Safari'], ['female', 'from Europe', 'uses Firefox
→˓']]
>>> enc.fit(X)
OneHotEncoder()
>>> enc.transform([['female', 'from US', 'uses Safari'],

(continues on next page)

662 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

(continued from previous page)

... ['male', 'from Europe', 'uses Safari']]).toarray()
array([[1., 0., 0., 1., 0., 1.],

[0., 1., 1., 0., 0., 1.]])

By default, the values each feature can take is inferred automatically from the dataset and can be found in the
categories_ attribute:

>>> enc.categories_
[array(['female', 'male'], dtype=object), array(['from Europe', 'from US'],
→˓dtype=object), array(['uses Firefox', 'uses Safari'], dtype=object)]

It is possible to specify this explicitly using the parameter categories. There are two genders, four possible
continents and four web browsers in our dataset:

>>> genders = ['female', 'male']
>>> locations = ['from Africa', 'from Asia', 'from Europe', 'from US']
>>> browsers = ['uses Chrome', 'uses Firefox', 'uses IE', 'uses Safari']
>>> enc = preprocessing.OneHotEncoder(categories=[genders, locations, browsers])
>>> # Note that for there are missing categorical values for the 2nd and 3rd
>>> # feature
>>> X = [['male', 'from US', 'uses Safari'], ['female', 'from Europe', 'uses Firefox
→˓']]
>>> enc.fit(X)
OneHotEncoder(categories=[['female', 'male'],

['from Africa', 'from Asia', 'from Europe',
'from US'],

['uses Chrome', 'uses Firefox', 'uses IE',
'uses Safari']])

>>> enc.transform([['female', 'from Asia', 'uses Chrome']]).toarray()
array([[1., 0., 0., 1., 0., 0., 1., 0., 0., 0.]])

If there is a possibility that the training data might have missing categorical features, it can often be
better to specify handle_unknown='ignore' instead of setting the categories manually as above.
When handle_unknown='ignore' is specified and unknown categories are encountered during trans-
form, no error will be raised but the resulting one-hot encoded columns for this feature will be all zeros
(handle_unknown='ignore' is only supported for one-hot encoding):

>>> enc = preprocessing.OneHotEncoder(handle_unknown='ignore')
>>> X = [['male', 'from US', 'uses Safari'], ['female', 'from Europe', 'uses Firefox
→˓']]
>>> enc.fit(X)
OneHotEncoder(handle_unknown='ignore')
>>> enc.transform([['female', 'from Asia', 'uses Chrome']]).toarray()
array([[1., 0., 0., 0., 0., 0.]])

It is also possible to encode each column into n_categories - 1 columns instead of n_categories columns
by using the drop parameter. This parameter allows the user to specify a category for each feature to be dropped. This
is useful to avoid co-linearity in the input matrix in some classifiers. Such functionality is useful, for example, when
using non-regularized regression (LinearRegression), since co-linearity would cause the covariance matrix to be
non-invertible. When this parameter is not None, handle_unknown must be set to error:

>>> X = [['male', 'from US', 'uses Safari'],
... ['female', 'from Europe', 'uses Firefox']]
>>> drop_enc = preprocessing.OneHotEncoder(drop='first').fit(X)
>>> drop_enc.categories_
[array(['female', 'male'], dtype=object), array(['from Europe', 'from US'],
→˓dtype=object), array(['uses Firefox', 'uses Safari'], dtype=object)] (continues on next page)

4.6. Dataset transformations 663

scikit-learn user guide, Release 0.23.2

(continued from previous page)

>>> drop_enc.transform(X).toarray()
array([[1., 1., 1.],

[0., 0., 0.]])

One might want to drop one of the two columns only for features with 2 categories. In this case, you can set the
parameter drop='if_binary'.

>>> X = [['male', 'US', 'Safari'],
... ['female', 'Europe', 'Firefox'],
... ['female', 'Asia', 'Chrome']]
>>> drop_enc = preprocessing.OneHotEncoder(drop='if_binary').fit(X)
>>> drop_enc.categories_
[array(['female', 'male'], dtype=object), array(['Asia', 'Europe', 'US'],
→˓dtype=object), array(['Chrome', 'Firefox', 'Safari'], dtype=object)]
>>> drop_enc.transform(X).toarray()
array([[1., 0., 0., 1., 0., 0., 1.],

[0., 0., 1., 0., 0., 1., 0.],
[0., 1., 0., 0., 1., 0., 0.]])

In the transformed X, the first column is the encoding of the feature with categories “male”/”female”, while the
remaining 6 columns is the encoding of the 2 features with respectively 3 categories each.

See Loading features from dicts for categorical features that are represented as a dict, not as scalars.

Discretization

Discretization (otherwise known as quantization or binning) provides a way to partition continuous features into dis-
crete values. Certain datasets with continuous features may benefit from discretization, because discretization can
transform the dataset of continuous attributes to one with only nominal attributes.

One-hot encoded discretized features can make a model more expressive, while maintaining interpretability. For
instance, pre-processing with a discretizer can introduce nonlinearity to linear models.

K-bins discretization

KBinsDiscretizer discretizes features into k bins:

>>> X = np.array([[-3., 5., 15],
... [0., 6., 14],
... [6., 3., 11]])
>>> est = preprocessing.KBinsDiscretizer(n_bins=[3, 2, 2], encode='ordinal').fit(X)

By default the output is one-hot encoded into a sparse matrix (See Encoding categorical features) and this can be
configured with the encode parameter. For each feature, the bin edges are computed during fit and together with
the number of bins, they will define the intervals. Therefore, for the current example, these intervals are defined as:

• feature 1: [−∞,−1), [−1, 2), [2,∞)

• feature 2: [−∞, 5), [5,∞)

• feature 3: [−∞, 14), [14,∞)

Based on these bin intervals, X is transformed as follows:

664 Chapter 4. User Guide

https://en.wikipedia.org/wiki/Discretization_of_continuous_features

scikit-learn user guide, Release 0.23.2

>>> est.transform(X)
array([[0., 1., 1.],

[1., 1., 1.],
[2., 0., 0.]])

The resulting dataset contains ordinal attributes which can be further used in a sklearn.pipeline.Pipeline.

Discretization is similar to constructing histograms for continuous data. However, histograms focus on counting
features which fall into particular bins, whereas discretization focuses on assigning feature values to these bins.

KBinsDiscretizer implements different binning strategies, which can be selected with the strategy parame-
ter. The ‘uniform’ strategy uses constant-width bins. The ‘quantile’ strategy uses the quantiles values to have equally
populated bins in each feature. The ‘kmeans’ strategy defines bins based on a k-means clustering procedure performed
on each feature independently.

Examples:

• Using KBinsDiscretizer to discretize continuous features

• Feature discretization

• Demonstrating the different strategies of KBinsDiscretizer

Feature binarization

Feature binarization is the process of thresholding numerical features to get boolean values. This can be useful for
downstream probabilistic estimators that make assumption that the input data is distributed according to a multi-variate
Bernoulli distribution. For instance, this is the case for the sklearn.neural_network.BernoulliRBM .

It is also common among the text processing community to use binary feature values (probably to simplify the proba-
bilistic reasoning) even if normalized counts (a.k.a. term frequencies) or TF-IDF valued features often perform slightly
better in practice.

As for the Normalizer, the utility class Binarizer is meant to be used in the early stages of sklearn.
pipeline.Pipeline. The fit method does nothing as each sample is treated independently of others:

>>> X = [[1., -1., 2.],
... [2., 0., 0.],
... [0., 1., -1.]]

>>> binarizer = preprocessing.Binarizer().fit(X) # fit does nothing
>>> binarizer
Binarizer()

>>> binarizer.transform(X)
array([[1., 0., 1.],

[1., 0., 0.],
[0., 1., 0.]])

It is possible to adjust the threshold of the binarizer:

>>> binarizer = preprocessing.Binarizer(threshold=1.1)
>>> binarizer.transform(X)
array([[0., 0., 1.],

[1., 0., 0.],
[0., 0., 0.]])

4.6. Dataset transformations 665

https://en.wikipedia.org/wiki/Bernoulli_distribution

scikit-learn user guide, Release 0.23.2

As for the StandardScaler and Normalizer classes, the preprocessing module provides a companion function
binarize to be used when the transformer API is not necessary.

Note that the Binarizer is similar to the KBinsDiscretizer when k = 2, and when the bin edge is at the
value threshold.

Sparse input

binarize and Binarizer accept both dense array-like and sparse matrices from scipy.sparse as input.

For sparse input the data is converted to the Compressed Sparse Rows representation (see scipy.sparse.
csr_matrix). To avoid unnecessary memory copies, it is recommended to choose the CSR representation up-
stream.

Imputation of missing values

Tools for imputing missing values are discussed at Imputation of missing values.

Generating polynomial features

Often it’s useful to add complexity to the model by considering nonlinear features of the input data. A simple and com-
mon method to use is polynomial features, which can get features’ high-order and interaction terms. It is implemented
in PolynomialFeatures:

>>> import numpy as np
>>> from sklearn.preprocessing import PolynomialFeatures
>>> X = np.arange(6).reshape(3, 2)
>>> X
array([[0, 1],

[2, 3],
[4, 5]])

>>> poly = PolynomialFeatures(2)
>>> poly.fit_transform(X)
array([[1., 0., 1., 0., 0., 1.],

[1., 2., 3., 4., 6., 9.],
[1., 4., 5., 16., 20., 25.]])

The features of X have been transformed from (𝑋1, 𝑋2) to (1, 𝑋1, 𝑋2, 𝑋
2
1 , 𝑋1𝑋2, 𝑋

2
2).

In some cases, only interaction terms among features are required, and it can be gotten with the setting
interaction_only=True:

>>> X = np.arange(9).reshape(3, 3)
>>> X
array([[0, 1, 2],

[3, 4, 5],
[6, 7, 8]])

>>> poly = PolynomialFeatures(degree=3, interaction_only=True)
>>> poly.fit_transform(X)
array([[1., 0., 1., 2., 0., 0., 2., 0.],

[1., 3., 4., 5., 12., 15., 20., 60.],
[1., 6., 7., 8., 42., 48., 56., 336.]])

The features of X have been transformed from (𝑋1, 𝑋2, 𝑋3) to (1, 𝑋1, 𝑋2, 𝑋3, 𝑋1𝑋2, 𝑋1𝑋3, 𝑋2𝑋3, 𝑋1𝑋2𝑋3).

666 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

Note that polynomial features are used implicitly in kernel methods (e.g., sklearn.svm.SVC, sklearn.
decomposition.KernelPCA) when using polynomial Kernel functions.

See Polynomial interpolation for Ridge regression using created polynomial features.

Custom transformers

Often, you will want to convert an existing Python function into a transformer to assist in data cleaning or processing.
You can implement a transformer from an arbitrary function with FunctionTransformer. For example, to build
a transformer that applies a log transformation in a pipeline, do:

>>> import numpy as np
>>> from sklearn.preprocessing import FunctionTransformer
>>> transformer = FunctionTransformer(np.log1p, validate=True)
>>> X = np.array([[0, 1], [2, 3]])
>>> transformer.transform(X)
array([[0. , 0.69314718],

[1.09861229, 1.38629436]])

You can ensure that func and inverse_func are the inverse of each other by setting check_inverse=True
and calling fit before transform. Please note that a warning is raised and can be turned into an error with a
filterwarnings:

>>> import warnings
>>> warnings.filterwarnings("error", message=".*check_inverse*.",
... category=UserWarning, append=False)

For a full code example that demonstrates using a FunctionTransformer to do custom feature selection, see
Using FunctionTransformer to select columns

4.6.4 Imputation of missing values

For various reasons, many real world datasets contain missing values, often encoded as blanks, NaNs or other place-
holders. Such datasets however are incompatible with scikit-learn estimators which assume that all values in an array
are numerical, and that all have and hold meaning. A basic strategy to use incomplete datasets is to discard entire rows
and/or columns containing missing values. However, this comes at the price of losing data which may be valuable
(even though incomplete). A better strategy is to impute the missing values, i.e., to infer them from the known part of
the data. See the Glossary of Common Terms and API Elements entry on imputation.

Univariate vs. Multivariate Imputation

One type of imputation algorithm is univariate, which imputes values in the i-th feature dimension using only non-
missing values in that feature dimension (e.g. impute.SimpleImputer). By contrast, multivariate imputa-
tion algorithms use the entire set of available feature dimensions to estimate the missing values (e.g. impute.
IterativeImputer).

Univariate feature imputation

The SimpleImputer class provides basic strategies for imputing missing values. Missing values can be imputed
with a provided constant value, or using the statistics (mean, median or most frequent) of each column in which the
missing values are located. This class also allows for different missing values encodings.

4.6. Dataset transformations 667

https://en.wikipedia.org/wiki/Kernel_method

scikit-learn user guide, Release 0.23.2

The following snippet demonstrates how to replace missing values, encoded as np.nan, using the mean value of the
columns (axis 0) that contain the missing values:

>>> import numpy as np
>>> from sklearn.impute import SimpleImputer
>>> imp = SimpleImputer(missing_values=np.nan, strategy='mean')
>>> imp.fit([[1, 2], [np.nan, 3], [7, 6]])
SimpleImputer()
>>> X = [[np.nan, 2], [6, np.nan], [7, 6]]
>>> print(imp.transform(X))
[[4. 2.]
[6. 3.666...]
[7. 6.]]

The SimpleImputer class also supports sparse matrices:

>>> import scipy.sparse as sp
>>> X = sp.csc_matrix([[1, 2], [0, -1], [8, 4]])
>>> imp = SimpleImputer(missing_values=-1, strategy='mean')
>>> imp.fit(X)
SimpleImputer(missing_values=-1)
>>> X_test = sp.csc_matrix([[-1, 2], [6, -1], [7, 6]])
>>> print(imp.transform(X_test).toarray())
[[3. 2.]
[6. 3.]
[7. 6.]]

Note that this format is not meant to be used to implicitly store missing values in the matrix because it would densify
it at transform time. Missing values encoded by 0 must be used with dense input.

The SimpleImputer class also supports categorical data represented as string values or pandas categoricals when
using the 'most_frequent' or 'constant' strategy:

>>> import pandas as pd
>>> df = pd.DataFrame([["a", "x"],
... [np.nan, "y"],
... ["a", np.nan],
... ["b", "y"]], dtype="category")
...
>>> imp = SimpleImputer(strategy="most_frequent")
>>> print(imp.fit_transform(df))
[['a' 'x']
['a' 'y']
['a' 'y']
['b' 'y']]

Multivariate feature imputation

A more sophisticated approach is to use the IterativeImputer class, which models each feature with missing
values as a function of other features, and uses that estimate for imputation. It does so in an iterated round-robin
fashion: at each step, a feature column is designated as output y and the other feature columns are treated as inputs X.
A regressor is fit on (X, y) for known y. Then, the regressor is used to predict the missing values of y. This is done
for each feature in an iterative fashion, and then is repeated for max_iter imputation rounds. The results of the final
imputation round are returned.

Note: This estimator is still experimental for now: default parameters or details of behaviour might change without

668 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

any deprecation cycle. Resolving the following issues would help stabilize IterativeImputer: convergence
criteria (#14338), default estimators (#13286), and use of random state (#15611). To use it, you need to explicitly
import enable_iterative_imputer.

>>> import numpy as np
>>> from sklearn.experimental import enable_iterative_imputer
>>> from sklearn.impute import IterativeImputer
>>> imp = IterativeImputer(max_iter=10, random_state=0)
>>> imp.fit([[1, 2], [3, 6], [4, 8], [np.nan, 3], [7, np.nan]])
IterativeImputer(random_state=0)
>>> X_test = [[np.nan, 2], [6, np.nan], [np.nan, 6]]
>>> # the model learns that the second feature is double the first
>>> print(np.round(imp.transform(X_test)))
[[1. 2.]
[6. 12.]
[3. 6.]]

Both SimpleImputer and IterativeImputer can be used in a Pipeline as a way to build a composite estimator
that supports imputation. See Imputing missing values before building an estimator.

Flexibility of IterativeImputer

There are many well-established imputation packages in the R data science ecosystem: Amelia, mi, mice, missForest,
etc. missForest is popular, and turns out to be a particular instance of different sequential imputation algorithms
that can all be implemented with IterativeImputer by passing in different regressors to be used for predicting
missing feature values. In the case of missForest, this regressor is a Random Forest. See Imputing missing values with
variants of IterativeImputer.

Multiple vs. Single Imputation

In the statistics community, it is common practice to perform multiple imputations, generating, for example, m separate
imputations for a single feature matrix. Each of these m imputations is then put through the subsequent analysis
pipeline (e.g. feature engineering, clustering, regression, classification). The m final analysis results (e.g. held-out
validation errors) allow the data scientist to obtain understanding of how analytic results may differ as a consequence
of the inherent uncertainty caused by the missing values. The above practice is called multiple imputation.

Our implementation of IterativeImputer was inspired by the R MICE package (Multivariate Imputation by
Chained Equations)1, but differs from it by returning a single imputation instead of multiple imputations. However,
IterativeImputer can also be used for multiple imputations by applying it repeatedly to the same dataset with
different random seeds when sample_posterior=True. See2, chapter 4 for more discussion on multiple vs.
single imputations.

It is still an open problem as to how useful single vs. multiple imputation is in the context of prediction and classifica-
tion when the user is not interested in measuring uncertainty due to missing values.

Note that a call to the transformmethod of IterativeImputer is not allowed to change the number of samples.
Therefore multiple imputations cannot be achieved by a single call to transform.

References

1 Stef van Buuren, Karin Groothuis-Oudshoorn (2011). “mice: Multivariate Imputation by Chained Equations in R”. Journal of Statistical
Software 45: 1-67.

2 Roderick J A Little and Donald B Rubin (1986). “Statistical Analysis with Missing Data”. John Wiley & Sons, Inc., New York, NY, USA.

4.6. Dataset transformations 669

https://github.com/scikit-learn/scikit-learn/issues/14338
https://github.com/scikit-learn/scikit-learn/issues/13286
https://github.com/scikit-learn/scikit-learn/issues/15611

scikit-learn user guide, Release 0.23.2

Nearest neighbors imputation

The KNNImputer class provides imputation for filling in missing values using the k-Nearest Neighbors approach.
By default, a euclidean distance metric that supports missing values, nan_euclidean_distances, is used to find
the nearest neighbors. Each missing feature is imputed using values from n_neighbors nearest neighbors that have
a value for the feature. The feature of the neighbors are averaged uniformly or weighted by distance to each neighbor.
If a sample has more than one feature missing, then the neighbors for that sample can be different depending on the
particular feature being imputed. When the number of available neighbors is less than n_neighbors and there are
no defined distances to the training set, the training set average for that feature is used during imputation. If there is
at least one neighbor with a defined distance, the weighted or unweighted average of the remaining neighbors will
be used during imputation. If a feature is always missing in training, it is removed during transform. For more
information on the methodology, see ref. [OL2001].

The following snippet demonstrates how to replace missing values, encoded as np.nan, using the mean feature value
of the two nearest neighbors of samples with missing values:

>>> import numpy as np
>>> from sklearn.impute import KNNImputer
>>> nan = np.nan
>>> X = [[1, 2, nan], [3, 4, 3], [nan, 6, 5], [8, 8, 7]]
>>> imputer = KNNImputer(n_neighbors=2, weights="uniform")
>>> imputer.fit_transform(X)
array([[1. , 2. , 4.],

[3. , 4. , 3.],
[5.5, 6. , 5.],
[8. , 8. , 7.]])

Marking imputed values

The MissingIndicator transformer is useful to transform a dataset into corresponding binary matrix indicating
the presence of missing values in the dataset. This transformation is useful in conjunction with imputation. When
using imputation, preserving the information about which values had been missing can be informative. Note that
both the SimpleImputer and IterativeImputer have the boolean parameter add_indicator (False by
default) which when set to True provides a convenient way of stacking the output of the MissingIndicator
transformer with the output of the imputer.

NaN is usually used as the placeholder for missing values. However, it enforces the data type to be float. The parameter
missing_values allows to specify other placeholder such as integer. In the following example, we will use -1 as
missing values:

>>> from sklearn.impute import MissingIndicator
>>> X = np.array([[-1, -1, 1, 3],
... [4, -1, 0, -1],
... [8, -1, 1, 0]])
>>> indicator = MissingIndicator(missing_values=-1)
>>> mask_missing_values_only = indicator.fit_transform(X)
>>> mask_missing_values_only
array([[True, True, False],

[False, True, True],
[False, True, False]])

The features parameter is used to choose the features for which the mask is constructed. By default, it is
'missing-only' which returns the imputer mask of the features containing missing values at fit time:

>>> indicator.features_
array([0, 1, 3])

670 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

The features parameter can be set to 'all' to return all features whether or not they contain missing values:

>>> indicator = MissingIndicator(missing_values=-1, features="all")
>>> mask_all = indicator.fit_transform(X)
>>> mask_all
array([[True, True, False, False],

[False, True, False, True],
[False, True, False, False]])

>>> indicator.features_
array([0, 1, 2, 3])

When using the MissingIndicator in a Pipeline, be sure to use the FeatureUnion or
ColumnTransformer to add the indicator features to the regular features. First we obtain the iris dataset,
and add some missing values to it.

>>> from sklearn.datasets import load_iris
>>> from sklearn.impute import SimpleImputer, MissingIndicator
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.pipeline import FeatureUnion, make_pipeline
>>> from sklearn.tree import DecisionTreeClassifier
>>> X, y = load_iris(return_X_y=True)
>>> mask = np.random.randint(0, 2, size=X.shape).astype(np.bool)
>>> X[mask] = np.nan
>>> X_train, X_test, y_train, _ = train_test_split(X, y, test_size=100,
... random_state=0)

Now we create a FeatureUnion. All features will be imputed using SimpleImputer, in order to enable classi-
fiers to work with this data. Additionally, it adds the the indicator variables from MissingIndicator.

>>> transformer = FeatureUnion(
... transformer_list=[
... ('features', SimpleImputer(strategy='mean')),
... ('indicators', MissingIndicator())])
>>> transformer = transformer.fit(X_train, y_train)
>>> results = transformer.transform(X_test)
>>> results.shape
(100, 8)

Of course, we cannot use the transformer to make any predictions. We should wrap this in a Pipeline with a
classifier (e.g., a DecisionTreeClassifier) to be able to make predictions.

>>> clf = make_pipeline(transformer, DecisionTreeClassifier())
>>> clf = clf.fit(X_train, y_train)
>>> results = clf.predict(X_test)
>>> results.shape
(100,)

4.6.5 Unsupervised dimensionality reduction

If your number of features is high, it may be useful to reduce it with an unsupervised step prior to supervised steps.
Many of the Unsupervised learning methods implement a transform method that can be used to reduce the dimen-
sionality. Below we discuss two specific example of this pattern that are heavily used.

4.6. Dataset transformations 671

scikit-learn user guide, Release 0.23.2

Pipelining

The unsupervised data reduction and the supervised estimator can be chained in one step. See Pipeline: chaining
estimators.

PCA: principal component analysis

decomposition.PCA looks for a combination of features that capture well the variance of the original features.
See Decomposing signals in components (matrix factorization problems).

Examples

• Faces recognition example using eigenfaces and SVMs

Random projections

The module: random_projection provides several tools for data reduction by random projections. See the
relevant section of the documentation: Random Projection.

Examples

• The Johnson-Lindenstrauss bound for embedding with random projections

Feature agglomeration

cluster.FeatureAgglomeration applies Hierarchical clustering to group together features that behave sim-
ilarly.

Examples

• Feature agglomeration vs. univariate selection

• Feature agglomeration

Feature scaling

Note that if features have very different scaling or statistical properties, cluster.FeatureAgglomeration
may not be able to capture the links between related features. Using a preprocessing.StandardScaler
can be useful in these settings.

4.6.6 Random Projection

The sklearn.random_projection module implements a simple and computationally efficient way to reduce
the dimensionality of the data by trading a controlled amount of accuracy (as additional variance) for faster processing

672 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

times and smaller model sizes. This module implements two types of unstructured random matrix: Gaussian random
matrix and sparse random matrix.

The dimensions and distribution of random projections matrices are controlled so as to preserve the pairwise distances
between any two samples of the dataset. Thus random projection is a suitable approximation technique for distance
based method.

References:

• Sanjoy Dasgupta. 2000. Experiments with random projection. In Proceedings of the Sixteenth conference
on Uncertainty in artificial intelligence (UAI’00), Craig Boutilier and Moisés Goldszmidt (Eds.). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 143-151.

• Ella Bingham and Heikki Mannila. 2001. Random projection in dimensionality reduction: applications to
image and text data. In Proceedings of the seventh ACM SIGKDD international conference on Knowledge
discovery and data mining (KDD ‘01). ACM, New York, NY, USA, 245-250.

The Johnson-Lindenstrauss lemma

The main theoretical result behind the efficiency of random projection is the Johnson-Lindenstrauss lemma (quoting
Wikipedia):

In mathematics, the Johnson-Lindenstrauss lemma is a result concerning low-distortion embeddings of
points from high-dimensional into low-dimensional Euclidean space. The lemma states that a small set
of points in a high-dimensional space can be embedded into a space of much lower dimension in such a
way that distances between the points are nearly preserved. The map used for the embedding is at least
Lipschitz, and can even be taken to be an orthogonal projection.

Knowing only the number of samples, the sklearn.random_projection.
johnson_lindenstrauss_min_dim estimates conservatively the minimal size of the random subspace
to guarantee a bounded distortion introduced by the random projection:

>>> from sklearn.random_projection import johnson_lindenstrauss_min_dim
>>> johnson_lindenstrauss_min_dim(n_samples=1e6, eps=0.5)
663
>>> johnson_lindenstrauss_min_dim(n_samples=1e6, eps=[0.5, 0.1, 0.01])
array([663, 11841, 1112658])
>>> johnson_lindenstrauss_min_dim(n_samples=[1e4, 1e5, 1e6], eps=0.1)
array([7894, 9868, 11841])

Example:

• See The Johnson-Lindenstrauss bound for embedding with random projections for a theoretical explication
on the Johnson-Lindenstrauss lemma and an empirical validation using sparse random matrices.

References:

• Sanjoy Dasgupta and Anupam Gupta, 1999. An elementary proof of the Johnson-Lindenstrauss Lemma.

4.6. Dataset transformations 673

https://cseweb.ucsd.edu/~dasgupta/papers/randomf.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.24.5135&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.24.5135&rep=rep1&type=pdf
https://en.wikipedia.org/wiki/Johnson%E2%80%93Lindenstrauss_lemma
https://en.wikipedia.org/wiki/Johnson%E2%80%93Lindenstrauss_lemma
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.39.3334&rep=rep1&type=pdf

scikit-learn user guide, Release 0.23.2

674 Chapter 4. User Guide

../auto_examples/miscellaneous/plot_johnson_lindenstrauss_bound.html
../auto_examples/miscellaneous/plot_johnson_lindenstrauss_bound.html

scikit-learn user guide, Release 0.23.2

Gaussian random projection

The sklearn.random_projection.GaussianRandomProjection reduces the dimensionality by pro-
jecting the original input space on a randomly generated matrix where components are drawn from the following
distribution 𝑁(0, 1

𝑛𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠
).

Here a small excerpt which illustrates how to use the Gaussian random projection transformer:

>>> import numpy as np
>>> from sklearn import random_projection
>>> X = np.random.rand(100, 10000)
>>> transformer = random_projection.GaussianRandomProjection()
>>> X_new = transformer.fit_transform(X)
>>> X_new.shape
(100, 3947)

Sparse random projection

The sklearn.random_projection.SparseRandomProjection reduces the dimensionality by projecting
the original input space using a sparse random matrix.

Sparse random matrices are an alternative to dense Gaussian random projection matrix that guarantees similar embed-
ding quality while being much more memory efficient and allowing faster computation of the projected data.

If we define s = 1 / density, the elements of the random matrix are drawn from⎧⎪⎪⎨⎪⎪⎩
−
√︁

𝑠
𝑛components

1/2𝑠

0 with probability 1− 1/𝑠

+
√︁

𝑠
𝑛components

1/2𝑠

where 𝑛components is the size of the projected subspace. By default the density of non zero elements is set to the
minimum density as recommended by Ping Li et al.: 1/

√
𝑛features.

Here a small excerpt which illustrates how to use the sparse random projection transformer:

>>> import numpy as np
>>> from sklearn import random_projection
>>> X = np.random.rand(100, 10000)
>>> transformer = random_projection.SparseRandomProjection()
>>> X_new = transformer.fit_transform(X)
>>> X_new.shape
(100, 3947)

References:

• D. Achlioptas. 2003. Database-friendly random projections: Johnson-Lindenstrauss with binary coins. Jour-
nal of Computer and System Sciences 66 (2003) 671–687

• Ping Li, Trevor J. Hastie, and Kenneth W. Church. 2006. Very sparse random projections. In Proceedings
of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD ‘06).
ACM, New York, NY, USA, 287-296.

4.6. Dataset transformations 675

http://www.cs.ucsc.edu/~optas/papers/jl.pdf
https://web.stanford.edu/~hastie/Papers/Ping/KDD06_rp.pdf

scikit-learn user guide, Release 0.23.2

4.6.7 Kernel Approximation

This submodule contains functions that approximate the feature mappings that correspond to certain kernels, as they
are used for example in support vector machines (see Support Vector Machines). The following feature functions
perform non-linear transformations of the input, which can serve as a basis for linear classification or other algorithms.

The advantage of using approximate explicit feature maps compared to the kernel trick, which makes use of feature
maps implicitly, is that explicit mappings can be better suited for online learning and can significantly reduce the
cost of learning with very large datasets. Standard kernelized SVMs do not scale well to large datasets, but using an
approximate kernel map it is possible to use much more efficient linear SVMs. In particular, the combination of kernel
map approximations with SGDClassifier can make non-linear learning on large datasets possible.

Since there has not been much empirical work using approximate embeddings, it is advisable to compare results
against exact kernel methods when possible.

See also:

Polynomial regression: extending linear models with basis functions for an exact polynomial transformation.

Nystroem Method for Kernel Approximation

The Nystroem method, as implemented in Nystroem is a general method for low-rank approximations of kernels.
It achieves this by essentially subsampling the data on which the kernel is evaluated. By default Nystroem uses the
rbf kernel, but it can use any kernel function or a precomputed kernel matrix. The number of samples used - which
is also the dimensionality of the features computed - is given by the parameter n_components.

Radial Basis Function Kernel

The RBFSampler constructs an approximate mapping for the radial basis function kernel, also known as Random
Kitchen Sinks [RR2007]. This transformation can be used to explicitly model a kernel map, prior to applying a linear
algorithm, for example a linear SVM:

>>> from sklearn.kernel_approximation import RBFSampler
>>> from sklearn.linear_model import SGDClassifier
>>> X = [[0, 0], [1, 1], [1, 0], [0, 1]]
>>> y = [0, 0, 1, 1]
>>> rbf_feature = RBFSampler(gamma=1, random_state=1)
>>> X_features = rbf_feature.fit_transform(X)
>>> clf = SGDClassifier(max_iter=5)
>>> clf.fit(X_features, y)
SGDClassifier(max_iter=5)
>>> clf.score(X_features, y)
1.0

The mapping relies on a Monte Carlo approximation to the kernel values. The fit function performs the Monte Carlo
sampling, whereas the transform method performs the mapping of the data. Because of the inherent randomness
of the process, results may vary between different calls to the fit function.

The fit function takes two arguments: n_components, which is the target dimensionality of the feature transform,
and gamma, the parameter of the RBF-kernel. A higher n_components will result in a better approximation of the
kernel and will yield results more similar to those produced by a kernel SVM. Note that “fitting” the feature function
does not actually depend on the data given to the fit function. Only the dimensionality of the data is used. Details
on the method can be found in [RR2007].

For a given value of n_components RBFSampler is often less accurate as Nystroem. RBFSampler is cheaper
to compute, though, making use of larger feature spaces more efficient.

676 Chapter 4. User Guide

https://en.wikipedia.org/wiki/Kernel_trick

scikit-learn user guide, Release 0.23.2

Fig. 10: Comparing an exact RBF kernel (left) with the approximation (right)

Examples:

• Explicit feature map approximation for RBF kernels

Additive Chi Squared Kernel

The additive chi squared kernel is a kernel on histograms, often used in computer vision.

The additive chi squared kernel as used here is given by

𝑘(𝑥, 𝑦) =
∑︁
𝑖

2𝑥𝑖𝑦𝑖
𝑥𝑖 + 𝑦𝑖

This is not exactly the same as sklearn.metrics.additive_chi2_kernel. The authors of [VZ2010] prefer
the version above as it is always positive definite. Since the kernel is additive, it is possible to treat all components
𝑥𝑖 separately for embedding. This makes it possible to sample the Fourier transform in regular intervals, instead of
approximating using Monte Carlo sampling.

The class AdditiveChi2Sampler implements this component wise deterministic sampling. Each component
is sampled 𝑛 times, yielding 2𝑛 + 1 dimensions per input dimension (the multiple of two stems from the real and
complex part of the Fourier transform). In the literature, 𝑛 is usually chosen to be 1 or 2, transforming the dataset to
size n_samples * 5 * n_features (in the case of 𝑛 = 2).

The approximate feature map provided by AdditiveChi2Sampler can be combined with the approximate feature
map provided by RBFSampler to yield an approximate feature map for the exponentiated chi squared kernel. See
the [VZ2010] for details and [VVZ2010] for combination with the RBFSampler.

Skewed Chi Squared Kernel

The skewed chi squared kernel is given by:

𝑘(𝑥, 𝑦) =
∏︁
𝑖

2
√
𝑥𝑖 + 𝑐

√
𝑦𝑖 + 𝑐

𝑥𝑖 + 𝑦𝑖 + 2𝑐

4.6. Dataset transformations 677

../auto_examples/miscellaneous/plot_kernel_approximation.html

scikit-learn user guide, Release 0.23.2

It has properties that are similar to the exponentiated chi squared kernel often used in computer vision, but allows for
a simple Monte Carlo approximation of the feature map.

The usage of the SkewedChi2Sampler is the same as the usage described above for the RBFSampler. The only
difference is in the free parameter, that is called 𝑐. For a motivation for this mapping and the mathematical details see
[LS2010].

Mathematical Details

Kernel methods like support vector machines or kernelized PCA rely on a property of reproducing kernel Hilbert
spaces. For any positive definite kernel function 𝑘 (a so called Mercer kernel), it is guaranteed that there exists a
mapping 𝜑 into a Hilbert spaceℋ, such that

𝑘(𝑥, 𝑦) = ⟨𝜑(𝑥), 𝜑(𝑦)⟩

Where ⟨·, ·⟩ denotes the inner product in the Hilbert space.

If an algorithm, such as a linear support vector machine or PCA, relies only on the scalar product of data points 𝑥𝑖,
one may use the value of 𝑘(𝑥𝑖, 𝑥𝑗), which corresponds to applying the algorithm to the mapped data points 𝜑(𝑥𝑖). The
advantage of using 𝑘 is that the mapping 𝜑 never has to be calculated explicitly, allowing for arbitrary large features
(even infinite).

One drawback of kernel methods is, that it might be necessary to store many kernel values 𝑘(𝑥𝑖, 𝑥𝑗) during optimiza-
tion. If a kernelized classifier is applied to new data 𝑦𝑗 , 𝑘(𝑥𝑖, 𝑦𝑗) needs to be computed to make predictions, possibly
for many different 𝑥𝑖 in the training set.

The classes in this submodule allow to approximate the embedding 𝜑, thereby working explicitly with the representa-
tions 𝜑(𝑥𝑖), which obviates the need to apply the kernel or store training examples.

References:

4.6.8 Pairwise metrics, Affinities and Kernels

The sklearn.metrics.pairwise submodule implements utilities to evaluate pairwise distances or affinity of
sets of samples.

This module contains both distance metrics and kernels. A brief summary is given on the two here.

Distance metrics are functions d(a, b) such that d(a, b) < d(a, c) if objects a and b are considered “more
similar” than objects a and c. Two objects exactly alike would have a distance of zero. One of the most popular
examples is Euclidean distance. To be a ‘true’ metric, it must obey the following four conditions:

1. d(a, b) >= 0, for all a and b
2. d(a, b) == 0, if and only if a = b, positive definiteness
3. d(a, b) == d(b, a), symmetry
4. d(a, c) <= d(a, b) + d(b, c), the triangle inequality

Kernels are measures of similarity, i.e. s(a, b) > s(a, c) if objects a and b are considered “more similar” than
objects a and c. A kernel must also be positive semi-definite.

There are a number of ways to convert between a distance metric and a similarity measure, such as a kernel. Let D be
the distance, and S be the kernel:

1. S = np.exp(-D * gamma), where one heuristic for choosing gamma is 1 / num_features

2. S = 1. / (D / np.max(D))

678 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

The distances between the row vectors of X and the row vectors of Y can be evaluated using pairwise_distances.
If Y is omitted the pairwise distances of the row vectors of X are calculated. Similarly, pairwise.
pairwise_kernels can be used to calculate the kernel between X and Y using different kernel functions. See
the API reference for more details.

>>> import numpy as np
>>> from sklearn.metrics import pairwise_distances
>>> from sklearn.metrics.pairwise import pairwise_kernels
>>> X = np.array([[2, 3], [3, 5], [5, 8]])
>>> Y = np.array([[1, 0], [2, 1]])
>>> pairwise_distances(X, Y, metric='manhattan')
array([[4., 2.],

[7., 5.],
[12., 10.]])

>>> pairwise_distances(X, metric='manhattan')
array([[0., 3., 8.],

[3., 0., 5.],
[8., 5., 0.]])

>>> pairwise_kernels(X, Y, metric='linear')
array([[2., 7.],

[3., 11.],
[5., 18.]])

Cosine similarity

cosine_similarity computes the L2-normalized dot product of vectors. That is, if 𝑥 and 𝑦 are row vectors, their
cosine similarity 𝑘 is defined as:

𝑘(𝑥, 𝑦) =
𝑥𝑦⊤

‖𝑥‖‖𝑦‖

This is called cosine similarity, because Euclidean (L2) normalization projects the vectors onto the unit sphere, and
their dot product is then the cosine of the angle between the points denoted by the vectors.

This kernel is a popular choice for computing the similarity of documents represented as tf-idf vectors.
cosine_similarity accepts scipy.sparse matrices. (Note that the tf-idf functionality in sklearn.
feature_extraction.text can produce normalized vectors, in which case cosine_similarity is equiv-
alent to linear_kernel, only slower.)

References:

• C.D. Manning, P. Raghavan and H. Schütze (2008). Introduction to Information Retrieval. Cambridge Uni-
versity Press. https://nlp.stanford.edu/IR-book/html/htmledition/the-vector-space-model-for-scoring-1.html

Linear kernel

The function linear_kernel computes the linear kernel, that is, a special case of polynomial_kernel with
degree=1 and coef0=0 (homogeneous). If x and y are column vectors, their linear kernel is:

𝑘(𝑥, 𝑦) = 𝑥⊤𝑦

4.6. Dataset transformations 679

https://nlp.stanford.edu/IR-book/html/htmledition/the-vector-space-model-for-scoring-1.html

scikit-learn user guide, Release 0.23.2

Polynomial kernel

The function polynomial_kernel computes the degree-d polynomial kernel between two vectors. The polyno-
mial kernel represents the similarity between two vectors. Conceptually, the polynomial kernels considers not only
the similarity between vectors under the same dimension, but also across dimensions. When used in machine learning
algorithms, this allows to account for feature interaction.

The polynomial kernel is defined as:

𝑘(𝑥, 𝑦) = (𝛾𝑥⊤𝑦 + 𝑐0)𝑑

where:

• x, y are the input vectors

• d is the kernel degree

If 𝑐0 = 0 the kernel is said to be homogeneous.

Sigmoid kernel

The function sigmoid_kernel computes the sigmoid kernel between two vectors. The sigmoid kernel is also
known as hyperbolic tangent, or Multilayer Perceptron (because, in the neural network field, it is often used as neuron
activation function). It is defined as:

𝑘(𝑥, 𝑦) = tanh(𝛾𝑥⊤𝑦 + 𝑐0)

where:

• x, y are the input vectors

• 𝛾 is known as slope

• 𝑐0 is known as intercept

RBF kernel

The function rbf_kernel computes the radial basis function (RBF) kernel between two vectors. This kernel is
defined as:

𝑘(𝑥, 𝑦) = exp(−𝛾‖𝑥− 𝑦‖2)

where x and y are the input vectors. If 𝛾 = 𝜎−2 the kernel is known as the Gaussian kernel of variance 𝜎2.

Laplacian kernel

The function laplacian_kernel is a variant on the radial basis function kernel defined as:

𝑘(𝑥, 𝑦) = exp(−𝛾‖𝑥− 𝑦‖1)

where x and y are the input vectors and ‖𝑥− 𝑦‖1 is the Manhattan distance between the input vectors.

It has proven useful in ML applied to noiseless data. See e.g. Machine learning for quantum mechanics in a nutshell.

680 Chapter 4. User Guide

https://onlinelibrary.wiley.com/doi/10.1002/qua.24954/abstract/

scikit-learn user guide, Release 0.23.2

Chi-squared kernel

The chi-squared kernel is a very popular choice for training non-linear SVMs in computer vision applications. It can
be computed using chi2_kernel and then passed to an sklearn.svm.SVC with kernel="precomputed":

>>> from sklearn.svm import SVC
>>> from sklearn.metrics.pairwise import chi2_kernel
>>> X = [[0, 1], [1, 0], [.2, .8], [.7, .3]]
>>> y = [0, 1, 0, 1]
>>> K = chi2_kernel(X, gamma=.5)
>>> K
array([[1. , 0.36787944, 0.89483932, 0.58364548],

[0.36787944, 1. , 0.51341712, 0.83822343],
[0.89483932, 0.51341712, 1. , 0.7768366],
[0.58364548, 0.83822343, 0.7768366 , 1.]])

>>> svm = SVC(kernel='precomputed').fit(K, y)
>>> svm.predict(K)
array([0, 1, 0, 1])

It can also be directly used as the kernel argument:

>>> svm = SVC(kernel=chi2_kernel).fit(X, y)
>>> svm.predict(X)
array([0, 1, 0, 1])

The chi squared kernel is given by

𝑘(𝑥, 𝑦) = exp

(︃
−𝛾
∑︁
𝑖

(𝑥[𝑖]− 𝑦[𝑖])2

𝑥[𝑖] + 𝑦[𝑖]

)︃

The data is assumed to be non-negative, and is often normalized to have an L1-norm of one. The normalization is
rationalized with the connection to the chi squared distance, which is a distance between discrete probability distribu-
tions.

The chi squared kernel is most commonly used on histograms (bags) of visual words.

References:

• Zhang, J. and Marszalek, M. and Lazebnik, S. and Schmid, C. Local features and kernels for classification
of texture and object categories: A comprehensive study International Journal of Computer Vision 2007
https://research.microsoft.com/en-us/um/people/manik/projects/trade-off/papers/ZhangIJCV06.pdf

4.6.9 Transforming the prediction target (y)

These are transformers that are not intended to be used on features, only on supervised learning targets. See also
Transforming target in regression if you want to transform the prediction target for learning, but evaluate the model in
the original (untransformed) space.

Label binarization

LabelBinarizer is a utility class to help create a label indicator matrix from a list of multi-class labels:

4.6. Dataset transformations 681

https://research.microsoft.com/en-us/um/people/manik/projects/trade-off/papers/ZhangIJCV06.pdf

scikit-learn user guide, Release 0.23.2

>>> from sklearn import preprocessing
>>> lb = preprocessing.LabelBinarizer()
>>> lb.fit([1, 2, 6, 4, 2])
LabelBinarizer()
>>> lb.classes_
array([1, 2, 4, 6])
>>> lb.transform([1, 6])
array([[1, 0, 0, 0],

[0, 0, 0, 1]])

For multiple labels per instance, use MultiLabelBinarizer:

>>> lb = preprocessing.MultiLabelBinarizer()
>>> lb.fit_transform([(1, 2), (3,)])
array([[1, 1, 0],

[0, 0, 1]])
>>> lb.classes_
array([1, 2, 3])

Label encoding

LabelEncoder is a utility class to help normalize labels such that they contain only values between 0 and n_classes-
1. This is sometimes useful for writing efficient Cython routines. LabelEncoder can be used as follows:

>>> from sklearn import preprocessing
>>> le = preprocessing.LabelEncoder()
>>> le.fit([1, 2, 2, 6])
LabelEncoder()
>>> le.classes_
array([1, 2, 6])
>>> le.transform([1, 1, 2, 6])
array([0, 0, 1, 2])
>>> le.inverse_transform([0, 0, 1, 2])
array([1, 1, 2, 6])

It can also be used to transform non-numerical labels (as long as they are hashable and comparable) to numerical
labels:

>>> le = preprocessing.LabelEncoder()
>>> le.fit(["paris", "paris", "tokyo", "amsterdam"])
LabelEncoder()
>>> list(le.classes_)
['amsterdam', 'paris', 'tokyo']
>>> le.transform(["tokyo", "tokyo", "paris"])
array([2, 2, 1])
>>> list(le.inverse_transform([2, 2, 1]))
['tokyo', 'tokyo', 'paris']

4.7 Dataset loading utilities

The sklearn.datasets package embeds some small toy datasets as introduced in the Getting Started section.

This package also features helpers to fetch larger datasets commonly used by the machine learning community to
benchmark algorithms on data that comes from the ‘real world’.

682 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

To evaluate the impact of the scale of the dataset (n_samples and n_features) while controlling the statistical
properties of the data (typically the correlation and informativeness of the features), it is also possible to generate
synthetic data.

4.7.1 General dataset API

There are three main kinds of dataset interfaces that can be used to get datasets depending on the desired type of
dataset.

The dataset loaders. They can be used to load small standard datasets, described in the Toy datasets section.

The dataset fetchers. They can be used to download and load larger datasets, described in the Real world datasets
section.

Both loaders and fetchers functions return a sklearn.utils.Bunch object holding at least two items: an array
of shape n_samples * n_features with key data (except for 20newsgroups) and a numpy array of length
n_samples, containing the target values, with key target.

The Bunch object is a dictionary that exposes its keys are attributes. For more information about Bunch object, see
sklearn.utils.Bunch:

It’s also possible for almost all of these function to constrain the output to be a tuple containing only the data and the
target, by setting the return_X_y parameter to True.

The datasets also contain a full description in their DESCR attribute and some contain feature_names and
target_names. See the dataset descriptions below for details.

The dataset generation functions. They can be used to generate controlled synthetic datasets, described in the
Generated datasets section.

These functions return a tuple (X, y) consisting of a n_samples * n_features numpy array X and an array of
length n_samples containing the targets y.

In addition, there are also miscellaneous tools to load datasets of other formats or from other locations, described in
the Loading other datasets section.

4.7.2 Toy datasets

scikit-learn comes with a few small standard datasets that do not require to download any file from some external
website.

They can be loaded using the following functions:

load_boston(*[, return_X_y]) Load and return the boston house-prices dataset (regres-
sion).

load_iris(*[, return_X_y, as_frame]) Load and return the iris dataset (classification).
load_diabetes(*[, return_X_y, as_frame]) Load and return the diabetes dataset (regression).
load_digits(*[, n_class, return_X_y, as_frame]) Load and return the digits dataset (classification).
load_linnerud(*[, return_X_y, as_frame]) Load and return the physical excercise linnerud dataset.
load_wine(*[, return_X_y, as_frame]) Load and return the wine dataset (classification).
load_breast_cancer(*[, return_X_y, as_frame]) Load and return the breast cancer wisconsin dataset

(classification).

These datasets are useful to quickly illustrate the behavior of the various algorithms implemented in scikit-learn. They
are however often too small to be representative of real world machine learning tasks.

4.7. Dataset loading utilities 683

scikit-learn user guide, Release 0.23.2

Boston house prices dataset

Data Set Characteristics:

Number of Instances 506

Number of Attributes 13 numeric/categorical predictive. Median Value (attribute 14) is usu-
ally the target.

Attribute Information (in order)

• CRIM per capita crime rate by town

• ZN proportion of residential land zoned for lots over 25,000 sq.ft.

• INDUS proportion of non-retail business acres per town

• CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)

• NOX nitric oxides concentration (parts per 10 million)

• RM average number of rooms per dwelling

• AGE proportion of owner-occupied units built prior to 1940

• DIS weighted distances to five Boston employment centres

• RAD index of accessibility to radial highways

• TAX full-value property-tax rate per $10,000

• PTRATIO pupil-teacher ratio by town

• B 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town

• LSTAT % lower status of the population

• MEDV Median value of owner-occupied homes in $1000’s

Missing Attribute Values None

Creator Harrison, D. and Rubinfeld, D.L.

This is a copy of UCI ML housing dataset. https://archive.ics.uci.edu/ml/machine-learning-databases/housing/

This dataset was taken from the StatLib library which is maintained at Carnegie Mellon University.

The Boston house-price data of Harrison, D. and Rubinfeld, D.L. ‘Hedonic prices and the demand for clean air’, J.
Environ. Economics & Management, vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, ‘Regression diagnostics
. . . ’, Wiley, 1980. N.B. Various transformations are used in the table on pages 244-261 of the latter.

The Boston house-price data has been used in many machine learning papers that address regression problems.

References

• Belsley, Kuh & Welsch, ‘Regression diagnostics: Identifying Influential Data and Sources of Collinearity’,
Wiley, 1980. 244-261.

• Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth
International Conference of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan
Kaufmann.

684 Chapter 4. User Guide

https://archive.ics.uci.edu/ml/machine-learning-databases/housing/

scikit-learn user guide, Release 0.23.2

Iris plants dataset

Data Set Characteristics:

Number of Instances 150 (50 in each of three classes)

Number of Attributes 4 numeric, predictive attributes and the class

Attribute Information

• sepal length in cm

• sepal width in cm

• petal length in cm

• petal width in cm

• class:

– Iris-Setosa

– Iris-Versicolour

– Iris-Virginica

Summary Statistics

sepal length: 4.3 7.9 5.84 0.83 0.7826
sepal width: 2.0 4.4 3.05 0.43 -0.4194
petal length: 1.0 6.9 3.76 1.76 0.9490 (high!)
petal width: 0.1 2.5 1.20 0.76 0.9565 (high!)

Missing Attribute Values None

Class Distribution 33.3% for each of 3 classes.

Creator R.A. Fisher

Donor Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)

Date July, 1988

The famous Iris database, first used by Sir R.A. Fisher. The dataset is taken from Fisher’s paper. Note that it’s the
same as in R, but not as in the UCI Machine Learning Repository, which has two wrong data points.

This is perhaps the best known database to be found in the pattern recognition literature. Fisher’s paper is a classic in
the field and is referenced frequently to this day. (See Duda & Hart, for example.) The data set contains 3 classes of
50 instances each, where each class refers to a type of iris plant. One class is linearly separable from the other 2; the
latter are NOT linearly separable from each other.

References

• Fisher, R.A. “The use of multiple measurements in taxonomic problems” Annual Eugenics, 7, Part II, 179-188
(1936); also in “Contributions to Mathematical Statistics” (John Wiley, NY, 1950).

• Duda, R.O., & Hart, P.E. (1973) Pattern Classification and Scene Analysis. (Q327.D83) John Wiley & Sons.
ISBN 0-471-22361-1. See page 218.

• Dasarathy, B.V. (1980) “Nosing Around the Neighborhood: A New System Structure and Classification Rule
for Recognition in Partially Exposed Environments”. IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. PAMI-2, No. 1, 67-71.

4.7. Dataset loading utilities 685

mailto:MARSHALL%PLU@io.arc.nasa.gov

scikit-learn user guide, Release 0.23.2

• Gates, G.W. (1972) “The Reduced Nearest Neighbor Rule”. IEEE Transactions on Information Theory, May
1972, 431-433.

• See also: 1988 MLC Proceedings, 54-64. Cheeseman et al”s AUTOCLASS II conceptual clustering system
finds 3 classes in the data.

• Many, many more . . .

Diabetes dataset

Ten baseline variables, age, sex, body mass index, average blood pressure, and six blood serum measurements were
obtained for each of n = 442 diabetes patients, as well as the response of interest, a quantitative measure of disease
progression one year after baseline.

Data Set Characteristics:

Number of Instances 442

Number of Attributes First 10 columns are numeric predictive values

Target Column 11 is a quantitative measure of disease progression one year after baseline

Attribute Information

• age age in years

• sex

• bmi body mass index

• bp average blood pressure

• s1 tc, T-Cells (a type of white blood cells)

• s2 ldl, low-density lipoproteins

• s3 hdl, high-density lipoproteins

• s4 tch, thyroid stimulating hormone

• s5 ltg, lamotrigine

• s6 glu, blood sugar level

Note: Each of these 10 feature variables have been mean centered and scaled by the standard deviation times
n_samples (i.e. the sum of squares of each column totals 1).

Source URL: https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html

For more information see: Bradley Efron, Trevor Hastie, Iain Johnstone and Robert Tibshirani (2004) “Least An-
gle Regression,” Annals of Statistics (with discussion), 407-499. (https://web.stanford.edu/~hastie/Papers/LARS/
LeastAngle_2002.pdf)

Optical recognition of handwritten digits dataset

Data Set Characteristics:

Number of Instances 5620

Number of Attributes 64

Attribute Information 8x8 image of integer pixels in the range 0..16.

686 Chapter 4. User Guide

https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html
https://web.stanford.edu/~hastie/Papers/LARS/LeastAngle_2002.pdf
https://web.stanford.edu/~hastie/Papers/LARS/LeastAngle_2002.pdf

scikit-learn user guide, Release 0.23.2

Missing Attribute Values None

Creator

E. Alpaydin (alpaydin ‘@’ boun.edu.tr)

Date July; 1998

This is a copy of the test set of the UCI ML hand-written digits datasets https://archive.ics.uci.edu/ml/datasets/Optical+
Recognition+of+Handwritten+Digits

The data set contains images of hand-written digits: 10 classes where each class refers to a digit.

Preprocessing programs made available by NIST were used to extract normalized bitmaps of handwritten digits from
a preprinted form. From a total of 43 people, 30 contributed to the training set and different 13 to the test set. 32x32
bitmaps are divided into nonoverlapping blocks of 4x4 and the number of on pixels are counted in each block. This
generates an input matrix of 8x8 where each element is an integer in the range 0..16. This reduces dimensionality and
gives invariance to small distortions.

For info on NIST preprocessing routines, see M. D. Garris, J. L. Blue, G. T. Candela, D. L. Dimmick, J. Geist, P. J.
Grother, S. A. Janet, and C. L. Wilson, NIST Form-Based Handprint Recognition System, NISTIR 5469, 1994.

References

• C. Kaynak (1995) Methods of Combining Multiple Classifiers and Their Applications to Handwritten Digit
Recognition, MSc Thesis, Institute of Graduate Studies in Science and Engineering, Bogazici University.

• E. Alpaydin, C. Kaynak (1998) Cascading Classifiers, Kybernetika.

• Ken Tang and Ponnuthurai N. Suganthan and Xi Yao and A. Kai Qin. Linear dimensionalityreduction using
relevance weighted LDA. School of Electrical and Electronic Engineering Nanyang Technological University.
2005.

• Claudio Gentile. A New Approximate Maximal Margin Classification Algorithm. NIPS. 2000.

Linnerrud dataset

Data Set Characteristics:

Number of Instances 20

Number of Attributes 3

Missing Attribute Values None

The Linnerud dataset is a multi-output regression dataset. It consists of three excercise (data) and three physiological
(target) variables collected from twenty middle-aged men in a fitness club:

• physiological - CSV containing 20 observations on 3 physiological variables: Weight, Waist and Pulse.

• exercise - CSV containing 20 observations on 3 exercise variables: Chins, Situps and Jumps.

References

• Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic.

4.7. Dataset loading utilities 687

https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits

scikit-learn user guide, Release 0.23.2

Wine recognition dataset

Data Set Characteristics:

Number of Instances 178 (50 in each of three classes)

Number of Attributes 13 numeric, predictive attributes and the class

Attribute Information

• Alcohol

• Malic acid

• Ash

• Alcalinity of ash

• Magnesium

• Total phenols

• Flavanoids

• Nonflavanoid phenols

• Proanthocyanins

• Color intensity

• Hue

• OD280/OD315 of diluted wines

• Proline

• class:

– class_0

– class_1

– class_2

Summary Statistics

Alcohol: 11.0 14.8 13.0 0.8
Malic Acid: 0.74 5.80 2.34 1.12
Ash: 1.36 3.23 2.36 0.27
Alcalinity of Ash: 10.6 30.0 19.5 3.3
Magnesium: 70.0 162.0 99.7 14.3
Total Phenols: 0.98 3.88 2.29 0.63
Flavanoids: 0.34 5.08 2.03 1.00
Nonflavanoid Phenols: 0.13 0.66 0.36 0.12
Proanthocyanins: 0.41 3.58 1.59 0.57
Colour Intensity: 1.3 13.0 5.1 2.3
Hue: 0.48 1.71 0.96 0.23
OD280/OD315 of diluted wines: 1.27 4.00 2.61 0.71
Proline: 278 1680 746 315

Missing Attribute Values None

Class Distribution class_0 (59), class_1 (71), class_2 (48)

688 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

Creator R.A. Fisher

Donor Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)

Date July, 1988

This is a copy of UCI ML Wine recognition datasets. https://archive.ics.uci.edu/ml/machine-learning-databases/wine/
wine.data

The data is the results of a chemical analysis of wines grown in the same region in Italy by three different cultivators.
There are thirteen different measurements taken for different constituents found in the three types of wine.

Original Owners:

Forina, M. et al, PARVUS - An Extendible Package for Data Exploration, Classification and Correlation. Institute of
Pharmaceutical and Food Analysis and Technologies, Via Brigata Salerno, 16147 Genoa, Italy.

Citation:

Lichman, M. (2013). UCI Machine Learning Repository [https://archive.ics.uci.edu/ml]. Irvine, CA: University of
California, School of Information and Computer Science.

References

(1) S. Aeberhard, D. Coomans and O. de Vel, Comparison of Classifiers in High Dimensional Settings, Tech. Rep.
no. 92-02, (1992), Dept. of Computer Science and Dept. of Mathematics and Statistics, James Cook University of
North Queensland. (Also submitted to Technometrics).

The data was used with many others for comparing various classifiers. The classes are separable, though only RDA
has achieved 100% correct classification. (RDA : 100%, QDA 99.4%, LDA 98.9%, 1NN 96.1% (z-transformed
data)) (All results using the leave-one-out technique)

(2) S. Aeberhard, D. Coomans and O. de Vel, “THE CLASSIFICATION PERFORMANCE OF RDA” Tech. Rep.
no. 92-01, (1992), Dept. of Computer Science and Dept. of Mathematics and Statistics, James Cook University of
North Queensland. (Also submitted to Journal of Chemometrics).

Breast cancer wisconsin (diagnostic) dataset

Data Set Characteristics:

Number of Instances 569

Number of Attributes 30 numeric, predictive attributes and the class

Attribute Information

• radius (mean of distances from center to points on the perimeter)

• texture (standard deviation of gray-scale values)

• perimeter

• area

• smoothness (local variation in radius lengths)

• compactness (perimeter^2 / area - 1.0)

• concavity (severity of concave portions of the contour)

• concave points (number of concave portions of the contour)

• symmetry

4.7. Dataset loading utilities 689

mailto:MARSHALL%PLU@io.arc.nasa.gov
https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data
https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data
https://archive.ics.uci.edu/ml

scikit-learn user guide, Release 0.23.2

• fractal dimension (“coastline approximation” - 1)

The mean, standard error, and “worst” or largest (mean of the three worst/largest values)
of these features were computed for each image, resulting in 30 features. For instance,
field 0 is Mean Radius, field 10 is Radius SE, field 20 is Worst Radius.

• class:

– WDBC-Malignant

– WDBC-Benign

Summary Statistics

radius (mean): 6.981 28.11
texture (mean): 9.71 39.28
perimeter (mean): 43.79 188.5
area (mean): 143.5 2501.0
smoothness (mean): 0.053 0.163
compactness (mean): 0.019 0.345
concavity (mean): 0.0 0.427
concave points (mean): 0.0 0.201
symmetry (mean): 0.106 0.304
fractal dimension (mean): 0.05 0.097
radius (standard error): 0.112 2.873
texture (standard error): 0.36 4.885
perimeter (standard error): 0.757 21.98
area (standard error): 6.802 542.2
smoothness (standard error): 0.002 0.031
compactness (standard error): 0.002 0.135
concavity (standard error): 0.0 0.396
concave points (standard error): 0.0 0.053
symmetry (standard error): 0.008 0.079
fractal dimension (standard error): 0.001 0.03
radius (worst): 7.93 36.04
texture (worst): 12.02 49.54
perimeter (worst): 50.41 251.2
area (worst): 185.2 4254.0
smoothness (worst): 0.071 0.223
compactness (worst): 0.027 1.058
concavity (worst): 0.0 1.252
concave points (worst): 0.0 0.291
symmetry (worst): 0.156 0.664
fractal dimension (worst): 0.055 0.208

Missing Attribute Values None

Class Distribution 212 - Malignant, 357 - Benign

Creator Dr. William H. Wolberg, W. Nick Street, Olvi L. Mangasarian

Donor Nick Street

Date November, 1995

This is a copy of UCI ML Breast Cancer Wisconsin (Diagnostic) datasets. https://goo.gl/U2Uwz2

690 Chapter 4. User Guide

https://goo.gl/U2Uwz2

scikit-learn user guide, Release 0.23.2

Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe charac-
teristics of the cell nuclei present in the image.

Separating plane described above was obtained using Multisurface Method-Tree (MSM-T) [K. P. Bennett, “Decision
Tree Construction Via Linear Programming.” Proceedings of the 4th Midwest Artificial Intelligence and Cognitive
Science Society, pp. 97-101, 1992], a classification method which uses linear programming to construct a decision
tree. Relevant features were selected using an exhaustive search in the space of 1-4 features and 1-3 separating planes.

The actual linear program used to obtain the separating plane in the 3-dimensional space is that described in: [K.
P. Bennett and O. L. Mangasarian: “Robust Linear Programming Discrimination of Two Linearly Inseparable Sets”,
Optimization Methods and Software 1, 1992, 23-34].

This database is also available through the UW CS ftp server:

ftp ftp.cs.wisc.edu cd math-prog/cpo-dataset/machine-learn/WDBC/

References

• W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear feature extraction for breast tumor diagnosis.
IS&T/SPIE 1993 International Symposium on Electronic Imaging: Science and Technology, volume 1905,
pages 861-870, San Jose, CA, 1993.

• O.L. Mangasarian, W.N. Street and W.H. Wolberg. Breast cancer diagnosis and prognosis via linear program-
ming. Operations Research, 43(4), pages 570-577, July-August 1995.

• W.H. Wolberg, W.N. Street, and O.L. Mangasarian. Machine learning techniques to diagnose breast cancer
from fine-needle aspirates. Cancer Letters 77 (1994) 163-171.

4.7.3 Real world datasets

scikit-learn provides tools to load larger datasets, downloading them if necessary.

They can be loaded using the following functions:

fetch_olivetti_faces(*[, data_home, . . .]) Load the Olivetti faces data-set from AT&T (classifica-
tion).

fetch_20newsgroups(*[, data_home, subset, . . .]) Load the filenames and data from the 20 newsgroups
dataset (classification).

fetch_20newsgroups_vectorized(*[, subset,
. . .])

Load the 20 newsgroups dataset and vectorize it into to-
ken counts (classification).

fetch_lfw_people(*[, data_home, funneled, . . .]) Load the Labeled Faces in the Wild (LFW) people
dataset (classification).

fetch_lfw_pairs(*[, subset, data_home, . . .]) Load the Labeled Faces in the Wild (LFW) pairs dataset
(classification).

fetch_covtype(*[, data_home, . . .]) Load the covertype dataset (classification).
fetch_rcv1(*[, data_home, subset, . . .]) Load the RCV1 multilabel dataset (classification).
fetch_kddcup99(*[, subset, data_home, . . .]) Load the kddcup99 dataset (classification).
fetch_california_housing(*[, data_home,
. . .])

Load the California housing dataset (regression).

The Olivetti faces dataset

This dataset contains a set of face images taken between April 1992 and April 1994 at AT&T Laboratories Cam-

4.7. Dataset loading utilities 691

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

scikit-learn user guide, Release 0.23.2

bridge. The sklearn.datasets.fetch_olivetti_faces function is the data fetching / caching function
that downloads the data archive from AT&T.

As described on the original website:

There are ten different images of each of 40 distinct subjects. For some subjects, the images were taken
at different times, varying the lighting, facial expressions (open / closed eyes, smiling / not smiling) and
facial details (glasses / no glasses). All the images were taken against a dark homogeneous background
with the subjects in an upright, frontal position (with tolerance for some side movement).

Data Set Characteristics:

Classes 40
Samples total 400
Dimensionality 4096
Features real, between 0 and 1

The image is quantized to 256 grey levels and stored as unsigned 8-bit integers; the loader will convert these to floating
point values on the interval [0, 1], which are easier to work with for many algorithms.

The “target” for this database is an integer from 0 to 39 indicating the identity of the person pictured; however, with
only 10 examples per class, this relatively small dataset is more interesting from an unsupervised or semi-supervised
perspective.

The original dataset consisted of 92 x 112, while the version available here consists of 64x64 images.

When using these images, please give credit to AT&T Laboratories Cambridge.

The 20 newsgroups text dataset

The 20 newsgroups dataset comprises around 18000 newsgroups posts on 20 topics split in two subsets: one for
training (or development) and the other one for testing (or for performance evaluation). The split between the train
and test set is based upon a messages posted before and after a specific date.

This module contains two loaders. The first one, sklearn.datasets.fetch_20newsgroups, returns a list
of the raw texts that can be fed to text feature extractors such as sklearn.feature_extraction.text.
CountVectorizer with custom parameters so as to extract feature vectors. The second one, sklearn.
datasets.fetch_20newsgroups_vectorized, returns ready-to-use features, i.e., it is not necessary to use
a feature extractor.

Data Set Characteristics:

Classes 20
Samples total 18846
Dimensionality 1
Features text

Usage

The sklearn.datasets.fetch_20newsgroups function is a data fetching / caching functions that down-
loads the data archive from the original 20 newsgroups website, extracts the archive contents in the ~/
scikit_learn_data/20news_home folder and calls the sklearn.datasets.load_files on either the
training or testing set folder, or both of them:

692 Chapter 4. User Guide

http://people.csail.mit.edu/jrennie/20Newsgroups/

scikit-learn user guide, Release 0.23.2

>>> from sklearn.datasets import fetch_20newsgroups
>>> newsgroups_train = fetch_20newsgroups(subset='train')

>>> from pprint import pprint
>>> pprint(list(newsgroups_train.target_names))
['alt.atheism',
'comp.graphics',
'comp.os.ms-windows.misc',
'comp.sys.ibm.pc.hardware',
'comp.sys.mac.hardware',
'comp.windows.x',
'misc.forsale',
'rec.autos',
'rec.motorcycles',
'rec.sport.baseball',
'rec.sport.hockey',
'sci.crypt',
'sci.electronics',
'sci.med',
'sci.space',
'soc.religion.christian',
'talk.politics.guns',
'talk.politics.mideast',
'talk.politics.misc',
'talk.religion.misc']

The real data lies in the filenames and target attributes. The target attribute is the integer index of the category:

>>> newsgroups_train.filenames.shape
(11314,)
>>> newsgroups_train.target.shape
(11314,)
>>> newsgroups_train.target[:10]
array([7, 4, 4, 1, 14, 16, 13, 3, 2, 4])

It is possible to load only a sub-selection of the categories by passing the list of the categories to load to the sklearn.
datasets.fetch_20newsgroups function:

>>> cats = ['alt.atheism', 'sci.space']
>>> newsgroups_train = fetch_20newsgroups(subset='train', categories=cats)

>>> list(newsgroups_train.target_names)
['alt.atheism', 'sci.space']
>>> newsgroups_train.filenames.shape
(1073,)
>>> newsgroups_train.target.shape
(1073,)
>>> newsgroups_train.target[:10]
array([0, 1, 1, 1, 0, 1, 1, 0, 0, 0])

Converting text to vectors

In order to feed predictive or clustering models with the text data, one first need to turn the text into vectors
of numerical values suitable for statistical analysis. This can be achieved with the utilities of the sklearn.
feature_extraction.text as demonstrated in the following example that extract TF-IDF vectors of unigram
tokens from a subset of 20news:

4.7. Dataset loading utilities 693

https://en.wikipedia.org/wiki/Tf-idf

scikit-learn user guide, Release 0.23.2

>>> from sklearn.feature_extraction.text import TfidfVectorizer
>>> categories = ['alt.atheism', 'talk.religion.misc',
... 'comp.graphics', 'sci.space']
>>> newsgroups_train = fetch_20newsgroups(subset='train',
... categories=categories)
>>> vectorizer = TfidfVectorizer()
>>> vectors = vectorizer.fit_transform(newsgroups_train.data)
>>> vectors.shape
(2034, 34118)

The extracted TF-IDF vectors are very sparse, with an average of 159 non-zero components by sample in a more than
30000-dimensional space (less than .5% non-zero features):

>>> vectors.nnz / float(vectors.shape[0])
159.01327...

sklearn.datasets.fetch_20newsgroups_vectorized is a function which returns ready-to-use token
counts features instead of file names.

Filtering text for more realistic training

It is easy for a classifier to overfit on particular things that appear in the 20 Newsgroups data, such as newsgroup
headers. Many classifiers achieve very high F-scores, but their results would not generalize to other documents that
aren’t from this window of time.

For example, let’s look at the results of a multinomial Naive Bayes classifier, which is fast to train and achieves a
decent F-score:

>>> from sklearn.naive_bayes import MultinomialNB
>>> from sklearn import metrics
>>> newsgroups_test = fetch_20newsgroups(subset='test',
... categories=categories)
>>> vectors_test = vectorizer.transform(newsgroups_test.data)
>>> clf = MultinomialNB(alpha=.01)
>>> clf.fit(vectors, newsgroups_train.target)
MultinomialNB(alpha=0.01, class_prior=None, fit_prior=True)

>>> pred = clf.predict(vectors_test)
>>> metrics.f1_score(newsgroups_test.target, pred, average='macro')
0.88213...

(The example Classification of text documents using sparse features shuffles the training and test data, instead of
segmenting by time, and in that case multinomial Naive Bayes gets a much higher F-score of 0.88. Are you suspicious
yet of what’s going on inside this classifier?)

Let’s take a look at what the most informative features are:

>>> import numpy as np
>>> def show_top10(classifier, vectorizer, categories):
... feature_names = np.asarray(vectorizer.get_feature_names())
... for i, category in enumerate(categories):
... top10 = np.argsort(classifier.coef_[i])[-10:]
... print("%s: %s" % (category, " ".join(feature_names[top10])))
...
>>> show_top10(clf, vectorizer, newsgroups_train.target_names)
alt.atheism: edu it and in you that is of to the

(continues on next page)

694 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

(continued from previous page)

comp.graphics: edu in graphics it is for and of to the
sci.space: edu it that is in and space to of the
talk.religion.misc: not it you in is that and to of the

You can now see many things that these features have overfit to:

• Almost every group is distinguished by whether headers such as NNTP-Posting-Host: and
Distribution: appear more or less often.

• Another significant feature involves whether the sender is affiliated with a university, as indicated either by their
headers or their signature.

• The word “article” is a significant feature, based on how often people quote previous posts like this: “In article
[article ID], [name] <[e-mail address]> wrote:”

• Other features match the names and e-mail addresses of particular people who were posting at the time.

With such an abundance of clues that distinguish newsgroups, the classifiers barely have to identify topics from text at
all, and they all perform at the same high level.

For this reason, the functions that load 20 Newsgroups data provide a parameter called remove, telling it what
kinds of information to strip out of each file. remove should be a tuple containing any subset of ('headers',
'footers', 'quotes'), telling it to remove headers, signature blocks, and quotation blocks respectively.

>>> newsgroups_test = fetch_20newsgroups(subset='test',
... remove=('headers', 'footers', 'quotes'),
... categories=categories)
>>> vectors_test = vectorizer.transform(newsgroups_test.data)
>>> pred = clf.predict(vectors_test)
>>> metrics.f1_score(pred, newsgroups_test.target, average='macro')
0.77310...

This classifier lost over a lot of its F-score, just because we removed metadata that has little to do with topic classifi-
cation. It loses even more if we also strip this metadata from the training data:

>>> newsgroups_train = fetch_20newsgroups(subset='train',
... remove=('headers', 'footers', 'quotes'),
... categories=categories)
>>> vectors = vectorizer.fit_transform(newsgroups_train.data)
>>> clf = MultinomialNB(alpha=.01)
>>> clf.fit(vectors, newsgroups_train.target)
MultinomialNB(alpha=0.01, class_prior=None, fit_prior=True)

>>> vectors_test = vectorizer.transform(newsgroups_test.data)
>>> pred = clf.predict(vectors_test)
>>> metrics.f1_score(newsgroups_test.target, pred, average='macro')
0.76995...

Some other classifiers cope better with this harder version of the task. Try running Sample pipeline for text feature
extraction and evaluation with and without the --filter option to compare the results.

Recommendation

When evaluating text classifiers on the 20 Newsgroups data, you should strip newsgroup-related metadata. In
scikit-learn, you can do this by setting remove=('headers', 'footers', 'quotes'). The F-score will
be lower because it is more realistic.

4.7. Dataset loading utilities 695

scikit-learn user guide, Release 0.23.2

Examples

• Sample pipeline for text feature extraction and evaluation

• Classification of text documents using sparse features

The Labeled Faces in the Wild face recognition dataset

This dataset is a collection of JPEG pictures of famous people collected over the internet, all details are available on
the official website:

http://vis-www.cs.umass.edu/lfw/

Each picture is centered on a single face. The typical task is called Face Verification: given a pair of two pictures, a
binary classifier must predict whether the two images are from the same person.

An alternative task, Face Recognition or Face Identification is: given the picture of the face of an unknown person,
identify the name of the person by referring to a gallery of previously seen pictures of identified persons.

Both Face Verification and Face Recognition are tasks that are typically performed on the output of a model trained to
perform Face Detection. The most popular model for Face Detection is called Viola-Jones and is implemented in the
OpenCV library. The LFW faces were extracted by this face detector from various online websites.

Data Set Characteristics:

Classes 5749
Samples total 13233
Dimensionality 5828
Features real, between 0 and 255

Usage

scikit-learn provides two loaders that will automatically download, cache, parse the metadata files, decode the
jpeg and convert the interesting slices into memmapped numpy arrays. This dataset size is more than 200 MB. The first
load typically takes more than a couple of minutes to fully decode the relevant part of the JPEG files into numpy arrays.
If the dataset has been loaded once, the following times the loading times less than 200ms by using a memmapped
version memoized on the disk in the ~/scikit_learn_data/lfw_home/ folder using joblib.

The first loader is used for the Face Identification task: a multi-class classification task (hence supervised learning):

>>> from sklearn.datasets import fetch_lfw_people
>>> lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)

>>> for name in lfw_people.target_names:
... print(name)
...
Ariel Sharon
Colin Powell
Donald Rumsfeld
George W Bush
Gerhard Schroeder
Hugo Chavez
Tony Blair

696 Chapter 4. User Guide

http://vis-www.cs.umass.edu/lfw/

scikit-learn user guide, Release 0.23.2

The default slice is a rectangular shape around the face, removing most of the background:

>>> lfw_people.data.dtype
dtype('float32')

>>> lfw_people.data.shape
(1288, 1850)

>>> lfw_people.images.shape
(1288, 50, 37)

Each of the 1140 faces is assigned to a single person id in the target array:

>>> lfw_people.target.shape
(1288,)

>>> list(lfw_people.target[:10])
[5, 6, 3, 1, 0, 1, 3, 4, 3, 0]

The second loader is typically used for the face verification task: each sample is a pair of two picture belonging or not
to the same person:

>>> from sklearn.datasets import fetch_lfw_pairs
>>> lfw_pairs_train = fetch_lfw_pairs(subset='train')

>>> list(lfw_pairs_train.target_names)
['Different persons', 'Same person']

>>> lfw_pairs_train.pairs.shape
(2200, 2, 62, 47)

>>> lfw_pairs_train.data.shape
(2200, 5828)

>>> lfw_pairs_train.target.shape
(2200,)

Both for the sklearn.datasets.fetch_lfw_people and sklearn.datasets.fetch_lfw_pairs
function it is possible to get an additional dimension with the RGB color channels by passing color=True, in
that case the shape will be (2200, 2, 62, 47, 3).

The sklearn.datasets.fetch_lfw_pairs datasets is subdivided into 3 subsets: the development train
set, the development test set and an evaluation 10_folds set meant to compute performance metrics using a
10-folds cross validation scheme.

References:

• Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments. Gary
B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. University of Massachusetts, Amherst,
Technical Report 07-49, October, 2007.

Examples

Faces recognition example using eigenfaces and SVMs

4.7. Dataset loading utilities 697

http://vis-www.cs.umass.edu/lfw/lfw.pdf

scikit-learn user guide, Release 0.23.2

Forest covertypes

The samples in this dataset correspond to 30×30m patches of forest in the US, collected for the task of predicting
each patch’s cover type, i.e. the dominant species of tree. There are seven covertypes, making this a multiclass
classification problem. Each sample has 54 features, described on the dataset’s homepage. Some of the features are
boolean indicators, while others are discrete or continuous measurements.

Data Set Characteristics:

Classes 7
Samples total 581012
Dimensionality 54
Features int

sklearn.datasets.fetch_covtype will load the covertype dataset; it returns a dictionary-like object with
the feature matrix in the data member and the target values in target. The dataset will be downloaded from the
web if necessary.

RCV1 dataset

Reuters Corpus Volume I (RCV1) is an archive of over 800,000 manually categorized newswire stories made available
by Reuters, Ltd. for research purposes. The dataset is extensively described in1.

Data Set Characteristics:

Classes 103
Samples total 804414
Dimensionality 47236
Features real, between 0 and 1

sklearn.datasets.fetch_rcv1 will load the following version: RCV1-v2, vectors, full sets, topics multil-
abels:

>>> from sklearn.datasets import fetch_rcv1
>>> rcv1 = fetch_rcv1()

It returns a dictionary-like object, with the following attributes:

data: The feature matrix is a scipy CSR sparse matrix, with 804414 samples and 47236 features. Non-zero values
contains cosine-normalized, log TF-IDF vectors. A nearly chronological split is proposed in1: The first 23149 samples
are the training set. The last 781265 samples are the testing set. This follows the official LYRL2004 chronological
split. The array has 0.16% of non zero values:

>>> rcv1.data.shape
(804414, 47236)

target: The target values are stored in a scipy CSR sparse matrix, with 804414 samples and 103 categories. Each
sample has a value of 1 in its categories, and 0 in others. The array has 3.15% of non zero values:

>>> rcv1.target.shape
(804414, 103)

1 Lewis, D. D., Yang, Y., Rose, T. G., & Li, F. (2004). RCV1: A new benchmark collection for text categorization research. The Journal of
Machine Learning Research, 5, 361-397.

698 Chapter 4. User Guide

https://archive.ics.uci.edu/ml/datasets/Covertype

scikit-learn user guide, Release 0.23.2

sample_id: Each sample can be identified by its ID, ranging (with gaps) from 2286 to 810596:

>>> rcv1.sample_id[:3]
array([2286, 2287, 2288], dtype=uint32)

target_names: The target values are the topics of each sample. Each sample belongs to at least one topic, and
to up to 17 topics. There are 103 topics, each represented by a string. Their corpus frequencies span five orders of
magnitude, from 5 occurrences for ‘GMIL’, to 381327 for ‘CCAT’:

>>> rcv1.target_names[:3].tolist()
['E11', 'ECAT', 'M11']

The dataset will be downloaded from the rcv1 homepage if necessary. The compressed size is about 656 MB.

References

Kddcup 99 dataset

The KDD Cup ‘99 dataset was created by processing the tcpdump portions of the 1998 DARPA Intrusion Detection
System (IDS) Evaluation dataset, created by MIT Lincoln Lab [1]. The artificial data (described on the dataset’s
homepage) was generated using a closed network and hand-injected attacks to produce a large number of different
types of attack with normal activity in the background. As the initial goal was to produce a large training set for
supervised learning algorithms, there is a large proportion (80.1%) of abnormal data which is unrealistic in real world,
and inappropriate for unsupervised anomaly detection which aims at detecting ‘abnormal’ data, ie

1) qualitatively different from normal data

2) in large minority among the observations.

We thus transform the KDD Data set into two different data sets: SA and SF.

-SA is obtained by simply selecting all the normal data, and a small proportion of abnormal data to gives an anomaly
proportion of 1%.

-SF is obtained as in [2] by simply picking up the data whose attribute logged_in is positive, thus focusing on the
intrusion attack, which gives a proportion of 0.3% of attack.

-http and smtp are two subsets of SF corresponding with third feature equal to ‘http’ (resp. to ‘smtp’)

General KDD structure :

Samples total 4898431
Dimensionality 41
Features discrete (int) or continuous (float)
Targets str, ‘normal.’ or name of the anomaly type

SA structure :

Samples total 976158
Dimensionality 41
Features discrete (int) or continuous (float)
Targets str, ‘normal.’ or name of the anomaly type

SF structure :

4.7. Dataset loading utilities 699

http://jmlr.csail.mit.edu/papers/volume5/lewis04a/
https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

scikit-learn user guide, Release 0.23.2

Samples total 699691
Dimensionality 4
Features discrete (int) or continuous (float)
Targets str, ‘normal.’ or name of the anomaly type

http structure :

Samples total 619052
Dimensionality 3
Features discrete (int) or continuous (float)
Targets str, ‘normal.’ or name of the anomaly type

smtp structure :

Samples total 95373
Dimensionality 3
Features discrete (int) or continuous (float)
Targets str, ‘normal.’ or name of the anomaly type

sklearn.datasets.fetch_kddcup99 will load the kddcup99 dataset; it returns a dictionary-like object with
the feature matrix in the data member and the target values in target. The dataset will be downloaded from the
web if necessary.

California Housing dataset

Data Set Characteristics:

Number of Instances 20640

Number of Attributes 8 numeric, predictive attributes and the target

Attribute Information

• MedInc median income in block

• HouseAge median house age in block

• AveRooms average number of rooms

• AveBedrms average number of bedrooms

• Population block population

• AveOccup average house occupancy

• Latitude house block latitude

• Longitude house block longitude

Missing Attribute Values None

This dataset was obtained from the StatLib repository. http://lib.stat.cmu.edu/datasets/

The target variable is the median house value for California districts.

This dataset was derived from the 1990 U.S. census, using one row per census block group. A block group is the
smallest geographical unit for which the U.S. Census Bureau publishes sample data (a block group typically has a
population of 600 to 3,000 people).

700 Chapter 4. User Guide

http://lib.stat.cmu.edu/datasets/

scikit-learn user guide, Release 0.23.2

It can be downloaded/loaded using the sklearn.datasets.fetch_california_housing function.

References

• Pace, R. Kelley and Ronald Barry, Sparse Spatial Autoregressions, Statistics and Probability Letters, 33
(1997) 291-297

4.7.4 Generated datasets

In addition, scikit-learn includes various random sample generators that can be used to build artificial datasets of
controlled size and complexity.

Generators for classification and clustering

These generators produce a matrix of features and corresponding discrete targets.

Single label

Both make_blobs and make_classification create multiclass datasets by allocating each class one or more
normally-distributed clusters of points. make_blobs provides greater control regarding the centers and standard de-
viations of each cluster, and is used to demonstrate clustering. make_classification specialises in introducing
noise by way of: correlated, redundant and uninformative features; multiple Gaussian clusters per class; and linear
transformations of the feature space.

make_gaussian_quantiles divides a single Gaussian cluster into near-equal-size classes separated by concen-
tric hyperspheres. make_hastie_10_2 generates a similar binary, 10-dimensional problem.

4.7. Dataset loading utilities 701

../auto_examples/datasets/plot_random_dataset.html

scikit-learn user guide, Release 0.23.2

make_circles and make_moons generate 2d binary classification datasets that are challenging to certain algo-
rithms (e.g. centroid-based clustering or linear classification), including optional Gaussian noise. They are useful for
visualisation. make_circles produces Gaussian data with a spherical decision boundary for binary classification,
while make_moons produces two interleaving half circles.

Multilabel

make_multilabel_classification generates random samples with multiple labels, reflecting a bag of words
drawn from a mixture of topics. The number of topics for each document is drawn from a Poisson distribution, and the
topics themselves are drawn from a fixed random distribution. Similarly, the number of words is drawn from Poisson,
with words drawn from a multinomial, where each topic defines a probability distribution over words. Simplifications
with respect to true bag-of-words mixtures include:

• Per-topic word distributions are independently drawn, where in reality all would be affected by a sparse base
distribution, and would be correlated.

• For a document generated from multiple topics, all topics are weighted equally in generating its bag of words.

• Documents without labels words at random, rather than from a base distribution.

Biclustering

make_biclusters(shape, n_clusters, *[, . . .]) Generate an array with constant block diagonal structure
for biclustering.

make_checkerboard(shape, n_clusters, *[, . . .]) Generate an array with block checkerboard structure for
biclustering.

Generators for regression

make_regression produces regression targets as an optionally-sparse random linear combination of random fea-
tures, with noise. Its informative features may be uncorrelated, or low rank (few features account for most of the
variance).

Other regression generators generate functions deterministically from randomized features.
make_sparse_uncorrelated produces a target as a linear combination of four features with fixed coef-
ficients. Others encode explicitly non-linear relations: make_friedman1 is related by polynomial and sine
transforms; make_friedman2 includes feature multiplication and reciprocation; and make_friedman3 is
similar with an arctan transformation on the target.

702 Chapter 4. User Guide

../auto_examples/datasets/plot_random_multilabel_dataset.html

scikit-learn user guide, Release 0.23.2

Generators for manifold learning

make_s_curve([n_samples, noise, random_state]) Generate an S curve dataset.
make_swiss_roll([n_samples, noise, ran-
dom_state])

Generate a swiss roll dataset.

Generators for decomposition

make_low_rank_matrix([n_samples, . . .]) Generate a mostly low rank matrix with bell-shaped sin-
gular values

make_sparse_coded_signal(n_samples, *, . . .) Generate a signal as a sparse combination of dictionary
elements.

make_spd_matrix(n_dim, *[, random_state]) Generate a random symmetric, positive-definite matrix.
make_sparse_spd_matrix([dim, alpha, . . .]) Generate a sparse symmetric definite positive matrix.

4.7.5 Loading other datasets

Sample images

Scikit-learn also embed a couple of sample JPEG images published under Creative Commons license by their authors.
Those images can be useful to test algorithms and pipeline on 2D data.

load_sample_images() Load sample images for image manipulation.
load_sample_image(image_name) Load the numpy array of a single sample image

Warning: The default coding of images is based on the uint8 dtype to spare memory. Often machine learning
algorithms work best if the input is converted to a floating point representation first. Also, if you plan to use
matplotlib.pyplpt.imshow don’t forget to scale to the range 0 - 1 as done in the following example.

Examples:

• Color Quantization using K-Means

Datasets in svmlight / libsvm format

scikit-learn includes utility functions for loading datasets in the svmlight / libsvm format. In this format, each line
takes the form <label> <feature-id>:<feature-value> <feature-id>:<feature-value> ..

4.7. Dataset loading utilities 703

../auto_examples/cluster/plot_color_quantization.html

scikit-learn user guide, Release 0.23.2

.. This format is especially suitable for sparse datasets. In this module, scipy sparse CSR matrices are used for X and
numpy arrays are used for y.

You may load a dataset like as follows:

>>> from sklearn.datasets import load_svmlight_file
>>> X_train, y_train = load_svmlight_file("/path/to/train_dataset.txt")
...

You may also load two (or more) datasets at once:

>>> X_train, y_train, X_test, y_test = load_svmlight_files(
... ("/path/to/train_dataset.txt", "/path/to/test_dataset.txt"))
...

In this case, X_train and X_test are guaranteed to have the same number of features. Another way to achieve the
same result is to fix the number of features:

>>> X_test, y_test = load_svmlight_file(
... "/path/to/test_dataset.txt", n_features=X_train.shape[1])
...

Related links:

Public datasets in svmlight / libsvm format: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets

Faster API-compatible implementation: https://github.com/mblondel/svmlight-loader

Downloading datasets from the openml.org repository

openml.org is a public repository for machine learning data and experiments, that allows everybody to upload open
datasets.

The sklearn.datasets package is able to download datasets from the repository using the function sklearn.
datasets.fetch_openml.

For example, to download a dataset of gene expressions in mice brains:

>>> from sklearn.datasets import fetch_openml
>>> mice = fetch_openml(name='miceprotein', version=4)

To fully specify a dataset, you need to provide a name and a version, though the version is optional, see Dataset
Versions below. The dataset contains a total of 1080 examples belonging to 8 different classes:

>>> mice.data.shape
(1080, 77)
>>> mice.target.shape
(1080,)
>>> np.unique(mice.target)
array(['c-CS-m', 'c-CS-s', 'c-SC-m', 'c-SC-s', 't-CS-m', 't-CS-s', 't-SC-m', 't-SC-s
→˓'], dtype=object)

You can get more information on the dataset by looking at the DESCR and details attributes:

704 Chapter 4. User Guide

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
https://github.com/mblondel/svmlight-loader
https://openml.org

scikit-learn user guide, Release 0.23.2

>>> print(mice.DESCR)

Author: Clara Higuera, Katheleen J. Gardiner, Krzysztof J. Cios

Source: [UCI](https://archive.ics.uci.edu/ml/datasets/Mice+Protein+Expression) -
→˓2015

Please cite: Higuera C, Gardiner KJ, Cios KJ (2015) Self-Organizing
Feature Maps Identify Proteins Critical to Learning in a Mouse Model of Down
Syndrome. PLoS ONE 10(6): e0129126...

>>> mice.details
{'id': '40966', 'name': 'MiceProtein', 'version': '4', 'format': 'ARFF',
'upload_date': '2017-11-08T16:00:15', 'licence': 'Public',
'url': 'https://www.openml.org/data/v1/download/17928620/MiceProtein.arff',
'file_id': '17928620', 'default_target_attribute': 'class',
'row_id_attribute': 'MouseID',
'ignore_attribute': ['Genotype', 'Treatment', 'Behavior'],
'tag': ['OpenML-CC18', 'study_135', 'study_98', 'study_99'],
'visibility': 'public', 'status': 'active',
'md5_checksum': '3c479a6885bfa0438971388283a1ce32'}

The DESCR contains a free-text description of the data, while details contains a dictionary of meta-data stored
by openml, like the dataset id. For more details, see the OpenML documentation The data_id of the mice protein
dataset is 40966, and you can use this (or the name) to get more information on the dataset on the openml website:

>>> mice.url
'https://www.openml.org/d/40966'

The data_id also uniquely identifies a dataset from OpenML:

>>> mice = fetch_openml(data_id=40966)
>>> mice.details
{'id': '4550', 'name': 'MiceProtein', 'version': '1', 'format': 'ARFF',
'creator': ...,
'upload_date': '2016-02-17T14:32:49', 'licence': 'Public', 'url':
'https://www.openml.org/data/v1/download/1804243/MiceProtein.ARFF', 'file_id':
'1804243', 'default_target_attribute': 'class', 'citation': 'Higuera C,
Gardiner KJ, Cios KJ (2015) Self-Organizing Feature Maps Identify Proteins
Critical to Learning in a Mouse Model of Down Syndrome. PLoS ONE 10(6):
e0129126. [Web Link] journal.pone.0129126', 'tag': ['OpenML100', 'study_14',
'study_34'], 'visibility': 'public', 'status': 'active', 'md5_checksum':
'3c479a6885bfa0438971388283a1ce32'}

Dataset Versions

A dataset is uniquely specified by its data_id, but not necessarily by its name. Several different “versions” of a
dataset with the same name can exist which can contain entirely different datasets. If a particular version of a dataset
has been found to contain significant issues, it might be deactivated. Using a name to specify a dataset will yield the
earliest version of a dataset that is still active. That means that fetch_openml(name="miceprotein") can
yield different results at different times if earlier versions become inactive. You can see that the dataset with data_id
40966 that we fetched above is the version 1 of the “miceprotein” dataset:

>>> mice.details['version']
'1'

In fact, this dataset only has one version. The iris dataset on the other hand has multiple versions:

4.7. Dataset loading utilities 705

https://docs.openml.org/#data

scikit-learn user guide, Release 0.23.2

>>> iris = fetch_openml(name="iris")
>>> iris.details['version']
'1'
>>> iris.details['id']
'61'

>>> iris_61 = fetch_openml(data_id=61)
>>> iris_61.details['version']
'1'
>>> iris_61.details['id']
'61'

>>> iris_969 = fetch_openml(data_id=969)
>>> iris_969.details['version']
'3'
>>> iris_969.details['id']
'969'

Specifying the dataset by the name “iris” yields the lowest version, version 1, with the data_id 61. To make sure
you always get this exact dataset, it is safest to specify it by the dataset data_id. The other dataset, with data_id
969, is version 3 (version 2 has become inactive), and contains a binarized version of the data:

>>> np.unique(iris_969.target)
array(['N', 'P'], dtype=object)

You can also specify both the name and the version, which also uniquely identifies the dataset:

>>> iris_version_3 = fetch_openml(name="iris", version=3)
>>> iris_version_3.details['version']
'3'
>>> iris_version_3.details['id']
'969'

References:

• Vanschoren, van Rijn, Bischl and Torgo “OpenML: networked science in machine learning”, ACM SIGKDD
Explorations Newsletter, 15(2), 49-60, 2014.

Loading from external datasets

scikit-learn works on any numeric data stored as numpy arrays or scipy sparse matrices. Other types that are convertible
to numeric arrays such as pandas DataFrame are also acceptable.

Here are some recommended ways to load standard columnar data into a format usable by scikit-learn:

• pandas.io provides tools to read data from common formats including CSV, Excel, JSON and SQL. DataFrames
may also be constructed from lists of tuples or dicts. Pandas handles heterogeneous data smoothly and provides
tools for manipulation and conversion into a numeric array suitable for scikit-learn.

• scipy.io specializes in binary formats often used in scientific computing context such as .mat and .arff

• numpy/routines.io for standard loading of columnar data into numpy arrays

• scikit-learn’s datasets.load_svmlight_file for the svmlight or libSVM sparse format

706 Chapter 4. User Guide

https://arxiv.org/pdf/1407.7722.pdf
https://pandas.pydata.org/pandas-docs/stable/io.html
https://docs.scipy.org/doc/scipy/reference/io.html
https://docs.scipy.org/doc/numpy/reference/routines.io.html

scikit-learn user guide, Release 0.23.2

• scikit-learn’s datasets.load_files for directories of text files where the name of each directory is the
name of each category and each file inside of each directory corresponds to one sample from that category

For some miscellaneous data such as images, videos, and audio, you may wish to refer to:

• skimage.io or Imageio for loading images and videos into numpy arrays

• scipy.io.wavfile.read for reading WAV files into a numpy array

Categorical (or nominal) features stored as strings (common in pandas DataFrames) will need converting to
numerical features using sklearn.preprocessing.OneHotEncoder or sklearn.preprocessing.
OrdinalEncoder or similar. See Preprocessing data.

Note: if you manage your own numerical data it is recommended to use an optimized file format such as HDF5 to
reduce data load times. Various libraries such as H5Py, PyTables and pandas provides a Python interface for reading
and writing data in that format.

4.8 Computing with scikit-learn

4.8.1 Strategies to scale computationally: bigger data

For some applications the amount of examples, features (or both) and/or the speed at which they need to be processed
are challenging for traditional approaches. In these cases scikit-learn has a number of options you can consider to
make your system scale.

Scaling with instances using out-of-core learning

Out-of-core (or “external memory”) learning is a technique used to learn from data that cannot fit in a computer’s main
memory (RAM).

Here is a sketch of a system designed to achieve this goal:

1. a way to stream instances

2. a way to extract features from instances

3. an incremental algorithm

Streaming instances

Basically, 1. may be a reader that yields instances from files on a hard drive, a database, from a network stream etc.
However, details on how to achieve this are beyond the scope of this documentation.

Extracting features

2. could be any relevant way to extract features among the different feature extraction methods supported by scikit-
learn. However, when working with data that needs vectorization and where the set of features or values is not
known in advance one should take explicit care. A good example is text classification where unknown terms are
likely to be found during training. It is possible to use a stateful vectorizer if making multiple passes over the data
is reasonable from an application point of view. Otherwise, one can turn up the difficulty by using a stateless feature
extractor. Currently the preferred way to do this is to use the so-called hashing trick as implemented by sklearn.
feature_extraction.FeatureHasher for datasets with categorical variables represented as list of Python
dicts or sklearn.feature_extraction.text.HashingVectorizer for text documents.

4.8. Computing with scikit-learn 707

https://scikit-image.org/docs/dev/api/skimage.io.html
https://imageio.readthedocs.io/en/latest/userapi.html
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.io.wavfile.read.html

scikit-learn user guide, Release 0.23.2

Incremental learning

Finally, for 3. we have a number of options inside scikit-learn. Although not all algorithms can learn incrementally
(i.e. without seeing all the instances at once), all estimators implementing the partial_fit API are candidates.
Actually, the ability to learn incrementally from a mini-batch of instances (sometimes called “online learning”) is key
to out-of-core learning as it guarantees that at any given time there will be only a small amount of instances in the
main memory. Choosing a good size for the mini-batch that balances relevancy and memory footprint could involve
some tuning1.

Here is a list of incremental estimators for different tasks:

• Classification

– sklearn.naive_bayes.MultinomialNB

– sklearn.naive_bayes.BernoulliNB

– sklearn.linear_model.Perceptron

– sklearn.linear_model.SGDClassifier

– sklearn.linear_model.PassiveAggressiveClassifier

– sklearn.neural_network.MLPClassifier

• Regression

– sklearn.linear_model.SGDRegressor

– sklearn.linear_model.PassiveAggressiveRegressor

– sklearn.neural_network.MLPRegressor

• Clustering

– sklearn.cluster.MiniBatchKMeans

– sklearn.cluster.Birch

• Decomposition / feature Extraction

– sklearn.decomposition.MiniBatchDictionaryLearning

– sklearn.decomposition.IncrementalPCA

– sklearn.decomposition.LatentDirichletAllocation

• Preprocessing

– sklearn.preprocessing.StandardScaler

– sklearn.preprocessing.MinMaxScaler

– sklearn.preprocessing.MaxAbsScaler

For classification, a somewhat important thing to note is that although a stateless feature extraction routine may be
able to cope with new/unseen attributes, the incremental learner itself may be unable to cope with new/unseen targets
classes. In this case you have to pass all the possible classes to the first partial_fit call using the classes=
parameter.

Another aspect to consider when choosing a proper algorithm is that not all of them put the same importance on each
example over time. Namely, the Perceptron is still sensitive to badly labeled examples even after many examples
whereas the SGD* and PassiveAggressive* families are more robust to this kind of artifacts. Conversely, the

1 Depending on the algorithm the mini-batch size can influence results or not. SGD*, PassiveAggressive*, and discrete NaiveBayes are truly
online and are not affected by batch size. Conversely, MiniBatchKMeans convergence rate is affected by the batch size. Also, its memory footprint
can vary dramatically with batch size.

708 Chapter 4. User Guide

scikit-learn user guide, Release 0.23.2

latter also tend to give less importance to remarkably different, yet properly labeled examples when they come late in
the stream as their learning rate decreases over time.

Examples

Finally, we have a full-fledged example of Out-of-core classification of text documents. It is aimed at providing a
starting point for people wanting to build out-of-core learning systems and demonstrates most of the notions discussed
above.

Furthermore, it also shows the evolution of the performance of different algorithms with the number of processed
examples.

Now looking at the computation time of the different parts, we see that the vectorization is much more expensive
than learning itself. From the different algorithms, MultinomialNB is the most expensive, but its overhead can be
mitigated by increasing the size of the mini-batches (exercise: change minibatch_size to 100 and 10000 in the
program and compare).

4.8. Computing with scikit-learn 709

../auto_examples/applications/plot_out_of_core_classification.html

scikit-learn user guide, Release 0.23.2

Notes

4.8.2 Computational Performance

For some applications the performance (mainly latency and throughput at prediction time) of estimators is crucial. It
may also be of interest to consider the training throughput but this is often less important in a production setup (where
it often takes place offline).

We will review here the orders of magnitude you can expect from a number of scikit-learn estimators in different
contexts and provide some tips and tricks for overcoming performance bottlenecks.

Prediction latency is measured as the elapsed time necessary to make a prediction (e.g. in micro-seconds). Latency
is often viewed as a distribution and operations engineers often focus on the latency at a given percentile of this
distribution (e.g. the 90 percentile).

Prediction throughput is defined as the number of predictions the software can deliver in a given amount of time (e.g.
in predictions per second).

An important aspect of performance optimization is also that it can hurt prediction accuracy. Indeed, simpler models
(e.g. linear instead of non-linear, or with fewer parameters) often run faster but are not always able to take into account
the same exact properties of the data as more complex ones.

Prediction Latency

One of the most straight-forward concerns one may have when using/choosing a machine learning toolkit is the latency
at which predictions can be made in a production environment.

The main factors that influence the prediction latency are

1. Number of features

710 Chapter 4. User Guide

../auto_examples/applications/plot_out_of_core_classification.html

scikit-learn user guide, Release 0.23.2

2. Input data representation and sparsity

3. Model complexity

4. Feature extraction

A last major parameter is also the possibility to do predictions in bulk or one-at-a-time mode.

Bulk versus Atomic mode

In general doing predictions in bulk (many instances at the same time) is more efficient for a number of reasons
(branching predictability, CPU cache, linear algebra libraries optimizations etc.). Here we see on a setting with few
features that independently of estimator choice the bulk mode is always faster, and for some of them by 1 to 2 orders
of magnitude:

4.8. Computing with scikit-learn 711

../auto_examples/applications/plot_prediction_latency.html

scikit-learn user guide, Release 0.23.2

To benchmark different estimators for your case you can simply change the n_features parameter in this example:
Prediction Latency. This should give you an estimate of the order of magnitude of the prediction latency.

Configuring Scikit-learn for reduced validation overhead

Scikit-learn does some validation on data that increases the overhead per call to predict and similar functions.
In particular, checking that features are finite (not NaN or infinite) involves a full pass over the data. If you en-
sure that your data is acceptable, you may suppress checking for finiteness by setting the environment variable
SKLEARN_ASSUME_FINITE to a non-empty string before importing scikit-learn, or configure it in Python with
sklearn.set_config. For more control than these global settings, a config_context allows you to set this
configuration within a specified context:

>>> import sklearn
>>> with sklearn.config_context(assume_finite=True):
... pass # do learning/prediction here with reduced validation

Note that this will affect all uses of sklearn.utils.assert_all_finite within the context.

Influence of the Number of Features

Obviously when the number of features increases so does the memory consumption of each example. Indeed, for a
matrix of 𝑀 instances with 𝑁 features, the space complexity is in 𝑂(𝑁𝑀). From a computing perspective it also
means that the number of basic operations (e.g., multiplications for vector-matrix products in linear models) increases
too. Here is a graph of the evolution of the prediction latency with the number of features:

712 Chapter 4. User Guide

../auto_examples/applications/plot_prediction_latency.html

scikit-learn user guide, Release 0.23.2

Overall you can expect the prediction time to increase at least linearly with the number of features (non-linear cases
can happen depending on the global memory footprint and estimator).

Influence of the Input Data Representation

Scipy provides sparse matrix data structures which are optimized for storing sparse data. The main feature of sparse
formats is that you don’t store zeros so if your data is sparse then you use much less memory. A non-zero value in
a sparse (CSR or CSC) representation will only take on average one 32bit integer position + the 64 bit floating point
value + an additional 32bit per row or column in the matrix. Using sparse input on a dense (or sparse) linear model
can speedup prediction by quite a bit as only the non zero valued features impact the dot product and thus the model
predictions. Hence if you have 100 non zeros in 1e6 dimensional space, you only need 100 multiply and add operation
instead of 1e6.

Calculation over a dense representation, however, may leverage highly optimised vector operations and multithreading
in BLAS, and tends to result in fewer CPU cache misses. So the sparsity should typically be quite high (10% non-zeros
max, to be checked depending on the hardware) for the sparse input representation to be faster than the dense input
representation on a machine with many CPUs and an optimized BLAS implementation.

Here is sample code to test the sparsity of your input:

def sparsity_ratio(X):
return 1.0 - np.count_nonzero(X) / float(X.shape[0] * X.shape[1])

print("input sparsity ratio:", sparsity_ratio(X))

As a rule of thumb you can consider that if the sparsity ratio is greater than 90% you can probably benefit from sparse
formats. Check Scipy’s sparse matrix formats documentation for more information on how to build (or convert your
data to) sparse matrix formats. Most of the time the CSR and CSC formats work best.

4.8. Computing with scikit-learn 713

../auto_examples/applications/plot_prediction_latency.html
https://docs.scipy.org/doc/scipy/reference/sparse.html
https://docs.scipy.org/doc/scipy/reference/sparse.html

scikit-learn user guide, Release 0.23.2

Influence of the Model Complexity

Generally speaking, when model complexity increases, predictive power and latency are supposed to increase. In-
creasing predictive power is usually interesting, but for many applications we would better not increase prediction
latency too much. We will now review this idea for different families of supervised models.

For sklearn.linear_model (e.g. Lasso, ElasticNet, SGDClassifier/Regressor, Ridge & RidgeClassifier, Pas-
siveAggressiveClassifier/Regressor, LinearSVC, LogisticRegression. . .) the decision function that is applied at pre-
diction time is the same (a dot product) , so latency should be equivalent.

Here is an example using sklearn.linear_model.SGDClassifier with the elasticnet penalty. The
regularization strength is globally controlled by the alpha parameter. With a sufficiently high alpha, one can then
increase the l1_ratio parameter of elasticnet to enforce various levels of sparsity in the model coefficients.
Higher sparsity here is interpreted as less model complexity as we need fewer coefficients to describe it fully. Of
course sparsity influences in turn the prediction time as the sparse dot-product takes time roughly proportional to the
number of non-zero coefficients.

For the sklearn.svm family of algorithms with a non-linear kernel, the latency is tied to the number of support
vectors (the fewer the faster). Latency and throughput should (asymptotically) grow linearly with the number of
support vectors in a SVC or SVR model. The kernel will also influence the latency as it is used to compute the
projection of the input vector once per support vector. In the following graph the nu parameter of sklearn.svm.
NuSVR was used to influence the number of support vectors.

714 Chapter 4. User Guide

../auto_examples/applications/plot_model_complexity_influence.html

scikit-learn user guide, Release 0.23.2

For sklearn.ensemble of trees (e.g. RandomForest, GBT, ExtraTrees etc) the number of trees and their
depth play the most important role. Latency and throughput should scale linearly with the number of trees. In
this case we used directly the n_estimators parameter of sklearn.ensemble.gradient_boosting.
GradientBoostingRegressor.

In any case be warned that decreasing model complexity can hurt accuracy as mentioned above. For instance a non-
linearly separable problem can be handled with a speedy linear model but prediction power will very likely suffer in
the process.

Feature Extraction Latency

Most scikit-learn models are usually pretty fast as they are implemented either with compiled Cython extensions or
optimized computing libraries. On the other hand, in many real world applications the feature extraction process (i.e.

4.8. Computing with scikit-learn 715

../auto_examples/applications/plot_model_complexity_influence.html
../auto_examples/applications/plot_model_complexity_influence.html

scikit-learn user guide, Release 0.23.2

turning raw data like database rows or network packets into numpy arrays) governs the overall prediction time. For
example on the Reuters text classification task the whole preparation (reading and parsing SGML files, tokenizing the
text and hashing it into a common vector space) is taking 100 to 500 times more time than the actual prediction code,
depending on the chosen model.

In many cases it is thus recommended to carefully time and profile your feature extraction code as it may be a good
place to start optimizing when your overall latency is too slow for your application.

Prediction Throughput

Another important metric to care about when sizing production systems is the throughput i.e. the number of predictions
you can make in a given amount of time. Here is a benchmark from the Prediction Latency example that measures this
quantity for a number of estimators on synthetic data:

716 Chapter 4. User Guide

../auto_examples/applications/plot_out_of_core_classification.html

scikit-learn user guide, Release 0.23.2

These throughputs are achieved on a single process. An obvious way to increase the throughput of your application
is to spawn additional instances (usually processes in Python because of the GIL) that share the same model. One
might also add machines to spread the load. A detailed explanation on how to achieve this is beyond the scope of this
documentation though.

Tips and Tricks

Linear algebra libraries

As scikit-learn relies heavily on Numpy/Scipy and linear algebra in general it makes sense to take explicit care of the
versions of these libraries. Basically, you ought to make sure that Numpy is built using an optimized BLAS / LAPACK
library.

Not all models benefit from optimized BLAS and Lapack implementations. For instance models based on (random-
ized) decision trees typically do not rely on BLAS calls in their inner loops, nor do kernel SVMs (SVC, SVR, NuSVC,
NuSVR). On the other hand a linear model implemented with a BLAS DGEMM call (via numpy.dot) will typically
benefit hugely from a tuned BLAS implementation and lead to orders of magnitude speedup over a non-optimized
BLAS.

You can display the BLAS / LAPACK implementation used by your NumPy / SciPy / scikit-learn install with the
following commands:

from numpy.distutils.system_info import get_info
print(get_info('blas_opt'))
print(get_info('lapack_opt'))

Optimized BLAS / LAPACK implementations include:

• Atlas (need hardware specific tuning by rebuilding on the target machine)

• OpenBLAS

4.8. Computing with scikit-learn 717

../auto_examples/applications/plot_prediction_latency.html
https://wiki.python.org/moin/GlobalInterpreterLock
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
https://en.wikipedia.org/wiki/LAPACK

scikit-learn user guide, Release 0.23.2

• MKL

• Apple Accelerate and vecLib frameworks (OSX only)

More information can be found on the Scipy install page and in this blog post from Daniel Nouri which has some nice
step by step install instructions for Debian / Ubuntu.

Limiting Working Memory

Some calculations when implemented using standard numpy vectorized operations involve using a large amount of
temporary memory. This may potentially exhaust system memory. Where computations can be performed in fixed-
memory chunks, we attempt to do so, and allow the user to hint at the maximum size of this working memory (de-
faulting to 1GB) using sklearn.set_config or config_context. The following suggests to limit temporary
working memory to 128 MiB:

>>> import sklearn
>>> with sklearn.config_context(working_memory=128):
... pass # do chunked work here

An example of a chunked operation adhering to this setting is metric.pairwise_distances_chunked, which
facilitates computing row-wise reductions of a pairwise distance matrix.

Model Compression

Model compression in scikit-learn only concerns linear models for the moment. In this context it means that we want
to control the model sparsity (i.e. the number of non-zero coordinates in the model vectors). It is generally a good
idea to combine model sparsity with sparse input data representation.

Here is sample code that illustrates the use of the sparsify() method:

clf = SGDRegressor(penalty='elasticnet', l1_ratio=0.25)
clf.fit(X_train, y_train).sparsify()
clf.predict(X_test)

In this example we prefer the elasticnet penalty as it is often a good compromise between model compactness
and prediction power. One can also further tune the l1_ratio parameter (in combination with the regularization
strength alpha) to control this tradeoff.

A typical benchmark on synthetic data yields a >30% decrease in latency when both the model and input are sparse
(with 0.000024 and 0.027400 non-zero coefficients ratio respectively). Your mileage may vary depending on the
sparsity and size of your data and model. Furthermore, sparsifying can be very useful to reduce the memory usage of
predictive models deployed on production servers.

Model Reshaping

Model reshaping consists in selecting only a portion of the available features to fit a model. In other words, if a
model discards features during the learning phase we can then strip those from the input. This has several benefits.
Firstly it reduces memory (and therefore time) overhead of the model itself. It also allows to discard explicit feature
selection components in a pipeline once we know which features to keep from a previous run. Finally, it can help
reduce processing time and I/O usage upstream in the data access and feature extraction layers by not collecting and
building features that are discarded by the model. For instance if the raw data come from a database, it can make it
possible to write simpler and faster queries or reduce I/O usage by making the queries return lighter records. At the
moment, reshaping needs to be performed manually in scikit-learn. In the case of sparse input (particularly in CSR
format), it is generally sufficient to not generate the relevant features, leaving their columns empty.

718 Chapter 4. User Guide

https://docs.scipy.org/doc/numpy/user/install.html
http://danielnouri.org/notes/2012/12/19/libblas-and-liblapack-issues-and-speed,-with-scipy-and-ubuntu/
https://github.com/scikit-learn/scikit-learn/blob/master/benchmarks/bench_sparsify.py

scikit-learn user guide, Release 0.23.2

Links

• scikit-learn developer performance documentation

• Scipy sparse matrix formats documentation

4.8.3 Parallelism, resource management, and configuration

Parallelism

Some scikit-learn estimators and utilities can parallelize costly operations using multiple CPU cores, thanks to the
following components:

• via the joblib library. In this case the number of threads or processes can be controlled with the n_jobs
parameter.

• via OpenMP, used in C or Cython code.

In addition, some of the numpy routines that are used internally by scikit-learn may also be parallelized if numpy is
installed with specific numerical libraries such as MKL, OpenBLAS, or BLIS.

We describe these 3 scenarios in the following subsections.

Joblib-based parallelism

When the underlying implementation uses joblib, the number of workers (threads or processes) that are spawned in
parallel can be controlled via the n_jobs parameter.

Note: Where (and how) parallelization happens in the estimators is currently poorly documented. Please help us by
improving our docs and tackle issue 14228!

Joblib is able to support both multi-processing and multi-threading. Whether joblib chooses to spawn a thread or a
process depends on the backend that it’s using.

Scikit-learn generally relies on the loky backend, which is joblib’s default backend. Loky is a multi-processing back-
end. When doing multi-processing, in order to avoid duplicating the memory in each process (which isn’t reasonable
with big datasets), joblib will create a memmap that all processes can share, when the data is bigger than 1MB.

In some specific cases (when the code that is run in parallel releases the GIL), scikit-learn will indicate to joblib
that a multi-threading backend is preferable.

As a user, you may control the backend that joblib will use (regardless of what scikit-learn recommends) by using a
context manager:

from joblib import parallel_backend

with parallel_backend('threading', n_jobs=2):
Your scikit-learn code here

Please refer to the joblib’s docs for more details.

In practice, whether parallelism is helpful at improving runtime depends on many factors. It is usually a good idea
to experiment rather than assuming that increasing the number of workers is always a good thing. In some cases
it can be highly detrimental to performance to run multiple copies of some estimators or functions in parallel (see
oversubscription below).

4.8. Computing with scikit-learn 719

https://docs.scipy.org/doc/scipy/reference/sparse.html
https://joblib.readthedocs.io/en/latest/
https://github.com/scikit-learn/scikit-learn/issues/14228
https://docs.scipy.org/doc/numpy/reference/generated/numpy.memmap.html
https://joblib.readthedocs.io/en/latest/parallel.html#thread-based-parallelism-vs-process-based-parallelism

scikit-learn user guide, Release 0.23.2

OpenMP-based parallelism

OpenMP is used to parallelize code written in Cython or C, relying on multi-threading exclusively. By default (and
unless joblib is trying to avoid oversubscription), the implementation will use as many threads as possible.

You can control the exact number of threads that are used via the OMP_NUM_THREADS environment variable:

OMP_NUM_THREADS=4 python my_script.py

Parallel Numpy routines from numerical libraries

Scikit-learn relies heavily on NumPy and SciPy, which internally call multi-threaded linear algebra routines imple-
mented in libraries such as MKL, OpenBLAS or BLIS.

The number of threads used by the OpenBLAS, MKL or BLIS libraries can be set via the MKL_NUM_THREADS,
OPENBLAS_NUM_THREADS, and BLIS_NUM_THREADS environment variables.

Please note that scikit-learn has no direct control over these implementations. Scikit-learn solely relies on Numpy and
Scipy.

Note: At the time of writing (2019), NumPy and SciPy packages distributed on pypi.org (used by pip) and on
the conda-forge channel are linked with OpenBLAS, while conda packages shipped on the “defaults” channel from
anaconda.org are linked by default with MKL.

Oversubscription: spawning too many threads

It is generally recommended to avoid using significantly more processes or threads than the number of CPUs on a
machine. Over-subscription happens when a program is running too many threads at the same time.

Suppose you have a machine with 8 CPUs. Consider a case where you’re running a GridSearchCV (parallelized
with joblib) with n_jobs=8 over a HistGradientBoostingClassifier (parallelized with OpenMP). Each
instance of HistGradientBoostingClassifier will spawn 8 threads (since you have 8 CPUs). That’s a total
of 8 * 8 = 64 threads, which leads to oversubscription of physical CPU resources and to scheduling overhead.

Oversubscription can arise in the exact same fashion with parallelized routines from MKL, OpenBLAS or BLIS that
are nested in joblib calls.

Starting from joblib >= 0.14, when the loky backend is used (which is the default), joblib will tell its child
processes to limit the number of threads they can use, so as to avoid oversubscription. In practice the heuristic
that joblib uses is to tell the processes to use max_threads = n_cpus // n_jobs, via their corresponding
environment variable. Back to our example from above, since the joblib backend of GridSearchCV is loky, each
process will only be able to use 1 thread instead of 8, thus mitigating the oversubscription issue.

Note that:

• Manually setting one of the environment variables (OMP_NUM_THREADS, MKL_NUM_THREADS,
OPENBLAS_NUM_THREADS, or BLIS_NUM_THREADS) will take precedence over what joblib tries to do.
The total number of threads will be n_jobs * <LIB>_NUM_THREADS. Note that setting this limit will also
impact your computations in the main process, which will only use <LIB>_NUM_THREADS. Joblib exposes a
context manager for finer control over the number of threads in its workers (see joblib docs linked below).

• Joblib is currently unable to avoid oversubscription in a multi-threading context. It can only do so with the
loky backend (which spawns processes).

You will find additional details about joblib mitigation of oversubscription in joblib documentation.

720 Chapter 4. User Guide

https://joblib.readthedocs.io/en/latest/parallel.html#avoiding-over-subscription-of-cpu-ressources

scikit-learn user guide, Release 0.23.2

Configuration switches

Python runtime

sklearn.set_config controls the following behaviors:

assume_finite used to skip validation, which enables faster computations but may lead to segmentation
faults if the data contains NaNs.

working_memory the optimal size of temporary arrays used by some algorithms.

Environment variables

These environment variables should be set before importing scikit-learn.

SKLEARN_SITE_JOBLIB When this environment variable is set to a non zero value, scikit-learn uses
the site joblib rather than its vendored version. Consequently, joblib must be installed for scikit-learn
to run. Note that using the site joblib is at your own risks: the versions of scikit-learn and joblib
need to be compatible. Currently, joblib 0.11+ is supported. In addition, dumps from joblib.Memory
might be incompatible, and you might loose some caches and have to redownload some datasets.

Deprecated since version 0.21: As of version 0.21 this parameter has no effect, vendored joblib was
removed and site joblib is always used.

SKLEARN_ASSUME_FINITE Sets the default value for the assume_finite argument of
sklearn.set_config.

SKLEARN_WORKING_MEMORY Sets the default value for the working_memory argument of
sklearn.set_config.

SKLEARN_SEED Sets the seed of the global random generator when running the tests, for reproducibil-
ity.

SKLEARN_SKIP_NETWORK_TESTS When this environment variable is set to a non zero value, the
tests that need network access are skipped.

4.8. Computing with scikit-learn 721

scikit-learn user guide, Release 0.23.2

722 Chapter 4. User Guide

CHAPTER

FIVE

GLOSSARY OF COMMON TERMS AND API ELEMENTS

This glossary hopes to definitively represent the tacit and explicit conventions applied in Scikit-learn and its API, while
providing a reference for users and contributors. It aims to describe the concepts and either detail their corresponding
API or link to other relevant parts of the documentation which do so. By linking to glossary entries from the API
Reference and User Guide, we may minimize redundancy and inconsistency.

We begin by listing general concepts (and any that didn’t fit elsewhere), but more specific sets of related terms are listed
below: Class APIs and Estimator Types, Target Types, Methods, Parameters, Attributes, Data and sample properties.

5.1 General Concepts

1d

1d array One-dimensional array. A NumPy array whose .shape has length 1. A vector.

2d

2d array Two-dimensional array. A NumPy array whose .shape has length 2. Often represents a matrix.

API Refers to both the specific interfaces for estimators implemented in Scikit-learn and the generalized conventions
across types of estimators as described in this glossary and overviewed in the contributor documentation.

The specific interfaces that constitute Scikit-learn’s public API are largely documented in API Reference. How-
ever, we less formally consider anything as public API if none of the identifiers required to access it begins with
_. We generally try to maintain backwards compatibility for all objects in the public API.

Private API, including functions, modules and methods beginning _ are not assured to be stable.

array-like The most common data format for input to Scikit-learn estimators and functions, array-like is any type
object for which numpy.asarray will produce an array of appropriate shape (usually 1 or 2-dimensional) of
appropriate dtype (usually numeric).

This includes:

• a numpy array

• a list of numbers

• a list of length-k lists of numbers for some fixed length k

• a pandas.DataFrame with all columns numeric

• a numeric pandas.Series

It excludes:

• a sparse matrix

• an iterator

723

https://numpy.org/doc/stable/reference/generated/numpy.asarray.html#numpy.asarray
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series

scikit-learn user guide, Release 0.23.2

• a generator

Note that output from scikit-learn estimators and functions (e.g. predictions) should generally be arrays or sparse
matrices, or lists thereof (as in multi-output tree.DecisionTreeClassifier’s predict_proba). An
estimator where predict() returns a list or a pandas.Series is not valid.

attribute

attributes We mostly use attribute to refer to how model information is stored on an estimator during fitting. Any pub-
lic attribute stored on an estimator instance is required to begin with an alphabetic character and end in a single
underscore if it is set in fit or partial_fit. These are what is documented under an estimator’s Attributes documen-
tation. The information stored in attributes is usually either: sufficient statistics used for prediction or transfor-
mation; transductive outputs such as labels_ or embedding_; or diagnostic data, such as feature_importances_.
Common attributes are listed below.

A public attribute may have the same name as a constructor parameter, with a _ appended. This is used to
store a validated or estimated version of the user’s input. For example, decomposition.PCA is constructed
with an n_components parameter. From this, together with other parameters and the data, PCA estimates the
attribute n_components_.

Further private attributes used in prediction/transformation/etc. may also be set when fitting. These begin with
a single underscore and are not assured to be stable for public access.

A public attribute on an estimator instance that does not end in an underscore should be the stored, unmodified
value of an __init__ parameter of the same name. Because of this equivalence, these are documented under
an estimator’s Parameters documentation.

backwards compatibility We generally try to maintain backward compatibility (i.e. interfaces and behaviors may be
extended but not changed or removed) from release to release but this comes with some exceptions:

Public API only The behavior of objects accessed through private identifiers (those beginning _) may be
changed arbitrarily between versions.

As documented We will generally assume that the users have adhered to the documented parameter types and
ranges. If the documentation asks for a list and the user gives a tuple, we do not assure consistent behavior
from version to version.

Deprecation Behaviors may change following a deprecation period (usually two releases long). Warnings are
issued using Python’s warnings module.

Keyword arguments We may sometimes assume that all optional parameters (other than X and y to fit and
similar methods) are passed as keyword arguments only and may be positionally reordered.

Bug fixes and enhancements Bug fixes and – less often – enhancements may change the behavior of estima-
tors, including the predictions of an estimator trained on the same data and random_state. When this
happens, we attempt to note it clearly in the changelog.

Serialization We make no assurances that pickling an estimator in one version will allow it to be unpickled
to an equivalent model in the subsequent version. (For estimators in the sklearn package, we issue a
warning when this unpickling is attempted, even if it may happen to work.) See Security & maintainability
limitations.

utils.estimator_checks.check_estimator We provide limited backwards compatibility assur-
ances for the estimator checks: we may add extra requirements on estimators tested with this function,
usually when these were informally assumed but not formally tested.

Despite this informal contract with our users, the software is provided as is, as stated in the license. When a
release inadvertently introduces changes that are not backward compatible, these are known as software regres-
sions.

callable A function, class or an object which implements the __call__ method; anything that returns True when
the argument of callable().

724 Chapter 5. Glossary of Common Terms and API Elements

https://docs.python.org/3/library/warnings.html#module-warnings
https://docs.python.org/3/library/functions.html#callable

scikit-learn user guide, Release 0.23.2

categorical feature A categorical or nominal feature is one that has a finite set of discrete values across the popu-
lation of data. These are commonly represented as columns of integers or strings. Strings will be rejected by
most scikit-learn estimators, and integers will be treated as ordinal or count-valued. For the use with most es-
timators, categorical variables should be one-hot encoded. Notable exceptions include tree-based models such
as random forests and gradient boosting models that often work better and faster with integer-coded categor-
ical variables. OrdinalEncoder helps encoding string-valued categorical features as ordinal integers, and
OneHotEncoder can be used to one-hot encode categorical features. See also Encoding categorical features
and the categorical-encoding package for tools related to encoding categorical features.

clone

cloned To copy an estimator instance and create a new one with identical parameters, but without any fitted attributes,
using clone.

When fit is called, a meta-estimator usually clones a wrapped estimator instance before fitting the cloned
instance. (Exceptions, for legacy reasons, include Pipeline and FeatureUnion.)

common tests This refers to the tests run on almost every estimator class in Scikit-learn to check they comply
with basic API conventions. They are available for external use through utils.estimator_checks.
check_estimator, with most of the implementation in sklearn/utils/estimator_checks.py.

Note: Some exceptions to the common testing regime are currently hard-coded into the library, but we hope to
replace this by marking exceptional behaviours on the estimator using semantic estimator tags.

deprecation We use deprecation to slowly violate our backwards compatibility assurances, usually to to:

• change the default value of a parameter; or

• remove a parameter, attribute, method, class, etc.

We will ordinarily issue a warning when a deprecated element is used, although there may be limitations to this.
For instance, we will raise a warning when someone sets a parameter that has been deprecated, but may not
when they access that parameter’s attribute on the estimator instance.

See the Contributors’ Guide.

dimensionality May be used to refer to the number of features (i.e. n_features), or columns in a 2d feature matrix.
Dimensions are, however, also used to refer to the length of a NumPy array’s shape, distinguishing a 1d array
from a 2d matrix.

docstring The embedded documentation for a module, class, function, etc., usually in code as a string at the beginning
of the object’s definition, and accessible as the object’s __doc__ attribute.

We try to adhere to PEP257, and follow NumpyDoc conventions.

double underscore

double underscore notation When specifying parameter names for nested estimators, __ may be used to separate
between parent and child in some contexts. The most common use is when setting parameters through a meta-
estimator with set_params and hence in specifying a search grid in parameter search. See parameter. It is also
used in pipeline.Pipeline.fit for passing sample properties to the fit methods of estimators in the
pipeline.

dtype

data type NumPy arrays assume a homogeneous data type throughout, available in the .dtype attribute of an array
(or sparse matrix). We generally assume simple data types for scikit-learn data: float or integer. We may support
object or string data types for arrays before encoding or vectorizing. Our estimators do not work with struct
arrays, for instance.

TODO: Mention efficiency and precision issues; casting policy.

5.1. General Concepts 725

https://contrib.scikit-learn.org/categorical-encoding
https://www.python.org/dev/peps/pep-0257/
https://numpydoc.readthedocs.io/en/latest/format.html

scikit-learn user guide, Release 0.23.2

duck typing We try to apply duck typing to determine how to handle some input values (e.g. checking whether a given
estimator is a classifier). That is, we avoid using isinstance where possible, and rely on the presence or
absence of attributes to determine an object’s behaviour. Some nuance is required when following this approach:

• For some estimators, an attribute may only be available once it is fitted. For instance, we cannot a priori
determine if predict_proba is available in a grid search where the grid includes alternating between a
probabilistic and a non-probabilistic predictor in the final step of the pipeline. In the following, we can
only determine if clf is probabilistic after fitting it on some data:

>>> from sklearn.model_selection import GridSearchCV
>>> from sklearn.linear_model import SGDClassifier
>>> clf = GridSearchCV(SGDClassifier(),
... param_grid={'loss': ['log', 'hinge']})

This means that we can only check for duck-typed attributes after fitting, and that we must be careful to
make meta-estimators only present attributes according to the state of the underlying estimator after fitting.

• Checking if an attribute is present (using hasattr) is in general just as expensive as getting the attribute
(getattr or dot notation). In some cases, getting the attribute may indeed be expensive (e.g. for some
implementations of feature_importances_, which may suggest this is an API design flaw). So code which
does hasattr followed by getattr should be avoided; getattr within a try-except block is pre-
ferred.

• For determining some aspects of an estimator’s expectations or support for some feature, we use estimator
tags instead of duck typing.

early stopping This consists in stopping an iterative optimization method before the convergence of the training loss,
to avoid over-fitting. This is generally done by monitoring the generalization score on a validation set. When
available, it is activated through the parameter early_stopping or by setting a positive n_iter_no_change.

estimator instance We sometimes use this terminology to distinguish an estimator class from a constructed instance.
For example, in the following, cls is an estimator class, while est1 and est2 are instances:

cls = RandomForestClassifier
est1 = cls()
est2 = RandomForestClassifier()

examples We try to give examples of basic usage for most functions and classes in the API:

• as doctests in their docstrings (i.e. within the sklearn/ library code itself).

• as examples in the example gallery rendered (using sphinx-gallery) from scripts in the examples/ direc-
tory, exemplifying key features or parameters of the estimator/function. These should also be referenced
from the User Guide.

• sometimes in the User Guide (built from doc/) alongside a technical description of the estimator.

evaluation metric

evaluation metrics Evaluation metrics give a measure of how well a model performs. We may use this term specif-
ically to refer to the functions in metrics (disregarding metrics.pairwise), as distinct from the score
method and the scoring API used in cross validation. See Metrics and scoring: quantifying the quality of
predictions.

These functions usually accept a ground truth (or the raw data where the metric evaluates clustering without
a ground truth) and a prediction, be it the output of predict (y_pred), of predict_proba (y_proba), or of
an arbitrary score function including decision_function (y_score). Functions are usually named to end with
_score if a greater score indicates a better model, and _loss if a lesser score indicates a better model. This
diversity of interface motivates the scoring API.

726 Chapter 5. Glossary of Common Terms and API Elements

https://en.wikipedia.org/wiki/Duck_typing
https://sphinx-gallery.readthedocs.io/

scikit-learn user guide, Release 0.23.2

Note that some estimators can calculate metrics that are not included in metrics and are estimator-specific,
notably model likelihoods.

estimator tags A proposed feature (e.g. #8022) by which the capabilities of an estimator are described through a set
of semantic tags. This would enable some runtime behaviors based on estimator inspection, but it also allows
each estimator to be tested for appropriate invariances while being excepted from other common tests.

Some aspects of estimator tags are currently determined through the duck typing of methods like
predict_proba and through some special attributes on estimator objects:

_estimator_type This string-valued attribute identifies an estimator as being a classifier, regressor, etc. It
is set by mixins such as base.ClassifierMixin, but needs to be more explicitly adopted on a meta-
estimator. Its value should usually be checked by way of a helper such as base.is_classifier.

_pairwise This boolean attribute indicates whether the data (X) passed to fit and similar methods consists
of pairwise measures over samples rather than a feature representation for each sample. It is usually
True where an estimator has a metric or affinity or kernel parameter with value ‘precomputed’.
Its primary purpose is that when a meta-estimator extracts a sub-sample of data intended for a pairwise
estimator, the data needs to be indexed on both axes, while other data is indexed only on the first axis.

For more detailed info, see Estimator Tags.

feature

features

feature vector In the abstract, a feature is a function (in its mathematical sense) mapping a sampled object to a nu-
meric or categorical quantity. “Feature” is also commonly used to refer to these quantities, being the individual
elements of a vector representing a sample. In a data matrix, features are represented as columns: each column
contains the result of applying a feature function to a set of samples.

Elsewhere features are known as attributes, predictors, regressors, or independent variables.

Nearly all estimators in scikit-learn assume that features are numeric, finite and not missing, even when they
have semantically distinct domains and distributions (categorical, ordinal, count-valued, real-valued, interval).
See also categorical feature and missing values.

n_features indicates the number of features in a dataset.

fitting Calling fit (or fit_transform, fit_predict, etc.) on an estimator.

fitted The state of an estimator after fitting.

There is no conventional procedure for checking if an estimator is fitted. However, an estimator that is not fitted:

• should raise exceptions.NotFittedError when a prediction method (predict, transform, etc.) is
called. (utils.validation.check_is_fitted is used internally for this purpose.)

• should not have any attributes beginning with an alphabetic character and ending with an underscore.
(Note that a descriptor for the attribute may still be present on the class, but hasattr should return False)

function We provide ad hoc function interfaces for many algorithms, while estimator classes provide a more consis-
tent interface.

In particular, Scikit-learn may provide a function interface that fits a model to some data and returns the learnt
model parameters, as in linear_model.enet_path. For transductive models, this also returns the em-
bedding or cluster labels, as in manifold.spectral_embedding or cluster.dbscan. Many prepro-
cessing transformers also provide a function interface, akin to calling fit_transform, as in preprocessing.
maxabs_scale. Users should be careful to avoid data leakage when making use of these fit_transform-
equivalent functions.

5.1. General Concepts 727

https://github.com/scikit-learn/scikit-learn/issues/8022

scikit-learn user guide, Release 0.23.2

We do not have a strict policy about when to or when not to provide function forms of estimators, but maintainers
should consider consistency with existing interfaces, and whether providing a function would lead users astray
from best practices (as regards data leakage, etc.)

gallery See examples.

hyperparameter

hyper-parameter See parameter.

impute

imputation Most machine learning algorithms require that their inputs have no missing values, and will not work
if this requirement is violated. Algorithms that attempt to fill in (or impute) missing values are referred to as
imputation algorithms.

indexable An array-like, sparse matrix, pandas DataFrame or sequence (usually a list).

induction

inductive Inductive (contrasted with transductive) machine learning builds a model of some data that can then be
applied to new instances. Most estimators in Scikit-learn are inductive, having predict and/or transform methods.

joblib A Python library (https://joblib.readthedocs.io) used in Scikit-learn to facilite simple parallelism and caching.
Joblib is oriented towards efficiently working with numpy arrays, such as through use of memory mapping. See
Parallelism for more information.

label indicator matrix

multilabel indicator matrix

multilabel indicator matrices The format used to represent multilabel data, where each row of a 2d array or sparse
matrix corresponds to a sample, each column corresponds to a class, and each element is 1 if the sample is
labeled with the class and 0 if not.

leakage

data leakage A problem in cross validation where generalization performance can be over-estimated since knowledge
of the test data was inadvertently included in training a model. This is a risk, for instance, when applying a
transformer to the entirety of a dataset rather than each training portion in a cross validation split.

We aim to provide interfaces (such as pipeline and model_selection) that shield the user from data
leakage.

memmapping

memory map

memory mapping A memory efficiency strategy that keeps data on disk rather than copying it into main memory.
Memory maps can be created for arrays that can be read, written, or both, using numpy.memmap. When using
joblib to parallelize operations in Scikit-learn, it may automatically memmap large arrays to reduce memory
duplication overhead in multiprocessing.

missing values Most Scikit-learn estimators do not work with missing values. When they do (e.g. in impute.
SimpleImputer), NaN is the preferred representation of missing values in float arrays. If the array has
integer dtype, NaN cannot be represented. For this reason, we support specifying another missing_values
value when imputation or learning can be performed in integer space. Unlabeled data is a special case of missing
values in the target.

n_features The number of features.

n_outputs The number of outputs in the target.

n_samples The number of samples.

728 Chapter 5. Glossary of Common Terms and API Elements

https://joblib.readthedocs.io
https://numpy.org/doc/stable/reference/generated/numpy.memmap.html#numpy.memmap

scikit-learn user guide, Release 0.23.2

n_targets Synonym for n_outputs.

narrative docs

narrative documentation An alias for User Guide, i.e. documentation written in doc/modules/. Unlike the API
reference provided through docstrings, the User Guide aims to:

• group tools provided by Scikit-learn together thematically or in terms of usage;

• motivate why someone would use each particular tool, often through comparison;

• provide both intuitive and technical descriptions of tools;

• provide or link to examples of using key features of a tool.

np A shorthand for Numpy due to the conventional import statement:

import numpy as np

online learning Where a model is iteratively updated by receiving each batch of ground truth targets soon after
making predictions on corresponding batch of data. Intrinsically, the model must be usable for prediction after
each batch. See partial_fit.

out-of-core An efficiency strategy where not all the data is stored in main memory at once, usually by performing
learning on batches of data. See partial_fit.

outputs Individual scalar/categorical variables per sample in the target. For example, in multilabel classification each
possible label corresponds to a binary output. Also called responses, tasks or targets. See multiclass multioutput
and continuous multioutput.

pair A tuple of length two.

parameter

parameters

param

params We mostly use parameter to refer to the aspects of an estimator that can be specified in its construction. For
example, max_depth and random_state are parameters of RandomForestClassifier. Parameters
to an estimator’s constructor are stored unmodified as attributes on the estimator instance, and conventionally
start with an alphabetic character and end with an alphanumeric character. Each estimator’s constructor param-
eters are described in the estimator’s docstring.

We do not use parameters in the statistical sense, where parameters are values that specify a model and can be
estimated from data. What we call parameters might be what statisticians call hyperparameters to the model:
aspects for configuring model structure that are often not directly learnt from data. However, our parameters
are also used to prescribe modeling operations that do not affect the learnt model, such as n_jobs for controlling
parallelism.

When talking about the parameters of a meta-estimator, we may also be including the parameters of
the estimators wrapped by the meta-estimator. Ordinarily, these nested parameters are denoted by using
a double underscore (__) to separate between the estimator-as-parameter and its parameter. Thus clf
= BaggingClassifier(base_estimator=DecisionTreeClassifier(max_depth=3)) has
a deep parameter base_estimator__max_depth with value 3, which is accessible with clf.
base_estimator.max_depth or clf.get_params()['base_estimator__max_depth'].

The list of parameters and their current values can be retrieved from an estimator instance using its get_params
method.

Between construction and fitting, parameters may be modified using set_params. To enable this, parameters are
not ordinarily validated or altered when the estimator is constructed, or when each parameter is set. Parameter
validation is performed when fit is called.

5.1. General Concepts 729

scikit-learn user guide, Release 0.23.2

Common parameters are listed below.

pairwise metric

pairwise metrics In its broad sense, a pairwise metric defines a function for measuring similarity or dissimilarity
between two samples (with each ordinarily represented as a feature vector). We particularly provide im-
plementations of distance metrics (as well as improper metrics like Cosine Distance) through metrics.
pairwise_distances, and of kernel functions (a constrained class of similarity functions) in metrics.
pairwise_kernels. These can compute pairwise distance matrices that are symmetric and hence store data
redundantly.

See also precomputed and metric.

Note that for most distance metrics, we rely on implementations from scipy.spatial.distance, but may
reimplement for efficiency in our context. The neighbors module also duplicates some metric implementa-
tions for integration with efficient binary tree search data structures.

pd A shorthand for Pandas due to the conventional import statement:

import pandas as pd

precomputed Where algorithms rely on pairwise metrics, and can be computed from pairwise metrics alone, we
often allow the user to specify that the X provided is already in the pairwise (dis)similarity space, rather than
in a feature space. That is, when passed to fit, it is a square, symmetric matrix, with each vector indicating
(dis)similarity to every sample, and when passed to prediction/transformation methods, each row corresponds
to a testing sample and each column to a training sample.

Use of precomputed X is usually indicated by setting a metric, affinity or kernel parameter to the
string ‘precomputed’. An estimator should mark itself as being _pairwise if this is the case.

rectangular Data that can be represented as a matrix with samples on the first axis and a fixed, finite set of features
on the second is called rectangular.

This term excludes samples with non-vectorial structures, such as text, an image of arbitrary size, a time series
of arbitrary length, a set of vectors, etc. The purpose of a vectorizer is to produce rectangular forms of such
data.

sample

samples We usually use this term as a noun to indicate a single feature vector. Elsewhere a sample is called an
instance, data point, or observation. n_samples indicates the number of samples in a dataset, being the
number of rows in a data array X.

sample property

sample properties A sample property is data for each sample (e.g. an array of length n_samples) passed to an
estimator method or a similar function, alongside but distinct from the features (X) and target (y). The most
prominent example is sample_weight; see others at Data and sample properties.

As of version 0.19 we do not have a consistent approach to handling sample properties and their routing in
meta-estimators, though a fit_params parameter is often used.

scikit-learn-contrib A venue for publishing Scikit-learn-compatible libraries that are broadly authorized by the
core developers and the contrib community, but not maintained by the core developer team. See https:
//scikit-learn-contrib.github.io.

scikit-learn enhancement proposals

SLEP

SLEPs Changes to the API principles and changes to dependencies or supported versions happen via a SLEP and
follows the decision-making process outlined in Scikit-learn governance and decision-making. For all votes, a
proposal must have been made public and discussed before the vote. Such a proposal must be a consolidated

730 Chapter 5. Glossary of Common Terms and API Elements

https://docs.scipy.org/doc/scipy/reference/spatial.distance.html#module-scipy.spatial.distance
https://pandas.pydata.org
https://scikit-learn-contrib.github.io
https://scikit-learn-contrib.github.io

scikit-learn user guide, Release 0.23.2

document, in the form of a ‘Scikit-Learn Enhancement Proposal’ (SLEP), rather than a long discussion on an
issue. A SLEP must be submitted as a pull-request to enhancement proposals using the SLEP template.

semi-supervised

semi-supervised learning

semisupervised Learning where the expected prediction (label or ground truth) is only available for some samples
provided as training data when fitting the model. We conventionally apply the label -1 to unlabeled samples in
semi-supervised classification.

sparse matrix

sparse graph A representation of two-dimensional numeric data that is more memory efficient the corresponding
dense numpy array where almost all elements are zero. We use the scipy.sparse framework, which provides
several underlying sparse data representations, or formats. Some formats are more efficient than others for
particular tasks, and when a particular format provides especial benefit, we try to document this fact in Scikit-
learn parameter descriptions.

Some sparse matrix formats (notably CSR, CSC, COO and LIL) distinguish between implicit and explicit zeros.
Explicit zeros are stored (i.e. they consume memory in a data array) in the data structure, while implicit zeros
correspond to every element not otherwise defined in explicit storage.

Two semantics for sparse matrices are used in Scikit-learn:

matrix semantics The sparse matrix is interpreted as an array with implicit and explicit zeros being interpreted
as the number 0. This is the interpretation most often adopted, e.g. when sparse matrices are used for
feature matrices or multilabel indicator matrices.

graph semantics As with scipy.sparse.csgraph, explicit zeros are interpreted as the number 0, but
implicit zeros indicate a masked or absent value, such as the absence of an edge between two ver-
tices of a graph, where an explicit value indicates an edge’s weight. This interpretation is adopted to
represent connectivity in clustering, in representations of nearest neighborhoods (e.g. neighbors.
kneighbors_graph), and for precomputed distance representation where only distances in the neigh-
borhood of each point are required.

When working with sparse matrices, we assume that it is sparse for a good reason, and avoid writing code that
densifies a user-provided sparse matrix, instead maintaining sparsity or raising an error if not possible (i.e. if an
estimator does not / cannot support sparse matrices).

supervised

supervised learning Learning where the expected prediction (label or ground truth) is available for each sample when
fitting the model, provided as y. This is the approach taken in a classifier or regressor among other estimators.

target

targets The dependent variable in supervised (and semisupervised) learning, passed as y to an estimator’s fit method.
Also known as dependent variable, outcome variable, response variable, ground truth or label. Scikit-learn
works with targets that have minimal structure: a class from a finite set, a finite real-valued number, multiple
classes, or multiple numbers. See Target Types.

transduction

transductive A transductive (contrasted with inductive) machine learning method is designed to model a specific
dataset, but not to apply that model to unseen data. Examples include manifold.TSNE, cluster.
AgglomerativeClustering and neighbors.LocalOutlierFactor.

unlabeled

unlabeled data Samples with an unknown ground truth when fitting; equivalently, missing values in the target. See
also semisupervised and unsupervised learning.

5.1. General Concepts 731

https://scikit-learn-enhancement-proposals.readthedocs.io
https://scikit-learn-enhancement-proposals.readthedocs.io/en/latest/slep_template.html
https://docs.scipy.org/doc/scipy/reference/sparse.html#module-scipy.sparse
https://docs.scipy.org/doc/scipy/reference/sparse.csgraph.html#module-scipy.sparse.csgraph

scikit-learn user guide, Release 0.23.2

unsupervised

unsupervised learning Learning where the expected prediction (label or ground truth) is not available for each sam-
ple when fitting the model, as in clusterers and outlier detectors. Unsupervised estimators ignore any y passed
to fit.

5.2 Class APIs and Estimator Types

classifier

classifiers A supervised (or semi-supervised) predictor with a finite set of discrete possible output values.

A classifier supports modeling some of binary, multiclass, multilabel, or multiclass multioutput targets. Within
scikit-learn, all classifiers support multi-class classification, defaulting to using a one-vs-rest strategy over the
binary classification problem.

Classifiers must store a classes_ attribute after fitting, and usually inherit from base.ClassifierMixin,
which sets their _estimator_type attribute.

A classifier can be distinguished from other estimators with is_classifier.

A classifier must implement:

• fit

• predict

• score

It may also be appropriate to implement decision_function, predict_proba and predict_log_proba.

clusterer

clusterers A unsupervised predictor with a finite set of discrete output values.

A clusterer usually stores labels_ after fitting, and must do so if it is transductive.

A clusterer must implement:

• fit

• fit_predict if transductive

• predict if inductive

density estimator TODO

estimator

estimators An object which manages the estimation and decoding of a model. The model is estimated as a determin-
istic function of:

• parameters provided in object construction or with set_params;

• the global numpy.random random state if the estimator’s random_state parameter is set to None; and

• any data or sample properties passed to the most recent call to fit, fit_transform or fit_predict, or data
similarly passed in a sequence of calls to partial_fit.

The estimated model is stored in public and private attributes on the estimator instance, facilitating decoding
through prediction and transformation methods.

Estimators must provide a fit method, and should provide set_params and get_params, although these are usually
provided by inheritance from base.BaseEstimator.

732 Chapter 5. Glossary of Common Terms and API Elements

https://numpy.org/doc/stable/reference/random/index.html#module-numpy.random

scikit-learn user guide, Release 0.23.2

The core functionality of some estimators may also be available as a function.

feature extractor

feature extractors A transformer which takes input where each sample is not represented as an array-like object of
fixed length, and produces an array-like object of features for each sample (and thus a 2-dimensional array-like
for a set of samples). In other words, it (lossily) maps a non-rectangular data representation into rectangular
data.

Feature extractors must implement at least:

• fit

• transform

• get_feature_names

meta-estimator

meta-estimators

metaestimator

metaestimators An estimator which takes another estimator as a parameter. Examples include pipeline.
Pipeline, model_selection.GridSearchCV , feature_selection.SelectFromModel and
ensemble.BaggingClassifier.

In a meta-estimator’s fit method, any contained estimators should be cloned before they are fit (although FIXME:
Pipeline and FeatureUnion do not do this currently). An exception to this is that an estimator may explic-
itly document that it accepts a pre-fitted estimator (e.g. using prefit=True in feature_selection.
SelectFromModel). One known issue with this is that the pre-fitted estimator will lose its model if the
meta-estimator is cloned. A meta-estimator should have fit called before prediction, even if all contained
estimators are pre-fitted.

In cases where a meta-estimator’s primary behaviors (e.g. predict or transform implementation) are functions
of prediction/transformation methods of the provided base estimator (or multiple base estimators), a meta-
estimator should provide at least the standard methods provided by the base estimator. It may not be possible
to identify which methods are provided by the underlying estimator until the meta-estimator has been fitted
(see also duck typing), for which utils.metaestimators.if_delegate_has_method may help. It
should also provide (or modify) the estimator tags and classes_ attribute provided by the base estimator.

Meta-estimators should be careful to validate data as minimally as possible before passing it to an underlying
estimator. This saves computation time, and may, for instance, allow the underlying estimator to easily work
with data that is not rectangular.

outlier detector

outlier detectors An unsupervised binary predictor which models the distinction between core and outlying samples.

Outlier detectors must implement:

• fit

• fit_predict if transductive

• predict if inductive

Inductive outlier detectors may also implement decision_function to give a normalized inlier score where outliers
have score below 0. score_samples may provide an unnormalized score per sample.

predictor

predictors An estimator supporting predict and/or fit_predict. This encompasses classifier, regressor, outlier detector
and clusterer.

5.2. Class APIs and Estimator Types 733

scikit-learn user guide, Release 0.23.2

In statistics, “predictors” refers to features.

regressor

regressors A supervised (or semi-supervised) predictor with continuous output values.

Regressors usually inherit from base.RegressorMixin, which sets their _estimator_type attribute.

A regressor can be distinguished from other estimators with is_regressor.

A regressor must implement:

• fit

• predict

• score

transformer

transformers An estimator supporting transform and/or fit_transform. A purely transductive transformer, such as
manifold.TSNE, may not implement transform.

vectorizer

vectorizers See feature extractor.

There are further APIs specifically related to a small family of estimators, such as:

cross-validation splitter

CV splitter

cross-validation generator A non-estimator family of classes used to split a dataset into a sequence of train and test
portions (see Cross-validation: evaluating estimator performance), by providing split and get_n_splits meth-
ods. Note that unlike estimators, these do not have fit methods and do not provide set_params or get_params.
Parameter validation may be performed in __init__.

cross-validation estimator An estimator that has built-in cross-validation capabilities to automatically select the best
hyper-parameters (see the User Guide). Some example of cross-validation estimators are ElasticNetCV and
LogisticRegressionCV . Cross-validation estimators are named EstimatorCV and tend to be roughly
equivalent to GridSearchCV(Estimator(), ...). The advantage of using a cross-validation estimator
over the canonical Estimator class along with grid search is that they can take advantage of warm-starting by
reusing precomputed results in the previous steps of the cross-validation process. This generally leads to speed
improvements. An exception is the RidgeCV class, which can instead perform efficient Leave-One-Out CV.

scorer A non-estimator callable object which evaluates an estimator on given test data, returning a number. Unlike
evaluation metrics, a greater returned number must correspond with a better score. See The scoring parameter:
defining model evaluation rules.

Further examples:

• neighbors.DistanceMetric

• gaussian_process.kernels.Kernel

• tree.Criterion

5.3 Target Types

binary A classification problem consisting of two classes. A binary target may be represented as for a multiclass
problem but with only two labels. A binary decision function is represented as a 1d array.

734 Chapter 5. Glossary of Common Terms and API Elements

scikit-learn user guide, Release 0.23.2

Semantically, one class is often considered the “positive” class. Unless otherwise specified (e.g. using pos_label
in evaluation metrics), we consider the class label with the greater value (numerically or lexicographically) as
the positive class: of labels [0, 1], 1 is the positive class; of [1, 2], 2 is the positive class; of [‘no’, ‘yes’], ‘yes’
is the positive class; of [‘no’, ‘YES’], ‘no’ is the positive class. This affects the output of decision_function, for
instance.

Note that a dataset sampled from a multiclass y or a continuous y may appear to be binary.

type_of_target will return ‘binary’ for binary input, or a similar array with only a single class present.

continuous A regression problem where each sample’s target is a finite floating point number represented as a 1-
dimensional array of floats (or sometimes ints).

type_of_target will return ‘continuous’ for continuous input, but if the data is all integers, it will be
identified as ‘multiclass’.

continuous multioutput

multioutput continuous A regression problem where each sample’s target consists of n_outputs outputs, each
one a finite floating point number, for a fixed int n_outputs > 1 in a particular dataset.

Continuous multioutput targets are represented as multiple continuous targets, horizontally stacked into an array
of shape (n_samples, n_outputs).

type_of_target will return ‘continuous-multioutput’ for continuous multioutput input, but if the data is all
integers, it will be identified as ‘multiclass-multioutput’.

multiclass A classification problem consisting of more than two classes. A multiclass target may be represented as
a 1-dimensional array of strings or integers. A 2d column vector of integers (i.e. a single output in multioutput
terms) is also accepted.

We do not officially support other orderable, hashable objects as class labels, even if estimators may happen to
work when given classification targets of such type.

For semi-supervised classification, unlabeled samples should have the special label -1 in y.

Within sckit-learn, all estimators supporting binary classification also support multiclass classification, using
One-vs-Rest by default.

A preprocessing.LabelEncoder helps to canonicalize multiclass targets as integers.

type_of_target will return ‘multiclass’ for multiclass input. The user may also want to handle ‘binary’
input identically to ‘multiclass’.

multiclass multioutput

multioutput multiclass A classification problem where each sample’s target consists of n_outputs outputs, each
a class label, for a fixed int n_outputs > 1 in a particular dataset. Each output has a fixed set of available
classes, and each sample is labeled with a class for each output. An output may be binary or multiclass, and in
the case where all outputs are binary, the target is multilabel.

Multiclass multioutput targets are represented as multiple multiclass targets, horizontally stacked into an array
of shape (n_samples, n_outputs).

XXX: For simplicity, we may not always support string class labels for multiclass multioutput, and integer class
labels should be used.

multioutput provides estimators which estimate multi-output problems using multiple single-output estima-
tors. This may not fully account for dependencies among the different outputs, which methods natively handling
the multioutput case (e.g. decision trees, nearest neighbors, neural networks) may do better.

type_of_target will return ‘multiclass-multioutput’ for multiclass multioutput input.

5.3. Target Types 735

scikit-learn user guide, Release 0.23.2

multilabel A multiclass multioutput target where each output is binary. This may be represented as a 2d (dense) array
or sparse matrix of integers, such that each column is a separate binary target, where positive labels are indicated
with 1 and negative labels are usually -1 or 0. Sparse multilabel targets are not supported everywhere that dense
multilabel targets are supported.

Semantically, a multilabel target can be thought of as a set of labels for each sample. While not used inter-
nally, preprocessing.MultiLabelBinarizer is provided as a utility to convert from a list of sets
representation to a 2d array or sparse matrix. One-hot encoding a multiclass target with preprocessing.
LabelBinarizer turns it into a multilabel problem.

type_of_target will return ‘multilabel-indicator’ for multilabel input, whether sparse or dense.

multioutput

multi-output A target where each sample has multiple classification/regression labels. See multiclass multioutput
and continuous multioutput. We do not currently support modelling mixed classification and regression targets.

5.4 Methods

decision_function In a fitted classifier or outlier detector, predicts a “soft” score for each sample in relation
to each class, rather than the “hard” categorical prediction produced by predict. Its input is usually only some
observed data, X.

If the estimator was not already fitted, calling this method should raise a exceptions.NotFittedError.

Output conventions:

binary classification A 1-dimensional array, where values strictly greater than zero indicate the positive class
(i.e. the last class in classes_).

multiclass classification A 2-dimensional array, where the row-wise arg-maximum is the predicted class.
Columns are ordered according to classes_.

multilabel classification Scikit-learn is inconsistent in its representation of multilabel decision functions.
Some estimators represent it like multiclass multioutput, i.e. a list of 2d arrays, each with two columns.
Others represent it with a single 2d array, whose columns correspond to the individual binary classification
decisions. The latter representation is ambiguously identical to the multiclass classification format, though
its semantics differ: it should be interpreted, like in the binary case, by thresholding at 0.

TODO: This gist highlights the use of the different formats for multilabel.

multioutput classification A list of 2d arrays, corresponding to each multiclass decision function.

outlier detection A 1-dimensional array, where a value greater than or equal to zero indicates an inlier.

fit The fit method is provided on every estimator. It usually takes some samples X, targets y if the model is
supervised, and potentially other sample properties such as sample_weight. It should:

• clear any prior attributes stored on the estimator, unless warm_start is used;

• validate and interpret any parameters, ideally raising an error if invalid;

• validate the input data;

• estimate and store model attributes from the estimated parameters and provided data; and

• return the now fitted estimator to facilitate method chaining.

Target Types describes possible formats for y.

fit_predict Used especially for unsupervised, transductive estimators, this fits the model and returns the pre-
dictions (similar to predict) on the training data. In clusterers, these predictions are also stored in the labels_

736 Chapter 5. Glossary of Common Terms and API Elements

https://gist.github.com/jnothman/4807b1b0266613c20ba4d1f88d0f8cf5

scikit-learn user guide, Release 0.23.2

attribute, and the output of .fit_predict(X) is usually equivalent to .fit(X).predict(X). The pa-
rameters to fit_predict are the same as those to fit.

fit_transform A method on transformers which fits the estimator and returns the transformed training data.
It takes parameters as in fit and its output should have the same shape as calling .fit(X, ...).
transform(X). There are nonetheless rare cases where .fit_transform(X, ...) and .fit(X, ..
.).transform(X) do not return the same value, wherein training data needs to be handled differently (due
to model blending in stacked ensembles, for instance; such cases should be clearly documented). Transductive
transformers may also provide fit_transform but not transform.

One reason to implement fit_transform is that performing fit and transform separately would be less
efficient than together. base.TransformerMixin provides a default implementation, providing a consis-
tent interface across transformers where fit_transform is or is not specialized.

In inductive learning – where the goal is to learn a generalized model that can be applied to new data – users
should be careful not to apply fit_transform to the entirety of a dataset (i.e. training and test data together)
before further modelling, as this results in data leakage.

get_feature_names Primarily for feature extractors, but also used for other transformers to provide string names
for each column in the output of the estimator’s transform method. It outputs a list of strings and may take a
list of strings as input, corresponding to the names of input columns from which output column names can be
generated. By default input features are named x0, x1,

get_n_splits On a CV splitter (not an estimator), returns the number of elements one would get if iterating
through the return value of split given the same parameters. Takes the same parameters as split.

get_params Gets all parameters, and their values, that can be set using set_params. A parameter deep can be
used, when set to False to only return those parameters not including __, i.e. not due to indirection via contained
estimators.

Most estimators adopt the definition from base.BaseEstimator, which simply adopts the parameters de-
fined for __init__. pipeline.Pipeline, among others, reimplements get_params to declare the
estimators named in its steps parameters as themselves being parameters.

partial_fit Facilitates fitting an estimator in an online fashion. Unlike fit, repeatedly calling partial_fit
does not clear the model, but updates it with the data provided. The portion of data provided to partial_fit
may be called a mini-batch. Each mini-batch must be of consistent shape, etc. In iterative estimators,
partial_fit often only performs a single iteration.

partial_fit may also be used for out-of-core learning, although usually limited to the case where learning
can be performed online, i.e. the model is usable after each partial_fit and there is no separate processing
needed to finalize the model. cluster.Birch introduces the convention that calling partial_fit(X)
will produce a model that is not finalized, but the model can be finalized by calling partial_fit() i.e.
without passing a further mini-batch.

Generally, estimator parameters should not be modified between calls to partial_fit, although
partial_fit should validate them as well as the new mini-batch of data. In contrast, warm_start is
used to repeatedly fit the same estimator with the same data but varying parameters.

Like fit, partial_fit should return the estimator object.

To clear the model, a new estimator should be constructed, for instance with base.clone.

NOTE: Using partial_fit after fit results in undefined behavior.

predict Makes a prediction for each sample, usually only taking X as input (but see under regressor output con-
ventions below). In a classifier or regressor, this prediction is in the same target space used in fitting (e.g. one
of {‘red’, ‘amber’, ‘green’} if the y in fitting consisted of these strings). Despite this, even when y passed to fit
is a list or other array-like, the output of predict should always be an array or sparse matrix. In a clusterer or
outlier detector the prediction is an integer.

5.4. Methods 737

scikit-learn user guide, Release 0.23.2

If the estimator was not already fitted, calling this method should raise a exceptions.NotFittedError.

Output conventions:

classifier An array of shape (n_samples,) (n_samples, n_outputs). Multilabel data may be rep-
resented as a sparse matrix if a sparse matrix was used in fitting. Each element should be one of the values
in the classifier’s classes_ attribute.

clusterer An array of shape (n_samples,) where each value is from 0 to n_clusters - 1 if the corre-
sponding sample is clustered, and -1 if the sample is not clustered, as in cluster.dbscan.

outlier detector An array of shape (n_samples,) where each value is -1 for an outlier and 1 otherwise.

regressor A numeric array of shape (n_samples,), usually float64. Some regressors have extra options in
their predict method, allowing them to return standard deviation (return_std=True) or covariance
(return_cov=True) relative to the predicted value. In this case, the return value is a tuple of arrays
corresponding to (prediction mean, std, cov) as required.

predict_log_proba The natural logarithm of the output of predict_proba, provided to facilitate numerical sta-
bility.

predict_proba A method in classifiers and clusterers that can return probability estimates for each class/cluster.
Its input is usually only some observed data, X.

If the estimator was not already fitted, calling this method should raise a exceptions.NotFittedError.

Output conventions are like those for decision_function except in the binary classification case, where one
column is output for each class (while decision_function outputs a 1d array). For binary and multiclass
predictions, each row should add to 1.

Like other methods, predict_proba should only be present when the estimator can make probabilistic pre-
dictions (see duck typing). This means that the presence of the method may depend on estimator parameters (e.g.
in linear_model.SGDClassifier) or training data (e.g. in model_selection.GridSearchCV)
and may only appear after fitting.

score A method on an estimator, usually a predictor, which evaluates its predictions on a given dataset, and returns a
single numerical score. A greater return value should indicate better predictions; accuracy is used for classifiers
and R^2 for regressors by default.

If the estimator was not already fitted, calling this method should raise a exceptions.NotFittedError.

Some estimators implement a custom, estimator-specific score function, often the likelihood of the data under
the model.

score_samples TODO

If the estimator was not already fitted, calling this method should raise a exceptions.NotFittedError.

set_params Available in any estimator, takes keyword arguments corresponding to keys in get_params. Each is
provided a new value to assign such that calling get_params after set_params will reflect the changed pa-
rameters. Most estimators use the implementation in base.BaseEstimator, which handles nested parame-
ters and otherwise sets the parameter as an attribute on the estimator. The method is overridden in pipeline.
Pipeline and related estimators.

split On a CV splitter (not an estimator), this method accepts parameters (X, y, groups), where all may be op-
tional, and returns an iterator over (train_idx, test_idx) pairs. Each of {train,test}_idx is a 1d integer
array, with values from 0 from X.shape[0] - 1 of any length, such that no values appear in both some
train_idx and its corresponding test_idx.

transform In a transformer, transforms the input, usually only X, into some transformed space (conventionally
notated as Xt). Output is an array or sparse matrix of length n_samples and with the number of columns fixed
after fitting.

738 Chapter 5. Glossary of Common Terms and API Elements

scikit-learn user guide, Release 0.23.2

If the estimator was not already fitted, calling this method should raise a exceptions.NotFittedError.

5.5 Parameters

These common parameter names, specifically used in estimator construction (see concept parameter), sometimes also
appear as parameters of functions or non-estimator constructors.

class_weight Used to specify sample weights when fitting classifiers as a function of the target class. Where
sample_weight is also supported and given, it is multiplied by the class_weight contribution. Similarly,
where class_weight is used in a multioutput (including multilabel) tasks, the weights are multiplied across
outputs (i.e. columns of y).

By default, all samples have equal weight such that classes are effectively weighted by their prevalence in the
training data. This could be achieved explicitly with class_weight={label1: 1, label2: 1,
...} for all class labels.

More generally, class_weight is specified as a dict mapping class labels to weights ({class_label:
weight}), such that each sample of the named class is given that weight.

class_weight='balanced' can be used to give all classes equal weight by giving each sample a
weight inversely related to its class’s prevalence in the training data: n_samples / (n_classes * np.
bincount(y)). Class weights will be used differently depending on the algorithm: for linear models (such
as linear SVM or logistic regression), the class weights will alter the loss function by weighting the loss of each
sample by its class weight. For tree-based algorithms, the class weights will be used for reweighting the splitting
criterion. Note however that this rebalancing does not take the weight of samples in each class into account.

For multioutput classification, a list of dicts is used to specify weights for each output. For example, for four-
class multilabel classification weights should be [{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1,
1: 1}, {0: 1, 1: 1}] instead of [{1:1}, {2:5}, {3:1}, {4:1}].

The class_weight parameter is validated and interpreted with utils.compute_class_weight.

cv Determines a cross validation splitting strategy, as used in cross-validation based routines. cv
is also available in estimators such as multioutput.ClassifierChain or calibration.
CalibratedClassifierCV which use the predictions of one estimator as training data for another, to
not overfit the training supervision.

Possible inputs for cv are usually:

• An integer, specifying the number of folds in K-fold cross validation. K-fold will be stratified over classes
if the estimator is a classifier (determined by base.is_classifier) and the targets may represent a
binary or multiclass (but not multioutput) classification problem (determined by utils.multiclass.
type_of_target).

• A cross-validation splitter instance. Refer to the User Guide for splitters available within Scikit-learn.

• An iterable yielding train/test splits.

With some exceptions (especially where not using cross validation at all is an option), the default is 5-fold.

cv values are validated and interpreted with utils.check_cv.

kernel TODO

max_iter For estimators involving iterative optimization, this determines the maximum number of itera-
tions to be performed in fit. If max_iter iterations are run without convergence, a exceptions.
ConvergenceWarning should be raised. Note that the interpretation of “a single iteration” is inconsistent
across estimators: some, but not all, use it to mean a single epoch (i.e. a pass over every sample in the data).

5.5. Parameters 739

scikit-learn user guide, Release 0.23.2

FIXME perhaps we should have some common tests about the relationship between ConvergenceWarning and
max_iter.

memory Some estimators make use of joblib.Memory to store partial solutions during fitting. Thus when fit is
called again, those partial solutions have been memoized and can be reused.

A memory parameter can be specified as a string with a path to a directory, or a joblib.Memory instance
(or an object with a similar interface, i.e. a cache method) can be used.

memory values are validated and interpreted with utils.validation.check_memory .

metric As a parameter, this is the scheme for determining the distance between two data points. See metrics.
pairwise_distances. In practice, for some algorithms, an improper distance metric (one that does not
obey the triangle inequality, such as Cosine Distance) may be used.

XXX: hierarchical clustering uses affinity with this meaning.

We also use metric to refer to evaluation metrics, but avoid using this sense as a parameter name.

n_components The number of features which a transformer should transform the input into. See components_ for
the special case of affine projection.

n_iter_no_change Number of iterations with no improvement to wait before stopping the iterative procedure.
This is also known as a patience parameter. It is typically used with early stopping to avoid stopping too early.

n_jobs This parameter is used to specify how many concurrent processes or threads should be used for routines that
are parallelized with joblib.

n_jobs is an integer, specifying the maximum number of concurrently running workers. If 1 is given, no joblib
parallelism is used at all, which is useful for debugging. If set to -1, all CPUs are used. For n_jobs below -1,
(n_cpus + 1 + n_jobs) are used. For example with n_jobs=-2, all CPUs but one are used.

n_jobs is None by default, which means unset; it will generally be interpreted as n_jobs=1, unless the
current joblib.Parallel backend context specifies otherwise.

For more details on the use of joblib and its interactions with scikit-learn, please refer to our parallelism
notes.

pos_label Value with which positive labels must be encoded in binary classification problems in which the positive
class is not assumed. This value is typically required to compute asymmetric evaluation metrics such as precision
and recall.

random_state Whenever randomization is part of a Scikit-learn algorithm, a random_state parameter may
be provided to control the random number generator used. Note that the mere presence of random_state
doesn’t mean that randomization is always used, as it may be dependent on another parameter, e.g. shuffle,
being set.

The passed value will have an effect on the reproducibility of the results returned by the function (fit, split, or
any other function like k_means). random_state’s value may be:

None (default) Use the global random state instance from numpy.random. Calling the function multiple
times will reuse the same instance, and will produce different results.

An integer Use a new random number generator seeded by the given integer. Using an int will produce the
same results across different calls. However, it may be worthwhile checking that your results are stable
across a number of different distinct random seeds. Popular integer random seeds are 0 and 42.

A numpy.random.RandomState instance Use the provided random state, only affecting other users of
that same random state instance. Calling the function multiple times will reuse the same instance, and will
produce different results.

utils.check_random_state is used internally to validate the input random_state and return a
RandomState instance.

740 Chapter 5. Glossary of Common Terms and API Elements

https://joblib.readthedocs.io/en/latest/generated/joblib.Memory.html#joblib.Memory
https://joblib.readthedocs.io/en/latest/generated/joblib.Memory.html#joblib.Memory
https://joblib.readthedocs.io/en/latest/generated/joblib.Parallel.html#joblib.Parallel
https://numpy.org/doc/stable/reference/random/index.html#module-numpy.random
https://en.wikipedia.org/wiki/Answer_to_the_Ultimate_Question_of_Life%2C_the_Universe%2C_and_Everything
https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState
https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState

scikit-learn user guide, Release 0.23.2

scoring Specifies the score function to be maximized (usually by cross validation), or – in some cases – multiple
score functions to be reported. The score function can be a string accepted by metrics.get_scorer or a
callable scorer, not to be confused with an evaluation metric, as the latter have a more diverse API. scoring
may also be set to None, in which case the estimator’s score method is used. See The scoring parameter:
defining model evaluation rules in the User Guide.

Where multiple metrics can be evaluated, scoringmay be given either as a list of unique strings or a dictionary
with names as keys and callables as values. Note that this does not specify which score function is to be
maximized, and another parameter such as refit maybe used for this purpose.

The scoring parameter is validated and interpreted using metrics.check_scoring.

verbose Logging is not handled very consistently in Scikit-learn at present, but when it is provided as an option,
the verbose parameter is usually available to choose no logging (set to False). Any True value should enable
some logging, but larger integers (e.g. above 10) may be needed for full verbosity. Verbose logs are usually
printed to Standard Output. Estimators should not produce any output on Standard Output with the default
verbose setting.

warm_start When fitting an estimator repeatedly on the same dataset, but for multiple parameter values (such as
to find the value maximizing performance as in grid search), it may be possible to reuse aspects of the model
learned from the previous parameter value, saving time. When warm_start is true, the existing fitted model
attributes are used to initialize the new model in a subsequent call to fit.

Note that this is only applicable for some models and some parameters, and even some orders of parameter
values. For example, warm_start may be used when building random forests to add more trees to the forest
(increasing n_estimators) but not to reduce their number.

partial_fit also retains the model between calls, but differs: with warm_start the parameters change and the
data is (more-or-less) constant across calls to fit; with partial_fit, the mini-batch of data changes and
model parameters stay fixed.

There are cases where you want to use warm_start to fit on different, but closely related data. For exam-
ple, one may initially fit to a subset of the data, then fine-tune the parameter search on the full dataset. For
classification, all data in a sequence of warm_start calls to fit must include samples from each class.

5.6 Attributes

See concept attribute.

classes_ A list of class labels known to the classifier, mapping each label to a numerical index used in the
model representation our output. For instance, the array output from predict_proba has columns aligned with
classes_. For multi-output classifiers, classes_ should be a list of lists, with one class listing for each
output. For each output, the classes should be sorted (numerically, or lexicographically for strings).

classes_ and the mapping to indices is often managed with preprocessing.LabelEncoder.

components_ An affine transformation matrix of shape (n_components, n_features) used in many lin-
ear transformers where n_components is the number of output features and n_features is the number of input
features.

See also components_ which is a similar attribute for linear predictors.

coef_ The weight/coefficient matrix of a generalised linear model predictor, of shape (n_features,) for binary
classification and single-output regression, (n_classes, n_features) for multiclass classification and
(n_targets, n_features) for multi-output regression. Note this does not include the intercept (or bias)
term, which is stored in intercept_.

When available, feature_importances_ is not usually provided as well, but can be calculated as the norm
of each feature’s entry in coef_.

5.6. Attributes 741

scikit-learn user guide, Release 0.23.2

See also components_ which is a similar attribute for linear transformers.

embedding_ An embedding of the training data in manifold learning estimators, with shape (n_samples,
n_components), identical to the output of fit_transform. See also labels_.

n_iter_ The number of iterations actually performed when fitting an iterative estimator that may stop upon conver-
gence. See also max_iter.

feature_importances_ A vector of shape (n_features,) available in some predictors to provide a relative
measure of the importance of each feature in the predictions of the model.

labels_ A vector containing a cluster label for each sample of the training data in clusterers, identical to the output
of fit_predict. See also embedding_.

5.7 Data and sample properties

See concept sample property.

groups Used in cross-validation routines to identify samples that are correlated. Each value is an identifier such
that, in a supporting CV splitter, samples from some groups value may not appear in both a training set and
its corresponding test set. See Cross-validation iterators for grouped data..

sample_weight A relative weight for each sample. Intuitively, if all weights are integers, a weighted model or
score should be equivalent to that calculated when repeating the sample the number of times specified in the
weight. Weights may be specified as floats, so that sample weights are usually equivalent up to a constant
positive scaling factor.

FIXME Is this interpretation always the case in practice? We have no common tests.

Some estimators, such as decision trees, support negative weights. FIXME: This feature or its absence may not
be tested or documented in many estimators.

This is not entirely the case where other parameters of the model consider the number of samples in a region,
as with min_samples in cluster.DBSCAN . In this case, a count of samples becomes to a sum of their
weights.

In classification, sample weights can also be specified as a function of class with the class_weight estimator
parameter.

X Denotes data that is observed at training and prediction time, used as independent variables in learning. The notation
is uppercase to denote that it is ordinarily a matrix (see rectangular). When a matrix, each sample may be
represented by a feature vector, or a vector of precomputed (dis)similarity with each training sample. X may
also not be a matrix, and may require a feature extractor or a pairwise metric to turn it into one before learning
a model.

Xt Shorthand for “transformed X”.

y

Y Denotes data that may be observed at training time as the dependent variable in learning, but which is unavailable
at prediction time, and is usually the target of prediction. The notation may be uppercase to denote that it is
a matrix, representing multi-output targets, for instance; but usually we use y and sometimes do so even when
multiple outputs are assumed.

742 Chapter 5. Glossary of Common Terms and API Elements

CHAPTER

SIX

EXAMPLES

6.1 Release Highlights

These examples illustrate the main features of the releases of scikit-learn.

6.1.1 Release Highlights for scikit-learn 0.23

We are pleased to announce the release of scikit-learn 0.23! Many bug fixes and improvements were added, as well as
some new key features. We detail below a few of the major features of this release. For an exhaustive list of all the
changes, please refer to the release notes.

To install the latest version (with pip):

pip install --upgrade scikit-learn

or with conda:

conda install scikit-learn

Generalized Linear Models, and Poisson loss for gradient boosting

Long-awaited Generalized Linear Models with non-normal loss functions are now available. In particular, three new
regressors were implemented: PoissonRegressor, GammaRegressor, and TweedieRegressor. The Pois-
son regressor can be used to model positive integer counts, or relative frequencies. Read more in the User Guide.
Additionally, HistGradientBoostingRegressor supports a new ‘poisson’ loss as well.

import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import PoissonRegressor
from sklearn.experimental import enable_hist_gradient_boosting # noqa
from sklearn.ensemble import HistGradientBoostingRegressor

n_samples, n_features = 1000, 20
rng = np.random.RandomState(0)
X = rng.randn(n_samples, n_features)
positive integer target correlated with X[:, 5] with many zeros:
y = rng.poisson(lam=np.exp(X[:, 5]) / 2)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=rng)
glm = PoissonRegressor()
gbdt = HistGradientBoostingRegressor(loss='poisson', learning_rate=.01)
glm.fit(X_train, y_train)

(continues on next page)

743

scikit-learn user guide, Release 0.23.2

(continued from previous page)

gbdt.fit(X_train, y_train)
print(glm.score(X_test, y_test))
print(gbdt.score(X_test, y_test))

Out:

0.35776189065725783
0.42425183539869415

Rich visual representation of estimators

Estimators can now be visualized in notebooks by enabling the display='diagram' option. This is particularly
useful to summarise the structure of pipelines and other composite estimators, with interactivity to provide detail.
Click on the example image below to expand Pipeline elements. See Visualizing Composite Estimators for how you
can use this feature.

from sklearn import set_config
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from sklearn.impute import SimpleImputer
from sklearn.compose import make_column_transformer
from sklearn.linear_model import LogisticRegression
set_config(display='diagram')

num_proc = make_pipeline(SimpleImputer(strategy='median'), StandardScaler())

cat_proc = make_pipeline(
SimpleImputer(strategy='constant', fill_value='missing'),
OneHotEncoder(handle_unknown='ignore'))

preprocessor = make_column_transformer((num_proc, ('feat1', 'feat3')),
(cat_proc, ('feat0', 'feat2')))

clf = make_pipeline(preprocessor, LogisticRegression())
clf

Scalability and stability improvements to KMeans

The KMeans estimator was entirely re-worked, and it is now significantly faster and more stable. In addition, the
Elkan algorithm is now compatible with sparse matrices. The estimator uses OpenMP based parallelism instead of
relying on joblib, so the n_jobs parameter has no effect anymore. For more details on how to control the number of
threads, please refer to our Parallelism notes.

import scipy
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs
from sklearn.metrics import completeness_score

rng = np.random.RandomState(0)
X, y = make_blobs(random_state=rng)
X = scipy.sparse.csr_matrix(X)

(continues on next page)

744 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

X_train, X_test, _, y_test = train_test_split(X, y, random_state=rng)
kmeans = KMeans(algorithm='elkan').fit(X_train)
print(completeness_score(kmeans.predict(X_test), y_test))

Out:

0.6585602198584783

Improvements to the histogram-based Gradient Boosting estimators

Various improvements were made to HistGradientBoostingClassifier and
HistGradientBoostingRegressor. On top of the Poisson loss mentionned above, these estimators
now support sample weights. Also, an automatic early-stopping criterion was added: early-stopping is enabled by
default when the number of samples exceeds 10k. Finally, users can now define monotonic constraints to constrain
the predictions based on the variations of specific features. In the following example, we construct a target that is
generally positively correlated with the first feature, with some noise. Applying monotoinc constraints allows the
prediction to capture the global effect of the first feature, instead of fitting the noise.

import numpy as np
from matplotlib import pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.inspection import plot_partial_dependence
from sklearn.experimental import enable_hist_gradient_boosting # noqa
from sklearn.ensemble import HistGradientBoostingRegressor

n_samples = 500
rng = np.random.RandomState(0)
X = rng.randn(n_samples, 2)
noise = rng.normal(loc=0.0, scale=0.01, size=n_samples)
y = (5 * X[:, 0] + np.sin(10 * np.pi * X[:, 0]) - noise)

gbdt_no_cst = HistGradientBoostingRegressor().fit(X, y)
gbdt_cst = HistGradientBoostingRegressor(monotonic_cst=[1, 0]).fit(X, y)

disp = plot_partial_dependence(
gbdt_no_cst, X, features=[0], feature_names=['feature 0'],
line_kw={'linewidth': 4, 'label': 'unconstrained'})

plot_partial_dependence(gbdt_cst, X, features=[0],
line_kw={'linewidth': 4, 'label': 'constrained'}, ax=disp.axes_)

disp.axes_[0, 0].plot(X[:, 0], y, 'o', alpha=.5, zorder=-1, label='samples')
disp.axes_[0, 0].set_ylim(-3, 3); disp.axes_[0, 0].set_xlim(-1, 1)
plt.legend()
plt.show()

6.1. Release Highlights 745

scikit-learn user guide, Release 0.23.2

Sample-weight support for Lasso and ElasticNet

The two linear regressors Lasso and ElasticNet now support sample weights.

from sklearn.model_selection import train_test_split
from sklearn.datasets import make_regression
from sklearn.linear_model import Lasso
import numpy as np

n_samples, n_features = 1000, 20
rng = np.random.RandomState(0)
X, y = make_regression(n_samples, n_features, random_state=rng)
sample_weight = rng.rand(n_samples)
X_train, X_test, y_train, y_test, sw_train, sw_test = train_test_split(

X, y, sample_weight, random_state=rng)
reg = Lasso()
reg.fit(X_train, y_train, sample_weight=sw_train)
print(reg.score(X_test, y_test, sw_test))

Out:

0.999791942438998

Total running time of the script: (0 minutes 0.943 seconds)

746 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

6.1.2 Release Highlights for scikit-learn 0.22

We are pleased to announce the release of scikit-learn 0.22, which comes with many bug fixes and new features! We
detail below a few of the major features of this release. For an exhaustive list of all the changes, please refer to the
release notes.

To install the latest version (with pip):

pip install --upgrade scikit-learn

or with conda:

conda install scikit-learn

New plotting API

A new plotting API is available for creating visualizations. This new API allows for quickly adjusting the visuals of a
plot without involving any recomputation. It is also possible to add different plots to the same figure. The following
example illustrates plot_roc_curve, but other plots utilities are supported like plot_partial_dependence,
plot_precision_recall_curve, and plot_confusion_matrix. Read more about this new API in the
User Guide.

from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import plot_roc_curve
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make_classification
import matplotlib.pyplot as plt

X, y = make_classification(random_state=0)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)

svc = SVC(random_state=42)
svc.fit(X_train, y_train)
rfc = RandomForestClassifier(random_state=42)
rfc.fit(X_train, y_train)

svc_disp = plot_roc_curve(svc, X_test, y_test)
rfc_disp = plot_roc_curve(rfc, X_test, y_test, ax=svc_disp.ax_)
rfc_disp.figure_.suptitle("ROC curve comparison")

plt.show()

6.1. Release Highlights 747

scikit-learn user guide, Release 0.23.2

Stacking Classifier and Regressor

StackingClassifier and StackingRegressor allow you to have a stack of estimators with a final classifier
or a regressor. Stacked generalization consists in stacking the output of individual estimators and use a classifier to
compute the final prediction. Stacking allows to use the strength of each individual estimator by using their output
as input of a final estimator. Base estimators are fitted on the full X while the final estimator is trained using cross-
validated predictions of the base estimators using cross_val_predict.

Read more in the User Guide.

from sklearn.datasets import load_iris
from sklearn.svm import LinearSVC
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import make_pipeline
from sklearn.ensemble import StackingClassifier
from sklearn.model_selection import train_test_split

X, y = load_iris(return_X_y=True)
estimators = [

('rf', RandomForestClassifier(n_estimators=10, random_state=42)),
('svr', make_pipeline(StandardScaler(),

LinearSVC(random_state=42)))
]

(continues on next page)

748 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

clf = StackingClassifier(
estimators=estimators, final_estimator=LogisticRegression()

)
X_train, X_test, y_train, y_test = train_test_split(

X, y, stratify=y, random_state=42
)
clf.fit(X_train, y_train).score(X_test, y_test)

Out:

0.9473684210526315

Permutation-based feature importance

The inspection.permutation_importance can be used to get an estimate of the importance of each feature,
for any fitted estimator:

from sklearn.ensemble import RandomForestClassifier
from sklearn.inspection import permutation_importance

X, y = make_classification(random_state=0, n_features=5, n_informative=3)
rf = RandomForestClassifier(random_state=0).fit(X, y)
result = permutation_importance(rf, X, y, n_repeats=10, random_state=0,

n_jobs=-1)

fig, ax = plt.subplots()
sorted_idx = result.importances_mean.argsort()
ax.boxplot(result.importances[sorted_idx].T,

vert=False, labels=range(X.shape[1]))
ax.set_title("Permutation Importance of each feature")
ax.set_ylabel("Features")
fig.tight_layout()
plt.show()

6.1. Release Highlights 749

scikit-learn user guide, Release 0.23.2

Native support for missing values for gradient boosting

The ensemble.HistGradientBoostingClassifier and ensemble.
HistGradientBoostingRegressor now have native support for missing values (NaNs). This means
that there is no need for imputing data when training or predicting.

from sklearn.experimental import enable_hist_gradient_boosting # noqa
from sklearn.ensemble import HistGradientBoostingClassifier
import numpy as np

X = np.array([0, 1, 2, np.nan]).reshape(-1, 1)
y = [0, 0, 1, 1]

gbdt = HistGradientBoostingClassifier(min_samples_leaf=1).fit(X, y)
print(gbdt.predict(X))

Out:

[0 0 1 1]

750 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Precomputed sparse nearest neighbors graph

Most estimators based on nearest neighbors graphs now accept precomputed sparse graphs as input, to reuse the
same graph for multiple estimator fits. To use this feature in a pipeline, one can use the memory parame-
ter, along with one of the two new transformers, neighbors.KNeighborsTransformer and neighbors.
RadiusNeighborsTransformer. The precomputation can also be performed by custom estimators to use alter-
native implementations, such as approximate nearest neighbors methods. See more details in the User Guide.

from tempfile import TemporaryDirectory
from sklearn.neighbors import KNeighborsTransformer
from sklearn.manifold import Isomap
from sklearn.pipeline import make_pipeline

X, y = make_classification(random_state=0)

with TemporaryDirectory(prefix="sklearn_cache_") as tmpdir:
estimator = make_pipeline(

KNeighborsTransformer(n_neighbors=10, mode='distance'),
Isomap(n_neighbors=10, metric='precomputed'),
memory=tmpdir)

estimator.fit(X)

We can decrease the number of neighbors and the graph will not be
recomputed.
estimator.set_params(isomap__n_neighbors=5)
estimator.fit(X)

KNN Based Imputation

We now support imputation for completing missing values using k-Nearest Neighbors.

Each sample’s missing values are imputed using the mean value from n_neighbors nearest neighbors found in the
training set. Two samples are close if the features that neither is missing are close. By default, a euclidean distance
metric that supports missing values, nan_euclidean_distances, is used to find the nearest neighbors.

Read more in the User Guide.

import numpy as np
from sklearn.impute import KNNImputer

X = [[1, 2, np.nan], [3, 4, 3], [np.nan, 6, 5], [8, 8, 7]]
imputer = KNNImputer(n_neighbors=2)
print(imputer.fit_transform(X))

Out:

[[1. 2. 4.]
[3. 4. 3.]
[5.5 6. 5.]
[8. 8. 7.]]

Tree pruning

It is now possible to prune most tree-based estimators once the trees are built. The pruning is based on minimal
cost-complexity. Read more in the User Guide for details.

6.1. Release Highlights 751

scikit-learn user guide, Release 0.23.2

X, y = make_classification(random_state=0)

rf = RandomForestClassifier(random_state=0, ccp_alpha=0).fit(X, y)
print("Average number of nodes without pruning {:.1f}".format(

np.mean([e.tree_.node_count for e in rf.estimators_])))

rf = RandomForestClassifier(random_state=0, ccp_alpha=0.05).fit(X, y)
print("Average number of nodes with pruning {:.1f}".format(

np.mean([e.tree_.node_count for e in rf.estimators_])))

Out:

Average number of nodes without pruning 22.3
Average number of nodes with pruning 6.4

Retrieve dataframes from OpenML

datasets.fetch_openml can now return pandas dataframe and thus properly handle datasets with heteroge-
neous data:

from sklearn.datasets import fetch_openml

titanic = fetch_openml('titanic', version=1, as_frame=True)
print(titanic.data.head()[['pclass', 'embarked']])

Out:

pclass embarked
0 1.0 S
1 1.0 S
2 1.0 S
3 1.0 S
4 1.0 S

Checking scikit-learn compatibility of an estimator

Developers can check the compatibility of their scikit-learn compatible estimators using check_estimator. For
instance, the check_estimator(LinearSVC) passes.

We now provide a pytest specific decorator which allows pytest to run all checks independently and report the
checks that are failing.

from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.utils.estimator_checks import parametrize_with_checks

@parametrize_with_checks([LogisticRegression, DecisionTreeRegressor])
def test_sklearn_compatible_estimator(estimator, check):

check(estimator)

Out:

752 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

/home/circleci/project/sklearn/utils/estimator_checks.py:420: FutureWarning: Passing
→˓a class is deprecated since version 0.23 and won't be supported in 0.24.Please pass
→˓an instance instead.
warnings.warn(msg, FutureWarning)

ROC AUC now supports multiclass classification

The roc_auc_score function can also be used in multi-class classification. Two averaging strategies are currently
supported: the one-vs-one algorithm computes the average of the pairwise ROC AUC scores, and the one-vs-rest
algorithm computes the average of the ROC AUC scores for each class against all other classes. In both cases, the
multiclass ROC AUC scores are computed from the probability estimates that a sample belongs to a particular class
according to the model. The OvO and OvR algorithms support weighting uniformly (average='macro') and
weighting by the prevalence (average='weighted').

Read more in the User Guide.

from sklearn.datasets import make_classification
from sklearn.svm import SVC
from sklearn.metrics import roc_auc_score

X, y = make_classification(n_classes=4, n_informative=16)
clf = SVC(decision_function_shape='ovo', probability=True).fit(X, y)
print(roc_auc_score(y, clf.predict_proba(X), multi_class='ovo'))

Out:

0.9984000000000001

Total running time of the script: (0 minutes 1.820 seconds)

6.2 Biclustering

Examples concerning the sklearn.cluster.bicluster module.

6.2.1 A demo of the Spectral Co-Clustering algorithm

This example demonstrates how to generate a dataset and bicluster it using the Spectral Co-Clustering algorithm.

The dataset is generated using the make_biclusters function, which creates a matrix of small values and im-
plants bicluster with large values. The rows and columns are then shuffled and passed to the Spectral Co-Clustering
algorithm. Rearranging the shuffled matrix to make biclusters contiguous shows how accurately the algorithm found
the biclusters.

6.2. Biclustering 753

scikit-learn user guide, Release 0.23.2

•

754 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

6.2. Biclustering 755

scikit-learn user guide, Release 0.23.2

•

Out:

consensus score: 1.000

print(__doc__)

Author: Kemal Eren <kemal@kemaleren.com>
License: BSD 3 clause

import numpy as np
from matplotlib import pyplot as plt

from sklearn.datasets import make_biclusters
from sklearn.cluster import SpectralCoclustering
from sklearn.metrics import consensus_score

data, rows, columns = make_biclusters(
shape=(300, 300), n_clusters=5, noise=5,
shuffle=False, random_state=0)

(continues on next page)

756 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.matshow(data, cmap=plt.cm.Blues)
plt.title("Original dataset")

shuffle clusters
rng = np.random.RandomState(0)
row_idx = rng.permutation(data.shape[0])
col_idx = rng.permutation(data.shape[1])
data = data[row_idx][:, col_idx]

plt.matshow(data, cmap=plt.cm.Blues)
plt.title("Shuffled dataset")

model = SpectralCoclustering(n_clusters=5, random_state=0)
model.fit(data)
score = consensus_score(model.biclusters_,

(rows[:, row_idx], columns[:, col_idx]))

print("consensus score: {:.3f}".format(score))

fit_data = data[np.argsort(model.row_labels_)]
fit_data = fit_data[:, np.argsort(model.column_labels_)]

plt.matshow(fit_data, cmap=plt.cm.Blues)
plt.title("After biclustering; rearranged to show biclusters")

plt.show()

Total running time of the script: (0 minutes 0.292 seconds)

6.2.2 A demo of the Spectral Biclustering algorithm

This example demonstrates how to generate a checkerboard dataset and bicluster it using the Spectral Biclustering
algorithm.

The data is generated with the make_checkerboard function, then shuffled and passed to the Spectral Biclustering
algorithm. The rows and columns of the shuffled matrix are rearranged to show the biclusters found by the algorithm.

The outer product of the row and column label vectors shows a representation of the checkerboard structure.

6.2. Biclustering 757

scikit-learn user guide, Release 0.23.2

•

758 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

6.2. Biclustering 759

scikit-learn user guide, Release 0.23.2

•

760 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

Out:

consensus score: 1.0

print(__doc__)

Author: Kemal Eren <kemal@kemaleren.com>
License: BSD 3 clause

import numpy as np
from matplotlib import pyplot as plt

from sklearn.datasets import make_checkerboard
from sklearn.cluster import SpectralBiclustering
from sklearn.metrics import consensus_score

n_clusters = (4, 3)
data, rows, columns = make_checkerboard(

shape=(300, 300), n_clusters=n_clusters, noise=10,

(continues on next page)

6.2. Biclustering 761

scikit-learn user guide, Release 0.23.2

(continued from previous page)

shuffle=False, random_state=0)

plt.matshow(data, cmap=plt.cm.Blues)
plt.title("Original dataset")

shuffle clusters
rng = np.random.RandomState(0)
row_idx = rng.permutation(data.shape[0])
col_idx = rng.permutation(data.shape[1])
data = data[row_idx][:, col_idx]

plt.matshow(data, cmap=plt.cm.Blues)
plt.title("Shuffled dataset")

model = SpectralBiclustering(n_clusters=n_clusters, method='log',
random_state=0)

model.fit(data)
score = consensus_score(model.biclusters_,

(rows[:, row_idx], columns[:, col_idx]))

print("consensus score: {:.1f}".format(score))

fit_data = data[np.argsort(model.row_labels_)]
fit_data = fit_data[:, np.argsort(model.column_labels_)]

plt.matshow(fit_data, cmap=plt.cm.Blues)
plt.title("After biclustering; rearranged to show biclusters")

plt.matshow(np.outer(np.sort(model.row_labels_) + 1,
np.sort(model.column_labels_) + 1),

cmap=plt.cm.Blues)
plt.title("Checkerboard structure of rearranged data")

plt.show()

Total running time of the script: (0 minutes 0.682 seconds)

6.2.3 Biclustering documents with the Spectral Co-clustering algorithm

This example demonstrates the Spectral Co-clustering algorithm on the twenty newsgroups dataset. The ‘comp.os.ms-
windows.misc’ category is excluded because it contains many posts containing nothing but data.

The TF-IDF vectorized posts form a word frequency matrix, which is then biclustered using Dhillon’s Spectral Co-
Clustering algorithm. The resulting document-word biclusters indicate subsets words used more often in those subsets
documents.

For a few of the best biclusters, its most common document categories and its ten most important words get printed.
The best biclusters are determined by their normalized cut. The best words are determined by comparing their sums
inside and outside the bicluster.

For comparison, the documents are also clustered using MiniBatchKMeans. The document clusters derived from the
biclusters achieve a better V-measure than clusters found by MiniBatchKMeans.

Out:

762 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Vectorizing...
Coclustering...
Done in 1.62s. V-measure: 0.4385
MiniBatchKMeans...
Done in 4.87s. V-measure: 0.3344

Best biclusters:

bicluster 0 : 1830 documents, 2522 words
categories : 22% comp.sys.ibm.pc.hardware, 19% comp.sys.mac.hardware, 18% comp.
→˓graphics
words : card, pc, ram, drive, bus, mac, motherboard, port, windows, floppy

bicluster 1 : 2385 documents, 3272 words
categories : 18% rec.motorcycles, 18% rec.autos, 15% sci.electronics
words : bike, engine, car, dod, bmw, honda, oil, motorcycle, behanna, ysu

bicluster 2 : 1886 documents, 4236 words
categories : 23% talk.politics.guns, 19% talk.politics.misc, 13% sci.med
words : gun, guns, firearms, geb, drugs, banks, dyer, amendment, clinton, cdt

bicluster 3 : 1146 documents, 3261 words
categories : 29% talk.politics.mideast, 26% soc.religion.christian, 25% alt.atheism
words : god, jesus, christians, atheists, kent, sin, morality, belief,
→˓resurrection, marriage

bicluster 4 : 1736 documents, 3959 words
categories : 26% sci.crypt, 23% sci.space, 17% sci.med
words : clipper, encryption, key, escrow, nsa, crypto, keys, intercon, secure,
→˓wiretap

from collections import defaultdict
import operator
from time import time

import numpy as np

from sklearn.cluster import SpectralCoclustering
from sklearn.cluster import MiniBatchKMeans
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.cluster import v_measure_score

print(__doc__)

def number_normalizer(tokens):
""" Map all numeric tokens to a placeholder.

For many applications, tokens that begin with a number are not directly
useful, but the fact that such a token exists can be relevant. By applying
this form of dimensionality reduction, some methods may perform better.

(continues on next page)

6.2. Biclustering 763

scikit-learn user guide, Release 0.23.2

(continued from previous page)

"""
return ("#NUMBER" if token[0].isdigit() else token for token in tokens)

class NumberNormalizingVectorizer(TfidfVectorizer):
def build_tokenizer(self):

tokenize = super().build_tokenizer()
return lambda doc: list(number_normalizer(tokenize(doc)))

exclude 'comp.os.ms-windows.misc'
categories = ['alt.atheism', 'comp.graphics',

'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware',
'comp.windows.x', 'misc.forsale', 'rec.autos',
'rec.motorcycles', 'rec.sport.baseball',
'rec.sport.hockey', 'sci.crypt', 'sci.electronics',
'sci.med', 'sci.space', 'soc.religion.christian',
'talk.politics.guns', 'talk.politics.mideast',
'talk.politics.misc', 'talk.religion.misc']

newsgroups = fetch_20newsgroups(categories=categories)
y_true = newsgroups.target

vectorizer = NumberNormalizingVectorizer(stop_words='english', min_df=5)
cocluster = SpectralCoclustering(n_clusters=len(categories),

svd_method='arpack', random_state=0)
kmeans = MiniBatchKMeans(n_clusters=len(categories), batch_size=20000,

random_state=0)

print("Vectorizing...")
X = vectorizer.fit_transform(newsgroups.data)

print("Coclustering...")
start_time = time()
cocluster.fit(X)
y_cocluster = cocluster.row_labels_
print("Done in {:.2f}s. V-measure: {:.4f}".format(

time() - start_time,
v_measure_score(y_cocluster, y_true)))

print("MiniBatchKMeans...")
start_time = time()
y_kmeans = kmeans.fit_predict(X)
print("Done in {:.2f}s. V-measure: {:.4f}".format(

time() - start_time,
v_measure_score(y_kmeans, y_true)))

feature_names = vectorizer.get_feature_names()
document_names = list(newsgroups.target_names[i] for i in newsgroups.target)

def bicluster_ncut(i):
rows, cols = cocluster.get_indices(i)
if not (np.any(rows) and np.any(cols)):

import sys
return sys.float_info.max

row_complement = np.nonzero(np.logical_not(cocluster.rows_[i]))[0]
col_complement = np.nonzero(np.logical_not(cocluster.columns_[i]))[0]

(continues on next page)

764 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Note: the following is identical to X[rows[:, np.newaxis],
cols].sum() but much faster in scipy <= 0.16
weight = X[rows][:, cols].sum()
cut = (X[row_complement][:, cols].sum() +

X[rows][:, col_complement].sum())
return cut / weight

def most_common(d):
"""Items of a defaultdict(int) with the highest values.

Like Counter.most_common in Python >=2.7.
"""
return sorted(d.items(), key=operator.itemgetter(1), reverse=True)

bicluster_ncuts = list(bicluster_ncut(i)
for i in range(len(newsgroups.target_names)))

best_idx = np.argsort(bicluster_ncuts)[:5]

print()
print("Best biclusters:")
print("----------------")
for idx, cluster in enumerate(best_idx):

n_rows, n_cols = cocluster.get_shape(cluster)
cluster_docs, cluster_words = cocluster.get_indices(cluster)
if not len(cluster_docs) or not len(cluster_words):

continue

categories
counter = defaultdict(int)
for i in cluster_docs:

counter[document_names[i]] += 1
cat_string = ", ".join("{:.0f}% {}".format(float(c) / n_rows * 100, name)

for name, c in most_common(counter)[:3])

words
out_of_cluster_docs = cocluster.row_labels_ != cluster
out_of_cluster_docs = np.where(out_of_cluster_docs)[0]
word_col = X[:, cluster_words]
word_scores = np.array(word_col[cluster_docs, :].sum(axis=0) -

word_col[out_of_cluster_docs, :].sum(axis=0))
word_scores = word_scores.ravel()
important_words = list(feature_names[cluster_words[i]]

for i in word_scores.argsort()[:-11:-1])

print("bicluster {} : {} documents, {} words".format(
idx, n_rows, n_cols))

print("categories : {}".format(cat_string))
print("words : {}\n".format(', '.join(important_words)))

Total running time of the script: (0 minutes 9.376 seconds)

6.2. Biclustering 765

scikit-learn user guide, Release 0.23.2

6.3 Calibration

Examples illustrating the calibration of predicted probabilities of classifiers.

6.3.1 Comparison of Calibration of Classifiers

Well calibrated classifiers are probabilistic classifiers for which the output of the predict_proba method can be directly
interpreted as a confidence level. For instance a well calibrated (binary) classifier should classify the samples such that
among the samples to which it gave a predict_proba value close to 0.8, approx. 80% actually belong to the positive
class.

LogisticRegression returns well calibrated predictions as it directly optimizes log-loss. In contrast, the other methods
return biased probabilities, with different biases per method:

• GaussianNaiveBayes tends to push probabilities to 0 or 1 (note the counts in the histograms). This is mainly
because it makes the assumption that features are conditionally independent given the class, which is not the
case in this dataset which contains 2 redundant features.

• RandomForestClassifier shows the opposite behavior: the histograms show peaks at approx. 0.2 and 0.9 proba-
bility, while probabilities close to 0 or 1 are very rare. An explanation for this is given by Niculescu-Mizil and
Caruana1: “Methods such as bagging and random forests that average predictions from a base set of models can
have difficulty making predictions near 0 and 1 because variance in the underlying base models will bias predic-
tions that should be near zero or one away from these values. Because predictions are restricted to the interval
[0,1], errors caused by variance tend to be one- sided near zero and one. For example, if a model should predict
p = 0 for a case, the only way bagging can achieve this is if all bagged trees predict zero. If we add noise to the
trees that bagging is averaging over, this noise will cause some trees to predict values larger than 0 for this case,
thus moving the average prediction of the bagged ensemble away from 0. We observe this effect most strongly
with random forests because the base-level trees trained with random forests have relatively high variance due
to feature subsetting.” As a result, the calibration curve shows a characteristic sigmoid shape, indicating that the
classifier could trust its “intuition” more and return probabilities closer to 0 or 1 typically.

• Support Vector Classification (SVC) shows an even more sigmoid curve as the RandomForestClassifier, which
is typical for maximum-margin methods (compare Niculescu-Mizil and Caruana1), which focus on hard samples
that are close to the decision boundary (the support vectors).

References:

1 Predicting Good Probabilities with Supervised Learning, A. Niculescu-Mizil & R. Caruana, ICML 2005

766 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

print(__doc__)

Author: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
License: BSD Style.

import numpy as np
np.random.seed(0)

import matplotlib.pyplot as plt

from sklearn import datasets
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier

(continues on next page)

6.3. Calibration 767

scikit-learn user guide, Release 0.23.2

(continued from previous page)

from sklearn.svm import LinearSVC
from sklearn.calibration import calibration_curve

X, y = datasets.make_classification(n_samples=100000, n_features=20,
n_informative=2, n_redundant=2)

train_samples = 100 # Samples used for training the models

X_train = X[:train_samples]
X_test = X[train_samples:]
y_train = y[:train_samples]
y_test = y[train_samples:]

Create classifiers
lr = LogisticRegression()
gnb = GaussianNB()
svc = LinearSVC(C=1.0)
rfc = RandomForestClassifier()

###
Plot calibration plots

plt.figure(figsize=(10, 10))
ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2)
ax2 = plt.subplot2grid((3, 1), (2, 0))

ax1.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated")
for clf, name in [(lr, 'Logistic'),

(gnb, 'Naive Bayes'),
(svc, 'Support Vector Classification'),
(rfc, 'Random Forest')]:

clf.fit(X_train, y_train)
if hasattr(clf, "predict_proba"):

prob_pos = clf.predict_proba(X_test)[:, 1]
else: # use decision function

prob_pos = clf.decision_function(X_test)
prob_pos = \

(prob_pos - prob_pos.min()) / (prob_pos.max() - prob_pos.min())
fraction_of_positives, mean_predicted_value = \

calibration_curve(y_test, prob_pos, n_bins=10)

ax1.plot(mean_predicted_value, fraction_of_positives, "s-",
label="%s" % (name,))

ax2.hist(prob_pos, range=(0, 1), bins=10, label=name,
histtype="step", lw=2)

ax1.set_ylabel("Fraction of positives")
ax1.set_ylim([-0.05, 1.05])
ax1.legend(loc="lower right")
ax1.set_title('Calibration plots (reliability curve)')

ax2.set_xlabel("Mean predicted value")
ax2.set_ylabel("Count")
ax2.legend(loc="upper center", ncol=2)

(continues on next page)

768 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.tight_layout()
plt.show()

Total running time of the script: (0 minutes 1.041 seconds)

6.3.2 Probability Calibration curves

When performing classification one often wants to predict not only the class label, but also the associated probability.
This probability gives some kind of confidence on the prediction. This example demonstrates how to display how well
calibrated the predicted probabilities are and how to calibrate an uncalibrated classifier.

The experiment is performed on an artificial dataset for binary classification with 100,000 samples (1,000 of them are
used for model fitting) with 20 features. Of the 20 features, only 2 are informative and 10 are redundant. The first
figure shows the estimated probabilities obtained with logistic regression, Gaussian naive Bayes, and Gaussian naive
Bayes with both isotonic calibration and sigmoid calibration. The calibration performance is evaluated with Brier
score, reported in the legend (the smaller the better). One can observe here that logistic regression is well calibrated
while raw Gaussian naive Bayes performs very badly. This is because of the redundant features which violate the
assumption of feature-independence and result in an overly confident classifier, which is indicated by the typical
transposed-sigmoid curve.

Calibration of the probabilities of Gaussian naive Bayes with isotonic regression can fix this issue as can be seen from
the nearly diagonal calibration curve. Sigmoid calibration also improves the brier score slightly, albeit not as strongly
as the non-parametric isotonic regression. This can be attributed to the fact that we have plenty of calibration data such
that the greater flexibility of the non-parametric model can be exploited.

The second figure shows the calibration curve of a linear support-vector classifier (LinearSVC). LinearSVC shows
the opposite behavior as Gaussian naive Bayes: the calibration curve has a sigmoid curve, which is typical for an
under-confident classifier. In the case of LinearSVC, this is caused by the margin property of the hinge loss, which
lets the model focus on hard samples that are close to the decision boundary (the support vectors).

Both kinds of calibration can fix this issue and yield nearly identical results. This shows that sigmoid calibration can
deal with situations where the calibration curve of the base classifier is sigmoid (e.g., for LinearSVC) but not where it
is transposed-sigmoid (e.g., Gaussian naive Bayes).

6.3. Calibration 769

scikit-learn user guide, Release 0.23.2

•

770 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

Out:

Logistic:
Brier: 0.099
Precision: 0.872
Recall: 0.851
F1: 0.862

Naive Bayes:
Brier: 0.118
Precision: 0.857
Recall: 0.876
F1: 0.867

Naive Bayes + Isotonic:
Brier: 0.098
Precision: 0.883

(continues on next page)

6.3. Calibration 771

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Recall: 0.836
F1: 0.859

Naive Bayes + Sigmoid:
Brier: 0.109
Precision: 0.861
Recall: 0.871
F1: 0.866

Logistic:
Brier: 0.099
Precision: 0.872
Recall: 0.851
F1: 0.862

SVC:
Brier: 0.163
Precision: 0.872
Recall: 0.852
F1: 0.862

SVC + Isotonic:
Brier: 0.100
Precision: 0.853
Recall: 0.878
F1: 0.865

SVC + Sigmoid:
Brier: 0.099
Precision: 0.874
Recall: 0.849
F1: 0.861

print(__doc__)

Author: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
License: BSD Style.

import matplotlib.pyplot as plt

from sklearn import datasets
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import LinearSVC
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import (brier_score_loss, precision_score, recall_score,

f1_score)
from sklearn.calibration import CalibratedClassifierCV, calibration_curve
from sklearn.model_selection import train_test_split

(continues on next page)

772 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Create dataset of classification task with many redundant and few
informative features
X, y = datasets.make_classification(n_samples=100000, n_features=20,

n_informative=2, n_redundant=10,
random_state=42)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.99,
random_state=42)

def plot_calibration_curve(est, name, fig_index):
"""Plot calibration curve for est w/o and with calibration. """
Calibrated with isotonic calibration
isotonic = CalibratedClassifierCV(est, cv=2, method='isotonic')

Calibrated with sigmoid calibration
sigmoid = CalibratedClassifierCV(est, cv=2, method='sigmoid')

Logistic regression with no calibration as baseline
lr = LogisticRegression(C=1.)

fig = plt.figure(fig_index, figsize=(10, 10))
ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2)
ax2 = plt.subplot2grid((3, 1), (2, 0))

ax1.plot([0, 1], [0, 1], "k:", label="Perfectly calibrated")
for clf, name in [(lr, 'Logistic'),

(est, name),
(isotonic, name + ' + Isotonic'),
(sigmoid, name + ' + Sigmoid')]:

clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
if hasattr(clf, "predict_proba"):

prob_pos = clf.predict_proba(X_test)[:, 1]
else: # use decision function

prob_pos = clf.decision_function(X_test)
prob_pos = \

(prob_pos - prob_pos.min()) / (prob_pos.max() - prob_pos.min())

clf_score = brier_score_loss(y_test, prob_pos, pos_label=y.max())
print("%s:" % name)
print("\tBrier: %1.3f" % (clf_score))
print("\tPrecision: %1.3f" % precision_score(y_test, y_pred))
print("\tRecall: %1.3f" % recall_score(y_test, y_pred))
print("\tF1: %1.3f\n" % f1_score(y_test, y_pred))

fraction_of_positives, mean_predicted_value = \
calibration_curve(y_test, prob_pos, n_bins=10)

ax1.plot(mean_predicted_value, fraction_of_positives, "s-",
label="%s (%1.3f)" % (name, clf_score))

ax2.hist(prob_pos, range=(0, 1), bins=10, label=name,
histtype="step", lw=2)

ax1.set_ylabel("Fraction of positives")
ax1.set_ylim([-0.05, 1.05])

(continues on next page)

6.3. Calibration 773

scikit-learn user guide, Release 0.23.2

(continued from previous page)

ax1.legend(loc="lower right")
ax1.set_title('Calibration plots (reliability curve)')

ax2.set_xlabel("Mean predicted value")
ax2.set_ylabel("Count")
ax2.legend(loc="upper center", ncol=2)

plt.tight_layout()

Plot calibration curve for Gaussian Naive Bayes
plot_calibration_curve(GaussianNB(), "Naive Bayes", 1)

Plot calibration curve for Linear SVC
plot_calibration_curve(LinearSVC(max_iter=10000), "SVC", 2)

plt.show()

Total running time of the script: (0 minutes 1.997 seconds)

6.3.3 Probability calibration of classifiers

When performing classification you often want to predict not only the class label, but also the associated probability.
This probability gives you some kind of confidence on the prediction. However, not all classifiers provide well-
calibrated probabilities, some being over-confident while others being under-confident. Thus, a separate calibration
of predicted probabilities is often desirable as a postprocessing. This example illustrates two different methods for
this calibration and evaluates the quality of the returned probabilities using Brier’s score (see https://en.wikipedia.org/
wiki/Brier_score).

Compared are the estimated probability using a Gaussian naive Bayes classifier without calibration, with a sigmoid
calibration, and with a non-parametric isotonic calibration. One can observe that only the non-parametric model is
able to provide a probability calibration that returns probabilities close to the expected 0.5 for most of the samples
belonging to the middle cluster with heterogeneous labels. This results in a significantly improved Brier score.

774 Chapter 6. Examples

https://en.wikipedia.org/wiki/Brier_score
https://en.wikipedia.org/wiki/Brier_score

scikit-learn user guide, Release 0.23.2

•

6.3. Calibration 775

scikit-learn user guide, Release 0.23.2

•

Out:

Brier scores: (the smaller the better)
No calibration: 0.104
With isotonic calibration: 0.084
With sigmoid calibration: 0.109

print(__doc__)

Author: Mathieu Blondel <mathieu@mblondel.org>
Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
Balazs Kegl <balazs.kegl@gmail.com>
Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
License: BSD Style.

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm

from sklearn.datasets import make_blobs
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import brier_score_loss

(continues on next page)

776 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

from sklearn.calibration import CalibratedClassifierCV
from sklearn.model_selection import train_test_split

n_samples = 50000
n_bins = 3 # use 3 bins for calibration_curve as we have 3 clusters here

Generate 3 blobs with 2 classes where the second blob contains
half positive samples and half negative samples. Probability in this
blob is therefore 0.5.
centers = [(-5, -5), (0, 0), (5, 5)]
X, y = make_blobs(n_samples=n_samples, centers=centers, shuffle=False,

random_state=42)

y[:n_samples // 2] = 0
y[n_samples // 2:] = 1
sample_weight = np.random.RandomState(42).rand(y.shape[0])

split train, test for calibration
X_train, X_test, y_train, y_test, sw_train, sw_test = \

train_test_split(X, y, sample_weight, test_size=0.9, random_state=42)

Gaussian Naive-Bayes with no calibration
clf = GaussianNB()
clf.fit(X_train, y_train) # GaussianNB itself does not support sample-weights
prob_pos_clf = clf.predict_proba(X_test)[:, 1]

Gaussian Naive-Bayes with isotonic calibration
clf_isotonic = CalibratedClassifierCV(clf, cv=2, method='isotonic')
clf_isotonic.fit(X_train, y_train, sample_weight=sw_train)
prob_pos_isotonic = clf_isotonic.predict_proba(X_test)[:, 1]

Gaussian Naive-Bayes with sigmoid calibration
clf_sigmoid = CalibratedClassifierCV(clf, cv=2, method='sigmoid')
clf_sigmoid.fit(X_train, y_train, sample_weight=sw_train)
prob_pos_sigmoid = clf_sigmoid.predict_proba(X_test)[:, 1]

print("Brier scores: (the smaller the better)")

clf_score = brier_score_loss(y_test, prob_pos_clf, sample_weight=sw_test)
print("No calibration: %1.3f" % clf_score)

clf_isotonic_score = brier_score_loss(y_test, prob_pos_isotonic,
sample_weight=sw_test)

print("With isotonic calibration: %1.3f" % clf_isotonic_score)

clf_sigmoid_score = brier_score_loss(y_test, prob_pos_sigmoid,
sample_weight=sw_test)

print("With sigmoid calibration: %1.3f" % clf_sigmoid_score)

###
Plot the data and the predicted probabilities
plt.figure()
y_unique = np.unique(y)
colors = cm.rainbow(np.linspace(0.0, 1.0, y_unique.size))
for this_y, color in zip(y_unique, colors):

this_X = X_train[y_train == this_y]
(continues on next page)

6.3. Calibration 777

scikit-learn user guide, Release 0.23.2

(continued from previous page)

this_sw = sw_train[y_train == this_y]
plt.scatter(this_X[:, 0], this_X[:, 1], s=this_sw * 50,

c=color[np.newaxis, :],
alpha=0.5, edgecolor='k',
label="Class %s" % this_y)

plt.legend(loc="best")
plt.title("Data")

plt.figure()
order = np.lexsort((prob_pos_clf,))
plt.plot(prob_pos_clf[order], 'r', label='No calibration (%1.3f)' % clf_score)
plt.plot(prob_pos_isotonic[order], 'g', linewidth=3,

label='Isotonic calibration (%1.3f)' % clf_isotonic_score)
plt.plot(prob_pos_sigmoid[order], 'b', linewidth=3,

label='Sigmoid calibration (%1.3f)' % clf_sigmoid_score)
plt.plot(np.linspace(0, y_test.size, 51)[1::2],

y_test[order].reshape(25, -1).mean(1),
'k', linewidth=3, label=r'Empirical')

plt.ylim([-0.05, 1.05])
plt.xlabel("Instances sorted according to predicted probability "

"(uncalibrated GNB)")
plt.ylabel("P(y=1)")
plt.legend(loc="upper left")
plt.title("Gaussian naive Bayes probabilities")

plt.show()

Total running time of the script: (0 minutes 0.322 seconds)

6.3.4 Probability Calibration for 3-class classification

This example illustrates how sigmoid calibration changes predicted probabilities for a 3-class classification problem.
Illustrated is the standard 2-simplex, where the three corners correspond to the three classes. Arrows point from the
probability vectors predicted by an uncalibrated classifier to the probability vectors predicted by the same classifier
after sigmoid calibration on a hold-out validation set. Colors indicate the true class of an instance (red: class 1, green:
class 2, blue: class 3).

The base classifier is a random forest classifier with 25 base estimators (trees). If this classifier is trained on all 800
training datapoints, it is overly confident in its predictions and thus incurs a large log-loss. Calibrating an identical
classifier, which was trained on 600 datapoints, with method=’sigmoid’ on the remaining 200 datapoints reduces the
confidence of the predictions, i.e., moves the probability vectors from the edges of the simplex towards the center.
This calibration results in a lower log-loss. Note that an alternative would have been to increase the number of base
estimators which would have resulted in a similar decrease in log-loss.

778 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

6.3. Calibration 779

scikit-learn user guide, Release 0.23.2

•

Out:

Log-loss of

* uncalibrated classifier trained on 800 datapoints: 1.280

* classifier trained on 600 datapoints and calibrated on 200 datapoint: 0.534

print(__doc__)

Author: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
License: BSD Style.

import matplotlib.pyplot as plt

import numpy as np

from sklearn.datasets import make_blobs
from sklearn.ensemble import RandomForestClassifier
from sklearn.calibration import CalibratedClassifierCV
from sklearn.metrics import log_loss

np.random.seed(0)
(continues on next page)

780 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Generate data
X, y = make_blobs(n_samples=1000, random_state=42, cluster_std=5.0)
X_train, y_train = X[:600], y[:600]
X_valid, y_valid = X[600:800], y[600:800]
X_train_valid, y_train_valid = X[:800], y[:800]
X_test, y_test = X[800:], y[800:]

Train uncalibrated random forest classifier on whole train and validation
data and evaluate on test data
clf = RandomForestClassifier(n_estimators=25)
clf.fit(X_train_valid, y_train_valid)
clf_probs = clf.predict_proba(X_test)
score = log_loss(y_test, clf_probs)

Train random forest classifier, calibrate on validation data and evaluate
on test data
clf = RandomForestClassifier(n_estimators=25)
clf.fit(X_train, y_train)
clf_probs = clf.predict_proba(X_test)
sig_clf = CalibratedClassifierCV(clf, method="sigmoid", cv="prefit")
sig_clf.fit(X_valid, y_valid)
sig_clf_probs = sig_clf.predict_proba(X_test)
sig_score = log_loss(y_test, sig_clf_probs)

Plot changes in predicted probabilities via arrows
plt.figure()
colors = ["r", "g", "b"]
for i in range(clf_probs.shape[0]):

plt.arrow(clf_probs[i, 0], clf_probs[i, 1],
sig_clf_probs[i, 0] - clf_probs[i, 0],
sig_clf_probs[i, 1] - clf_probs[i, 1],
color=colors[y_test[i]], head_width=1e-2)

Plot perfect predictions
plt.plot([1.0], [0.0], 'ro', ms=20, label="Class 1")
plt.plot([0.0], [1.0], 'go', ms=20, label="Class 2")
plt.plot([0.0], [0.0], 'bo', ms=20, label="Class 3")

Plot boundaries of unit simplex
plt.plot([0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], 'k', label="Simplex")

Annotate points on the simplex
plt.annotate(r'($\frac{1}{3}$, $\frac{1}{3}$, $\frac{1}{3}$)',

xy=(1.0/3, 1.0/3), xytext=(1.0/3, .23), xycoords='data',
arrowprops=dict(facecolor='black', shrink=0.05),
horizontalalignment='center', verticalalignment='center')

plt.plot([1.0/3], [1.0/3], 'ko', ms=5)
plt.annotate(r'($\frac{1}{2}$, 0, $\frac{1}{2}$)',

xy=(.5, .0), xytext=(.5, .1), xycoords='data',
arrowprops=dict(facecolor='black', shrink=0.05),
horizontalalignment='center', verticalalignment='center')

plt.annotate(r'(0, $\frac{1}{2}$, $\frac{1}{2}$)',
xy=(.0, .5), xytext=(.1, .5), xycoords='data',
arrowprops=dict(facecolor='black', shrink=0.05),
horizontalalignment='center', verticalalignment='center')

plt.annotate(r'($\frac{1}{2}$, $\frac{1}{2}$, 0)',
(continues on next page)

6.3. Calibration 781

scikit-learn user guide, Release 0.23.2

(continued from previous page)

xy=(.5, .5), xytext=(.6, .6), xycoords='data',
arrowprops=dict(facecolor='black', shrink=0.05),
horizontalalignment='center', verticalalignment='center')

plt.annotate(r'(0, 0, 1)',
xy=(0, 0), xytext=(.1, .1), xycoords='data',
arrowprops=dict(facecolor='black', shrink=0.05),
horizontalalignment='center', verticalalignment='center')

plt.annotate(r'(1, 0, 0)',
xy=(1, 0), xytext=(1, .1), xycoords='data',
arrowprops=dict(facecolor='black', shrink=0.05),
horizontalalignment='center', verticalalignment='center')

plt.annotate(r'(0, 1, 0)',
xy=(0, 1), xytext=(.1, 1), xycoords='data',
arrowprops=dict(facecolor='black', shrink=0.05),
horizontalalignment='center', verticalalignment='center')

Add grid
plt.grid(False)
for x in [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]:

plt.plot([0, x], [x, 0], 'k', alpha=0.2)
plt.plot([0, 0 + (1-x)/2], [x, x + (1-x)/2], 'k', alpha=0.2)
plt.plot([x, x + (1-x)/2], [0, 0 + (1-x)/2], 'k', alpha=0.2)

plt.title("Change of predicted probabilities after sigmoid calibration")
plt.xlabel("Probability class 1")
plt.ylabel("Probability class 2")
plt.xlim(-0.05, 1.05)
plt.ylim(-0.05, 1.05)
plt.legend(loc="best")

print("Log-loss of")
print(" * uncalibrated classifier trained on 800 datapoints: %.3f "

% score)
print(" * classifier trained on 600 datapoints and calibrated on "

"200 datapoint: %.3f" % sig_score)

Illustrate calibrator
plt.figure()
generate grid over 2-simplex
p1d = np.linspace(0, 1, 20)
p0, p1 = np.meshgrid(p1d, p1d)
p2 = 1 - p0 - p1
p = np.c_[p0.ravel(), p1.ravel(), p2.ravel()]
p = p[p[:, 2] >= 0]

calibrated_classifier = sig_clf.calibrated_classifiers_[0]
prediction = np.vstack([calibrator.predict(this_p)

for calibrator, this_p in
zip(calibrated_classifier.calibrators_, p.T)]).T

prediction /= prediction.sum(axis=1)[:, None]

Plot modifications of calibrator
for i in range(prediction.shape[0]):

plt.arrow(p[i, 0], p[i, 1],
prediction[i, 0] - p[i, 0], prediction[i, 1] - p[i, 1],
head_width=1e-2, color=colors[np.argmax(p[i])])

Plot boundaries of unit simplex
plt.plot([0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], 'k', label="Simplex")

(continues on next page)

782 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.grid(False)
for x in [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]:

plt.plot([0, x], [x, 0], 'k', alpha=0.2)
plt.plot([0, 0 + (1-x)/2], [x, x + (1-x)/2], 'k', alpha=0.2)
plt.plot([x, x + (1-x)/2], [0, 0 + (1-x)/2], 'k', alpha=0.2)

plt.title("Illustration of sigmoid calibrator")
plt.xlabel("Probability class 1")
plt.ylabel("Probability class 2")
plt.xlim(-0.05, 1.05)
plt.ylim(-0.05, 1.05)

plt.show()

Total running time of the script: (0 minutes 0.559 seconds)

6.4 Classification

General examples about classification algorithms.

6.4.1 Normal and Shrinkage Linear Discriminant Analysis for classification

Shows how shrinkage improves classification.

6.4. Classification 783

scikit-learn user guide, Release 0.23.2

import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets import make_blobs
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

n_train = 20 # samples for training
n_test = 200 # samples for testing
n_averages = 50 # how often to repeat classification
n_features_max = 75 # maximum number of features
step = 4 # step size for the calculation

def generate_data(n_samples, n_features):
"""Generate random blob-ish data with noisy features.

This returns an array of input data with shape `(n_samples, n_features)`
and an array of `n_samples` target labels.

Only one feature contains discriminative information, the other features
contain only noise.
"""
X, y = make_blobs(n_samples=n_samples, n_features=1, centers=[[-2], [2]])

(continues on next page)

784 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

add non-discriminative features
if n_features > 1:

X = np.hstack([X, np.random.randn(n_samples, n_features - 1)])
return X, y

acc_clf1, acc_clf2 = [], []
n_features_range = range(1, n_features_max + 1, step)
for n_features in n_features_range:

score_clf1, score_clf2 = 0, 0
for _ in range(n_averages):

X, y = generate_data(n_train, n_features)

clf1 = LinearDiscriminantAnalysis(solver='lsqr', shrinkage='auto').fit(X, y)
clf2 = LinearDiscriminantAnalysis(solver='lsqr', shrinkage=None).fit(X, y)

X, y = generate_data(n_test, n_features)
score_clf1 += clf1.score(X, y)
score_clf2 += clf2.score(X, y)

acc_clf1.append(score_clf1 / n_averages)
acc_clf2.append(score_clf2 / n_averages)

features_samples_ratio = np.array(n_features_range) / n_train

plt.plot(features_samples_ratio, acc_clf1, linewidth=2,
label="Linear Discriminant Analysis with shrinkage", color='navy')

plt.plot(features_samples_ratio, acc_clf2, linewidth=2,
label="Linear Discriminant Analysis", color='gold')

plt.xlabel('n_features / n_samples')
plt.ylabel('Classification accuracy')

plt.legend(loc=1, prop={'size': 12})
plt.suptitle('Linear Discriminant Analysis vs. \
shrinkage Linear Discriminant Analysis (1 discriminative feature)')
plt.show()

Total running time of the script: (0 minutes 3.883 seconds)

6.4.2 Recognizing hand-written digits

An example showing how the scikit-learn can be used to recognize images of hand-written digits.

This example is commented in the tutorial section of the user manual.

6.4. Classification 785

scikit-learn user guide, Release 0.23.2

•

786 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

Out:

Classification report for classifier SVC(gamma=0.001):
precision recall f1-score support

0 1.00 0.99 0.99 88
1 0.99 0.97 0.98 91
2 0.99 0.99 0.99 86
3 0.98 0.87 0.92 91
4 0.99 0.96 0.97 92
5 0.95 0.97 0.96 91
6 0.99 0.99 0.99 91
7 0.96 0.99 0.97 89
8 0.94 1.00 0.97 88
9 0.93 0.98 0.95 92

accuracy 0.97 899
macro avg 0.97 0.97 0.97 899

weighted avg 0.97 0.97 0.97 899

Confusion matrix:
[[87 0 0 0 1 0 0 0 0 0]
[0 88 1 0 0 0 0 0 1 1]
[0 0 85 1 0 0 0 0 0 0]
[0 0 0 79 0 3 0 4 5 0]
[0 0 0 0 88 0 0 0 0 4]

(continues on next page)

6.4. Classification 787

scikit-learn user guide, Release 0.23.2

(continued from previous page)

[0 0 0 0 0 88 1 0 0 2]
[0 1 0 0 0 0 90 0 0 0]
[0 0 0 0 0 1 0 88 0 0]
[0 0 0 0 0 0 0 0 88 0]
[0 0 0 1 0 1 0 0 0 90]]

print(__doc__)

Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org>
License: BSD 3 clause

Standard scientific Python imports
import matplotlib.pyplot as plt

Import datasets, classifiers and performance metrics
from sklearn import datasets, svm, metrics
from sklearn.model_selection import train_test_split

The digits dataset
digits = datasets.load_digits()

The data that we are interested in is made of 8x8 images of digits, let's
have a look at the first 4 images, stored in the `images` attribute of the
dataset. If we were working from image files, we could load them using
matplotlib.pyplot.imread. Note that each image must have the same size. For these
images, we know which digit they represent: it is given in the 'target' of
the dataset.
_, axes = plt.subplots(2, 4)
images_and_labels = list(zip(digits.images, digits.target))
for ax, (image, label) in zip(axes[0, :], images_and_labels[:4]):

ax.set_axis_off()
ax.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')
ax.set_title('Training: %i' % label)

To apply a classifier on this data, we need to flatten the image, to
turn the data in a (samples, feature) matrix:
n_samples = len(digits.images)
data = digits.images.reshape((n_samples, -1))

Create a classifier: a support vector classifier
classifier = svm.SVC(gamma=0.001)

Split data into train and test subsets
X_train, X_test, y_train, y_test = train_test_split(

data, digits.target, test_size=0.5, shuffle=False)

We learn the digits on the first half of the digits
classifier.fit(X_train, y_train)

Now predict the value of the digit on the second half:
predicted = classifier.predict(X_test)

(continues on next page)

788 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

images_and_predictions = list(zip(digits.images[n_samples // 2:], predicted))
for ax, (image, prediction) in zip(axes[1, :], images_and_predictions[:4]):

ax.set_axis_off()
ax.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')
ax.set_title('Prediction: %i' % prediction)

print("Classification report for classifier %s:\n%s\n"
% (classifier, metrics.classification_report(y_test, predicted)))

disp = metrics.plot_confusion_matrix(classifier, X_test, y_test)
disp.figure_.suptitle("Confusion Matrix")
print("Confusion matrix:\n%s" % disp.confusion_matrix)

plt.show()

Total running time of the script: (0 minutes 0.471 seconds)

6.4.3 Plot classification probability

Plot the classification probability for different classifiers. We use a 3 class dataset, and we classify it with a Sup-
port Vector classifier, L1 and L2 penalized logistic regression with either a One-Vs-Rest or multinomial setting, and
Gaussian process classification.

Linear SVC is not a probabilistic classifier by default but it has a built-in calibration option enabled in this example
(probability=True).

The logistic regression with One-Vs-Rest is not a multiclass classifier out of the box. As a result it has more trouble
in separating class 2 and 3 than the other estimators.

6.4. Classification 789

scikit-learn user guide, Release 0.23.2

790 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Out:

Accuracy (train) for L1 logistic: 82.7%
Accuracy (train) for L2 logistic (Multinomial): 82.7%
Accuracy (train) for L2 logistic (OvR): 79.3%
Accuracy (train) for Linear SVC: 82.0%
Accuracy (train) for GPC: 82.7%

print(__doc__)

Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
License: BSD 3 clause

import matplotlib.pyplot as plt
import numpy as np

from sklearn.metrics import accuracy_score
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import RBF
from sklearn import datasets

iris = datasets.load_iris()
X = iris.data[:, 0:2] # we only take the first two features for visualization
y = iris.target

n_features = X.shape[1]

C = 10
kernel = 1.0 * RBF([1.0, 1.0]) # for GPC

Create different classifiers.
classifiers = {

'L1 logistic': LogisticRegression(C=C, penalty='l1',
solver='saga',
multi_class='multinomial',
max_iter=10000),

'L2 logistic (Multinomial)': LogisticRegression(C=C, penalty='l2',
solver='saga',
multi_class='multinomial',
max_iter=10000),

'L2 logistic (OvR)': LogisticRegression(C=C, penalty='l2',
solver='saga',
multi_class='ovr',
max_iter=10000),

'Linear SVC': SVC(kernel='linear', C=C, probability=True,
random_state=0),

'GPC': GaussianProcessClassifier(kernel)
}

n_classifiers = len(classifiers)

(continues on next page)

6.4. Classification 791

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.figure(figsize=(3 * 2, n_classifiers * 2))
plt.subplots_adjust(bottom=.2, top=.95)

xx = np.linspace(3, 9, 100)
yy = np.linspace(1, 5, 100).T
xx, yy = np.meshgrid(xx, yy)
Xfull = np.c_[xx.ravel(), yy.ravel()]

for index, (name, classifier) in enumerate(classifiers.items()):
classifier.fit(X, y)

y_pred = classifier.predict(X)
accuracy = accuracy_score(y, y_pred)
print("Accuracy (train) for %s: %0.1f%% " % (name, accuracy * 100))

View probabilities:
probas = classifier.predict_proba(Xfull)
n_classes = np.unique(y_pred).size
for k in range(n_classes):

plt.subplot(n_classifiers, n_classes, index * n_classes + k + 1)
plt.title("Class %d" % k)
if k == 0:

plt.ylabel(name)
imshow_handle = plt.imshow(probas[:, k].reshape((100, 100)),

extent=(3, 9, 1, 5), origin='lower')
plt.xticks(())
plt.yticks(())
idx = (y_pred == k)
if idx.any():

plt.scatter(X[idx, 0], X[idx, 1], marker='o', c='w', edgecolor='k')

ax = plt.axes([0.15, 0.04, 0.7, 0.05])
plt.title("Probability")
plt.colorbar(imshow_handle, cax=ax, orientation='horizontal')

plt.show()

Total running time of the script: (0 minutes 0.978 seconds)

6.4.4 Classifier comparison

A comparison of a several classifiers in scikit-learn on synthetic datasets. The point of this example is to illustrate
the nature of decision boundaries of different classifiers. This should be taken with a grain of salt, as the intuition
conveyed by these examples does not necessarily carry over to real datasets.

Particularly in high-dimensional spaces, data can more easily be separated linearly and the simplicity of classifiers
such as naive Bayes and linear SVMs might lead to better generalization than is achieved by other classifiers.

The plots show training points in solid colors and testing points semi-transparent. The lower right shows the classifi-
cation accuracy on the test set.

792 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

print(__doc__)

Code source: Gaël Varoquaux
Andreas Müller
Modified for documentation by Jaques Grobler
License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_moons, make_circles, make_classification
from sklearn.neural_network import MLPClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import RBF
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis

h = .02 # step size in the mesh

names = ["Nearest Neighbors", "Linear SVM", "RBF SVM", "Gaussian Process",
"Decision Tree", "Random Forest", "Neural Net", "AdaBoost",
"Naive Bayes", "QDA"]

classifiers = [
KNeighborsClassifier(3),
SVC(kernel="linear", C=0.025),
SVC(gamma=2, C=1),
GaussianProcessClassifier(1.0 * RBF(1.0)),
DecisionTreeClassifier(max_depth=5),
RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1),
MLPClassifier(alpha=1, max_iter=1000),
AdaBoostClassifier(),
GaussianNB(),
QuadraticDiscriminantAnalysis()]

X, y = make_classification(n_features=2, n_redundant=0, n_informative=2,
(continues on next page)

6.4. Classification 793

scikit-learn user guide, Release 0.23.2

(continued from previous page)

random_state=1, n_clusters_per_class=1)
rng = np.random.RandomState(2)
X += 2 * rng.uniform(size=X.shape)
linearly_separable = (X, y)

datasets = [make_moons(noise=0.3, random_state=0),
make_circles(noise=0.2, factor=0.5, random_state=1),
linearly_separable
]

figure = plt.figure(figsize=(27, 9))
i = 1
iterate over datasets
for ds_cnt, ds in enumerate(datasets):

preprocess dataset, split into training and test part
X, y = ds
X = StandardScaler().fit_transform(X)
X_train, X_test, y_train, y_test = \

train_test_split(X, y, test_size=.4, random_state=42)

x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),

np.arange(y_min, y_max, h))

just plot the dataset first
cm = plt.cm.RdBu
cm_bright = ListedColormap(['#FF0000', '#0000FF'])
ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
if ds_cnt == 0:

ax.set_title("Input data")
Plot the training points
ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright,

edgecolors='k')
Plot the testing points
ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6,

edgecolors='k')
ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
ax.set_xticks(())
ax.set_yticks(())
i += 1

iterate over classifiers
for name, clf in zip(names, classifiers):

ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
clf.fit(X_train, y_train)
score = clf.score(X_test, y_test)

Plot the decision boundary. For that, we will assign a color to each
point in the mesh [x_min, x_max]x[y_min, y_max].
if hasattr(clf, "decision_function"):

Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
else:

Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]

Put the result into a color plot
(continues on next page)

794 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Z = Z.reshape(xx.shape)
ax.contourf(xx, yy, Z, cmap=cm, alpha=.8)

Plot the training points
ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright,

edgecolors='k')
Plot the testing points
ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright,

edgecolors='k', alpha=0.6)

ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
ax.set_xticks(())
ax.set_yticks(())
if ds_cnt == 0:

ax.set_title(name)
ax.text(xx.max() - .3, yy.min() + .3, ('%.2f' % score).lstrip('0'),

size=15, horizontalalignment='right')
i += 1

plt.tight_layout()
plt.show()

Total running time of the script: (0 minutes 6.553 seconds)

6.4.5 Linear and Quadratic Discriminant Analysis with covariance ellipsoid

This example plots the covariance ellipsoids of each class and decision boundary learned by LDA and QDA. The
ellipsoids display the double standard deviation for each class. With LDA, the standard deviation is the same for all
the classes, while each class has its own standard deviation with QDA.

6.4. Classification 795

scikit-learn user guide, Release 0.23.2

print(__doc__)

from scipy import linalg
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
from matplotlib import colors

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis

###
Colormap
cmap = colors.LinearSegmentedColormap(

'red_blue_classes',
{'red': [(0, 1, 1), (1, 0.7, 0.7)],
'green': [(0, 0.7, 0.7), (1, 0.7, 0.7)],
'blue': [(0, 0.7, 0.7), (1, 1, 1)]})

plt.cm.register_cmap(cmap=cmap)

###
Generate datasets

(continues on next page)

796 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

def dataset_fixed_cov():
'''Generate 2 Gaussians samples with the same covariance matrix'''
n, dim = 300, 2
np.random.seed(0)
C = np.array([[0., -0.23], [0.83, .23]])
X = np.r_[np.dot(np.random.randn(n, dim), C),

np.dot(np.random.randn(n, dim), C) + np.array([1, 1])]
y = np.hstack((np.zeros(n), np.ones(n)))
return X, y

def dataset_cov():
'''Generate 2 Gaussians samples with different covariance matrices'''
n, dim = 300, 2
np.random.seed(0)
C = np.array([[0., -1.], [2.5, .7]]) * 2.
X = np.r_[np.dot(np.random.randn(n, dim), C),

np.dot(np.random.randn(n, dim), C.T) + np.array([1, 4])]
y = np.hstack((np.zeros(n), np.ones(n)))
return X, y

###
Plot functions
def plot_data(lda, X, y, y_pred, fig_index):

splot = plt.subplot(2, 2, fig_index)
if fig_index == 1:

plt.title('Linear Discriminant Analysis')
plt.ylabel('Data with\n fixed covariance')

elif fig_index == 2:
plt.title('Quadratic Discriminant Analysis')

elif fig_index == 3:
plt.ylabel('Data with\n varying covariances')

tp = (y == y_pred) # True Positive
tp0, tp1 = tp[y == 0], tp[y == 1]
X0, X1 = X[y == 0], X[y == 1]
X0_tp, X0_fp = X0[tp0], X0[~tp0]
X1_tp, X1_fp = X1[tp1], X1[~tp1]

class 0: dots
plt.scatter(X0_tp[:, 0], X0_tp[:, 1], marker='.', color='red')
plt.scatter(X0_fp[:, 0], X0_fp[:, 1], marker='x',

s=20, color='#990000') # dark red

class 1: dots
plt.scatter(X1_tp[:, 0], X1_tp[:, 1], marker='.', color='blue')
plt.scatter(X1_fp[:, 0], X1_fp[:, 1], marker='x',

s=20, color='#000099') # dark blue

class 0 and 1 : areas
nx, ny = 200, 100
x_min, x_max = plt.xlim()
y_min, y_max = plt.ylim()
xx, yy = np.meshgrid(np.linspace(x_min, x_max, nx),

np.linspace(y_min, y_max, ny))
Z = lda.predict_proba(np.c_[xx.ravel(), yy.ravel()])

(continues on next page)

6.4. Classification 797

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Z = Z[:, 1].reshape(xx.shape)
plt.pcolormesh(xx, yy, Z, cmap='red_blue_classes',

norm=colors.Normalize(0., 1.), zorder=0)
plt.contour(xx, yy, Z, [0.5], linewidths=2., colors='white')

means
plt.plot(lda.means_[0][0], lda.means_[0][1],

'*', color='yellow', markersize=15, markeredgecolor='grey')
plt.plot(lda.means_[1][0], lda.means_[1][1],

'*', color='yellow', markersize=15, markeredgecolor='grey')

return splot

def plot_ellipse(splot, mean, cov, color):
v, w = linalg.eigh(cov)
u = w[0] / linalg.norm(w[0])
angle = np.arctan(u[1] / u[0])
angle = 180 * angle / np.pi # convert to degrees
filled Gaussian at 2 standard deviation
ell = mpl.patches.Ellipse(mean, 2 * v[0] ** 0.5, 2 * v[1] ** 0.5,

180 + angle, facecolor=color,
edgecolor='black', linewidth=2)

ell.set_clip_box(splot.bbox)
ell.set_alpha(0.2)
splot.add_artist(ell)
splot.set_xticks(())
splot.set_yticks(())

def plot_lda_cov(lda, splot):
plot_ellipse(splot, lda.means_[0], lda.covariance_, 'red')
plot_ellipse(splot, lda.means_[1], lda.covariance_, 'blue')

def plot_qda_cov(qda, splot):
plot_ellipse(splot, qda.means_[0], qda.covariance_[0], 'red')
plot_ellipse(splot, qda.means_[1], qda.covariance_[1], 'blue')

plt.figure(figsize=(10, 8), facecolor='white')
plt.suptitle('Linear Discriminant Analysis vs Quadratic Discriminant Analysis',

y=0.98, fontsize=15)
for i, (X, y) in enumerate([dataset_fixed_cov(), dataset_cov()]):

Linear Discriminant Analysis
lda = LinearDiscriminantAnalysis(solver="svd", store_covariance=True)
y_pred = lda.fit(X, y).predict(X)
splot = plot_data(lda, X, y, y_pred, fig_index=2 * i + 1)
plot_lda_cov(lda, splot)
plt.axis('tight')

Quadratic Discriminant Analysis
qda = QuadraticDiscriminantAnalysis(store_covariance=True)
y_pred = qda.fit(X, y).predict(X)
splot = plot_data(qda, X, y, y_pred, fig_index=2 * i + 2)
plot_qda_cov(qda, splot)
plt.axis('tight')

(continues on next page)

798 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.tight_layout()
plt.subplots_adjust(top=0.92)
plt.show()

Total running time of the script: (0 minutes 0.280 seconds)

6.5 Clustering

Examples concerning the sklearn.cluster module.

6.5.1 Plot Hierarchical Clustering Dendrogram

This example plots the corresponding dendrogram of a hierarchical clustering using AgglomerativeClustering and the
dendrogram method available in scipy.

import numpy as np

from matplotlib import pyplot as plt
from scipy.cluster.hierarchy import dendrogram
from sklearn.datasets import load_iris
from sklearn.cluster import AgglomerativeClustering

(continues on next page)

6.5. Clustering 799

scikit-learn user guide, Release 0.23.2

(continued from previous page)

def plot_dendrogram(model, **kwargs):
Create linkage matrix and then plot the dendrogram

create the counts of samples under each node
counts = np.zeros(model.children_.shape[0])
n_samples = len(model.labels_)
for i, merge in enumerate(model.children_):

current_count = 0
for child_idx in merge:

if child_idx < n_samples:
current_count += 1 # leaf node

else:
current_count += counts[child_idx - n_samples]

counts[i] = current_count

linkage_matrix = np.column_stack([model.children_, model.distances_,
counts]).astype(float)

Plot the corresponding dendrogram
dendrogram(linkage_matrix, **kwargs)

iris = load_iris()
X = iris.data

setting distance_threshold=0 ensures we compute the full tree.
model = AgglomerativeClustering(distance_threshold=0, n_clusters=None)

model = model.fit(X)
plt.title('Hierarchical Clustering Dendrogram')
plot the top three levels of the dendrogram
plot_dendrogram(model, truncate_mode='level', p=3)
plt.xlabel("Number of points in node (or index of point if no parenthesis).")
plt.show()

Total running time of the script: (0 minutes 0.085 seconds)

6.5.2 Feature agglomeration

These images how similar features are merged together using feature agglomeration.

800 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

print(__doc__)

Code source: Gaël Varoquaux
Modified for documentation by Jaques Grobler
License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn import datasets, cluster
from sklearn.feature_extraction.image import grid_to_graph

digits = datasets.load_digits()
images = digits.images
X = np.reshape(images, (len(images), -1))
connectivity = grid_to_graph(*images[0].shape)

agglo = cluster.FeatureAgglomeration(connectivity=connectivity,
n_clusters=32)

agglo.fit(X)
X_reduced = agglo.transform(X)

X_restored = agglo.inverse_transform(X_reduced)
images_restored = np.reshape(X_restored, images.shape)
plt.figure(1, figsize=(4, 3.5))
plt.clf()
plt.subplots_adjust(left=.01, right=.99, bottom=.01, top=.91)
for i in range(4):

plt.subplot(3, 4, i + 1)
plt.imshow(images[i], cmap=plt.cm.gray, vmax=16, interpolation='nearest')
plt.xticks(())
plt.yticks(())
if i == 1:

(continues on next page)

6.5. Clustering 801

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.title('Original data')
plt.subplot(3, 4, 4 + i + 1)
plt.imshow(images_restored[i], cmap=plt.cm.gray, vmax=16,

interpolation='nearest')
if i == 1:

plt.title('Agglomerated data')
plt.xticks(())
plt.yticks(())

plt.subplot(3, 4, 10)
plt.imshow(np.reshape(agglo.labels_, images[0].shape),

interpolation='nearest', cmap=plt.cm.nipy_spectral)
plt.xticks(())
plt.yticks(())
plt.title('Labels')
plt.show()

Total running time of the script: (0 minutes 0.243 seconds)

6.5.3 A demo of the mean-shift clustering algorithm

Reference:

Dorin Comaniciu and Peter Meer, “Mean Shift: A robust approach toward feature space analysis”. IEEE Transactions
on Pattern Analysis and Machine Intelligence. 2002. pp. 603-619.

802 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Out:

number of estimated clusters : 3

print(__doc__)

import numpy as np
from sklearn.cluster import MeanShift, estimate_bandwidth
from sklearn.datasets import make_blobs

###
Generate sample data
centers = [[1, 1], [-1, -1], [1, -1]]
X, _ = make_blobs(n_samples=10000, centers=centers, cluster_std=0.6)

###
Compute clustering with MeanShift

The following bandwidth can be automatically detected using
bandwidth = estimate_bandwidth(X, quantile=0.2, n_samples=500)

(continues on next page)

6.5. Clustering 803

scikit-learn user guide, Release 0.23.2

(continued from previous page)

ms = MeanShift(bandwidth=bandwidth, bin_seeding=True)
ms.fit(X)
labels = ms.labels_
cluster_centers = ms.cluster_centers_

labels_unique = np.unique(labels)
n_clusters_ = len(labels_unique)

print("number of estimated clusters : %d" % n_clusters_)

###
Plot result
import matplotlib.pyplot as plt
from itertools import cycle

plt.figure(1)
plt.clf()

colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk')
for k, col in zip(range(n_clusters_), colors):

my_members = labels == k
cluster_center = cluster_centers[k]
plt.plot(X[my_members, 0], X[my_members, 1], col + '.')
plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col,

markeredgecolor='k', markersize=14)
plt.title('Estimated number of clusters: %d' % n_clusters_)
plt.show()

Total running time of the script: (0 minutes 0.514 seconds)

6.5.4 Demonstration of k-means assumptions

This example is meant to illustrate situations where k-means will produce unintuitive and possibly unexpected clusters.
In the first three plots, the input data does not conform to some implicit assumption that k-means makes and undesirable
clusters are produced as a result. In the last plot, k-means returns intuitive clusters despite unevenly sized blobs.

804 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

print(__doc__)

Author: Phil Roth <mr.phil.roth@gmail.com>
License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs

plt.figure(figsize=(12, 12))

n_samples = 1500

(continues on next page)

6.5. Clustering 805

scikit-learn user guide, Release 0.23.2

(continued from previous page)

random_state = 170
X, y = make_blobs(n_samples=n_samples, random_state=random_state)

Incorrect number of clusters
y_pred = KMeans(n_clusters=2, random_state=random_state).fit_predict(X)

plt.subplot(221)
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.title("Incorrect Number of Blobs")

Anisotropicly distributed data
transformation = [[0.60834549, -0.63667341], [-0.40887718, 0.85253229]]
X_aniso = np.dot(X, transformation)
y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_aniso)

plt.subplot(222)
plt.scatter(X_aniso[:, 0], X_aniso[:, 1], c=y_pred)
plt.title("Anisotropicly Distributed Blobs")

Different variance
X_varied, y_varied = make_blobs(n_samples=n_samples,

cluster_std=[1.0, 2.5, 0.5],
random_state=random_state)

y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_varied)

plt.subplot(223)
plt.scatter(X_varied[:, 0], X_varied[:, 1], c=y_pred)
plt.title("Unequal Variance")

Unevenly sized blobs
X_filtered = np.vstack((X[y == 0][:500], X[y == 1][:100], X[y == 2][:10]))
y_pred = KMeans(n_clusters=3,

random_state=random_state).fit_predict(X_filtered)

plt.subplot(224)
plt.scatter(X_filtered[:, 0], X_filtered[:, 1], c=y_pred)
plt.title("Unevenly Sized Blobs")

plt.show()

Total running time of the script: (0 minutes 0.439 seconds)

6.5.5 Online learning of a dictionary of parts of faces

This example uses a large dataset of faces to learn a set of 20 x 20 images patches that constitute faces.

From the programming standpoint, it is interesting because it shows how to use the online API of the scikit-learn
to process a very large dataset by chunks. The way we proceed is that we load an image at a time and extract
randomly 50 patches from this image. Once we have accumulated 500 of these patches (using 10 images), we run the
partial_fit method of the online KMeans object, MiniBatchKMeans.

The verbose setting on the MiniBatchKMeans enables us to see that some clusters are reassigned during the successive
calls to partial-fit. This is because the number of patches that they represent has become too low, and it is better to
choose a random new cluster.

806 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Out:

Learning the dictionary...
Partial fit of 100 out of 2400
Partial fit of 200 out of 2400
[MiniBatchKMeans] Reassigning 16 cluster centers.
Partial fit of 300 out of 2400
Partial fit of 400 out of 2400
Partial fit of 500 out of 2400
Partial fit of 600 out of 2400
Partial fit of 700 out of 2400
Partial fit of 800 out of 2400
Partial fit of 900 out of 2400
Partial fit of 1000 out of 2400
Partial fit of 1100 out of 2400
Partial fit of 1200 out of 2400
Partial fit of 1300 out of 2400
Partial fit of 1400 out of 2400
Partial fit of 1500 out of 2400
Partial fit of 1600 out of 2400
Partial fit of 1700 out of 2400
Partial fit of 1800 out of 2400
Partial fit of 1900 out of 2400
Partial fit of 2000 out of 2400
Partial fit of 2100 out of 2400
Partial fit of 2200 out of 2400
Partial fit of 2300 out of 2400
Partial fit of 2400 out of 2400
done in 2.05s.

6.5. Clustering 807

scikit-learn user guide, Release 0.23.2

print(__doc__)

import time

import matplotlib.pyplot as plt
import numpy as np

from sklearn import datasets
from sklearn.cluster import MiniBatchKMeans
from sklearn.feature_extraction.image import extract_patches_2d

faces = datasets.fetch_olivetti_faces()

###
Learn the dictionary of images

print('Learning the dictionary... ')
rng = np.random.RandomState(0)
kmeans = MiniBatchKMeans(n_clusters=81, random_state=rng, verbose=True)
patch_size = (20, 20)

buffer = []
t0 = time.time()

The online learning part: cycle over the whole dataset 6 times
index = 0
for _ in range(6):

for img in faces.images:
data = extract_patches_2d(img, patch_size, max_patches=50,

random_state=rng)
data = np.reshape(data, (len(data), -1))
buffer.append(data)
index += 1
if index % 10 == 0:

data = np.concatenate(buffer, axis=0)
data -= np.mean(data, axis=0)
data /= np.std(data, axis=0)
kmeans.partial_fit(data)
buffer = []

if index % 100 == 0:
print('Partial fit of %4i out of %i'

% (index, 6 * len(faces.images)))

dt = time.time() - t0
print('done in %.2fs.' % dt)

###
Plot the results
plt.figure(figsize=(4.2, 4))
for i, patch in enumerate(kmeans.cluster_centers_):

plt.subplot(9, 9, i + 1)
plt.imshow(patch.reshape(patch_size), cmap=plt.cm.gray,

interpolation='nearest')

(continues on next page)

808 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.xticks(())
plt.yticks(())

plt.suptitle('Patches of faces\nTrain time %.1fs on %d patches' %
(dt, 8 * len(faces.images)), fontsize=16)

plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23)

plt.show()

Total running time of the script: (0 minutes 3.638 seconds)

6.5.6 Vector Quantization Example

Face, a 1024 x 768 size image of a raccoon face, is used here to illustrate how k-means is used for vector quantization.

•

•

6.5. Clustering 809

scikit-learn user guide, Release 0.23.2

•

•

print(__doc__)

Code source: Gaël Varoquaux
Modified for documentation by Jaques Grobler
License: BSD 3 clause

import numpy as np
import scipy as sp
import matplotlib.pyplot as plt

from sklearn import cluster

try: # SciPy >= 0.16 have face in misc
from scipy.misc import face
face = face(gray=True)

except ImportError:
face = sp.face(gray=True)

n_clusters = 5
np.random.seed(0)

X = face.reshape((-1, 1)) # We need an (n_sample, n_feature) array
k_means = cluster.KMeans(n_clusters=n_clusters, n_init=4)
k_means.fit(X)
values = k_means.cluster_centers_.squeeze()

(continues on next page)

810 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

labels = k_means.labels_

create an array from labels and values
face_compressed = np.choose(labels, values)
face_compressed.shape = face.shape

vmin = face.min()
vmax = face.max()

original face
plt.figure(1, figsize=(3, 2.2))
plt.imshow(face, cmap=plt.cm.gray, vmin=vmin, vmax=256)

compressed face
plt.figure(2, figsize=(3, 2.2))
plt.imshow(face_compressed, cmap=plt.cm.gray, vmin=vmin, vmax=vmax)

equal bins face
regular_values = np.linspace(0, 256, n_clusters + 1)
regular_labels = np.searchsorted(regular_values, face) - 1
regular_values = .5 * (regular_values[1:] + regular_values[:-1]) # mean
regular_face = np.choose(regular_labels.ravel(), regular_values, mode="clip")
regular_face.shape = face.shape
plt.figure(3, figsize=(3, 2.2))
plt.imshow(regular_face, cmap=plt.cm.gray, vmin=vmin, vmax=vmax)

histogram
plt.figure(4, figsize=(3, 2.2))
plt.clf()
plt.axes([.01, .01, .98, .98])
plt.hist(X, bins=256, color='.5', edgecolor='.5')
plt.yticks(())
plt.xticks(regular_values)
values = np.sort(values)
for center_1, center_2 in zip(values[:-1], values[1:]):

plt.axvline(.5 * (center_1 + center_2), color='b')

for center_1, center_2 in zip(regular_values[:-1], regular_values[1:]):
plt.axvline(.5 * (center_1 + center_2), color='b', linestyle='--')

plt.show()

Total running time of the script: (0 minutes 2.461 seconds)

6.5.7 Demo of affinity propagation clustering algorithm

Reference: Brendan J. Frey and Delbert Dueck, “Clustering by Passing Messages Between Data Points”, Science Feb.
2007

6.5. Clustering 811

scikit-learn user guide, Release 0.23.2

Out:

/home/circleci/project/sklearn/cluster/_affinity_propagation.py:146: FutureWarning:
→˓'random_state' has been introduced in 0.23. It will be set to None starting from 0.
→˓25 which means that results will differ at every function call. Set 'random_state'
→˓to None to silence this warning, or to 0 to keep the behavior of versions <0.23.
warnings.warn(("'random_state' has been introduced in 0.23. "

Estimated number of clusters: 3
Homogeneity: 0.872
Completeness: 0.872
V-measure: 0.872
Adjusted Rand Index: 0.912
Adjusted Mutual Information: 0.871
Silhouette Coefficient: 0.753

print(__doc__)

from sklearn.cluster import AffinityPropagation
from sklearn import metrics
from sklearn.datasets import make_blobs

(continues on next page)

812 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

###
Generate sample data
centers = [[1, 1], [-1, -1], [1, -1]]
X, labels_true = make_blobs(n_samples=300, centers=centers, cluster_std=0.5,

random_state=0)

###
Compute Affinity Propagation
af = AffinityPropagation(preference=-50).fit(X)
cluster_centers_indices = af.cluster_centers_indices_
labels = af.labels_

n_clusters_ = len(cluster_centers_indices)

print('Estimated number of clusters: %d' % n_clusters_)
print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels))
print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels))
print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels))
print("Adjusted Rand Index: %0.3f"

% metrics.adjusted_rand_score(labels_true, labels))
print("Adjusted Mutual Information: %0.3f"

% metrics.adjusted_mutual_info_score(labels_true, labels))
print("Silhouette Coefficient: %0.3f"

% metrics.silhouette_score(X, labels, metric='sqeuclidean'))

###
Plot result
import matplotlib.pyplot as plt
from itertools import cycle

plt.close('all')
plt.figure(1)
plt.clf()

colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk')
for k, col in zip(range(n_clusters_), colors):

class_members = labels == k
cluster_center = X[cluster_centers_indices[k]]
plt.plot(X[class_members, 0], X[class_members, 1], col + '.')
plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col,

markeredgecolor='k', markersize=14)
for x in X[class_members]:

plt.plot([cluster_center[0], x[0]], [cluster_center[1], x[1]], col)

plt.title('Estimated number of clusters: %d' % n_clusters_)
plt.show()

Total running time of the script: (0 minutes 0.328 seconds)

6.5.8 Agglomerative clustering with and without structure

This example shows the effect of imposing a connectivity graph to capture local structure in the data. The graph is
simply the graph of 20 nearest neighbors.

Two consequences of imposing a connectivity can be seen. First clustering with a connectivity matrix is much faster.

6.5. Clustering 813

scikit-learn user guide, Release 0.23.2

Second, when using a connectivity matrix, single, average and complete linkage are unstable and tend to create a few
clusters that grow very quickly. Indeed, average and complete linkage fight this percolation behavior by considering all
the distances between two clusters when merging them (while single linkage exaggerates the behaviour by considering
only the shortest distance between clusters). The connectivity graph breaks this mechanism for average and complete
linkage, making them resemble the more brittle single linkage. This effect is more pronounced for very sparse graphs
(try decreasing the number of neighbors in kneighbors_graph) and with complete linkage. In particular, having a very
small number of neighbors in the graph, imposes a geometry that is close to that of single linkage, which is well known
to have this percolation instability.

•

•

814 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

•

Authors: Gael Varoquaux, Nelle Varoquaux
License: BSD 3 clause

import time
import matplotlib.pyplot as plt
import numpy as np

from sklearn.cluster import AgglomerativeClustering
from sklearn.neighbors import kneighbors_graph

Generate sample data
n_samples = 1500
np.random.seed(0)
t = 1.5 * np.pi * (1 + 3 * np.random.rand(1, n_samples))
x = t * np.cos(t)
y = t * np.sin(t)

X = np.concatenate((x, y))
X += .7 * np.random.randn(2, n_samples)
X = X.T

Create a graph capturing local connectivity. Larger number of neighbors
will give more homogeneous clusters to the cost of computation

(continues on next page)

6.5. Clustering 815

scikit-learn user guide, Release 0.23.2

(continued from previous page)

time. A very large number of neighbors gives more evenly distributed
cluster sizes, but may not impose the local manifold structure of
the data
knn_graph = kneighbors_graph(X, 30, include_self=False)

for connectivity in (None, knn_graph):
for n_clusters in (30, 3):

plt.figure(figsize=(10, 4))
for index, linkage in enumerate(('average',

'complete',
'ward',
'single')):

plt.subplot(1, 4, index + 1)
model = AgglomerativeClustering(linkage=linkage,

connectivity=connectivity,
n_clusters=n_clusters)

t0 = time.time()
model.fit(X)
elapsed_time = time.time() - t0
plt.scatter(X[:, 0], X[:, 1], c=model.labels_,

cmap=plt.cm.nipy_spectral)
plt.title('linkage=%s\n(time %.2fs)' % (linkage, elapsed_time),

fontdict=dict(verticalalignment='top'))
plt.axis('equal')
plt.axis('off')

plt.subplots_adjust(bottom=0, top=.83, wspace=0,
left=0, right=1)

plt.suptitle('n_cluster=%i, connectivity=%r' %
(n_clusters, connectivity is not None), size=17)

plt.show()

Total running time of the script: (0 minutes 1.981 seconds)

6.5.9 Various Agglomerative Clustering on a 2D embedding of digits

An illustration of various linkage option for agglomerative clustering on a 2D embedding of the digits dataset.

The goal of this example is to show intuitively how the metrics behave, and not to find good clusters for the digits.
This is why the example works on a 2D embedding.

What this example shows us is the behavior “rich getting richer” of agglomerative clustering that tends to create uneven
cluster sizes. This behavior is pronounced for the average linkage strategy, that ends up with a couple of singleton
clusters, while in the case of single linkage we get a single central cluster with all other clusters being drawn from
noise points around the fringes.

816 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

•

6.5. Clustering 817

scikit-learn user guide, Release 0.23.2

•

•

Out:

Computing embedding
Done.

(continues on next page)

818 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

ward : 0.32s
average : 0.40s
complete : 0.29s
single : 0.07s

Authors: Gael Varoquaux
License: BSD 3 clause (C) INRIA 2014

print(__doc__)
from time import time

import numpy as np
from scipy import ndimage
from matplotlib import pyplot as plt

from sklearn import manifold, datasets

X, y = datasets.load_digits(return_X_y=True)
n_samples, n_features = X.shape

np.random.seed(0)

def nudge_images(X, y):
Having a larger dataset shows more clearly the behavior of the
methods, but we multiply the size of the dataset only by 2, as the
cost of the hierarchical clustering methods are strongly
super-linear in n_samples
shift = lambda x: ndimage.shift(x.reshape((8, 8)),

.3 * np.random.normal(size=2),
mode='constant',
).ravel()

X = np.concatenate([X, np.apply_along_axis(shift, 1, X)])
Y = np.concatenate([y, y], axis=0)
return X, Y

X, y = nudge_images(X, y)

#--
Visualize the clustering
def plot_clustering(X_red, labels, title=None):

x_min, x_max = np.min(X_red, axis=0), np.max(X_red, axis=0)
X_red = (X_red - x_min) / (x_max - x_min)

plt.figure(figsize=(6, 4))
for i in range(X_red.shape[0]):

plt.text(X_red[i, 0], X_red[i, 1], str(y[i]),
color=plt.cm.nipy_spectral(labels[i] / 10.),
fontdict={'weight': 'bold', 'size': 9})

(continues on next page)

6.5. Clustering 819

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.xticks([])
plt.yticks([])
if title is not None:

plt.title(title, size=17)
plt.axis('off')
plt.tight_layout(rect=[0, 0.03, 1, 0.95])

#--
2D embedding of the digits dataset
print("Computing embedding")
X_red = manifold.SpectralEmbedding(n_components=2).fit_transform(X)
print("Done.")

from sklearn.cluster import AgglomerativeClustering

for linkage in ('ward', 'average', 'complete', 'single'):
clustering = AgglomerativeClustering(linkage=linkage, n_clusters=10)
t0 = time()
clustering.fit(X_red)
print("%s :\t%.2fs" % (linkage, time() - t0))

plot_clustering(X_red, clustering.labels_, "%s linkage" % linkage)

plt.show()

Total running time of the script: (0 minutes 26.959 seconds)

6.5.10 Segmenting the picture of greek coins in regions

This example uses Spectral clustering on a graph created from voxel-to-voxel difference on an image to break this
image into multiple partly-homogeneous regions.

This procedure (spectral clustering on an image) is an efficient approximate solution for finding normalized graph cuts.

There are two options to assign labels:

• with ‘kmeans’ spectral clustering will cluster samples in the embedding space using a kmeans algorithm

• whereas ‘discrete’ will iteratively search for the closest partition space to the embedding space.

print(__doc__)

Author: Gael Varoquaux <gael.varoquaux@normalesup.org>, Brian Cheung
License: BSD 3 clause

import time

import numpy as np
from scipy.ndimage.filters import gaussian_filter
import matplotlib.pyplot as plt
import skimage
from skimage.data import coins
from skimage.transform import rescale

from sklearn.feature_extraction import image
from sklearn.cluster import spectral_clustering

(continues on next page)

820 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

from sklearn.utils.fixes import parse_version

these were introduced in skimage-0.14
if parse_version(skimage.__version__) >= parse_version('0.14'):

rescale_params = {'anti_aliasing': False, 'multichannel': False}
else:

rescale_params = {}

load the coins as a numpy array
orig_coins = coins()

Resize it to 20% of the original size to speed up the processing
Applying a Gaussian filter for smoothing prior to down-scaling
reduces aliasing artifacts.
smoothened_coins = gaussian_filter(orig_coins, sigma=2)
rescaled_coins = rescale(smoothened_coins, 0.2, mode="reflect",

**rescale_params)

Convert the image into a graph with the value of the gradient on the
edges.
graph = image.img_to_graph(rescaled_coins)

Take a decreasing function of the gradient: an exponential
The smaller beta is, the more independent the segmentation is of the
actual image. For beta=1, the segmentation is close to a voronoi
beta = 10
eps = 1e-6
graph.data = np.exp(-beta * graph.data / graph.data.std()) + eps

Apply spectral clustering (this step goes much faster if you have pyamg
installed)
N_REGIONS = 25

Visualize the resulting regions

for assign_labels in ('kmeans', 'discretize'):
t0 = time.time()
labels = spectral_clustering(graph, n_clusters=N_REGIONS,

assign_labels=assign_labels, random_state=42)
t1 = time.time()
labels = labels.reshape(rescaled_coins.shape)

plt.figure(figsize=(5, 5))
plt.imshow(rescaled_coins, cmap=plt.cm.gray)
for l in range(N_REGIONS):

plt.contour(labels == l,
colors=[plt.cm.nipy_spectral(l / float(N_REGIONS))])

plt.xticks(())
plt.yticks(())
title = 'Spectral clustering: %s, %.2fs' % (assign_labels, (t1 - t0))
print(title)
plt.title(title)

plt.show()

6.5. Clustering 821

scikit-learn user guide, Release 0.23.2

•

822 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

Out:

Spectral clustering: kmeans, 2.14s
Spectral clustering: discretize, 1.93s

Total running time of the script: (0 minutes 4.566 seconds)

6.5.11 K-means Clustering

The plots display firstly what a K-means algorithm would yield using three clusters. It is then shown what the effect
of a bad initialization is on the classification process: By setting n_init to only 1 (default is 10), the amount of times
that the algorithm will be run with different centroid seeds is reduced. The next plot displays what using eight clusters
would deliver and finally the ground truth.

6.5. Clustering 823

scikit-learn user guide, Release 0.23.2

•

•

824 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

•

print(__doc__)

Code source: Gaël Varoquaux
Modified for documentation by Jaques Grobler
License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
Though the following import is not directly being used, it is required
for 3D projection to work
from mpl_toolkits.mplot3d import Axes3D

from sklearn.cluster import KMeans
from sklearn import datasets

np.random.seed(5)

(continues on next page)

6.5. Clustering 825

scikit-learn user guide, Release 0.23.2

(continued from previous page)

iris = datasets.load_iris()
X = iris.data
y = iris.target

estimators = [('k_means_iris_8', KMeans(n_clusters=8)),
('k_means_iris_3', KMeans(n_clusters=3)),
('k_means_iris_bad_init', KMeans(n_clusters=3, n_init=1,

init='random'))]

fignum = 1
titles = ['8 clusters', '3 clusters', '3 clusters, bad initialization']
for name, est in estimators:

fig = plt.figure(fignum, figsize=(4, 3))
ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134)
est.fit(X)
labels = est.labels_

ax.scatter(X[:, 3], X[:, 0], X[:, 2],
c=labels.astype(np.float), edgecolor='k')

ax.w_xaxis.set_ticklabels([])
ax.w_yaxis.set_ticklabels([])
ax.w_zaxis.set_ticklabels([])
ax.set_xlabel('Petal width')
ax.set_ylabel('Sepal length')
ax.set_zlabel('Petal length')
ax.set_title(titles[fignum - 1])
ax.dist = 12
fignum = fignum + 1

Plot the ground truth
fig = plt.figure(fignum, figsize=(4, 3))
ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134)

for name, label in [('Setosa', 0),
('Versicolour', 1),
('Virginica', 2)]:

ax.text3D(X[y == label, 3].mean(),
X[y == label, 0].mean(),
X[y == label, 2].mean() + 2, name,
horizontalalignment='center',
bbox=dict(alpha=.2, edgecolor='w', facecolor='w'))

Reorder the labels to have colors matching the cluster results
y = np.choose(y, [1, 2, 0]).astype(np.float)
ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=y, edgecolor='k')

ax.w_xaxis.set_ticklabels([])
ax.w_yaxis.set_ticklabels([])
ax.w_zaxis.set_ticklabels([])
ax.set_xlabel('Petal width')
ax.set_ylabel('Sepal length')
ax.set_zlabel('Petal length')
ax.set_title('Ground Truth')
ax.dist = 12

fig.show()

826 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Total running time of the script: (0 minutes 0.322 seconds)

6.5.12 Spectral clustering for image segmentation

In this example, an image with connected circles is generated and spectral clustering is used to separate the circles.

In these settings, the Spectral clustering approach solves the problem know as ‘normalized graph cuts’: the image is
seen as a graph of connected voxels, and the spectral clustering algorithm amounts to choosing graph cuts defining
regions while minimizing the ratio of the gradient along the cut, and the volume of the region.

As the algorithm tries to balance the volume (ie balance the region sizes), if we take circles with different sizes, the
segmentation fails.

In addition, as there is no useful information in the intensity of the image, or its gradient, we choose to perform the
spectral clustering on a graph that is only weakly informed by the gradient. This is close to performing a Voronoi
partition of the graph.

In addition, we use the mask of the objects to restrict the graph to the outline of the objects. In this example, we are
interested in separating the objects one from the other, and not from the background.

•

6.5. Clustering 827

scikit-learn user guide, Release 0.23.2

•

828 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

6.5. Clustering 829

scikit-learn user guide, Release 0.23.2

•

print(__doc__)

Authors: Emmanuelle Gouillart <emmanuelle.gouillart@normalesup.org>
Gael Varoquaux <gael.varoquaux@normalesup.org>
License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn.feature_extraction import image
from sklearn.cluster import spectral_clustering

l = 100
x, y = np.indices((l, l))

center1 = (28, 24)
center2 = (40, 50)
center3 = (67, 58)
center4 = (24, 70)

radius1, radius2, radius3, radius4 = 16, 14, 15, 14

circle1 = (x - center1[0]) ** 2 + (y - center1[1]) ** 2 < radius1 ** 2
circle2 = (x - center2[0]) ** 2 + (y - center2[1]) ** 2 < radius2 ** 2
circle3 = (x - center3[0]) ** 2 + (y - center3[1]) ** 2 < radius3 ** 2

(continues on next page)

830 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

circle4 = (x - center4[0]) ** 2 + (y - center4[1]) ** 2 < radius4 ** 2

###
4 circles
img = circle1 + circle2 + circle3 + circle4

We use a mask that limits to the foreground: the problem that we are
interested in here is not separating the objects from the background,
but separating them one from the other.
mask = img.astype(bool)

img = img.astype(float)
img += 1 + 0.2 * np.random.randn(*img.shape)

Convert the image into a graph with the value of the gradient on the
edges.
graph = image.img_to_graph(img, mask=mask)

Take a decreasing function of the gradient: we take it weakly
dependent from the gradient the segmentation is close to a voronoi
graph.data = np.exp(-graph.data / graph.data.std())

Force the solver to be arpack, since amg is numerically
unstable on this example
labels = spectral_clustering(graph, n_clusters=4, eigen_solver='arpack')
label_im = np.full(mask.shape, -1.)
label_im[mask] = labels

plt.matshow(img)
plt.matshow(label_im)

###
2 circles
img = circle1 + circle2
mask = img.astype(bool)
img = img.astype(float)

img += 1 + 0.2 * np.random.randn(*img.shape)

graph = image.img_to_graph(img, mask=mask)
graph.data = np.exp(-graph.data / graph.data.std())

labels = spectral_clustering(graph, n_clusters=2, eigen_solver='arpack')
label_im = np.full(mask.shape, -1.)
label_im[mask] = labels

plt.matshow(img)
plt.matshow(label_im)

plt.show()

Total running time of the script: (0 minutes 0.618 seconds)

6.5. Clustering 831

scikit-learn user guide, Release 0.23.2

6.5.13 A demo of structured Ward hierarchical clustering on an image of coins

Compute the segmentation of a 2D image with Ward hierarchical clustering. The clustering is spatially constrained in
order for each segmented region to be in one piece.

Out:

Compute structured hierarchical clustering...
Elapsed time: 0.21239304542541504
Number of pixels: 4697
Number of clusters: 27

Author : Vincent Michel, 2010
Alexandre Gramfort, 2011
License: BSD 3 clause

print(__doc__)

import time as time
(continues on next page)

832 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

import numpy as np
from scipy.ndimage.filters import gaussian_filter

import matplotlib.pyplot as plt

import skimage
from skimage.data import coins
from skimage.transform import rescale

from sklearn.feature_extraction.image import grid_to_graph
from sklearn.cluster import AgglomerativeClustering
from sklearn.utils.fixes import parse_version

these were introduced in skimage-0.14
if parse_version(skimage.__version__) >= parse_version('0.14'):

rescale_params = {'anti_aliasing': False, 'multichannel': False}
else:

rescale_params = {}

###
Generate data
orig_coins = coins()

Resize it to 20% of the original size to speed up the processing
Applying a Gaussian filter for smoothing prior to down-scaling
reduces aliasing artifacts.
smoothened_coins = gaussian_filter(orig_coins, sigma=2)
rescaled_coins = rescale(smoothened_coins, 0.2, mode="reflect",

**rescale_params)

X = np.reshape(rescaled_coins, (-1, 1))

###
Define the structure A of the data. Pixels connected to their neighbors.
connectivity = grid_to_graph(*rescaled_coins.shape)

###
Compute clustering
print("Compute structured hierarchical clustering...")
st = time.time()
n_clusters = 27 # number of regions
ward = AgglomerativeClustering(n_clusters=n_clusters, linkage='ward',

connectivity=connectivity)
ward.fit(X)
label = np.reshape(ward.labels_, rescaled_coins.shape)
print("Elapsed time: ", time.time() - st)
print("Number of pixels: ", label.size)
print("Number of clusters: ", np.unique(label).size)

###
Plot the results on an image
plt.figure(figsize=(5, 5))
plt.imshow(rescaled_coins, cmap=plt.cm.gray)
for l in range(n_clusters):

plt.contour(label == l,
colors=[plt.cm.nipy_spectral(l / float(n_clusters)),])

(continues on next page)

6.5. Clustering 833

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.xticks(())
plt.yticks(())
plt.show()

Total running time of the script: (0 minutes 0.462 seconds)

6.5.14 Demo of DBSCAN clustering algorithm

Finds core samples of high density and expands clusters from them.

Out:

Estimated number of clusters: 3
Estimated number of noise points: 18
Homogeneity: 0.953
Completeness: 0.883
V-measure: 0.917
Adjusted Rand Index: 0.952
Adjusted Mutual Information: 0.916
Silhouette Coefficient: 0.626

834 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

print(__doc__)

import numpy as np

from sklearn.cluster import DBSCAN
from sklearn import metrics
from sklearn.datasets import make_blobs
from sklearn.preprocessing import StandardScaler

###
Generate sample data
centers = [[1, 1], [-1, -1], [1, -1]]
X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4,

random_state=0)

X = StandardScaler().fit_transform(X)

###
Compute DBSCAN
db = DBSCAN(eps=0.3, min_samples=10).fit(X)
core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
core_samples_mask[db.core_sample_indices_] = True
labels = db.labels_

Number of clusters in labels, ignoring noise if present.
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
n_noise_ = list(labels).count(-1)

print('Estimated number of clusters: %d' % n_clusters_)
print('Estimated number of noise points: %d' % n_noise_)
print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels))
print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels))
print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels))
print("Adjusted Rand Index: %0.3f"

% metrics.adjusted_rand_score(labels_true, labels))
print("Adjusted Mutual Information: %0.3f"

% metrics.adjusted_mutual_info_score(labels_true, labels))
print("Silhouette Coefficient: %0.3f"

% metrics.silhouette_score(X, labels))

###
Plot result
import matplotlib.pyplot as plt

Black removed and is used for noise instead.
unique_labels = set(labels)
colors = [plt.cm.Spectral(each)

for each in np.linspace(0, 1, len(unique_labels))]
for k, col in zip(unique_labels, colors):

if k == -1:
Black used for noise.
col = [0, 0, 0, 1]

class_member_mask = (labels == k)

xy = X[class_member_mask & core_samples_mask]

(continues on next page)

6.5. Clustering 835

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),
markeredgecolor='k', markersize=14)

xy = X[class_member_mask & ~core_samples_mask]
plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),

markeredgecolor='k', markersize=6)

plt.title('Estimated number of clusters: %d' % n_clusters_)
plt.show()

Total running time of the script: (0 minutes 0.146 seconds)

6.5.15 Color Quantization using K-Means

Performs a pixel-wise Vector Quantization (VQ) of an image of the summer palace (China), reducing the number of
colors required to show the image from 96,615 unique colors to 64, while preserving the overall appearance quality.

In this example, pixels are represented in a 3D-space and K-means is used to find 64 color clusters. In the image
processing literature, the codebook obtained from K-means (the cluster centers) is called the color palette. Using a
single byte, up to 256 colors can be addressed, whereas an RGB encoding requires 3 bytes per pixel. The GIF file
format, for example, uses such a palette.

For comparison, a quantized image using a random codebook (colors picked up randomly) is also shown.

•

836 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

6.5. Clustering 837

scikit-learn user guide, Release 0.23.2

•

Out:

Fitting model on a small sub-sample of the data
done in 0.287s.
Predicting color indices on the full image (k-means)
done in 0.045s.
Predicting color indices on the full image (random)
done in 0.218s.

Authors: Robert Layton <robertlayton@gmail.com>
Olivier Grisel <olivier.grisel@ensta.org>
Mathieu Blondel <mathieu@mblondel.org>
#
License: BSD 3 clause

print(__doc__)
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.metrics import pairwise_distances_argmin
from sklearn.datasets import load_sample_image
from sklearn.utils import shuffle

(continues on next page)

838 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

from time import time

n_colors = 64

Load the Summer Palace photo
china = load_sample_image("china.jpg")

Convert to floats instead of the default 8 bits integer coding. Dividing by
255 is important so that plt.imshow behaves works well on float data (need to
be in the range [0-1])
china = np.array(china, dtype=np.float64) / 255

Load Image and transform to a 2D numpy array.
w, h, d = original_shape = tuple(china.shape)
assert d == 3
image_array = np.reshape(china, (w * h, d))

print("Fitting model on a small sub-sample of the data")
t0 = time()
image_array_sample = shuffle(image_array, random_state=0)[:1000]
kmeans = KMeans(n_clusters=n_colors, random_state=0).fit(image_array_sample)
print("done in %0.3fs." % (time() - t0))

Get labels for all points
print("Predicting color indices on the full image (k-means)")
t0 = time()
labels = kmeans.predict(image_array)
print("done in %0.3fs." % (time() - t0))

codebook_random = shuffle(image_array, random_state=0)[:n_colors]
print("Predicting color indices on the full image (random)")
t0 = time()
labels_random = pairwise_distances_argmin(codebook_random,

image_array,
axis=0)

print("done in %0.3fs." % (time() - t0))

def recreate_image(codebook, labels, w, h):
"""Recreate the (compressed) image from the code book & labels"""
d = codebook.shape[1]
image = np.zeros((w, h, d))
label_idx = 0
for i in range(w):

for j in range(h):
image[i][j] = codebook[labels[label_idx]]
label_idx += 1

return image

Display all results, alongside original image
plt.figure(1)
plt.clf()
plt.axis('off')
plt.title('Original image (96,615 colors)')
plt.imshow(china)

(continues on next page)

6.5. Clustering 839

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.figure(2)
plt.clf()
plt.axis('off')
plt.title('Quantized image (64 colors, K-Means)')
plt.imshow(recreate_image(kmeans.cluster_centers_, labels, w, h))

plt.figure(3)
plt.clf()
plt.axis('off')
plt.title('Quantized image (64 colors, Random)')
plt.imshow(recreate_image(codebook_random, labels_random, w, h))
plt.show()

Total running time of the script: (0 minutes 1.363 seconds)

6.5.16 Hierarchical clustering: structured vs unstructured ward

Example builds a swiss roll dataset and runs hierarchical clustering on their position.

For more information, see Hierarchical clustering.

In a first step, the hierarchical clustering is performed without connectivity constraints on the structure and is solely
based on distance, whereas in a second step the clustering is restricted to the k-Nearest Neighbors graph: it’s a
hierarchical clustering with structure prior.

Some of the clusters learned without connectivity constraints do not respect the structure of the swiss roll and extend
across different folds of the manifolds. On the opposite, when opposing connectivity constraints, the clusters form a
nice parcellation of the swiss roll.

840 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

6.5. Clustering 841

scikit-learn user guide, Release 0.23.2

•

Out:

Compute unstructured hierarchical clustering...
Elapsed time: 0.05s
Number of points: 1500
Compute structured hierarchical clustering...
Elapsed time: 0.07s
Number of points: 1500

Authors : Vincent Michel, 2010
Alexandre Gramfort, 2010
Gael Varoquaux, 2010
License: BSD 3 clause

print(__doc__)

import time as time
import numpy as np
import matplotlib.pyplot as plt
import mpl_toolkits.mplot3d.axes3d as p3
from sklearn.cluster import AgglomerativeClustering
from sklearn.datasets import make_swiss_roll

(continues on next page)

842 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

###
Generate data (swiss roll dataset)
n_samples = 1500
noise = 0.05
X, _ = make_swiss_roll(n_samples, noise=noise)
Make it thinner
X[:, 1] *= .5

###
Compute clustering
print("Compute unstructured hierarchical clustering...")
st = time.time()
ward = AgglomerativeClustering(n_clusters=6, linkage='ward').fit(X)
elapsed_time = time.time() - st
label = ward.labels_
print("Elapsed time: %.2fs" % elapsed_time)
print("Number of points: %i" % label.size)

###
Plot result
fig = plt.figure()
ax = p3.Axes3D(fig)
ax.view_init(7, -80)
for l in np.unique(label):

ax.scatter(X[label == l, 0], X[label == l, 1], X[label == l, 2],
color=plt.cm.jet(np.float(l) / np.max(label + 1)),
s=20, edgecolor='k')

plt.title('Without connectivity constraints (time %.2fs)' % elapsed_time)

###
Define the structure A of the data. Here a 10 nearest neighbors
from sklearn.neighbors import kneighbors_graph
connectivity = kneighbors_graph(X, n_neighbors=10, include_self=False)

###
Compute clustering
print("Compute structured hierarchical clustering...")
st = time.time()
ward = AgglomerativeClustering(n_clusters=6, connectivity=connectivity,

linkage='ward').fit(X)
elapsed_time = time.time() - st
label = ward.labels_
print("Elapsed time: %.2fs" % elapsed_time)
print("Number of points: %i" % label.size)

###
Plot result
fig = plt.figure()
ax = p3.Axes3D(fig)
ax.view_init(7, -80)
for l in np.unique(label):

ax.scatter(X[label == l, 0], X[label == l, 1], X[label == l, 2],
color=plt.cm.jet(float(l) / np.max(label + 1)),
s=20, edgecolor='k')

plt.title('With connectivity constraints (time %.2fs)' % elapsed_time)
(continues on next page)

6.5. Clustering 843

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.show()

Total running time of the script: (0 minutes 0.361 seconds)

6.5.17 Agglomerative clustering with different metrics

Demonstrates the effect of different metrics on the hierarchical clustering.

The example is engineered to show the effect of the choice of different metrics. It is applied to waveforms, which
can be seen as high-dimensional vector. Indeed, the difference between metrics is usually more pronounced in high
dimension (in particular for euclidean and cityblock).

We generate data from three groups of waveforms. Two of the waveforms (waveform 1 and waveform 2) are propor-
tional one to the other. The cosine distance is invariant to a scaling of the data, as a result, it cannot distinguish these
two waveforms. Thus even with no noise, clustering using this distance will not separate out waveform 1 and 2.

We add observation noise to these waveforms. We generate very sparse noise: only 6% of the time points contain
noise. As a result, the l1 norm of this noise (ie “cityblock” distance) is much smaller than it’s l2 norm (“euclidean”
distance). This can be seen on the inter-class distance matrices: the values on the diagonal, that characterize the spread
of the class, are much bigger for the Euclidean distance than for the cityblock distance.

When we apply clustering to the data, we find that the clustering reflects what was in the distance matrices. Indeed,
for the Euclidean distance, the classes are ill-separated because of the noise, and thus the clustering does not separate
the waveforms. For the cityblock distance, the separation is good and the waveform classes are recovered. Finally, the
cosine distance does not separate at all waveform 1 and 2, thus the clustering puts them in the same cluster.

844 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

6.5. Clustering 845

scikit-learn user guide, Release 0.23.2

•

846 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

6.5. Clustering 847

scikit-learn user guide, Release 0.23.2

•

848 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

6.5. Clustering 849

scikit-learn user guide, Release 0.23.2

•

850 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

Author: Gael Varoquaux
License: BSD 3-Clause or CC-0

import matplotlib.pyplot as plt
import numpy as np

from sklearn.cluster import AgglomerativeClustering
from sklearn.metrics import pairwise_distances

np.random.seed(0)

Generate waveform data
n_features = 2000
t = np.pi * np.linspace(0, 1, n_features)

def sqr(x):
return np.sign(np.cos(x))

X = list()
y = list()
for i, (phi, a) in enumerate([(.5, .15), (.5, .6), (.3, .2)]):

for _ in range(30):
phase_noise = .01 * np.random.normal()
amplitude_noise = .04 * np.random.normal()
additional_noise = 1 - 2 * np.random.rand(n_features)
Make the noise sparse

(continues on next page)

6.5. Clustering 851

scikit-learn user guide, Release 0.23.2

(continued from previous page)

additional_noise[np.abs(additional_noise) < .997] = 0

X.append(12 * ((a + amplitude_noise)

* (sqr(6 * (t + phi + phase_noise)))
+ additional_noise))

y.append(i)

X = np.array(X)
y = np.array(y)

n_clusters = 3

labels = ('Waveform 1', 'Waveform 2', 'Waveform 3')

Plot the ground-truth labelling
plt.figure()
plt.axes([0, 0, 1, 1])
for l, c, n in zip(range(n_clusters), 'rgb',

labels):
lines = plt.plot(X[y == l].T, c=c, alpha=.5)
lines[0].set_label(n)

plt.legend(loc='best')

plt.axis('tight')
plt.axis('off')
plt.suptitle("Ground truth", size=20)

Plot the distances
for index, metric in enumerate(["cosine", "euclidean", "cityblock"]):

avg_dist = np.zeros((n_clusters, n_clusters))
plt.figure(figsize=(5, 4.5))
for i in range(n_clusters):

for j in range(n_clusters):
avg_dist[i, j] = pairwise_distances(X[y == i], X[y == j],

metric=metric).mean()
avg_dist /= avg_dist.max()
for i in range(n_clusters):

for j in range(n_clusters):
plt.text(i, j, '%5.3f' % avg_dist[i, j],

verticalalignment='center',
horizontalalignment='center')

plt.imshow(avg_dist, interpolation='nearest', cmap=plt.cm.gnuplot2,
vmin=0)

plt.xticks(range(n_clusters), labels, rotation=45)
plt.yticks(range(n_clusters), labels)
plt.colorbar()
plt.suptitle("Interclass %s distances" % metric, size=18)
plt.tight_layout()

Plot clustering results
for index, metric in enumerate(["cosine", "euclidean", "cityblock"]):

model = AgglomerativeClustering(n_clusters=n_clusters,
linkage="average", affinity=metric)

(continues on next page)

852 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

model.fit(X)
plt.figure()
plt.axes([0, 0, 1, 1])
for l, c in zip(np.arange(model.n_clusters), 'rgbk'):

plt.plot(X[model.labels_ == l].T, c=c, alpha=.5)
plt.axis('tight')
plt.axis('off')
plt.suptitle("AgglomerativeClustering(affinity=%s)" % metric, size=20)

plt.show()

Total running time of the script: (0 minutes 0.995 seconds)

6.5.18 Inductive Clustering

Clustering can be expensive, especially when our dataset contains millions of datapoints. Many clustering algorithms
are not inductive and so cannot be directly applied to new data samples without recomputing the clustering, which
may be intractable. Instead, we can use clustering to then learn an inductive model with a classifier, which has several
benefits:

• it allows the clusters to scale and apply to new data

• unlike re-fitting the clusters to new samples, it makes sure the labelling procedure is consistent over time

• it allows us to use the inferential capabilities of the classifier to describe or explain the clusters

This example illustrates a generic implementation of a meta-estimator which extends clustering by inducing a classifier
from the cluster labels.

Authors: Chirag Nagpal
Christos Aridas
print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn.base import BaseEstimator, clone
from sklearn.cluster import AgglomerativeClustering
from sklearn.datasets import make_blobs
from sklearn.ensemble import RandomForestClassifier
from sklearn.utils.metaestimators import if_delegate_has_method

(continues on next page)

6.5. Clustering 853

scikit-learn user guide, Release 0.23.2

(continued from previous page)

N_SAMPLES = 5000
RANDOM_STATE = 42

class InductiveClusterer(BaseEstimator):
def __init__(self, clusterer, classifier):

self.clusterer = clusterer
self.classifier = classifier

def fit(self, X, y=None):
self.clusterer_ = clone(self.clusterer)
self.classifier_ = clone(self.classifier)
y = self.clusterer_.fit_predict(X)
self.classifier_.fit(X, y)
return self

@if_delegate_has_method(delegate='classifier_')
def predict(self, X):

return self.classifier_.predict(X)

@if_delegate_has_method(delegate='classifier_')
def decision_function(self, X):

return self.classifier_.decision_function(X)

def plot_scatter(X, color, alpha=0.5):
return plt.scatter(X[:, 0],

X[:, 1],
c=color,
alpha=alpha,
edgecolor='k')

Generate some training data from clustering
X, y = make_blobs(n_samples=N_SAMPLES,

cluster_std=[1.0, 1.0, 0.5],
centers=[(-5, -5), (0, 0), (5, 5)],
random_state=RANDOM_STATE)

Train a clustering algorithm on the training data and get the cluster labels
clusterer = AgglomerativeClustering(n_clusters=3)
cluster_labels = clusterer.fit_predict(X)

plt.figure(figsize=(12, 4))

plt.subplot(131)
plot_scatter(X, cluster_labels)
plt.title("Ward Linkage")

Generate new samples and plot them along with the original dataset
X_new, y_new = make_blobs(n_samples=10,

centers=[(-7, -1), (-2, 4), (3, 6)],
random_state=RANDOM_STATE)

(continues on next page)

854 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.subplot(132)
plot_scatter(X, cluster_labels)
plot_scatter(X_new, 'black', 1)
plt.title("Unknown instances")

Declare the inductive learning model that it will be used to
predict cluster membership for unknown instances
classifier = RandomForestClassifier(random_state=RANDOM_STATE)
inductive_learner = InductiveClusterer(clusterer, classifier).fit(X)

probable_clusters = inductive_learner.predict(X_new)

plt.subplot(133)
plot_scatter(X, cluster_labels)
plot_scatter(X_new, probable_clusters)

Plotting decision regions
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1),

np.arange(y_min, y_max, 0.1))

Z = inductive_learner.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

plt.contourf(xx, yy, Z, alpha=0.4)
plt.title("Classify unknown instances")

plt.show()

Total running time of the script: (0 minutes 2.191 seconds)

6.5.19 Demo of OPTICS clustering algorithm

Finds core samples of high density and expands clusters from them. This example uses data that is generated so
that the clusters have different densities. The sklearn.cluster.OPTICS is first used with its Xi cluster detec-
tion method, and then setting specific thresholds on the reachability, which corresponds to sklearn.cluster.
DBSCAN . We can see that the different clusters of OPTICS’s Xi method can be recovered with different choices of
thresholds in DBSCAN.

6.5. Clustering 855

scikit-learn user guide, Release 0.23.2

Authors: Shane Grigsby <refuge@rocktalus.com>
Adrin Jalali <adrin.jalali@gmail.com>
License: BSD 3 clause

from sklearn.cluster import OPTICS, cluster_optics_dbscan
import matplotlib.gridspec as gridspec
import matplotlib.pyplot as plt
import numpy as np

Generate sample data

np.random.seed(0)
n_points_per_cluster = 250

C1 = [-5, -2] + .8 * np.random.randn(n_points_per_cluster, 2)
C2 = [4, -1] + .1 * np.random.randn(n_points_per_cluster, 2)
C3 = [1, -2] + .2 * np.random.randn(n_points_per_cluster, 2)
C4 = [-2, 3] + .3 * np.random.randn(n_points_per_cluster, 2)
C5 = [3, -2] + 1.6 * np.random.randn(n_points_per_cluster, 2)
C6 = [5, 6] + 2 * np.random.randn(n_points_per_cluster, 2)
X = np.vstack((C1, C2, C3, C4, C5, C6))

clust = OPTICS(min_samples=50, xi=.05, min_cluster_size=.05)

Run the fit
clust.fit(X)

(continues on next page)

856 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

labels_050 = cluster_optics_dbscan(reachability=clust.reachability_,
core_distances=clust.core_distances_,
ordering=clust.ordering_, eps=0.5)

labels_200 = cluster_optics_dbscan(reachability=clust.reachability_,
core_distances=clust.core_distances_,
ordering=clust.ordering_, eps=2)

space = np.arange(len(X))
reachability = clust.reachability_[clust.ordering_]
labels = clust.labels_[clust.ordering_]

plt.figure(figsize=(10, 7))
G = gridspec.GridSpec(2, 3)
ax1 = plt.subplot(G[0, :])
ax2 = plt.subplot(G[1, 0])
ax3 = plt.subplot(G[1, 1])
ax4 = plt.subplot(G[1, 2])

Reachability plot
colors = ['g.', 'r.', 'b.', 'y.', 'c.']
for klass, color in zip(range(0, 5), colors):

Xk = space[labels == klass]
Rk = reachability[labels == klass]
ax1.plot(Xk, Rk, color, alpha=0.3)

ax1.plot(space[labels == -1], reachability[labels == -1], 'k.', alpha=0.3)
ax1.plot(space, np.full_like(space, 2., dtype=float), 'k-', alpha=0.5)
ax1.plot(space, np.full_like(space, 0.5, dtype=float), 'k-.', alpha=0.5)
ax1.set_ylabel('Reachability (epsilon distance)')
ax1.set_title('Reachability Plot')

OPTICS
colors = ['g.', 'r.', 'b.', 'y.', 'c.']
for klass, color in zip(range(0, 5), colors):

Xk = X[clust.labels_ == klass]
ax2.plot(Xk[:, 0], Xk[:, 1], color, alpha=0.3)

ax2.plot(X[clust.labels_ == -1, 0], X[clust.labels_ == -1, 1], 'k+', alpha=0.1)
ax2.set_title('Automatic Clustering\nOPTICS')

DBSCAN at 0.5
colors = ['g', 'greenyellow', 'olive', 'r', 'b', 'c']
for klass, color in zip(range(0, 6), colors):

Xk = X[labels_050 == klass]
ax3.plot(Xk[:, 0], Xk[:, 1], color, alpha=0.3, marker='.')

ax3.plot(X[labels_050 == -1, 0], X[labels_050 == -1, 1], 'k+', alpha=0.1)
ax3.set_title('Clustering at 0.5 epsilon cut\nDBSCAN')

DBSCAN at 2.
colors = ['g.', 'm.', 'y.', 'c.']
for klass, color in zip(range(0, 4), colors):

Xk = X[labels_200 == klass]
ax4.plot(Xk[:, 0], Xk[:, 1], color, alpha=0.3)

ax4.plot(X[labels_200 == -1, 0], X[labels_200 == -1, 1], 'k+', alpha=0.1)
ax4.set_title('Clustering at 2.0 epsilon cut\nDBSCAN')

plt.tight_layout()
plt.show()

6.5. Clustering 857

scikit-learn user guide, Release 0.23.2

Total running time of the script: (0 minutes 1.243 seconds)

6.5.20 Compare BIRCH and MiniBatchKMeans

This example compares the timing of Birch (with and without the global clustering step) and MiniBatchKMeans on a
synthetic dataset having 100,000 samples and 2 features generated using make_blobs.

If n_clusters is set to None, the data is reduced from 100,000 samples to a set of 158 clusters. This can be viewed
as a preprocessing step before the final (global) clustering step that further reduces these 158 clusters to 100 clusters.

Out:

Birch without global clustering as the final step took 2.84 seconds
n_clusters : 158
Birch with global clustering as the final step took 2.77 seconds
n_clusters : 100
Time taken to run MiniBatchKMeans 3.03 seconds

Authors: Manoj Kumar <manojkumarsivaraj334@gmail.com
Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
License: BSD 3 clause

print(__doc__)

from itertools import cycle
from time import time
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as colors

from sklearn.cluster import Birch, MiniBatchKMeans
from sklearn.datasets import make_blobs

Generate centers for the blobs so that it forms a 10 X 10 grid.
xx = np.linspace(-22, 22, 10)
yy = np.linspace(-22, 22, 10)

(continues on next page)

858 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

xx, yy = np.meshgrid(xx, yy)
n_centres = np.hstack((np.ravel(xx)[:, np.newaxis],

np.ravel(yy)[:, np.newaxis]))

Generate blobs to do a comparison between MiniBatchKMeans and Birch.
X, y = make_blobs(n_samples=100000, centers=n_centres, random_state=0)

Use all colors that matplotlib provides by default.
colors_ = cycle(colors.cnames.keys())

fig = plt.figure(figsize=(12, 4))
fig.subplots_adjust(left=0.04, right=0.98, bottom=0.1, top=0.9)

Compute clustering with Birch with and without the final clustering step
and plot.
birch_models = [Birch(threshold=1.7, n_clusters=None),

Birch(threshold=1.7, n_clusters=100)]
final_step = ['without global clustering', 'with global clustering']

for ind, (birch_model, info) in enumerate(zip(birch_models, final_step)):
t = time()
birch_model.fit(X)
time_ = time() - t
print("Birch %s as the final step took %0.2f seconds" % (

info, (time() - t)))

Plot result
labels = birch_model.labels_
centroids = birch_model.subcluster_centers_
n_clusters = np.unique(labels).size
print("n_clusters : %d" % n_clusters)

ax = fig.add_subplot(1, 3, ind + 1)
for this_centroid, k, col in zip(centroids, range(n_clusters), colors_):

mask = labels == k
ax.scatter(X[mask, 0], X[mask, 1],

c='w', edgecolor=col, marker='.', alpha=0.5)
if birch_model.n_clusters is None:

ax.scatter(this_centroid[0], this_centroid[1], marker='+',
c='k', s=25)

ax.set_ylim([-25, 25])
ax.set_xlim([-25, 25])
ax.set_autoscaley_on(False)
ax.set_title('Birch %s' % info)

Compute clustering with MiniBatchKMeans.
mbk = MiniBatchKMeans(init='k-means++', n_clusters=100, batch_size=100,

n_init=10, max_no_improvement=10, verbose=0,
random_state=0)

t0 = time()
mbk.fit(X)
t_mini_batch = time() - t0
print("Time taken to run MiniBatchKMeans %0.2f seconds" % t_mini_batch)
mbk_means_labels_unique = np.unique(mbk.labels_)

ax = fig.add_subplot(1, 3, 3)
for this_centroid, k, col in zip(mbk.cluster_centers_,

(continues on next page)

6.5. Clustering 859

scikit-learn user guide, Release 0.23.2

(continued from previous page)

range(n_clusters), colors_):
mask = mbk.labels_ == k
ax.scatter(X[mask, 0], X[mask, 1], marker='.',

c='w', edgecolor=col, alpha=0.5)
ax.scatter(this_centroid[0], this_centroid[1], marker='+',

c='k', s=25)
ax.set_xlim([-25, 25])
ax.set_ylim([-25, 25])
ax.set_title("MiniBatchKMeans")
ax.set_autoscaley_on(False)
plt.show()

Total running time of the script: (0 minutes 10.827 seconds)

6.5.21 Empirical evaluation of the impact of k-means initialization

Evaluate the ability of k-means initializations strategies to make the algorithm convergence robust as measured by
the relative standard deviation of the inertia of the clustering (i.e. the sum of squared distances to the nearest cluster
center).

The first plot shows the best inertia reached for each combination of the model (KMeans or MiniBatchKMeans)
and the init method (init="random" or init="kmeans++") for increasing values of the n_init parameter
that controls the number of initializations.

The second plot demonstrate one single run of the MiniBatchKMeans estimator using a init="random" and
n_init=1. This run leads to a bad convergence (local optimum) with estimated centers stuck between ground truth
clusters.

The dataset used for evaluation is a 2D grid of isotropic Gaussian clusters widely spaced.

860 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

6.5. Clustering 861

scikit-learn user guide, Release 0.23.2

•

Out:

Evaluation of KMeans with k-means++ init
Evaluation of KMeans with random init
Evaluation of MiniBatchKMeans with k-means++ init
Evaluation of MiniBatchKMeans with random init

print(__doc__)

Author: Olivier Grisel <olivier.grisel@ensta.org>
License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm

from sklearn.utils import shuffle
from sklearn.utils import check_random_state
from sklearn.cluster import MiniBatchKMeans
from sklearn.cluster import KMeans

random_state = np.random.RandomState(0)
(continues on next page)

862 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Number of run (with randomly generated dataset) for each strategy so as
to be able to compute an estimate of the standard deviation
n_runs = 5

k-means models can do several random inits so as to be able to trade
CPU time for convergence robustness
n_init_range = np.array([1, 5, 10, 15, 20])

Datasets generation parameters
n_samples_per_center = 100
grid_size = 3
scale = 0.1
n_clusters = grid_size ** 2

def make_data(random_state, n_samples_per_center, grid_size, scale):
random_state = check_random_state(random_state)
centers = np.array([[i, j]

for i in range(grid_size)
for j in range(grid_size)])

n_clusters_true, n_features = centers.shape

noise = random_state.normal(
scale=scale, size=(n_samples_per_center, centers.shape[1]))

X = np.concatenate([c + noise for c in centers])
y = np.concatenate([[i] * n_samples_per_center

for i in range(n_clusters_true)])
return shuffle(X, y, random_state=random_state)

Part 1: Quantitative evaluation of various init methods

plt.figure()
plots = []
legends = []

cases = [
(KMeans, 'k-means++', {}),
(KMeans, 'random', {}),
(MiniBatchKMeans, 'k-means++', {'max_no_improvement': 3}),
(MiniBatchKMeans, 'random', {'max_no_improvement': 3, 'init_size': 500}),

]

for factory, init, params in cases:
print("Evaluation of %s with %s init" % (factory.__name__, init))
inertia = np.empty((len(n_init_range), n_runs))

for run_id in range(n_runs):
X, y = make_data(run_id, n_samples_per_center, grid_size, scale)
for i, n_init in enumerate(n_init_range):

km = factory(n_clusters=n_clusters, init=init, random_state=run_id,
n_init=n_init, **params).fit(X)

inertia[i, run_id] = km.inertia_
p = plt.errorbar(n_init_range, inertia.mean(axis=1), inertia.std(axis=1))
plots.append(p[0])
legends.append("%s with %s init" % (factory.__name__, init))

(continues on next page)

6.5. Clustering 863

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.xlabel('n_init')
plt.ylabel('inertia')
plt.legend(plots, legends)
plt.title("Mean inertia for various k-means init across %d runs" % n_runs)

Part 2: Qualitative visual inspection of the convergence

X, y = make_data(random_state, n_samples_per_center, grid_size, scale)
km = MiniBatchKMeans(n_clusters=n_clusters, init='random', n_init=1,

random_state=random_state).fit(X)

plt.figure()
for k in range(n_clusters):

my_members = km.labels_ == k
color = cm.nipy_spectral(float(k) / n_clusters, 1)
plt.plot(X[my_members, 0], X[my_members, 1], 'o', marker='.', c=color)
cluster_center = km.cluster_centers_[k]
plt.plot(cluster_center[0], cluster_center[1], 'o',

markerfacecolor=color, markeredgecolor='k', markersize=6)
plt.title("Example cluster allocation with a single random init\n"

"with MiniBatchKMeans")

plt.show()

Total running time of the script: (0 minutes 3.160 seconds)

6.5.22 Adjustment for chance in clustering performance evaluation

The following plots demonstrate the impact of the number of clusters and number of samples on various clustering
performance evaluation metrics.

Non-adjusted measures such as the V-Measure show a dependency between the number of clusters and the number of
samples: the mean V-Measure of random labeling increases significantly as the number of clusters is closer to the total
number of samples used to compute the measure.

Adjusted for chance measure such as ARI display some random variations centered around a mean score of 0.0 for
any number of samples and clusters.

Only adjusted measures can hence safely be used as a consensus index to evaluate the average stability of clustering
algorithms for a given value of k on various overlapping sub-samples of the dataset.

864 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

6.5. Clustering 865

scikit-learn user guide, Release 0.23.2

•

Out:

Computing adjusted_rand_score for 10 values of n_clusters and n_samples=100
done in 0.033s
Computing v_measure_score for 10 values of n_clusters and n_samples=100
done in 0.047s
Computing ami_score for 10 values of n_clusters and n_samples=100
done in 0.344s
Computing mutual_info_score for 10 values of n_clusters and n_samples=100
done in 0.044s
Computing adjusted_rand_score for 10 values of n_clusters and n_samples=1000
done in 0.057s
Computing v_measure_score for 10 values of n_clusters and n_samples=1000
done in 0.072s
Computing ami_score for 10 values of n_clusters and n_samples=1000
done in 0.236s
Computing mutual_info_score for 10 values of n_clusters and n_samples=1000
done in 0.054s

print(__doc__)

Author: Olivier Grisel <olivier.grisel@ensta.org>
(continues on next page)

866 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from time import time
from sklearn import metrics

def uniform_labelings_scores(score_func, n_samples, n_clusters_range,
fixed_n_classes=None, n_runs=5, seed=42):

"""Compute score for 2 random uniform cluster labelings.

Both random labelings have the same number of clusters for each value
possible value in ``n_clusters_range``.

When fixed_n_classes is not None the first labeling is considered a ground
truth class assignment with fixed number of classes.
"""
random_labels = np.random.RandomState(seed).randint
scores = np.zeros((len(n_clusters_range), n_runs))

if fixed_n_classes is not None:
labels_a = random_labels(low=0, high=fixed_n_classes, size=n_samples)

for i, k in enumerate(n_clusters_range):
for j in range(n_runs):

if fixed_n_classes is None:
labels_a = random_labels(low=0, high=k, size=n_samples)

labels_b = random_labels(low=0, high=k, size=n_samples)
scores[i, j] = score_func(labels_a, labels_b)

return scores

def ami_score(U, V):
return metrics.adjusted_mutual_info_score(U, V)

score_funcs = [
metrics.adjusted_rand_score,
metrics.v_measure_score,
ami_score,
metrics.mutual_info_score,

]

2 independent random clusterings with equal cluster number

n_samples = 100
n_clusters_range = np.linspace(2, n_samples, 10).astype(np.int)

plt.figure(1)

plots = []
names = []
for score_func in score_funcs:

print("Computing %s for %d values of n_clusters and n_samples=%d"
% (score_func.__name__, len(n_clusters_range), n_samples))

t0 = time()
scores = uniform_labelings_scores(score_func, n_samples, n_clusters_range)

(continues on next page)

6.5. Clustering 867

scikit-learn user guide, Release 0.23.2

(continued from previous page)

print("done in %0.3fs" % (time() - t0))
plots.append(plt.errorbar(

n_clusters_range, np.median(scores, axis=1), scores.std(axis=1))[0])
names.append(score_func.__name__)

plt.title("Clustering measures for 2 random uniform labelings\n"
"with equal number of clusters")

plt.xlabel('Number of clusters (Number of samples is fixed to %d)' % n_samples)
plt.ylabel('Score value')
plt.legend(plots, names)
plt.ylim(bottom=-0.05, top=1.05)

Random labeling with varying n_clusters against ground class labels
with fixed number of clusters

n_samples = 1000
n_clusters_range = np.linspace(2, 100, 10).astype(np.int)
n_classes = 10

plt.figure(2)

plots = []
names = []
for score_func in score_funcs:

print("Computing %s for %d values of n_clusters and n_samples=%d"
% (score_func.__name__, len(n_clusters_range), n_samples))

t0 = time()
scores = uniform_labelings_scores(score_func, n_samples, n_clusters_range,

fixed_n_classes=n_classes)
print("done in %0.3fs" % (time() - t0))
plots.append(plt.errorbar(

n_clusters_range, scores.mean(axis=1), scores.std(axis=1))[0])
names.append(score_func.__name__)

plt.title("Clustering measures for random uniform labeling\n"
"against reference assignment with %d classes" % n_classes)

plt.xlabel('Number of clusters (Number of samples is fixed to %d)' % n_samples)
plt.ylabel('Score value')
plt.ylim(bottom=-0.05, top=1.05)
plt.legend(plots, names)
plt.show()

Total running time of the script: (0 minutes 1.055 seconds)

6.5.23 Comparison of the K-Means and MiniBatchKMeans clustering algorithms

We want to compare the performance of the MiniBatchKMeans and KMeans: the MiniBatchKMeans is faster, but
gives slightly different results (see Mini Batch K-Means).

We will cluster a set of data, first with KMeans and then with MiniBatchKMeans, and plot the results. We will also
plot the points that are labelled differently between the two algorithms.

868 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

print(__doc__)

import time

import numpy as np
import matplotlib.pyplot as plt

from sklearn.cluster import MiniBatchKMeans, KMeans
from sklearn.metrics.pairwise import pairwise_distances_argmin
from sklearn.datasets import make_blobs

###
Generate sample data
np.random.seed(0)

batch_size = 45
centers = [[1, 1], [-1, -1], [1, -1]]
n_clusters = len(centers)
X, labels_true = make_blobs(n_samples=3000, centers=centers, cluster_std=0.7)

###
Compute clustering with Means

k_means = KMeans(init='k-means++', n_clusters=3, n_init=10)
t0 = time.time()
k_means.fit(X)
t_batch = time.time() - t0

###
Compute clustering with MiniBatchKMeans

mbk = MiniBatchKMeans(init='k-means++', n_clusters=3, batch_size=batch_size,
n_init=10, max_no_improvement=10, verbose=0)

t0 = time.time()
mbk.fit(X)
t_mini_batch = time.time() - t0

###
Plot result

fig = plt.figure(figsize=(8, 3))

(continues on next page)

6.5. Clustering 869

scikit-learn user guide, Release 0.23.2

(continued from previous page)

fig.subplots_adjust(left=0.02, right=0.98, bottom=0.05, top=0.9)
colors = ['#4EACC5', '#FF9C34', '#4E9A06']

We want to have the same colors for the same cluster from the
MiniBatchKMeans and the KMeans algorithm. Let's pair the cluster centers per
closest one.
k_means_cluster_centers = k_means.cluster_centers_
order = pairwise_distances_argmin(k_means.cluster_centers_,

mbk.cluster_centers_)
mbk_means_cluster_centers = mbk.cluster_centers_[order]

k_means_labels = pairwise_distances_argmin(X, k_means_cluster_centers)
mbk_means_labels = pairwise_distances_argmin(X, mbk_means_cluster_centers)

KMeans
ax = fig.add_subplot(1, 3, 1)
for k, col in zip(range(n_clusters), colors):

my_members = k_means_labels == k
cluster_center = k_means_cluster_centers[k]
ax.plot(X[my_members, 0], X[my_members, 1], 'w',

markerfacecolor=col, marker='.')
ax.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col,

markeredgecolor='k', markersize=6)
ax.set_title('KMeans')
ax.set_xticks(())
ax.set_yticks(())
plt.text(-3.5, 1.8, 'train time: %.2fs\ninertia: %f' % (

t_batch, k_means.inertia_))

MiniBatchKMeans
ax = fig.add_subplot(1, 3, 2)
for k, col in zip(range(n_clusters), colors):

my_members = mbk_means_labels == k
cluster_center = mbk_means_cluster_centers[k]
ax.plot(X[my_members, 0], X[my_members, 1], 'w',

markerfacecolor=col, marker='.')
ax.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col,

markeredgecolor='k', markersize=6)
ax.set_title('MiniBatchKMeans')
ax.set_xticks(())
ax.set_yticks(())
plt.text(-3.5, 1.8, 'train time: %.2fs\ninertia: %f' %

(t_mini_batch, mbk.inertia_))

Initialise the different array to all False
different = (mbk_means_labels == 4)
ax = fig.add_subplot(1, 3, 3)

for k in range(n_clusters):
different += ((k_means_labels == k) != (mbk_means_labels == k))

identic = np.logical_not(different)
ax.plot(X[identic, 0], X[identic, 1], 'w',

markerfacecolor='#bbbbbb', marker='.')
ax.plot(X[different, 0], X[different, 1], 'w',

markerfacecolor='m', marker='.')
ax.set_title('Difference')

(continues on next page)

870 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

ax.set_xticks(())
ax.set_yticks(())

plt.show()

Total running time of the script: (0 minutes 0.270 seconds)

6.5.24 Feature agglomeration vs. univariate selection

This example compares 2 dimensionality reduction strategies:

• univariate feature selection with Anova

• feature agglomeration with Ward hierarchical clustering

Both methods are compared in a regression problem using a BayesianRidge as supervised estimator.

Out:

__
[Memory] Calling sklearn.cluster._agglomerative.ward_tree...
ward_tree(array([[-0.451933, ..., -0.675318],

...,
[0.275706, ..., -1.085711]]), connectivity=<1600x1600 sparse matrix of type '

→˓<class 'numpy.int64'>'
with 7840 stored elements in COOrdinate format>, n_clusters=None, return_

→˓distance=False)
__ward_tree - 0.1s, 0.0min
__
[Memory] Calling sklearn.cluster._agglomerative.ward_tree...
ward_tree(array([[0.905206, ..., 0.161245],

...,
[-0.849835, ..., -1.091621]]), connectivity=<1600x1600 sparse matrix of type '

→˓<class 'numpy.int64'>'
with 7840 stored elements in COOrdinate format>, n_clusters=None, return_

→˓distance=False)
__ward_tree - 0.1s, 0.0min
__
[Memory] Calling sklearn.cluster._agglomerative.ward_tree...
ward_tree(array([[0.905206, ..., -0.675318],

(continues on next page)

6.5. Clustering 871

scikit-learn user guide, Release 0.23.2

(continued from previous page)

...,
[-0.849835, ..., -1.085711]]), connectivity=<1600x1600 sparse matrix of type '

→˓<class 'numpy.int64'>'
with 7840 stored elements in COOrdinate format>, n_clusters=None, return_

→˓distance=False)
__ward_tree - 0.1s, 0.0min
__
[Memory] Calling sklearn.feature_selection._univariate_selection.f_regression...
f_regression(array([[-0.451933, ..., 0.275706],

...,
[-0.675318, ..., -1.085711]]),

array([25.267703, ..., -25.026711]))
___f_regression - 0.0s, 0.0min
__
[Memory] Calling sklearn.feature_selection._univariate_selection.f_regression...
f_regression(array([[0.905206, ..., -0.849835],

...,
[0.161245, ..., -1.091621]]),

array([-27.447268, ..., -112.638768]))
___f_regression - 0.0s, 0.0min
__
[Memory] Calling sklearn.feature_selection._univariate_selection.f_regression...
f_regression(array([[0.905206, ..., -0.849835],

...,
[-0.675318, ..., -1.085711]]),

array([-27.447268, ..., -25.026711]))
___f_regression - 0.0s, 0.0min

Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
License: BSD 3 clause

print(__doc__)

import shutil
import tempfile

import numpy as np
import matplotlib.pyplot as plt
from scipy import linalg, ndimage
from joblib import Memory

from sklearn.feature_extraction.image import grid_to_graph
from sklearn import feature_selection
from sklearn.cluster import FeatureAgglomeration
from sklearn.linear_model import BayesianRidge
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import KFold

###
Generate data

(continues on next page)

872 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

n_samples = 200
size = 40 # image size
roi_size = 15
snr = 5.
np.random.seed(0)
mask = np.ones([size, size], dtype=np.bool)

coef = np.zeros((size, size))
coef[0:roi_size, 0:roi_size] = -1.
coef[-roi_size:, -roi_size:] = 1.

X = np.random.randn(n_samples, size ** 2)
for x in X: # smooth data

x[:] = ndimage.gaussian_filter(x.reshape(size, size), sigma=1.0).ravel()
X -= X.mean(axis=0)
X /= X.std(axis=0)

y = np.dot(X, coef.ravel())
noise = np.random.randn(y.shape[0])
noise_coef = (linalg.norm(y, 2) / np.exp(snr / 20.)) / linalg.norm(noise, 2)
y += noise_coef * noise # add noise

###
Compute the coefs of a Bayesian Ridge with GridSearch
cv = KFold(2) # cross-validation generator for model selection
ridge = BayesianRidge()
cachedir = tempfile.mkdtemp()
mem = Memory(location=cachedir, verbose=1)

Ward agglomeration followed by BayesianRidge
connectivity = grid_to_graph(n_x=size, n_y=size)
ward = FeatureAgglomeration(n_clusters=10, connectivity=connectivity,

memory=mem)
clf = Pipeline([('ward', ward), ('ridge', ridge)])
Select the optimal number of parcels with grid search
clf = GridSearchCV(clf, {'ward__n_clusters': [10, 20, 30]}, n_jobs=1, cv=cv)
clf.fit(X, y) # set the best parameters
coef_ = clf.best_estimator_.steps[-1][1].coef_
coef_ = clf.best_estimator_.steps[0][1].inverse_transform(coef_)
coef_agglomeration_ = coef_.reshape(size, size)

Anova univariate feature selection followed by BayesianRidge
f_regression = mem.cache(feature_selection.f_regression) # caching function
anova = feature_selection.SelectPercentile(f_regression)
clf = Pipeline([('anova', anova), ('ridge', ridge)])
Select the optimal percentage of features with grid search
clf = GridSearchCV(clf, {'anova__percentile': [5, 10, 20]}, cv=cv)
clf.fit(X, y) # set the best parameters
coef_ = clf.best_estimator_.steps[-1][1].coef_
coef_ = clf.best_estimator_.steps[0][1].inverse_transform(coef_.reshape(1, -1))
coef_selection_ = coef_.reshape(size, size)

###
Inverse the transformation to plot the results on an image
plt.close('all')
plt.figure(figsize=(7.3, 2.7))
plt.subplot(1, 3, 1)

(continues on next page)

6.5. Clustering 873

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.imshow(coef, interpolation="nearest", cmap=plt.cm.RdBu_r)
plt.title("True weights")
plt.subplot(1, 3, 2)
plt.imshow(coef_selection_, interpolation="nearest", cmap=plt.cm.RdBu_r)
plt.title("Feature Selection")
plt.subplot(1, 3, 3)
plt.imshow(coef_agglomeration_, interpolation="nearest", cmap=plt.cm.RdBu_r)
plt.title("Feature Agglomeration")
plt.subplots_adjust(0.04, 0.0, 0.98, 0.94, 0.16, 0.26)
plt.show()

Attempt to remove the temporary cachedir, but don't worry if it fails
shutil.rmtree(cachedir, ignore_errors=True)

Total running time of the script: (0 minutes 0.920 seconds)

6.5.25 A demo of K-Means clustering on the handwritten digits data

In this example we compare the various initialization strategies for K-means in terms of runtime and quality of the
results.

As the ground truth is known here, we also apply different cluster quality metrics to judge the goodness of fit of the
cluster labels to the ground truth.

Cluster quality metrics evaluated (see Clustering performance evaluation for definitions and discussions of the met-
rics):

Shorthand full name
homo homogeneity score
compl completeness score
v-meas V measure
ARI adjusted Rand index
AMI adjusted mutual information
silhouette silhouette coefficient

874 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Out:

n_digits: 10, n_samples 1797, n_features 64
__
init time inertia homo compl v-meas ARI AMI silhouette
k-means++ 0.18s 69510 0.610 0.657 0.633 0.481 0.629 0.129
random 0.17s 69907 0.633 0.674 0.653 0.518 0.649 0.131
PCA-based 0.02s 70768 0.668 0.695 0.681 0.558 0.678 0.142
__

print(__doc__)

from time import time
import numpy as np
import matplotlib.pyplot as plt

from sklearn import metrics
from sklearn.cluster import KMeans
from sklearn.datasets import load_digits
from sklearn.decomposition import PCA

(continues on next page)

6.5. Clustering 875

scikit-learn user guide, Release 0.23.2

(continued from previous page)

from sklearn.preprocessing import scale

np.random.seed(42)

X_digits, y_digits = load_digits(return_X_y=True)
data = scale(X_digits)

n_samples, n_features = data.shape
n_digits = len(np.unique(y_digits))
labels = y_digits

sample_size = 300

print("n_digits: %d, \t n_samples %d, \t n_features %d"
% (n_digits, n_samples, n_features))

print(82 * '_')
print('init\t\ttime\tinertia\thomo\tcompl\tv-meas\tARI\tAMI\tsilhouette')

def bench_k_means(estimator, name, data):
t0 = time()
estimator.fit(data)
print('%-9s\t%.2fs\t%i\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f'

% (name, (time() - t0), estimator.inertia_,
metrics.homogeneity_score(labels, estimator.labels_),
metrics.completeness_score(labels, estimator.labels_),
metrics.v_measure_score(labels, estimator.labels_),
metrics.adjusted_rand_score(labels, estimator.labels_),
metrics.adjusted_mutual_info_score(labels, estimator.labels_),
metrics.silhouette_score(data, estimator.labels_,

metric='euclidean',
sample_size=sample_size)))

bench_k_means(KMeans(init='k-means++', n_clusters=n_digits, n_init=10),
name="k-means++", data=data)

bench_k_means(KMeans(init='random', n_clusters=n_digits, n_init=10),
name="random", data=data)

in this case the seeding of the centers is deterministic, hence we run the
kmeans algorithm only once with n_init=1
pca = PCA(n_components=n_digits).fit(data)
bench_k_means(KMeans(init=pca.components_, n_clusters=n_digits, n_init=1),

name="PCA-based",
data=data)

print(82 * '_')

###
Visualize the results on PCA-reduced data

reduced_data = PCA(n_components=2).fit_transform(data)
kmeans = KMeans(init='k-means++', n_clusters=n_digits, n_init=10)
kmeans.fit(reduced_data)

Step size of the mesh. Decrease to increase the quality of the VQ.
(continues on next page)

876 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

h = .02 # point in the mesh [x_min, x_max]x[y_min, y_max].

Plot the decision boundary. For that, we will assign a color to each
x_min, x_max = reduced_data[:, 0].min() - 1, reduced_data[:, 0].max() + 1
y_min, y_max = reduced_data[:, 1].min() - 1, reduced_data[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))

Obtain labels for each point in mesh. Use last trained model.
Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()])

Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure(1)
plt.clf()
plt.imshow(Z, interpolation='nearest',

extent=(xx.min(), xx.max(), yy.min(), yy.max()),
cmap=plt.cm.Paired,
aspect='auto', origin='lower')

plt.plot(reduced_data[:, 0], reduced_data[:, 1], 'k.', markersize=2)
Plot the centroids as a white X
centroids = kmeans.cluster_centers_
plt.scatter(centroids[:, 0], centroids[:, 1],

marker='x', s=169, linewidths=3,
color='w', zorder=10)

plt.title('K-means clustering on the digits dataset (PCA-reduced data)\n'
'Centroids are marked with white cross')

plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.xticks(())
plt.yticks(())
plt.show()

Total running time of the script: (0 minutes 0.679 seconds)

6.5.26 Comparing different hierarchical linkage methods on toy datasets

This example shows characteristics of different linkage methods for hierarchical clustering on datasets that are “inter-
esting” but still in 2D.

The main observations to make are:

• single linkage is fast, and can perform well on non-globular data, but it performs poorly in the presence of noise.

• average and complete linkage perform well on cleanly separated globular clusters, but have mixed results other-
wise.

• Ward is the most effective method for noisy data.

While these examples give some intuition about the algorithms, this intuition might not apply to very high dimensional
data.

print(__doc__)

import time
import warnings

(continues on next page)

6.5. Clustering 877

scikit-learn user guide, Release 0.23.2

(continued from previous page)

import numpy as np
import matplotlib.pyplot as plt

from sklearn import cluster, datasets
from sklearn.preprocessing import StandardScaler
from itertools import cycle, islice

np.random.seed(0)

Generate datasets. We choose the size big enough to see the scalability of the algorithms, but not too big to avoid too
long running times

n_samples = 1500
noisy_circles = datasets.make_circles(n_samples=n_samples, factor=.5,

noise=.05)
noisy_moons = datasets.make_moons(n_samples=n_samples, noise=.05)
blobs = datasets.make_blobs(n_samples=n_samples, random_state=8)
no_structure = np.random.rand(n_samples, 2), None

Anisotropicly distributed data
random_state = 170
X, y = datasets.make_blobs(n_samples=n_samples, random_state=random_state)
transformation = [[0.6, -0.6], [-0.4, 0.8]]
X_aniso = np.dot(X, transformation)
aniso = (X_aniso, y)

blobs with varied variances
varied = datasets.make_blobs(n_samples=n_samples,

cluster_std=[1.0, 2.5, 0.5],
random_state=random_state)

Run the clustering and plot

Set up cluster parameters
plt.figure(figsize=(9 * 1.3 + 2, 14.5))
plt.subplots_adjust(left=.02, right=.98, bottom=.001, top=.96, wspace=.05,

hspace=.01)

plot_num = 1

default_base = {'n_neighbors': 10,
'n_clusters': 3}

datasets = [
(noisy_circles, {'n_clusters': 2}),
(noisy_moons, {'n_clusters': 2}),
(varied, {'n_neighbors': 2}),
(aniso, {'n_neighbors': 2}),
(blobs, {}),
(no_structure, {})]

for i_dataset, (dataset, algo_params) in enumerate(datasets):
update parameters with dataset-specific values
params = default_base.copy()
params.update(algo_params)

(continues on next page)

878 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

X, y = dataset

normalize dataset for easier parameter selection
X = StandardScaler().fit_transform(X)

============
Create cluster objects
============
ward = cluster.AgglomerativeClustering(

n_clusters=params['n_clusters'], linkage='ward')
complete = cluster.AgglomerativeClustering(

n_clusters=params['n_clusters'], linkage='complete')
average = cluster.AgglomerativeClustering(

n_clusters=params['n_clusters'], linkage='average')
single = cluster.AgglomerativeClustering(

n_clusters=params['n_clusters'], linkage='single')

clustering_algorithms = (
('Single Linkage', single),
('Average Linkage', average),
('Complete Linkage', complete),
('Ward Linkage', ward),

)

for name, algorithm in clustering_algorithms:
t0 = time.time()

catch warnings related to kneighbors_graph
with warnings.catch_warnings():

warnings.filterwarnings(
"ignore",
message="the number of connected components of the " +
"connectivity matrix is [0-9]{1,2}" +
" > 1. Completing it to avoid stopping the tree early.",
category=UserWarning)

algorithm.fit(X)

t1 = time.time()
if hasattr(algorithm, 'labels_'):

y_pred = algorithm.labels_.astype(np.int)
else:

y_pred = algorithm.predict(X)

plt.subplot(len(datasets), len(clustering_algorithms), plot_num)
if i_dataset == 0:

plt.title(name, size=18)

colors = np.array(list(islice(cycle(['#377eb8', '#ff7f00', '#4daf4a',
'#f781bf', '#a65628', '#984ea3',
'#999999', '#e41a1c', '#dede00']),

int(max(y_pred) + 1))))
plt.scatter(X[:, 0], X[:, 1], s=10, color=colors[y_pred])

plt.xlim(-2.5, 2.5)
plt.ylim(-2.5, 2.5)
plt.xticks(())
plt.yticks(())

(continues on next page)

6.5. Clustering 879

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.text(.99, .01, ('%.2fs' % (t1 - t0)).lstrip('0'),
transform=plt.gca().transAxes, size=15,
horizontalalignment='right')

plot_num += 1

plt.show()

Total running time of the script: (0 minutes 2.179 seconds)

880 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

6.5.27 Selecting the number of clusters with silhouette analysis on KMeans clus-
tering

Silhouette analysis can be used to study the separation distance between the resulting clusters. The silhouette plot
displays a measure of how close each point in one cluster is to points in the neighboring clusters and thus provides a
way to assess parameters like number of clusters visually. This measure has a range of [-1, 1].

Silhouette coefficients (as these values are referred to as) near +1 indicate that the sample is far away from the neigh-
boring clusters. A value of 0 indicates that the sample is on or very close to the decision boundary between two
neighboring clusters and negative values indicate that those samples might have been assigned to the wrong cluster.

In this example the silhouette analysis is used to choose an optimal value for n_clusters. The silhouette plot shows
that the n_clusters value of 3, 5 and 6 are a bad pick for the given data due to the presence of clusters with below
average silhouette scores and also due to wide fluctuations in the size of the silhouette plots. Silhouette analysis is
more ambivalent in deciding between 2 and 4.

Also from the thickness of the silhouette plot the cluster size can be visualized. The silhouette plot for cluster 0 when
n_clusters is equal to 2, is bigger in size owing to the grouping of the 3 sub clusters into one big cluster. However
when the n_clusters is equal to 4, all the plots are more or less of similar thickness and hence are of similar sizes
as can be also verified from the labelled scatter plot on the right.

•

•

6.5. Clustering 881

scikit-learn user guide, Release 0.23.2

•

•

•

Out:

For n_clusters = 2 The average silhouette_score is : 0.7049787496083262
For n_clusters = 3 The average silhouette_score is : 0.5882004012129721
For n_clusters = 4 The average silhouette_score is : 0.6505186632729437
For n_clusters = 5 The average silhouette_score is : 0.5745566973301872
For n_clusters = 6 The average silhouette_score is : 0.4387644975296138

882 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_samples, silhouette_score

import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np

print(__doc__)

Generating the sample data from make_blobs
This particular setting has one distinct cluster and 3 clusters placed close
together.
X, y = make_blobs(n_samples=500,

n_features=2,
centers=4,
cluster_std=1,
center_box=(-10.0, 10.0),
shuffle=True,
random_state=1) # For reproducibility

range_n_clusters = [2, 3, 4, 5, 6]

for n_clusters in range_n_clusters:
Create a subplot with 1 row and 2 columns
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.set_size_inches(18, 7)

The 1st subplot is the silhouette plot
The silhouette coefficient can range from -1, 1 but in this example all
lie within [-0.1, 1]
ax1.set_xlim([-0.1, 1])
The (n_clusters+1)*10 is for inserting blank space between silhouette
plots of individual clusters, to demarcate them clearly.
ax1.set_ylim([0, len(X) + (n_clusters + 1) * 10])

Initialize the clusterer with n_clusters value and a random generator
seed of 10 for reproducibility.
clusterer = KMeans(n_clusters=n_clusters, random_state=10)
cluster_labels = clusterer.fit_predict(X)

The silhouette_score gives the average value for all the samples.
This gives a perspective into the density and separation of the formed
clusters
silhouette_avg = silhouette_score(X, cluster_labels)
print("For n_clusters =", n_clusters,

"The average silhouette_score is :", silhouette_avg)

Compute the silhouette scores for each sample
sample_silhouette_values = silhouette_samples(X, cluster_labels)

y_lower = 10
for i in range(n_clusters):

Aggregate the silhouette scores for samples belonging to

(continues on next page)

6.5. Clustering 883

scikit-learn user guide, Release 0.23.2

(continued from previous page)

cluster i, and sort them
ith_cluster_silhouette_values = \

sample_silhouette_values[cluster_labels == i]

ith_cluster_silhouette_values.sort()

size_cluster_i = ith_cluster_silhouette_values.shape[0]
y_upper = y_lower + size_cluster_i

color = cm.nipy_spectral(float(i) / n_clusters)
ax1.fill_betweenx(np.arange(y_lower, y_upper),

0, ith_cluster_silhouette_values,
facecolor=color, edgecolor=color, alpha=0.7)

Label the silhouette plots with their cluster numbers at the middle
ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))

Compute the new y_lower for next plot
y_lower = y_upper + 10 # 10 for the 0 samples

ax1.set_title("The silhouette plot for the various clusters.")
ax1.set_xlabel("The silhouette coefficient values")
ax1.set_ylabel("Cluster label")

The vertical line for average silhouette score of all the values
ax1.axvline(x=silhouette_avg, color="red", linestyle="--")

ax1.set_yticks([]) # Clear the yaxis labels / ticks
ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])

2nd Plot showing the actual clusters formed
colors = cm.nipy_spectral(cluster_labels.astype(float) / n_clusters)
ax2.scatter(X[:, 0], X[:, 1], marker='.', s=30, lw=0, alpha=0.7,

c=colors, edgecolor='k')

Labeling the clusters
centers = clusterer.cluster_centers_
Draw white circles at cluster centers
ax2.scatter(centers[:, 0], centers[:, 1], marker='o',

c="white", alpha=1, s=200, edgecolor='k')

for i, c in enumerate(centers):
ax2.scatter(c[0], c[1], marker='$%d$' % i, alpha=1,

s=50, edgecolor='k')

ax2.set_title("The visualization of the clustered data.")
ax2.set_xlabel("Feature space for the 1st feature")
ax2.set_ylabel("Feature space for the 2nd feature")

plt.suptitle(("Silhouette analysis for KMeans clustering on sample data "
"with n_clusters = %d" % n_clusters),

fontsize=14, fontweight='bold')

plt.show()

Total running time of the script: (0 minutes 1.027 seconds)

884 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

6.5.28 Comparing different clustering algorithms on toy datasets

This example shows characteristics of different clustering algorithms on datasets that are “interesting” but still in 2D.
With the exception of the last dataset, the parameters of each of these dataset-algorithm pairs has been tuned to produce
good clustering results. Some algorithms are more sensitive to parameter values than others.

The last dataset is an example of a ‘null’ situation for clustering: the data is homogeneous, and there is no good
clustering. For this example, the null dataset uses the same parameters as the dataset in the row above it, which
represents a mismatch in the parameter values and the data structure.

While these examples give some intuition about the algorithms, this intuition might not apply to very high dimensional
data.

Out:

/home/circleci/project/sklearn/cluster/_affinity_propagation.py:146: FutureWarning:
→˓'random_state' has been introduced in 0.23. It will be set to None starting from 0.
→˓25 which means that results will differ at every function call. Set 'random_state'
→˓to None to silence this warning, or to 0 to keep the behavior of versions <0.23.
warnings.warn(("'random_state' has been introduced in 0.23. "

/home/circleci/project/sklearn/cluster/_affinity_propagation.py:146: FutureWarning:
→˓'random_state' has been introduced in 0.23. It will be set to None starting from 0.
→˓25 which means that results will differ at every function call. Set 'random_state'
→˓to None to silence this warning, or to 0 to keep the behavior of versions <0.23.
warnings.warn(("'random_state' has been introduced in 0.23. "

/home/circleci/project/sklearn/cluster/_affinity_propagation.py:146: FutureWarning:
→˓'random_state' has been introduced in 0.23. It will be set to None starting from 0.
→˓25 which means that results will differ at every function call. Set 'random_state'
→˓to None to silence this warning, or to 0 to keep the behavior of versions <0.23.
warnings.warn(("'random_state' has been introduced in 0.23. "

/home/circleci/project/sklearn/cluster/_affinity_propagation.py:146: FutureWarning:
→˓'random_state' has been introduced in 0.23. It will be set to None starting from 0.
→˓25 which means that results will differ at every function call. Set 'random_state'
→˓to None to silence this warning, or to 0 to keep the behavior of versions <0.23.(continues on next page)

6.5. Clustering 885

scikit-learn user guide, Release 0.23.2

(continued from previous page)

warnings.warn(("'random_state' has been introduced in 0.23. "
/home/circleci/project/sklearn/cluster/_affinity_propagation.py:146: FutureWarning:
→˓'random_state' has been introduced in 0.23. It will be set to None starting from 0.
→˓25 which means that results will differ at every function call. Set 'random_state'
→˓to None to silence this warning, or to 0 to keep the behavior of versions <0.23.
warnings.warn(("'random_state' has been introduced in 0.23. "

/home/circleci/project/sklearn/cluster/_affinity_propagation.py:146: FutureWarning:
→˓'random_state' has been introduced in 0.23. It will be set to None starting from 0.
→˓25 which means that results will differ at every function call. Set 'random_state'
→˓to None to silence this warning, or to 0 to keep the behavior of versions <0.23.
warnings.warn(("'random_state' has been introduced in 0.23. "

print(__doc__)

import time
import warnings

import numpy as np
import matplotlib.pyplot as plt

from sklearn import cluster, datasets, mixture
from sklearn.neighbors import kneighbors_graph
from sklearn.preprocessing import StandardScaler
from itertools import cycle, islice

np.random.seed(0)

============
Generate datasets. We choose the size big enough to see the scalability
of the algorithms, but not too big to avoid too long running times
============
n_samples = 1500
noisy_circles = datasets.make_circles(n_samples=n_samples, factor=.5,

noise=.05)
noisy_moons = datasets.make_moons(n_samples=n_samples, noise=.05)
blobs = datasets.make_blobs(n_samples=n_samples, random_state=8)
no_structure = np.random.rand(n_samples, 2), None

Anisotropicly distributed data
random_state = 170
X, y = datasets.make_blobs(n_samples=n_samples, random_state=random_state)
transformation = [[0.6, -0.6], [-0.4, 0.8]]
X_aniso = np.dot(X, transformation)
aniso = (X_aniso, y)

blobs with varied variances
varied = datasets.make_blobs(n_samples=n_samples,

cluster_std=[1.0, 2.5, 0.5],
random_state=random_state)

============

(continues on next page)

886 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Set up cluster parameters
============
plt.figure(figsize=(9 * 2 + 3, 12.5))
plt.subplots_adjust(left=.02, right=.98, bottom=.001, top=.96, wspace=.05,

hspace=.01)

plot_num = 1

default_base = {'quantile': .3,
'eps': .3,
'damping': .9,
'preference': -200,
'n_neighbors': 10,
'n_clusters': 3,
'min_samples': 20,
'xi': 0.05,
'min_cluster_size': 0.1}

datasets = [
(noisy_circles, {'damping': .77, 'preference': -240,

'quantile': .2, 'n_clusters': 2,
'min_samples': 20, 'xi': 0.25}),

(noisy_moons, {'damping': .75, 'preference': -220, 'n_clusters': 2}),
(varied, {'eps': .18, 'n_neighbors': 2,

'min_samples': 5, 'xi': 0.035, 'min_cluster_size': .2}),
(aniso, {'eps': .15, 'n_neighbors': 2,

'min_samples': 20, 'xi': 0.1, 'min_cluster_size': .2}),
(blobs, {}),
(no_structure, {})]

for i_dataset, (dataset, algo_params) in enumerate(datasets):
update parameters with dataset-specific values
params = default_base.copy()
params.update(algo_params)

X, y = dataset

normalize dataset for easier parameter selection
X = StandardScaler().fit_transform(X)

estimate bandwidth for mean shift
bandwidth = cluster.estimate_bandwidth(X, quantile=params['quantile'])

connectivity matrix for structured Ward
connectivity = kneighbors_graph(

X, n_neighbors=params['n_neighbors'], include_self=False)
make connectivity symmetric
connectivity = 0.5 * (connectivity + connectivity.T)

============
Create cluster objects
============
ms = cluster.MeanShift(bandwidth=bandwidth, bin_seeding=True)
two_means = cluster.MiniBatchKMeans(n_clusters=params['n_clusters'])
ward = cluster.AgglomerativeClustering(

n_clusters=params['n_clusters'], linkage='ward',
connectivity=connectivity)

(continues on next page)

6.5. Clustering 887

scikit-learn user guide, Release 0.23.2

(continued from previous page)

spectral = cluster.SpectralClustering(
n_clusters=params['n_clusters'], eigen_solver='arpack',
affinity="nearest_neighbors")

dbscan = cluster.DBSCAN(eps=params['eps'])
optics = cluster.OPTICS(min_samples=params['min_samples'],

xi=params['xi'],
min_cluster_size=params['min_cluster_size'])

affinity_propagation = cluster.AffinityPropagation(
damping=params['damping'], preference=params['preference'])

average_linkage = cluster.AgglomerativeClustering(
linkage="average", affinity="cityblock",
n_clusters=params['n_clusters'], connectivity=connectivity)

birch = cluster.Birch(n_clusters=params['n_clusters'])
gmm = mixture.GaussianMixture(

n_components=params['n_clusters'], covariance_type='full')

clustering_algorithms = (
('MiniBatchKMeans', two_means),
('AffinityPropagation', affinity_propagation),
('MeanShift', ms),
('SpectralClustering', spectral),
('Ward', ward),
('AgglomerativeClustering', average_linkage),
('DBSCAN', dbscan),
('OPTICS', optics),
('Birch', birch),
('GaussianMixture', gmm)

)

for name, algorithm in clustering_algorithms:
t0 = time.time()

catch warnings related to kneighbors_graph
with warnings.catch_warnings():

warnings.filterwarnings(
"ignore",
message="the number of connected components of the " +
"connectivity matrix is [0-9]{1,2}" +
" > 1. Completing it to avoid stopping the tree early.",
category=UserWarning)

warnings.filterwarnings(
"ignore",
message="Graph is not fully connected, spectral embedding" +
" may not work as expected.",
category=UserWarning)

algorithm.fit(X)

t1 = time.time()
if hasattr(algorithm, 'labels_'):

y_pred = algorithm.labels_.astype(np.int)
else:

y_pred = algorithm.predict(X)

plt.subplot(len(datasets), len(clustering_algorithms), plot_num)
if i_dataset == 0:

plt.title(name, size=18)

(continues on next page)

888 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

colors = np.array(list(islice(cycle(['#377eb8', '#ff7f00', '#4daf4a',
'#f781bf', '#a65628', '#984ea3',
'#999999', '#e41a1c', '#dede00']),

int(max(y_pred) + 1))))
add black color for outliers (if any)
colors = np.append(colors, ["#000000"])
plt.scatter(X[:, 0], X[:, 1], s=10, color=colors[y_pred])

plt.xlim(-2.5, 2.5)
plt.ylim(-2.5, 2.5)
plt.xticks(())
plt.yticks(())
plt.text(.99, .01, ('%.2fs' % (t1 - t0)).lstrip('0'),

transform=plt.gca().transAxes, size=15,
horizontalalignment='right')

plot_num += 1

plt.show()

Total running time of the script: (0 minutes 30.924 seconds)

6.6 Covariance estimation

Examples concerning the sklearn.covariance module.

6.6.1 Ledoit-Wolf vs OAS estimation

The usual covariance maximum likelihood estimate can be regularized using shrinkage. Ledoit and Wolf proposed a
close formula to compute the asymptotically optimal shrinkage parameter (minimizing a MSE criterion), yielding the
Ledoit-Wolf covariance estimate.

Chen et al. proposed an improvement of the Ledoit-Wolf shrinkage parameter, the OAS coefficient, whose convergence
is significantly better under the assumption that the data are Gaussian.

This example, inspired from Chen’s publication [1], shows a comparison of the estimated MSE of the LW and OAS
methods, using Gaussian distributed data.

[1] “Shrinkage Algorithms for MMSE Covariance Estimation” Chen et al., IEEE Trans. on Sign. Proc., Volume 58,
Issue 10, October 2010.

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from scipy.linalg import toeplitz, cholesky

from sklearn.covariance import LedoitWolf, OAS

np.random.seed(0)

n_features = 100
simulation covariance matrix (AR(1) process)
r = 0.1

(continues on next page)

6.6. Covariance estimation 889

scikit-learn user guide, Release 0.23.2

(continued from previous page)

real_cov = toeplitz(r ** np.arange(n_features))
coloring_matrix = cholesky(real_cov)

n_samples_range = np.arange(6, 31, 1)
repeat = 100
lw_mse = np.zeros((n_samples_range.size, repeat))
oa_mse = np.zeros((n_samples_range.size, repeat))
lw_shrinkage = np.zeros((n_samples_range.size, repeat))
oa_shrinkage = np.zeros((n_samples_range.size, repeat))
for i, n_samples in enumerate(n_samples_range):

for j in range(repeat):
X = np.dot(

np.random.normal(size=(n_samples, n_features)), coloring_matrix.T)

lw = LedoitWolf(store_precision=False, assume_centered=True)
lw.fit(X)
lw_mse[i, j] = lw.error_norm(real_cov, scaling=False)
lw_shrinkage[i, j] = lw.shrinkage_

oa = OAS(store_precision=False, assume_centered=True)
oa.fit(X)
oa_mse[i, j] = oa.error_norm(real_cov, scaling=False)
oa_shrinkage[i, j] = oa.shrinkage_

plot MSE
plt.subplot(2, 1, 1)
plt.errorbar(n_samples_range, lw_mse.mean(1), yerr=lw_mse.std(1),

label='Ledoit-Wolf', color='navy', lw=2)
plt.errorbar(n_samples_range, oa_mse.mean(1), yerr=oa_mse.std(1),

label='OAS', color='darkorange', lw=2)
plt.ylabel("Squared error")
plt.legend(loc="upper right")
plt.title("Comparison of covariance estimators")
plt.xlim(5, 31)

plot shrinkage coefficient
plt.subplot(2, 1, 2)
plt.errorbar(n_samples_range, lw_shrinkage.mean(1), yerr=lw_shrinkage.std(1),

label='Ledoit-Wolf', color='navy', lw=2)
plt.errorbar(n_samples_range, oa_shrinkage.mean(1), yerr=oa_shrinkage.std(1),

label='OAS', color='darkorange', lw=2)
plt.xlabel("n_samples")
plt.ylabel("Shrinkage")
plt.legend(loc="lower right")
plt.ylim(plt.ylim()[0], 1. + (plt.ylim()[1] - plt.ylim()[0]) / 10.)
plt.xlim(5, 31)

plt.show()

890 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Total running time of the script: (0 minutes 1.890 seconds)

6.6.2 Sparse inverse covariance estimation

Using the GraphicalLasso estimator to learn a covariance and sparse precision from a small number of samples.

To estimate a probabilistic model (e.g. a Gaussian model), estimating the precision matrix, that is the inverse covari-
ance matrix, is as important as estimating the covariance matrix. Indeed a Gaussian model is parametrized by the
precision matrix.

To be in favorable recovery conditions, we sample the data from a model with a sparse inverse covariance matrix. In
addition, we ensure that the data is not too much correlated (limiting the largest coefficient of the precision matrix) and
that there a no small coefficients in the precision matrix that cannot be recovered. In addition, with a small number of
observations, it is easier to recover a correlation matrix rather than a covariance, thus we scale the time series.

Here, the number of samples is slightly larger than the number of dimensions, thus the empirical covariance is still
invertible. However, as the observations are strongly correlated, the empirical covariance matrix is ill-conditioned and
as a result its inverse –the empirical precision matrix– is very far from the ground truth.

If we use l2 shrinkage, as with the Ledoit-Wolf estimator, as the number of samples is small, we need to shrink a lot.
As a result, the Ledoit-Wolf precision is fairly close to the ground truth precision, that is not far from being diagonal,
but the off-diagonal structure is lost.

The l1-penalized estimator can recover part of this off-diagonal structure. It learns a sparse precision. It is not
able to recover the exact sparsity pattern: it detects too many non-zero coefficients. However, the highest non-zero
coefficients of the l1 estimated correspond to the non-zero coefficients in the ground truth. Finally, the coefficients of

6.6. Covariance estimation 891

scikit-learn user guide, Release 0.23.2

the l1 precision estimate are biased toward zero: because of the penalty, they are all smaller than the corresponding
ground truth value, as can be seen on the figure.

Note that, the color range of the precision matrices is tweaked to improve readability of the figure. The full range of
values of the empirical precision is not displayed.

The alpha parameter of the GraphicalLasso setting the sparsity of the model is set by internal cross-validation in the
GraphicalLassoCV. As can be seen on figure 2, the grid to compute the cross-validation score is iteratively refined in
the neighborhood of the maximum.

•

•

print(__doc__)
author: Gael Varoquaux <gael.varoquaux@inria.fr>
License: BSD 3 clause

(continues on next page)

892 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Copyright: INRIA

import numpy as np
from scipy import linalg
from sklearn.datasets import make_sparse_spd_matrix
from sklearn.covariance import GraphicalLassoCV, ledoit_wolf
import matplotlib.pyplot as plt

###
Generate the data
n_samples = 60
n_features = 20

prng = np.random.RandomState(1)
prec = make_sparse_spd_matrix(n_features, alpha=.98,

smallest_coef=.4,
largest_coef=.7,
random_state=prng)

cov = linalg.inv(prec)
d = np.sqrt(np.diag(cov))
cov /= d
cov /= d[:, np.newaxis]
prec *= d
prec *= d[:, np.newaxis]
X = prng.multivariate_normal(np.zeros(n_features), cov, size=n_samples)
X -= X.mean(axis=0)
X /= X.std(axis=0)

###
Estimate the covariance
emp_cov = np.dot(X.T, X) / n_samples

model = GraphicalLassoCV()
model.fit(X)
cov_ = model.covariance_
prec_ = model.precision_

lw_cov_, _ = ledoit_wolf(X)
lw_prec_ = linalg.inv(lw_cov_)

###
Plot the results
plt.figure(figsize=(10, 6))
plt.subplots_adjust(left=0.02, right=0.98)

plot the covariances
covs = [('Empirical', emp_cov), ('Ledoit-Wolf', lw_cov_),

('GraphicalLassoCV', cov_), ('True', cov)]
vmax = cov_.max()
for i, (name, this_cov) in enumerate(covs):

plt.subplot(2, 4, i + 1)
plt.imshow(this_cov, interpolation='nearest', vmin=-vmax, vmax=vmax,

cmap=plt.cm.RdBu_r)
plt.xticks(())
plt.yticks(())
plt.title('%s covariance' % name)

(continues on next page)

6.6. Covariance estimation 893

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plot the precisions
precs = [('Empirical', linalg.inv(emp_cov)), ('Ledoit-Wolf', lw_prec_),

('GraphicalLasso', prec_), ('True', prec)]
vmax = .9 * prec_.max()
for i, (name, this_prec) in enumerate(precs):

ax = plt.subplot(2, 4, i + 5)
plt.imshow(np.ma.masked_equal(this_prec, 0),

interpolation='nearest', vmin=-vmax, vmax=vmax,
cmap=plt.cm.RdBu_r)

plt.xticks(())
plt.yticks(())
plt.title('%s precision' % name)
if hasattr(ax, 'set_facecolor'):

ax.set_facecolor('.7')
else:

ax.set_axis_bgcolor('.7')

plot the model selection metric
plt.figure(figsize=(4, 3))
plt.axes([.2, .15, .75, .7])
plt.plot(model.cv_alphas_, np.mean(model.grid_scores_, axis=1), 'o-')
plt.axvline(model.alpha_, color='.5')
plt.title('Model selection')
plt.ylabel('Cross-validation score')
plt.xlabel('alpha')

plt.show()

Total running time of the script: (0 minutes 0.558 seconds)

6.6.3 Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood

When working with covariance estimation, the usual approach is to use a maximum likelihood estimator, such as
the sklearn.covariance.EmpiricalCovariance. It is unbiased, i.e. it converges to the true (population)
covariance when given many observations. However, it can also be beneficial to regularize it, in order to reduce
its variance; this, in turn, introduces some bias. This example illustrates the simple regularization used in Shrunk
Covariance estimators. In particular, it focuses on how to set the amount of regularization, i.e. how to choose the
bias-variance trade-off.

Here we compare 3 approaches:

• Setting the parameter by cross-validating the likelihood on three folds according to a grid of potential shrinkage
parameters.

• A close formula proposed by Ledoit and Wolf to compute the asymptotically optimal regularization parameter
(minimizing a MSE criterion), yielding the sklearn.covariance.LedoitWolf covariance estimate.

• An improvement of the Ledoit-Wolf shrinkage, the sklearn.covariance.OAS, proposed by Chen et al.
Its convergence is significantly better under the assumption that the data are Gaussian, in particular for small
samples.

To quantify estimation error, we plot the likelihood of unseen data for different values of the shrinkage parameter. We
also show the choices by cross-validation, or with the LedoitWolf and OAS estimates.

Note that the maximum likelihood estimate corresponds to no shrinkage, and thus performs poorly. The Ledoit-Wolf
estimate performs really well, as it is close to the optimal and is computational not costly. In this example, the OAS

894 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

estimate is a bit further away. Interestingly, both approaches outperform cross-validation, which is significantly most
computationally costly.

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from scipy import linalg

from sklearn.covariance import LedoitWolf, OAS, ShrunkCovariance, \
log_likelihood, empirical_covariance

from sklearn.model_selection import GridSearchCV

###
Generate sample data
n_features, n_samples = 40, 20
np.random.seed(42)
base_X_train = np.random.normal(size=(n_samples, n_features))
base_X_test = np.random.normal(size=(n_samples, n_features))

Color samples
coloring_matrix = np.random.normal(size=(n_features, n_features))
X_train = np.dot(base_X_train, coloring_matrix)
X_test = np.dot(base_X_test, coloring_matrix)

(continues on next page)

6.6. Covariance estimation 895

scikit-learn user guide, Release 0.23.2

(continued from previous page)

###
Compute the likelihood on test data

spanning a range of possible shrinkage coefficient values
shrinkages = np.logspace(-2, 0, 30)
negative_logliks = [-ShrunkCovariance(shrinkage=s).fit(X_train).score(X_test)

for s in shrinkages]

under the ground-truth model, which we would not have access to in real
settings
real_cov = np.dot(coloring_matrix.T, coloring_matrix)
emp_cov = empirical_covariance(X_train)
loglik_real = -log_likelihood(emp_cov, linalg.inv(real_cov))

###
Compare different approaches to setting the parameter

GridSearch for an optimal shrinkage coefficient
tuned_parameters = [{'shrinkage': shrinkages}]
cv = GridSearchCV(ShrunkCovariance(), tuned_parameters)
cv.fit(X_train)

Ledoit-Wolf optimal shrinkage coefficient estimate
lw = LedoitWolf()
loglik_lw = lw.fit(X_train).score(X_test)

OAS coefficient estimate
oa = OAS()
loglik_oa = oa.fit(X_train).score(X_test)

###
Plot results
fig = plt.figure()
plt.title("Regularized covariance: likelihood and shrinkage coefficient")
plt.xlabel('Regularization parameter: shrinkage coefficient')
plt.ylabel('Error: negative log-likelihood on test data')
range shrinkage curve
plt.loglog(shrinkages, negative_logliks, label="Negative log-likelihood")

plt.plot(plt.xlim(), 2 * [loglik_real], '--r',
label="Real covariance likelihood")

adjust view
lik_max = np.amax(negative_logliks)
lik_min = np.amin(negative_logliks)
ymin = lik_min - 6. * np.log((plt.ylim()[1] - plt.ylim()[0]))
ymax = lik_max + 10. * np.log(lik_max - lik_min)
xmin = shrinkages[0]
xmax = shrinkages[-1]
LW likelihood
plt.vlines(lw.shrinkage_, ymin, -loglik_lw, color='magenta',

linewidth=3, label='Ledoit-Wolf estimate')
OAS likelihood
plt.vlines(oa.shrinkage_, ymin, -loglik_oa, color='purple',

linewidth=3, label='OAS estimate')
best CV estimator likelihood
plt.vlines(cv.best_estimator_.shrinkage, ymin,

(continues on next page)

896 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

-cv.best_estimator_.score(X_test), color='cyan',
linewidth=3, label='Cross-validation best estimate')

plt.ylim(ymin, ymax)
plt.xlim(xmin, xmax)
plt.legend()

plt.show()

Total running time of the script: (0 minutes 0.385 seconds)

6.6.4 Robust covariance estimation and Mahalanobis distances relevance

An example to show covariance estimation with the Mahalanobis distances on Gaussian distributed data.

For Gaussian distributed data, the distance of an observation 𝑥𝑖 to the mode of the distribution can be computed using
its Mahalanobis distance: 𝑑(𝜇,Σ)(𝑥𝑖)

2 = (𝑥𝑖 − 𝜇)′Σ−1(𝑥𝑖 − 𝜇) where 𝜇 and Σ are the location and the covariance of
the underlying Gaussian distribution.

In practice, 𝜇 and Σ are replaced by some estimates. The usual covariance maximum likelihood estimate is very
sensitive to the presence of outliers in the data set and therefor, the corresponding Mahalanobis distances are. One
would better have to use a robust estimator of covariance to guarantee that the estimation is resistant to “erroneous”
observations in the data set and that the associated Mahalanobis distances accurately reflect the true organisation of
the observations.

The Minimum Covariance Determinant estimator is a robust, high-breakdown point (i.e. it can be used to estimate the
covariance matrix of highly contaminated datasets, up to 𝑛samples−𝑛features−1

2 outliers) estimator of covariance. The idea is
to find 𝑛samples+𝑛features+1

2 observations whose empirical covariance has the smallest determinant, yielding a “pure” subset
of observations from which to compute standards estimates of location and covariance.

The Minimum Covariance Determinant estimator (MCD) has been introduced by P.J.Rousseuw in [1].

This example illustrates how the Mahalanobis distances are affected by outlying data: observations drawn from a
contaminating distribution are not distinguishable from the observations coming from the real, Gaussian distribution
that one may want to work with. Using MCD-based Mahalanobis distances, the two populations become distinguish-
able. Associated applications are outliers detection, observations ranking, clustering, . . . For visualization purpose,
the cubic root of the Mahalanobis distances are represented in the boxplot, as Wilson and Hilferty suggest [2]

[1] P. J. Rousseeuw. Least median of squares regression. J. Am Stat Ass, 79:871, 1984.

[2] Wilson, E. B., & Hilferty, M. M. (1931). The distribution of chi-square. Proceedings of the National
Academy of Sciences of the United States of America, 17, 684-688.

6.6. Covariance estimation 897

scikit-learn user guide, Release 0.23.2

Out:

/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/numpy/core/_asarray.
→˓py:83: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences
→˓(which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or
→˓shapes) is deprecated. If you meant to do this, you must specify 'dtype=object'
→˓when creating the ndarray
return array(a, dtype, copy=False, order=order)

/home/circleci/miniconda/envs/testenv/lib/python3.8/site-packages/numpy/core/_asarray.
→˓py:83: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences
→˓(which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or
→˓shapes) is deprecated. If you meant to do this, you must specify 'dtype=object'
→˓when creating the ndarray
return array(a, dtype, copy=False, order=order)

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

(continues on next page)

898 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

from sklearn.covariance import EmpiricalCovariance, MinCovDet

n_samples = 125
n_outliers = 25
n_features = 2

generate data
gen_cov = np.eye(n_features)
gen_cov[0, 0] = 2.
X = np.dot(np.random.randn(n_samples, n_features), gen_cov)
add some outliers
outliers_cov = np.eye(n_features)
outliers_cov[np.arange(1, n_features), np.arange(1, n_features)] = 7.
X[-n_outliers:] = np.dot(np.random.randn(n_outliers, n_features), outliers_cov)

fit a Minimum Covariance Determinant (MCD) robust estimator to data
robust_cov = MinCovDet().fit(X)

compare estimators learnt from the full data set with true parameters
emp_cov = EmpiricalCovariance().fit(X)

###
Display results
fig = plt.figure()
plt.subplots_adjust(hspace=-.1, wspace=.4, top=.95, bottom=.05)

Show data set
subfig1 = plt.subplot(3, 1, 1)
inlier_plot = subfig1.scatter(X[:, 0], X[:, 1],

color='black', label='inliers')
outlier_plot = subfig1.scatter(X[:, 0][-n_outliers:], X[:, 1][-n_outliers:],

color='red', label='outliers')
subfig1.set_xlim(subfig1.get_xlim()[0], 11.)
subfig1.set_title("Mahalanobis distances of a contaminated data set:")

Show contours of the distance functions
xx, yy = np.meshgrid(np.linspace(plt.xlim()[0], plt.xlim()[1], 100),

np.linspace(plt.ylim()[0], plt.ylim()[1], 100))
zz = np.c_[xx.ravel(), yy.ravel()]

mahal_emp_cov = emp_cov.mahalanobis(zz)
mahal_emp_cov = mahal_emp_cov.reshape(xx.shape)
emp_cov_contour = subfig1.contour(xx, yy, np.sqrt(mahal_emp_cov),

cmap=plt.cm.PuBu_r,
linestyles='dashed')

mahal_robust_cov = robust_cov.mahalanobis(zz)
mahal_robust_cov = mahal_robust_cov.reshape(xx.shape)
robust_contour = subfig1.contour(xx, yy, np.sqrt(mahal_robust_cov),

cmap=plt.cm.YlOrBr_r, linestyles='dotted')

subfig1.legend([emp_cov_contour.collections[1], robust_contour.collections[1],
inlier_plot, outlier_plot],

['MLE dist', 'robust dist', 'inliers', 'outliers'],
loc="upper right", borderaxespad=0)

plt.xticks(())
plt.yticks(())

(continues on next page)

6.6. Covariance estimation 899

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Plot the scores for each point
emp_mahal = emp_cov.mahalanobis(X - np.mean(X, 0)) ** (0.33)
subfig2 = plt.subplot(2, 2, 3)
subfig2.boxplot([emp_mahal[:-n_outliers], emp_mahal[-n_outliers:]], widths=.25)
subfig2.plot(np.full(n_samples - n_outliers, 1.26),

emp_mahal[:-n_outliers], '+k', markeredgewidth=1)
subfig2.plot(np.full(n_outliers, 2.26),

emp_mahal[-n_outliers:], '+k', markeredgewidth=1)
subfig2.axes.set_xticklabels(('inliers', 'outliers'), size=15)
subfig2.set_ylabel(r"$\sqrt[3]{\rm{(Mahal. dist.)}}$", size=16)
subfig2.set_title("1. from non-robust estimates\n(Maximum Likelihood)")
plt.yticks(())

robust_mahal = robust_cov.mahalanobis(X - robust_cov.location_) ** (0.33)
subfig3 = plt.subplot(2, 2, 4)
subfig3.boxplot([robust_mahal[:-n_outliers], robust_mahal[-n_outliers:]],

widths=.25)
subfig3.plot(np.full(n_samples - n_outliers, 1.26),

robust_mahal[:-n_outliers], '+k', markeredgewidth=1)
subfig3.plot(np.full(n_outliers, 2.26),

robust_mahal[-n_outliers:], '+k', markeredgewidth=1)
subfig3.axes.set_xticklabels(('inliers', 'outliers'), size=15)
subfig3.set_ylabel(r"$\sqrt[3]{\rm{(Mahal. dist.)}}$", size=16)
subfig3.set_title("2. from robust estimates\n(Minimum Covariance Determinant)")
plt.yticks(())

plt.show()

Total running time of the script: (0 minutes 0.197 seconds)

6.6.5 Robust vs Empirical covariance estimate

The usual covariance maximum likelihood estimate is very sensitive to the presence of outliers in the data set. In
such a case, it would be better to use a robust estimator of covariance to guarantee that the estimation is resistant to
“erroneous” observations in the data set.1,2

Minimum Covariance Determinant Estimator

The Minimum Covariance Determinant estimator is a robust, high-breakdown point (i.e. it can be used to estimate the
covariance matrix of highly contaminated datasets, up to 𝑛samples−𝑛features−1

2 outliers) estimator of covariance. The idea is
to find 𝑛samples+𝑛features+1

2 observations whose empirical covariance has the smallest determinant, yielding a “pure” subset
of observations from which to compute standards estimates of location and covariance. After a correction step aiming
at compensating the fact that the estimates were learned from only a portion of the initial data, we end up with robust
estimates of the data set location and covariance.

The Minimum Covariance Determinant estimator (MCD) has been introduced by P.J.Rousseuw in3.

1 Johanna Hardin, David M Rocke. The distribution of robust distances. Journal of Computational and Graphical Statistics. December 1, 2005,
14(4): 928-946.

2 Zoubir A., Koivunen V., Chakhchoukh Y. and Muma M. (2012). Robust estimation in signal processing: A tutorial-style treatment of funda-
mental concepts. IEEE Signal Processing Magazine 29(4), 61-80.

3 P. J. Rousseeuw. Least median of squares regression. Journal of American Statistical Ass., 79:871, 1984.

900 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Evaluation

In this example, we compare the estimation errors that are made when using various types of location and covariance
estimates on contaminated Gaussian distributed data sets:

• The mean and the empirical covariance of the full dataset, which break down as soon as there are outliers in the
data set

• The robust MCD, that has a low error provided 𝑛samples > 5𝑛features

• The mean and the empirical covariance of the observations that are known to be good ones. This can be consid-
ered as a “perfect” MCD estimation, so one can trust our implementation by comparing to this case.

References

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.font_manager

from sklearn.covariance import EmpiricalCovariance, MinCovDet

example settings
n_samples = 80

(continues on next page)

6.6. Covariance estimation 901

scikit-learn user guide, Release 0.23.2

(continued from previous page)

n_features = 5
repeat = 10

range_n_outliers = np.concatenate(
(np.linspace(0, n_samples / 8, 5),
np.linspace(n_samples / 8, n_samples / 2, 5)[1:-1])).astype(np.int)

definition of arrays to store results
err_loc_mcd = np.zeros((range_n_outliers.size, repeat))
err_cov_mcd = np.zeros((range_n_outliers.size, repeat))
err_loc_emp_full = np.zeros((range_n_outliers.size, repeat))
err_cov_emp_full = np.zeros((range_n_outliers.size, repeat))
err_loc_emp_pure = np.zeros((range_n_outliers.size, repeat))
err_cov_emp_pure = np.zeros((range_n_outliers.size, repeat))

computation
for i, n_outliers in enumerate(range_n_outliers):

for j in range(repeat):

rng = np.random.RandomState(i * j)

generate data
X = rng.randn(n_samples, n_features)
add some outliers
outliers_index = rng.permutation(n_samples)[:n_outliers]
outliers_offset = 10. * \

(np.random.randint(2, size=(n_outliers, n_features)) - 0.5)
X[outliers_index] += outliers_offset
inliers_mask = np.ones(n_samples).astype(bool)
inliers_mask[outliers_index] = False

fit a Minimum Covariance Determinant (MCD) robust estimator to data
mcd = MinCovDet().fit(X)
compare raw robust estimates with the true location and covariance
err_loc_mcd[i, j] = np.sum(mcd.location_ ** 2)
err_cov_mcd[i, j] = mcd.error_norm(np.eye(n_features))

compare estimators learned from the full data set with true
parameters
err_loc_emp_full[i, j] = np.sum(X.mean(0) ** 2)
err_cov_emp_full[i, j] = EmpiricalCovariance().fit(X).error_norm(

np.eye(n_features))

compare with an empirical covariance learned from a pure data set
(i.e. "perfect" mcd)
pure_X = X[inliers_mask]
pure_location = pure_X.mean(0)
pure_emp_cov = EmpiricalCovariance().fit(pure_X)
err_loc_emp_pure[i, j] = np.sum(pure_location ** 2)
err_cov_emp_pure[i, j] = pure_emp_cov.error_norm(np.eye(n_features))

Display results
font_prop = matplotlib.font_manager.FontProperties(size=11)
plt.subplot(2, 1, 1)
lw = 2
plt.errorbar(range_n_outliers, err_loc_mcd.mean(1),

yerr=err_loc_mcd.std(1) / np.sqrt(repeat),
(continues on next page)

902 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

label="Robust location", lw=lw, color='m')
plt.errorbar(range_n_outliers, err_loc_emp_full.mean(1),

yerr=err_loc_emp_full.std(1) / np.sqrt(repeat),
label="Full data set mean", lw=lw, color='green')

plt.errorbar(range_n_outliers, err_loc_emp_pure.mean(1),
yerr=err_loc_emp_pure.std(1) / np.sqrt(repeat),
label="Pure data set mean", lw=lw, color='black')

plt.title("Influence of outliers on the location estimation")
plt.ylabel(r"Error ($||\mu - \hat{\mu}||_2^2$)")
plt.legend(loc="upper left", prop=font_prop)

plt.subplot(2, 1, 2)
x_size = range_n_outliers.size
plt.errorbar(range_n_outliers, err_cov_mcd.mean(1),

yerr=err_cov_mcd.std(1),
label="Robust covariance (mcd)", color='m')

plt.errorbar(range_n_outliers[:(x_size // 5 + 1)],
err_cov_emp_full.mean(1)[:(x_size // 5 + 1)],
yerr=err_cov_emp_full.std(1)[:(x_size // 5 + 1)],
label="Full data set empirical covariance", color='green')

plt.plot(range_n_outliers[(x_size // 5):(x_size // 2 - 1)],
err_cov_emp_full.mean(1)[(x_size // 5):(x_size // 2 - 1)],
color='green', ls='--')

plt.errorbar(range_n_outliers, err_cov_emp_pure.mean(1),
yerr=err_cov_emp_pure.std(1),
label="Pure data set empirical covariance", color='black')

plt.title("Influence of outliers on the covariance estimation")
plt.xlabel("Amount of contamination (%)")
plt.ylabel("RMSE")
plt.legend(loc="upper center", prop=font_prop)

plt.show()

Total running time of the script: (0 minutes 2.810 seconds)

6.7 Cross decomposition

Examples concerning the sklearn.cross_decomposition module.

6.7.1 Compare cross decomposition methods

Simple usage of various cross decomposition algorithms: - PLSCanonical - PLSRegression, with multivariate re-
sponse, a.k.a. PLS2 - PLSRegression, with univariate response, a.k.a. PLS1 - CCA

Given 2 multivariate covarying two-dimensional datasets, X, and Y, PLS extracts the ‘directions of covariance’, i.e.
the components of each datasets that explain the most shared variance between both datasets. This is apparent on the
scatterplot matrix display: components 1 in dataset X and dataset Y are maximally correlated (points lie around the
first diagonal). This is also true for components 2 in both dataset, however, the correlation across datasets for different
components is weak: the point cloud is very spherical.

6.7. Cross decomposition 903

scikit-learn user guide, Release 0.23.2

Out:

Corr(X)
[[1. 0.51 0.07 -0.05]
[0.51 1. 0.11 -0.01]
[0.07 0.11 1. 0.49]
[-0.05 -0.01 0.49 1.]]

Corr(Y)
[[1. 0.48 0.05 0.03]
[0.48 1. 0.04 0.12]
[0.05 0.04 1. 0.51]
[0.03 0.12 0.51 1.]]

True B (such that: Y = XB + Err)
[[1 1 1]
[2 2 2]
[0 0 0]
[0 0 0]
[0 0 0]
[0 0 0]
[0 0 0]
[0 0 0]
[0 0 0]
[0 0 0]]

Estimated B
[[1. 1. 1.]
[2. 2. 2.]
[-0. -0. 0.]
[0. 0. 0.]
[0. 0. 0.]

(continues on next page)

904 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

[0. 0. -0.]
[-0. -0. -0.1]
[-0. -0. 0.]
[0. 0. 0.1]
[0. 0. -0.]]

Estimated betas
[[1.]
[2.1]
[0.]
[0.]
[0.]
[-0.]
[-0.]
[0.]
[-0.]
[-0.]]

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn.cross_decomposition import PLSCanonical, PLSRegression, CCA

###
Dataset based latent variables model

n = 500
2 latents vars:
l1 = np.random.normal(size=n)
l2 = np.random.normal(size=n)

latents = np.array([l1, l1, l2, l2]).T
X = latents + np.random.normal(size=4 * n).reshape((n, 4))
Y = latents + np.random.normal(size=4 * n).reshape((n, 4))

X_train = X[:n // 2]
Y_train = Y[:n // 2]
X_test = X[n // 2:]
Y_test = Y[n // 2:]

print("Corr(X)")
print(np.round(np.corrcoef(X.T), 2))
print("Corr(Y)")
print(np.round(np.corrcoef(Y.T), 2))

###
Canonical (symmetric) PLS

Transform data
~~~~~~~~~~~~~~
plsca = PLSCanonical(n_components=2)

(continues on next page)

6.7. Cross decomposition 905

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plsca.fit(X_train, Y_train)
X_train_r, Y_train_r = plsca.transform(X_train, Y_train)
X_test_r, Y_test_r = plsca.transform(X_test, Y_test)

Scatter plot of scores
~~~~~~~~~~~~~~~~~~~~~~
1) On diagonal plot X vs Y scores on each components
plt.figure(figsize=(12, 8))
plt.subplot(221)
plt.scatter(X_train_r[:, 0], Y_train_r[:, 0], label="train",

marker="o", c="b", s=25)
plt.scatter(X_test_r[:, 0], Y_test_r[:, 0], label="test",

marker="o", c="r", s=25)
plt.xlabel("x scores")
plt.ylabel("y scores")
plt.title('Comp. 1: X vs Y (test corr = %.2f)' %

np.corrcoef(X_test_r[:, 0], Y_test_r[:, 0])[0, 1])
plt.xticks(())
plt.yticks(())
plt.legend(loc="best")

plt.subplot(224)
plt.scatter(X_train_r[:, 1], Y_train_r[:, 1], label="train",

marker="o", c="b", s=25)
plt.scatter(X_test_r[:, 1], Y_test_r[:, 1], label="test",

marker="o", c="r", s=25)
plt.xlabel("x scores")
plt.ylabel("y scores")
plt.title('Comp. 2: X vs Y (test corr = %.2f)' %

np.corrcoef(X_test_r[:, 1], Y_test_r[:, 1])[0, 1])
plt.xticks(())
plt.yticks(())
plt.legend(loc="best")

2) Off diagonal plot components 1 vs 2 for X and Y
plt.subplot(222)
plt.scatter(X_train_r[:, 0], X_train_r[:, 1], label="train",

marker="*", c="b", s=50)
plt.scatter(X_test_r[:, 0], X_test_r[:, 1], label="test",

marker="*", c="r", s=50)
plt.xlabel("X comp. 1")
plt.ylabel("X comp. 2")
plt.title('X comp. 1 vs X comp. 2 (test corr = %.2f)'

% np.corrcoef(X_test_r[:, 0], X_test_r[:, 1])[0, 1])
plt.legend(loc="best")
plt.xticks(())
plt.yticks(())

plt.subplot(223)
plt.scatter(Y_train_r[:, 0], Y_train_r[:, 1], label="train",

marker="*", c="b", s=50)
plt.scatter(Y_test_r[:, 0], Y_test_r[:, 1], label="test",

marker="*", c="r", s=50)
plt.xlabel("Y comp. 1")
plt.ylabel("Y comp. 2")
plt.title('Y comp. 1 vs Y comp. 2 , (test corr = %.2f)'

% np.corrcoef(Y_test_r[:, 0], Y_test_r[:, 1])[0, 1])
(continues on next page)

906 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.legend(loc="best")
plt.xticks(())
plt.yticks(())
plt.show()

###
PLS regression, with multivariate response, a.k.a. PLS2

n = 1000
q = 3
p = 10
X = np.random.normal(size=n * p).reshape((n, p))
B = np.array([[1, 2] + [0] * (p - 2)] * q).T
each Yj = 1*X1 + 2*X2 + noize
Y = np.dot(X, B) + np.random.normal(size=n * q).reshape((n, q)) + 5

pls2 = PLSRegression(n_components=3)
pls2.fit(X, Y)
print("True B (such that: Y = XB + Err)")
print(B)
compare pls2.coef_ with B
print("Estimated B")
print(np.round(pls2.coef_, 1))
pls2.predict(X)

PLS regression, with univariate response, a.k.a. PLS1

n = 1000
p = 10
X = np.random.normal(size=n * p).reshape((n, p))
y = X[:, 0] + 2 * X[:, 1] + np.random.normal(size=n * 1) + 5
pls1 = PLSRegression(n_components=3)
pls1.fit(X, y)
note that the number of components exceeds 1 (the dimension of y)
print("Estimated betas")
print(np.round(pls1.coef_, 1))

###
CCA (PLS mode B with symmetric deflation)

cca = CCA(n_components=2)
cca.fit(X_train, Y_train)
X_train_r, Y_train_r = cca.transform(X_train, Y_train)
X_test_r, Y_test_r = cca.transform(X_test, Y_test)

Total running time of the script: (0 minutes 0.184 seconds)

6.8 Dataset examples

Examples concerning the sklearn.datasets module.

6.8. Dataset examples 907

scikit-learn user guide, Release 0.23.2

6.8.1 The Digit Dataset

This dataset is made up of 1797 8x8 images. Each image, like the one shown below, is of a hand-written digit. In order
to utilize an 8x8 figure like this, we’d have to first transform it into a feature vector with length 64.

See here for more information about this dataset.

print(__doc__)

Code source: Gaël Varoquaux
Modified for documentation by Jaques Grobler
License: BSD 3 clause

from sklearn import datasets

import matplotlib.pyplot as plt

#Load the digits dataset
digits = datasets.load_digits()

#Display the first digit
plt.figure(1, figsize=(3, 3))
plt.imshow(digits.images[-1], cmap=plt.cm.gray_r, interpolation='nearest')
plt.show()

Total running time of the script: (0 minutes 0.104 seconds)

6.8.2 The Iris Dataset

This data sets consists of 3 different types of irises’ (Setosa, Versicolour, and Virginica) petal and sepal length, stored
in a 150x4 numpy.ndarray

The rows being the samples and the columns being: Sepal Length, Sepal Width, Petal Length and Petal Width.

The below plot uses the first two features. See here for more information on this dataset.

908 Chapter 6. Examples

https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits
https://en.wikipedia.org/wiki/Iris_flower_data_set

scikit-learn user guide, Release 0.23.2

•

6.8. Dataset examples 909

scikit-learn user guide, Release 0.23.2

•

print(__doc__)

Code source: Gaël Varoquaux
Modified for documentation by Jaques Grobler
License: BSD 3 clause

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn import datasets
from sklearn.decomposition import PCA

import some data to play with
iris = datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features.
y = iris.target

x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5

plt.figure(2, figsize=(8, 6))
plt.clf()

Plot the training points
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Set1,

edgecolor='k')
plt.xlabel('Sepal length')

(continues on next page)

910 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.ylabel('Sepal width')

plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.xticks(())
plt.yticks(())

To getter a better understanding of interaction of the dimensions
plot the first three PCA dimensions
fig = plt.figure(1, figsize=(8, 6))
ax = Axes3D(fig, elev=-150, azim=110)
X_reduced = PCA(n_components=3).fit_transform(iris.data)
ax.scatter(X_reduced[:, 0], X_reduced[:, 1], X_reduced[:, 2], c=y,

cmap=plt.cm.Set1, edgecolor='k', s=40)
ax.set_title("First three PCA directions")
ax.set_xlabel("1st eigenvector")
ax.w_xaxis.set_ticklabels([])
ax.set_ylabel("2nd eigenvector")
ax.w_yaxis.set_ticklabels([])
ax.set_zlabel("3rd eigenvector")
ax.w_zaxis.set_ticklabels([])

plt.show()

Total running time of the script: (0 minutes 0.142 seconds)

6.8.3 Plot randomly generated classification dataset

This example plots several randomly generated classification datasets. For easy visualization, all datasets have 2
features, plotted on the x and y axis. The color of each point represents its class label.

The first 4 plots use the make_classification with different numbers of informative features, clusters per class
and classes. The final 2 plots use make_blobs and make_gaussian_quantiles.

6.8. Dataset examples 911

scikit-learn user guide, Release 0.23.2

print(__doc__)

import matplotlib.pyplot as plt

from sklearn.datasets import make_classification
from sklearn.datasets import make_blobs
from sklearn.datasets import make_gaussian_quantiles

plt.figure(figsize=(8, 8))
plt.subplots_adjust(bottom=.05, top=.9, left=.05, right=.95)

plt.subplot(321)
plt.title("One informative feature, one cluster per class", fontsize='small')
X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=1,

(continues on next page)

912 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

n_clusters_per_class=1)
plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1,

s=25, edgecolor='k')

plt.subplot(322)
plt.title("Two informative features, one cluster per class", fontsize='small')
X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=2,

n_clusters_per_class=1)
plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1,

s=25, edgecolor='k')

plt.subplot(323)
plt.title("Two informative features, two clusters per class",

fontsize='small')
X2, Y2 = make_classification(n_features=2, n_redundant=0, n_informative=2)
plt.scatter(X2[:, 0], X2[:, 1], marker='o', c=Y2,

s=25, edgecolor='k')

plt.subplot(324)
plt.title("Multi-class, two informative features, one cluster",

fontsize='small')
X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=2,

n_clusters_per_class=1, n_classes=3)
plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1,

s=25, edgecolor='k')

plt.subplot(325)
plt.title("Three blobs", fontsize='small')
X1, Y1 = make_blobs(n_features=2, centers=3)
plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1,

s=25, edgecolor='k')

plt.subplot(326)
plt.title("Gaussian divided into three quantiles", fontsize='small')
X1, Y1 = make_gaussian_quantiles(n_features=2, n_classes=3)
plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1,

s=25, edgecolor='k')

plt.show()

Total running time of the script: (0 minutes 0.260 seconds)

6.8.4 Plot randomly generated multilabel dataset

This illustrates the make_multilabel_classification dataset generator. Each sample consists of counts of
two features (up to 50 in total), which are differently distributed in each of two classes.

Points are labeled as follows, where Y means the class is present:

6.8. Dataset examples 913

scikit-learn user guide, Release 0.23.2

1 2 3 Color
Y N N Red
N Y N Blue
N N Y Yellow
Y Y N Purple
Y N Y Orange
Y Y N Green
Y Y Y Brown

A star marks the expected sample for each class; its size reflects the probability of selecting that class label.

The left and right examples highlight the n_labels parameter: more of the samples in the right plot have 2 or 3
labels.

Note that this two-dimensional example is very degenerate: generally the number of features would be much greater
than the “document length”, while here we have much larger documents than vocabulary. Similarly, with n_classes
> n_features, it is much less likely that a feature distinguishes a particular class.

Out:

The data was generated from (random_state=1013):
Class P(C) P(w0|C) P(w1|C)
red 0.64 0.97 0.03
blue 0.06 0.60 0.40
yellow 0.30 0.09 0.91

import numpy as np
import matplotlib.pyplot as plt

(continues on next page)

914 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

from sklearn.datasets import make_multilabel_classification as make_ml_clf

print(__doc__)

COLORS = np.array(['!',
'#FF3333', # red
'#0198E1', # blue
'#BF5FFF', # purple
'#FCD116', # yellow
'#FF7216', # orange
'#4DBD33', # green
'#87421F' # brown
])

Use same random seed for multiple calls to make_multilabel_classification to
ensure same distributions
RANDOM_SEED = np.random.randint(2 ** 10)

def plot_2d(ax, n_labels=1, n_classes=3, length=50):
X, Y, p_c, p_w_c = make_ml_clf(n_samples=150, n_features=2,

n_classes=n_classes, n_labels=n_labels,
length=length, allow_unlabeled=False,
return_distributions=True,
random_state=RANDOM_SEED)

ax.scatter(X[:, 0], X[:, 1], color=COLORS.take((Y * [1, 2, 4]
).sum(axis=1)),

marker='.')
ax.scatter(p_w_c[0] * length, p_w_c[1] * length,

marker='*', linewidth=.5, edgecolor='black',
s=20 + 1500 * p_c ** 2,
color=COLORS.take([1, 2, 4]))

ax.set_xlabel('Feature 0 count')
return p_c, p_w_c

_, (ax1, ax2) = plt.subplots(1, 2, sharex='row', sharey='row', figsize=(8, 4))
plt.subplots_adjust(bottom=.15)

p_c, p_w_c = plot_2d(ax1, n_labels=1)
ax1.set_title('n_labels=1, length=50')
ax1.set_ylabel('Feature 1 count')

plot_2d(ax2, n_labels=3)
ax2.set_title('n_labels=3, length=50')
ax2.set_xlim(left=0, auto=True)
ax2.set_ylim(bottom=0, auto=True)

plt.show()

print('The data was generated from (random_state=%d):' % RANDOM_SEED)
print('Class', 'P(C)', 'P(w0|C)', 'P(w1|C)', sep='\t')
for k, p, p_w in zip(['red', 'blue', 'yellow'], p_c, p_w_c.T):

print('%s\t%0.2f\t%0.2f\t%0.2f' % (k, p, p_w[0], p_w[1]))

Total running time of the script: (0 minutes 0.117 seconds)

6.8. Dataset examples 915

scikit-learn user guide, Release 0.23.2

6.9 Decision Trees

Examples concerning the sklearn.tree module.

6.9.1 Decision Tree Regression

A 1D regression with decision tree.

The decision trees is used to fit a sine curve with addition noisy observation. As a result, it learns local linear regres-
sions approximating the sine curve.

We can see that if the maximum depth of the tree (controlled by the max_depth parameter) is set too high, the
decision trees learn too fine details of the training data and learn from the noise, i.e. they overfit.

print(__doc__)

Import the necessary modules and libraries
import numpy as np
from sklearn.tree import DecisionTreeRegressor
import matplotlib.pyplot as plt

Create a random dataset
rng = np.random.RandomState(1)
X = np.sort(5 * rng.rand(80, 1), axis=0)

(continues on next page)

916 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

y = np.sin(X).ravel()
y[::5] += 3 * (0.5 - rng.rand(16))

Fit regression model
regr_1 = DecisionTreeRegressor(max_depth=2)
regr_2 = DecisionTreeRegressor(max_depth=5)
regr_1.fit(X, y)
regr_2.fit(X, y)

Predict
X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis]
y_1 = regr_1.predict(X_test)
y_2 = regr_2.predict(X_test)

Plot the results
plt.figure()
plt.scatter(X, y, s=20, edgecolor="black",

c="darkorange", label="data")
plt.plot(X_test, y_1, color="cornflowerblue",

label="max_depth=2", linewidth=2)
plt.plot(X_test, y_2, color="yellowgreen", label="max_depth=5", linewidth=2)
plt.xlabel("data")
plt.ylabel("target")
plt.title("Decision Tree Regression")
plt.legend()
plt.show()

Total running time of the script: (0 minutes 0.070 seconds)

6.9.2 Multi-output Decision Tree Regression

An example to illustrate multi-output regression with decision tree.

The decision trees is used to predict simultaneously the noisy x and y observations of a circle given a single underlying
feature. As a result, it learns local linear regressions approximating the circle.

We can see that if the maximum depth of the tree (controlled by the max_depth parameter) is set too high, the
decision trees learn too fine details of the training data and learn from the noise, i.e. they overfit.

6.9. Decision Trees 917

scikit-learn user guide, Release 0.23.2

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeRegressor

Create a random dataset
rng = np.random.RandomState(1)
X = np.sort(200 * rng.rand(100, 1) - 100, axis=0)
y = np.array([np.pi * np.sin(X).ravel(), np.pi * np.cos(X).ravel()]).T
y[::5, :] += (0.5 - rng.rand(20, 2))

Fit regression model
regr_1 = DecisionTreeRegressor(max_depth=2)
regr_2 = DecisionTreeRegressor(max_depth=5)
regr_3 = DecisionTreeRegressor(max_depth=8)
regr_1.fit(X, y)
regr_2.fit(X, y)
regr_3.fit(X, y)

Predict
X_test = np.arange(-100.0, 100.0, 0.01)[:, np.newaxis]
y_1 = regr_1.predict(X_test)
y_2 = regr_2.predict(X_test)
y_3 = regr_3.predict(X_test)

(continues on next page)

918 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Plot the results
plt.figure()
s = 25
plt.scatter(y[:, 0], y[:, 1], c="navy", s=s,

edgecolor="black", label="data")
plt.scatter(y_1[:, 0], y_1[:, 1], c="cornflowerblue", s=s,

edgecolor="black", label="max_depth=2")
plt.scatter(y_2[:, 0], y_2[:, 1], c="red", s=s,

edgecolor="black", label="max_depth=5")
plt.scatter(y_3[:, 0], y_3[:, 1], c="orange", s=s,

edgecolor="black", label="max_depth=8")
plt.xlim([-6, 6])
plt.ylim([-6, 6])
plt.xlabel("target 1")
plt.ylabel("target 2")
plt.title("Multi-output Decision Tree Regression")
plt.legend(loc="best")
plt.show()

Total running time of the script: (0 minutes 0.255 seconds)

6.9.3 Plot the decision surface of a decision tree on the iris dataset

Plot the decision surface of a decision tree trained on pairs of features of the iris dataset.

See decision tree for more information on the estimator.

For each pair of iris features, the decision tree learns decision boundaries made of combinations of simple thresholding
rules inferred from the training samples.

We also show the tree structure of a model built on all of the features.

6.9. Decision Trees 919

scikit-learn user guide, Release 0.23.2

•

920 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier, plot_tree

Parameters
n_classes = 3
plot_colors = "ryb"
plot_step = 0.02

Load data
iris = load_iris()

for pairidx, pair in enumerate([[0, 1], [0, 2], [0, 3],
[1, 2], [1, 3], [2, 3]]):

We only take the two corresponding features
X = iris.data[:, pair]
y = iris.target

Train
clf = DecisionTreeClassifier().fit(X, y)

Plot the decision boundary
plt.subplot(2, 3, pairidx + 1)

(continues on next page)

6.9. Decision Trees 921

scikit-learn user guide, Release 0.23.2

(continued from previous page)

x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step),

np.arange(y_min, y_max, plot_step))
plt.tight_layout(h_pad=0.5, w_pad=0.5, pad=2.5)

Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
cs = plt.contourf(xx, yy, Z, cmap=plt.cm.RdYlBu)

plt.xlabel(iris.feature_names[pair[0]])
plt.ylabel(iris.feature_names[pair[1]])

Plot the training points
for i, color in zip(range(n_classes), plot_colors):

idx = np.where(y == i)
plt.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i],

cmap=plt.cm.RdYlBu, edgecolor='black', s=15)

plt.suptitle("Decision surface of a decision tree using paired features")
plt.legend(loc='lower right', borderpad=0, handletextpad=0)
plt.axis("tight")

plt.figure()
clf = DecisionTreeClassifier().fit(iris.data, iris.target)
plot_tree(clf, filled=True)
plt.show()

Total running time of the script: (0 minutes 0.772 seconds)

6.9.4 Post pruning decision trees with cost complexity pruning

The DecisionTreeClassifier provides parameters such as min_samples_leaf and max_depth to
prevent a tree from overfiting. Cost complexity pruning provides another option to control the size of a tree.
In DecisionTreeClassifier, this pruning technique is parameterized by the cost complexity parameter,
ccp_alpha. Greater values of ccp_alpha increase the number of nodes pruned. Here we only show the effect of
ccp_alpha on regularizing the trees and how to choose a ccp_alpha based on validation scores.

See also Minimal Cost-Complexity Pruning for details on pruning.

print(__doc__)
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_breast_cancer
from sklearn.tree import DecisionTreeClassifier

Total impurity of leaves vs effective alphas of pruned tree

Minimal cost complexity pruning recursively finds the node with the “weakest link”. The weakest link is char-
acterized by an effective alpha, where the nodes with the smallest effective alpha are pruned first. To get an
idea of what values of ccp_alpha could be appropriate, scikit-learn provides DecisionTreeClassifier.
cost_complexity_pruning_path that returns the effective alphas and the corresponding total leaf impurities

922 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

at each step of the pruning process. As alpha increases, more of the tree is pruned, which increases the total impurity
of its leaves.

X, y = load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

clf = DecisionTreeClassifier(random_state=0)
path = clf.cost_complexity_pruning_path(X_train, y_train)
ccp_alphas, impurities = path.ccp_alphas, path.impurities

In the following plot, the maximum effective alpha value is removed, because it is the trivial tree with only one node.

fig, ax = plt.subplots()
ax.plot(ccp_alphas[:-1], impurities[:-1], marker='o', drawstyle="steps-post")
ax.set_xlabel("effective alpha")
ax.set_ylabel("total impurity of leaves")
ax.set_title("Total Impurity vs effective alpha for training set")

Out:

Text(0.5, 1.0, 'Total Impurity vs effective alpha for training set')

Next, we train a decision tree using the effective alphas. The last value in ccp_alphas is the alpha value that prunes
the whole tree, leaving the tree, clfs[-1], with one node.

6.9. Decision Trees 923

scikit-learn user guide, Release 0.23.2

clfs = []
for ccp_alpha in ccp_alphas:

clf = DecisionTreeClassifier(random_state=0, ccp_alpha=ccp_alpha)
clf.fit(X_train, y_train)
clfs.append(clf)

print("Number of nodes in the last tree is: {} with ccp_alpha: {}".format(
clfs[-1].tree_.node_count, ccp_alphas[-1]))

Out:

Number of nodes in the last tree is: 1 with ccp_alpha: 0.3272984419327777

For the remainder of this example, we remove the last element in clfs and ccp_alphas, because it is the trivial
tree with only one node. Here we show that the number of nodes and tree depth decreases as alpha increases.

clfs = clfs[:-1]
ccp_alphas = ccp_alphas[:-1]

node_counts = [clf.tree_.node_count for clf in clfs]
depth = [clf.tree_.max_depth for clf in clfs]
fig, ax = plt.subplots(2, 1)
ax[0].plot(ccp_alphas, node_counts, marker='o', drawstyle="steps-post")
ax[0].set_xlabel("alpha")
ax[0].set_ylabel("number of nodes")
ax[0].set_title("Number of nodes vs alpha")
ax[1].plot(ccp_alphas, depth, marker='o', drawstyle="steps-post")
ax[1].set_xlabel("alpha")
ax[1].set_ylabel("depth of tree")
ax[1].set_title("Depth vs alpha")
fig.tight_layout()

924 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Accuracy vs alpha for training and testing sets

When ccp_alpha is set to zero and keeping the other default parameters of DecisionTreeClassifier, the
tree overfits, leading to a 100% training accuracy and 88% testing accuracy. As alpha increases, more of the tree is
pruned, thus creating a decision tree that generalizes better. In this example, setting ccp_alpha=0.015 maximizes
the testing accuracy.

train_scores = [clf.score(X_train, y_train) for clf in clfs]
test_scores = [clf.score(X_test, y_test) for clf in clfs]

fig, ax = plt.subplots()
ax.set_xlabel("alpha")
ax.set_ylabel("accuracy")
ax.set_title("Accuracy vs alpha for training and testing sets")
ax.plot(ccp_alphas, train_scores, marker='o', label="train",

drawstyle="steps-post")
ax.plot(ccp_alphas, test_scores, marker='o', label="test",

drawstyle="steps-post")
ax.legend()
plt.show()

6.9. Decision Trees 925

scikit-learn user guide, Release 0.23.2

Total running time of the script: (0 minutes 0.366 seconds)

6.9.5 Understanding the decision tree structure

The decision tree structure can be analysed to gain further insight on the relation between the features and the target
to predict. In this example, we show how to retrieve:

• the binary tree structure;

• the depth of each node and whether or not it’s a leaf;

• the nodes that were reached by a sample using the decision_path method;

• the leaf that was reached by a sample using the apply method;

• the rules that were used to predict a sample;

• the decision path shared by a group of samples.

Out:

The binary tree structure has 5 nodes and has the following tree structure:
node=0 test node: go to node 1 if X[:, 3] <= 0.800000011920929 else to node 2.

node=1 leaf node.
node=2 test node: go to node 3 if X[:, 2] <= 4.950000047683716 else to node 4.

node=3 leaf node.
node=4 leaf node.

(continues on next page)

926 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Rules used to predict sample 0:
decision id node 0 : (X_test[0, 3] (= 2.4) > 0.800000011920929)
decision id node 2 : (X_test[0, 2] (= 5.1) > 4.950000047683716)

The following samples [0, 1] share the node [0 2] in the tree
It is 40.0 % of all nodes.

import numpy as np

from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier

iris = load_iris()
X = iris.data
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

estimator = DecisionTreeClassifier(max_leaf_nodes=3, random_state=0)
estimator.fit(X_train, y_train)

The decision estimator has an attribute called tree_ which stores the entire
tree structure and allows access to low level attributes. The binary tree
tree_ is represented as a number of parallel arrays. The i-th element of each
array holds information about the node `i`. Node 0 is the tree's root. NOTE:
Some of the arrays only apply to either leaves or split nodes, resp. In this
case the values of nodes of the other type are arbitrary!
#
Among those arrays, we have:
- left_child, id of the left child of the node
- right_child, id of the right child of the node
- feature, feature used for splitting the node
- threshold, threshold value at the node
#

Using those arrays, we can parse the tree structure:

n_nodes = estimator.tree_.node_count
children_left = estimator.tree_.children_left
children_right = estimator.tree_.children_right
feature = estimator.tree_.feature
threshold = estimator.tree_.threshold

The tree structure can be traversed to compute various properties such
as the depth of each node and whether or not it is a leaf.
node_depth = np.zeros(shape=n_nodes, dtype=np.int64)
is_leaves = np.zeros(shape=n_nodes, dtype=bool)
stack = [(0, -1)] # seed is the root node id and its parent depth
while len(stack) > 0:

(continues on next page)

6.9. Decision Trees 927

scikit-learn user guide, Release 0.23.2

(continued from previous page)

node_id, parent_depth = stack.pop()
node_depth[node_id] = parent_depth + 1

If we have a test node
if (children_left[node_id] != children_right[node_id]):

stack.append((children_left[node_id], parent_depth + 1))
stack.append((children_right[node_id], parent_depth + 1))

else:
is_leaves[node_id] = True

print("The binary tree structure has %s nodes and has "
"the following tree structure:"
% n_nodes)

for i in range(n_nodes):
if is_leaves[i]:

print("%snode=%s leaf node." % (node_depth[i] * "\t", i))
else:

print("%snode=%s test node: go to node %s if X[:, %s] <= %s else to "
"node %s."
% (node_depth[i] * "\t",

i,
children_left[i],
feature[i],
threshold[i],
children_right[i],
))

print()

First let's retrieve the decision path of each sample. The decision_path
method allows to retrieve the node indicator functions. A non zero element of
indicator matrix at the position (i, j) indicates that the sample i goes
through the node j.

node_indicator = estimator.decision_path(X_test)

Similarly, we can also have the leaves ids reached by each sample.

leave_id = estimator.apply(X_test)

Now, it's possible to get the tests that were used to predict a sample or
a group of samples. First, let's make it for the sample.

sample_id = 0
node_index = node_indicator.indices[node_indicator.indptr[sample_id]:

node_indicator.indptr[sample_id + 1]]

print('Rules used to predict sample %s: ' % sample_id)
for node_id in node_index:

if leave_id[sample_id] == node_id:
continue

if (X_test[sample_id, feature[node_id]] <= threshold[node_id]):
threshold_sign = "<="

else:
threshold_sign = ">"

print("decision id node %s : (X_test[%s, %s] (= %s) %s %s)"
(continues on next page)

928 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

% (node_id,
sample_id,
feature[node_id],
X_test[sample_id, feature[node_id]],
threshold_sign,
threshold[node_id]))

For a group of samples, we have the following common node.
sample_ids = [0, 1]
common_nodes = (node_indicator.toarray()[sample_ids].sum(axis=0) ==

len(sample_ids))

common_node_id = np.arange(n_nodes)[common_nodes]

print("\nThe following samples %s share the node %s in the tree"
% (sample_ids, common_node_id))

print("It is %s %% of all nodes." % (100 * len(common_node_id) / n_nodes,))

Total running time of the script: (0 minutes 0.005 seconds)

6.10 Decomposition

Examples concerning the sklearn.decomposition module.

6.10.1 Beta-divergence loss functions

A plot that compares the various Beta-divergence loss functions supported by the Multiplicative-Update (‘mu’) solver
in sklearn.decomposition.NMF.

6.10. Decomposition 929

scikit-learn user guide, Release 0.23.2

import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition._nmf import _beta_divergence

print(__doc__)

x = np.linspace(0.001, 4, 1000)
y = np.zeros(x.shape)

colors = 'mbgyr'
for j, beta in enumerate((0., 0.5, 1., 1.5, 2.)):

for i, xi in enumerate(x):
y[i] = _beta_divergence(1, xi, 1, beta)

name = "beta = %1.1f" % beta
plt.plot(x, y, label=name, color=colors[j])

plt.xlabel("x")
plt.title("beta-divergence(1, x)")
plt.legend(loc=0)
plt.axis([0, 4, 0, 3])
plt.show()

Total running time of the script: (0 minutes 0.228 seconds)

930 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

6.10.2 PCA example with Iris Data-set

Principal Component Analysis applied to the Iris dataset.

See here for more information on this dataset.

print(__doc__)

Code source: Gaël Varoquaux
License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

from sklearn import decomposition
from sklearn import datasets

np.random.seed(5)

centers = [[1, 1], [-1, -1], [1, -1]]
iris = datasets.load_iris()
X = iris.data
y = iris.target

fig = plt.figure(1, figsize=(4, 3))
plt.clf()
ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134)

plt.cla()
pca = decomposition.PCA(n_components=3)
pca.fit(X)
X = pca.transform(X)

for name, label in [('Setosa', 0), ('Versicolour', 1), ('Virginica', 2)]:
ax.text3D(X[y == label, 0].mean(),

(continues on next page)

6.10. Decomposition 931

https://en.wikipedia.org/wiki/Iris_flower_data_set

scikit-learn user guide, Release 0.23.2

(continued from previous page)

X[y == label, 1].mean() + 1.5,
X[y == label, 2].mean(), name,
horizontalalignment='center',
bbox=dict(alpha=.5, edgecolor='w', facecolor='w'))

Reorder the labels to have colors matching the cluster results
y = np.choose(y, [1, 2, 0]).astype(np.float)
ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=y, cmap=plt.cm.nipy_spectral,

edgecolor='k')

ax.w_xaxis.set_ticklabels([])
ax.w_yaxis.set_ticklabels([])
ax.w_zaxis.set_ticklabels([])

plt.show()

Total running time of the script: (0 minutes 0.111 seconds)

6.10.3 Incremental PCA

Incremental principal component analysis (IPCA) is typically used as a replacement for principal component analysis
(PCA) when the dataset to be decomposed is too large to fit in memory. IPCA builds a low-rank approximation for the
input data using an amount of memory which is independent of the number of input data samples. It is still dependent
on the input data features, but changing the batch size allows for control of memory usage.

This example serves as a visual check that IPCA is able to find a similar projection of the data to PCA (to a sign flip),
while only processing a few samples at a time. This can be considered a “toy example”, as IPCA is intended for large
datasets which do not fit in main memory, requiring incremental approaches.

932 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

6.10. Decomposition 933

scikit-learn user guide, Release 0.23.2

•

print(__doc__)

Authors: Kyle Kastner
License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets import load_iris
from sklearn.decomposition import PCA, IncrementalPCA

iris = load_iris()
X = iris.data
y = iris.target

n_components = 2

(continues on next page)

934 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

ipca = IncrementalPCA(n_components=n_components, batch_size=10)
X_ipca = ipca.fit_transform(X)

pca = PCA(n_components=n_components)
X_pca = pca.fit_transform(X)

colors = ['navy', 'turquoise', 'darkorange']

for X_transformed, title in [(X_ipca, "Incremental PCA"), (X_pca, "PCA")]:
plt.figure(figsize=(8, 8))
for color, i, target_name in zip(colors, [0, 1, 2], iris.target_names):

plt.scatter(X_transformed[y == i, 0], X_transformed[y == i, 1],
color=color, lw=2, label=target_name)

if "Incremental" in title:
err = np.abs(np.abs(X_pca) - np.abs(X_ipca)).mean()
plt.title(title + " of iris dataset\nMean absolute unsigned error "

"%.6f" % err)
else:

plt.title(title + " of iris dataset")
plt.legend(loc="best", shadow=False, scatterpoints=1)
plt.axis([-4, 4, -1.5, 1.5])

plt.show()

Total running time of the script: (0 minutes 0.202 seconds)

6.10.4 Comparison of LDA and PCA 2D projection of Iris dataset

The Iris dataset represents 3 kind of Iris flowers (Setosa, Versicolour and Virginica) with 4 attributes: sepal length,
sepal width, petal length and petal width.

Principal Component Analysis (PCA) applied to this data identifies the combination of attributes (principal compo-
nents, or directions in the feature space) that account for the most variance in the data. Here we plot the different
samples on the 2 first principal components.

Linear Discriminant Analysis (LDA) tries to identify attributes that account for the most variance between classes. In
particular, LDA, in contrast to PCA, is a supervised method, using known class labels.

6.10. Decomposition 935

scikit-learn user guide, Release 0.23.2

•

936 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

Out:

explained variance ratio (first two components): [0.92461872 0.05306648]

print(__doc__)

import matplotlib.pyplot as plt

from sklearn import datasets
from sklearn.decomposition import PCA
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

iris = datasets.load_iris()

X = iris.data
y = iris.target
target_names = iris.target_names

pca = PCA(n_components=2)
X_r = pca.fit(X).transform(X)

lda = LinearDiscriminantAnalysis(n_components=2)
(continues on next page)

6.10. Decomposition 937

scikit-learn user guide, Release 0.23.2

(continued from previous page)

X_r2 = lda.fit(X, y).transform(X)

Percentage of variance explained for each components
print('explained variance ratio (first two components): %s'

% str(pca.explained_variance_ratio_))

plt.figure()
colors = ['navy', 'turquoise', 'darkorange']
lw = 2

for color, i, target_name in zip(colors, [0, 1, 2], target_names):
plt.scatter(X_r[y == i, 0], X_r[y == i, 1], color=color, alpha=.8, lw=lw,

label=target_name)
plt.legend(loc='best', shadow=False, scatterpoints=1)
plt.title('PCA of IRIS dataset')

plt.figure()
for color, i, target_name in zip(colors, [0, 1, 2], target_names):

plt.scatter(X_r2[y == i, 0], X_r2[y == i, 1], alpha=.8, color=color,
label=target_name)

plt.legend(loc='best', shadow=False, scatterpoints=1)
plt.title('LDA of IRIS dataset')

plt.show()

Total running time of the script: (0 minutes 0.150 seconds)

6.10.5 Blind source separation using FastICA

An example of estimating sources from noisy data.

Independent component analysis (ICA) is used to estimate sources given noisy measurements. Imagine 3 instruments
playing simultaneously and 3 microphones recording the mixed signals. ICA is used to recover the sources ie. what is
played by each instrument. Importantly, PCA fails at recovering our instruments since the related signals reflect
non-Gaussian processes.

938 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from scipy import signal

from sklearn.decomposition import FastICA, PCA

###
Generate sample data
np.random.seed(0)
n_samples = 2000
time = np.linspace(0, 8, n_samples)

s1 = np.sin(2 * time) # Signal 1 : sinusoidal signal
s2 = np.sign(np.sin(3 * time)) # Signal 2 : square signal
s3 = signal.sawtooth(2 * np.pi * time) # Signal 3: saw tooth signal

S = np.c_[s1, s2, s3]
S += 0.2 * np.random.normal(size=S.shape) # Add noise

S /= S.std(axis=0) # Standardize data
Mix data
A = np.array([[1, 1, 1], [0.5, 2, 1.0], [1.5, 1.0, 2.0]]) # Mixing matrix
X = np.dot(S, A.T) # Generate observations

(continues on next page)

6.10. Decomposition 939

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Compute ICA
ica = FastICA(n_components=3)
S_ = ica.fit_transform(X) # Reconstruct signals
A_ = ica.mixing_ # Get estimated mixing matrix

We can `prove` that the ICA model applies by reverting the unmixing.
assert np.allclose(X, np.dot(S_, A_.T) + ica.mean_)

For comparison, compute PCA
pca = PCA(n_components=3)
H = pca.fit_transform(X) # Reconstruct signals based on orthogonal components

###
Plot results

plt.figure()

models = [X, S, S_, H]
names = ['Observations (mixed signal)',

'True Sources',
'ICA recovered signals',
'PCA recovered signals']

colors = ['red', 'steelblue', 'orange']

for ii, (model, name) in enumerate(zip(models, names), 1):
plt.subplot(4, 1, ii)
plt.title(name)
for sig, color in zip(model.T, colors):

plt.plot(sig, color=color)

plt.tight_layout()
plt.show()

Total running time of the script: (0 minutes 0.342 seconds)

6.10.6 Principal components analysis (PCA)

These figures aid in illustrating how a point cloud can be very flat in one direction–which is where PCA comes in to
choose a direction that is not flat.

940 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

•

print(__doc__)

Authors: Gael Varoquaux
Jaques Grobler
Kevin Hughes
License: BSD 3 clause

from sklearn.decomposition import PCA

from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

###
Create the data

(continues on next page)

6.10. Decomposition 941

scikit-learn user guide, Release 0.23.2

(continued from previous page)

e = np.exp(1)
np.random.seed(4)

def pdf(x):
return 0.5 * (stats.norm(scale=0.25 / e).pdf(x)

+ stats.norm(scale=4 / e).pdf(x))

y = np.random.normal(scale=0.5, size=(30000))
x = np.random.normal(scale=0.5, size=(30000))
z = np.random.normal(scale=0.1, size=len(x))

density = pdf(x) * pdf(y)
pdf_z = pdf(5 * z)

density *= pdf_z

a = x + y
b = 2 * y
c = a - b + z

norm = np.sqrt(a.var() + b.var())
a /= norm
b /= norm

###
Plot the figures
def plot_figs(fig_num, elev, azim):

fig = plt.figure(fig_num, figsize=(4, 3))
plt.clf()
ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=elev, azim=azim)

ax.scatter(a[::10], b[::10], c[::10], c=density[::10], marker='+', alpha=.4)
Y = np.c_[a, b, c]

Using SciPy's SVD, this would be:
_, pca_score, V = scipy.linalg.svd(Y, full_matrices=False)

pca = PCA(n_components=3)
pca.fit(Y)
pca_score = pca.explained_variance_ratio_
V = pca.components_

x_pca_axis, y_pca_axis, z_pca_axis = 3 * V.T
x_pca_plane = np.r_[x_pca_axis[:2], - x_pca_axis[1::-1]]
y_pca_plane = np.r_[y_pca_axis[:2], - y_pca_axis[1::-1]]
z_pca_plane = np.r_[z_pca_axis[:2], - z_pca_axis[1::-1]]
x_pca_plane.shape = (2, 2)
y_pca_plane.shape = (2, 2)
z_pca_plane.shape = (2, 2)
ax.plot_surface(x_pca_plane, y_pca_plane, z_pca_plane)
ax.w_xaxis.set_ticklabels([])
ax.w_yaxis.set_ticklabels([])
ax.w_zaxis.set_ticklabels([])

(continues on next page)

942 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

elev = -40
azim = -80
plot_figs(1, elev, azim)

elev = 30
azim = 20
plot_figs(2, elev, azim)

plt.show()

Total running time of the script: (0 minutes 0.254 seconds)

6.10.7 FastICA on 2D point clouds

This example illustrates visually in the feature space a comparison by results using two different component analysis
techniques.

Independent component analysis (ICA) vs Principal component analysis (PCA).

Representing ICA in the feature space gives the view of ‘geometric ICA’: ICA is an algorithm that finds directions in
the feature space corresponding to projections with high non-Gaussianity. These directions need not be orthogonal in
the original feature space, but they are orthogonal in the whitened feature space, in which all directions correspond to
the same variance.

PCA, on the other hand, finds orthogonal directions in the raw feature space that correspond to directions accounting
for maximum variance.

Here we simulate independent sources using a highly non-Gaussian process, 2 student T with a low number of degrees
of freedom (top left figure). We mix them to create observations (top right figure). In this raw observation space,
directions identified by PCA are represented by orange vectors. We represent the signal in the PCA space, after
whitening by the variance corresponding to the PCA vectors (lower left). Running ICA corresponds to finding a
rotation in this space to identify the directions of largest non-Gaussianity (lower right).

6.10. Decomposition 943

scikit-learn user guide, Release 0.23.2

print(__doc__)

Authors: Alexandre Gramfort, Gael Varoquaux
License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn.decomposition import PCA, FastICA

###
Generate sample data
rng = np.random.RandomState(42)
S = rng.standard_t(1.5, size=(20000, 2))
S[:, 0] *= 2.

Mix data
A = np.array([[1, 1], [0, 2]]) # Mixing matrix

X = np.dot(S, A.T) # Generate observations

pca = PCA()
S_pca_ = pca.fit(X).transform(X)

ica = FastICA(random_state=rng)

(continues on next page)

944 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

S_ica_ = ica.fit(X).transform(X) # Estimate the sources

S_ica_ /= S_ica_.std(axis=0)

###
Plot results

def plot_samples(S, axis_list=None):
plt.scatter(S[:, 0], S[:, 1], s=2, marker='o', zorder=10,

color='steelblue', alpha=0.5)
if axis_list is not None:

colors = ['orange', 'red']
for color, axis in zip(colors, axis_list):

axis /= axis.std()
x_axis, y_axis = axis
Trick to get legend to work
plt.plot(0.1 * x_axis, 0.1 * y_axis, linewidth=2, color=color)
plt.quiver((0, 0), (0, 0), x_axis, y_axis, zorder=11, width=0.01,

scale=6, color=color)

plt.hlines(0, -3, 3)
plt.vlines(0, -3, 3)
plt.xlim(-3, 3)
plt.ylim(-3, 3)
plt.xlabel('x')
plt.ylabel('y')

plt.figure()
plt.subplot(2, 2, 1)
plot_samples(S / S.std())
plt.title('True Independent Sources')

axis_list = [pca.components_.T, ica.mixing_]
plt.subplot(2, 2, 2)
plot_samples(X / np.std(X), axis_list=axis_list)
legend = plt.legend(['PCA', 'ICA'], loc='upper right')
legend.set_zorder(100)

plt.title('Observations')

plt.subplot(2, 2, 3)
plot_samples(S_pca_ / np.std(S_pca_, axis=0))
plt.title('PCA recovered signals')

plt.subplot(2, 2, 4)
plot_samples(S_ica_ / np.std(S_ica_))
plt.title('ICA recovered signals')

plt.subplots_adjust(0.09, 0.04, 0.94, 0.94, 0.26, 0.36)
plt.show()

Total running time of the script: (0 minutes 0.282 seconds)

6.10. Decomposition 945

scikit-learn user guide, Release 0.23.2

6.10.8 Kernel PCA

This example shows that Kernel PCA is able to find a projection of the data that makes data linearly separable.

print(__doc__)

Authors: Mathieu Blondel
Andreas Mueller
License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn.decomposition import PCA, KernelPCA
from sklearn.datasets import make_circles

np.random.seed(0)

X, y = make_circles(n_samples=400, factor=.3, noise=.05)

kpca = KernelPCA(kernel="rbf", fit_inverse_transform=True, gamma=10)
X_kpca = kpca.fit_transform(X)
X_back = kpca.inverse_transform(X_kpca)
pca = PCA()
X_pca = pca.fit_transform(X)

(continues on next page)

946 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Plot results

plt.figure()
plt.subplot(2, 2, 1, aspect='equal')
plt.title("Original space")
reds = y == 0
blues = y == 1

plt.scatter(X[reds, 0], X[reds, 1], c="red",
s=20, edgecolor='k')

plt.scatter(X[blues, 0], X[blues, 1], c="blue",
s=20, edgecolor='k')

plt.xlabel("x_1")
plt.ylabel("x_2")

X1, X2 = np.meshgrid(np.linspace(-1.5, 1.5, 50), np.linspace(-1.5, 1.5, 50))
X_grid = np.array([np.ravel(X1), np.ravel(X2)]).T
projection on the first principal component (in the phi space)
Z_grid = kpca.transform(X_grid)[:, 0].reshape(X1.shape)
plt.contour(X1, X2, Z_grid, colors='grey', linewidths=1, origin='lower')

plt.subplot(2, 2, 2, aspect='equal')
plt.scatter(X_pca[reds, 0], X_pca[reds, 1], c="red",

s=20, edgecolor='k')
plt.scatter(X_pca[blues, 0], X_pca[blues, 1], c="blue",

s=20, edgecolor='k')
plt.title("Projection by PCA")
plt.xlabel("1st principal component")
plt.ylabel("2nd component")

plt.subplot(2, 2, 3, aspect='equal')
plt.scatter(X_kpca[reds, 0], X_kpca[reds, 1], c="red",

s=20, edgecolor='k')
plt.scatter(X_kpca[blues, 0], X_kpca[blues, 1], c="blue",

s=20, edgecolor='k')
plt.title("Projection by KPCA")
plt.xlabel(r"1st principal component in space induced by ϕ")
plt.ylabel("2nd component")

plt.subplot(2, 2, 4, aspect='equal')
plt.scatter(X_back[reds, 0], X_back[reds, 1], c="red",

s=20, edgecolor='k')
plt.scatter(X_back[blues, 0], X_back[blues, 1], c="blue",

s=20, edgecolor='k')
plt.title("Original space after inverse transform")
plt.xlabel("x_1")
plt.ylabel("x_2")

plt.tight_layout()
plt.show()

Total running time of the script: (0 minutes 0.330 seconds)

6.10. Decomposition 947

scikit-learn user guide, Release 0.23.2

6.10.9 Model selection with Probabilistic PCA and Factor Analysis (FA)

Probabilistic PCA and Factor Analysis are probabilistic models. The consequence is that the likelihood of new data
can be used for model selection and covariance estimation. Here we compare PCA and FA with cross-validation on
low rank data corrupted with homoscedastic noise (noise variance is the same for each feature) or heteroscedastic noise
(noise variance is the different for each feature). In a second step we compare the model likelihood to the likelihoods
obtained from shrinkage covariance estimators.

One can observe that with homoscedastic noise both FA and PCA succeed in recovering the size of the low rank
subspace. The likelihood with PCA is higher than FA in this case. However PCA fails and overestimates the rank
when heteroscedastic noise is present. Under appropriate circumstances the low rank models are more likely than
shrinkage models.

The automatic estimation from Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604 by Thomas P.
Minka is also compared.

•

948 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

Out:

best n_components by PCA CV = 10
best n_components by FactorAnalysis CV = 10
best n_components by PCA MLE = 10
best n_components by PCA CV = 35
best n_components by FactorAnalysis CV = 10
best n_components by PCA MLE = 38

Authors: Alexandre Gramfort
Denis A. Engemann
License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from scipy import linalg

from sklearn.decomposition import PCA, FactorAnalysis
from sklearn.covariance import ShrunkCovariance, LedoitWolf
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import GridSearchCV

(continues on next page)

6.10. Decomposition 949

scikit-learn user guide, Release 0.23.2

(continued from previous page)

print(__doc__)

###
Create the data

n_samples, n_features, rank = 1000, 50, 10
sigma = 1.
rng = np.random.RandomState(42)
U, _, _ = linalg.svd(rng.randn(n_features, n_features))
X = np.dot(rng.randn(n_samples, rank), U[:, :rank].T)

Adding homoscedastic noise
X_homo = X + sigma * rng.randn(n_samples, n_features)

Adding heteroscedastic noise
sigmas = sigma * rng.rand(n_features) + sigma / 2.
X_hetero = X + rng.randn(n_samples, n_features) * sigmas

###
Fit the models

n_components = np.arange(0, n_features, 5) # options for n_components

def compute_scores(X):
pca = PCA(svd_solver='full')
fa = FactorAnalysis()

pca_scores, fa_scores = [], []
for n in n_components:

pca.n_components = n
fa.n_components = n
pca_scores.append(np.mean(cross_val_score(pca, X)))
fa_scores.append(np.mean(cross_val_score(fa, X)))

return pca_scores, fa_scores

def shrunk_cov_score(X):
shrinkages = np.logspace(-2, 0, 30)
cv = GridSearchCV(ShrunkCovariance(), {'shrinkage': shrinkages})
return np.mean(cross_val_score(cv.fit(X).best_estimator_, X))

def lw_score(X):
return np.mean(cross_val_score(LedoitWolf(), X))

for X, title in [(X_homo, 'Homoscedastic Noise'),
(X_hetero, 'Heteroscedastic Noise')]:

pca_scores, fa_scores = compute_scores(X)
n_components_pca = n_components[np.argmax(pca_scores)]
n_components_fa = n_components[np.argmax(fa_scores)]

pca = PCA(svd_solver='full', n_components='mle')
pca.fit(X)
n_components_pca_mle = pca.n_components_

(continues on next page)

950 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

print("best n_components by PCA CV = %d" % n_components_pca)
print("best n_components by FactorAnalysis CV = %d" % n_components_fa)
print("best n_components by PCA MLE = %d" % n_components_pca_mle)

plt.figure()
plt.plot(n_components, pca_scores, 'b', label='PCA scores')
plt.plot(n_components, fa_scores, 'r', label='FA scores')
plt.axvline(rank, color='g', label='TRUTH: %d' % rank, linestyle='-')
plt.axvline(n_components_pca, color='b',

label='PCA CV: %d' % n_components_pca, linestyle='--')
plt.axvline(n_components_fa, color='r',

label='FactorAnalysis CV: %d' % n_components_fa,
linestyle='--')

plt.axvline(n_components_pca_mle, color='k',
label='PCA MLE: %d' % n_components_pca_mle, linestyle='--')

compare with other covariance estimators
plt.axhline(shrunk_cov_score(X), color='violet',

label='Shrunk Covariance MLE', linestyle='-.')
plt.axhline(lw_score(X), color='orange',

label='LedoitWolf MLE' % n_components_pca_mle, linestyle='-.')

plt.xlabel('nb of components')
plt.ylabel('CV scores')
plt.legend(loc='lower right')
plt.title(title)

plt.show()

Total running time of the script: (0 minutes 8.957 seconds)

6.10.10 Sparse coding with a precomputed dictionary

Transform a signal as a sparse combination of Ricker wavelets. This example visually compares different sparse coding
methods using the sklearn.decomposition.SparseCoder estimator. The Ricker (also known as Mexican
hat or the second derivative of a Gaussian) is not a particularly good kernel to represent piecewise constant signals
like this one. It can therefore be seen how much adding different widths of atoms matters and it therefore motivates
learning the dictionary to best fit your type of signals.

The richer dictionary on the right is not larger in size, heavier subsampling is performed in order to stay on the same
order of magnitude.

6.10. Decomposition 951

scikit-learn user guide, Release 0.23.2

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from sklearn.decomposition import SparseCoder
from sklearn.utils.fixes import np_version, parse_version

def ricker_function(resolution, center, width):
"""Discrete sub-sampled Ricker (Mexican hat) wavelet"""
x = np.linspace(0, resolution - 1, resolution)
x = ((2 / (np.sqrt(3 * width) * np.pi ** .25))

* (1 - (x - center) ** 2 / width ** 2)

* np.exp(-(x - center) ** 2 / (2 * width ** 2)))
return x

def ricker_matrix(width, resolution, n_components):
"""Dictionary of Ricker (Mexican hat) wavelets"""
centers = np.linspace(0, resolution - 1, n_components)
D = np.empty((n_components, resolution))
for i, center in enumerate(centers):

D[i] = ricker_function(resolution, center, width)
D /= np.sqrt(np.sum(D ** 2, axis=1))[:, np.newaxis]
return D

resolution = 1024
subsampling = 3 # subsampling factor
width = 100
n_components = resolution // subsampling

Compute a wavelet dictionary
D_fixed = ricker_matrix(width=width, resolution=resolution,

n_components=n_components)
D_multi = np.r_[tuple(ricker_matrix(width=w, resolution=resolution,

(continues on next page)

952 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

n_components=n_components // 5)
for w in (10, 50, 100, 500, 1000))]

Generate a signal
y = np.linspace(0, resolution - 1, resolution)
first_quarter = y < resolution / 4
y[first_quarter] = 3.
y[np.logical_not(first_quarter)] = -1.

List the different sparse coding methods in the following format:
(title, transform_algorithm, transform_alpha,
transform_n_nozero_coefs, color)
estimators = [('OMP', 'omp', None, 15, 'navy'),

('Lasso', 'lasso_lars', 2, None, 'turquoise'),]
lw = 2
Avoid FutureWarning about default value change when numpy >= 1.14
lstsq_rcond = None if np_version >= parse_version('1.14') else -1

plt.figure(figsize=(13, 6))
for subplot, (D, title) in enumerate(zip((D_fixed, D_multi),

('fixed width', 'multiple widths'))):
plt.subplot(1, 2, subplot + 1)
plt.title('Sparse coding against %s dictionary' % title)
plt.plot(y, lw=lw, linestyle='--', label='Original signal')
Do a wavelet approximation
for title, algo, alpha, n_nonzero, color in estimators:

coder = SparseCoder(dictionary=D, transform_n_nonzero_coefs=n_nonzero,
transform_alpha=alpha, transform_algorithm=algo)

x = coder.transform(y.reshape(1, -1))
density = len(np.flatnonzero(x))
x = np.ravel(np.dot(x, D))
squared_error = np.sum((y - x) ** 2)
plt.plot(x, color=color, lw=lw,

label='%s: %s nonzero coefs,\n%.2f error'
% (title, density, squared_error))

Soft thresholding debiasing
coder = SparseCoder(dictionary=D, transform_algorithm='threshold',

transform_alpha=20)
x = coder.transform(y.reshape(1, -1))
_, idx = np.where(x != 0)
x[0, idx], _, _, _ = np.linalg.lstsq(D[idx, :].T, y, rcond=lstsq_rcond)
x = np.ravel(np.dot(x, D))
squared_error = np.sum((y - x) ** 2)
plt.plot(x, color='darkorange', lw=lw,

label='Thresholding w/ debiasing:\n%d nonzero coefs, %.2f error'
% (len(idx), squared_error))

plt.axis('tight')
plt.legend(shadow=False, loc='best')

plt.subplots_adjust(.04, .07, .97, .90, .09, .2)
plt.show()

Total running time of the script: (0 minutes 0.321 seconds)

6.10. Decomposition 953

scikit-learn user guide, Release 0.23.2

6.10.11 Image denoising using dictionary learning

An example comparing the effect of reconstructing noisy fragments of a raccoon face image using firstly online
Dictionary Learning and various transform methods.

The dictionary is fitted on the distorted left half of the image, and subsequently used to reconstruct the right half. Note
that even better performance could be achieved by fitting to an undistorted (i.e. noiseless) image, but here we start
from the assumption that it is not available.

A common practice for evaluating the results of image denoising is by looking at the difference between the recon-
struction and the original image. If the reconstruction is perfect this will look like Gaussian noise.

It can be seen from the plots that the results of Orthogonal Matching Pursuit (OMP) with two non-zero coefficients is
a bit less biased than when keeping only one (the edges look less prominent). It is in addition closer from the ground
truth in Frobenius norm.

The result of Least Angle Regression is much more strongly biased: the difference is reminiscent of the local intensity
value of the original image.

Thresholding is clearly not useful for denoising, but it is here to show that it can produce a suggestive output with
very high speed, and thus be useful for other tasks such as object classification, where performance is not necessarily
related to visualisation.

•

954 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

•

6.10. Decomposition 955

scikit-learn user guide, Release 0.23.2

•

•

956 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

Out:

Distorting image...
Extracting reference patches...
done in 0.01s.
Learning the dictionary...
done in 3.34s.
Extracting noisy patches...
done in 0.00s.
Orthogonal Matching Pursuit
1 atom...
done in 0.88s.
Orthogonal Matching Pursuit
2 atoms...
done in 2.16s.
Least-angle regression
5 atoms...
done in 19.24s.
Thresholding
alpha=0.1...

done in 0.14s.

print(__doc__)

from time import time

import matplotlib.pyplot as plt
import numpy as np
import scipy as sp

(continues on next page)

6.10. Decomposition 957

scikit-learn user guide, Release 0.23.2

(continued from previous page)

from sklearn.decomposition import MiniBatchDictionaryLearning
from sklearn.feature_extraction.image import extract_patches_2d
from sklearn.feature_extraction.image import reconstruct_from_patches_2d

try: # SciPy >= 0.16 have face in misc
from scipy.misc import face
face = face(gray=True)

except ImportError:
face = sp.face(gray=True)

Convert from uint8 representation with values between 0 and 255 to
a floating point representation with values between 0 and 1.
face = face / 255.

downsample for higher speed
face = face[::4, ::4] + face[1::4, ::4] + face[::4, 1::4] + face[1::4, 1::4]
face /= 4.0
height, width = face.shape

Distort the right half of the image
print('Distorting image...')
distorted = face.copy()
distorted[:, width // 2:] += 0.075 * np.random.randn(height, width // 2)

Extract all reference patches from the left half of the image
print('Extracting reference patches...')
t0 = time()
patch_size = (7, 7)
data = extract_patches_2d(distorted[:, :width // 2], patch_size)
data = data.reshape(data.shape[0], -1)
data -= np.mean(data, axis=0)
data /= np.std(data, axis=0)
print('done in %.2fs.' % (time() - t0))

###
Learn the dictionary from reference patches

print('Learning the dictionary...')
t0 = time()
dico = MiniBatchDictionaryLearning(n_components=100, alpha=1, n_iter=500)
V = dico.fit(data).components_
dt = time() - t0
print('done in %.2fs.' % dt)

plt.figure(figsize=(4.2, 4))
for i, comp in enumerate(V[:100]):

plt.subplot(10, 10, i + 1)
plt.imshow(comp.reshape(patch_size), cmap=plt.cm.gray_r,

interpolation='nearest')
plt.xticks(())
plt.yticks(())

plt.suptitle('Dictionary learned from face patches\n' +
'Train time %.1fs on %d patches' % (dt, len(data)),
fontsize=16)

plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23)

(continues on next page)

958 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

###
Display the distorted image

def show_with_diff(image, reference, title):
"""Helper function to display denoising"""
plt.figure(figsize=(5, 3.3))
plt.subplot(1, 2, 1)
plt.title('Image')
plt.imshow(image, vmin=0, vmax=1, cmap=plt.cm.gray,

interpolation='nearest')
plt.xticks(())
plt.yticks(())
plt.subplot(1, 2, 2)
difference = image - reference

plt.title('Difference (norm: %.2f)' % np.sqrt(np.sum(difference ** 2)))
plt.imshow(difference, vmin=-0.5, vmax=0.5, cmap=plt.cm.PuOr,

interpolation='nearest')
plt.xticks(())
plt.yticks(())
plt.suptitle(title, size=16)
plt.subplots_adjust(0.02, 0.02, 0.98, 0.79, 0.02, 0.2)

show_with_diff(distorted, face, 'Distorted image')

###
Extract noisy patches and reconstruct them using the dictionary

print('Extracting noisy patches... ')
t0 = time()
data = extract_patches_2d(distorted[:, width // 2:], patch_size)
data = data.reshape(data.shape[0], -1)
intercept = np.mean(data, axis=0)
data -= intercept
print('done in %.2fs.' % (time() - t0))

transform_algorithms = [
('Orthogonal Matching Pursuit\n1 atom', 'omp',
{'transform_n_nonzero_coefs': 1}),

('Orthogonal Matching Pursuit\n2 atoms', 'omp',
{'transform_n_nonzero_coefs': 2}),

('Least-angle regression\n5 atoms', 'lars',
{'transform_n_nonzero_coefs': 5}),

('Thresholding\n alpha=0.1', 'threshold', {'transform_alpha': .1})]

reconstructions = {}
for title, transform_algorithm, kwargs in transform_algorithms:

print(title + '...')
reconstructions[title] = face.copy()
t0 = time()
dico.set_params(transform_algorithm=transform_algorithm, **kwargs)
code = dico.transform(data)
patches = np.dot(code, V)

patches += intercept
patches = patches.reshape(len(data), *patch_size)

(continues on next page)

6.10. Decomposition 959

scikit-learn user guide, Release 0.23.2

(continued from previous page)

if transform_algorithm == 'threshold':
patches -= patches.min()
patches /= patches.max()

reconstructions[title][:, width // 2:] = reconstruct_from_patches_2d(
patches, (height, width // 2))

dt = time() - t0
print('done in %.2fs.' % dt)
show_with_diff(reconstructions[title], face,

title + ' (time: %.1fs)' % dt)

plt.show()

Total running time of the script: (0 minutes 28.114 seconds)

6.10.12 Faces dataset decompositions

This example applies to The Olivetti faces dataset different unsupervised matrix decomposition (dimension reduction)
methods from the module sklearn.decomposition (see the documentation chapter Decomposing signals in
components (matrix factorization problems)) .

•

960 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

6.10. Decomposition 961

scikit-learn user guide, Release 0.23.2

•

962 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

6.10. Decomposition 963

scikit-learn user guide, Release 0.23.2

•

964 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

6.10. Decomposition 965

scikit-learn user guide, Release 0.23.2

•

•

966 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

6.10. Decomposition 967

scikit-learn user guide, Release 0.23.2

•

968 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

6.10. Decomposition 969

scikit-learn user guide, Release 0.23.2

•

970 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

6.10. Decomposition 971

scikit-learn user guide, Release 0.23.2

•

Out:

Dataset consists of 400 faces
Extracting the top 6 Eigenfaces - PCA using randomized SVD...
done in 0.021s
Extracting the top 6 Non-negative components - NMF...
done in 0.088s
Extracting the top 6 Independent components - FastICA...
/home/circleci/project/sklearn/decomposition/_fastica.py:118: ConvergenceWarning:
→˓FastICA did not converge. Consider increasing tolerance or the maximum number of
→˓iterations.
warnings.warn('FastICA did not converge. Consider increasing '

done in 0.146s
Extracting the top 6 Sparse comp. - MiniBatchSparsePCA...
done in 0.769s
Extracting the top 6 MiniBatchDictionaryLearning...
done in 0.517s
Extracting the top 6 Cluster centers - MiniBatchKMeans...
done in 0.079s
Extracting the top 6 Factor Analysis components - FA...
done in 0.181s
Extracting the top 6 Dictionary learning...
done in 0.492s
Extracting the top 6 Dictionary learning - positive dictionary...
done in 0.498s
Extracting the top 6 Dictionary learning - positive code...
done in 0.130s
Extracting the top 6 Dictionary learning - positive dictionary & code...

(continues on next page)

972 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

done in 0.194s

print(__doc__)

Authors: Vlad Niculae, Alexandre Gramfort
License: BSD 3 clause

import logging
from time import time

from numpy.random import RandomState
import matplotlib.pyplot as plt

from sklearn.datasets import fetch_olivetti_faces
from sklearn.cluster import MiniBatchKMeans
from sklearn import decomposition

Display progress logs on stdout
logging.basicConfig(level=logging.INFO,

format='%(asctime)s %(levelname)s %(message)s')
n_row, n_col = 2, 3
n_components = n_row * n_col
image_shape = (64, 64)
rng = RandomState(0)

###
Load faces data
faces, _ = fetch_olivetti_faces(return_X_y=True, shuffle=True,

random_state=rng)
n_samples, n_features = faces.shape

global centering
faces_centered = faces - faces.mean(axis=0)

local centering
faces_centered -= faces_centered.mean(axis=1).reshape(n_samples, -1)

print("Dataset consists of %d faces" % n_samples)

def plot_gallery(title, images, n_col=n_col, n_row=n_row, cmap=plt.cm.gray):
plt.figure(figsize=(2. * n_col, 2.26 * n_row))
plt.suptitle(title, size=16)
for i, comp in enumerate(images):

plt.subplot(n_row, n_col, i + 1)
vmax = max(comp.max(), -comp.min())
plt.imshow(comp.reshape(image_shape), cmap=cmap,

interpolation='nearest',
vmin=-vmax, vmax=vmax)

plt.xticks(())
plt.yticks(())

(continues on next page)

6.10. Decomposition 973

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.subplots_adjust(0.01, 0.05, 0.99, 0.93, 0.04, 0.)

###
List of the different estimators, whether to center and transpose the
problem, and whether the transformer uses the clustering API.
estimators = [

('Eigenfaces - PCA using randomized SVD',
decomposition.PCA(n_components=n_components, svd_solver='randomized',

whiten=True),
True),

('Non-negative components - NMF',
decomposition.NMF(n_components=n_components, init='nndsvda', tol=5e-3),
False),

('Independent components - FastICA',
decomposition.FastICA(n_components=n_components, whiten=True),
True),

('Sparse comp. - MiniBatchSparsePCA',
decomposition.MiniBatchSparsePCA(n_components=n_components, alpha=0.8,

n_iter=100, batch_size=3,
random_state=rng),

True),

('MiniBatchDictionaryLearning',
decomposition.MiniBatchDictionaryLearning(n_components=15, alpha=0.1,

n_iter=50, batch_size=3,
random_state=rng),

True),

('Cluster centers - MiniBatchKMeans',
MiniBatchKMeans(n_clusters=n_components, tol=1e-3, batch_size=20,

max_iter=50, random_state=rng),
True),

('Factor Analysis components - FA',
decomposition.FactorAnalysis(n_components=n_components, max_iter=20),
True),

]

###
Plot a sample of the input data

plot_gallery("First centered Olivetti faces", faces_centered[:n_components])

###
Do the estimation and plot it

for name, estimator, center in estimators:
print("Extracting the top %d %s..." % (n_components, name))
t0 = time()
data = faces
if center:

data = faces_centered
estimator.fit(data)

(continues on next page)

974 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

train_time = (time() - t0)
print("done in %0.3fs" % train_time)
if hasattr(estimator, 'cluster_centers_'):

components_ = estimator.cluster_centers_
else:

components_ = estimator.components_

Plot an image representing the pixelwise variance provided by the
estimator e.g its noise_variance_ attribute. The Eigenfaces estimator,
via the PCA decomposition, also provides a scalar noise_variance_
(the mean of pixelwise variance) that cannot be displayed as an image
so we skip it.
if (hasattr(estimator, 'noise_variance_') and

estimator.noise_variance_.ndim > 0): # Skip the Eigenfaces case
plot_gallery("Pixelwise variance",

estimator.noise_variance_.reshape(1, -1), n_col=1,
n_row=1)

plot_gallery('%s - Train time %.1fs' % (name, train_time),
components_[:n_components])

plt.show()

###
Various positivity constraints applied to dictionary learning.
estimators = [

('Dictionary learning',
decomposition.MiniBatchDictionaryLearning(n_components=15, alpha=0.1,

n_iter=50, batch_size=3,
random_state=rng),

True),
('Dictionary learning - positive dictionary',

decomposition.MiniBatchDictionaryLearning(n_components=15, alpha=0.1,
n_iter=50, batch_size=3,
random_state=rng,
positive_dict=True),

True),
('Dictionary learning - positive code',

decomposition.MiniBatchDictionaryLearning(n_components=15, alpha=0.1,
n_iter=50, batch_size=3,
fit_algorithm='cd',
random_state=rng,
positive_code=True),

True),
('Dictionary learning - positive dictionary & code',

decomposition.MiniBatchDictionaryLearning(n_components=15, alpha=0.1,
n_iter=50, batch_size=3,
fit_algorithm='cd',
random_state=rng,
positive_dict=True,
positive_code=True),

True),
]

###
Plot a sample of the input data

(continues on next page)

6.10. Decomposition 975

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plot_gallery("First centered Olivetti faces", faces_centered[:n_components],
cmap=plt.cm.RdBu)

###
Do the estimation and plot it

for name, estimator, center in estimators:
print("Extracting the top %d %s..." % (n_components, name))
t0 = time()
data = faces
if center:

data = faces_centered
estimator.fit(data)
train_time = (time() - t0)
print("done in %0.3fs" % train_time)
components_ = estimator.components_
plot_gallery(name, components_[:n_components], cmap=plt.cm.RdBu)

plt.show()

Total running time of the script: (0 minutes 4.746 seconds)

6.11 Ensemble methods

Examples concerning the sklearn.ensemble module.

6.11.1 Pixel importances with a parallel forest of trees

This example shows the use of forests of trees to evaluate the impurity-based importance of the pixels in an image
classification task (faces). The hotter the pixel, the more important.

The code below also illustrates how the construction and the computation of the predictions can be parallelized within
multiple jobs.

976 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Out:

Fitting ExtraTreesClassifier on faces data with 1 cores...
done in 1.038s

print(__doc__)

from time import time
import matplotlib.pyplot as plt

from sklearn.datasets import fetch_olivetti_faces
from sklearn.ensemble import ExtraTreesClassifier

Number of cores to use to perform parallel fitting of the forest model
n_jobs = 1

Load the faces dataset
data = fetch_olivetti_faces()
X, y = data.data, data.target

(continues on next page)

6.11. Ensemble methods 977

scikit-learn user guide, Release 0.23.2

(continued from previous page)

mask = y < 5 # Limit to 5 classes
X = X[mask]
y = y[mask]

Build a forest and compute the pixel importances
print("Fitting ExtraTreesClassifier on faces data with %d cores..." % n_jobs)
t0 = time()
forest = ExtraTreesClassifier(n_estimators=1000,

max_features=128,
n_jobs=n_jobs,
random_state=0)

forest.fit(X, y)
print("done in %0.3fs" % (time() - t0))
importances = forest.feature_importances_
importances = importances.reshape(data.images[0].shape)

Plot pixel importances
plt.matshow(importances, cmap=plt.cm.hot)
plt.title("Pixel importances with forests of trees")
plt.show()

Total running time of the script: (0 minutes 1.440 seconds)

6.11.2 Decision Tree Regression with AdaBoost

A decision tree is boosted using the AdaBoost.R21 algorithm on a 1D sinusoidal dataset with a small amount of
Gaussian noise. 299 boosts (300 decision trees) is compared with a single decision tree regressor. As the number of
boosts is increased the regressor can fit more detail.

1

H. Drucker, “Improving Regressors using Boosting Techniques”, 1997.

978 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

print(__doc__)

Author: Noel Dawe <noel.dawe@gmail.com>
#
License: BSD 3 clause

importing necessary libraries
import numpy as np
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import AdaBoostRegressor

Create the dataset
rng = np.random.RandomState(1)
X = np.linspace(0, 6, 100)[:, np.newaxis]
y = np.sin(X).ravel() + np.sin(6 * X).ravel() + rng.normal(0, 0.1, X.shape[0])

Fit regression model
regr_1 = DecisionTreeRegressor(max_depth=4)

regr_2 = AdaBoostRegressor(DecisionTreeRegressor(max_depth=4),
n_estimators=300, random_state=rng)

regr_1.fit(X, y)
regr_2.fit(X, y)

(continues on next page)

6.11. Ensemble methods 979

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Predict
y_1 = regr_1.predict(X)
y_2 = regr_2.predict(X)

Plot the results
plt.figure()
plt.scatter(X, y, c="k", label="training samples")
plt.plot(X, y_1, c="g", label="n_estimators=1", linewidth=2)
plt.plot(X, y_2, c="r", label="n_estimators=300", linewidth=2)
plt.xlabel("data")
plt.ylabel("target")
plt.title("Boosted Decision Tree Regression")
plt.legend()
plt.show()

Total running time of the script: (0 minutes 0.396 seconds)

6.11.3 Plot individual and voting regression predictions

A voting regressor is an ensemble meta-estimator that fits several base regressors, each on the whole dataset. Then it
averages the individual predictions to form a final prediction. We will use three different regressors to predict the data:
GradientBoostingRegressor, RandomForestRegressor, and LinearRegression). Then the above
3 regressors will be used for the VotingRegressor.

Finally, we will plot the predictions made by all models for comparison.

We will work with the diabetes dataset which consists of 10 features collected from a cohort of diabetes patients. The
target is a quantitative measure of disease progression one year after baseline.

print(__doc__)

import matplotlib.pyplot as plt

from sklearn.datasets import load_diabetes
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import VotingRegressor

Training classifiers

First, we will load the diabetes dataset and initiate a gradient boosting regressor, a random forest regressor and a linear
regression. Next, we will use the 3 regressors to build the voting regressor:

X, y = load_diabetes(return_X_y=True)

Train classifiers
reg1 = GradientBoostingRegressor(random_state=1)
reg2 = RandomForestRegressor(random_state=1)
reg3 = LinearRegression()

reg1.fit(X, y)
reg2.fit(X, y)

(continues on next page)

980 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

reg3.fit(X, y)

ereg = VotingRegressor([('gb', reg1), ('rf', reg2), ('lr', reg3)])
ereg.fit(X, y)

Making predictions

Now we will use each of the regressors to make the 20 first predictions.

xt = X[:20]

pred1 = reg1.predict(xt)
pred2 = reg2.predict(xt)
pred3 = reg3.predict(xt)
pred4 = ereg.predict(xt)

Plot the results

Finally, we will visualize the 20 predictions. The red stars show the average prediction made by VotingRegressor.

plt.figure()
plt.plot(pred1, 'gd', label='GradientBoostingRegressor')
plt.plot(pred2, 'b^', label='RandomForestRegressor')
plt.plot(pred3, 'ys', label='LinearRegression')
plt.plot(pred4, 'r*', ms=10, label='VotingRegressor')

plt.tick_params(axis='x', which='both', bottom=False, top=False,
labelbottom=False)

plt.ylabel('predicted')
plt.xlabel('training samples')
plt.legend(loc="best")
plt.title('Regressor predictions and their average')

plt.show()

6.11. Ensemble methods 981

scikit-learn user guide, Release 0.23.2

Total running time of the script: (0 minutes 0.833 seconds)

6.11.4 Feature importances with forests of trees

This examples shows the use of forests of trees to evaluate the importance of features on an artificial classification
task. The red bars are the impurity-based feature importances of the forest, along with their inter-trees variability.

As expected, the plot suggests that 3 features are informative, while the remaining are not.

Warning: impurity-based feature importances can be misleading for high cardinality features (many unique values).
See sklearn.inspection.permutation_importance as an alternative.

982 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Out:

Feature ranking:
1. feature 1 (0.295902)
2. feature 2 (0.208351)
3. feature 0 (0.177632)
4. feature 3 (0.047121)
5. feature 6 (0.046303)
6. feature 8 (0.046013)
7. feature 7 (0.045575)
8. feature 4 (0.044614)
9. feature 9 (0.044577)
10. feature 5 (0.043912)

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets import make_classification

(continues on next page)

6.11. Ensemble methods 983

scikit-learn user guide, Release 0.23.2

(continued from previous page)

from sklearn.ensemble import ExtraTreesClassifier

Build a classification task using 3 informative features
X, y = make_classification(n_samples=1000,

n_features=10,
n_informative=3,
n_redundant=0,
n_repeated=0,
n_classes=2,
random_state=0,
shuffle=False)

Build a forest and compute the impurity-based feature importances
forest = ExtraTreesClassifier(n_estimators=250,

random_state=0)

forest.fit(X, y)
importances = forest.feature_importances_
std = np.std([tree.feature_importances_ for tree in forest.estimators_],

axis=0)
indices = np.argsort(importances)[::-1]

Print the feature ranking
print("Feature ranking:")

for f in range(X.shape[1]):
print("%d. feature %d (%f)" % (f + 1, indices[f], importances[indices[f]]))

Plot the impurity-based feature importances of the forest
plt.figure()
plt.title("Feature importances")
plt.bar(range(X.shape[1]), importances[indices],

color="r", yerr=std[indices], align="center")
plt.xticks(range(X.shape[1]), indices)
plt.xlim([-1, X.shape[1]])
plt.show()

Total running time of the script: (0 minutes 0.414 seconds)

6.11.5 Monotonic Constraints

This example illustrates the effect of monotonic constraints on a gradient boosting estimator.

We build an artificial dataset where the target value is in general positively correlated with the first feature (with some
random and non-random variations), and in general negatively correlated with the second feature.

By imposing a positive (increasing) or negative (decreasing) constraint on the features during the learning process, the
estimator is able to properly follow the general trend instead of being subject to the variations.

This example was inspired by the XGBoost documentation.

984 Chapter 6. Examples

https://xgboost.readthedocs.io/en/latest/tutorials/monotonic.html

scikit-learn user guide, Release 0.23.2

from sklearn.experimental import enable_hist_gradient_boosting # noqa
from sklearn.ensemble import HistGradientBoostingRegressor
from sklearn.inspection import plot_partial_dependence
import numpy as np
import matplotlib.pyplot as plt

print(__doc__)

rng = np.random.RandomState(0)

n_samples = 5000
f_0 = rng.rand(n_samples) # positive correlation with y
f_1 = rng.rand(n_samples) # negative correlation with y
X = np.c_[f_0, f_1]
noise = rng.normal(loc=0.0, scale=0.01, size=n_samples)
y = (5 * f_0 + np.sin(10 * np.pi * f_0) -

5 * f_1 - np.cos(10 * np.pi * f_1) +
noise)

fig, ax = plt.subplots()

Without any constraint
gbdt = HistGradientBoostingRegressor()

(continues on next page)

6.11. Ensemble methods 985

scikit-learn user guide, Release 0.23.2

(continued from previous page)

gbdt.fit(X, y)
disp = plot_partial_dependence(

gbdt, X, features=[0, 1],
line_kw={'linewidth': 4, 'label': 'unconstrained'},
ax=ax)

With positive and negative constraints
gbdt = HistGradientBoostingRegressor(monotonic_cst=[1, -1])
gbdt.fit(X, y)

plot_partial_dependence(
gbdt, X, features=[0, 1],
feature_names=('First feature\nPositive constraint',

'Second feature\nNegtive constraint'),
line_kw={'linewidth': 4, 'label': 'constrained'},
ax=disp.axes_)

for f_idx in (0, 1):
disp.axes_[0, f_idx].plot(X[:, f_idx], y, 'o', alpha=.3, zorder=-1)
disp.axes_[0, f_idx].set_ylim(-6, 6)

plt.legend()
fig.suptitle("Monotonic constraints illustration")

plt.show()

Total running time of the script: (0 minutes 0.757 seconds)

6.11.6 IsolationForest example

An example using sklearn.ensemble.IsolationForest for anomaly detection.

The IsolationForest ‘isolates’ observations by randomly selecting a feature and then randomly selecting a split value
between the maximum and minimum values of the selected feature.

Since recursive partitioning can be represented by a tree structure, the number of splittings required to isolate a sample
is equivalent to the path length from the root node to the terminating node.

This path length, averaged over a forest of such random trees, is a measure of normality and our decision function.

Random partitioning produces noticeable shorter paths for anomalies. Hence, when a forest of random trees collec-
tively produce shorter path lengths for particular samples, they are highly likely to be anomalies.

986 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import IsolationForest

rng = np.random.RandomState(42)

Generate train data
X = 0.3 * rng.randn(100, 2)
X_train = np.r_[X + 2, X - 2]
Generate some regular novel observations
X = 0.3 * rng.randn(20, 2)
X_test = np.r_[X + 2, X - 2]
Generate some abnormal novel observations
X_outliers = rng.uniform(low=-4, high=4, size=(20, 2))

fit the model
clf = IsolationForest(max_samples=100, random_state=rng)
clf.fit(X_train)
y_pred_train = clf.predict(X_train)
y_pred_test = clf.predict(X_test)
y_pred_outliers = clf.predict(X_outliers)

plot the line, the samples, and the nearest vectors to the plane

(continues on next page)

6.11. Ensemble methods 987

scikit-learn user guide, Release 0.23.2

(continued from previous page)

xx, yy = np.meshgrid(np.linspace(-5, 5, 50), np.linspace(-5, 5, 50))
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

plt.title("IsolationForest")
plt.contourf(xx, yy, Z, cmap=plt.cm.Blues_r)

b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c='white',
s=20, edgecolor='k')

b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c='green',
s=20, edgecolor='k')

c = plt.scatter(X_outliers[:, 0], X_outliers[:, 1], c='red',
s=20, edgecolor='k')

plt.axis('tight')
plt.xlim((-5, 5))
plt.ylim((-5, 5))
plt.legend([b1, b2, c],

["training observations",
"new regular observations", "new abnormal observations"],

loc="upper left")
plt.show()

Total running time of the script: (0 minutes 0.422 seconds)

6.11.7 Plot the decision boundaries of a VotingClassifier

Plot the decision boundaries of a VotingClassifier for two features of the Iris dataset.

Plot the class probabilities of the first sample in a toy dataset predicted by three different classifiers and averaged by
the VotingClassifier.

First, three exemplary classifiers are initialized (DecisionTreeClassifier, KNeighborsClassifier, and
SVC) and used to initialize a soft-voting VotingClassifier with weights [2, 1, 2], which means that the
predicted probabilities of the DecisionTreeClassifier and SVC each count 2 times as much as the weights of
the KNeighborsClassifier classifier when the averaged probability is calculated.

988 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

print(__doc__)

from itertools import product

import numpy as np
import matplotlib.pyplot as plt

from sklearn import datasets
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.ensemble import VotingClassifier

Loading some example data
iris = datasets.load_iris()
X = iris.data[:, [0, 2]]
y = iris.target

Training classifiers
clf1 = DecisionTreeClassifier(max_depth=4)
clf2 = KNeighborsClassifier(n_neighbors=7)
clf3 = SVC(gamma=.1, kernel='rbf', probability=True)
eclf = VotingClassifier(estimators=[('dt', clf1), ('knn', clf2),

(continues on next page)

6.11. Ensemble methods 989

scikit-learn user guide, Release 0.23.2

(continued from previous page)

('svc', clf3)],
voting='soft', weights=[2, 1, 2])

clf1.fit(X, y)
clf2.fit(X, y)
clf3.fit(X, y)
eclf.fit(X, y)

Plotting decision regions
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1),

np.arange(y_min, y_max, 0.1))

f, axarr = plt.subplots(2, 2, sharex='col', sharey='row', figsize=(10, 8))

for idx, clf, tt in zip(product([0, 1], [0, 1]),
[clf1, clf2, clf3, eclf],
['Decision Tree (depth=4)', 'KNN (k=7)',
'Kernel SVM', 'Soft Voting']):

Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

axarr[idx[0], idx[1]].contourf(xx, yy, Z, alpha=0.4)
axarr[idx[0], idx[1]].scatter(X[:, 0], X[:, 1], c=y,

s=20, edgecolor='k')
axarr[idx[0], idx[1]].set_title(tt)

plt.show()

Total running time of the script: (0 minutes 0.408 seconds)

6.11.8 Comparing random forests and the multi-output meta estimator

An example to compare multi-output regression with random forest and the multioutput.MultiOutputRegressor meta-
estimator.

This example illustrates the use of the multioutput.MultiOutputRegressor meta-estimator to perform multi-output re-
gression. A random forest regressor is used, which supports multi-output regression natively, so the results can be
compared.

The random forest regressor will only ever predict values within the range of observations or closer to zero for each of
the targets. As a result the predictions are biased towards the centre of the circle.

Using a single underlying feature the model learns both the x and y coordinate as output.

990 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

print(__doc__)

Author: Tim Head <betatim@gmail.com>
#
License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.multioutput import MultiOutputRegressor

Create a random dataset
rng = np.random.RandomState(1)
X = np.sort(200 * rng.rand(600, 1) - 100, axis=0)
y = np.array([np.pi * np.sin(X).ravel(), np.pi * np.cos(X).ravel()]).T
y += (0.5 - rng.rand(*y.shape))

X_train, X_test, y_train, y_test = train_test_split(
X, y, train_size=400, test_size=200, random_state=4)

max_depth = 30
regr_multirf = MultiOutputRegressor(RandomForestRegressor(n_estimators=100,

max_depth=max_depth,

(continues on next page)

6.11. Ensemble methods 991

scikit-learn user guide, Release 0.23.2

(continued from previous page)

random_state=0))
regr_multirf.fit(X_train, y_train)

regr_rf = RandomForestRegressor(n_estimators=100, max_depth=max_depth,
random_state=2)

regr_rf.fit(X_train, y_train)

Predict on new data
y_multirf = regr_multirf.predict(X_test)
y_rf = regr_rf.predict(X_test)

Plot the results
plt.figure()
s = 50
a = 0.4
plt.scatter(y_test[:, 0], y_test[:, 1], edgecolor='k',

c="navy", s=s, marker="s", alpha=a, label="Data")
plt.scatter(y_multirf[:, 0], y_multirf[:, 1], edgecolor='k',

c="cornflowerblue", s=s, alpha=a,
label="Multi RF score=%.2f" % regr_multirf.score(X_test, y_test))

plt.scatter(y_rf[:, 0], y_rf[:, 1], edgecolor='k',
c="c", s=s, marker="^", alpha=a,
label="RF score=%.2f" % regr_rf.score(X_test, y_test))

plt.xlim([-6, 6])
plt.ylim([-6, 6])
plt.xlabel("target 1")
plt.ylabel("target 2")
plt.title("Comparing random forests and the multi-output meta estimator")
plt.legend()
plt.show()

Total running time of the script: (0 minutes 0.559 seconds)

6.11.9 Prediction Intervals for Gradient Boosting Regression

This example shows how quantile regression can be used to create prediction intervals.

992 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

import numpy as np
import matplotlib.pyplot as plt

from sklearn.ensemble import GradientBoostingRegressor

np.random.seed(1)

def f(x):
"""The function to predict."""
return x * np.sin(x)

#--
First the noiseless case
X = np.atleast_2d(np.random.uniform(0, 10.0, size=100)).T
X = X.astype(np.float32)

Observations
y = f(X).ravel()

dy = 1.5 + 1.0 * np.random.random(y.shape)
noise = np.random.normal(0, dy)
y += noise
y = y.astype(np.float32)

(continues on next page)

6.11. Ensemble methods 993

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Mesh the input space for evaluations of the real function, the prediction and
its MSE
xx = np.atleast_2d(np.linspace(0, 10, 1000)).T
xx = xx.astype(np.float32)

alpha = 0.95

clf = GradientBoostingRegressor(loss='quantile', alpha=alpha,
n_estimators=250, max_depth=3,
learning_rate=.1, min_samples_leaf=9,
min_samples_split=9)

clf.fit(X, y)

Make the prediction on the meshed x-axis
y_upper = clf.predict(xx)

clf.set_params(alpha=1.0 - alpha)
clf.fit(X, y)

Make the prediction on the meshed x-axis
y_lower = clf.predict(xx)

clf.set_params(loss='ls')
clf.fit(X, y)

Make the prediction on the meshed x-axis
y_pred = clf.predict(xx)

Plot the function, the prediction and the 95% confidence interval based on
the MSE
fig = plt.figure()
plt.plot(xx, f(xx), 'g:', label=r'$f(x) = x\,\sin(x)$')
plt.plot(X, y, 'b.', markersize=10, label=u'Observations')
plt.plot(xx, y_pred, 'r-', label=u'Prediction')
plt.plot(xx, y_upper, 'k-')
plt.plot(xx, y_lower, 'k-')
plt.fill(np.concatenate([xx, xx[::-1]]),

np.concatenate([y_upper, y_lower[::-1]]),
alpha=.5, fc='b', ec='None', label='95% prediction interval')

plt.xlabel('x')
plt.ylabel('$f(x)$')
plt.ylim(-10, 20)
plt.legend(loc='upper left')
plt.show()

Total running time of the script: (0 minutes 0.452 seconds)

6.11.10 Gradient Boosting regularization

Illustration of the effect of different regularization strategies for Gradient Boosting. The example is taken from Hastie
et al 20091.

The loss function used is binomial deviance. Regularization via shrinkage (learning_rate < 1.0) improves
performance considerably. In combination with shrinkage, stochastic gradient boosting (subsample < 1.0) can

1 T. Hastie, R. Tibshirani and J. Friedman, “Elements of Statistical Learning Ed. 2”, Springer, 2009.

994 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

produce more accurate models by reducing the variance via bagging. Subsampling without shrinkage usually does
poorly. Another strategy to reduce the variance is by subsampling the features analogous to the random splits in
Random Forests (via the max_features parameter).

print(__doc__)

Author: Peter Prettenhofer <peter.prettenhofer@gmail.com>
#
License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn import ensemble
from sklearn import datasets

X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1)
X = X.astype(np.float32)

map labels from {-1, 1} to {0, 1}
labels, y = np.unique(y, return_inverse=True)

X_train, X_test = X[:2000], X[2000:]
y_train, y_test = y[:2000], y[2000:]

(continues on next page)

6.11. Ensemble methods 995

scikit-learn user guide, Release 0.23.2

(continued from previous page)

original_params = {'n_estimators': 1000, 'max_leaf_nodes': 4, 'max_depth': None,
→˓'random_state': 2,

'min_samples_split': 5}

plt.figure()

for label, color, setting in [('No shrinkage', 'orange',
{'learning_rate': 1.0, 'subsample': 1.0}),
('learning_rate=0.1', 'turquoise',
{'learning_rate': 0.1, 'subsample': 1.0}),
('subsample=0.5', 'blue',
{'learning_rate': 1.0, 'subsample': 0.5}),
('learning_rate=0.1, subsample=0.5', 'gray',
{'learning_rate': 0.1, 'subsample': 0.5}),
('learning_rate=0.1, max_features=2', 'magenta',
{'learning_rate': 0.1, 'max_features': 2})]:

params = dict(original_params)
params.update(setting)

clf = ensemble.GradientBoostingClassifier(**params)
clf.fit(X_train, y_train)

compute test set deviance
test_deviance = np.zeros((params['n_estimators'],), dtype=np.float64)

for i, y_pred in enumerate(clf.staged_decision_function(X_test)):
clf.loss_ assumes that y_test[i] in {0, 1}
test_deviance[i] = clf.loss_(y_test, y_pred)

plt.plot((np.arange(test_deviance.shape[0]) + 1)[::5], test_deviance[::5],
'-', color=color, label=label)

plt.legend(loc='upper left')
plt.xlabel('Boosting Iterations')
plt.ylabel('Test Set Deviance')

plt.show()

Total running time of the script: (0 minutes 22.921 seconds)

6.11.11 Plot class probabilities calculated by the VotingClassifier

Plot the class probabilities of the first sample in a toy dataset predicted by three different classifiers and averaged by
the VotingClassifier.

First, three examplary classifiers are initialized (LogisticRegression, GaussianNB, and
RandomForestClassifier) and used to initialize a soft-voting VotingClassifier with weights [1, 1,
5], which means that the predicted probabilities of the RandomForestClassifier count 5 times as much as the
weights of the other classifiers when the averaged probability is calculated.

To visualize the probability weighting, we fit each classifier on the training set and plot the predicted class probabilities
for the first sample in this example dataset.

996 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import VotingClassifier

clf1 = LogisticRegression(max_iter=1000, random_state=123)
clf2 = RandomForestClassifier(n_estimators=100, random_state=123)
clf3 = GaussianNB()
X = np.array([[-1.0, -1.0], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]])
y = np.array([1, 1, 2, 2])

eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)],
voting='soft',
weights=[1, 1, 5])

predict class probabilities for all classifiers
probas = [c.fit(X, y).predict_proba(X) for c in (clf1, clf2, clf3, eclf)]

get class probabilities for the first sample in the dataset
class1_1 = [pr[0, 0] for pr in probas]

(continues on next page)

6.11. Ensemble methods 997

scikit-learn user guide, Release 0.23.2

(continued from previous page)

class2_1 = [pr[0, 1] for pr in probas]

plotting

N = 4 # number of groups
ind = np.arange(N) # group positions
width = 0.35 # bar width

fig, ax = plt.subplots()

bars for classifier 1-3
p1 = ax.bar(ind, np.hstack(([class1_1[:-1], [0]])), width,

color='green', edgecolor='k')
p2 = ax.bar(ind + width, np.hstack(([class2_1[:-1], [0]])), width,

color='lightgreen', edgecolor='k')

bars for VotingClassifier
p3 = ax.bar(ind, [0, 0, 0, class1_1[-1]], width,

color='blue', edgecolor='k')
p4 = ax.bar(ind + width, [0, 0, 0, class2_1[-1]], width,

color='steelblue', edgecolor='k')

plot annotations
plt.axvline(2.8, color='k', linestyle='dashed')
ax.set_xticks(ind + width)
ax.set_xticklabels(['LogisticRegression\nweight 1',

'GaussianNB\nweight 1',
'RandomForestClassifier\nweight 5',
'VotingClassifier\n(average probabilities)'],
rotation=40,
ha='right')

plt.ylim([0, 1])
plt.title('Class probabilities for sample 1 by different classifiers')
plt.legend([p1[0], p2[0]], ['class 1', 'class 2'], loc='upper left')
plt.tight_layout()
plt.show()

Total running time of the script: (0 minutes 0.308 seconds)

6.11.12 Gradient Boosting regression

This example demonstrates Gradient Boosting to produce a predictive model from an ensemble of weak predictive
models. Gradient boosting can be used for regression and classification problems. Here, we will train a model to
tackle a diabetes regression task. We will obtain the results from GradientBoostingRegressor with least
squares loss and 500 regression trees of depth 4.

Note: For larger datasets (n_samples >= 10000), please refer to sklearn.ensemble.
HistGradientBoostingRegressor.

print(__doc__)

Author: Peter Prettenhofer <peter.prettenhofer@gmail.com>
Maria Telenczuk <https://github.com/maikia>
Katrina Ni <https://github.com/nilichen>

(continues on next page)

998 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

#
License: BSD 3 clause

import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, ensemble
from sklearn.inspection import permutation_importance
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split

Load the data

First we need to load the data.

diabetes = datasets.load_diabetes()
X, y = diabetes.data, diabetes.target

Data preprocessing

Next, we will split our dataset to use 90% for training and leave the rest for testing. We will also set the regression
model parameters. You can play with these parameters to see how the results change.

n_estimators : the number of boosting stages that will be performed. Later, we will plot deviance against boosting
iterations.

max_depth : limits the number of nodes in the tree. The best value depends on the interaction of the input variables.

min_samples_split : the minimum number of samples required to split an internal node.

learning_rate : how much the contribution of each tree will shrink.

loss : loss function to optimize. The least squares function is used in this case however, there are many other options
(see GradientBoostingRegressor).

X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.1, random_state=13)

params = {'n_estimators': 500,
'max_depth': 4,
'min_samples_split': 5,
'learning_rate': 0.01,
'loss': 'ls'}

Fit regression model

Now we will initiate the gradient boosting regressors and fit it with our training data. Let’s also look and the mean
squared error on the test data.

reg = ensemble.GradientBoostingRegressor(**params)
reg.fit(X_train, y_train)

mse = mean_squared_error(y_test, reg.predict(X_test))
print("The mean squared error (MSE) on test set: {:.4f}".format(mse))

6.11. Ensemble methods 999

scikit-learn user guide, Release 0.23.2

Out:

The mean squared error (MSE) on test set: 3017.9419

Plot training deviance

Finally, we will visualize the results. To do that we will first compute the test set deviance and then plot it against
boosting iterations.

test_score = np.zeros((params['n_estimators'],), dtype=np.float64)
for i, y_pred in enumerate(reg.staged_predict(X_test)):

test_score[i] = reg.loss_(y_test, y_pred)

fig = plt.figure(figsize=(6, 6))
plt.subplot(1, 1, 1)
plt.title('Deviance')
plt.plot(np.arange(params['n_estimators']) + 1, reg.train_score_, 'b-',

label='Training Set Deviance')
plt.plot(np.arange(params['n_estimators']) + 1, test_score, 'r-',

label='Test Set Deviance')
plt.legend(loc='upper right')
plt.xlabel('Boosting Iterations')
plt.ylabel('Deviance')
fig.tight_layout()
plt.show()

1000 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Plot feature importance

Careful, impurity-based feature importances can be misleading for high cardinality features (many unique values). As
an alternative, the permutation importances of reg can be computed on a held out test set. See Permutation feature
importance for more details.

For this example, the impurity-based and permutation methods identify the same 2 strongly predictive features but not
in the same order. The third most predictive feature, “bp”, is also the same for the 2 methods. The remaining features
are less predictive and the error bars of the permutation plot show that they overlap with 0.

feature_importance = reg.feature_importances_
sorted_idx = np.argsort(feature_importance)
pos = np.arange(sorted_idx.shape[0]) + .5
fig = plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.barh(pos, feature_importance[sorted_idx], align='center')

(continues on next page)

6.11. Ensemble methods 1001

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.yticks(pos, np.array(diabetes.feature_names)[sorted_idx])
plt.title('Feature Importance (MDI)')

result = permutation_importance(reg, X_test, y_test, n_repeats=10,
random_state=42, n_jobs=2)

sorted_idx = result.importances_mean.argsort()
plt.subplot(1, 2, 2)
plt.boxplot(result.importances[sorted_idx].T,

vert=False, labels=np.array(diabetes.feature_names)[sorted_idx])
plt.title("Permutation Importance (test set)")
fig.tight_layout()
plt.show()

Total running time of the script: (0 minutes 1.678 seconds)

6.11.13 OOB Errors for Random Forests

The RandomForestClassifier is trained using bootstrap aggregation, where each new tree is fit from a boot-
strap sample of the training observations 𝑧𝑖 = (𝑥𝑖, 𝑦𝑖). The out-of-bag (OOB) error is the average error for each 𝑧𝑖
calculated using predictions from the trees that do not contain 𝑧𝑖 in their respective bootstrap sample. This allows the
RandomForestClassifier to be fit and validated whilst being trained1.

The example below demonstrates how the OOB error can be measured at the addition of each new tree during train-
ing. The resulting plot allows a practitioner to approximate a suitable value of n_estimators at which the error
stabilizes.

1 T. Hastie, R. Tibshirani and J. Friedman, “Elements of Statistical Learning Ed. 2”, p592-593, Springer, 2009.

1002 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

import matplotlib.pyplot as plt

from collections import OrderedDict
from sklearn.datasets import make_classification
from sklearn.ensemble import RandomForestClassifier

Author: Kian Ho <hui.kian.ho@gmail.com>
Gilles Louppe <g.louppe@gmail.com>
Andreas Mueller <amueller@ais.uni-bonn.de>
#
License: BSD 3 Clause

print(__doc__)

RANDOM_STATE = 123

Generate a binary classification dataset.
X, y = make_classification(n_samples=500, n_features=25,

n_clusters_per_class=1, n_informative=15,
random_state=RANDOM_STATE)

NOTE: Setting the `warm_start` construction parameter to `True` disables
support for parallelized ensembles but is necessary for tracking the OOB
error trajectory during training.
ensemble_clfs = [

(continues on next page)

6.11. Ensemble methods 1003

scikit-learn user guide, Release 0.23.2

(continued from previous page)

("RandomForestClassifier, max_features='sqrt'",
RandomForestClassifier(warm_start=True, oob_score=True,

max_features="sqrt",
random_state=RANDOM_STATE)),

("RandomForestClassifier, max_features='log2'",
RandomForestClassifier(warm_start=True, max_features='log2',

oob_score=True,
random_state=RANDOM_STATE)),

("RandomForestClassifier, max_features=None",
RandomForestClassifier(warm_start=True, max_features=None,

oob_score=True,
random_state=RANDOM_STATE))

]

Map a classifier name to a list of (<n_estimators>, <error rate>) pairs.
error_rate = OrderedDict((label, []) for label, _ in ensemble_clfs)

Range of `n_estimators` values to explore.
min_estimators = 15
max_estimators = 175

for label, clf in ensemble_clfs:
for i in range(min_estimators, max_estimators + 1):

clf.set_params(n_estimators=i)
clf.fit(X, y)

Record the OOB error for each `n_estimators=i` setting.
oob_error = 1 - clf.oob_score_
error_rate[label].append((i, oob_error))

Generate the "OOB error rate" vs. "n_estimators" plot.
for label, clf_err in error_rate.items():

xs, ys = zip(*clf_err)
plt.plot(xs, ys, label=label)

plt.xlim(min_estimators, max_estimators)
plt.xlabel("n_estimators")
plt.ylabel("OOB error rate")
plt.legend(loc="upper right")
plt.show()

Total running time of the script: (0 minutes 14.974 seconds)

6.11.14 Two-class AdaBoost

This example fits an AdaBoosted decision stump on a non-linearly separable classification dataset composed of two
“Gaussian quantiles” clusters (see sklearn.datasets.make_gaussian_quantiles) and plots the decision
boundary and decision scores. The distributions of decision scores are shown separately for samples of class A and B.
The predicted class label for each sample is determined by the sign of the decision score. Samples with decision scores
greater than zero are classified as B, and are otherwise classified as A. The magnitude of a decision score determines
the degree of likeness with the predicted class label. Additionally, a new dataset could be constructed containing a
desired purity of class B, for example, by only selecting samples with a decision score above some value.

1004 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

print(__doc__)

Author: Noel Dawe <noel.dawe@gmail.com>
#
License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import make_gaussian_quantiles

Construct dataset
X1, y1 = make_gaussian_quantiles(cov=2.,

n_samples=200, n_features=2,
n_classes=2, random_state=1)

X2, y2 = make_gaussian_quantiles(mean=(3, 3), cov=1.5,
n_samples=300, n_features=2,
n_classes=2, random_state=1)

X = np.concatenate((X1, X2))
y = np.concatenate((y1, - y2 + 1))

Create and fit an AdaBoosted decision tree
bdt = AdaBoostClassifier(DecisionTreeClassifier(max_depth=1),

algorithm="SAMME",
n_estimators=200)

bdt.fit(X, y)

plot_colors = "br"
plot_step = 0.02
class_names = "AB"

plt.figure(figsize=(10, 5))
(continues on next page)

6.11. Ensemble methods 1005

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Plot the decision boundaries
plt.subplot(121)
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step),

np.arange(y_min, y_max, plot_step))

Z = bdt.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired)
plt.axis("tight")

Plot the training points
for i, n, c in zip(range(2), class_names, plot_colors):

idx = np.where(y == i)
plt.scatter(X[idx, 0], X[idx, 1],

c=c, cmap=plt.cm.Paired,
s=20, edgecolor='k',
label="Class %s" % n)

plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.legend(loc='upper right')
plt.xlabel('x')
plt.ylabel('y')
plt.title('Decision Boundary')

Plot the two-class decision scores
twoclass_output = bdt.decision_function(X)
plot_range = (twoclass_output.min(), twoclass_output.max())
plt.subplot(122)
for i, n, c in zip(range(2), class_names, plot_colors):

plt.hist(twoclass_output[y == i],
bins=10,
range=plot_range,
facecolor=c,
label='Class %s' % n,
alpha=.5,
edgecolor='k')

x1, x2, y1, y2 = plt.axis()
plt.axis((x1, x2, y1, y2 * 1.2))
plt.legend(loc='upper right')
plt.ylabel('Samples')
plt.xlabel('Score')
plt.title('Decision Scores')

plt.tight_layout()
plt.subplots_adjust(wspace=0.35)
plt.show()

Total running time of the script: (0 minutes 2.023 seconds)

6.11.15 Hashing feature transformation using Totally Random Trees

RandomTreesEmbedding provides a way to map data to a very high-dimensional, sparse representation, which might
be beneficial for classification. The mapping is completely unsupervised and very efficient.

1006 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

This example visualizes the partitions given by several trees and shows how the transformation can also be used for
non-linear dimensionality reduction or non-linear classification.

Points that are neighboring often share the same leaf of a tree and therefore share large parts of their hashed repre-
sentation. This allows to separate two concentric circles simply based on the principal components of the transformed
data with truncated SVD.

In high-dimensional spaces, linear classifiers often achieve excellent accuracy. For sparse binary data, BernoulliNB is
particularly well-suited. The bottom row compares the decision boundary obtained by BernoulliNB in the transformed
space with an ExtraTreesClassifier forests learned on the original data.

import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets import make_circles
from sklearn.ensemble import RandomTreesEmbedding, ExtraTreesClassifier
from sklearn.decomposition import TruncatedSVD
from sklearn.naive_bayes import BernoulliNB

(continues on next page)

6.11. Ensemble methods 1007

scikit-learn user guide, Release 0.23.2

(continued from previous page)

make a synthetic dataset
X, y = make_circles(factor=0.5, random_state=0, noise=0.05)

use RandomTreesEmbedding to transform data
hasher = RandomTreesEmbedding(n_estimators=10, random_state=0, max_depth=3)
X_transformed = hasher.fit_transform(X)

Visualize result after dimensionality reduction using truncated SVD
svd = TruncatedSVD(n_components=2)
X_reduced = svd.fit_transform(X_transformed)

Learn a Naive Bayes classifier on the transformed data
nb = BernoulliNB()
nb.fit(X_transformed, y)

Learn an ExtraTreesClassifier for comparison
trees = ExtraTreesClassifier(max_depth=3, n_estimators=10, random_state=0)
trees.fit(X, y)

scatter plot of original and reduced data
fig = plt.figure(figsize=(9, 8))

ax = plt.subplot(221)
ax.scatter(X[:, 0], X[:, 1], c=y, s=50, edgecolor='k')
ax.set_title("Original Data (2d)")
ax.set_xticks(())
ax.set_yticks(())

ax = plt.subplot(222)
ax.scatter(X_reduced[:, 0], X_reduced[:, 1], c=y, s=50, edgecolor='k')
ax.set_title("Truncated SVD reduction (2d) of transformed data (%dd)" %

X_transformed.shape[1])
ax.set_xticks(())
ax.set_yticks(())

Plot the decision in original space. For that, we will assign a color
to each point in the mesh [x_min, x_max]x[y_min, y_max].
h = .01
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))

transform grid using RandomTreesEmbedding
transformed_grid = hasher.transform(np.c_[xx.ravel(), yy.ravel()])
y_grid_pred = nb.predict_proba(transformed_grid)[:, 1]

ax = plt.subplot(223)
ax.set_title("Naive Bayes on Transformed data")
ax.pcolormesh(xx, yy, y_grid_pred.reshape(xx.shape))
ax.scatter(X[:, 0], X[:, 1], c=y, s=50, edgecolor='k')
ax.set_ylim(-1.4, 1.4)
ax.set_xlim(-1.4, 1.4)
ax.set_xticks(())
ax.set_yticks(())

(continues on next page)

1008 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

transform grid using ExtraTreesClassifier
y_grid_pred = trees.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]

ax = plt.subplot(224)
ax.set_title("ExtraTrees predictions")
ax.pcolormesh(xx, yy, y_grid_pred.reshape(xx.shape))
ax.scatter(X[:, 0], X[:, 1], c=y, s=50, edgecolor='k')
ax.set_ylim(-1.4, 1.4)
ax.set_xlim(-1.4, 1.4)
ax.set_xticks(())
ax.set_yticks(())

plt.tight_layout()
plt.show()

Total running time of the script: (0 minutes 0.338 seconds)

6.11.16 Multi-class AdaBoosted Decision Trees

This example reproduces Figure 1 of Zhu et al1 and shows how boosting can improve prediction accuracy on a multi-
class problem. The classification dataset is constructed by taking a ten-dimensional standard normal distribution and
defining three classes separated by nested concentric ten-dimensional spheres such that roughly equal numbers of
samples are in each class (quantiles of the 𝜒2 distribution).

The performance of the SAMME and SAMME.R1 algorithms are compared. SAMME.R uses the probability estimates
to update the additive model, while SAMME uses the classifications only. As the example illustrates, the SAMME.R
algorithm typically converges faster than SAMME, achieving a lower test error with fewer boosting iterations. The
error of each algorithm on the test set after each boosting iteration is shown on the left, the classification error on the
test set of each tree is shown in the middle, and the boost weight of each tree is shown on the right. All trees have a
weight of one in the SAMME.R algorithm and therefore are not shown.

print(__doc__)

Author: Noel Dawe <noel.dawe@gmail.com>
#
License: BSD 3 clause

(continues on next page)

1

J. Zhu, H. Zou, S. Rosset, T. Hastie, “Multi-class AdaBoost”, 2009.

6.11. Ensemble methods 1009

scikit-learn user guide, Release 0.23.2

(continued from previous page)

import matplotlib.pyplot as plt

from sklearn.datasets import make_gaussian_quantiles
from sklearn.ensemble import AdaBoostClassifier
from sklearn.metrics import accuracy_score
from sklearn.tree import DecisionTreeClassifier

X, y = make_gaussian_quantiles(n_samples=13000, n_features=10,
n_classes=3, random_state=1)

n_split = 3000

X_train, X_test = X[:n_split], X[n_split:]
y_train, y_test = y[:n_split], y[n_split:]

bdt_real = AdaBoostClassifier(
DecisionTreeClassifier(max_depth=2),
n_estimators=600,
learning_rate=1)

bdt_discrete = AdaBoostClassifier(
DecisionTreeClassifier(max_depth=2),
n_estimators=600,
learning_rate=1.5,
algorithm="SAMME")

bdt_real.fit(X_train, y_train)
bdt_discrete.fit(X_train, y_train)

real_test_errors = []
discrete_test_errors = []

for real_test_predict, discrete_train_predict in zip(
bdt_real.staged_predict(X_test), bdt_discrete.staged_predict(X_test)):

real_test_errors.append(
1. - accuracy_score(real_test_predict, y_test))

discrete_test_errors.append(
1. - accuracy_score(discrete_train_predict, y_test))

n_trees_discrete = len(bdt_discrete)
n_trees_real = len(bdt_real)

Boosting might terminate early, but the following arrays are always
n_estimators long. We crop them to the actual number of trees here:
discrete_estimator_errors = bdt_discrete.estimator_errors_[:n_trees_discrete]
real_estimator_errors = bdt_real.estimator_errors_[:n_trees_real]
discrete_estimator_weights = bdt_discrete.estimator_weights_[:n_trees_discrete]

plt.figure(figsize=(15, 5))

plt.subplot(131)
plt.plot(range(1, n_trees_discrete + 1),

discrete_test_errors, c='black', label='SAMME')
plt.plot(range(1, n_trees_real + 1),

real_test_errors, c='black',
(continues on next page)

1010 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

linestyle='dashed', label='SAMME.R')
plt.legend()
plt.ylim(0.18, 0.62)
plt.ylabel('Test Error')
plt.xlabel('Number of Trees')

plt.subplot(132)
plt.plot(range(1, n_trees_discrete + 1), discrete_estimator_errors,

"b", label='SAMME', alpha=.5)
plt.plot(range(1, n_trees_real + 1), real_estimator_errors,

"r", label='SAMME.R', alpha=.5)
plt.legend()
plt.ylabel('Error')
plt.xlabel('Number of Trees')
plt.ylim((.2,

max(real_estimator_errors.max(),
discrete_estimator_errors.max()) * 1.2))

plt.xlim((-20, len(bdt_discrete) + 20))

plt.subplot(133)
plt.plot(range(1, n_trees_discrete + 1), discrete_estimator_weights,

"b", label='SAMME')
plt.legend()
plt.ylabel('Weight')
plt.xlabel('Number of Trees')
plt.ylim((0, discrete_estimator_weights.max() * 1.2))
plt.xlim((-20, n_trees_discrete + 20))

prevent overlapping y-axis labels
plt.subplots_adjust(wspace=0.25)
plt.show()

Total running time of the script: (0 minutes 11.633 seconds)

6.11.17 Discrete versus Real AdaBoost

This example is based on Figure 10.2 from Hastie et al 20091 and illustrates the difference in performance between
the discrete SAMME2 boosting algorithm and real SAMME.R boosting algorithm. Both algorithms are evaluated on
a binary classification task where the target Y is a non-linear function of 10 input features.

Discrete SAMME AdaBoost adapts based on errors in predicted class labels whereas real SAMME.R uses the pre-
dicted class probabilities.

1 T. Hastie, R. Tibshirani and J. Friedman, “Elements of Statistical Learning Ed. 2”, Springer, 2009.
2

J. Zhu, H. Zou, S. Rosset, T. Hastie, “Multi-class AdaBoost”, 2009.

6.11. Ensemble methods 1011

scikit-learn user guide, Release 0.23.2

print(__doc__)

Author: Peter Prettenhofer <peter.prettenhofer@gmail.com>,
Noel Dawe <noel.dawe@gmail.com>
#
License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn import datasets
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import zero_one_loss
from sklearn.ensemble import AdaBoostClassifier

n_estimators = 400
A learning rate of 1. may not be optimal for both SAMME and SAMME.R
learning_rate = 1.

X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1)

X_test, y_test = X[2000:], y[2000:]
X_train, y_train = X[:2000], y[:2000]

(continues on next page)

1012 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

dt_stump = DecisionTreeClassifier(max_depth=1, min_samples_leaf=1)
dt_stump.fit(X_train, y_train)
dt_stump_err = 1.0 - dt_stump.score(X_test, y_test)

dt = DecisionTreeClassifier(max_depth=9, min_samples_leaf=1)
dt.fit(X_train, y_train)
dt_err = 1.0 - dt.score(X_test, y_test)

ada_discrete = AdaBoostClassifier(
base_estimator=dt_stump,
learning_rate=learning_rate,
n_estimators=n_estimators,
algorithm="SAMME")

ada_discrete.fit(X_train, y_train)

ada_real = AdaBoostClassifier(
base_estimator=dt_stump,
learning_rate=learning_rate,
n_estimators=n_estimators,
algorithm="SAMME.R")

ada_real.fit(X_train, y_train)

fig = plt.figure()
ax = fig.add_subplot(111)

ax.plot([1, n_estimators], [dt_stump_err] * 2, 'k-',
label='Decision Stump Error')

ax.plot([1, n_estimators], [dt_err] * 2, 'k--',
label='Decision Tree Error')

ada_discrete_err = np.zeros((n_estimators,))
for i, y_pred in enumerate(ada_discrete.staged_predict(X_test)):

ada_discrete_err[i] = zero_one_loss(y_pred, y_test)

ada_discrete_err_train = np.zeros((n_estimators,))
for i, y_pred in enumerate(ada_discrete.staged_predict(X_train)):

ada_discrete_err_train[i] = zero_one_loss(y_pred, y_train)

ada_real_err = np.zeros((n_estimators,))
for i, y_pred in enumerate(ada_real.staged_predict(X_test)):

ada_real_err[i] = zero_one_loss(y_pred, y_test)

ada_real_err_train = np.zeros((n_estimators,))
for i, y_pred in enumerate(ada_real.staged_predict(X_train)):

ada_real_err_train[i] = zero_one_loss(y_pred, y_train)

ax.plot(np.arange(n_estimators) + 1, ada_discrete_err,
label='Discrete AdaBoost Test Error',
color='red')

ax.plot(np.arange(n_estimators) + 1, ada_discrete_err_train,
label='Discrete AdaBoost Train Error',
color='blue')

ax.plot(np.arange(n_estimators) + 1, ada_real_err,
label='Real AdaBoost Test Error',
color='orange')

ax.plot(np.arange(n_estimators) + 1, ada_real_err_train,
label='Real AdaBoost Train Error',

(continues on next page)

6.11. Ensemble methods 1013

scikit-learn user guide, Release 0.23.2

(continued from previous page)

color='green')

ax.set_ylim((0.0, 0.5))
ax.set_xlabel('n_estimators')
ax.set_ylabel('error rate')

leg = ax.legend(loc='upper right', fancybox=True)
leg.get_frame().set_alpha(0.7)

plt.show()

Total running time of the script: (0 minutes 4.872 seconds)

6.11.18 Early stopping of Gradient Boosting

Gradient boosting is an ensembling technique where several weak learners (regression trees) are combined to yield a
powerful single model, in an iterative fashion.

Early stopping support in Gradient Boosting enables us to find the least number of iterations which is sufficient to
build a model that generalizes well to unseen data.

The concept of early stopping is simple. We specify a validation_fraction which denotes the fraction of the
whole dataset that will be kept aside from training to assess the validation loss of the model. The gradient boosting
model is trained using the training set and evaluated using the validation set. When each additional stage of regression
tree is added, the validation set is used to score the model. This is continued until the scores of the model in the last
n_iter_no_change stages do not improve by atleast tol. After that the model is considered to have converged
and further addition of stages is “stopped early”.

The number of stages of the final model is available at the attribute n_estimators_.

This example illustrates how the early stopping can used in the sklearn.ensemble.
GradientBoostingClassifier model to achieve almost the same accuracy as compared to a model
built without early stopping using many fewer estimators. This can significantly reduce training time, memory usage
and prediction latency.

Authors: Vighnesh Birodkar <vighneshbirodkar@nyu.edu>
Raghav RV <rvraghav93@gmail.com>
License: BSD 3 clause

import time

import numpy as np
import matplotlib.pyplot as plt

from sklearn import ensemble
from sklearn import datasets
from sklearn.model_selection import train_test_split

print(__doc__)

data_list = [datasets.load_iris(), datasets.load_digits()]
data_list = [(d.data, d.target) for d in data_list]
data_list += [datasets.make_hastie_10_2()]
names = ['Iris Data', 'Digits Data', 'Hastie Data']

n_gb = []

(continues on next page)

1014 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

score_gb = []
time_gb = []
n_gbes = []
score_gbes = []
time_gbes = []

n_estimators = 500

for X, y in data_list:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

random_state=0)

We specify that if the scores don't improve by atleast 0.01 for the last
10 stages, stop fitting additional stages
gbes = ensemble.GradientBoostingClassifier(n_estimators=n_estimators,

validation_fraction=0.2,
n_iter_no_change=5, tol=0.01,
random_state=0)

gb = ensemble.GradientBoostingClassifier(n_estimators=n_estimators,
random_state=0)

start = time.time()
gb.fit(X_train, y_train)
time_gb.append(time.time() - start)

start = time.time()
gbes.fit(X_train, y_train)
time_gbes.append(time.time() - start)

score_gb.append(gb.score(X_test, y_test))
score_gbes.append(gbes.score(X_test, y_test))

n_gb.append(gb.n_estimators_)
n_gbes.append(gbes.n_estimators_)

bar_width = 0.2
n = len(data_list)
index = np.arange(0, n * bar_width, bar_width) * 2.5
index = index[0:n]

Compare scores with and without early stopping

plt.figure(figsize=(9, 5))

bar1 = plt.bar(index, score_gb, bar_width, label='Without early stopping',
color='crimson')

bar2 = plt.bar(index + bar_width, score_gbes, bar_width,
label='With early stopping', color='coral')

plt.xticks(index + bar_width, names)
plt.yticks(np.arange(0, 1.3, 0.1))

def autolabel(rects, n_estimators):
"""
Attach a text label above each bar displaying n_estimators of each model

(continues on next page)

6.11. Ensemble methods 1015

scikit-learn user guide, Release 0.23.2

(continued from previous page)

"""
for i, rect in enumerate(rects):

plt.text(rect.get_x() + rect.get_width() / 2.,
1.05 * rect.get_height(), 'n_est=%d' % n_estimators[i],
ha='center', va='bottom')

autolabel(bar1, n_gb)
autolabel(bar2, n_gbes)

plt.ylim([0, 1.3])
plt.legend(loc='best')
plt.grid(True)

plt.xlabel('Datasets')
plt.ylabel('Test score')

plt.show()

Compare fit times with and without early stopping

plt.figure(figsize=(9, 5))

bar1 = plt.bar(index, time_gb, bar_width, label='Without early stopping',
color='crimson')

bar2 = plt.bar(index + bar_width, time_gbes, bar_width,
label='With early stopping', color='coral')

max_y = np.amax(np.maximum(time_gb, time_gbes))

(continues on next page)

1016 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.xticks(index + bar_width, names)
plt.yticks(np.linspace(0, 1.3 * max_y, 13))

autolabel(bar1, n_gb)
autolabel(bar2, n_gbes)

plt.ylim([0, 1.3 * max_y])
plt.legend(loc='best')
plt.grid(True)

plt.xlabel('Datasets')
plt.ylabel('Fit Time')

plt.show()

Total running time of the script: (0 minutes 51.906 seconds)

6.11.19 Feature transformations with ensembles of trees

Transform your features into a higher dimensional, sparse space. Then train a linear model on these features.

First fit an ensemble of trees (totally random trees, a random forest, or gradient boosted trees) on the training set. Then
each leaf of each tree in the ensemble is assigned a fixed arbitrary feature index in a new feature space. These leaf
indices are then encoded in a one-hot fashion.

Each sample goes through the decisions of each tree of the ensemble and ends up in one leaf per tree. The sample is
encoded by setting feature values for these leaves to 1 and the other feature values to 0.

The resulting transformer has then learned a supervised, sparse, high-dimensional categorical embedding of the data.

6.11. Ensemble methods 1017

scikit-learn user guide, Release 0.23.2

•

1018 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

Author: Tim Head <betatim@gmail.com>
#
License: BSD 3 clause

import numpy as np
np.random.seed(10)

import matplotlib.pyplot as plt

from sklearn.datasets import make_classification
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import (RandomTreesEmbedding, RandomForestClassifier,

GradientBoostingClassifier)
from sklearn.preprocessing import OneHotEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_curve
from sklearn.pipeline import make_pipeline

n_estimator = 10
X, y = make_classification(n_samples=80000)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5)

It is important to train the ensemble of trees on a different subset
of the training data than the linear regression model to avoid
overfitting, in particular if the total number of leaves is
similar to the number of training samples
X_train, X_train_lr, y_train, y_train_lr = train_test_split(

(continues on next page)

6.11. Ensemble methods 1019

scikit-learn user guide, Release 0.23.2

(continued from previous page)

X_train, y_train, test_size=0.5)

Unsupervised transformation based on totally random trees
rt = RandomTreesEmbedding(max_depth=3, n_estimators=n_estimator,

random_state=0)

rt_lm = LogisticRegression(max_iter=1000)
pipeline = make_pipeline(rt, rt_lm)
pipeline.fit(X_train, y_train)
y_pred_rt = pipeline.predict_proba(X_test)[:, 1]
fpr_rt_lm, tpr_rt_lm, _ = roc_curve(y_test, y_pred_rt)

Supervised transformation based on random forests
rf = RandomForestClassifier(max_depth=3, n_estimators=n_estimator)
rf_enc = OneHotEncoder()
rf_lm = LogisticRegression(max_iter=1000)
rf.fit(X_train, y_train)
rf_enc.fit(rf.apply(X_train))
rf_lm.fit(rf_enc.transform(rf.apply(X_train_lr)), y_train_lr)

y_pred_rf_lm = rf_lm.predict_proba(rf_enc.transform(rf.apply(X_test)))[:, 1]
fpr_rf_lm, tpr_rf_lm, _ = roc_curve(y_test, y_pred_rf_lm)

Supervised transformation based on gradient boosted trees
grd = GradientBoostingClassifier(n_estimators=n_estimator)
grd_enc = OneHotEncoder()
grd_lm = LogisticRegression(max_iter=1000)
grd.fit(X_train, y_train)
grd_enc.fit(grd.apply(X_train)[:, :, 0])
grd_lm.fit(grd_enc.transform(grd.apply(X_train_lr)[:, :, 0]), y_train_lr)

y_pred_grd_lm = grd_lm.predict_proba(
grd_enc.transform(grd.apply(X_test)[:, :, 0]))[:, 1]

fpr_grd_lm, tpr_grd_lm, _ = roc_curve(y_test, y_pred_grd_lm)

The gradient boosted model by itself
y_pred_grd = grd.predict_proba(X_test)[:, 1]
fpr_grd, tpr_grd, _ = roc_curve(y_test, y_pred_grd)

The random forest model by itself
y_pred_rf = rf.predict_proba(X_test)[:, 1]
fpr_rf, tpr_rf, _ = roc_curve(y_test, y_pred_rf)

plt.figure(1)
plt.plot([0, 1], [0, 1], 'k--')
plt.plot(fpr_rt_lm, tpr_rt_lm, label='RT + LR')
plt.plot(fpr_rf, tpr_rf, label='RF')
plt.plot(fpr_rf_lm, tpr_rf_lm, label='RF + LR')
plt.plot(fpr_grd, tpr_grd, label='GBT')
plt.plot(fpr_grd_lm, tpr_grd_lm, label='GBT + LR')
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.title('ROC curve')
plt.legend(loc='best')
plt.show()

plt.figure(2)
(continues on next page)

1020 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.xlim(0, 0.2)
plt.ylim(0.8, 1)
plt.plot([0, 1], [0, 1], 'k--')
plt.plot(fpr_rt_lm, tpr_rt_lm, label='RT + LR')
plt.plot(fpr_rf, tpr_rf, label='RF')
plt.plot(fpr_rf_lm, tpr_rf_lm, label='RF + LR')
plt.plot(fpr_grd, tpr_grd, label='GBT')
plt.plot(fpr_grd_lm, tpr_grd_lm, label='GBT + LR')
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.title('ROC curve (zoomed in at top left)')
plt.legend(loc='best')
plt.show()

Total running time of the script: (0 minutes 2.901 seconds)

6.11.20 Gradient Boosting Out-of-Bag estimates

Out-of-bag (OOB) estimates can be a useful heuristic to estimate the “optimal” number of boosting iterations. OOB
estimates are almost identical to cross-validation estimates but they can be computed on-the-fly without the need for
repeated model fitting. OOB estimates are only available for Stochastic Gradient Boosting (i.e. subsample < 1.
0), the estimates are derived from the improvement in loss based on the examples not included in the bootstrap sample
(the so-called out-of-bag examples). The OOB estimator is a pessimistic estimator of the true test loss, but remains a
fairly good approximation for a small number of trees.

The figure shows the cumulative sum of the negative OOB improvements as a function of the boosting iteration. As
you can see, it tracks the test loss for the first hundred iterations but then diverges in a pessimistic way. The figure
also shows the performance of 3-fold cross validation which usually gives a better estimate of the test loss but is
computationally more demanding.

6.11. Ensemble methods 1021

scikit-learn user guide, Release 0.23.2

Out:

Accuracy: 0.6840

print(__doc__)

Author: Peter Prettenhofer <peter.prettenhofer@gmail.com>
#
License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn import ensemble
from sklearn.model_selection import KFold
from sklearn.model_selection import train_test_split

from scipy.special import expit

Generate data (adapted from G. Ridgeway's gbm example)

(continues on next page)

1022 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

n_samples = 1000
random_state = np.random.RandomState(13)
x1 = random_state.uniform(size=n_samples)
x2 = random_state.uniform(size=n_samples)
x3 = random_state.randint(0, 4, size=n_samples)

p = expit(np.sin(3 * x1) - 4 * x2 + x3)
y = random_state.binomial(1, p, size=n_samples)

X = np.c_[x1, x2, x3]

X = X.astype(np.float32)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5,

random_state=9)

Fit classifier with out-of-bag estimates
params = {'n_estimators': 1200, 'max_depth': 3, 'subsample': 0.5,

'learning_rate': 0.01, 'min_samples_leaf': 1, 'random_state': 3}
clf = ensemble.GradientBoostingClassifier(**params)

clf.fit(X_train, y_train)
acc = clf.score(X_test, y_test)
print("Accuracy: {:.4f}".format(acc))

n_estimators = params['n_estimators']
x = np.arange(n_estimators) + 1

def heldout_score(clf, X_test, y_test):
"""compute deviance scores on ``X_test`` and ``y_test``. """
score = np.zeros((n_estimators,), dtype=np.float64)
for i, y_pred in enumerate(clf.staged_decision_function(X_test)):

score[i] = clf.loss_(y_test, y_pred)
return score

def cv_estimate(n_splits=None):
cv = KFold(n_splits=n_splits)
cv_clf = ensemble.GradientBoostingClassifier(**params)
val_scores = np.zeros((n_estimators,), dtype=np.float64)
for train, test in cv.split(X_train, y_train):

cv_clf.fit(X_train[train], y_train[train])
val_scores += heldout_score(cv_clf, X_train[test], y_train[test])

val_scores /= n_splits
return val_scores

Estimate best n_estimator using cross-validation
cv_score = cv_estimate(3)

Compute best n_estimator for test data
test_score = heldout_score(clf, X_test, y_test)

negative cumulative sum of oob improvements
cumsum = -np.cumsum(clf.oob_improvement_)

min loss according to OOB
(continues on next page)

6.11. Ensemble methods 1023

scikit-learn user guide, Release 0.23.2

(continued from previous page)

oob_best_iter = x[np.argmin(cumsum)]

min loss according to test (normalize such that first loss is 0)
test_score -= test_score[0]
test_best_iter = x[np.argmin(test_score)]

min loss according to cv (normalize such that first loss is 0)
cv_score -= cv_score[0]
cv_best_iter = x[np.argmin(cv_score)]

color brew for the three curves
oob_color = list(map(lambda x: x / 256.0, (190, 174, 212)))
test_color = list(map(lambda x: x / 256.0, (127, 201, 127)))
cv_color = list(map(lambda x: x / 256.0, (253, 192, 134)))

plot curves and vertical lines for best iterations
plt.plot(x, cumsum, label='OOB loss', color=oob_color)
plt.plot(x, test_score, label='Test loss', color=test_color)
plt.plot(x, cv_score, label='CV loss', color=cv_color)
plt.axvline(x=oob_best_iter, color=oob_color)
plt.axvline(x=test_best_iter, color=test_color)
plt.axvline(x=cv_best_iter, color=cv_color)

add three vertical lines to xticks
xticks = plt.xticks()
xticks_pos = np.array(xticks[0].tolist() +

[oob_best_iter, cv_best_iter, test_best_iter])
xticks_label = np.array(list(map(lambda t: int(t), xticks[0])) +

['OOB', 'CV', 'Test'])
ind = np.argsort(xticks_pos)
xticks_pos = xticks_pos[ind]
xticks_label = xticks_label[ind]
plt.xticks(xticks_pos, xticks_label)

plt.legend(loc='upper right')
plt.ylabel('normalized loss')
plt.xlabel('number of iterations')

plt.show()

Total running time of the script: (0 minutes 3.149 seconds)

6.11.21 Single estimator versus bagging: bias-variance decomposition

This example illustrates and compares the bias-variance decomposition of the expected mean squared error of a single
estimator against a bagging ensemble.

In regression, the expected mean squared error of an estimator can be decomposed in terms of bias, variance and
noise. On average over datasets of the regression problem, the bias term measures the average amount by which the
predictions of the estimator differ from the predictions of the best possible estimator for the problem (i.e., the Bayes
model). The variance term measures the variability of the predictions of the estimator when fit over different instances
LS of the problem. Finally, the noise measures the irreducible part of the error which is due the variability in the data.

The upper left figure illustrates the predictions (in dark red) of a single decision tree trained over a random dataset LS
(the blue dots) of a toy 1d regression problem. It also illustrates the predictions (in light red) of other single decision
trees trained over other (and different) randomly drawn instances LS of the problem. Intuitively, the variance term

1024 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

here corresponds to the width of the beam of predictions (in light red) of the individual estimators. The larger the
variance, the more sensitive are the predictions for x to small changes in the training set. The bias term corresponds
to the difference between the average prediction of the estimator (in cyan) and the best possible model (in dark blue).
On this problem, we can thus observe that the bias is quite low (both the cyan and the blue curves are close to each
other) while the variance is large (the red beam is rather wide).

The lower left figure plots the pointwise decomposition of the expected mean squared error of a single decision tree.
It confirms that the bias term (in blue) is low while the variance is large (in green). It also illustrates the noise part of
the error which, as expected, appears to be constant and around 0.01.

The right figures correspond to the same plots but using instead a bagging ensemble of decision trees. In both figures,
we can observe that the bias term is larger than in the previous case. In the upper right figure, the difference between
the average prediction (in cyan) and the best possible model is larger (e.g., notice the offset around x=2). In the lower
right figure, the bias curve is also slightly higher than in the lower left figure. In terms of variance however, the beam
of predictions is narrower, which suggests that the variance is lower. Indeed, as the lower right figure confirms, the
variance term (in green) is lower than for single decision trees. Overall, the bias- variance decomposition is therefore
no longer the same. The tradeoff is better for bagging: averaging several decision trees fit on bootstrap copies of the
dataset slightly increases the bias term but allows for a larger reduction of the variance, which results in a lower overall
mean squared error (compare the red curves int the lower figures). The script output also confirms this intuition. The
total error of the bagging ensemble is lower than the total error of a single decision tree, and this difference indeed
mainly stems from a reduced variance.

For further details on bias-variance decomposition, see section 7.3 of1.

1 T. Hastie, R. Tibshirani and J. Friedman, “Elements of Statistical Learning”, Springer, 2009.

6.11. Ensemble methods 1025

scikit-learn user guide, Release 0.23.2

References

Out:

Tree: 0.0255 (error) = 0.0003 (bias^2) + 0.0152 (var) + 0.0098 (noise)
Bagging(Tree): 0.0196 (error) = 0.0004 (bias^2) + 0.0092 (var) + 0.0098 (noise)

print(__doc__)

Author: Gilles Louppe <g.louppe@gmail.com>
License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn.ensemble import BaggingRegressor
from sklearn.tree import DecisionTreeRegressor

(continues on next page)

1026 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Settings
n_repeat = 50 # Number of iterations for computing expectations
n_train = 50 # Size of the training set
n_test = 1000 # Size of the test set
noise = 0.1 # Standard deviation of the noise
np.random.seed(0)

Change this for exploring the bias-variance decomposition of other
estimators. This should work well for estimators with high variance (e.g.,
decision trees or KNN), but poorly for estimators with low variance (e.g.,
linear models).
estimators = [("Tree", DecisionTreeRegressor()),

("Bagging(Tree)", BaggingRegressor(DecisionTreeRegressor()))]

n_estimators = len(estimators)

Generate data
def f(x):

x = x.ravel()

return np.exp(-x ** 2) + 1.5 * np.exp(-(x - 2) ** 2)

def generate(n_samples, noise, n_repeat=1):
X = np.random.rand(n_samples) * 10 - 5
X = np.sort(X)

if n_repeat == 1:
y = f(X) + np.random.normal(0.0, noise, n_samples)

else:
y = np.zeros((n_samples, n_repeat))

for i in range(n_repeat):
y[:, i] = f(X) + np.random.normal(0.0, noise, n_samples)

X = X.reshape((n_samples, 1))

return X, y

X_train = []
y_train = []

for i in range(n_repeat):
X, y = generate(n_samples=n_train, noise=noise)
X_train.append(X)
y_train.append(y)

X_test, y_test = generate(n_samples=n_test, noise=noise, n_repeat=n_repeat)

plt.figure(figsize=(10, 8))

Loop over estimators to compare
for n, (name, estimator) in enumerate(estimators):

Compute predictions
(continues on next page)

6.11. Ensemble methods 1027

scikit-learn user guide, Release 0.23.2

(continued from previous page)

y_predict = np.zeros((n_test, n_repeat))

for i in range(n_repeat):
estimator.fit(X_train[i], y_train[i])
y_predict[:, i] = estimator.predict(X_test)

Bias^2 + Variance + Noise decomposition of the mean squared error
y_error = np.zeros(n_test)

for i in range(n_repeat):
for j in range(n_repeat):

y_error += (y_test[:, j] - y_predict[:, i]) ** 2

y_error /= (n_repeat * n_repeat)

y_noise = np.var(y_test, axis=1)
y_bias = (f(X_test) - np.mean(y_predict, axis=1)) ** 2
y_var = np.var(y_predict, axis=1)

print("{0}: {1:.4f} (error) = {2:.4f} (bias^2) "
" + {3:.4f} (var) + {4:.4f} (noise)".format(name,

np.mean(y_error),
np.mean(y_bias),
np.mean(y_var),
np.mean(y_noise)))

Plot figures
plt.subplot(2, n_estimators, n + 1)
plt.plot(X_test, f(X_test), "b", label="$f(x)$")
plt.plot(X_train[0], y_train[0], ".b", label="LS ~ $y = f(x)+noise$")

for i in range(n_repeat):
if i == 0:

plt.plot(X_test, y_predict[:, i], "r", label=r"$\^y(x)$")
else:

plt.plot(X_test, y_predict[:, i], "r", alpha=0.05)

plt.plot(X_test, np.mean(y_predict, axis=1), "c",
label=r"$\mathbb{E}_{LS} \^y(x)$")

plt.xlim([-5, 5])
plt.title(name)

if n == n_estimators - 1:
plt.legend(loc=(1.1, .5))

plt.subplot(2, n_estimators, n_estimators + n + 1)
plt.plot(X_test, y_error, "r", label="$error(x)$")
plt.plot(X_test, y_bias, "b", label="$bias^2(x)$"),
plt.plot(X_test, y_var, "g", label="$variance(x)$"),
plt.plot(X_test, y_noise, "c", label="$noise(x)$")

plt.xlim([-5, 5])
plt.ylim([0, 0.1])

if n == n_estimators - 1:

(continues on next page)

1028 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.legend(loc=(1.1, .5))

plt.subplots_adjust(right=.75)
plt.show()

Total running time of the script: (0 minutes 1.024 seconds)

6.11.22 Plot the decision surfaces of ensembles of trees on the iris dataset

Plot the decision surfaces of forests of randomized trees trained on pairs of features of the iris dataset.

This plot compares the decision surfaces learned by a decision tree classifier (first column), by a random forest classi-
fier (second column), by an extra- trees classifier (third column) and by an AdaBoost classifier (fourth column).

In the first row, the classifiers are built using the sepal width and the sepal length features only, on the second row
using the petal length and sepal length only, and on the third row using the petal width and the petal length only.

In descending order of quality, when trained (outside of this example) on all 4 features using 30 estimators and scored
using 10 fold cross validation, we see:

ExtraTreesClassifier() # 0.95 score
RandomForestClassifier() # 0.94 score
AdaBoost(DecisionTree(max_depth=3)) # 0.94 score
DecisionTree(max_depth=None) # 0.94 score

Increasing max_depth for AdaBoost lowers the standard deviation of the scores (but the average score does not
improve).

See the console’s output for further details about each model.

In this example you might try to:

1) vary the max_depth for the DecisionTreeClassifier and AdaBoostClassifier,
perhaps try max_depth=3 for the DecisionTreeClassifier or max_depth=None for
AdaBoostClassifier

2) vary n_estimators

It is worth noting that RandomForests and ExtraTrees can be fitted in parallel on many cores as each tree is built
independently of the others. AdaBoost’s samples are built sequentially and so do not use multiple cores.

6.11. Ensemble methods 1029

scikit-learn user guide, Release 0.23.2

Out:

DecisionTree with features [0, 1] has a score of 0.9266666666666666
RandomForest with 30 estimators with features [0, 1] has a score of 0.9266666666666666
ExtraTrees with 30 estimators with features [0, 1] has a score of 0.9266666666666666
AdaBoost with 30 estimators with features [0, 1] has a score of 0.8533333333333334
DecisionTree with features [0, 2] has a score of 0.9933333333333333
RandomForest with 30 estimators with features [0, 2] has a score of 0.9933333333333333
ExtraTrees with 30 estimators with features [0, 2] has a score of 0.9933333333333333
AdaBoost with 30 estimators with features [0, 2] has a score of 0.9933333333333333
DecisionTree with features [2, 3] has a score of 0.9933333333333333
RandomForest with 30 estimators with features [2, 3] has a score of 0.9933333333333333
ExtraTrees with 30 estimators with features [2, 3] has a score of 0.9933333333333333
AdaBoost with 30 estimators with features [2, 3] has a score of 0.9933333333333333

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap

(continues on next page)

1030 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

from sklearn.datasets import load_iris
from sklearn.ensemble import (RandomForestClassifier, ExtraTreesClassifier,

AdaBoostClassifier)
from sklearn.tree import DecisionTreeClassifier

Parameters
n_classes = 3
n_estimators = 30
cmap = plt.cm.RdYlBu
plot_step = 0.02 # fine step width for decision surface contours
plot_step_coarser = 0.5 # step widths for coarse classifier guesses
RANDOM_SEED = 13 # fix the seed on each iteration

Load data
iris = load_iris()

plot_idx = 1

models = [DecisionTreeClassifier(max_depth=None),
RandomForestClassifier(n_estimators=n_estimators),
ExtraTreesClassifier(n_estimators=n_estimators),
AdaBoostClassifier(DecisionTreeClassifier(max_depth=3),

n_estimators=n_estimators)]

for pair in ([0, 1], [0, 2], [2, 3]):
for model in models:

We only take the two corresponding features
X = iris.data[:, pair]
y = iris.target

Shuffle
idx = np.arange(X.shape[0])
np.random.seed(RANDOM_SEED)
np.random.shuffle(idx)
X = X[idx]
y = y[idx]

Standardize
mean = X.mean(axis=0)
std = X.std(axis=0)
X = (X - mean) / std

Train
model.fit(X, y)

scores = model.score(X, y)
Create a title for each column and the console by using str() and
slicing away useless parts of the string
model_title = str(type(model)).split(

".")[-1][:-2][:-len("Classifier")]

model_details = model_title
if hasattr(model, "estimators_"):

model_details += " with {} estimators".format(
len(model.estimators_))

print(model_details + " with features", pair,
(continues on next page)

6.11. Ensemble methods 1031

scikit-learn user guide, Release 0.23.2

(continued from previous page)

"has a score of", scores)

plt.subplot(3, 4, plot_idx)
if plot_idx <= len(models):

Add a title at the top of each column
plt.title(model_title, fontsize=9)

Now plot the decision boundary using a fine mesh as input to a
filled contour plot
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step),

np.arange(y_min, y_max, plot_step))

Plot either a single DecisionTreeClassifier or alpha blend the
decision surfaces of the ensemble of classifiers
if isinstance(model, DecisionTreeClassifier):

Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
cs = plt.contourf(xx, yy, Z, cmap=cmap)

else:
Choose alpha blend level with respect to the number
of estimators
that are in use (noting that AdaBoost can use fewer estimators
than its maximum if it achieves a good enough fit early on)
estimator_alpha = 1.0 / len(model.estimators_)
for tree in model.estimators_:

Z = tree.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
cs = plt.contourf(xx, yy, Z, alpha=estimator_alpha, cmap=cmap)

Build a coarser grid to plot a set of ensemble classifications
to show how these are different to what we see in the decision
surfaces. These points are regularly space and do not have a
black outline
xx_coarser, yy_coarser = np.meshgrid(

np.arange(x_min, x_max, plot_step_coarser),
np.arange(y_min, y_max, plot_step_coarser))

Z_points_coarser = model.predict(np.c_[xx_coarser.ravel(),
yy_coarser.ravel()]
).reshape(xx_coarser.shape)

cs_points = plt.scatter(xx_coarser, yy_coarser, s=15,
c=Z_points_coarser, cmap=cmap,
edgecolors="none")

Plot the training points, these are clustered together and have a
black outline
plt.scatter(X[:, 0], X[:, 1], c=y,

cmap=ListedColormap(['r', 'y', 'b']),
edgecolor='k', s=20)

plot_idx += 1 # move on to the next plot in sequence

plt.suptitle("Classifiers on feature subsets of the Iris dataset", fontsize=12)
plt.axis("tight")
plt.tight_layout(h_pad=0.2, w_pad=0.2, pad=2.5)
plt.show()

1032 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Total running time of the script: (0 minutes 6.711 seconds)

6.11.23 Combine predictors using stacking

Stacking refers to a method to blend estimators. In this strategy, some estimators are individually fitted on some
training data while a final estimator is trained using the stacked predictions of these base estimators.

In this example, we illustrate the use case in which different regressors are stacked together and a final linear penalized
regressor is used to output the prediction. We compare the performance of each individual regressor with the stacking
strategy. Stacking slightly improves the overall performance.

print(__doc__)

Authors: Guillaume Lemaitre <g.lemaitre58@gmail.com>
Maria Telenczuk <https://github.com/maikia>
License: BSD 3 clause

Download the dataset

We will use Ames Housing dataset which was first compiled by Dean De Cock and became better known
after it was used in Kaggle challenge. It is a set of 1460 residential homes in Ames, Iowa, each described
by 80 features. We will use it to predict the final logarithmic price of the houses. In this example we
will use only 20 most interesting features chosen using GradientBoostingRegressor() and limit number of
entries (here we won’t go into the details on how to select the most interesting features).

The Ames housing dataset is not shipped with scikit-learn and therefore we will fetch it from OpenML.

import numpy as np

from sklearn.datasets import fetch_openml
from sklearn.utils import shuffle

def load_ames_housing():
df = fetch_openml(name="house_prices", as_frame=True)
X = df.data
y = df.target

features = ['YrSold', 'HeatingQC', 'Street', 'YearRemodAdd', 'Heating',
'MasVnrType', 'BsmtUnfSF', 'Foundation', 'MasVnrArea',
'MSSubClass', 'ExterQual', 'Condition2', 'GarageCars',
'GarageType', 'OverallQual', 'TotalBsmtSF', 'BsmtFinSF1',
'HouseStyle', 'MiscFeature', 'MoSold']

X = X[features]
X, y = shuffle(X, y, random_state=0)

X = X[:600]
y = y[:600]
return X, np.log(y)

X, y = load_ames_housing()

6.11. Ensemble methods 1033

http://jse.amstat.org/v19n3/decock.pdf
https://www.openml.org/d/42165

scikit-learn user guide, Release 0.23.2

Make pipeline to preprocess the data

Before we can use Ames dataset we still need to do some preprocessing. First, the dataset has many
missing values. To impute them, we will exchange categorical missing values with the new cate-
gory ‘missing’ while the numerical missing values with the ‘mean’ of the column. We will also
encode the categories with either sklearn.preprocessing.OneHotEncoder or sklearn.
preprocessing.OrdinalEncoder depending for which type of model we will use them (linear
or non-linear model). To falicitate this preprocessing we will make two pipelines. You can skip this
section if your data is ready to use and does not need preprocessing

from sklearn.compose import make_column_transformer
from sklearn.impute import SimpleImputer
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import OrdinalEncoder
from sklearn.preprocessing import StandardScaler

cat_cols = X.columns[X.dtypes == 'O']
num_cols = X.columns[X.dtypes == 'float64']

categories = [
X[column].unique() for column in X[cat_cols]]

for cat in categories:
cat[cat == None] = 'missing' # noqa

cat_proc_nlin = make_pipeline(
SimpleImputer(missing_values=None, strategy='constant',

fill_value='missing'),
OrdinalEncoder(categories=categories)
)

num_proc_nlin = make_pipeline(SimpleImputer(strategy='mean'))

cat_proc_lin = make_pipeline(
SimpleImputer(missing_values=None,

strategy='constant',
fill_value='missing'),

OneHotEncoder(categories=categories)
)

num_proc_lin = make_pipeline(
SimpleImputer(strategy='mean'),
StandardScaler()

)

transformation to use for non-linear estimators
processor_nlin = make_column_transformer(

(cat_proc_nlin, cat_cols),
(num_proc_nlin, num_cols),
remainder='passthrough')

transformation to use for linear estimators
processor_lin = make_column_transformer(

(cat_proc_lin, cat_cols),
(num_proc_lin, num_cols),
remainder='passthrough')

1034 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Stack of predictors on a single data set

It is sometimes tedious to find the model which will best perform on a given dataset. Stacking provide an
alternative by combining the outputs of several learners, without the need to choose a model specifically.
The performance of stacking is usually close to the best model and sometimes it can outperform the
prediction performance of each individual model.

Here, we combine 3 learners (linear and non-linear) and use a ridge regressor to combine their outputs
together.

Note: although we will make new pipelines with the processors which we wrote in the previous section
for the 3 learners, the final estimator RidgeCV() does not need preprocessing of the data as it will be fed
with the already preprocessed output from the 3 learners.

from sklearn.experimental import enable_hist_gradient_boosting # noqa
from sklearn.ensemble import HistGradientBoostingRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import StackingRegressor
from sklearn.linear_model import LassoCV
from sklearn.linear_model import RidgeCV

lasso_pipeline = make_pipeline(processor_lin,
LassoCV())

rf_pipeline = make_pipeline(processor_nlin,
RandomForestRegressor(random_state=42))

gradient_pipeline = make_pipeline(
processor_nlin,
HistGradientBoostingRegressor(random_state=0))

estimators = [('Random Forest', rf_pipeline),
('Lasso', lasso_pipeline),
('Gradient Boosting', gradient_pipeline)]

stacking_regressor = StackingRegressor(estimators=estimators,
final_estimator=RidgeCV())

Measure and plot the results

Now we can use Ames Housing dataset to make the predictions. We check the performance of each
individual predictor as well as of the stack of the regressors.

The function plot_regression_results is used to plot the predicted and true targets.

import time
import matplotlib.pyplot as plt
from sklearn.model_selection import cross_validate, cross_val_predict

def plot_regression_results(ax, y_true, y_pred, title, scores, elapsed_time):
"""Scatter plot of the predicted vs true targets."""
ax.plot([y_true.min(), y_true.max()],

[y_true.min(), y_true.max()],
'--r', linewidth=2)

ax.scatter(y_true, y_pred, alpha=0.2)

(continues on next page)

6.11. Ensemble methods 1035

scikit-learn user guide, Release 0.23.2

(continued from previous page)

ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.get_xaxis().tick_bottom()
ax.get_yaxis().tick_left()
ax.spines['left'].set_position(('outward', 10))
ax.spines['bottom'].set_position(('outward', 10))
ax.set_xlim([y_true.min(), y_true.max()])
ax.set_ylim([y_true.min(), y_true.max()])
ax.set_xlabel('Measured')
ax.set_ylabel('Predicted')
extra = plt.Rectangle((0, 0), 0, 0, fc="w", fill=False,

edgecolor='none', linewidth=0)
ax.legend([extra], [scores], loc='upper left')
title = title + '\n Evaluation in {:.2f} seconds'.format(elapsed_time)
ax.set_title(title)

fig, axs = plt.subplots(2, 2, figsize=(9, 7))
axs = np.ravel(axs)

for ax, (name, est) in zip(axs, estimators + [('Stacking Regressor',
stacking_regressor)]):

start_time = time.time()
score = cross_validate(est, X, y,

scoring=['r2', 'neg_mean_absolute_error'],
n_jobs=-1, verbose=0)

elapsed_time = time.time() - start_time

y_pred = cross_val_predict(est, X, y, n_jobs=-1, verbose=0)

plot_regression_results(
ax, y, y_pred,
name,
(r'$R^2={:.2f} \pm {:.2f}$' + '\n' + r'$MAE={:.2f} \pm {:.2f}$')
.format(np.mean(score['test_r2']),

np.std(score['test_r2']),
-np.mean(score['test_neg_mean_absolute_error']),
np.std(score['test_neg_mean_absolute_error'])),

elapsed_time)

plt.suptitle('Single predictors versus stacked predictors')
plt.tight_layout()
plt.subplots_adjust(top=0.9)
plt.show()

1036 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

The stacked regressor will combine the strengths of the different regressors. However, we also see that training the
stacked regressor is much more computationally expensive.

Total running time of the script: (0 minutes 10.681 seconds)

6.12 Examples based on real world datasets

Applications to real world problems with some medium sized datasets or interactive user interface.

6.12.1 Outlier detection on a real data set

This example illustrates the need for robust covariance estimation on a real data set. It is useful both for outlier
detection and for a better understanding of the data structure.

We selected two sets of two variables from the Boston housing data set as an illustration of what kind of analysis can
be done with several outlier detection tools. For the purpose of visualization, we are working with two-dimensional
examples, but one should be aware that things are not so trivial in high-dimension, as it will be pointed out.

In both examples below, the main result is that the empirical covariance estimate, as a non-robust one, is highly
influenced by the heterogeneous structure of the observations. Although the robust covariance estimate is able to
focus on the main mode of the data distribution, it sticks to the assumption that the data should be Gaussian distributed,
yielding some biased estimation of the data structure, but yet accurate to some extent. The One-Class SVM does not

6.12. Examples based on real world datasets 1037

scikit-learn user guide, Release 0.23.2

assume any parametric form of the data distribution and can therefore model the complex shape of the data much
better.

First example

The first example illustrates how the Minimum Covariance Determinant robust estimator can help concentrate on a
relevant cluster when outlying points exist. Here the empirical covariance estimation is skewed by points outside of
the main cluster. Of course, some screening tools would have pointed out the presence of two clusters (Support Vector
Machines, Gaussian Mixture Models, univariate outlier detection, . . .). But had it been a high-dimensional example,
none of these could be applied that easily.

print(__doc__)

Author: Virgile Fritsch <virgile.fritsch@inria.fr>
License: BSD 3 clause

import numpy as np
from sklearn.covariance import EllipticEnvelope
from sklearn.svm import OneClassSVM
import matplotlib.pyplot as plt
import matplotlib.font_manager
from sklearn.datasets import load_wine

Define "classifiers" to be used
classifiers = {

"Empirical Covariance": EllipticEnvelope(support_fraction=1.,
contamination=0.25),

"Robust Covariance (Minimum Covariance Determinant)":
EllipticEnvelope(contamination=0.25),
"OCSVM": OneClassSVM(nu=0.25, gamma=0.35)}

colors = ['m', 'g', 'b']
legend1 = {}
legend2 = {}

Get data
X1 = load_wine()['data'][:, [1, 2]] # two clusters

Learn a frontier for outlier detection with several classifiers
xx1, yy1 = np.meshgrid(np.linspace(0, 6, 500), np.linspace(1, 4.5, 500))
for i, (clf_name, clf) in enumerate(classifiers.items()):

plt.figure(1)
clf.fit(X1)
Z1 = clf.decision_function(np.c_[xx1.ravel(), yy1.ravel()])
Z1 = Z1.reshape(xx1.shape)
legend1[clf_name] = plt.contour(

xx1, yy1, Z1, levels=[0], linewidths=2, colors=colors[i])

legend1_values_list = list(legend1.values())
legend1_keys_list = list(legend1.keys())

Plot the results (= shape of the data points cloud)
plt.figure(1) # two clusters
plt.title("Outlier detection on a real data set (wine recognition)")
plt.scatter(X1[:, 0], X1[:, 1], color='black')
bbox_args = dict(boxstyle="round", fc="0.8")
arrow_args = dict(arrowstyle="->")

(continues on next page)

1038 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.annotate("outlying points", xy=(4, 2),
xycoords="data", textcoords="data",
xytext=(3, 1.25), bbox=bbox_args, arrowprops=arrow_args)

plt.xlim((xx1.min(), xx1.max()))
plt.ylim((yy1.min(), yy1.max()))
plt.legend((legend1_values_list[0].collections[0],

legend1_values_list[1].collections[0],
legend1_values_list[2].collections[0]),

(legend1_keys_list[0], legend1_keys_list[1], legend1_keys_list[2]),
loc="upper center",
prop=matplotlib.font_manager.FontProperties(size=11))

plt.ylabel("ash")
plt.xlabel("malic_acid")

plt.show()

Second example

The second example shows the ability of the Minimum Covariance Determinant robust estimator of covariance to
concentrate on the main mode of the data distribution: the location seems to be well estimated, although the covariance
is hard to estimate due to the banana-shaped distribution. Anyway, we can get rid of some outlying observations. The
One-Class SVM is able to capture the real data structure, but the difficulty is to adjust its kernel bandwidth parameter
so as to obtain a good compromise between the shape of the data scatter matrix and the risk of over-fitting the data.

6.12. Examples based on real world datasets 1039

scikit-learn user guide, Release 0.23.2

Get data
X2 = load_wine()['data'][:, [6, 9]] # "banana"-shaped

Learn a frontier for outlier detection with several classifiers
xx2, yy2 = np.meshgrid(np.linspace(-1, 5.5, 500), np.linspace(-2.5, 19, 500))
for i, (clf_name, clf) in enumerate(classifiers.items()):

plt.figure(2)
clf.fit(X2)
Z2 = clf.decision_function(np.c_[xx2.ravel(), yy2.ravel()])
Z2 = Z2.reshape(xx2.shape)
legend2[clf_name] = plt.contour(

xx2, yy2, Z2, levels=[0], linewidths=2, colors=colors[i])

legend2_values_list = list(legend2.values())
legend2_keys_list = list(legend2.keys())

Plot the results (= shape of the data points cloud)
plt.figure(2) # "banana" shape
plt.title("Outlier detection on a real data set (wine recognition)")
plt.scatter(X2[:, 0], X2[:, 1], color='black')
plt.xlim((xx2.min(), xx2.max()))
plt.ylim((yy2.min(), yy2.max()))
plt.legend((legend2_values_list[0].collections[0],

legend2_values_list[1].collections[0],
legend2_values_list[2].collections[0]),

(legend2_keys_list[0], legend2_keys_list[1], legend2_keys_list[2]),
loc="upper center",
prop=matplotlib.font_manager.FontProperties(size=11))

plt.ylabel("color_intensity")
plt.xlabel("flavanoids")

plt.show()

1040 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Total running time of the script: (0 minutes 0.945 seconds)

6.12.2 Compressive sensing: tomography reconstruction with L1 prior (Lasso)

This example shows the reconstruction of an image from a set of parallel projections, acquired along different angles.
Such a dataset is acquired in computed tomography (CT).

Without any prior information on the sample, the number of projections required to reconstruct the image is of the
order of the linear size l of the image (in pixels). For simplicity we consider here a sparse image, where only pixels
on the boundary of objects have a non-zero value. Such data could correspond for example to a cellular material.
Note however that most images are sparse in a different basis, such as the Haar wavelets. Only l/7 projections are
acquired, therefore it is necessary to use prior information available on the sample (its sparsity): this is an example of
compressive sensing.

The tomography projection operation is a linear transformation. In addition to the data-fidelity term corresponding
to a linear regression, we penalize the L1 norm of the image to account for its sparsity. The resulting optimization
problem is called the Lasso. We use the class sklearn.linear_model.Lasso, that uses the coordinate descent
algorithm. Importantly, this implementation is more computationally efficient on a sparse matrix, than the projection
operator used here.

The reconstruction with L1 penalization gives a result with zero error (all pixels are successfully labeled with 0 or 1),
even if noise was added to the projections. In comparison, an L2 penalization (sklearn.linear_model.Ridge)
produces a large number of labeling errors for the pixels. Important artifacts are observed on the reconstructed image,
contrary to the L1 penalization. Note in particular the circular artifact separating the pixels in the corners, that have
contributed to fewer projections than the central disk.

6.12. Examples based on real world datasets 1041

scikit-learn user guide, Release 0.23.2

print(__doc__)

Author: Emmanuelle Gouillart <emmanuelle.gouillart@nsup.org>
License: BSD 3 clause

import numpy as np
from scipy import sparse
from scipy import ndimage
from sklearn.linear_model import Lasso
from sklearn.linear_model import Ridge
import matplotlib.pyplot as plt

def _weights(x, dx=1, orig=0):
x = np.ravel(x)
floor_x = np.floor((x - orig) / dx).astype(np.int64)
alpha = (x - orig - floor_x * dx) / dx
return np.hstack((floor_x, floor_x + 1)), np.hstack((1 - alpha, alpha))

def _generate_center_coordinates(l_x):
X, Y = np.mgrid[:l_x, :l_x].astype(np.float64)
center = l_x / 2.
X += 0.5 - center
Y += 0.5 - center
return X, Y

def build_projection_operator(l_x, n_dir):
""" Compute the tomography design matrix.

Parameters

l_x : int
linear size of image array

n_dir : int
number of angles at which projections are acquired.

(continues on next page)

1042 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Returns

p : sparse matrix of shape (n_dir l_x, l_x**2)
"""
X, Y = _generate_center_coordinates(l_x)
angles = np.linspace(0, np.pi, n_dir, endpoint=False)
data_inds, weights, camera_inds = [], [], []
data_unravel_indices = np.arange(l_x ** 2)
data_unravel_indices = np.hstack((data_unravel_indices,

data_unravel_indices))
for i, angle in enumerate(angles):

Xrot = np.cos(angle) * X - np.sin(angle) * Y
inds, w = _weights(Xrot, dx=1, orig=X.min())
mask = np.logical_and(inds >= 0, inds < l_x)
weights += list(w[mask])
camera_inds += list(inds[mask] + i * l_x)
data_inds += list(data_unravel_indices[mask])

proj_operator = sparse.coo_matrix((weights, (camera_inds, data_inds)))
return proj_operator

def generate_synthetic_data():
""" Synthetic binary data """
rs = np.random.RandomState(0)
n_pts = 36
x, y = np.ogrid[0:l, 0:l]
mask_outer = (x - l / 2.) ** 2 + (y - l / 2.) ** 2 < (l / 2.) ** 2
mask = np.zeros((l, l))
points = l * rs.rand(2, n_pts)
mask[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1
mask = ndimage.gaussian_filter(mask, sigma=l / n_pts)
res = np.logical_and(mask > mask.mean(), mask_outer)
return np.logical_xor(res, ndimage.binary_erosion(res))

Generate synthetic images, and projections
l = 128
proj_operator = build_projection_operator(l, l // 7)
data = generate_synthetic_data()
proj = proj_operator * data.ravel()[:, np.newaxis]
proj += 0.15 * np.random.randn(*proj.shape)

Reconstruction with L2 (Ridge) penalization
rgr_ridge = Ridge(alpha=0.2)
rgr_ridge.fit(proj_operator, proj.ravel())
rec_l2 = rgr_ridge.coef_.reshape(l, l)

Reconstruction with L1 (Lasso) penalization
the best value of alpha was determined using cross validation
with LassoCV
rgr_lasso = Lasso(alpha=0.001)
rgr_lasso.fit(proj_operator, proj.ravel())
rec_l1 = rgr_lasso.coef_.reshape(l, l)

plt.figure(figsize=(8, 3.3))
plt.subplot(131)

(continues on next page)

6.12. Examples based on real world datasets 1043

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.imshow(data, cmap=plt.cm.gray, interpolation='nearest')
plt.axis('off')
plt.title('original image')
plt.subplot(132)
plt.imshow(rec_l2, cmap=plt.cm.gray, interpolation='nearest')
plt.title('L2 penalization')
plt.axis('off')
plt.subplot(133)
plt.imshow(rec_l1, cmap=plt.cm.gray, interpolation='nearest')
plt.title('L1 penalization')
plt.axis('off')

plt.subplots_adjust(hspace=0.01, wspace=0.01, top=1, bottom=0, left=0,
right=1)

plt.show()

Total running time of the script: (0 minutes 9.348 seconds)

6.12.3 Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet
Allocation

This is an example of applying sklearn.decomposition.NMF and sklearn.decomposition.
LatentDirichletAllocation on a corpus of documents and extract additive models of the topic structure
of the corpus. The output is a list of topics, each represented as a list of terms (weights are not shown).

Non-negative Matrix Factorization is applied with two different objective functions: the Frobenius norm, and the
generalized Kullback-Leibler divergence. The latter is equivalent to Probabilistic Latent Semantic Indexing.

The default parameters (n_samples / n_features / n_components) should make the example runnable in a couple of
tens of seconds. You can try to increase the dimensions of the problem, but be aware that the time complexity is
polynomial in NMF. In LDA, the time complexity is proportional to (n_samples * iterations).

Out:

Loading dataset...
done in 1.157s.
Extracting tf-idf features for NMF...
done in 0.289s.
Extracting tf features for LDA...
done in 0.341s.

Fitting the NMF model (Frobenius norm) with tf-idf features, n_samples=2000 and n_
→˓features=1000...
done in 0.230s.

Topics in NMF model (Frobenius norm):
Topic #0: just people don think like know time good make way really say right ve want
→˓did ll new use years
Topic #1: windows use dos using window program os drivers application help software
→˓pc running ms screen files version card code work
Topic #2: god jesus bible faith christian christ christians does heaven sin believe
→˓lord life church mary atheism belief human love religion
Topic #3: thanks know does mail advance hi info interested email anybody looking card
→˓help like appreciated information send list video need
Topic #4: car cars tires miles 00 new engine insurance price condition oil power
→˓speed good 000 brake year models used bought (continues on next page)

1044 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Topic #5: edu soon com send university internet mit ftp mail cc pub article
→˓information hope program mac email home contact blood
Topic #6: file problem files format win sound ftp pub read save site help image
→˓available create copy running memory self version
Topic #7: game team games year win play season players nhl runs goal hockey toronto
→˓division flyers player defense leafs bad teams
Topic #8: drive drives hard disk floppy software card mac computer power scsi
→˓controller apple mb 00 pc rom sale problem internal
Topic #9: key chip clipper keys encryption government public use secure enforcement
→˓phone nsa communications law encrypted security clinton used legal standard

Fitting the NMF model (generalized Kullback-Leibler divergence) with tf-idf features,
→˓n_samples=2000 and n_features=1000...
done in 0.866s.

Topics in NMF model (generalized Kullback-Leibler divergence):
Topic #0: people don just like think did say time make know really right said things
→˓way ve course didn question probably
Topic #1: windows help thanks using hi looking info video dos pc does anybody ftp
→˓appreciated mail know advance available use card
Topic #2: god does jesus true book christian bible christians religion faith believe
→˓life church christ says know read exist lord people
Topic #3: thanks know bike interested mail like new car edu heard just price list
→˓email hear want cars thing sounds reply
Topic #4: 10 00 sale time power 12 new 15 year 30 offer condition 14 16 model 11
→˓monitor 100 old 25
Topic #5: space government number public data states earth security water research
→˓nasa general 1993 phone information science technology provide blood internet
Topic #6: edu file com program soon try window problem remember files sun send
→˓library article mike wrong think code win manager
Topic #7: game team year games play win season points world division won players nhl
→˓flyers toronto case cubs teams ll record
Topic #8: drive think hard software disk drives apple computer mac need scsi card don
→˓problem read floppy post cable going ii
Topic #9: use good just key chip got like ll way clipper doesn keys don better speed
→˓stuff want sure going need

Fitting LDA models with tf features, n_samples=2000 and n_features=1000...
done in 3.857s.

Topics in LDA model:
Topic #0: edu com mail send graphics ftp pub available contact university list faq ca
→˓information cs 1993 program sun uk mit
Topic #1: don like just know think ve way use right good going make sure ll point got
→˓need really time doesn
Topic #2: christian think atheism faith pittsburgh new bible radio games alt lot just
→˓religion like book read play time subject believe
Topic #3: drive disk windows thanks use card drives hard version pc software file
→˓using scsi help does new dos controller 16
Topic #4: hiv health aids disease april medical care research 1993 light information
→˓study national service test led 10 page new drug
Topic #5: god people does just good don jesus say israel way life know true fact time
→˓law want believe make think
Topic #6: 55 10 11 18 15 team game 19 period play 23 12 13 flyers 20 25 22 17 24 16
Topic #7: car year just cars new engine like bike good oil insurance better tires 000
→˓thing speed model brake driving performance
Topic #8: people said did just didn know time like went think children came come don
→˓took years say dead told started (continues on next page)

6.12. Examples based on real world datasets 1045

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Topic #9: key space law government public use encryption earth section security moon
→˓probe enforcement keys states lunar military crime surface technology

Author: Olivier Grisel <olivier.grisel@ensta.org>
Lars Buitinck
Chyi-Kwei Yau <chyikwei.yau@gmail.com>
License: BSD 3 clause

from time import time

from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.decomposition import NMF, LatentDirichletAllocation
from sklearn.datasets import fetch_20newsgroups

n_samples = 2000
n_features = 1000
n_components = 10
n_top_words = 20

def print_top_words(model, feature_names, n_top_words):
for topic_idx, topic in enumerate(model.components_):

message = "Topic #%d: " % topic_idx
message += " ".join([feature_names[i]

for i in topic.argsort()[:-n_top_words - 1:-1]])
print(message)

print()

Load the 20 newsgroups dataset and vectorize it. We use a few heuristics
to filter out useless terms early on: the posts are stripped of headers,
footers and quoted replies, and common English words, words occurring in
only one document or in at least 95% of the documents are removed.

print("Loading dataset...")
t0 = time()
data, _ = fetch_20newsgroups(shuffle=True, random_state=1,

remove=('headers', 'footers', 'quotes'),
return_X_y=True)

data_samples = data[:n_samples]
print("done in %0.3fs." % (time() - t0))

Use tf-idf features for NMF.
print("Extracting tf-idf features for NMF...")
tfidf_vectorizer = TfidfVectorizer(max_df=0.95, min_df=2,

max_features=n_features,
stop_words='english')

t0 = time()
tfidf = tfidf_vectorizer.fit_transform(data_samples)
print("done in %0.3fs." % (time() - t0))

(continues on next page)

1046 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Use tf (raw term count) features for LDA.
print("Extracting tf features for LDA...")
tf_vectorizer = CountVectorizer(max_df=0.95, min_df=2,

max_features=n_features,
stop_words='english')

t0 = time()
tf = tf_vectorizer.fit_transform(data_samples)
print("done in %0.3fs." % (time() - t0))
print()

Fit the NMF model
print("Fitting the NMF model (Frobenius norm) with tf-idf features, "

"n_samples=%d and n_features=%d..."
% (n_samples, n_features))

t0 = time()
nmf = NMF(n_components=n_components, random_state=1,

alpha=.1, l1_ratio=.5).fit(tfidf)
print("done in %0.3fs." % (time() - t0))

print("\nTopics in NMF model (Frobenius norm):")
tfidf_feature_names = tfidf_vectorizer.get_feature_names()
print_top_words(nmf, tfidf_feature_names, n_top_words)

Fit the NMF model
print("Fitting the NMF model (generalized Kullback-Leibler divergence) with "

"tf-idf features, n_samples=%d and n_features=%d..."
% (n_samples, n_features))

t0 = time()
nmf = NMF(n_components=n_components, random_state=1,

beta_loss='kullback-leibler', solver='mu', max_iter=1000, alpha=.1,
l1_ratio=.5).fit(tfidf)

print("done in %0.3fs." % (time() - t0))

print("\nTopics in NMF model (generalized Kullback-Leibler divergence):")
tfidf_feature_names = tfidf_vectorizer.get_feature_names()
print_top_words(nmf, tfidf_feature_names, n_top_words)

print("Fitting LDA models with tf features, "
"n_samples=%d and n_features=%d..."
% (n_samples, n_features))

lda = LatentDirichletAllocation(n_components=n_components, max_iter=5,
learning_method='online',
learning_offset=50.,
random_state=0)

t0 = time()
lda.fit(tf)
print("done in %0.3fs." % (time() - t0))

print("\nTopics in LDA model:")
tf_feature_names = tf_vectorizer.get_feature_names()
print_top_words(lda, tf_feature_names, n_top_words)

Total running time of the script: (0 minutes 6.749 seconds)

6.12. Examples based on real world datasets 1047

scikit-learn user guide, Release 0.23.2

6.12.4 Faces recognition example using eigenfaces and SVMs

The dataset used in this example is a preprocessed excerpt of the “Labeled Faces in the Wild”, aka LFW:

http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz (233MB)

Expected results for the top 5 most represented people in the dataset:

Ariel Sharon 0.67 0.92 0.77 13
Colin Powell 0.75 0.78 0.76 60
Donald Rumsfeld 0.78 0.67 0.72 27
George W Bush 0.86 0.86 0.86 146
Gerhard Schroeder 0.76 0.76 0.76 25
Hugo Chavez 0.67 0.67 0.67 15
Tony Blair 0.81 0.69 0.75 36
avg / total 0.80 0.80 0.80 322

•

1048 Chapter 6. Examples

http://vis-www.cs.umass.edu/lfw/
http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz

scikit-learn user guide, Release 0.23.2

•

Out:

Total dataset size:
n_samples: 1288
n_features: 1850
n_classes: 7
Extracting the top 150 eigenfaces from 966 faces
done in 0.092s
Projecting the input data on the eigenfaces orthonormal basis
done in 0.009s
Fitting the classifier to the training set
done in 39.489s
Best estimator found by grid search:
SVC(C=1000.0, class_weight='balanced', gamma=0.005)
Predicting people's names on the test set
done in 0.066s

precision recall f1-score support

(continues on next page)

6.12. Examples based on real world datasets 1049

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Ariel Sharon 0.75 0.46 0.57 13
Colin Powell 0.81 0.87 0.84 60

Donald Rumsfeld 0.86 0.67 0.75 27
George W Bush 0.85 0.98 0.91 146

Gerhard Schroeder 0.95 0.80 0.87 25
Hugo Chavez 1.00 0.60 0.75 15
Tony Blair 0.97 0.81 0.88 36

accuracy 0.86 322
macro avg 0.88 0.74 0.80 322

weighted avg 0.87 0.86 0.85 322

[[6 2 0 5 0 0 0]
[1 52 1 6 0 0 0]
[1 2 18 6 0 0 0]
[0 3 0 143 0 0 0]
[0 1 0 3 20 0 1]
[0 3 0 2 1 9 0]
[0 1 2 4 0 0 29]]

from time import time
import logging
import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.datasets import fetch_lfw_people
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.decomposition import PCA
from sklearn.svm import SVC

print(__doc__)

Display progress logs on stdout
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')

###
Download the data, if not already on disk and load it as numpy arrays

lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)

introspect the images arrays to find the shapes (for plotting)
n_samples, h, w = lfw_people.images.shape

for machine learning we use the 2 data directly (as relative pixel
positions info is ignored by this model)
X = lfw_people.data

(continues on next page)

1050 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

n_features = X.shape[1]

the label to predict is the id of the person
y = lfw_people.target
target_names = lfw_people.target_names
n_classes = target_names.shape[0]

print("Total dataset size:")
print("n_samples: %d" % n_samples)
print("n_features: %d" % n_features)
print("n_classes: %d" % n_classes)

###
Split into a training set and a test set using a stratified k fold

split into a training and testing set
X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.25, random_state=42)

###
Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled
dataset): unsupervised feature extraction / dimensionality reduction
n_components = 150

print("Extracting the top %d eigenfaces from %d faces"
% (n_components, X_train.shape[0]))

t0 = time()
pca = PCA(n_components=n_components, svd_solver='randomized',

whiten=True).fit(X_train)
print("done in %0.3fs" % (time() - t0))

eigenfaces = pca.components_.reshape((n_components, h, w))

print("Projecting the input data on the eigenfaces orthonormal basis")
t0 = time()
X_train_pca = pca.transform(X_train)
X_test_pca = pca.transform(X_test)
print("done in %0.3fs" % (time() - t0))

###
Train a SVM classification model

print("Fitting the classifier to the training set")
t0 = time()
param_grid = {'C': [1e3, 5e3, 1e4, 5e4, 1e5],

'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], }
clf = GridSearchCV(

SVC(kernel='rbf', class_weight='balanced'), param_grid
)
clf = clf.fit(X_train_pca, y_train)
print("done in %0.3fs" % (time() - t0))
print("Best estimator found by grid search:")
print(clf.best_estimator_)

(continues on next page)

6.12. Examples based on real world datasets 1051

scikit-learn user guide, Release 0.23.2

(continued from previous page)

###
Quantitative evaluation of the model quality on the test set

print("Predicting people's names on the test set")
t0 = time()
y_pred = clf.predict(X_test_pca)
print("done in %0.3fs" % (time() - t0))

print(classification_report(y_test, y_pred, target_names=target_names))
print(confusion_matrix(y_test, y_pred, labels=range(n_classes)))

###
Qualitative evaluation of the predictions using matplotlib

def plot_gallery(images, titles, h, w, n_row=3, n_col=4):
"""Helper function to plot a gallery of portraits"""
plt.figure(figsize=(1.8 * n_col, 2.4 * n_row))
plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35)
for i in range(n_row * n_col):

plt.subplot(n_row, n_col, i + 1)
plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray)
plt.title(titles[i], size=12)
plt.xticks(())
plt.yticks(())

plot the result of the prediction on a portion of the test set

def title(y_pred, y_test, target_names, i):
pred_name = target_names[y_pred[i]].rsplit(' ', 1)[-1]
true_name = target_names[y_test[i]].rsplit(' ', 1)[-1]
return 'predicted: %s\ntrue: %s' % (pred_name, true_name)

prediction_titles = [title(y_pred, y_test, target_names, i)
for i in range(y_pred.shape[0])]

plot_gallery(X_test, prediction_titles, h, w)

plot the gallery of the most significative eigenfaces

eigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])]
plot_gallery(eigenfaces, eigenface_titles, h, w)

plt.show()

Total running time of the script: (0 minutes 40.335 seconds)

6.12.5 Model Complexity Influence

Demonstrate how model complexity influences both prediction accuracy and computational performance.

The dataset is the Boston Housing dataset (resp. 20 Newsgroups) for regression (resp. classification).

For each class of models we make the model complexity vary through the choice of relevant model parameters and
measure the influence on both computational performance (latency) and predictive power (MSE or Hamming Loss).

1052 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

•

6.12. Examples based on real world datasets 1053

scikit-learn user guide, Release 0.23.2

•

Out:

Benchmarking SGDClassifier(alpha=0.001, l1_ratio=0.25, loss='modified_huber',
penalty='elasticnet')

Complexity: 4466 | Hamming Loss (Misclassification Ratio): 0.2491 | Pred. Time: 0.
→˓020736s

Benchmarking SGDClassifier(alpha=0.001, l1_ratio=0.5, loss='modified_huber',
penalty='elasticnet')

Complexity: 1663 | Hamming Loss (Misclassification Ratio): 0.2915 | Pred. Time: 0.
→˓015413s

Benchmarking SGDClassifier(alpha=0.001, l1_ratio=0.75, loss='modified_huber',
penalty='elasticnet')

Complexity: 880 | Hamming Loss (Misclassification Ratio): 0.3180 | Pred. Time: 0.
→˓014005s

Benchmarking SGDClassifier(alpha=0.001, l1_ratio=0.9, loss='modified_huber',
penalty='elasticnet')

Complexity: 639 | Hamming Loss (Misclassification Ratio): 0.3337 | Pred. Time: 0.
→˓012106s

Benchmarking NuSVR(C=1000.0, gamma=3.0517578125e-05, nu=0.1)
Complexity: 69 | MSE: 31.8139 | Pred. Time: 0.000318s

Benchmarking NuSVR(C=1000.0, gamma=3.0517578125e-05, nu=0.25)
Complexity: 136 | MSE: 25.6140 | Pred. Time: 0.000514s

Benchmarking NuSVR(C=1000.0, gamma=3.0517578125e-05)
Complexity: 244 | MSE: 22.3375 | Pred. Time: 0.000994s

Benchmarking NuSVR(C=1000.0, gamma=3.0517578125e-05, nu=0.75)
Complexity: 351 | MSE: 21.3688 | Pred. Time: 0.001338s

Benchmarking NuSVR(C=1000.0, gamma=3.0517578125e-05, nu=0.9)
Complexity: 404 | MSE: 21.1033 | Pred. Time: 0.001476s

(continues on next page)

1054 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Benchmarking GradientBoostingRegressor(n_estimators=10)
Complexity: 10 | MSE: 29.0148 | Pred. Time: 0.000113s

Benchmarking GradientBoostingRegressor(n_estimators=50)
Complexity: 50 | MSE: 8.6545 | Pred. Time: 0.000186s

Benchmarking GradientBoostingRegressor()
Complexity: 100 | MSE: 7.7179 | Pred. Time: 0.000263s

Benchmarking GradientBoostingRegressor(n_estimators=200)
Complexity: 200 | MSE: 6.7507 | Pred. Time: 0.000398s

Benchmarking GradientBoostingRegressor(n_estimators=500)
Complexity: 500 | MSE: 7.1471 | Pred. Time: 0.000961s

print(__doc__)

Author: Eustache Diemert <eustache@diemert.fr>
License: BSD 3 clause

import time
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1.parasite_axes import host_subplot
from mpl_toolkits.axisartist.axislines import Axes
from scipy.sparse.csr import csr_matrix

from sklearn import datasets
from sklearn.utils import shuffle
from sklearn.metrics import mean_squared_error
from sklearn.svm import NuSVR
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.linear_model import SGDClassifier
from sklearn.metrics import hamming_loss

###
Routines

Initialize random generator
np.random.seed(0)

def generate_data(case, sparse=False):
"""Generate regression/classification data."""
if case == 'regression':

X, y = datasets.load_boston(return_X_y=True)
elif case == 'classification':

X, y = datasets.fetch_20newsgroups_vectorized(subset='all',
return_X_y=True)

X, y = shuffle(X, y)

(continues on next page)

6.12. Examples based on real world datasets 1055

scikit-learn user guide, Release 0.23.2

(continued from previous page)

offset = int(X.shape[0] * 0.8)
X_train, y_train = X[:offset], y[:offset]
X_test, y_test = X[offset:], y[offset:]
if sparse:

X_train = csr_matrix(X_train)
X_test = csr_matrix(X_test)

else:
X_train = np.array(X_train)
X_test = np.array(X_test)

y_test = np.array(y_test)
y_train = np.array(y_train)
data = {'X_train': X_train, 'X_test': X_test, 'y_train': y_train,

'y_test': y_test}
return data

def benchmark_influence(conf):
"""
Benchmark influence of :changing_param: on both MSE and latency.
"""
prediction_times = []
prediction_powers = []
complexities = []
for param_value in conf['changing_param_values']:

conf['tuned_params'][conf['changing_param']] = param_value
estimator = conf['estimator'](**conf['tuned_params'])
print("Benchmarking %s" % estimator)
estimator.fit(conf['data']['X_train'], conf['data']['y_train'])
conf['postfit_hook'](estimator)
complexity = conf['complexity_computer'](estimator)
complexities.append(complexity)
start_time = time.time()
for _ in range(conf['n_samples']):

y_pred = estimator.predict(conf['data']['X_test'])
elapsed_time = (time.time() - start_time) / float(conf['n_samples'])
prediction_times.append(elapsed_time)
pred_score = conf['prediction_performance_computer'](

conf['data']['y_test'], y_pred)
prediction_powers.append(pred_score)
print("Complexity: %d | %s: %.4f | Pred. Time: %fs\n" % (

complexity, conf['prediction_performance_label'], pred_score,
elapsed_time))

return prediction_powers, prediction_times, complexities

def plot_influence(conf, mse_values, prediction_times, complexities):
"""
Plot influence of model complexity on both accuracy and latency.
"""
plt.figure(figsize=(12, 6))
host = host_subplot(111, axes_class=Axes)
plt.subplots_adjust(right=0.75)
par1 = host.twinx()
host.set_xlabel('Model Complexity (%s)' % conf['complexity_label'])
y1_label = conf['prediction_performance_label']
y2_label = "Time (s)"
host.set_ylabel(y1_label)

(continues on next page)

1056 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

par1.set_ylabel(y2_label)
p1, = host.plot(complexities, mse_values, 'b-', label="prediction error")
p2, = par1.plot(complexities, prediction_times, 'r-',

label="latency")
host.legend(loc='upper right')
host.axis["left"].label.set_color(p1.get_color())
par1.axis["right"].label.set_color(p2.get_color())
plt.title('Influence of Model Complexity - %s' % conf['estimator'].__name__)
plt.show()

def _count_nonzero_coefficients(estimator):
a = estimator.coef_.toarray()
return np.count_nonzero(a)

###
Main code
regression_data = generate_data('regression')
classification_data = generate_data('classification', sparse=True)
configurations = [

{'estimator': SGDClassifier,
'tuned_params': {'penalty': 'elasticnet', 'alpha': 0.001, 'loss':

'modified_huber', 'fit_intercept': True, 'tol': 1e-3},
'changing_param': 'l1_ratio',
'changing_param_values': [0.25, 0.5, 0.75, 0.9],
'complexity_label': 'non_zero coefficients',
'complexity_computer': _count_nonzero_coefficients,
'prediction_performance_computer': hamming_loss,
'prediction_performance_label': 'Hamming Loss (Misclassification Ratio)',
'postfit_hook': lambda x: x.sparsify(),
'data': classification_data,
'n_samples': 30},

{'estimator': NuSVR,
'tuned_params': {'C': 1e3, 'gamma': 2 ** -15},
'changing_param': 'nu',
'changing_param_values': [0.1, 0.25, 0.5, 0.75, 0.9],
'complexity_label': 'n_support_vectors',
'complexity_computer': lambda x: len(x.support_vectors_),
'data': regression_data,
'postfit_hook': lambda x: x,
'prediction_performance_computer': mean_squared_error,
'prediction_performance_label': 'MSE',
'n_samples': 30},

{'estimator': GradientBoostingRegressor,
'tuned_params': {'loss': 'ls'},
'changing_param': 'n_estimators',
'changing_param_values': [10, 50, 100, 200, 500],
'complexity_label': 'n_trees',
'complexity_computer': lambda x: x.n_estimators,
'data': regression_data,
'postfit_hook': lambda x: x,
'prediction_performance_computer': mean_squared_error,
'prediction_performance_label': 'MSE',
'n_samples': 30},

]
for conf in configurations:

prediction_performances, prediction_times, complexities = \
(continues on next page)

6.12. Examples based on real world datasets 1057

scikit-learn user guide, Release 0.23.2

(continued from previous page)

benchmark_influence(conf)
plot_influence(conf, prediction_performances, prediction_times,

complexities)

Total running time of the script: (0 minutes 23.358 seconds)

6.12.6 Visualizing the stock market structure

This example employs several unsupervised learning techniques to extract the stock market structure from variations
in historical quotes.

The quantity that we use is the daily variation in quote price: quotes that are linked tend to cofluctuate during a day.

Learning a graph structure

We use sparse inverse covariance estimation to find which quotes are correlated conditionally on the others. Specifi-
cally, sparse inverse covariance gives us a graph, that is a list of connection. For each symbol, the symbols that it is
connected too are those useful to explain its fluctuations.

Clustering

We use clustering to group together quotes that behave similarly. Here, amongst the various clustering techniques
available in the scikit-learn, we use Affinity Propagation as it does not enforce equal-size clusters, and it can choose
automatically the number of clusters from the data.

Note that this gives us a different indication than the graph, as the graph reflects conditional relations between variables,
while the clustering reflects marginal properties: variables clustered together can be considered as having a similar
impact at the level of the full stock market.

Embedding in 2D space

For visualization purposes, we need to lay out the different symbols on a 2D canvas. For this we use Manifold learning
techniques to retrieve 2D embedding.

Visualization

The output of the 3 models are combined in a 2D graph where nodes represents the stocks and edges the:

• cluster labels are used to define the color of the nodes

• the sparse covariance model is used to display the strength of the edges

• the 2D embedding is used to position the nodes in the plan

This example has a fair amount of visualization-related code, as visualization is crucial here to display the graph. One
of the challenge is to position the labels minimizing overlap. For this we use an heuristic based on the direction of the
nearest neighbor along each axis.

1058 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Out:

Fetching quote history for 'AAPL'
Fetching quote history for 'AIG'
Fetching quote history for 'AMZN'
Fetching quote history for 'AXP'
Fetching quote history for 'BA'
Fetching quote history for 'BAC'
Fetching quote history for 'CAJ'
Fetching quote history for 'CAT'
Fetching quote history for 'CL'
Fetching quote history for 'CMCSA'
Fetching quote history for 'COP'
Fetching quote history for 'CSCO'
Fetching quote history for 'CVC'
Fetching quote history for 'CVS'
Fetching quote history for 'CVX'
Fetching quote history for 'DD'
Fetching quote history for 'DELL'
Fetching quote history for 'F'
Fetching quote history for 'GD'
Fetching quote history for 'GE'
Fetching quote history for 'GS'

(continues on next page)

6.12. Examples based on real world datasets 1059

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Fetching quote history for 'GSK'
Fetching quote history for 'HD'
Fetching quote history for 'HMC'
Fetching quote history for 'HPQ'
Fetching quote history for 'IBM'
Fetching quote history for 'JPM'
Fetching quote history for 'K'
Fetching quote history for 'KMB'
Fetching quote history for 'KO'
Fetching quote history for 'MAR'
Fetching quote history for 'MCD'
Fetching quote history for 'MMM'
Fetching quote history for 'MSFT'
Fetching quote history for 'NAV'
Fetching quote history for 'NOC'
Fetching quote history for 'NVS'
Fetching quote history for 'PEP'
Fetching quote history for 'PFE'
Fetching quote history for 'PG'
Fetching quote history for 'R'
Fetching quote history for 'RTN'
Fetching quote history for 'SAP'
Fetching quote history for 'SNE'
Fetching quote history for 'SNY'
Fetching quote history for 'TM'
Fetching quote history for 'TOT'
Fetching quote history for 'TWX'
Fetching quote history for 'TXN'
Fetching quote history for 'UN'
Fetching quote history for 'VLO'
Fetching quote history for 'WFC'
Fetching quote history for 'WMT'
Fetching quote history for 'XOM'
Fetching quote history for 'XRX'
Fetching quote history for 'YHOO'
Cluster 1: Apple, Amazon, Yahoo
Cluster 2: Comcast, Cablevision, Time Warner
Cluster 3: ConocoPhillips, Chevron, Total, Valero Energy, Exxon
Cluster 4: Cisco, Dell, HP, IBM, Microsoft, SAP, Texas Instruments
Cluster 5: Boeing, General Dynamics, Northrop Grumman, Raytheon
Cluster 6: AIG, American express, Bank of America, Caterpillar, CVS, DuPont de
→˓Nemours, Ford, General Electrics, Goldman Sachs, Home Depot, JPMorgan Chase,
→˓Marriott, 3M, Ryder, Wells Fargo, Wal-Mart
Cluster 7: McDonald's
Cluster 8: GlaxoSmithKline, Novartis, Pfizer, Sanofi-Aventis, Unilever
Cluster 9: Kellogg, Coca Cola, Pepsi
Cluster 10: Colgate-Palmolive, Kimberly-Clark, Procter Gamble
Cluster 11: Canon, Honda, Navistar, Sony, Toyota, Xerox

Author: Gael Varoquaux gael.varoquaux@normalesup.org
License: BSD 3 clause

(continues on next page)

1060 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

import sys

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection

import pandas as pd

from sklearn import cluster, covariance, manifold

print(__doc__)

###
Retrieve the data from Internet

The data is from 2003 - 2008. This is reasonably calm: (not too long ago so
that we get high-tech firms, and before the 2008 crash). This kind of
historical data can be obtained for from APIs like the quandl.com and
alphavantage.co ones.

symbol_dict = {
'TOT': 'Total',
'XOM': 'Exxon',
'CVX': 'Chevron',
'COP': 'ConocoPhillips',
'VLO': 'Valero Energy',
'MSFT': 'Microsoft',
'IBM': 'IBM',
'TWX': 'Time Warner',
'CMCSA': 'Comcast',
'CVC': 'Cablevision',
'YHOO': 'Yahoo',
'DELL': 'Dell',
'HPQ': 'HP',
'AMZN': 'Amazon',
'TM': 'Toyota',
'CAJ': 'Canon',
'SNE': 'Sony',
'F': 'Ford',
'HMC': 'Honda',
'NAV': 'Navistar',
'NOC': 'Northrop Grumman',
'BA': 'Boeing',
'KO': 'Coca Cola',
'MMM': '3M',
'MCD': 'McDonald\'s',
'PEP': 'Pepsi',
'K': 'Kellogg',
'UN': 'Unilever',
'MAR': 'Marriott',
'PG': 'Procter Gamble',
'CL': 'Colgate-Palmolive',
'GE': 'General Electrics',
'WFC': 'Wells Fargo',
'JPM': 'JPMorgan Chase',

(continues on next page)

6.12. Examples based on real world datasets 1061

scikit-learn user guide, Release 0.23.2

(continued from previous page)

'AIG': 'AIG',
'AXP': 'American express',
'BAC': 'Bank of America',
'GS': 'Goldman Sachs',
'AAPL': 'Apple',
'SAP': 'SAP',
'CSCO': 'Cisco',
'TXN': 'Texas Instruments',
'XRX': 'Xerox',
'WMT': 'Wal-Mart',
'HD': 'Home Depot',
'GSK': 'GlaxoSmithKline',
'PFE': 'Pfizer',
'SNY': 'Sanofi-Aventis',
'NVS': 'Novartis',
'KMB': 'Kimberly-Clark',
'R': 'Ryder',
'GD': 'General Dynamics',
'RTN': 'Raytheon',
'CVS': 'CVS',
'CAT': 'Caterpillar',
'DD': 'DuPont de Nemours'}

symbols, names = np.array(sorted(symbol_dict.items())).T

quotes = []

for symbol in symbols:
print('Fetching quote history for %r' % symbol, file=sys.stderr)
url = ('https://raw.githubusercontent.com/scikit-learn/examples-data/'

'master/financial-data/{}.csv')
quotes.append(pd.read_csv(url.format(symbol)))

close_prices = np.vstack([q['close'] for q in quotes])
open_prices = np.vstack([q['open'] for q in quotes])

The daily variations of the quotes are what carry most information
variation = close_prices - open_prices

###
Learn a graphical structure from the correlations
edge_model = covariance.GraphicalLassoCV()

standardize the time series: using correlations rather than covariance
is more efficient for structure recovery
X = variation.copy().T
X /= X.std(axis=0)
edge_model.fit(X)

###
Cluster using affinity propagation

_, labels = cluster.affinity_propagation(edge_model.covariance_,
random_state=0)

n_labels = labels.max()
(continues on next page)

1062 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

for i in range(n_labels + 1):
print('Cluster %i: %s' % ((i + 1), ', '.join(names[labels == i])))

###
Find a low-dimension embedding for visualization: find the best position of
the nodes (the stocks) on a 2D plane

We use a dense eigen_solver to achieve reproducibility (arpack is
initiated with random vectors that we don't control). In addition, we
use a large number of neighbors to capture the large-scale structure.
node_position_model = manifold.LocallyLinearEmbedding(

n_components=2, eigen_solver='dense', n_neighbors=6)

embedding = node_position_model.fit_transform(X.T).T

###
Visualization
plt.figure(1, facecolor='w', figsize=(10, 8))
plt.clf()
ax = plt.axes([0., 0., 1., 1.])
plt.axis('off')

Display a graph of the partial correlations
partial_correlations = edge_model.precision_.copy()
d = 1 / np.sqrt(np.diag(partial_correlations))
partial_correlations *= d
partial_correlations *= d[:, np.newaxis]
non_zero = (np.abs(np.triu(partial_correlations, k=1)) > 0.02)

Plot the nodes using the coordinates of our embedding
plt.scatter(embedding[0], embedding[1], s=100 * d ** 2, c=labels,

cmap=plt.cm.nipy_spectral)

Plot the edges
start_idx, end_idx = np.where(non_zero)
a sequence of (*line0*, *line1*, *line2*), where::
linen = (x0, y0), (x1, y1), ... (xm, ym)
segments = [[embedding[:, start], embedding[:, stop]]

for start, stop in zip(start_idx, end_idx)]
values = np.abs(partial_correlations[non_zero])
lc = LineCollection(segments,

zorder=0, cmap=plt.cm.hot_r,
norm=plt.Normalize(0, .7 * values.max()))

lc.set_array(values)
lc.set_linewidths(15 * values)
ax.add_collection(lc)

Add a label to each node. The challenge here is that we want to
position the labels to avoid overlap with other labels
for index, (name, label, (x, y)) in enumerate(

zip(names, labels, embedding.T)):

dx = x - embedding[0]
dx[index] = 1
dy = y - embedding[1]
dy[index] = 1

(continues on next page)

6.12. Examples based on real world datasets 1063

scikit-learn user guide, Release 0.23.2

(continued from previous page)

this_dx = dx[np.argmin(np.abs(dy))]
this_dy = dy[np.argmin(np.abs(dx))]
if this_dx > 0:

horizontalalignment = 'left'
x = x + .002

else:
horizontalalignment = 'right'
x = x - .002

if this_dy > 0:
verticalalignment = 'bottom'
y = y + .002

else:
verticalalignment = 'top'
y = y - .002

plt.text(x, y, name, size=10,
horizontalalignment=horizontalalignment,
verticalalignment=verticalalignment,
bbox=dict(facecolor='w',

edgecolor=plt.cm.nipy_spectral(label / float(n_labels)),
alpha=.6))

plt.xlim(embedding[0].min() - .15 * embedding[0].ptp(),
embedding[0].max() + .10 * embedding[0].ptp(),)

plt.ylim(embedding[1].min() - .03 * embedding[1].ptp(),
embedding[1].max() + .03 * embedding[1].ptp())

plt.show()

Total running time of the script: (0 minutes 8.474 seconds)

6.12.7 Wikipedia principal eigenvector

A classical way to assert the relative importance of vertices in a graph is to compute the principal eigenvector of the
adjacency matrix so as to assign to each vertex the values of the components of the first eigenvector as a centrality
score:

https://en.wikipedia.org/wiki/Eigenvector_centrality

On the graph of webpages and links those values are called the PageRank scores by Google.

The goal of this example is to analyze the graph of links inside wikipedia articles to rank articles by relative importance
according to this eigenvector centrality.

The traditional way to compute the principal eigenvector is to use the power iteration method:

https://en.wikipedia.org/wiki/Power_iteration

Here the computation is achieved thanks to Martinsson’s Randomized SVD algorithm implemented in scikit-learn.

The graph data is fetched from the DBpedia dumps. DBpedia is an extraction of the latent structured data of the
Wikipedia content.

Author: Olivier Grisel <olivier.grisel@ensta.org>
License: BSD 3 clause

from bz2 import BZ2File
import os

(continues on next page)

1064 Chapter 6. Examples

https://en.wikipedia.org/wiki/Eigenvector_centrality
https://en.wikipedia.org/wiki/Power_iteration

scikit-learn user guide, Release 0.23.2

(continued from previous page)

from datetime import datetime
from pprint import pprint
from time import time

import numpy as np

from scipy import sparse

from sklearn.decomposition import randomized_svd
from urllib.request import urlopen

print(__doc__)

###
Where to download the data, if not already on disk
redirects_url = "http://downloads.dbpedia.org/3.5.1/en/redirects_en.nt.bz2"
redirects_filename = redirects_url.rsplit("/", 1)[1]

page_links_url = "http://downloads.dbpedia.org/3.5.1/en/page_links_en.nt.bz2"
page_links_filename = page_links_url.rsplit("/", 1)[1]

resources = [
(redirects_url, redirects_filename),
(page_links_url, page_links_filename),

]

for url, filename in resources:
if not os.path.exists(filename):

print("Downloading data from '%s', please wait..." % url)
opener = urlopen(url)
open(filename, 'wb').write(opener.read())
print()

###
Loading the redirect files

def index(redirects, index_map, k):
"""Find the index of an article name after redirect resolution"""
k = redirects.get(k, k)
return index_map.setdefault(k, len(index_map))

DBPEDIA_RESOURCE_PREFIX_LEN = len("http://dbpedia.org/resource/")
SHORTNAME_SLICE = slice(DBPEDIA_RESOURCE_PREFIX_LEN + 1, -1)

def short_name(nt_uri):
"""Remove the < and > URI markers and the common URI prefix"""
return nt_uri[SHORTNAME_SLICE]

def get_redirects(redirects_filename):
"""Parse the redirections and build a transitively closed map out of it"""
redirects = {}

(continues on next page)

6.12. Examples based on real world datasets 1065

scikit-learn user guide, Release 0.23.2

(continued from previous page)

print("Parsing the NT redirect file")
for l, line in enumerate(BZ2File(redirects_filename)):

split = line.split()
if len(split) != 4:

print("ignoring malformed line: " + line)
continue

redirects[short_name(split[0])] = short_name(split[2])
if l % 1000000 == 0:

print("[%s] line: %08d" % (datetime.now().isoformat(), l))

compute the transitive closure
print("Computing the transitive closure of the redirect relation")
for l, source in enumerate(redirects.keys()):

transitive_target = None
target = redirects[source]
seen = {source}
while True:

transitive_target = target
target = redirects.get(target)
if target is None or target in seen:

break
seen.add(target)

redirects[source] = transitive_target
if l % 1000000 == 0:

print("[%s] line: %08d" % (datetime.now().isoformat(), l))

return redirects

def get_adjacency_matrix(redirects_filename, page_links_filename, limit=None):
"""Extract the adjacency graph as a scipy sparse matrix

Redirects are resolved first.

Returns X, the scipy sparse adjacency matrix, redirects as python
dict from article names to article names and index_map a python dict
from article names to python int (article indexes).
"""

print("Computing the redirect map")
redirects = get_redirects(redirects_filename)

print("Computing the integer index map")
index_map = dict()
links = list()
for l, line in enumerate(BZ2File(page_links_filename)):

split = line.split()
if len(split) != 4:

print("ignoring malformed line: " + line)
continue

i = index(redirects, index_map, short_name(split[0]))
j = index(redirects, index_map, short_name(split[2]))
links.append((i, j))
if l % 1000000 == 0:

print("[%s] line: %08d" % (datetime.now().isoformat(), l))

if limit is not None and l >= limit - 1:
(continues on next page)

1066 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

break

print("Computing the adjacency matrix")
X = sparse.lil_matrix((len(index_map), len(index_map)), dtype=np.float32)
for i, j in links:

X[i, j] = 1.0
del links
print("Converting to CSR representation")
X = X.tocsr()
print("CSR conversion done")
return X, redirects, index_map

stop after 5M links to make it possible to work in RAM
X, redirects, index_map = get_adjacency_matrix(

redirects_filename, page_links_filename, limit=5000000)
names = {i: name for name, i in index_map.items()}

print("Computing the principal singular vectors using randomized_svd")
t0 = time()
U, s, V = randomized_svd(X, 5, n_iter=3)
print("done in %0.3fs" % (time() - t0))

print the names of the wikipedia related strongest components of the
principal singular vector which should be similar to the highest eigenvector
print("Top wikipedia pages according to principal singular vectors")
pprint([names[i] for i in np.abs(U.T[0]).argsort()[-10:]])
pprint([names[i] for i in np.abs(V[0]).argsort()[-10:]])

def centrality_scores(X, alpha=0.85, max_iter=100, tol=1e-10):
"""Power iteration computation of the principal eigenvector

This method is also known as Google PageRank and the implementation
is based on the one from the NetworkX project (BSD licensed too)
with copyrights by:

Aric Hagberg <hagberg@lanl.gov>
Dan Schult <dschult@colgate.edu>
Pieter Swart <swart@lanl.gov>

"""
n = X.shape[0]
X = X.copy()
incoming_counts = np.asarray(X.sum(axis=1)).ravel()

print("Normalizing the graph")
for i in incoming_counts.nonzero()[0]:

X.data[X.indptr[i]:X.indptr[i + 1]] *= 1.0 / incoming_counts[i]
dangle = np.asarray(np.where(np.isclose(X.sum(axis=1), 0),

1.0 / n, 0)).ravel()

scores = np.full(n, 1. / n, dtype=np.float32) # initial guess
for i in range(max_iter):

print("power iteration #%d" % i)
prev_scores = scores
scores = (alpha * (scores * X + np.dot(dangle, prev_scores))

+ (1 - alpha) * prev_scores.sum() / n)
(continues on next page)

6.12. Examples based on real world datasets 1067

scikit-learn user guide, Release 0.23.2

(continued from previous page)

check convergence: normalized l_inf norm
scores_max = np.abs(scores).max()
if scores_max == 0.0:

scores_max = 1.0
err = np.abs(scores - prev_scores).max() / scores_max
print("error: %0.6f" % err)
if err < n * tol:

return scores

return scores

print("Computing principal eigenvector score using a power iteration method")
t0 = time()
scores = centrality_scores(X, max_iter=100)
print("done in %0.3fs" % (time() - t0))
pprint([names[i] for i in np.abs(scores).argsort()[-10:]])

Total running time of the script: (0 minutes 0.000 seconds)

6.12.8 Species distribution modeling

Modeling species’ geographic distributions is an important problem in conservation biology. In this example we model
the geographic distribution of two south american mammals given past observations and 14 environmental variables.
Since we have only positive examples (there are no unsuccessful observations), we cast this problem as a density
estimation problem and use the sklearn.svm.OneClassSVM as our modeling tool. The dataset is provided by
Phillips et. al. (2006). If available, the example uses basemap to plot the coast lines and national boundaries of South
America.

The two species are:

• “Bradypus variegatus” , the Brown-throated Sloth.

• “Microryzomys minutus” , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia,
Ecuador, Peru, and Venezuela.

References

• “Maximum entropy modeling of species geographic distributions” S. J. Phillips, R. P. Anderson, R. E. Schapire
- Ecological Modelling, 190:231-259, 2006.

1068 Chapter 6. Examples

https://matplotlib.org/basemap/
http://www.iucnredlist.org/details/3038/0
http://www.iucnredlist.org/details/13408/0
http://rob.schapire.net/papers/ecolmod.pdf

scikit-learn user guide, Release 0.23.2

Out:

__
Modeling distribution of species 'bradypus variegatus'
- fit OneClassSVM ... done.
- plot coastlines from coverage
- predict species distribution

Area under the ROC curve : 0.868443
__
Modeling distribution of species 'microryzomys minutus'
- fit OneClassSVM ... done.
- plot coastlines from coverage
- predict species distribution

Area under the ROC curve : 0.993919

time elapsed: 8.23s

Authors: Peter Prettenhofer <peter.prettenhofer@gmail.com>

(continues on next page)

6.12. Examples based on real world datasets 1069

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Jake Vanderplas <vanderplas@astro.washington.edu>
#
License: BSD 3 clause

from time import time

import numpy as np
import matplotlib.pyplot as plt

from sklearn.utils import Bunch
from sklearn.datasets import fetch_species_distributions
from sklearn import svm, metrics

if basemap is available, we'll use it.
otherwise, we'll improvise later...
try:

from mpl_toolkits.basemap import Basemap
basemap = True

except ImportError:
basemap = False

print(__doc__)

def construct_grids(batch):
"""Construct the map grid from the batch object

Parameters

batch : Batch object

The object returned by :func:`fetch_species_distributions`

Returns

(xgrid, ygrid) : 1-D arrays

The grid corresponding to the values in batch.coverages
"""
x,y coordinates for corner cells
xmin = batch.x_left_lower_corner + batch.grid_size
xmax = xmin + (batch.Nx * batch.grid_size)
ymin = batch.y_left_lower_corner + batch.grid_size
ymax = ymin + (batch.Ny * batch.grid_size)

x coordinates of the grid cells
xgrid = np.arange(xmin, xmax, batch.grid_size)
y coordinates of the grid cells
ygrid = np.arange(ymin, ymax, batch.grid_size)

return (xgrid, ygrid)

def create_species_bunch(species_name, train, test, coverages, xgrid, ygrid):
"""Create a bunch with information about a particular organism

This will use the test/train record arrays to extract the
data specific to the given species name.
"""

(continues on next page)

1070 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

bunch = Bunch(name=' '.join(species_name.split("_")[:2]))
species_name = species_name.encode('ascii')
points = dict(test=test, train=train)

for label, pts in points.items():
choose points associated with the desired species
pts = pts[pts['species'] == species_name]
bunch['pts_%s' % label] = pts

determine coverage values for each of the training & testing points
ix = np.searchsorted(xgrid, pts['dd long'])
iy = np.searchsorted(ygrid, pts['dd lat'])
bunch['cov_%s' % label] = coverages[:, -iy, ix].T

return bunch

def plot_species_distribution(species=("bradypus_variegatus_0",
"microryzomys_minutus_0")):

"""
Plot the species distribution.
"""
if len(species) > 2:

print("Note: when more than two species are provided,"
" only the first two will be used")

t0 = time()

Load the compressed data
data = fetch_species_distributions()

Set up the data grid
xgrid, ygrid = construct_grids(data)

The grid in x,y coordinates
X, Y = np.meshgrid(xgrid, ygrid[::-1])

create a bunch for each species
BV_bunch = create_species_bunch(species[0],

data.train, data.test,
data.coverages, xgrid, ygrid)

MM_bunch = create_species_bunch(species[1],
data.train, data.test,
data.coverages, xgrid, ygrid)

background points (grid coordinates) for evaluation
np.random.seed(13)
background_points = np.c_[np.random.randint(low=0, high=data.Ny,

size=10000),
np.random.randint(low=0, high=data.Nx,

size=10000)].T

We'll make use of the fact that coverages[6] has measurements at all
land points. This will help us decide between land and water.
land_reference = data.coverages[6]

Fit, predict, and plot for each species.
(continues on next page)

6.12. Examples based on real world datasets 1071

scikit-learn user guide, Release 0.23.2

(continued from previous page)

for i, species in enumerate([BV_bunch, MM_bunch]):
print("_" * 80)
print("Modeling distribution of species '%s'" % species.name)

Standardize features
mean = species.cov_train.mean(axis=0)
std = species.cov_train.std(axis=0)
train_cover_std = (species.cov_train - mean) / std

Fit OneClassSVM
print(" - fit OneClassSVM ... ", end='')
clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.5)
clf.fit(train_cover_std)
print("done.")

Plot map of South America
plt.subplot(1, 2, i + 1)
if basemap:

print(" - plot coastlines using basemap")
m = Basemap(projection='cyl', llcrnrlat=Y.min(),

urcrnrlat=Y.max(), llcrnrlon=X.min(),
urcrnrlon=X.max(), resolution='c')

m.drawcoastlines()
m.drawcountries()

else:
print(" - plot coastlines from coverage")
plt.contour(X, Y, land_reference,

levels=[-9998], colors="k",
linestyles="solid")

plt.xticks([])
plt.yticks([])

print(" - predict species distribution")

Predict species distribution using the training data
Z = np.ones((data.Ny, data.Nx), dtype=np.float64)

We'll predict only for the land points.
idx = np.where(land_reference > -9999)
coverages_land = data.coverages[:, idx[0], idx[1]].T

pred = clf.decision_function((coverages_land - mean) / std)
Z *= pred.min()
Z[idx[0], idx[1]] = pred

levels = np.linspace(Z.min(), Z.max(), 25)
Z[land_reference == -9999] = -9999

plot contours of the prediction
plt.contourf(X, Y, Z, levels=levels, cmap=plt.cm.Reds)
plt.colorbar(format='%.2f')

scatter training/testing points
plt.scatter(species.pts_train['dd long'], species.pts_train['dd lat'],

s=2 ** 2, c='black',
marker='^', label='train')

plt.scatter(species.pts_test['dd long'], species.pts_test['dd lat'],
(continues on next page)

1072 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

s=2 ** 2, c='black',
marker='x', label='test')

plt.legend()
plt.title(species.name)
plt.axis('equal')

Compute AUC with regards to background points
pred_background = Z[background_points[0], background_points[1]]
pred_test = clf.decision_function((species.cov_test - mean) / std)
scores = np.r_[pred_test, pred_background]
y = np.r_[np.ones(pred_test.shape), np.zeros(pred_background.shape)]
fpr, tpr, thresholds = metrics.roc_curve(y, scores)
roc_auc = metrics.auc(fpr, tpr)
plt.text(-35, -70, "AUC: %.3f" % roc_auc, ha="right")
print("\n Area under the ROC curve : %f" % roc_auc)

print("\ntime elapsed: %.2fs" % (time() - t0))

plot_species_distribution()
plt.show()

Total running time of the script: (0 minutes 8.472 seconds)

6.12.9 Libsvm GUI

A simple graphical frontend for Libsvm mainly intended for didactic purposes. You can create data points by point
and click and visualize the decision region induced by different kernels and parameter settings.

To create positive examples click the left mouse button; to create negative examples click the right button.

If all examples are from the same class, it uses a one-class SVM.

print(__doc__)

Author: Peter Prettenhoer <peter.prettenhofer@gmail.com>
#
License: BSD 3 clause

import matplotlib
matplotlib.use('TkAgg')
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
try:

from matplotlib.backends.backend_tkagg import NavigationToolbar2Tk
except ImportError:

NavigationToolbar2TkAgg was deprecated in matplotlib 2.2
from matplotlib.backends.backend_tkagg import (

NavigationToolbar2TkAgg as NavigationToolbar2Tk
)

from matplotlib.figure import Figure
from matplotlib.contour import ContourSet

import sys
import numpy as np
import tkinter as Tk

(continues on next page)

6.12. Examples based on real world datasets 1073

scikit-learn user guide, Release 0.23.2

(continued from previous page)

from sklearn import svm
from sklearn.datasets import dump_svmlight_file

y_min, y_max = -50, 50
x_min, x_max = -50, 50

class Model:
"""The Model which hold the data. It implements the
observable in the observer pattern and notifies the
registered observers on change event.
"""

def __init__(self):
self.observers = []
self.surface = None
self.data = []
self.cls = None
self.surface_type = 0

def changed(self, event):
"""Notify the observers. """
for observer in self.observers:

observer.update(event, self)

def add_observer(self, observer):
"""Register an observer. """
self.observers.append(observer)

def set_surface(self, surface):
self.surface = surface

def dump_svmlight_file(self, file):
data = np.array(self.data)
X = data[:, 0:2]
y = data[:, 2]
dump_svmlight_file(X, y, file)

class Controller:
def __init__(self, model):

self.model = model
self.kernel = Tk.IntVar()
self.surface_type = Tk.IntVar()
Whether or not a model has been fitted
self.fitted = False

def fit(self):
print("fit the model")
train = np.array(self.model.data)
X = train[:, 0:2]
y = train[:, 2]

C = float(self.complexity.get())
gamma = float(self.gamma.get())
coef0 = float(self.coef0.get())
degree = int(self.degree.get())

(continues on next page)

1074 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

kernel_map = {0: "linear", 1: "rbf", 2: "poly"}
if len(np.unique(y)) == 1:

clf = svm.OneClassSVM(kernel=kernel_map[self.kernel.get()],
gamma=gamma, coef0=coef0, degree=degree)

clf.fit(X)
else:

clf = svm.SVC(kernel=kernel_map[self.kernel.get()], C=C,
gamma=gamma, coef0=coef0, degree=degree)

clf.fit(X, y)
if hasattr(clf, 'score'):

print("Accuracy:", clf.score(X, y) * 100)
X1, X2, Z = self.decision_surface(clf)
self.model.clf = clf
self.model.set_surface((X1, X2, Z))
self.model.surface_type = self.surface_type.get()
self.fitted = True
self.model.changed("surface")

def decision_surface(self, cls):
delta = 1
x = np.arange(x_min, x_max + delta, delta)
y = np.arange(y_min, y_max + delta, delta)
X1, X2 = np.meshgrid(x, y)
Z = cls.decision_function(np.c_[X1.ravel(), X2.ravel()])
Z = Z.reshape(X1.shape)
return X1, X2, Z

def clear_data(self):
self.model.data = []
self.fitted = False
self.model.changed("clear")

def add_example(self, x, y, label):
self.model.data.append((x, y, label))
self.model.changed("example_added")

update decision surface if already fitted.
self.refit()

def refit(self):
"""Refit the model if already fitted. """
if self.fitted:

self.fit()

class View:
"""Test docstring. """
def __init__(self, root, controller):

f = Figure()
ax = f.add_subplot(111)
ax.set_xticks([])
ax.set_yticks([])
ax.set_xlim((x_min, x_max))
ax.set_ylim((y_min, y_max))
canvas = FigureCanvasTkAgg(f, master=root)
try:

canvas.draw()
(continues on next page)

6.12. Examples based on real world datasets 1075

scikit-learn user guide, Release 0.23.2

(continued from previous page)

except AttributeError:
support for matplotlib (1.*)
canvas.show()

canvas.get_tk_widget().pack(side=Tk.TOP, fill=Tk.BOTH, expand=1)
canvas._tkcanvas.pack(side=Tk.TOP, fill=Tk.BOTH, expand=1)
canvas.mpl_connect('button_press_event', self.onclick)
toolbar = NavigationToolbar2Tk(canvas, root)
toolbar.update()
self.controllbar = ControllBar(root, controller)
self.f = f
self.ax = ax
self.canvas = canvas
self.controller = controller
self.contours = []
self.c_labels = None
self.plot_kernels()

def plot_kernels(self):
self.ax.text(-50, -60, "Linear: $u^T v$")
self.ax.text(-20, -60, r"RBF: $\exp (-\gamma \| u-v \|^2)$")
self.ax.text(10, -60, r"Poly: $(\gamma \, u^T v + r)^d$")

def onclick(self, event):
if event.xdata and event.ydata:

if event.button == 1:
self.controller.add_example(event.xdata, event.ydata, 1)

elif event.button == 3:
self.controller.add_example(event.xdata, event.ydata, -1)

def update_example(self, model, idx):
x, y, l = model.data[idx]
if l == 1:

color = 'w'
elif l == -1:

color = 'k'
self.ax.plot([x], [y], "%so" % color, scalex=0.0, scaley=0.0)

def update(self, event, model):
if event == "examples_loaded":

for i in range(len(model.data)):
self.update_example(model, i)

if event == "example_added":
self.update_example(model, -1)

if event == "clear":
self.ax.clear()
self.ax.set_xticks([])
self.ax.set_yticks([])
self.contours = []
self.c_labels = None
self.plot_kernels()

if event == "surface":
self.remove_surface()
self.plot_support_vectors(model.clf.support_vectors_)
self.plot_decision_surface(model.surface, model.surface_type)

(continues on next page)

1076 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

self.canvas.draw()

def remove_surface(self):
"""Remove old decision surface."""
if len(self.contours) > 0:

for contour in self.contours:
if isinstance(contour, ContourSet):

for lineset in contour.collections:
lineset.remove()

else:
contour.remove()

self.contours = []

def plot_support_vectors(self, support_vectors):
"""Plot the support vectors by placing circles over the
corresponding data points and adds the circle collection
to the contours list."""
cs = self.ax.scatter(support_vectors[:, 0], support_vectors[:, 1],

s=80, edgecolors="k", facecolors="none")
self.contours.append(cs)

def plot_decision_surface(self, surface, type):
X1, X2, Z = surface
if type == 0:

levels = [-1.0, 0.0, 1.0]
linestyles = ['dashed', 'solid', 'dashed']
colors = 'k'
self.contours.append(self.ax.contour(X1, X2, Z, levels,

colors=colors,
linestyles=linestyles))

elif type == 1:
self.contours.append(self.ax.contourf(X1, X2, Z, 10,

cmap=matplotlib.cm.bone,
origin='lower', alpha=0.85))

self.contours.append(self.ax.contour(X1, X2, Z, [0.0], colors='k',
linestyles=['solid']))

else:
raise ValueError("surface type unknown")

class ControllBar:
def __init__(self, root, controller):

fm = Tk.Frame(root)
kernel_group = Tk.Frame(fm)
Tk.Radiobutton(kernel_group, text="Linear", variable=controller.kernel,

value=0, command=controller.refit).pack(anchor=Tk.W)
Tk.Radiobutton(kernel_group, text="RBF", variable=controller.kernel,

value=1, command=controller.refit).pack(anchor=Tk.W)
Tk.Radiobutton(kernel_group, text="Poly", variable=controller.kernel,

value=2, command=controller.refit).pack(anchor=Tk.W)
kernel_group.pack(side=Tk.LEFT)

valbox = Tk.Frame(fm)
controller.complexity = Tk.StringVar()
controller.complexity.set("1.0")
c = Tk.Frame(valbox)

(continues on next page)

6.12. Examples based on real world datasets 1077

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Tk.Label(c, text="C:", anchor="e", width=7).pack(side=Tk.LEFT)
Tk.Entry(c, width=6, textvariable=controller.complexity).pack(

side=Tk.LEFT)
c.pack()

controller.gamma = Tk.StringVar()
controller.gamma.set("0.01")
g = Tk.Frame(valbox)
Tk.Label(g, text="gamma:", anchor="e", width=7).pack(side=Tk.LEFT)
Tk.Entry(g, width=6, textvariable=controller.gamma).pack(side=Tk.LEFT)
g.pack()

controller.degree = Tk.StringVar()
controller.degree.set("3")
d = Tk.Frame(valbox)
Tk.Label(d, text="degree:", anchor="e", width=7).pack(side=Tk.LEFT)
Tk.Entry(d, width=6, textvariable=controller.degree).pack(side=Tk.LEFT)
d.pack()

controller.coef0 = Tk.StringVar()
controller.coef0.set("0")
r = Tk.Frame(valbox)
Tk.Label(r, text="coef0:", anchor="e", width=7).pack(side=Tk.LEFT)
Tk.Entry(r, width=6, textvariable=controller.coef0).pack(side=Tk.LEFT)
r.pack()
valbox.pack(side=Tk.LEFT)

cmap_group = Tk.Frame(fm)
Tk.Radiobutton(cmap_group, text="Hyperplanes",

variable=controller.surface_type, value=0,
command=controller.refit).pack(anchor=Tk.W)

Tk.Radiobutton(cmap_group, text="Surface",
variable=controller.surface_type, value=1,
command=controller.refit).pack(anchor=Tk.W)

cmap_group.pack(side=Tk.LEFT)

train_button = Tk.Button(fm, text='Fit', width=5,
command=controller.fit)

train_button.pack()
fm.pack(side=Tk.LEFT)
Tk.Button(fm, text='Clear', width=5,

command=controller.clear_data).pack(side=Tk.LEFT)

def get_parser():
from optparse import OptionParser
op = OptionParser()
op.add_option("--output",

action="store", type="str", dest="output",
help="Path where to dump data.")

return op

def main(argv):
op = get_parser()
opts, args = op.parse_args(argv[1:])

(continues on next page)

1078 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

root = Tk.Tk()
model = Model()
controller = Controller(model)
root.wm_title("Scikit-learn Libsvm GUI")
view = View(root, controller)
model.add_observer(view)
Tk.mainloop()

if opts.output:
model.dump_svmlight_file(opts.output)

if __name__ == "__main__":
main(sys.argv)

Total running time of the script: (0 minutes 0.000 seconds)

6.12.10 Prediction Latency

This is an example showing the prediction latency of various scikit-learn estimators.

The goal is to measure the latency one can expect when doing predictions either in bulk or atomic (i.e. one by one)
mode.

The plots represent the distribution of the prediction latency as a boxplot.

•

6.12. Examples based on real world datasets 1079

scikit-learn user guide, Release 0.23.2

•

•

1080 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

Out:

Benchmarking SGDRegressor(alpha=0.01, l1_ratio=0.25, penalty='elasticnet', tol=0.0001)
Benchmarking RandomForestRegressor()
Benchmarking SVR()
benchmarking with 100 features
benchmarking with 250 features
benchmarking with 500 features
example run in 10.79s

Authors: Eustache Diemert <eustache@diemert.fr>
License: BSD 3 clause

from collections import defaultdict

import time
import gc
import numpy as np
import matplotlib.pyplot as plt

from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.datasets import make_regression
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import Ridge
from sklearn.linear_model import SGDRegressor
from sklearn.svm import SVR
from sklearn.utils import shuffle

(continues on next page)

6.12. Examples based on real world datasets 1081

scikit-learn user guide, Release 0.23.2

(continued from previous page)

def _not_in_sphinx():
Hack to detect whether we are running by the sphinx builder
return '__file__' in globals()

def atomic_benchmark_estimator(estimator, X_test, verbose=False):
"""Measure runtime prediction of each instance."""
n_instances = X_test.shape[0]
runtimes = np.zeros(n_instances, dtype=np.float)
for i in range(n_instances):

instance = X_test[[i], :]
start = time.time()
estimator.predict(instance)
runtimes[i] = time.time() - start

if verbose:
print("atomic_benchmark runtimes:", min(runtimes), np.percentile(

runtimes, 50), max(runtimes))
return runtimes

def bulk_benchmark_estimator(estimator, X_test, n_bulk_repeats, verbose):
"""Measure runtime prediction of the whole input."""
n_instances = X_test.shape[0]
runtimes = np.zeros(n_bulk_repeats, dtype=np.float)
for i in range(n_bulk_repeats):

start = time.time()
estimator.predict(X_test)
runtimes[i] = time.time() - start

runtimes = np.array(list(map(lambda x: x / float(n_instances), runtimes)))
if verbose:

print("bulk_benchmark runtimes:", min(runtimes), np.percentile(
runtimes, 50), max(runtimes))

return runtimes

def benchmark_estimator(estimator, X_test, n_bulk_repeats=30, verbose=False):
"""
Measure runtimes of prediction in both atomic and bulk mode.

Parameters

estimator : already trained estimator supporting `predict()`
X_test : test input
n_bulk_repeats : how many times to repeat when evaluating bulk mode

Returns

atomic_runtimes, bulk_runtimes : a pair of `np.array` which contain the
runtimes in seconds.

"""
atomic_runtimes = atomic_benchmark_estimator(estimator, X_test, verbose)
bulk_runtimes = bulk_benchmark_estimator(estimator, X_test, n_bulk_repeats,

verbose)
return atomic_runtimes, bulk_runtimes

(continues on next page)

1082 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

def generate_dataset(n_train, n_test, n_features, noise=0.1, verbose=False):
"""Generate a regression dataset with the given parameters."""
if verbose:

print("generating dataset...")

X, y, coef = make_regression(n_samples=n_train + n_test,
n_features=n_features, noise=noise, coef=True)

random_seed = 13
X_train, X_test, y_train, y_test = train_test_split(

X, y, train_size=n_train, test_size=n_test, random_state=random_seed)
X_train, y_train = shuffle(X_train, y_train, random_state=random_seed)

X_scaler = StandardScaler()
X_train = X_scaler.fit_transform(X_train)
X_test = X_scaler.transform(X_test)

y_scaler = StandardScaler()
y_train = y_scaler.fit_transform(y_train[:, None])[:, 0]
y_test = y_scaler.transform(y_test[:, None])[:, 0]

gc.collect()
if verbose:

print("ok")
return X_train, y_train, X_test, y_test

def boxplot_runtimes(runtimes, pred_type, configuration):
"""
Plot a new `Figure` with boxplots of prediction runtimes.

Parameters

runtimes : list of `np.array` of latencies in micro-seconds
cls_names : list of estimator class names that generated the runtimes
pred_type : 'bulk' or 'atomic'

"""

fig, ax1 = plt.subplots(figsize=(10, 6))
bp = plt.boxplot(runtimes,)

cls_infos = ['%s\n(%d %s)' % (estimator_conf['name'],
estimator_conf['complexity_computer'](

estimator_conf['instance']),
estimator_conf['complexity_label']) for

estimator_conf in configuration['estimators']]
plt.setp(ax1, xticklabels=cls_infos)
plt.setp(bp['boxes'], color='black')
plt.setp(bp['whiskers'], color='black')
plt.setp(bp['fliers'], color='red', marker='+')

ax1.yaxis.grid(True, linestyle='-', which='major', color='lightgrey',
alpha=0.5)

(continues on next page)

6.12. Examples based on real world datasets 1083

scikit-learn user guide, Release 0.23.2

(continued from previous page)

ax1.set_axisbelow(True)
ax1.set_title('Prediction Time per Instance - %s, %d feats.' % (

pred_type.capitalize(),
configuration['n_features']))

ax1.set_ylabel('Prediction Time (us)')

plt.show()

def benchmark(configuration):
"""Run the whole benchmark."""
X_train, y_train, X_test, y_test = generate_dataset(

configuration['n_train'], configuration['n_test'],
configuration['n_features'])

stats = {}
for estimator_conf in configuration['estimators']:

print("Benchmarking", estimator_conf['instance'])
estimator_conf['instance'].fit(X_train, y_train)
gc.collect()
a, b = benchmark_estimator(estimator_conf['instance'], X_test)
stats[estimator_conf['name']] = {'atomic': a, 'bulk': b}

cls_names = [estimator_conf['name'] for estimator_conf in configuration[
'estimators']]

runtimes = [1e6 * stats[clf_name]['atomic'] for clf_name in cls_names]
boxplot_runtimes(runtimes, 'atomic', configuration)
runtimes = [1e6 * stats[clf_name]['bulk'] for clf_name in cls_names]
boxplot_runtimes(runtimes, 'bulk (%d)' % configuration['n_test'],

configuration)

def n_feature_influence(estimators, n_train, n_test, n_features, percentile):
"""
Estimate influence of the number of features on prediction time.

Parameters

estimators : dict of (name (str), estimator) to benchmark
n_train : nber of training instances (int)
n_test : nber of testing instances (int)
n_features : list of feature-space dimensionality to test (int)
percentile : percentile at which to measure the speed (int [0-100])

Returns:

percentiles : dict(estimator_name,
dict(n_features, percentile_perf_in_us))

"""
percentiles = defaultdict(defaultdict)
for n in n_features:

print("benchmarking with %d features" % n)
X_train, y_train, X_test, y_test = generate_dataset(n_train, n_test, n)
for cls_name, estimator in estimators.items():

(continues on next page)

1084 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

estimator.fit(X_train, y_train)
gc.collect()
runtimes = bulk_benchmark_estimator(estimator, X_test, 30, False)
percentiles[cls_name][n] = 1e6 * np.percentile(runtimes,

percentile)
return percentiles

def plot_n_features_influence(percentiles, percentile):
fig, ax1 = plt.subplots(figsize=(10, 6))
colors = ['r', 'g', 'b']
for i, cls_name in enumerate(percentiles.keys()):

x = np.array(sorted([n for n in percentiles[cls_name].keys()]))
y = np.array([percentiles[cls_name][n] for n in x])
plt.plot(x, y, color=colors[i],)

ax1.yaxis.grid(True, linestyle='-', which='major', color='lightgrey',
alpha=0.5)

ax1.set_axisbelow(True)
ax1.set_title('Evolution of Prediction Time with #Features')
ax1.set_xlabel('#Features')
ax1.set_ylabel('Prediction Time at %d%%-ile (us)' % percentile)
plt.show()

def benchmark_throughputs(configuration, duration_secs=0.1):
"""benchmark throughput for different estimators."""
X_train, y_train, X_test, y_test = generate_dataset(

configuration['n_train'], configuration['n_test'],
configuration['n_features'])

throughputs = dict()
for estimator_config in configuration['estimators']:

estimator_config['instance'].fit(X_train, y_train)
start_time = time.time()
n_predictions = 0
while (time.time() - start_time) < duration_secs:

estimator_config['instance'].predict(X_test[[0]])
n_predictions += 1

throughputs[estimator_config['name']] = n_predictions / duration_secs
return throughputs

def plot_benchmark_throughput(throughputs, configuration):
fig, ax = plt.subplots(figsize=(10, 6))
colors = ['r', 'g', 'b']
cls_infos = ['%s\n(%d %s)' % (estimator_conf['name'],

estimator_conf['complexity_computer'](
estimator_conf['instance']),

estimator_conf['complexity_label']) for
estimator_conf in configuration['estimators']]

cls_values = [throughputs[estimator_conf['name']] for estimator_conf in
configuration['estimators']]

plt.bar(range(len(throughputs)), cls_values, width=0.5, color=colors)
ax.set_xticks(np.linspace(0.25, len(throughputs) - 0.75, len(throughputs)))
ax.set_xticklabels(cls_infos, fontsize=10)
ymax = max(cls_values) * 1.2
ax.set_ylim((0, ymax))
ax.set_ylabel('Throughput (predictions/sec)')

(continues on next page)

6.12. Examples based on real world datasets 1085

scikit-learn user guide, Release 0.23.2

(continued from previous page)

ax.set_title('Prediction Throughput for different estimators (%d '
'features)' % configuration['n_features'])

plt.show()

###
Main code

start_time = time.time()

###
Benchmark bulk/atomic prediction speed for various regressors
configuration = {

'n_train': int(1e3),
'n_test': int(1e2),
'n_features': int(1e2),
'estimators': [

{'name': 'Linear Model',
'instance': SGDRegressor(penalty='elasticnet', alpha=0.01,

l1_ratio=0.25, tol=1e-4),
'complexity_label': 'non-zero coefficients',
'complexity_computer': lambda clf: np.count_nonzero(clf.coef_)},
{'name': 'RandomForest',
'instance': RandomForestRegressor(),
'complexity_label': 'estimators',
'complexity_computer': lambda clf: clf.n_estimators},
{'name': 'SVR',
'instance': SVR(kernel='rbf'),
'complexity_label': 'support vectors',
'complexity_computer': lambda clf: len(clf.support_vectors_)},

]
}
benchmark(configuration)

benchmark n_features influence on prediction speed
percentile = 90
percentiles = n_feature_influence({'ridge': Ridge()},

configuration['n_train'],
configuration['n_test'],
[100, 250, 500], percentile)

plot_n_features_influence(percentiles, percentile)

benchmark throughput
throughputs = benchmark_throughputs(configuration)
plot_benchmark_throughput(throughputs, configuration)

stop_time = time.time()
print("example run in %.2fs" % (stop_time - start_time))

Total running time of the script: (0 minutes 11.092 seconds)

6.12.11 Out-of-core classification of text documents

This is an example showing how scikit-learn can be used for classification using an out-of-core approach: learning
from data that doesn’t fit into main memory. We make use of an online classifier, i.e., one that supports the partial_fit
method, that will be fed with batches of examples. To guarantee that the features space remains the same over time

1086 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

we leverage a HashingVectorizer that will project each example into the same feature space. This is especially useful
in the case of text classification where new features (words) may appear in each batch.

Authors: Eustache Diemert <eustache@diemert.fr>
@FedericoV <https://github.com/FedericoV/>
License: BSD 3 clause

from glob import glob
import itertools
import os.path
import re
import tarfile
import time
import sys

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import rcParams

from html.parser import HTMLParser
from urllib.request import urlretrieve
from sklearn.datasets import get_data_home
from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.linear_model import SGDClassifier
from sklearn.linear_model import PassiveAggressiveClassifier
from sklearn.linear_model import Perceptron
from sklearn.naive_bayes import MultinomialNB

def _not_in_sphinx():
Hack to detect whether we are running by the sphinx builder
return '__file__' in globals()

Reuters Dataset related routines

The dataset used in this example is Reuters-21578 as provided by the UCI ML repository. It will be automatically
downloaded and uncompressed on first run.

class ReutersParser(HTMLParser):
"""Utility class to parse a SGML file and yield documents one at a time."""

def __init__(self, encoding='latin-1'):
HTMLParser.__init__(self)
self._reset()
self.encoding = encoding

def handle_starttag(self, tag, attrs):
method = 'start_' + tag
getattr(self, method, lambda x: None)(attrs)

def handle_endtag(self, tag):
method = 'end_' + tag
getattr(self, method, lambda: None)()

def _reset(self):
self.in_title = 0

(continues on next page)

6.12. Examples based on real world datasets 1087

scikit-learn user guide, Release 0.23.2

(continued from previous page)

self.in_body = 0
self.in_topics = 0
self.in_topic_d = 0
self.title = ""
self.body = ""
self.topics = []
self.topic_d = ""

def parse(self, fd):
self.docs = []
for chunk in fd:

self.feed(chunk.decode(self.encoding))
for doc in self.docs:

yield doc
self.docs = []

self.close()

def handle_data(self, data):
if self.in_body:

self.body += data
elif self.in_title:

self.title += data
elif self.in_topic_d:

self.topic_d += data

def start_reuters(self, attributes):
pass

def end_reuters(self):
self.body = re.sub(r'\s+', r' ', self.body)
self.docs.append({'title': self.title,

'body': self.body,
'topics': self.topics})

self._reset()

def start_title(self, attributes):
self.in_title = 1

def end_title(self):
self.in_title = 0

def start_body(self, attributes):
self.in_body = 1

def end_body(self):
self.in_body = 0

def start_topics(self, attributes):
self.in_topics = 1

def end_topics(self):
self.in_topics = 0

def start_d(self, attributes):
self.in_topic_d = 1

def end_d(self):
(continues on next page)

1088 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

self.in_topic_d = 0
self.topics.append(self.topic_d)
self.topic_d = ""

def stream_reuters_documents(data_path=None):
"""Iterate over documents of the Reuters dataset.

The Reuters archive will automatically be downloaded and uncompressed if
the `data_path` directory does not exist.

Documents are represented as dictionaries with 'body' (str),
'title' (str), 'topics' (list(str)) keys.

"""

DOWNLOAD_URL = ('http://archive.ics.uci.edu/ml/machine-learning-databases/'
'reuters21578-mld/reuters21578.tar.gz')

ARCHIVE_FILENAME = 'reuters21578.tar.gz'

if data_path is None:
data_path = os.path.join(get_data_home(), "reuters")

if not os.path.exists(data_path):
"""Download the dataset."""
print("downloading dataset (once and for all) into %s" %

data_path)
os.mkdir(data_path)

def progress(blocknum, bs, size):
total_sz_mb = '%.2f MB' % (size / 1e6)
current_sz_mb = '%.2f MB' % ((blocknum * bs) / 1e6)
if _not_in_sphinx():

sys.stdout.write(
'\rdownloaded %s / %s' % (current_sz_mb, total_sz_mb))

archive_path = os.path.join(data_path, ARCHIVE_FILENAME)
urlretrieve(DOWNLOAD_URL, filename=archive_path,

reporthook=progress)
if _not_in_sphinx():

sys.stdout.write('\r')
print("untarring Reuters dataset...")
tarfile.open(archive_path, 'r:gz').extractall(data_path)
print("done.")

parser = ReutersParser()
for filename in glob(os.path.join(data_path, "*.sgm")):

for doc in parser.parse(open(filename, 'rb')):
yield doc

Main

Create the vectorizer and limit the number of features to a reasonable maximum

vectorizer = HashingVectorizer(decode_error='ignore', n_features=2 ** 18,
alternate_sign=False)

(continues on next page)

6.12. Examples based on real world datasets 1089

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Iterator over parsed Reuters SGML files.
data_stream = stream_reuters_documents()

We learn a binary classification between the "acq" class and all the others.
"acq" was chosen as it is more or less evenly distributed in the Reuters
files. For other datasets, one should take care of creating a test set with
a realistic portion of positive instances.
all_classes = np.array([0, 1])
positive_class = 'acq'

Here are some classifiers that support the `partial_fit` method
partial_fit_classifiers = {

'SGD': SGDClassifier(max_iter=5),
'Perceptron': Perceptron(),
'NB Multinomial': MultinomialNB(alpha=0.01),
'Passive-Aggressive': PassiveAggressiveClassifier(),

}

def get_minibatch(doc_iter, size, pos_class=positive_class):
"""Extract a minibatch of examples, return a tuple X_text, y.

Note: size is before excluding invalid docs with no topics assigned.

"""
data = [('{title}\n\n{body}'.format(**doc), pos_class in doc['topics'])

for doc in itertools.islice(doc_iter, size)
if doc['topics']]

if not len(data):
return np.asarray([], dtype=int), np.asarray([], dtype=int)

X_text, y = zip(*data)
return X_text, np.asarray(y, dtype=int)

def iter_minibatches(doc_iter, minibatch_size):
"""Generator of minibatches."""
X_text, y = get_minibatch(doc_iter, minibatch_size)
while len(X_text):

yield X_text, y
X_text, y = get_minibatch(doc_iter, minibatch_size)

test data statistics
test_stats = {'n_test': 0, 'n_test_pos': 0}

First we hold out a number of examples to estimate accuracy
n_test_documents = 1000
tick = time.time()
X_test_text, y_test = get_minibatch(data_stream, 1000)
parsing_time = time.time() - tick
tick = time.time()
X_test = vectorizer.transform(X_test_text)
vectorizing_time = time.time() - tick
test_stats['n_test'] += len(y_test)
test_stats['n_test_pos'] += sum(y_test)

(continues on next page)

1090 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

print("Test set is %d documents (%d positive)" % (len(y_test), sum(y_test)))

def progress(cls_name, stats):
"""Report progress information, return a string."""
duration = time.time() - stats['t0']
s = "%20s classifier : \t" % cls_name
s += "%(n_train)6d train docs (%(n_train_pos)6d positive) " % stats
s += "%(n_test)6d test docs (%(n_test_pos)6d positive) " % test_stats
s += "accuracy: %(accuracy).3f " % stats
s += "in %.2fs (%5d docs/s)" % (duration, stats['n_train'] / duration)
return s

cls_stats = {}

for cls_name in partial_fit_classifiers:
stats = {'n_train': 0, 'n_train_pos': 0,

'accuracy': 0.0, 'accuracy_history': [(0, 0)], 't0': time.time(),
'runtime_history': [(0, 0)], 'total_fit_time': 0.0}

cls_stats[cls_name] = stats

get_minibatch(data_stream, n_test_documents)
Discard test set

We will feed the classifier with mini-batches of 1000 documents; this means
we have at most 1000 docs in memory at any time. The smaller the document
batch, the bigger the relative overhead of the partial fit methods.
minibatch_size = 1000

Create the data_stream that parses Reuters SGML files and iterates on
documents as a stream.
minibatch_iterators = iter_minibatches(data_stream, minibatch_size)
total_vect_time = 0.0

Main loop : iterate on mini-batches of examples
for i, (X_train_text, y_train) in enumerate(minibatch_iterators):

tick = time.time()
X_train = vectorizer.transform(X_train_text)
total_vect_time += time.time() - tick

for cls_name, cls in partial_fit_classifiers.items():
tick = time.time()
update estimator with examples in the current mini-batch
cls.partial_fit(X_train, y_train, classes=all_classes)

accumulate test accuracy stats
cls_stats[cls_name]['total_fit_time'] += time.time() - tick
cls_stats[cls_name]['n_train'] += X_train.shape[0]
cls_stats[cls_name]['n_train_pos'] += sum(y_train)
tick = time.time()
cls_stats[cls_name]['accuracy'] = cls.score(X_test, y_test)
cls_stats[cls_name]['prediction_time'] = time.time() - tick
acc_history = (cls_stats[cls_name]['accuracy'],

cls_stats[cls_name]['n_train'])
cls_stats[cls_name]['accuracy_history'].append(acc_history)

(continues on next page)

6.12. Examples based on real world datasets 1091

scikit-learn user guide, Release 0.23.2

(continued from previous page)

run_history = (cls_stats[cls_name]['accuracy'],
total_vect_time + cls_stats[cls_name]['total_fit_time'])

cls_stats[cls_name]['runtime_history'].append(run_history)

if i % 3 == 0:
print(progress(cls_name, cls_stats[cls_name]))

if i % 3 == 0:
print('\n')

Out:

Test set is 975 documents (104 positive)
SGD classifier : 981 train docs (125 positive) 975

→˓test docs (104 positive) accuracy: 0.914 in 0.76s (1292 docs/s)
Perceptron classifier : 981 train docs (125 positive) 975

→˓test docs (104 positive) accuracy: 0.912 in 0.76s (1287 docs/s)
NB Multinomial classifier : 981 train docs (125 positive) 975

→˓test docs (104 positive) accuracy: 0.893 in 0.78s (1256 docs/s)
Passive-Aggressive classifier : 981 train docs (125 positive) 975

→˓test docs (104 positive) accuracy: 0.927 in 0.78s (1251 docs/s)

SGD classifier : 3851 train docs (445 positive) 975
→˓test docs (104 positive) accuracy: 0.951 in 2.17s (1774 docs/s)

Perceptron classifier : 3851 train docs (445 positive) 975
→˓test docs (104 positive) accuracy: 0.942 in 2.17s (1772 docs/s)

NB Multinomial classifier : 3851 train docs (445 positive) 975
→˓test docs (104 positive) accuracy: 0.910 in 2.19s (1757 docs/s)
Passive-Aggressive classifier : 3851 train docs (445 positive) 975

→˓test docs (104 positive) accuracy: 0.958 in 2.19s (1755 docs/s)

SGD classifier : 6715 train docs (811 positive) 975
→˓test docs (104 positive) accuracy: 0.951 in 3.50s (1917 docs/s)

Perceptron classifier : 6715 train docs (811 positive) 975
→˓test docs (104 positive) accuracy: 0.918 in 3.50s (1916 docs/s)

NB Multinomial classifier : 6715 train docs (811 positive) 975
→˓test docs (104 positive) accuracy: 0.920 in 3.52s (1907 docs/s)
Passive-Aggressive classifier : 6715 train docs (811 positive) 975

→˓test docs (104 positive) accuracy: 0.955 in 3.52s (1905 docs/s)

SGD classifier : 9509 train docs (1093 positive) 975
→˓test docs (104 positive) accuracy: 0.957 in 4.81s (1975 docs/s)

Perceptron classifier : 9509 train docs (1093 positive) 975
→˓test docs (104 positive) accuracy: 0.966 in 4.82s (1974 docs/s)

NB Multinomial classifier : 9509 train docs (1093 positive) 975
→˓test docs (104 positive) accuracy: 0.929 in 4.83s (1967 docs/s)
Passive-Aggressive classifier : 9509 train docs (1093 positive) 975

→˓test docs (104 positive) accuracy: 0.962 in 4.84s (1966 docs/s)

SGD classifier : 12031 train docs (1396 positive) 975
→˓test docs (104 positive) accuracy: 0.961 in 6.15s (1957 docs/s)

Perceptron classifier : 12031 train docs (1396 positive) 975
→˓test docs (104 positive) accuracy: 0.935 in 6.15s (1956 docs/s)

NB Multinomial classifier : 12031 train docs (1396 positive) 975
→˓test docs (104 positive) accuracy: 0.933 in 6.17s (1951 docs/s) (continues on next page)

1092 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Passive-Aggressive classifier : 12031 train docs (1396 positive) 975
→˓test docs (104 positive) accuracy: 0.965 in 6.17s (1950 docs/s)

SGD classifier : 14450 train docs (1738 positive) 975
→˓test docs (104 positive) accuracy: 0.965 in 7.43s (1945 docs/s)

Perceptron classifier : 14450 train docs (1738 positive) 975
→˓test docs (104 positive) accuracy: 0.927 in 7.43s (1944 docs/s)

NB Multinomial classifier : 14450 train docs (1738 positive) 975
→˓test docs (104 positive) accuracy: 0.937 in 7.45s (1940 docs/s)
Passive-Aggressive classifier : 14450 train docs (1738 positive) 975

→˓test docs (104 positive) accuracy: 0.954 in 7.45s (1939 docs/s)

SGD classifier : 17306 train docs (2163 positive) 975
→˓test docs (104 positive) accuracy: 0.967 in 8.77s (1973 docs/s)

Perceptron classifier : 17306 train docs (2163 positive) 975
→˓test docs (104 positive) accuracy: 0.956 in 8.77s (1972 docs/s)

NB Multinomial classifier : 17306 train docs (2163 positive) 975
→˓test docs (104 positive) accuracy: 0.943 in 8.79s (1968 docs/s)
Passive-Aggressive classifier : 17306 train docs (2163 positive) 975

→˓test docs (104 positive) accuracy: 0.967 in 8.79s (1968 docs/s)

Plot results

The plot represents the learning curve of the classifier: the evolution of classification accuracy over the course of the
mini-batches. Accuracy is measured on the first 1000 samples, held out as a validation set.

To limit the memory consumption, we queue examples up to a fixed amount before feeding them to the learner.

def plot_accuracy(x, y, x_legend):
"""Plot accuracy as a function of x."""
x = np.array(x)
y = np.array(y)
plt.title('Classification accuracy as a function of %s' % x_legend)
plt.xlabel('%s' % x_legend)
plt.ylabel('Accuracy')
plt.grid(True)
plt.plot(x, y)

rcParams['legend.fontsize'] = 10
cls_names = list(sorted(cls_stats.keys()))

Plot accuracy evolution
plt.figure()
for _, stats in sorted(cls_stats.items()):

Plot accuracy evolution with #examples
accuracy, n_examples = zip(*stats['accuracy_history'])
plot_accuracy(n_examples, accuracy, "training examples (#)")
ax = plt.gca()
ax.set_ylim((0.8, 1))

plt.legend(cls_names, loc='best')

plt.figure()

(continues on next page)

6.12. Examples based on real world datasets 1093

scikit-learn user guide, Release 0.23.2

(continued from previous page)

for _, stats in sorted(cls_stats.items()):
Plot accuracy evolution with runtime
accuracy, runtime = zip(*stats['runtime_history'])
plot_accuracy(runtime, accuracy, 'runtime (s)')
ax = plt.gca()
ax.set_ylim((0.8, 1))

plt.legend(cls_names, loc='best')

Plot fitting times
plt.figure()
fig = plt.gcf()
cls_runtime = [stats['total_fit_time']

for cls_name, stats in sorted(cls_stats.items())]

cls_runtime.append(total_vect_time)
cls_names.append('Vectorization')
bar_colors = ['b', 'g', 'r', 'c', 'm', 'y']

ax = plt.subplot(111)
rectangles = plt.bar(range(len(cls_names)), cls_runtime, width=0.5,

color=bar_colors)

ax.set_xticks(np.linspace(0, len(cls_names) - 1, len(cls_names)))
ax.set_xticklabels(cls_names, fontsize=10)
ymax = max(cls_runtime) * 1.2
ax.set_ylim((0, ymax))
ax.set_ylabel('runtime (s)')
ax.set_title('Training Times')

def autolabel(rectangles):
"""attach some text vi autolabel on rectangles."""
for rect in rectangles:

height = rect.get_height()
ax.text(rect.get_x() + rect.get_width() / 2.,

1.05 * height, '%.4f' % height,
ha='center', va='bottom')

plt.setp(plt.xticks()[1], rotation=30)

autolabel(rectangles)
plt.tight_layout()
plt.show()

Plot prediction times
plt.figure()
cls_runtime = []
cls_names = list(sorted(cls_stats.keys()))
for cls_name, stats in sorted(cls_stats.items()):

cls_runtime.append(stats['prediction_time'])
cls_runtime.append(parsing_time)
cls_names.append('Read/Parse\n+Feat.Extr.')
cls_runtime.append(vectorizing_time)
cls_names.append('Hashing\n+Vect.')

ax = plt.subplot(111)
rectangles = plt.bar(range(len(cls_names)), cls_runtime, width=0.5,

(continues on next page)

1094 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

color=bar_colors)

ax.set_xticks(np.linspace(0, len(cls_names) - 1, len(cls_names)))
ax.set_xticklabels(cls_names, fontsize=8)
plt.setp(plt.xticks()[1], rotation=30)
ymax = max(cls_runtime) * 1.2
ax.set_ylim((0, ymax))
ax.set_ylabel('runtime (s)')
ax.set_title('Prediction Times (%d instances)' % n_test_documents)
autolabel(rectangles)
plt.tight_layout()
plt.show()

•

6.12. Examples based on real world datasets 1095

scikit-learn user guide, Release 0.23.2

•

1096 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

6.12. Examples based on real world datasets 1097

scikit-learn user guide, Release 0.23.2

•

Total running time of the script: (0 minutes 9.873 seconds)

6.13 Feature Selection

Examples concerning the sklearn.feature_selection module.

6.13.1 Recursive feature elimination

A recursive feature elimination example showing the relevance of pixels in a digit classification task.

Note: See also Recursive feature elimination with cross-validation

1098 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

print(__doc__)

from sklearn.svm import SVC
from sklearn.datasets import load_digits
from sklearn.feature_selection import RFE
import matplotlib.pyplot as plt

Load the digits dataset
digits = load_digits()
X = digits.images.reshape((len(digits.images), -1))
y = digits.target

Create the RFE object and rank each pixel
svc = SVC(kernel="linear", C=1)
rfe = RFE(estimator=svc, n_features_to_select=1, step=1)
rfe.fit(X, y)
ranking = rfe.ranking_.reshape(digits.images[0].shape)

Plot pixel ranking
plt.matshow(ranking, cmap=plt.cm.Blues)
plt.colorbar()
plt.title("Ranking of pixels with RFE")
plt.show()

Total running time of the script: (0 minutes 3.634 seconds)

6.13. Feature Selection 1099

scikit-learn user guide, Release 0.23.2

6.13.2 Comparison of F-test and mutual information

This example illustrates the differences between univariate F-test statistics and mutual information.

We consider 3 features x_1, x_2, x_3 distributed uniformly over [0, 1], the target depends on them as follows:

y = x_1 + sin(6 * pi * x_2) + 0.1 * N(0, 1), that is the third features is completely irrelevant.

The code below plots the dependency of y against individual x_i and normalized values of univariate F-tests statistics
and mutual information.

As F-test captures only linear dependency, it rates x_1 as the most discriminative feature. On the other hand, mutual
information can capture any kind of dependency between variables and it rates x_2 as the most discriminative feature,
which probably agrees better with our intuitive perception for this example. Both methods correctly marks x_3 as
irrelevant.

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn.feature_selection import f_regression, mutual_info_regression

np.random.seed(0)
X = np.random.rand(1000, 3)
y = X[:, 0] + np.sin(6 * np.pi * X[:, 1]) + 0.1 * np.random.randn(1000)

f_test, _ = f_regression(X, y)
f_test /= np.max(f_test)

mi = mutual_info_regression(X, y)
mi /= np.max(mi)

plt.figure(figsize=(15, 5))
for i in range(3):

plt.subplot(1, 3, i + 1)
plt.scatter(X[:, i], y, edgecolor='black', s=20)
plt.xlabel("$x_{}$".format(i + 1), fontsize=14)
if i == 0:

plt.ylabel("y", fontsize=14)
plt.title("F-test={:.2f}, MI={:.2f}".format(f_test[i], mi[i]),

fontsize=16)
plt.show()

Total running time of the script: (0 minutes 0.243 seconds)

1100 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

6.13.3 Pipeline Anova SVM

Simple usage of Pipeline that runs successively a univariate feature selection with anova and then a SVM of the
selected features.

Using a sub-pipeline, the fitted coefficients can be mapped back into the original feature space.

Out:

precision recall f1-score support

0 0.75 0.50 0.60 6
1 0.67 1.00 0.80 6
2 0.67 0.80 0.73 5
3 1.00 0.75 0.86 8

accuracy 0.76 25
macro avg 0.77 0.76 0.75 25

weighted avg 0.79 0.76 0.76 25

[[-0.23912051 0. 0. 0. -0.32369992 0.
0. 0. 0. 0. 0. 0.
0.1083669 0. 0. 0. 0. 0.
0. 0.]

[0.43878897 0. 0. 0. -0.514157 0.
0. 0. 0. 0. 0. 0.
0.04845592 0. 0. 0. 0. 0.
0. 0.]

[-0.65382765 0. 0. 0. 0.57962287 0.
0. 0. 0. 0. 0. 0.
-0.04736736 0. 0. 0. 0. 0.
0. 0.]

[0.544033 0. 0. 0. 0.58478674 0.
0. 0. 0. 0. 0. 0.
-0.11344771 0. 0. 0. 0. 0.
0. 0.]]

from sklearn import svm
from sklearn.datasets import make_classification
from sklearn.feature_selection import SelectKBest, f_regression
from sklearn.pipeline import make_pipeline
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report

print(__doc__)

import some data to play with
X, y = make_classification(

n_features=20, n_informative=3, n_redundant=0, n_classes=4,
n_clusters_per_class=2)

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)

(continues on next page)

6.13. Feature Selection 1101

scikit-learn user guide, Release 0.23.2

(continued from previous page)

ANOVA SVM-C
1) anova filter, take 3 best ranked features
anova_filter = SelectKBest(f_regression, k=3)
2) svm
clf = svm.LinearSVC()

anova_svm = make_pipeline(anova_filter, clf)
anova_svm.fit(X_train, y_train)
y_pred = anova_svm.predict(X_test)
print(classification_report(y_test, y_pred))

coef = anova_svm[:-1].inverse_transform(anova_svm['linearsvc'].coef_)
print(coef)

Total running time of the script: (0 minutes 0.009 seconds)

6.13.4 Recursive feature elimination with cross-validation

A recursive feature elimination example with automatic tuning of the number of features selected with cross-validation.

Out:

Optimal number of features : 3

1102 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

print(__doc__)

import matplotlib.pyplot as plt
from sklearn.svm import SVC
from sklearn.model_selection import StratifiedKFold
from sklearn.feature_selection import RFECV
from sklearn.datasets import make_classification

Build a classification task using 3 informative features
X, y = make_classification(n_samples=1000, n_features=25, n_informative=3,

n_redundant=2, n_repeated=0, n_classes=8,
n_clusters_per_class=1, random_state=0)

Create the RFE object and compute a cross-validated score.
svc = SVC(kernel="linear")
The "accuracy" scoring is proportional to the number of correct
classifications
rfecv = RFECV(estimator=svc, step=1, cv=StratifiedKFold(2),

scoring='accuracy')
rfecv.fit(X, y)

print("Optimal number of features : %d" % rfecv.n_features_)

Plot number of features VS. cross-validation scores
plt.figure()
plt.xlabel("Number of features selected")
plt.ylabel("Cross validation score (nb of correct classifications)")
plt.plot(range(1, len(rfecv.grid_scores_) + 1), rfecv.grid_scores_)
plt.show()

Total running time of the script: (0 minutes 1.911 seconds)

6.13.5 Feature selection using SelectFromModel and LassoCV

Use SelectFromModel meta-transformer along with Lasso to select the best couple of features from the diabetes
dataset.

Since the L1 norm promotes sparsity of features we might be interested in selecting only a subset of the most interesting
features from the dataset. This example shows how to select two the most interesting features from the diabetes dataset.

Diabetes dataset consists of 10 variables (features) collected from 442 diabetes patients. This example shows how to
use SelectFromModel and LassoCv to find the best two features predicting disease progression after one year from the
baseline.

Authors: Manoj Kumar, Maria Telenczuk

License: BSD 3 clause

print(__doc__)

import matplotlib.pyplot as plt
import numpy as np

from sklearn.datasets import load_diabetes

(continues on next page)

6.13. Feature Selection 1103

mailto:mks542@nyu.edu
https://github.com/maikia

scikit-learn user guide, Release 0.23.2

(continued from previous page)

from sklearn.feature_selection import SelectFromModel
from sklearn.linear_model import LassoCV

Load the data

First, let’s load the diabetes dataset which is available from within sklearn. Then, we will look what features are
collected for the diabates patients:

diabetes = load_diabetes()

X = diabetes.data
y = diabetes.target

feature_names = diabetes.feature_names
print(feature_names)

Out:

['age', 'sex', 'bmi', 'bp', 's1', 's2', 's3', 's4', 's5', 's6']

Find importance of the features

To decide on the importance of the features we are going to use LassoCV estimator. The features with the highest
absolute coef_ value are considered the most important

clf = LassoCV().fit(X, y)
importance = np.abs(clf.coef_)
print(importance)

Out:

[6.49684455 235.99640534 521.73854261 321.06689245 569.4426838
302.45627915 0. 143.6995665 669.92633112 66.83430445]

Select from the model features with the higest score

Now we want to select the two features which are the most important. SelectFromModel() allows for setting the
threshold. Only the features with the coef_ higher than the threshold will remain. Here, we want to set the threshold
slightly above the third highest coef_ calculated by LassoCV() from our data.

idx_third = importance.argsort()[-3]
threshold = importance[idx_third] + 0.01

idx_features = (-importance).argsort()[:2]
name_features = np.array(feature_names)[idx_features]
print('Selected features: {}'.format(name_features))

sfm = SelectFromModel(clf, threshold=threshold)
sfm.fit(X, y)
X_transform = sfm.transform(X)

n_features = sfm.transform(X).shape[1]

1104 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Out:

Selected features: ['s5' 's1']

Plot the two most important features

Finally we will plot the selected two features from the data.

plt.title(
"Features from diabets using SelectFromModel with "
"threshold %0.3f." % sfm.threshold)

feature1 = X_transform[:, 0]
feature2 = X_transform[:, 1]
plt.plot(feature1, feature2, 'r.')
plt.xlabel("First feature: {}".format(name_features[0]))
plt.ylabel("Second feature: {}".format(name_features[1]))
plt.ylim([np.min(feature2), np.max(feature2)])
plt.show()

Total running time of the script: (0 minutes 0.187 seconds)

6.13. Feature Selection 1105

scikit-learn user guide, Release 0.23.2

6.13.6 Test with permutations the significance of a classification score

In order to test if a classification score is significative a technique in repeating the classification procedure after ran-
domizing, permuting, the labels. The p-value is then given by the percentage of runs for which the score obtained is
greater than the classification score obtained in the first place.

Out:

Classification score 0.5133333333333333 (pvalue : 0.009900990099009901)

Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
License: BSD 3 clause

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from sklearn.svm import SVC
from sklearn.model_selection import StratifiedKFold

(continues on next page)

1106 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

from sklearn.model_selection import permutation_test_score
from sklearn import datasets

###
Loading a dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target
n_classes = np.unique(y).size

Some noisy data not correlated
random = np.random.RandomState(seed=0)
E = random.normal(size=(len(X), 2200))

Add noisy data to the informative features for make the task harder
X = np.c_[X, E]

svm = SVC(kernel='linear')
cv = StratifiedKFold(2)

score, permutation_scores, pvalue = permutation_test_score(
svm, X, y, scoring="accuracy", cv=cv, n_permutations=100, n_jobs=1)

print("Classification score %s (pvalue : %s)" % (score, pvalue))

###
View histogram of permutation scores
plt.hist(permutation_scores, 20, label='Permutation scores',

edgecolor='black')
ylim = plt.ylim()
BUG: vlines(..., linestyle='--') fails on older versions of matplotlib
plt.vlines(score, ylim[0], ylim[1], linestyle='--',
color='g', linewidth=3, label='Classification Score'
' (pvalue %s)' % pvalue)
plt.vlines(1.0 / n_classes, ylim[0], ylim[1], linestyle='--',
color='k', linewidth=3, label='Luck')
plt.plot(2 * [score], ylim, '--g', linewidth=3,

label='Classification Score'
' (pvalue %s)' % pvalue)

plt.plot(2 * [1. / n_classes], ylim, '--k', linewidth=3, label='Luck')

plt.ylim(ylim)
plt.legend()
plt.xlabel('Score')
plt.show()

Total running time of the script: (0 minutes 7.892 seconds)

6.13.7 Univariate Feature Selection

An example showing univariate feature selection.

Noisy (non informative) features are added to the iris data and univariate feature selection is applied. For each feature,
we plot the p-values for the univariate feature selection and the corresponding weights of an SVM. We can see that
univariate feature selection selects the informative features and that these have larger SVM weights.

6.13. Feature Selection 1107

scikit-learn user guide, Release 0.23.2

In the total set of features, only the 4 first ones are significant. We can see that they have the highest score with
univariate feature selection. The SVM assigns a large weight to one of these features, but also Selects many of the
non-informative features. Applying univariate feature selection before the SVM increases the SVM weight attributed
to the significant features, and will thus improve classification.

Out:

Classification accuracy without selecting features: 0.789
Classification accuracy after univariate feature selection: 0.868

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn.svm import LinearSVC
from sklearn.pipeline import make_pipeline

(continues on next page)

1108 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

from sklearn.feature_selection import SelectKBest, f_classif

###
Import some data to play with

The iris dataset
X, y = load_iris(return_X_y=True)

Some noisy data not correlated
E = np.random.RandomState(42).uniform(0, 0.1, size=(X.shape[0], 20))

Add the noisy data to the informative features
X = np.hstack((X, E))

Split dataset to select feature and evaluate the classifier
X_train, X_test, y_train, y_test = train_test_split(

X, y, stratify=y, random_state=0
)

plt.figure(1)
plt.clf()

X_indices = np.arange(X.shape[-1])

###
Univariate feature selection with F-test for feature scoring
We use the default selection function to select the four
most significant features
selector = SelectKBest(f_classif, k=4)
selector.fit(X_train, y_train)
scores = -np.log10(selector.pvalues_)
scores /= scores.max()
plt.bar(X_indices - .45, scores, width=.2,

label=r'Univariate score ($-Log(p_{value})$)')

###
Compare to the weights of an SVM
clf = make_pipeline(MinMaxScaler(), LinearSVC())
clf.fit(X_train, y_train)
print('Classification accuracy without selecting features: {:.3f}'

.format(clf.score(X_test, y_test)))

svm_weights = np.abs(clf[-1].coef_).sum(axis=0)
svm_weights /= svm_weights.sum()

plt.bar(X_indices - .25, svm_weights, width=.2, label='SVM weight')

clf_selected = make_pipeline(
SelectKBest(f_classif, k=4), MinMaxScaler(), LinearSVC()

)
clf_selected.fit(X_train, y_train)
print('Classification accuracy after univariate feature selection: {:.3f}'

.format(clf_selected.score(X_test, y_test)))

svm_weights_selected = np.abs(clf_selected[-1].coef_).sum(axis=0)
svm_weights_selected /= svm_weights_selected.sum()

(continues on next page)

6.13. Feature Selection 1109

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.bar(X_indices[selector.get_support()] - .05, svm_weights_selected,
width=.2, label='SVM weights after selection')

plt.title("Comparing feature selection")
plt.xlabel('Feature number')
plt.yticks(())
plt.axis('tight')
plt.legend(loc='upper right')
plt.show()

Total running time of the script: (0 minutes 0.107 seconds)

6.14 Gaussian Mixture Models

Examples concerning the sklearn.mixture module.

6.14.1 Density Estimation for a Gaussian mixture

Plot the density estimation of a mixture of two Gaussians. Data is generated from two Gaussians with different centers
and covariance matrices.

1110 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
from sklearn import mixture

n_samples = 300

generate random sample, two components
np.random.seed(0)

generate spherical data centered on (20, 20)
shifted_gaussian = np.random.randn(n_samples, 2) + np.array([20, 20])

generate zero centered stretched Gaussian data
C = np.array([[0., -0.7], [3.5, .7]])
stretched_gaussian = np.dot(np.random.randn(n_samples, 2), C)

concatenate the two datasets into the final training set
X_train = np.vstack([shifted_gaussian, stretched_gaussian])

fit a Gaussian Mixture Model with two components
clf = mixture.GaussianMixture(n_components=2, covariance_type='full')
clf.fit(X_train)

display predicted scores by the model as a contour plot
x = np.linspace(-20., 30.)
y = np.linspace(-20., 40.)
X, Y = np.meshgrid(x, y)
XX = np.array([X.ravel(), Y.ravel()]).T
Z = -clf.score_samples(XX)
Z = Z.reshape(X.shape)

CS = plt.contour(X, Y, Z, norm=LogNorm(vmin=1.0, vmax=1000.0),
levels=np.logspace(0, 3, 10))

CB = plt.colorbar(CS, shrink=0.8, extend='both')
plt.scatter(X_train[:, 0], X_train[:, 1], .8)

plt.title('Negative log-likelihood predicted by a GMM')
plt.axis('tight')
plt.show()

Total running time of the script: (0 minutes 0.152 seconds)

6.14.2 Gaussian Mixture Model Ellipsoids

Plot the confidence ellipsoids of a mixture of two Gaussians obtained with Expectation Maximisation
(GaussianMixture class) and Variational Inference (BayesianGaussianMixture class models with a
Dirichlet process prior).

Both models have access to five components with which to fit the data. Note that the Expectation Maximisation
model will necessarily use all five components while the Variational Inference model will effectively only use as many
as are needed for a good fit. Here we can see that the Expectation Maximisation model splits some components
arbitrarily, because it is trying to fit too many components, while the Dirichlet Process model adapts it number of state
automatically.

This example doesn’t show it, as we’re in a low-dimensional space, but another advantage of the Dirichlet process
model is that it can fit full covariance matrices effectively even when there are less examples per cluster than there are

6.14. Gaussian Mixture Models 1111

scikit-learn user guide, Release 0.23.2

dimensions in the data, due to regularization properties of the inference algorithm.

import itertools

import numpy as np
from scipy import linalg
import matplotlib.pyplot as plt
import matplotlib as mpl

from sklearn import mixture

color_iter = itertools.cycle(['navy', 'c', 'cornflowerblue', 'gold',
'darkorange'])

def plot_results(X, Y_, means, covariances, index, title):
splot = plt.subplot(2, 1, 1 + index)
for i, (mean, covar, color) in enumerate(zip(

means, covariances, color_iter)):
v, w = linalg.eigh(covar)
v = 2. * np.sqrt(2.) * np.sqrt(v)
u = w[0] / linalg.norm(w[0])
as the DP will not use every component it has access to
unless it needs it, we shouldn't plot the redundant
components.
if not np.any(Y_ == i):

(continues on next page)

1112 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

continue
plt.scatter(X[Y_ == i, 0], X[Y_ == i, 1], .8, color=color)

Plot an ellipse to show the Gaussian component
angle = np.arctan(u[1] / u[0])
angle = 180. * angle / np.pi # convert to degrees
ell = mpl.patches.Ellipse(mean, v[0], v[1], 180. + angle, color=color)
ell.set_clip_box(splot.bbox)
ell.set_alpha(0.5)
splot.add_artist(ell)

plt.xlim(-9., 5.)
plt.ylim(-3., 6.)
plt.xticks(())
plt.yticks(())
plt.title(title)

Number of samples per component
n_samples = 500

Generate random sample, two components
np.random.seed(0)
C = np.array([[0., -0.1], [1.7, .4]])
X = np.r_[np.dot(np.random.randn(n_samples, 2), C),

.7 * np.random.randn(n_samples, 2) + np.array([-6, 3])]

Fit a Gaussian mixture with EM using five components
gmm = mixture.GaussianMixture(n_components=5, covariance_type='full').fit(X)
plot_results(X, gmm.predict(X), gmm.means_, gmm.covariances_, 0,

'Gaussian Mixture')

Fit a Dirichlet process Gaussian mixture using five components
dpgmm = mixture.BayesianGaussianMixture(n_components=5,

covariance_type='full').fit(X)
plot_results(X, dpgmm.predict(X), dpgmm.means_, dpgmm.covariances_, 1,

'Bayesian Gaussian Mixture with a Dirichlet process prior')

plt.show()

Total running time of the script: (0 minutes 0.124 seconds)

6.14.3 Gaussian Mixture Model Selection

This example shows that model selection can be performed with Gaussian Mixture Models using information-theoretic
criteria (BIC). Model selection concerns both the covariance type and the number of components in the model. In that
case, AIC also provides the right result (not shown to save time), but BIC is better suited if the problem is to identify
the right model. Unlike Bayesian procedures, such inferences are prior-free.

In that case, the model with 2 components and full covariance (which corresponds to the true generative model) is
selected.

6.14. Gaussian Mixture Models 1113

scikit-learn user guide, Release 0.23.2

import numpy as np
import itertools

from scipy import linalg
import matplotlib.pyplot as plt
import matplotlib as mpl

from sklearn import mixture

print(__doc__)

Number of samples per component
n_samples = 500

Generate random sample, two components
np.random.seed(0)
C = np.array([[0., -0.1], [1.7, .4]])
X = np.r_[np.dot(np.random.randn(n_samples, 2), C),

.7 * np.random.randn(n_samples, 2) + np.array([-6, 3])]

lowest_bic = np.infty
bic = []
n_components_range = range(1, 7)
cv_types = ['spherical', 'tied', 'diag', 'full']
for cv_type in cv_types:

(continues on next page)

1114 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

for n_components in n_components_range:
Fit a Gaussian mixture with EM
gmm = mixture.GaussianMixture(n_components=n_components,

covariance_type=cv_type)
gmm.fit(X)
bic.append(gmm.bic(X))
if bic[-1] < lowest_bic:

lowest_bic = bic[-1]
best_gmm = gmm

bic = np.array(bic)
color_iter = itertools.cycle(['navy', 'turquoise', 'cornflowerblue',

'darkorange'])
clf = best_gmm
bars = []

Plot the BIC scores
plt.figure(figsize=(8, 6))
spl = plt.subplot(2, 1, 1)
for i, (cv_type, color) in enumerate(zip(cv_types, color_iter)):

xpos = np.array(n_components_range) + .2 * (i - 2)
bars.append(plt.bar(xpos, bic[i * len(n_components_range):

(i + 1) * len(n_components_range)],
width=.2, color=color))

plt.xticks(n_components_range)
plt.ylim([bic.min() * 1.01 - .01 * bic.max(), bic.max()])
plt.title('BIC score per model')
xpos = np.mod(bic.argmin(), len(n_components_range)) + .65 +\

.2 * np.floor(bic.argmin() / len(n_components_range))
plt.text(xpos, bic.min() * 0.97 + .03 * bic.max(), '*', fontsize=14)
spl.set_xlabel('Number of components')
spl.legend([b[0] for b in bars], cv_types)

Plot the winner
splot = plt.subplot(2, 1, 2)
Y_ = clf.predict(X)
for i, (mean, cov, color) in enumerate(zip(clf.means_, clf.covariances_,

color_iter)):
v, w = linalg.eigh(cov)
if not np.any(Y_ == i):

continue
plt.scatter(X[Y_ == i, 0], X[Y_ == i, 1], .8, color=color)

Plot an ellipse to show the Gaussian component
angle = np.arctan2(w[0][1], w[0][0])
angle = 180. * angle / np.pi # convert to degrees
v = 2. * np.sqrt(2.) * np.sqrt(v)
ell = mpl.patches.Ellipse(mean, v[0], v[1], 180. + angle, color=color)
ell.set_clip_box(splot.bbox)
ell.set_alpha(.5)
splot.add_artist(ell)

plt.xticks(())
plt.yticks(())
plt.title('Selected GMM: full model, 2 components')
plt.subplots_adjust(hspace=.35, bottom=.02)
plt.show()

6.14. Gaussian Mixture Models 1115

scikit-learn user guide, Release 0.23.2

Total running time of the script: (0 minutes 0.379 seconds)

6.14.4 GMM covariances

Demonstration of several covariances types for Gaussian mixture models.

See Gaussian mixture models for more information on the estimator.

Although GMM are often used for clustering, we can compare the obtained clusters with the actual classes from the
dataset. We initialize the means of the Gaussians with the means of the classes from the training set to make this
comparison valid.

We plot predicted labels on both training and held out test data using a variety of GMM covariance types on the
iris dataset. We compare GMMs with spherical, diagonal, full, and tied covariance matrices in increasing order of
performance. Although one would expect full covariance to perform best in general, it is prone to overfitting on small
datasets and does not generalize well to held out test data.

On the plots, train data is shown as dots, while test data is shown as crosses. The iris dataset is four-dimensional. Only
the first two dimensions are shown here, and thus some points are separated in other dimensions.

1116 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Author: Ron Weiss <ronweiss@gmail.com>, Gael Varoquaux
Modified by Thierry Guillemot <thierry.guillemot.work@gmail.com>
License: BSD 3 clause

import matplotlib as mpl
import matplotlib.pyplot as plt

import numpy as np

from sklearn import datasets
from sklearn.mixture import GaussianMixture
from sklearn.model_selection import StratifiedKFold

print(__doc__)

colors = ['navy', 'turquoise', 'darkorange']

(continues on next page)

6.14. Gaussian Mixture Models 1117

scikit-learn user guide, Release 0.23.2

(continued from previous page)

def make_ellipses(gmm, ax):
for n, color in enumerate(colors):

if gmm.covariance_type == 'full':
covariances = gmm.covariances_[n][:2, :2]

elif gmm.covariance_type == 'tied':
covariances = gmm.covariances_[:2, :2]

elif gmm.covariance_type == 'diag':
covariances = np.diag(gmm.covariances_[n][:2])

elif gmm.covariance_type == 'spherical':
covariances = np.eye(gmm.means_.shape[1]) * gmm.covariances_[n]

v, w = np.linalg.eigh(covariances)
u = w[0] / np.linalg.norm(w[0])
angle = np.arctan2(u[1], u[0])
angle = 180 * angle / np.pi # convert to degrees
v = 2. * np.sqrt(2.) * np.sqrt(v)
ell = mpl.patches.Ellipse(gmm.means_[n, :2], v[0], v[1],

180 + angle, color=color)
ell.set_clip_box(ax.bbox)
ell.set_alpha(0.5)
ax.add_artist(ell)
ax.set_aspect('equal', 'datalim')

iris = datasets.load_iris()

Break up the dataset into non-overlapping training (75%) and testing
(25%) sets.
skf = StratifiedKFold(n_splits=4)
Only take the first fold.
train_index, test_index = next(iter(skf.split(iris.data, iris.target)))

X_train = iris.data[train_index]
y_train = iris.target[train_index]
X_test = iris.data[test_index]
y_test = iris.target[test_index]

n_classes = len(np.unique(y_train))

Try GMMs using different types of covariances.
estimators = {cov_type: GaussianMixture(n_components=n_classes,

covariance_type=cov_type, max_iter=20, random_state=0)
for cov_type in ['spherical', 'diag', 'tied', 'full']}

n_estimators = len(estimators)

plt.figure(figsize=(3 * n_estimators // 2, 6))
plt.subplots_adjust(bottom=.01, top=0.95, hspace=.15, wspace=.05,

left=.01, right=.99)

for index, (name, estimator) in enumerate(estimators.items()):
Since we have class labels for the training data, we can
initialize the GMM parameters in a supervised manner.
estimator.means_init = np.array([X_train[y_train == i].mean(axis=0)

for i in range(n_classes)])

(continues on next page)

1118 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Train the other parameters using the EM algorithm.
estimator.fit(X_train)

h = plt.subplot(2, n_estimators // 2, index + 1)
make_ellipses(estimator, h)

for n, color in enumerate(colors):
data = iris.data[iris.target == n]
plt.scatter(data[:, 0], data[:, 1], s=0.8, color=color,

label=iris.target_names[n])
Plot the test data with crosses
for n, color in enumerate(colors):

data = X_test[y_test == n]
plt.scatter(data[:, 0], data[:, 1], marker='x', color=color)

y_train_pred = estimator.predict(X_train)
train_accuracy = np.mean(y_train_pred.ravel() == y_train.ravel()) * 100
plt.text(0.05, 0.9, 'Train accuracy: %.1f' % train_accuracy,

transform=h.transAxes)

y_test_pred = estimator.predict(X_test)
test_accuracy = np.mean(y_test_pred.ravel() == y_test.ravel()) * 100
plt.text(0.05, 0.8, 'Test accuracy: %.1f' % test_accuracy,

transform=h.transAxes)

plt.xticks(())
plt.yticks(())
plt.title(name)

plt.legend(scatterpoints=1, loc='lower right', prop=dict(size=12))

plt.show()

Total running time of the script: (0 minutes 0.165 seconds)

6.14.5 Gaussian Mixture Model Sine Curve

This example demonstrates the behavior of Gaussian mixture models fit on data that was not sampled from a mixture
of Gaussian random variables. The dataset is formed by 100 points loosely spaced following a noisy sine curve. There
is therefore no ground truth value for the number of Gaussian components.

The first model is a classical Gaussian Mixture Model with 10 components fit with the Expectation-Maximization
algorithm.

The second model is a Bayesian Gaussian Mixture Model with a Dirichlet process prior fit with variational inference.
The low value of the concentration prior makes the model favor a lower number of active components. This models
“decides” to focus its modeling power on the big picture of the structure of the dataset: groups of points with alternating
directions modeled by non-diagonal covariance matrices. Those alternating directions roughly capture the alternating
nature of the original sine signal.

The third model is also a Bayesian Gaussian mixture model with a Dirichlet process prior but this time the value of the
concentration prior is higher giving the model more liberty to model the fine-grained structure of the data. The result
is a mixture with a larger number of active components that is similar to the first model where we arbitrarily decided
to fix the number of components to 10.

6.14. Gaussian Mixture Models 1119

scikit-learn user guide, Release 0.23.2

Which model is the best is a matter of subjective judgment: do we want to favor models that only capture the big
picture to summarize and explain most of the structure of the data while ignoring the details or do we prefer models
that closely follow the high density regions of the signal?

The last two panels show how we can sample from the last two models. The resulting samples distributions do not
look exactly like the original data distribution. The difference primarily stems from the approximation error we made
by using a model that assumes that the data was generated by a finite number of Gaussian components instead of a
continuous noisy sine curve.

import itertools

import numpy as np
from scipy import linalg
import matplotlib.pyplot as plt

(continues on next page)

1120 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

import matplotlib as mpl

from sklearn import mixture

print(__doc__)

color_iter = itertools.cycle(['navy', 'c', 'cornflowerblue', 'gold',
'darkorange'])

def plot_results(X, Y, means, covariances, index, title):
splot = plt.subplot(5, 1, 1 + index)
for i, (mean, covar, color) in enumerate(zip(

means, covariances, color_iter)):
v, w = linalg.eigh(covar)
v = 2. * np.sqrt(2.) * np.sqrt(v)
u = w[0] / linalg.norm(w[0])
as the DP will not use every component it has access to
unless it needs it, we shouldn't plot the redundant
components.
if not np.any(Y == i):

continue
plt.scatter(X[Y == i, 0], X[Y == i, 1], .8, color=color)

Plot an ellipse to show the Gaussian component
angle = np.arctan(u[1] / u[0])
angle = 180. * angle / np.pi # convert to degrees
ell = mpl.patches.Ellipse(mean, v[0], v[1], 180. + angle, color=color)
ell.set_clip_box(splot.bbox)
ell.set_alpha(0.5)
splot.add_artist(ell)

plt.xlim(-6., 4. * np.pi - 6.)
plt.ylim(-5., 5.)
plt.title(title)
plt.xticks(())
plt.yticks(())

def plot_samples(X, Y, n_components, index, title):
plt.subplot(5, 1, 4 + index)
for i, color in zip(range(n_components), color_iter):

as the DP will not use every component it has access to
unless it needs it, we shouldn't plot the redundant
components.
if not np.any(Y == i):

continue
plt.scatter(X[Y == i, 0], X[Y == i, 1], .8, color=color)

plt.xlim(-6., 4. * np.pi - 6.)
plt.ylim(-5., 5.)
plt.title(title)
plt.xticks(())
plt.yticks(())

Parameters
(continues on next page)

6.14. Gaussian Mixture Models 1121

scikit-learn user guide, Release 0.23.2

(continued from previous page)

n_samples = 100

Generate random sample following a sine curve
np.random.seed(0)
X = np.zeros((n_samples, 2))
step = 4. * np.pi / n_samples

for i in range(X.shape[0]):
x = i * step - 6.
X[i, 0] = x + np.random.normal(0, 0.1)
X[i, 1] = 3. * (np.sin(x) + np.random.normal(0, .2))

plt.figure(figsize=(10, 10))
plt.subplots_adjust(bottom=.04, top=0.95, hspace=.2, wspace=.05,

left=.03, right=.97)

Fit a Gaussian mixture with EM using ten components
gmm = mixture.GaussianMixture(n_components=10, covariance_type='full',

max_iter=100).fit(X)
plot_results(X, gmm.predict(X), gmm.means_, gmm.covariances_, 0,

'Expectation-maximization')

dpgmm = mixture.BayesianGaussianMixture(
n_components=10, covariance_type='full', weight_concentration_prior=1e-2,
weight_concentration_prior_type='dirichlet_process',
mean_precision_prior=1e-2, covariance_prior=1e0 * np.eye(2),
init_params="random", max_iter=100, random_state=2).fit(X)

plot_results(X, dpgmm.predict(X), dpgmm.means_, dpgmm.covariances_, 1,
"Bayesian Gaussian mixture models with a Dirichlet process prior "
r"for $\gamma_0=0.01$.")

X_s, y_s = dpgmm.sample(n_samples=2000)
plot_samples(X_s, y_s, dpgmm.n_components, 0,

"Gaussian mixture with a Dirichlet process prior "
r"for $\gamma_0=0.01$ sampled with 2000 samples.")

dpgmm = mixture.BayesianGaussianMixture(
n_components=10, covariance_type='full', weight_concentration_prior=1e+2,
weight_concentration_prior_type='dirichlet_process',
mean_precision_prior=1e-2, covariance_prior=1e0 * np.eye(2),
init_params="kmeans", max_iter=100, random_state=2).fit(X)

plot_results(X, dpgmm.predict(X), dpgmm.means_, dpgmm.covariances_, 2,
"Bayesian Gaussian mixture models with a Dirichlet process prior "
r"for $\gamma_0=100$")

X_s, y_s = dpgmm.sample(n_samples=2000)
plot_samples(X_s, y_s, dpgmm.n_components, 1,

"Gaussian mixture with a Dirichlet process prior "
r"for $\gamma_0=100$ sampled with 2000 samples.")

plt.show()

Total running time of the script: (0 minutes 0.403 seconds)

1122 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

6.14.6 Concentration Prior Type Analysis of Variation Bayesian Gaussian Mixture

This example plots the ellipsoids obtained from a toy dataset (mixture of three Gaussians) fit-
ted by the BayesianGaussianMixture class models with a Dirichlet distribution prior
(weight_concentration_prior_type='dirichlet_distribution') and a Dirichlet process
prior (weight_concentration_prior_type='dirichlet_process'). On each figure, we plot the
results for three different values of the weight concentration prior.

The BayesianGaussianMixture class can adapt its number of mixture components automatically. The param-
eter weight_concentration_prior has a direct link with the resulting number of components with non-zero
weights. Specifying a low value for the concentration prior will make the model put most of the weight on few com-
ponents set the remaining components weights very close to zero. High values of the concentration prior will allow a
larger number of components to be active in the mixture.

The Dirichlet process prior allows to define an infinite number of components and automatically selects the correct
number of components: it activates a component only if it is necessary.

On the contrary the classical finite mixture model with a Dirichlet distribution prior will favor more uniformly weighted
components and therefore tends to divide natural clusters into unnecessary sub-components.

•

6.14. Gaussian Mixture Models 1123

scikit-learn user guide, Release 0.23.2

•

Author: Thierry Guillemot <thierry.guillemot.work@gmail.com>
License: BSD 3 clause

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec

from sklearn.mixture import BayesianGaussianMixture

print(__doc__)

def plot_ellipses(ax, weights, means, covars):
for n in range(means.shape[0]):

eig_vals, eig_vecs = np.linalg.eigh(covars[n])
unit_eig_vec = eig_vecs[0] / np.linalg.norm(eig_vecs[0])
angle = np.arctan2(unit_eig_vec[1], unit_eig_vec[0])
Ellipse needs degrees
angle = 180 * angle / np.pi
eigenvector normalization
eig_vals = 2 * np.sqrt(2) * np.sqrt(eig_vals)
ell = mpl.patches.Ellipse(means[n], eig_vals[0], eig_vals[1],

180 + angle, edgecolor='black')
ell.set_clip_box(ax.bbox)
ell.set_alpha(weights[n])
ell.set_facecolor('#56B4E9')
ax.add_artist(ell)

def plot_results(ax1, ax2, estimator, X, y, title, plot_title=False):
ax1.set_title(title)
ax1.scatter(X[:, 0], X[:, 1], s=5, marker='o', color=colors[y], alpha=0.8)
ax1.set_xlim(-2., 2.)

(continues on next page)

1124 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

ax1.set_ylim(-3., 3.)
ax1.set_xticks(())
ax1.set_yticks(())
plot_ellipses(ax1, estimator.weights_, estimator.means_,

estimator.covariances_)

ax2.get_xaxis().set_tick_params(direction='out')
ax2.yaxis.grid(True, alpha=0.7)
for k, w in enumerate(estimator.weights_):

ax2.bar(k, w, width=0.9, color='#56B4E9', zorder=3,
align='center', edgecolor='black')

ax2.text(k, w + 0.007, "%.1f%%" % (w * 100.),
horizontalalignment='center')

ax2.set_xlim(-.6, 2 * n_components - .4)
ax2.set_ylim(0., 1.1)
ax2.tick_params(axis='y', which='both', left=False,

right=False, labelleft=False)
ax2.tick_params(axis='x', which='both', top=False)

if plot_title:
ax1.set_ylabel('Estimated Mixtures')
ax2.set_ylabel('Weight of each component')

Parameters of the dataset
random_state, n_components, n_features = 2, 3, 2
colors = np.array(['#0072B2', '#F0E442', '#D55E00'])

covars = np.array([[[.7, .0], [.0, .1]],
[[.5, .0], [.0, .1]],
[[.5, .0], [.0, .1]]])

samples = np.array([200, 500, 200])
means = np.array([[.0, -.70],

[.0, .0],
[.0, .70]])

mean_precision_prior= 0.8 to minimize the influence of the prior
estimators = [

("Finite mixture with a Dirichlet distribution\nprior and "
r"$\gamma_0=$", BayesianGaussianMixture(

weight_concentration_prior_type="dirichlet_distribution",
n_components=2 * n_components, reg_covar=0, init_params='random',
max_iter=1500, mean_precision_prior=.8,
random_state=random_state), [0.001, 1, 1000]),

("Infinite mixture with a Dirichlet process\n prior and" r"$\gamma_0=$",
BayesianGaussianMixture(

weight_concentration_prior_type="dirichlet_process",
n_components=2 * n_components, reg_covar=0, init_params='random',
max_iter=1500, mean_precision_prior=.8,
random_state=random_state), [1, 1000, 100000])]

Generate data
rng = np.random.RandomState(random_state)
X = np.vstack([

rng.multivariate_normal(means[j], covars[j], samples[j])
for j in range(n_components)])

y = np.concatenate([np.full(samples[j], j, dtype=int)
for j in range(n_components)])

(continues on next page)

6.14. Gaussian Mixture Models 1125

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Plot results in two different figures
for (title, estimator, concentrations_prior) in estimators:

plt.figure(figsize=(4.7 * 3, 8))
plt.subplots_adjust(bottom=.04, top=0.90, hspace=.05, wspace=.05,

left=.03, right=.99)

gs = gridspec.GridSpec(3, len(concentrations_prior))
for k, concentration in enumerate(concentrations_prior):

estimator.weight_concentration_prior = concentration
estimator.fit(X)
plot_results(plt.subplot(gs[0:2, k]), plt.subplot(gs[2, k]), estimator,

X, y, r"%s$%.1e$" % (title, concentration),
plot_title=k == 0)

plt.show()

Total running time of the script: (0 minutes 6.777 seconds)

6.15 Gaussian Process for Machine Learning

Examples concerning the sklearn.gaussian_process module.

6.15.1 Illustration of Gaussian process classification (GPC) on the XOR dataset

This example illustrates GPC on XOR data. Compared are a stationary, isotropic kernel (RBF) and a non-stationary
kernel (DotProduct). On this particular dataset, the DotProduct kernel obtains considerably better results because the
class-boundaries are linear and coincide with the coordinate axes. In general, stationary kernels often obtain better
results.

1126 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

print(__doc__)

Authors: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
#
License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import RBF, DotProduct

xx, yy = np.meshgrid(np.linspace(-3, 3, 50),
np.linspace(-3, 3, 50))

rng = np.random.RandomState(0)
X = rng.randn(200, 2)
Y = np.logical_xor(X[:, 0] > 0, X[:, 1] > 0)

fit the model
plt.figure(figsize=(10, 5))
kernels = [1.0 * RBF(length_scale=1.0), 1.0 * DotProduct(sigma_0=1.0)**2]
for i, kernel in enumerate(kernels):

clf = GaussianProcessClassifier(kernel=kernel, warm_start=True).fit(X, Y)

plot the decision function for each datapoint on the grid
Z = clf.predict_proba(np.vstack((xx.ravel(), yy.ravel())).T)[:, 1]
Z = Z.reshape(xx.shape)

plt.subplot(1, 2, i + 1)
image = plt.imshow(Z, interpolation='nearest',

extent=(xx.min(), xx.max(), yy.min(), yy.max()),
aspect='auto', origin='lower', cmap=plt.cm.PuOr_r)

contours = plt.contour(xx, yy, Z, levels=[0.5], linewidths=2,
colors=['k'])

plt.scatter(X[:, 0], X[:, 1], s=30, c=Y, cmap=plt.cm.Paired,
edgecolors=(0, 0, 0))

plt.xticks(())
plt.yticks(())
plt.axis([-3, 3, -3, 3])
plt.colorbar(image)
plt.title("%s\n Log-Marginal-Likelihood:%.3f"

% (clf.kernel_, clf.log_marginal_likelihood(clf.kernel_.theta)),
fontsize=12)

plt.tight_layout()
plt.show()

Total running time of the script: (0 minutes 0.397 seconds)

6.15.2 Gaussian process classification (GPC) on iris dataset

This example illustrates the predicted probability of GPC for an isotropic and anisotropic RBF kernel on a two-
dimensional version for the iris-dataset. The anisotropic RBF kernel obtains slightly higher log-marginal-likelihood
by assigning different length-scales to the two feature dimensions.

6.15. Gaussian Process for Machine Learning 1127

scikit-learn user guide, Release 0.23.2

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import RBF

import some data to play with
iris = datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features.
y = np.array(iris.target, dtype=int)

h = .02 # step size in the mesh

kernel = 1.0 * RBF([1.0])
gpc_rbf_isotropic = GaussianProcessClassifier(kernel=kernel).fit(X, y)
kernel = 1.0 * RBF([1.0, 1.0])
gpc_rbf_anisotropic = GaussianProcessClassifier(kernel=kernel).fit(X, y)

create a mesh to plot in
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),

np.arange(y_min, y_max, h))

titles = ["Isotropic RBF", "Anisotropic RBF"]
plt.figure(figsize=(10, 5))
for i, clf in enumerate((gpc_rbf_isotropic, gpc_rbf_anisotropic)):

Plot the predicted probabilities. For that, we will assign a color to
each point in the mesh [x_min, m_max]x[y_min, y_max].
plt.subplot(1, 2, i + 1)

Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])

Put the result into a color plot
(continues on next page)

1128 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Z = Z.reshape((xx.shape[0], xx.shape[1], 3))
plt.imshow(Z, extent=(x_min, x_max, y_min, y_max), origin="lower")

Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=np.array(["r", "g", "b"])[y],

edgecolors=(0, 0, 0))
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.xticks(())
plt.yticks(())
plt.title("%s, LML: %.3f" %

(titles[i], clf.log_marginal_likelihood(clf.kernel_.theta)))

plt.tight_layout()
plt.show()

Total running time of the script: (0 minutes 2.576 seconds)

6.15.3 Comparison of kernel ridge and Gaussian process regression

Both kernel ridge regression (KRR) and Gaussian process regression (GPR) learn a target function by employing
internally the “kernel trick”. KRR learns a linear function in the space induced by the respective kernel which corre-
sponds to a non-linear function in the original space. The linear function in the kernel space is chosen based on the
mean-squared error loss with ridge regularization. GPR uses the kernel to define the covariance of a prior distribution
over the target functions and uses the observed training data to define a likelihood function. Based on Bayes theorem,
a (Gaussian) posterior distribution over target functions is defined, whose mean is used for prediction.

A major difference is that GPR can choose the kernel’s hyperparameters based on gradient-ascent on the marginal
likelihood function while KRR needs to perform a grid search on a cross-validated loss function (mean-squared error
loss). A further difference is that GPR learns a generative, probabilistic model of the target function and can thus
provide meaningful confidence intervals and posterior samples along with the predictions while KRR only provides
predictions.

This example illustrates both methods on an artificial dataset, which consists of a sinusoidal target function and strong
noise. The figure compares the learned model of KRR and GPR based on a ExpSineSquared kernel, which is suited
for learning periodic functions. The kernel’s hyperparameters control the smoothness (l) and periodicity of the kernel
(p). Moreover, the noise level of the data is learned explicitly by GPR by an additional WhiteKernel component in the
kernel and by the regularization parameter alpha of KRR.

The figure shows that both methods learn reasonable models of the target function. GPR correctly identifies the peri-
odicity of the function to be roughly 2*pi (6.28), while KRR chooses the doubled periodicity 4*pi. Besides that, GPR
provides reasonable confidence bounds on the prediction which are not available for KRR. A major difference between
the two methods is the time required for fitting and predicting: while fitting KRR is fast in principle, the grid-search
for hyperparameter optimization scales exponentially with the number of hyperparameters (“curse of dimensional-
ity”). The gradient-based optimization of the parameters in GPR does not suffer from this exponential scaling and is
thus considerable faster on this example with 3-dimensional hyperparameter space. The time for predicting is similar;
however, generating the variance of the predictive distribution of GPR takes considerable longer than just predicting
the mean.

6.15. Gaussian Process for Machine Learning 1129

scikit-learn user guide, Release 0.23.2

Out:

Time for KRR fitting: 2.901
Time for GPR fitting: 0.068
Time for KRR prediction: 0.030
Time for GPR prediction: 0.040
Time for GPR prediction with standard-deviation: 0.044

print(__doc__)

Authors: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
License: BSD 3 clause

import time

import numpy as np

import matplotlib.pyplot as plt

from sklearn.kernel_ridge import KernelRidge
from sklearn.model_selection import GridSearchCV
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import WhiteKernel, ExpSineSquared

rng = np.random.RandomState(0)

Generate sample data
X = 15 * rng.rand(100, 1)
y = np.sin(X).ravel()
y += 3 * (0.5 - rng.rand(X.shape[0])) # add noise

(continues on next page)

1130 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Fit KernelRidge with parameter selection based on 5-fold cross validation
param_grid = {"alpha": [1e0, 1e-1, 1e-2, 1e-3],

"kernel": [ExpSineSquared(l, p)
for l in np.logspace(-2, 2, 10)
for p in np.logspace(0, 2, 10)]}

kr = GridSearchCV(KernelRidge(), param_grid=param_grid)
stime = time.time()
kr.fit(X, y)
print("Time for KRR fitting: %.3f" % (time.time() - stime))

gp_kernel = ExpSineSquared(1.0, 5.0, periodicity_bounds=(1e-2, 1e1)) \
+ WhiteKernel(1e-1)

gpr = GaussianProcessRegressor(kernel=gp_kernel)
stime = time.time()
gpr.fit(X, y)
print("Time for GPR fitting: %.3f" % (time.time() - stime))

Predict using kernel ridge
X_plot = np.linspace(0, 20, 10000)[:, None]
stime = time.time()
y_kr = kr.predict(X_plot)
print("Time for KRR prediction: %.3f" % (time.time() - stime))

Predict using gaussian process regressor
stime = time.time()
y_gpr = gpr.predict(X_plot, return_std=False)
print("Time for GPR prediction: %.3f" % (time.time() - stime))

stime = time.time()
y_gpr, y_std = gpr.predict(X_plot, return_std=True)
print("Time for GPR prediction with standard-deviation: %.3f"

% (time.time() - stime))

Plot results
plt.figure(figsize=(10, 5))
lw = 2
plt.scatter(X, y, c='k', label='data')
plt.plot(X_plot, np.sin(X_plot), color='navy', lw=lw, label='True')
plt.plot(X_plot, y_kr, color='turquoise', lw=lw,

label='KRR (%s)' % kr.best_params_)
plt.plot(X_plot, y_gpr, color='darkorange', lw=lw,

label='GPR (%s)' % gpr.kernel_)
plt.fill_between(X_plot[:, 0], y_gpr - y_std, y_gpr + y_std, color='darkorange',

alpha=0.2)
plt.xlabel('data')
plt.ylabel('target')
plt.xlim(0, 20)
plt.ylim(-4, 4)
plt.title('GPR versus Kernel Ridge')
plt.legend(loc="best", scatterpoints=1, prop={'size': 8})
plt.show()

Total running time of the script: (0 minutes 3.201 seconds)

6.15. Gaussian Process for Machine Learning 1131

scikit-learn user guide, Release 0.23.2

6.15.4 Illustration of prior and posterior Gaussian process for different kernels

This example illustrates the prior and posterior of a GPR with different kernels. Mean, standard deviation, and 10
samples are shown for both prior and posterior.

•

1132 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

6.15. Gaussian Process for Machine Learning 1133

scikit-learn user guide, Release 0.23.2

•

1134 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

6.15. Gaussian Process for Machine Learning 1135

scikit-learn user guide, Release 0.23.2

•

Out:

/home/circleci/project/sklearn/gaussian_process/_gpr.py:504: ConvergenceWarning:
→˓lbfgs failed to converge (status=2):
ABNORMAL_TERMINATION_IN_LNSRCH.

Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html

_check_optimize_result("lbfgs", opt_res)
/home/circleci/project/sklearn/gaussian_process/_gpr.py:370: UserWarning: Predicted
→˓variances smaller than 0. Setting those variances to 0.
warnings.warn("Predicted variances smaller than 0. "

1136 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

print(__doc__)

Authors: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
#
License: BSD 3 clause

import numpy as np

from matplotlib import pyplot as plt

from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import (RBF, Matern, RationalQuadratic,

ExpSineSquared, DotProduct,
ConstantKernel)

kernels = [1.0 * RBF(length_scale=1.0, length_scale_bounds=(1e-1, 10.0)),
1.0 * RationalQuadratic(length_scale=1.0, alpha=0.1),
1.0 * ExpSineSquared(length_scale=1.0, periodicity=3.0,

length_scale_bounds=(0.1, 10.0),
periodicity_bounds=(1.0, 10.0)),

ConstantKernel(0.1, (0.01, 10.0))

* (DotProduct(sigma_0=1.0, sigma_0_bounds=(0.1, 10.0)) ** 2),
1.0 * Matern(length_scale=1.0, length_scale_bounds=(1e-1, 10.0),

nu=1.5)]

for kernel in kernels:
Specify Gaussian Process
gp = GaussianProcessRegressor(kernel=kernel)

Plot prior
plt.figure(figsize=(8, 8))
plt.subplot(2, 1, 1)
X_ = np.linspace(0, 5, 100)
y_mean, y_std = gp.predict(X_[:, np.newaxis], return_std=True)
plt.plot(X_, y_mean, 'k', lw=3, zorder=9)
plt.fill_between(X_, y_mean - y_std, y_mean + y_std,

alpha=0.2, color='k')
y_samples = gp.sample_y(X_[:, np.newaxis], 10)
plt.plot(X_, y_samples, lw=1)
plt.xlim(0, 5)
plt.ylim(-3, 3)
plt.title("Prior (kernel: %s)" % kernel, fontsize=12)

Generate data and fit GP
rng = np.random.RandomState(4)
X = rng.uniform(0, 5, 10)[:, np.newaxis]
y = np.sin((X[:, 0] - 2.5) ** 2)
gp.fit(X, y)

Plot posterior
plt.subplot(2, 1, 2)
X_ = np.linspace(0, 5, 100)
y_mean, y_std = gp.predict(X_[:, np.newaxis], return_std=True)
plt.plot(X_, y_mean, 'k', lw=3, zorder=9)
plt.fill_between(X_, y_mean - y_std, y_mean + y_std,

alpha=0.2, color='k')

(continues on next page)

6.15. Gaussian Process for Machine Learning 1137

scikit-learn user guide, Release 0.23.2

(continued from previous page)

y_samples = gp.sample_y(X_[:, np.newaxis], 10)
plt.plot(X_, y_samples, lw=1)
plt.scatter(X[:, 0], y, c='r', s=50, zorder=10, edgecolors=(0, 0, 0))
plt.xlim(0, 5)
plt.ylim(-3, 3)
plt.title("Posterior (kernel: %s)\n Log-Likelihood: %.3f"

% (gp.kernel_, gp.log_marginal_likelihood(gp.kernel_.theta)),
fontsize=12)

plt.tight_layout()

plt.show()

Total running time of the script: (0 minutes 1.149 seconds)

6.15.5 Iso-probability lines for Gaussian Processes classification (GPC)

A two-dimensional classification example showing iso-probability lines for the predicted probabilities.

Out:

Learned kernel: 0.0256**2 * DotProduct(sigma_0=5.72) ** 2

1138 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

print(__doc__)

Author: Vincent Dubourg <vincent.dubourg@gmail.com>
Adapted to GaussianProcessClassifier:
Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
License: BSD 3 clause

import numpy as np

from matplotlib import pyplot as plt
from matplotlib import cm

from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import DotProduct, ConstantKernel as C

A few constants
lim = 8

def g(x):
"""The function to predict (classification will then consist in predicting
whether g(x) <= 0 or not)"""
return 5. - x[:, 1] - .5 * x[:, 0] ** 2.

Design of experiments
X = np.array([[-4.61611719, -6.00099547],

[4.10469096, 5.32782448],
[0.00000000, -0.50000000],
[-6.17289014, -4.6984743],
[1.3109306, -6.93271427],
[-5.03823144, 3.10584743],
[-2.87600388, 6.74310541],
[5.21301203, 4.26386883]])

Observations
y = np.array(g(X) > 0, dtype=int)

Instantiate and fit Gaussian Process Model
kernel = C(0.1, (1e-5, np.inf)) * DotProduct(sigma_0=0.1) ** 2
gp = GaussianProcessClassifier(kernel=kernel)
gp.fit(X, y)
print("Learned kernel: %s " % gp.kernel_)

Evaluate real function and the predicted probability
res = 50
x1, x2 = np.meshgrid(np.linspace(- lim, lim, res),

np.linspace(- lim, lim, res))
xx = np.vstack([x1.reshape(x1.size), x2.reshape(x2.size)]).T

y_true = g(xx)
y_prob = gp.predict_proba(xx)[:, 1]
y_true = y_true.reshape((res, res))
y_prob = y_prob.reshape((res, res))

(continues on next page)

6.15. Gaussian Process for Machine Learning 1139

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Plot the probabilistic classification iso-values
fig = plt.figure(1)
ax = fig.gca()
ax.axes.set_aspect('equal')
plt.xticks([])
plt.yticks([])
ax.set_xticklabels([])
ax.set_yticklabels([])
plt.xlabel('x_1')
plt.ylabel('x_2')

cax = plt.imshow(y_prob, cmap=cm.gray_r, alpha=0.8,
extent=(-lim, lim, -lim, lim))

norm = plt.matplotlib.colors.Normalize(vmin=0., vmax=0.9)
cb = plt.colorbar(cax, ticks=[0., 0.2, 0.4, 0.6, 0.8, 1.], norm=norm)
cb.set_label(r'${\rm \mathbb{P}}\left[\widehat{G}(\mathbf{x}) \leq 0\right]$')
plt.clim(0, 1)

plt.plot(X[y <= 0, 0], X[y <= 0, 1], 'r.', markersize=12)

plt.plot(X[y > 0, 0], X[y > 0, 1], 'b.', markersize=12)

plt.contour(x1, x2, y_true, [0.], colors='k', linestyles='dashdot')

cs = plt.contour(x1, x2, y_prob, [0.666], colors='b',
linestyles='solid')

plt.clabel(cs, fontsize=11)

cs = plt.contour(x1, x2, y_prob, [0.5], colors='k',
linestyles='dashed')

plt.clabel(cs, fontsize=11)

cs = plt.contour(x1, x2, y_prob, [0.334], colors='r',
linestyles='solid')

plt.clabel(cs, fontsize=11)

plt.show()

Total running time of the script: (0 minutes 0.166 seconds)

6.15.6 Probabilistic predictions with Gaussian process classification (GPC)

This example illustrates the predicted probability of GPC for an RBF kernel with different choices of the hyperparam-
eters. The first figure shows the predicted probability of GPC with arbitrarily chosen hyperparameters and with the
hyperparameters corresponding to the maximum log-marginal-likelihood (LML).

While the hyperparameters chosen by optimizing LML have a considerable larger LML, they perform slightly worse
according to the log-loss on test data. The figure shows that this is because they exhibit a steep change of the class
probabilities at the class boundaries (which is good) but have predicted probabilities close to 0.5 far away from the
class boundaries (which is bad) This undesirable effect is caused by the Laplace approximation used internally by
GPC.

The second figure shows the log-marginal-likelihood for different choices of the kernel’s hyperparameters, highlighting
the two choices of the hyperparameters used in the first figure by black dots.

1140 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

6.15. Gaussian Process for Machine Learning 1141

scikit-learn user guide, Release 0.23.2

•

Out:

Log Marginal Likelihood (initial): -17.598
Log Marginal Likelihood (optimized): -3.875
Accuracy: 1.000 (initial) 1.000 (optimized)
Log-loss: 0.214 (initial) 0.319 (optimized)

print(__doc__)

Authors: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
#
License: BSD 3 clause

import numpy as np

from matplotlib import pyplot as plt

from sklearn.metrics import accuracy_score, log_loss
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import RBF

(continues on next page)

1142 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Generate data
train_size = 50
rng = np.random.RandomState(0)
X = rng.uniform(0, 5, 100)[:, np.newaxis]
y = np.array(X[:, 0] > 2.5, dtype=int)

Specify Gaussian Processes with fixed and optimized hyperparameters
gp_fix = GaussianProcessClassifier(kernel=1.0 * RBF(length_scale=1.0),

optimizer=None)
gp_fix.fit(X[:train_size], y[:train_size])

gp_opt = GaussianProcessClassifier(kernel=1.0 * RBF(length_scale=1.0))
gp_opt.fit(X[:train_size], y[:train_size])

print("Log Marginal Likelihood (initial): %.3f"
% gp_fix.log_marginal_likelihood(gp_fix.kernel_.theta))

print("Log Marginal Likelihood (optimized): %.3f"
% gp_opt.log_marginal_likelihood(gp_opt.kernel_.theta))

print("Accuracy: %.3f (initial) %.3f (optimized)"
% (accuracy_score(y[:train_size], gp_fix.predict(X[:train_size])),

accuracy_score(y[:train_size], gp_opt.predict(X[:train_size]))))
print("Log-loss: %.3f (initial) %.3f (optimized)"

% (log_loss(y[:train_size], gp_fix.predict_proba(X[:train_size])[:, 1]),
log_loss(y[:train_size], gp_opt.predict_proba(X[:train_size])[:, 1])))

Plot posteriors
plt.figure()
plt.scatter(X[:train_size, 0], y[:train_size], c='k', label="Train data",

edgecolors=(0, 0, 0))
plt.scatter(X[train_size:, 0], y[train_size:], c='g', label="Test data",

edgecolors=(0, 0, 0))
X_ = np.linspace(0, 5, 100)
plt.plot(X_, gp_fix.predict_proba(X_[:, np.newaxis])[:, 1], 'r',

label="Initial kernel: %s" % gp_fix.kernel_)
plt.plot(X_, gp_opt.predict_proba(X_[:, np.newaxis])[:, 1], 'b',

label="Optimized kernel: %s" % gp_opt.kernel_)
plt.xlabel("Feature")
plt.ylabel("Class 1 probability")
plt.xlim(0, 5)
plt.ylim(-0.25, 1.5)
plt.legend(loc="best")

Plot LML landscape
plt.figure()
theta0 = np.logspace(0, 8, 30)
theta1 = np.logspace(-1, 1, 29)
Theta0, Theta1 = np.meshgrid(theta0, theta1)
LML = [[gp_opt.log_marginal_likelihood(np.log([Theta0[i, j], Theta1[i, j]]))

for i in range(Theta0.shape[0])] for j in range(Theta0.shape[1])]
LML = np.array(LML).T
plt.plot(np.exp(gp_fix.kernel_.theta)[0], np.exp(gp_fix.kernel_.theta)[1],

'ko', zorder=10)
plt.plot(np.exp(gp_opt.kernel_.theta)[0], np.exp(gp_opt.kernel_.theta)[1],

'ko', zorder=10)
plt.pcolor(Theta0, Theta1, LML)

(continues on next page)

6.15. Gaussian Process for Machine Learning 1143

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.xscale("log")
plt.yscale("log")
plt.colorbar()
plt.xlabel("Magnitude")
plt.ylabel("Length-scale")
plt.title("Log-marginal-likelihood")

plt.show()

Total running time of the script: (0 minutes 2.673 seconds)

6.15.7 Gaussian process regression (GPR) with noise-level estimation

This example illustrates that GPR with a sum-kernel including a WhiteKernel can estimate the noise level of data.
An illustration of the log-marginal-likelihood (LML) landscape shows that there exist two local maxima of LML. The
first corresponds to a model with a high noise level and a large length scale, which explains all variations in the data
by noise. The second one has a smaller noise level and shorter length scale, which explains most of the variation by
the noise-free functional relationship. The second model has a higher likelihood; however, depending on the initial
value for the hyperparameters, the gradient-based optimization might also converge to the high-noise solution. It is
thus important to repeat the optimization several times for different initializations.

•

1144 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

6.15. Gaussian Process for Machine Learning 1145

scikit-learn user guide, Release 0.23.2

•

print(__doc__)

Authors: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
#
License: BSD 3 clause

import numpy as np

from matplotlib import pyplot as plt
from matplotlib.colors import LogNorm

from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import RBF, WhiteKernel

rng = np.random.RandomState(0)
X = rng.uniform(0, 5, 20)[:, np.newaxis]
y = 0.5 * np.sin(3 * X[:, 0]) + rng.normal(0, 0.5, X.shape[0])

First run
plt.figure()
kernel = 1.0 * RBF(length_scale=100.0, length_scale_bounds=(1e-2, 1e3)) \

+ WhiteKernel(noise_level=1, noise_level_bounds=(1e-10, 1e+1))
gp = GaussianProcessRegressor(kernel=kernel,

alpha=0.0).fit(X, y)
X_ = np.linspace(0, 5, 100)
y_mean, y_cov = gp.predict(X_[:, np.newaxis], return_cov=True)

(continues on next page)

1146 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.plot(X_, y_mean, 'k', lw=3, zorder=9)
plt.fill_between(X_, y_mean - np.sqrt(np.diag(y_cov)),

y_mean + np.sqrt(np.diag(y_cov)),
alpha=0.5, color='k')

plt.plot(X_, 0.5*np.sin(3*X_), 'r', lw=3, zorder=9)
plt.scatter(X[:, 0], y, c='r', s=50, zorder=10, edgecolors=(0, 0, 0))
plt.title("Initial: %s\nOptimum: %s\nLog-Marginal-Likelihood: %s"

% (kernel, gp.kernel_,
gp.log_marginal_likelihood(gp.kernel_.theta)))

plt.tight_layout()

Second run
plt.figure()
kernel = 1.0 * RBF(length_scale=1.0, length_scale_bounds=(1e-2, 1e3)) \

+ WhiteKernel(noise_level=1e-5, noise_level_bounds=(1e-10, 1e+1))
gp = GaussianProcessRegressor(kernel=kernel,

alpha=0.0).fit(X, y)
X_ = np.linspace(0, 5, 100)
y_mean, y_cov = gp.predict(X_[:, np.newaxis], return_cov=True)
plt.plot(X_, y_mean, 'k', lw=3, zorder=9)
plt.fill_between(X_, y_mean - np.sqrt(np.diag(y_cov)),

y_mean + np.sqrt(np.diag(y_cov)),
alpha=0.5, color='k')

plt.plot(X_, 0.5*np.sin(3*X_), 'r', lw=3, zorder=9)
plt.scatter(X[:, 0], y, c='r', s=50, zorder=10, edgecolors=(0, 0, 0))
plt.title("Initial: %s\nOptimum: %s\nLog-Marginal-Likelihood: %s"

% (kernel, gp.kernel_,
gp.log_marginal_likelihood(gp.kernel_.theta)))

plt.tight_layout()

Plot LML landscape
plt.figure()
theta0 = np.logspace(-2, 3, 49)
theta1 = np.logspace(-2, 0, 50)
Theta0, Theta1 = np.meshgrid(theta0, theta1)
LML = [[gp.log_marginal_likelihood(np.log([0.36, Theta0[i, j], Theta1[i, j]]))

for i in range(Theta0.shape[0])] for j in range(Theta0.shape[1])]
LML = np.array(LML).T

vmin, vmax = (-LML).min(), (-LML).max()
vmax = 50
level = np.around(np.logspace(np.log10(vmin), np.log10(vmax), 50), decimals=1)
plt.contour(Theta0, Theta1, -LML,

levels=level, norm=LogNorm(vmin=vmin, vmax=vmax))
plt.colorbar()
plt.xscale("log")
plt.yscale("log")
plt.xlabel("Length-scale")
plt.ylabel("Noise-level")
plt.title("Log-marginal-likelihood")
plt.tight_layout()

plt.show()

Total running time of the script: (0 minutes 3.482 seconds)

6.15. Gaussian Process for Machine Learning 1147

scikit-learn user guide, Release 0.23.2

6.15.8 Gaussian Processes regression: basic introductory example

A simple one-dimensional regression example computed in two different ways:

1. A noise-free case

2. A noisy case with known noise-level per datapoint

In both cases, the kernel’s parameters are estimated using the maximum likelihood principle.

The figures illustrate the interpolating property of the Gaussian Process model as well as its probabilistic nature in the
form of a pointwise 95% confidence interval.

Note that the parameter alpha is applied as a Tikhonov regularization of the assumed covariance between the training
points.

•

1148 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

print(__doc__)

Author: Vincent Dubourg <vincent.dubourg@gmail.com>
Jake Vanderplas <vanderplas@astro.washington.edu>
Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>s
License: BSD 3 clause

import numpy as np
from matplotlib import pyplot as plt

from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import RBF, ConstantKernel as C

np.random.seed(1)

def f(x):
"""The function to predict."""
return x * np.sin(x)

--
First the noiseless case
X = np.atleast_2d([1., 3., 5., 6., 7., 8.]).T

Observations
y = f(X).ravel()

(continues on next page)

6.15. Gaussian Process for Machine Learning 1149

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Mesh the input space for evaluations of the real function, the prediction and
its MSE
x = np.atleast_2d(np.linspace(0, 10, 1000)).T

Instantiate a Gaussian Process model
kernel = C(1.0, (1e-3, 1e3)) * RBF(10, (1e-2, 1e2))
gp = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=9)

Fit to data using Maximum Likelihood Estimation of the parameters
gp.fit(X, y)

Make the prediction on the meshed x-axis (ask for MSE as well)
y_pred, sigma = gp.predict(x, return_std=True)

Plot the function, the prediction and the 95% confidence interval based on
the MSE
plt.figure()
plt.plot(x, f(x), 'r:', label=r'$f(x) = x\,\sin(x)$')
plt.plot(X, y, 'r.', markersize=10, label='Observations')
plt.plot(x, y_pred, 'b-', label='Prediction')
plt.fill(np.concatenate([x, x[::-1]]),

np.concatenate([y_pred - 1.9600 * sigma,
(y_pred + 1.9600 * sigma)[::-1]]),

alpha=.5, fc='b', ec='None', label='95% confidence interval')
plt.xlabel('x')
plt.ylabel('$f(x)$')
plt.ylim(-10, 20)
plt.legend(loc='upper left')

--
now the noisy case
X = np.linspace(0.1, 9.9, 20)
X = np.atleast_2d(X).T

Observations and noise
y = f(X).ravel()
dy = 0.5 + 1.0 * np.random.random(y.shape)
noise = np.random.normal(0, dy)
y += noise

Instantiate a Gaussian Process model
gp = GaussianProcessRegressor(kernel=kernel, alpha=dy ** 2,

n_restarts_optimizer=10)

Fit to data using Maximum Likelihood Estimation of the parameters
gp.fit(X, y)

Make the prediction on the meshed x-axis (ask for MSE as well)
y_pred, sigma = gp.predict(x, return_std=True)

Plot the function, the prediction and the 95% confidence interval based on
the MSE
plt.figure()
plt.plot(x, f(x), 'r:', label=r'$f(x) = x\,\sin(x)$')
plt.errorbar(X.ravel(), y, dy, fmt='r.', markersize=10, label='Observations')
plt.plot(x, y_pred, 'b-', label='Prediction')
plt.fill(np.concatenate([x, x[::-1]]),

(continues on next page)

1150 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

np.concatenate([y_pred - 1.9600 * sigma,
(y_pred + 1.9600 * sigma)[::-1]]),

alpha=.5, fc='b', ec='None', label='95% confidence interval')
plt.xlabel('x')
plt.ylabel('$f(x)$')
plt.ylim(-10, 20)
plt.legend(loc='upper left')

plt.show()

Total running time of the script: (0 minutes 0.535 seconds)

6.15.9 Gaussian process regression (GPR) on Mauna Loa CO2 data.

This example is based on Section 5.4.3 of “Gaussian Processes for Machine Learning” [RW2006]. It illustrates an
example of complex kernel engineering and hyperparameter optimization using gradient ascent on the log-marginal-
likelihood. The data consists of the monthly average atmospheric CO2 concentrations (in parts per million by volume
(ppmv)) collected at the Mauna Loa Observatory in Hawaii, between 1958 and 2001. The objective is to model the
CO2 concentration as a function of the time t.

The kernel is composed of several terms that are responsible for explaining different properties of the signal:

• a long term, smooth rising trend is to be explained by an RBF kernel. The RBF kernel with a large length-scale
enforces this component to be smooth; it is not enforced that the trend is rising which leaves this choice to the
GP. The specific length-scale and the amplitude are free hyperparameters.

• a seasonal component, which is to be explained by the periodic ExpSineSquared kernel with a fixed periodicity
of 1 year. The length-scale of this periodic component, controlling its smoothness, is a free parameter. In order
to allow decaying away from exact periodicity, the product with an RBF kernel is taken. The length-scale of this
RBF component controls the decay time and is a further free parameter.

• smaller, medium term irregularities are to be explained by a RationalQuadratic kernel component, whose length-
scale and alpha parameter, which determines the diffuseness of the length-scales, are to be determined. Ac-
cording to [RW2006], these irregularities can better be explained by a RationalQuadratic than an RBF kernel
component, probably because it can accommodate several length-scales.

• a “noise” term, consisting of an RBF kernel contribution, which shall explain the correlated noise components
such as local weather phenomena, and a WhiteKernel contribution for the white noise. The relative amplitudes
and the RBF’s length scale are further free parameters.

Maximizing the log-marginal-likelihood after subtracting the target’s mean yields the following kernel with an LML
of -83.214:

34.4**2 * RBF(length_scale=41.8)
+ 3.27**2 * RBF(length_scale=180) * ExpSineSquared(length_scale=1.44,

periodicity=1)
+ 0.446**2 * RationalQuadratic(alpha=17.7, length_scale=0.957)
+ 0.197**2 * RBF(length_scale=0.138) + WhiteKernel(noise_level=0.0336)

Thus, most of the target signal (34.4ppm) is explained by a long-term rising trend (length-scale 41.8 years). The
periodic component has an amplitude of 3.27ppm, a decay time of 180 years and a length-scale of 1.44. The long
decay time indicates that we have a locally very close to periodic seasonal component. The correlated noise has an
amplitude of 0.197ppm with a length scale of 0.138 years and a white-noise contribution of 0.197ppm. Thus, the
overall noise level is very small, indicating that the data can be very well explained by the model. The figure shows
also that the model makes very confident predictions until around 2015.

6.15. Gaussian Process for Machine Learning 1151

scikit-learn user guide, Release 0.23.2

Out:

GPML kernel: 66**2 * RBF(length_scale=67) + 2.4**2 * RBF(length_scale=90) *
→˓ExpSineSquared(length_scale=1.3, periodicity=1) + 0.66**2 *
→˓RationalQuadratic(alpha=0.78, length_scale=1.2) + 0.18**2 * RBF(length_scale=0.134)
→˓+ WhiteKernel(noise_level=0.0361)
Log-marginal-likelihood: 155.006

Learned kernel: 2.59**2 * RBF(length_scale=51) + 0.257**2 * RBF(length_scale=137) *
→˓ExpSineSquared(length_scale=2.15, periodicity=1) + 0.118**2 *
→˓RationalQuadratic(alpha=2.32, length_scale=70.6) + 0.03**2 * RBF(length_scale=1.01)
→˓+ WhiteKernel(noise_level=0.001)
Log-marginal-likelihood: 1161.609

Authors: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
#
License: BSD 3 clause

import numpy as np
(continues on next page)

1152 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

from matplotlib import pyplot as plt
from sklearn.datasets import fetch_openml
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels \

import RBF, WhiteKernel, RationalQuadratic, ExpSineSquared

print(__doc__)

def load_mauna_loa_atmospheric_co2():
ml_data = fetch_openml(data_id=41187)
months = []
ppmv_sums = []
counts = []

y = ml_data.data[:, 0]
m = ml_data.data[:, 1]
month_float = y + (m - 1) / 12
ppmvs = ml_data.target

for month, ppmv in zip(month_float, ppmvs):
if not months or month != months[-1]:

months.append(month)
ppmv_sums.append(ppmv)
counts.append(1)

else:
aggregate monthly sum to produce average
ppmv_sums[-1] += ppmv
counts[-1] += 1

months = np.asarray(months).reshape(-1, 1)
avg_ppmvs = np.asarray(ppmv_sums) / counts
return months, avg_ppmvs

X, y = load_mauna_loa_atmospheric_co2()

Kernel with parameters given in GPML book
k1 = 66.0**2 * RBF(length_scale=67.0) # long term smooth rising trend
k2 = 2.4**2 * RBF(length_scale=90.0) \

* ExpSineSquared(length_scale=1.3, periodicity=1.0) # seasonal component
medium term irregularity
k3 = 0.66**2 \

* RationalQuadratic(length_scale=1.2, alpha=0.78)
k4 = 0.18**2 * RBF(length_scale=0.134) \

+ WhiteKernel(noise_level=0.19**2) # noise terms
kernel_gpml = k1 + k2 + k3 + k4

gp = GaussianProcessRegressor(kernel=kernel_gpml, alpha=0,
optimizer=None, normalize_y=True)

gp.fit(X, y)

print("GPML kernel: %s" % gp.kernel_)
print("Log-marginal-likelihood: %.3f"

% gp.log_marginal_likelihood(gp.kernel_.theta))

(continues on next page)

6.15. Gaussian Process for Machine Learning 1153

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Kernel with optimized parameters
k1 = 50.0**2 * RBF(length_scale=50.0) # long term smooth rising trend
k2 = 2.0**2 * RBF(length_scale=100.0) \

* ExpSineSquared(length_scale=1.0, periodicity=1.0,
periodicity_bounds="fixed") # seasonal component

medium term irregularities
k3 = 0.5**2 * RationalQuadratic(length_scale=1.0, alpha=1.0)
k4 = 0.1**2 * RBF(length_scale=0.1) \

+ WhiteKernel(noise_level=0.1**2,
noise_level_bounds=(1e-3, np.inf)) # noise terms

kernel = k1 + k2 + k3 + k4

gp = GaussianProcessRegressor(kernel=kernel, alpha=0,
normalize_y=True)

gp.fit(X, y)

print("\nLearned kernel: %s" % gp.kernel_)
print("Log-marginal-likelihood: %.3f"

% gp.log_marginal_likelihood(gp.kernel_.theta))

X_ = np.linspace(X.min(), X.max() + 30, 1000)[:, np.newaxis]
y_pred, y_std = gp.predict(X_, return_std=True)

Illustration
plt.scatter(X, y, c='k')
plt.plot(X_, y_pred)
plt.fill_between(X_[:, 0], y_pred - y_std, y_pred + y_std,

alpha=0.5, color='k')
plt.xlim(X_.min(), X_.max())
plt.xlabel("Year")
plt.ylabel(r"CO$_2$ in ppm")
plt.title(r"Atmospheric CO$_2$ concentration at Mauna Loa")
plt.tight_layout()
plt.show()

Total running time of the script: (0 minutes 7.378 seconds)

6.15.10 Gaussian processes on discrete data structures

This example illustrates the use of Gaussian processes for regression and classification tasks on data that are not in
fixed-length feature vector form. This is achieved through the use of kernel functions that operates directly on discrete
structures such as variable-length sequences, trees, and graphs.

Specifically, here the input variables are some gene sequences stored as variable-length strings consisting of letters
‘A’, ‘T’, ‘C’, and ‘G’, while the output variables are floating point numbers and True/False labels in the regression and
classification tasks, respectively.

A kernel between the gene sequences is defined using R-convolution1 by integrating a binary letter-wise kernel over
all pairs of letters among a pair of strings.

This example will generate three figures.

In the first figure, we visualize the value of the kernel, i.e. the similarity of the sequences, using a colormap. Brighter
color here indicates higher similarity.

1 Haussler, D. (1999). Convolution kernels on discrete structures (Vol. 646). Technical report, Department of Computer Science, University of
California at Santa Cruz.

1154 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

In the second figure, we show some regression result on a dataset of 6 sequences. Here we use the 1st, 2nd, 4th, and
5th sequences as the training set to make predictions on the 3rd and 6th sequences.

In the third figure, we demonstrate a classification model by training on 6 sequences and make predictions on another
5 sequences. The ground truth here is simply whether there is at least one ‘A’ in the sequence. Here the model makes
four correct classifications and fails on one.

•

•

6.15. Gaussian Process for Machine Learning 1155

scikit-learn user guide, Release 0.23.2

•

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn.gaussian_process.kernels import Kernel, Hyperparameter
from sklearn.gaussian_process.kernels import GenericKernelMixin
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.base import clone

class SequenceKernel(GenericKernelMixin, Kernel):
'''
A minimal (but valid) convolutional kernel for sequences of variable
lengths.'''
def __init__(self,

baseline_similarity=0.5,
baseline_similarity_bounds=(1e-5, 1)):

self.baseline_similarity = baseline_similarity
self.baseline_similarity_bounds = baseline_similarity_bounds

@property
def hyperparameter_baseline_similarity(self):

return Hyperparameter("baseline_similarity",
"numeric",
self.baseline_similarity_bounds)

def _f(self, s1, s2):
'''
kernel value between a pair of sequences
'''
return sum([1.0 if c1 == c2 else self.baseline_similarity

(continues on next page)

1156 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

for c1 in s1
for c2 in s2])

def _g(self, s1, s2):
'''
kernel derivative between a pair of sequences
'''
return sum([0.0 if c1 == c2 else 1.0

for c1 in s1
for c2 in s2])

def __call__(self, X, Y=None, eval_gradient=False):
if Y is None:

Y = X

if eval_gradient:
return (np.array([[self._f(x, y) for y in Y] for x in X]),

np.array([[[self._g(x, y)] for y in Y] for x in X]))
else:

return np.array([[self._f(x, y) for y in Y] for x in X])

def diag(self, X):
return np.array([self._f(x, x) for x in X])

def is_stationary(self):
return False

def clone_with_theta(self, theta):
cloned = clone(self)
cloned.theta = theta
return cloned

kernel = SequenceKernel()

'''
Sequence similarity matrix under the kernel
===
'''

X = np.array(['AGCT', 'AGC', 'AACT', 'TAA', 'AAA', 'GAACA'])

K = kernel(X)
D = kernel.diag(X)

plt.figure(figsize=(8, 5))
plt.imshow(np.diag(D**-0.5).dot(K).dot(np.diag(D**-0.5)))
plt.xticks(np.arange(len(X)), X)
plt.yticks(np.arange(len(X)), X)
plt.title('Sequence similarity under the kernel')

'''
Regression
==========
'''

X = np.array(['AGCT', 'AGC', 'AACT', 'TAA', 'AAA', 'GAACA'])
(continues on next page)

6.15. Gaussian Process for Machine Learning 1157

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Y = np.array([1.0, 1.0, 2.0, 2.0, 3.0, 3.0])

training_idx = [0, 1, 3, 4]
gp = GaussianProcessRegressor(kernel=kernel)
gp.fit(X[training_idx], Y[training_idx])

plt.figure(figsize=(8, 5))
plt.bar(np.arange(len(X)), gp.predict(X), color='b', label='prediction')
plt.bar(training_idx, Y[training_idx], width=0.2, color='r',

alpha=1, label='training')
plt.xticks(np.arange(len(X)), X)
plt.title('Regression on sequences')
plt.legend()

'''
Classification
==============
'''

X_train = np.array(['AGCT', 'CGA', 'TAAC', 'TCG', 'CTTT', 'TGCT'])
whether there are 'A's in the sequence
Y_train = np.array([True, True, True, False, False, False])

gp = GaussianProcessClassifier(kernel)
gp.fit(X_train, Y_train)

X_test = ['AAA', 'ATAG', 'CTC', 'CT', 'C']
Y_test = [True, True, False, False, False]

plt.figure(figsize=(8, 5))
plt.scatter(np.arange(len(X_train)), [1.0 if c else -1.0 for c in Y_train],

s=100, marker='o', edgecolor='none', facecolor=(1, 0.75, 0),
label='training')

plt.scatter(len(X_train) + np.arange(len(X_test)),
[1.0 if c else -1.0 for c in Y_test],
s=100, marker='o', edgecolor='none', facecolor='r', label='truth')

plt.scatter(len(X_train) + np.arange(len(X_test)),
[1.0 if c else -1.0 for c in gp.predict(X_test)],
s=100, marker='x', edgecolor=(0, 1.0, 0.3), linewidth=2,
label='prediction')

plt.xticks(np.arange(len(X_train) + len(X_test)),
np.concatenate((X_train, X_test)))

plt.yticks([-1, 1], [False, True])
plt.title('Classification on sequences')
plt.legend()

plt.show()

Total running time of the script: (0 minutes 0.279 seconds)

6.16 Generalized Linear Models

Examples concerning the sklearn.linear_model module.

1158 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

6.16.1 Lasso path using LARS

Computes Lasso Path along the regularization parameter using the LARS algorithm on the diabetes dataset. Each
color represents a different feature of the coefficient vector, and this is displayed as a function of the regularization
parameter.

Out:

Computing regularization path using the LARS ...
.

print(__doc__)

Author: Fabian Pedregosa <fabian.pedregosa@inria.fr>
Alexandre Gramfort <alexandre.gramfort@inria.fr>
License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

(continues on next page)

6.16. Generalized Linear Models 1159

scikit-learn user guide, Release 0.23.2

(continued from previous page)

from sklearn import linear_model
from sklearn import datasets

X, y = datasets.load_diabetes(return_X_y=True)

print("Computing regularization path using the LARS ...")
_, _, coefs = linear_model.lars_path(X, y, method='lasso', verbose=True)

xx = np.sum(np.abs(coefs.T), axis=1)
xx /= xx[-1]

plt.plot(xx, coefs.T)
ymin, ymax = plt.ylim()
plt.vlines(xx, ymin, ymax, linestyle='dashed')
plt.xlabel('|coef| / max|coef|')
plt.ylabel('Coefficients')
plt.title('LASSO Path')
plt.axis('tight')
plt.show()

Total running time of the script: (0 minutes 0.123 seconds)

6.16.2 SGD: Maximum margin separating hyperplane

Plot the maximum margin separating hyperplane within a two-class separable dataset using a linear Support Vector
Machines classifier trained using SGD.

1160 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import SGDClassifier
from sklearn.datasets import make_blobs

we create 50 separable points
X, Y = make_blobs(n_samples=50, centers=2, random_state=0, cluster_std=0.60)

fit the model
clf = SGDClassifier(loss="hinge", alpha=0.01, max_iter=200)

clf.fit(X, Y)

plot the line, the points, and the nearest vectors to the plane
xx = np.linspace(-1, 5, 10)
yy = np.linspace(-1, 5, 10)

X1, X2 = np.meshgrid(xx, yy)
Z = np.empty(X1.shape)
for (i, j), val in np.ndenumerate(X1):

x1 = val
x2 = X2[i, j]
p = clf.decision_function([[x1, x2]])

(continues on next page)

6.16. Generalized Linear Models 1161

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Z[i, j] = p[0]
levels = [-1.0, 0.0, 1.0]
linestyles = ['dashed', 'solid', 'dashed']
colors = 'k'
plt.contour(X1, X2, Z, levels, colors=colors, linestyles=linestyles)
plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired,

edgecolor='black', s=20)

plt.axis('tight')
plt.show()

Total running time of the script: (0 minutes 0.099 seconds)

6.16.3 Plot Ridge coefficients as a function of the regularization

Shows the effect of collinearity in the coefficients of an estimator.

Ridge Regression is the estimator used in this example. Each color represents a different feature of the coefficient
vector, and this is displayed as a function of the regularization parameter.

This example also shows the usefulness of applying Ridge regression to highly ill-conditioned matrices. For such
matrices, a slight change in the target variable can cause huge variances in the calculated weights. In such cases, it is
useful to set a certain regularization (alpha) to reduce this variation (noise).

When alpha is very large, the regularization effect dominates the squared loss function and the coefficients tend to
zero. At the end of the path, as alpha tends toward zero and the solution tends towards the ordinary least squares,
coefficients exhibit big oscillations. In practise it is necessary to tune alpha in such a way that a balance is maintained
between both.

1162 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Author: Fabian Pedregosa -- <fabian.pedregosa@inria.fr>
License: BSD 3 clause

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn import linear_model

X is the 10x10 Hilbert matrix
X = 1. / (np.arange(1, 11) + np.arange(0, 10)[:, np.newaxis])
y = np.ones(10)

###
Compute paths

n_alphas = 200
alphas = np.logspace(-10, -2, n_alphas)

coefs = []
for a in alphas:

ridge = linear_model.Ridge(alpha=a, fit_intercept=False)
ridge.fit(X, y)
coefs.append(ridge.coef_)

(continues on next page)

6.16. Generalized Linear Models 1163

scikit-learn user guide, Release 0.23.2

(continued from previous page)

###
Display results

ax = plt.gca()

ax.plot(alphas, coefs)
ax.set_xscale('log')
ax.set_xlim(ax.get_xlim()[::-1]) # reverse axis
plt.xlabel('alpha')
plt.ylabel('weights')
plt.title('Ridge coefficients as a function of the regularization')
plt.axis('tight')
plt.show()

Total running time of the script: (0 minutes 0.212 seconds)

6.16.4 SGD: convex loss functions

A plot that compares the various convex loss functions supported by sklearn.linear_model.
SGDClassifier .

print(__doc__)

(continues on next page)

1164 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

import numpy as np
import matplotlib.pyplot as plt

def modified_huber_loss(y_true, y_pred):
z = y_pred * y_true
loss = -4 * z
loss[z >= -1] = (1 - z[z >= -1]) ** 2
loss[z >= 1.] = 0
return loss

xmin, xmax = -4, 4
xx = np.linspace(xmin, xmax, 100)
lw = 2
plt.plot([xmin, 0, 0, xmax], [1, 1, 0, 0], color='gold', lw=lw,

label="Zero-one loss")
plt.plot(xx, np.where(xx < 1, 1 - xx, 0), color='teal', lw=lw,

label="Hinge loss")
plt.plot(xx, -np.minimum(xx, 0), color='yellowgreen', lw=lw,

label="Perceptron loss")
plt.plot(xx, np.log2(1 + np.exp(-xx)), color='cornflowerblue', lw=lw,

label="Log loss")
plt.plot(xx, np.where(xx < 1, 1 - xx, 0) ** 2, color='orange', lw=lw,

label="Squared hinge loss")
plt.plot(xx, modified_huber_loss(xx, 1), color='darkorchid', lw=lw,

linestyle='--', label="Modified Huber loss")
plt.ylim((0, 8))
plt.legend(loc="upper right")
plt.xlabel(r"Decision function $f(x)$")
plt.ylabel("$L(y=1, f(x))$")
plt.show()

Total running time of the script: (0 minutes 0.121 seconds)

6.16.5 Ordinary Least Squares and Ridge Regression Variance

Due to the few points in each dimension and the straight line that linear regression uses to follow these points as well
as it can, noise on the observations will cause great variance as shown in the first plot. Every line’s slope can vary
quite a bit for each prediction due to the noise induced in the observations.

Ridge regression is basically minimizing a penalised version of the least-squared function. The penalising shrinks
the value of the regression coefficients. Despite the few data points in each dimension, the slope of the prediction is
much more stable and the variance in the line itself is greatly reduced, in comparison to that of the standard linear
regression

6.16. Generalized Linear Models 1165

scikit-learn user guide, Release 0.23.2

•

•

print(__doc__)

Code source: Gaël Varoquaux
Modified for documentation by Jaques Grobler
License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn import linear_model

X_train = np.c_[.5, 1].T
y_train = [.5, 1]
X_test = np.c_[0, 2].T

(continues on next page)

1166 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

np.random.seed(0)

classifiers = dict(ols=linear_model.LinearRegression(),
ridge=linear_model.Ridge(alpha=.1))

for name, clf in classifiers.items():
fig, ax = plt.subplots(figsize=(4, 3))

for _ in range(6):
this_X = .1 * np.random.normal(size=(2, 1)) + X_train
clf.fit(this_X, y_train)

ax.plot(X_test, clf.predict(X_test), color='gray')
ax.scatter(this_X, y_train, s=3, c='gray', marker='o', zorder=10)

clf.fit(X_train, y_train)
ax.plot(X_test, clf.predict(X_test), linewidth=2, color='blue')
ax.scatter(X_train, y_train, s=30, c='red', marker='+', zorder=10)

ax.set_title(name)
ax.set_xlim(0, 2)
ax.set_ylim((0, 1.6))
ax.set_xlabel('X')
ax.set_ylabel('y')

fig.tight_layout()

plt.show()

Total running time of the script: (0 minutes 0.209 seconds)

6.16.6 Plot Ridge coefficients as a function of the L2 regularization

Ridge Regression is the estimator used in this example. Each color in the left plot represents one different dimension
of the coefficient vector, and this is displayed as a function of the regularization parameter. The right plot shows
how exact the solution is. This example illustrates how a well defined solution is found by Ridge regression and
how regularization affects the coefficients and their values. The plot on the right shows how the difference of the
coefficients from the estimator changes as a function of regularization.

In this example the dependent variable Y is set as a function of the input features: y = X*w + c. The coefficient vector
w is randomly sampled from a normal distribution, whereas the bias term c is set to a constant.

As alpha tends toward zero the coefficients found by Ridge regression stabilize towards the randomly sampled vector
w. For big alpha (strong regularisation) the coefficients are smaller (eventually converging at 0) leading to a simpler
and biased solution. These dependencies can be observed on the left plot.

The right plot shows the mean squared error between the coefficients found by the model and the chosen vector w.
Less regularised models retrieve the exact coefficients (error is equal to 0), stronger regularised models increase the
error.

Please note that in this example the data is non-noisy, hence it is possible to extract the exact coefficients.

6.16. Generalized Linear Models 1167

scikit-learn user guide, Release 0.23.2

Author: Kornel Kielczewski -- <kornel.k@plusnet.pl>

print(__doc__)

import matplotlib.pyplot as plt
import numpy as np

from sklearn.datasets import make_regression
from sklearn.linear_model import Ridge
from sklearn.metrics import mean_squared_error

clf = Ridge()

X, y, w = make_regression(n_samples=10, n_features=10, coef=True,
random_state=1, bias=3.5)

coefs = []
errors = []

alphas = np.logspace(-6, 6, 200)

Train the model with different regularisation strengths
for a in alphas:

clf.set_params(alpha=a)
clf.fit(X, y)
coefs.append(clf.coef_)
errors.append(mean_squared_error(clf.coef_, w))

Display results
plt.figure(figsize=(20, 6))

plt.subplot(121)
ax = plt.gca()
ax.plot(alphas, coefs)
ax.set_xscale('log')
plt.xlabel('alpha')
plt.ylabel('weights')
plt.title('Ridge coefficients as a function of the regularization')
plt.axis('tight')

plt.subplot(122)
ax = plt.gca()
ax.plot(alphas, errors)
ax.set_xscale('log')

(continues on next page)

1168 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.xlabel('alpha')
plt.ylabel('error')
plt.title('Coefficient error as a function of the regularization')
plt.axis('tight')

plt.show()

Total running time of the script: (0 minutes 0.409 seconds)

6.16.7 SGD: Penalties

Contours of where the penalty is equal to 1 for the three penalties L1, L2 and elastic-net.

All of the above are supported by SGDClassifier and SGDRegressor.

6.16. Generalized Linear Models 1169

scikit-learn user guide, Release 0.23.2

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

l1_color = "navy"
l2_color = "c"
elastic_net_color = "darkorange"

line = np.linspace(-1.5, 1.5, 1001)
xx, yy = np.meshgrid(line, line)

l2 = xx ** 2 + yy ** 2
l1 = np.abs(xx) + np.abs(yy)

(continues on next page)

1170 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

rho = 0.5
elastic_net = rho * l1 + (1 - rho) * l2

plt.figure(figsize=(10, 10), dpi=100)
ax = plt.gca()

elastic_net_contour = plt.contour(xx, yy, elastic_net, levels=[1],
colors=elastic_net_color)

l2_contour = plt.contour(xx, yy, l2, levels=[1], colors=l2_color)
l1_contour = plt.contour(xx, yy, l1, levels=[1], colors=l1_color)
ax.set_aspect("equal")
ax.spines['left'].set_position('center')
ax.spines['right'].set_color('none')
ax.spines['bottom'].set_position('center')
ax.spines['top'].set_color('none')

plt.clabel(elastic_net_contour, inline=1, fontsize=18,
fmt={1.0: 'elastic-net'}, manual=[(-1, -1)])

plt.clabel(l2_contour, inline=1, fontsize=18,
fmt={1.0: 'L2'}, manual=[(-1, -1)])

plt.clabel(l1_contour, inline=1, fontsize=18,
fmt={1.0: 'L1'}, manual=[(-1, -1)])

plt.tight_layout()
plt.show()

Total running time of the script: (0 minutes 0.260 seconds)

6.16.8 Polynomial interpolation

This example demonstrates how to approximate a function with a polynomial of degree n_degree by using ridge
regression. Concretely, from n_samples 1d points, it suffices to build the Vandermonde matrix, which is n_samples x
n_degree+1 and has the following form:

[[1, x_1, x_1 ** 2, x_1 ** 3, . . .], [1, x_2, x_2 ** 2, x_2 ** 3, . . .], . . .]

Intuitively, this matrix can be interpreted as a matrix of pseudo features (the points raised to some power). The matrix
is akin to (but different from) the matrix induced by a polynomial kernel.

This example shows that you can do non-linear regression with a linear model, using a pipeline to add non-linear
features. Kernel methods extend this idea and can induce very high (even infinite) dimensional feature spaces.

6.16. Generalized Linear Models 1171

scikit-learn user guide, Release 0.23.2

print(__doc__)

Author: Mathieu Blondel
Jake Vanderplas
License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn.linear_model import Ridge
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make_pipeline

def f(x):
""" function to approximate by polynomial interpolation"""
return x * np.sin(x)

generate points used to plot
x_plot = np.linspace(0, 10, 100)

generate points and keep a subset of them
x = np.linspace(0, 10, 100)
rng = np.random.RandomState(0)

(continues on next page)

1172 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

rng.shuffle(x)
x = np.sort(x[:20])
y = f(x)

create matrix versions of these arrays
X = x[:, np.newaxis]
X_plot = x_plot[:, np.newaxis]

colors = ['teal', 'yellowgreen', 'gold']
lw = 2
plt.plot(x_plot, f(x_plot), color='cornflowerblue', linewidth=lw,

label="ground truth")
plt.scatter(x, y, color='navy', s=30, marker='o', label="training points")

for count, degree in enumerate([3, 4, 5]):
model = make_pipeline(PolynomialFeatures(degree), Ridge())
model.fit(X, y)
y_plot = model.predict(X_plot)
plt.plot(x_plot, y_plot, color=colors[count], linewidth=lw,

label="degree %d" % degree)

plt.legend(loc='lower left')

plt.show()

Total running time of the script: (0 minutes 0.094 seconds)

6.16.9 Logistic function

Shown in the plot is how the logistic regression would, in this synthetic dataset, classify values as either 0 or 1, i.e.
class one or two, using the logistic curve.

print(__doc__)

(continues on next page)

6.16. Generalized Linear Models 1173

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Code source: Gael Varoquaux
License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn import linear_model
from scipy.special import expit

General a toy dataset:s it's just a straight line with some Gaussian noise:
xmin, xmax = -5, 5
n_samples = 100
np.random.seed(0)
X = np.random.normal(size=n_samples)
y = (X > 0).astype(np.float)
X[X > 0] *= 4
X += .3 * np.random.normal(size=n_samples)

X = X[:, np.newaxis]

Fit the classifier
clf = linear_model.LogisticRegression(C=1e5)
clf.fit(X, y)

and plot the result
plt.figure(1, figsize=(4, 3))
plt.clf()
plt.scatter(X.ravel(), y, color='black', zorder=20)
X_test = np.linspace(-5, 10, 300)

loss = expit(X_test * clf.coef_ + clf.intercept_).ravel()
plt.plot(X_test, loss, color='red', linewidth=3)

ols = linear_model.LinearRegression()
ols.fit(X, y)
plt.plot(X_test, ols.coef_ * X_test + ols.intercept_, linewidth=1)
plt.axhline(.5, color='.5')

plt.ylabel('y')
plt.xlabel('X')
plt.xticks(range(-5, 10))
plt.yticks([0, 0.5, 1])
plt.ylim(-.25, 1.25)
plt.xlim(-4, 10)
plt.legend(('Logistic Regression Model', 'Linear Regression Model'),

loc="lower right", fontsize='small')
plt.tight_layout()
plt.show()

Total running time of the script: (0 minutes 0.081 seconds)

6.16.10 Regularization path of L1- Logistic Regression

Train l1-penalized logistic regression models on a binary classification problem derived from the Iris dataset.

The models are ordered from strongest regularized to least regularized. The 4 coefficients of the models are collected

1174 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

and plotted as a “regularization path”: on the left-hand side of the figure (strong regularizers), all the coefficients are
exactly 0. When regularization gets progressively looser, coefficients can get non-zero values one after the other.

Here we choose the liblinear solver because it can efficiently optimize for the Logistic Regression loss with a non-
smooth, sparsity inducing l1 penalty.

Also note that we set a low value for the tolerance to make sure that the model has converged before collecting the
coefficients.

We also use warm_start=True which means that the coefficients of the models are reused to initialize the next model
fit to speed-up the computation of the full-path.

Out:

Computing regularization path ...
This took 0.072s

print(__doc__)

Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
License: BSD 3 clause

(continues on next page)

6.16. Generalized Linear Models 1175

scikit-learn user guide, Release 0.23.2

(continued from previous page)

from time import time
import numpy as np
import matplotlib.pyplot as plt

from sklearn import linear_model
from sklearn import datasets
from sklearn.svm import l1_min_c

iris = datasets.load_iris()
X = iris.data
y = iris.target

X = X[y != 2]
y = y[y != 2]

X /= X.max() # Normalize X to speed-up convergence

###
Demo path functions

cs = l1_min_c(X, y, loss='log') * np.logspace(0, 7, 16)

print("Computing regularization path ...")
start = time()
clf = linear_model.LogisticRegression(penalty='l1', solver='liblinear',

tol=1e-6, max_iter=int(1e6),
warm_start=True,
intercept_scaling=10000.)

coefs_ = []
for c in cs:

clf.set_params(C=c)
clf.fit(X, y)
coefs_.append(clf.coef_.ravel().copy())

print("This took %0.3fs" % (time() - start))

coefs_ = np.array(coefs_)
plt.plot(np.log10(cs), coefs_, marker='o')
ymin, ymax = plt.ylim()
plt.xlabel('log(C)')
plt.ylabel('Coefficients')
plt.title('Logistic Regression Path')
plt.axis('tight')
plt.show()

Total running time of the script: (0 minutes 0.164 seconds)

6.16.11 Logistic Regression 3-class Classifier

Show below is a logistic-regression classifiers decision boundaries on the first two dimensions (sepal length and width)
of the iris dataset. The datapoints are colored according to their labels.

1176 Chapter 6. Examples

https://en.wikipedia.org/wiki/Iris_flower_data_set

scikit-learn user guide, Release 0.23.2

print(__doc__)

Code source: Gaël Varoquaux
Modified for documentation by Jaques Grobler
License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn import datasets

import some data to play with
iris = datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features.
Y = iris.target

logreg = LogisticRegression(C=1e5)

Create an instance of Logistic Regression Classifier and fit the data.
logreg.fit(X, Y)

Plot the decision boundary. For that, we will assign a color to each
point in the mesh [x_min, x_max]x[y_min, y_max].
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
h = .02 # step size in the mesh
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = logreg.predict(np.c_[xx.ravel(), yy.ravel()])

Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure(1, figsize=(4, 3))
plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)

Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=Y, edgecolors='k', cmap=plt.cm.Paired)
plt.xlabel('Sepal length')

(continues on next page)

6.16. Generalized Linear Models 1177

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.ylabel('Sepal width')

plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.xticks(())
plt.yticks(())

plt.show()

Total running time of the script: (0 minutes 0.089 seconds)

6.16.12 SGD: Weighted samples

Plot decision function of a weighted dataset, where the size of points is proportional to its weight.

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn import linear_model

we create 20 points
np.random.seed(0)

(continues on next page)

1178 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

X = np.r_[np.random.randn(10, 2) + [1, 1], np.random.randn(10, 2)]
y = [1] * 10 + [-1] * 10
sample_weight = 100 * np.abs(np.random.randn(20))
and assign a bigger weight to the last 10 samples
sample_weight[:10] *= 10

plot the weighted data points
xx, yy = np.meshgrid(np.linspace(-4, 5, 500), np.linspace(-4, 5, 500))
plt.figure()
plt.scatter(X[:, 0], X[:, 1], c=y, s=sample_weight, alpha=0.9,

cmap=plt.cm.bone, edgecolor='black')

fit the unweighted model
clf = linear_model.SGDClassifier(alpha=0.01, max_iter=100)
clf.fit(X, y)
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
no_weights = plt.contour(xx, yy, Z, levels=[0], linestyles=['solid'])

fit the weighted model
clf = linear_model.SGDClassifier(alpha=0.01, max_iter=100)
clf.fit(X, y, sample_weight=sample_weight)
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
samples_weights = plt.contour(xx, yy, Z, levels=[0], linestyles=['dashed'])

plt.legend([no_weights.collections[0], samples_weights.collections[0]],
["no weights", "with weights"], loc="lower left")

plt.xticks(())
plt.yticks(())
plt.show()

Total running time of the script: (0 minutes 0.079 seconds)

6.16.13 Linear Regression Example

This example uses the only the first feature of the diabetes dataset, in order to illustrate a two-dimensional plot of
this regression technique. The straight line can be seen in the plot, showing how linear regression attempts to draw a
straight line that will best minimize the residual sum of squares between the observed responses in the dataset, and the
responses predicted by the linear approximation.

The coefficients, the residual sum of squares and the coefficient of determination are also calculated.

6.16. Generalized Linear Models 1179

scikit-learn user guide, Release 0.23.2

Out:

Coefficients:
[938.23786125]

Mean squared error: 2548.07
Coefficient of determination: 0.47

print(__doc__)

Code source: Jaques Grobler
License: BSD 3 clause

import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, linear_model
from sklearn.metrics import mean_squared_error, r2_score

Load the diabetes dataset

(continues on next page)

1180 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

diabetes_X, diabetes_y = datasets.load_diabetes(return_X_y=True)

Use only one feature
diabetes_X = diabetes_X[:, np.newaxis, 2]

Split the data into training/testing sets
diabetes_X_train = diabetes_X[:-20]
diabetes_X_test = diabetes_X[-20:]

Split the targets into training/testing sets
diabetes_y_train = diabetes_y[:-20]
diabetes_y_test = diabetes_y[-20:]

Create linear regression object
regr = linear_model.LinearRegression()

Train the model using the training sets
regr.fit(diabetes_X_train, diabetes_y_train)

Make predictions using the testing set
diabetes_y_pred = regr.predict(diabetes_X_test)

The coefficients
print('Coefficients: \n', regr.coef_)
The mean squared error
print('Mean squared error: %.2f'

% mean_squared_error(diabetes_y_test, diabetes_y_pred))
The coefficient of determination: 1 is perfect prediction
print('Coefficient of determination: %.2f'

% r2_score(diabetes_y_test, diabetes_y_pred))

Plot outputs
plt.scatter(diabetes_X_test, diabetes_y_test, color='black')
plt.plot(diabetes_X_test, diabetes_y_pred, color='blue', linewidth=3)

plt.xticks(())
plt.yticks(())

plt.show()

Total running time of the script: (0 minutes 0.049 seconds)

6.16.14 Robust linear model estimation using RANSAC

In this example we see how to robustly fit a linear model to faulty data using the RANSAC algorithm.

6.16. Generalized Linear Models 1181

scikit-learn user guide, Release 0.23.2

Out:

Estimated coefficients (true, linear regression, RANSAC):
82.1903908407869 [54.17236387] [82.08533159]

import numpy as np
from matplotlib import pyplot as plt

from sklearn import linear_model, datasets

n_samples = 1000
n_outliers = 50

X, y, coef = datasets.make_regression(n_samples=n_samples, n_features=1,
n_informative=1, noise=10,
coef=True, random_state=0)

Add outlier data

(continues on next page)

1182 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

np.random.seed(0)
X[:n_outliers] = 3 + 0.5 * np.random.normal(size=(n_outliers, 1))
y[:n_outliers] = -3 + 10 * np.random.normal(size=n_outliers)

Fit line using all data
lr = linear_model.LinearRegression()
lr.fit(X, y)

Robustly fit linear model with RANSAC algorithm
ransac = linear_model.RANSACRegressor()
ransac.fit(X, y)
inlier_mask = ransac.inlier_mask_
outlier_mask = np.logical_not(inlier_mask)

Predict data of estimated models
line_X = np.arange(X.min(), X.max())[:, np.newaxis]
line_y = lr.predict(line_X)
line_y_ransac = ransac.predict(line_X)

Compare estimated coefficients
print("Estimated coefficients (true, linear regression, RANSAC):")
print(coef, lr.coef_, ransac.estimator_.coef_)

lw = 2
plt.scatter(X[inlier_mask], y[inlier_mask], color='yellowgreen', marker='.',

label='Inliers')
plt.scatter(X[outlier_mask], y[outlier_mask], color='gold', marker='.',

label='Outliers')
plt.plot(line_X, line_y, color='navy', linewidth=lw, label='Linear regressor')
plt.plot(line_X, line_y_ransac, color='cornflowerblue', linewidth=lw,

label='RANSAC regressor')
plt.legend(loc='lower right')
plt.xlabel("Input")
plt.ylabel("Response")
plt.show()

Total running time of the script: (0 minutes 0.097 seconds)

6.16.15 Sparsity Example: Fitting only features 1 and 2

Features 1 and 2 of the diabetes-dataset are fitted and plotted below. It illustrates that although feature 2 has a strong
coefficient on the full model, it does not give us much regarding y when compared to just feature 1

6.16. Generalized Linear Models 1183

scikit-learn user guide, Release 0.23.2

•

•

1184 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

print(__doc__)

Code source: Gaël Varoquaux
Modified for documentation by Jaques Grobler
License: BSD 3 clause

import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D

from sklearn import datasets, linear_model

X, y = datasets.load_diabetes(return_X_y=True)
indices = (0, 1)

X_train = X[:-20, indices]
X_test = X[-20:, indices]
y_train = y[:-20]
y_test = y[-20:]

ols = linear_model.LinearRegression()
ols.fit(X_train, y_train)

###
Plot the figure
def plot_figs(fig_num, elev, azim, X_train, clf):

fig = plt.figure(fig_num, figsize=(4, 3))
plt.clf()
ax = Axes3D(fig, elev=elev, azim=azim)

ax.scatter(X_train[:, 0], X_train[:, 1], y_train, c='k', marker='+')
ax.plot_surface(np.array([[-.1, -.1], [.15, .15]]),

np.array([[-.1, .15], [-.1, .15]]),
clf.predict(np.array([[-.1, -.1, .15, .15],

[-.1, .15, -.1, .15]]).T

(continues on next page)

6.16. Generalized Linear Models 1185

scikit-learn user guide, Release 0.23.2

(continued from previous page)

).reshape((2, 2)),
alpha=.5)

ax.set_xlabel('X_1')
ax.set_ylabel('X_2')
ax.set_zlabel('Y')
ax.w_xaxis.set_ticklabels([])
ax.w_yaxis.set_ticklabels([])
ax.w_zaxis.set_ticklabels([])

Generate the three different figures from different views
elev = 43.5
azim = -110
plot_figs(1, elev, azim, X_train, ols)

elev = -.5
azim = 0
plot_figs(2, elev, azim, X_train, ols)

elev = -.5
azim = 90
plot_figs(3, elev, azim, X_train, ols)

plt.show()

Total running time of the script: (0 minutes 0.209 seconds)

6.16.16 HuberRegressor vs Ridge on dataset with strong outliers

Fit Ridge and HuberRegressor on a dataset with outliers.

The example shows that the predictions in ridge are strongly influenced by the outliers present in the dataset. The
Huber regressor is less influenced by the outliers since the model uses the linear loss for these. As the parameter
epsilon is increased for the Huber regressor, the decision function approaches that of the ridge.

1186 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Authors: Manoj Kumar mks542@nyu.edu
License: BSD 3 clause

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets import make_regression
from sklearn.linear_model import HuberRegressor, Ridge

Generate toy data.
rng = np.random.RandomState(0)
X, y = make_regression(n_samples=20, n_features=1, random_state=0, noise=4.0,

bias=100.0)

Add four strong outliers to the dataset.
X_outliers = rng.normal(0, 0.5, size=(4, 1))
y_outliers = rng.normal(0, 2.0, size=4)
X_outliers[:2, :] += X.max() + X.mean() / 4.
X_outliers[2:, :] += X.min() - X.mean() / 4.
y_outliers[:2] += y.min() - y.mean() / 4.
y_outliers[2:] += y.max() + y.mean() / 4.
X = np.vstack((X, X_outliers))
y = np.concatenate((y, y_outliers))

(continues on next page)

6.16. Generalized Linear Models 1187

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.plot(X, y, 'b.')

Fit the huber regressor over a series of epsilon values.
colors = ['r-', 'b-', 'y-', 'm-']

x = np.linspace(X.min(), X.max(), 7)
epsilon_values = [1.35, 1.5, 1.75, 1.9]
for k, epsilon in enumerate(epsilon_values):

huber = HuberRegressor(alpha=0.0, epsilon=epsilon)
huber.fit(X, y)
coef_ = huber.coef_ * x + huber.intercept_
plt.plot(x, coef_, colors[k], label="huber loss, %s" % epsilon)

Fit a ridge regressor to compare it to huber regressor.
ridge = Ridge(alpha=0.0, random_state=0, normalize=True)
ridge.fit(X, y)
coef_ridge = ridge.coef_
coef_ = ridge.coef_ * x + ridge.intercept_
plt.plot(x, coef_, 'g-', label="ridge regression")

plt.title("Comparison of HuberRegressor vs Ridge")
plt.xlabel("X")
plt.ylabel("y")
plt.legend(loc=0)
plt.show()

Total running time of the script: (0 minutes 0.108 seconds)

6.16.17 Lasso on dense and sparse data

We show that linear_model.Lasso provides the same results for dense and sparse data and that in the case of sparse
data the speed is improved.

Out:

--- Dense matrices
Sparse Lasso done in 0.115828s
Dense Lasso done in 0.047311s
Distance between coefficients : 1.0705405751792344e-13
--- Sparse matrices
Matrix density : 0.6263000000000001 %
Sparse Lasso done in 0.217219s
Dense Lasso done in 0.968272s
Distance between coefficients : 7.928463765972842e-12

print(__doc__)

from time import time
from scipy import sparse
from scipy import linalg

(continues on next page)

1188 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

from sklearn.datasets import make_regression
from sklearn.linear_model import Lasso

###
The two Lasso implementations on Dense data
print("--- Dense matrices")

X, y = make_regression(n_samples=200, n_features=5000, random_state=0)
X_sp = sparse.coo_matrix(X)

alpha = 1
sparse_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=1000)
dense_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=1000)

t0 = time()
sparse_lasso.fit(X_sp, y)
print("Sparse Lasso done in %fs" % (time() - t0))

t0 = time()
dense_lasso.fit(X, y)
print("Dense Lasso done in %fs" % (time() - t0))

print("Distance between coefficients : %s"
% linalg.norm(sparse_lasso.coef_ - dense_lasso.coef_))

###
The two Lasso implementations on Sparse data
print("--- Sparse matrices")

Xs = X.copy()
Xs[Xs < 2.5] = 0.0
Xs = sparse.coo_matrix(Xs)
Xs = Xs.tocsc()

print("Matrix density : %s %%" % (Xs.nnz / float(X.size) * 100))

alpha = 0.1
sparse_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=10000)
dense_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=10000)

t0 = time()
sparse_lasso.fit(Xs, y)
print("Sparse Lasso done in %fs" % (time() - t0))

t0 = time()
dense_lasso.fit(Xs.toarray(), y)
print("Dense Lasso done in %fs" % (time() - t0))

print("Distance between coefficients : %s"
% linalg.norm(sparse_lasso.coef_ - dense_lasso.coef_))

Total running time of the script: (0 minutes 1.437 seconds)

6.16. Generalized Linear Models 1189

scikit-learn user guide, Release 0.23.2

6.16.18 Comparing various online solvers

An example showing how different online solvers perform on the hand-written digits dataset.

Out:

training SGD
training ASGD
training Perceptron
training Passive-Aggressive I
training Passive-Aggressive II
training SAG

Author: Rob Zinkov <rob at zinkov dot com>
License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets

(continues on next page)

1190 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

from sklearn.model_selection import train_test_split
from sklearn.linear_model import SGDClassifier, Perceptron
from sklearn.linear_model import PassiveAggressiveClassifier
from sklearn.linear_model import LogisticRegression

heldout = [0.95, 0.90, 0.75, 0.50, 0.01]
rounds = 20
X, y = datasets.load_digits(return_X_y=True)

classifiers = [
("SGD", SGDClassifier(max_iter=100)),
("ASGD", SGDClassifier(average=True)),
("Perceptron", Perceptron()),
("Passive-Aggressive I", PassiveAggressiveClassifier(loss='hinge',

C=1.0, tol=1e-4)),
("Passive-Aggressive II", PassiveAggressiveClassifier(loss='squared_hinge',

C=1.0, tol=1e-4)),
("SAG", LogisticRegression(solver='sag', tol=1e-1, C=1.e4 / X.shape[0]))

]

xx = 1. - np.array(heldout)

for name, clf in classifiers:
print("training %s" % name)
rng = np.random.RandomState(42)
yy = []
for i in heldout:

yy_ = []
for r in range(rounds):

X_train, X_test, y_train, y_test = \
train_test_split(X, y, test_size=i, random_state=rng)

clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
yy_.append(1 - np.mean(y_pred == y_test))

yy.append(np.mean(yy_))
plt.plot(xx, yy, label=name)

plt.legend(loc="upper right")
plt.xlabel("Proportion train")
plt.ylabel("Test Error Rate")
plt.show()

Total running time of the script: (0 minutes 20.047 seconds)

6.16.19 Joint feature selection with multi-task Lasso

The multi-task lasso allows to fit multiple regression problems jointly enforcing the selected features to be the same
across tasks. This example simulates sequential measurements, each task is a time instant, and the relevant features
vary in amplitude over time while being the same. The multi-task lasso imposes that features that are selected at one
time point are select for all time point. This makes feature selection by the Lasso more stable.

6.16. Generalized Linear Models 1191

scikit-learn user guide, Release 0.23.2

•

•

1192 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

print(__doc__)

Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
License: BSD 3 clause

import matplotlib.pyplot as plt
import numpy as np

from sklearn.linear_model import MultiTaskLasso, Lasso

rng = np.random.RandomState(42)

Generate some 2D coefficients with sine waves with random frequency and phase
n_samples, n_features, n_tasks = 100, 30, 40
n_relevant_features = 5
coef = np.zeros((n_tasks, n_features))
times = np.linspace(0, 2 * np.pi, n_tasks)
for k in range(n_relevant_features):

coef[:, k] = np.sin((1. + rng.randn(1)) * times + 3 * rng.randn(1))

X = rng.randn(n_samples, n_features)
Y = np.dot(X, coef.T) + rng.randn(n_samples, n_tasks)

coef_lasso_ = np.array([Lasso(alpha=0.5).fit(X, y).coef_ for y in Y.T])
coef_multi_task_lasso_ = MultiTaskLasso(alpha=1.).fit(X, Y).coef_

###
Plot support and time series
fig = plt.figure(figsize=(8, 5))
plt.subplot(1, 2, 1)
plt.spy(coef_lasso_)
plt.xlabel('Feature')
plt.ylabel('Time (or Task)')
plt.text(10, 5, 'Lasso')
plt.subplot(1, 2, 2)
plt.spy(coef_multi_task_lasso_)
plt.xlabel('Feature')
plt.ylabel('Time (or Task)')
plt.text(10, 5, 'MultiTaskLasso')
fig.suptitle('Coefficient non-zero location')

feature_to_plot = 0
plt.figure()
lw = 2
plt.plot(coef[:, feature_to_plot], color='seagreen', linewidth=lw,

label='Ground truth')
plt.plot(coef_lasso_[:, feature_to_plot], color='cornflowerblue', linewidth=lw,

label='Lasso')
plt.plot(coef_multi_task_lasso_[:, feature_to_plot], color='gold', linewidth=lw,

label='MultiTaskLasso')
plt.legend(loc='upper center')
plt.axis('tight')
plt.ylim([-1.1, 1.1])
plt.show()

Total running time of the script: (0 minutes 0.259 seconds)

6.16. Generalized Linear Models 1193

scikit-learn user guide, Release 0.23.2

6.16.20 MNIST classification using multinomial logistic + L1

Here we fit a multinomial logistic regression with L1 penalty on a subset of the MNIST digits classification task. We
use the SAGA algorithm for this purpose: this a solver that is fast when the number of samples is significantly larger
than the number of features and is able to finely optimize non-smooth objective functions which is the case with the
l1-penalty. Test accuracy reaches > 0.8, while weight vectors remains sparse and therefore more easily interpretable.

Note that this accuracy of this l1-penalized linear model is significantly below what can be reached by an l2-penalized
linear model or a non-linear multi-layer perceptron model on this dataset.

Out:

Sparsity with L1 penalty: 79.95%
Test score with L1 penalty: 0.8322
Example run in 23.797 s

import time
import matplotlib.pyplot as plt
import numpy as np

from sklearn.datasets import fetch_openml
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.utils import check_random_state

print(__doc__)

Author: Arthur Mensch <arthur.mensch@m4x.org>
License: BSD 3 clause

(continues on next page)

1194 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Turn down for faster convergence
t0 = time.time()
train_samples = 5000

Load data from https://www.openml.org/d/554
X, y = fetch_openml('mnist_784', version=1, return_X_y=True)

random_state = check_random_state(0)
permutation = random_state.permutation(X.shape[0])
X = X[permutation]
y = y[permutation]
X = X.reshape((X.shape[0], -1))

X_train, X_test, y_train, y_test = train_test_split(
X, y, train_size=train_samples, test_size=10000)

scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

Turn up tolerance for faster convergence
clf = LogisticRegression(

C=50. / train_samples, penalty='l1', solver='saga', tol=0.1
)
clf.fit(X_train, y_train)
sparsity = np.mean(clf.coef_ == 0) * 100
score = clf.score(X_test, y_test)
print('Best C % .4f' % clf.C_)
print("Sparsity with L1 penalty: %.2f%%" % sparsity)
print("Test score with L1 penalty: %.4f" % score)

coef = clf.coef_.copy()
plt.figure(figsize=(10, 5))
scale = np.abs(coef).max()
for i in range(10):

l1_plot = plt.subplot(2, 5, i + 1)
l1_plot.imshow(coef[i].reshape(28, 28), interpolation='nearest',

cmap=plt.cm.RdBu, vmin=-scale, vmax=scale)
l1_plot.set_xticks(())
l1_plot.set_yticks(())
l1_plot.set_xlabel('Class %i' % i)

plt.suptitle('Classification vector for...')

run_time = time.time() - t0
print('Example run in %.3f s' % run_time)
plt.show()

Total running time of the script: (0 minutes 23.877 seconds)

6.16.21 Plot multi-class SGD on the iris dataset

Plot decision surface of multi-class SGD on iris dataset. The hyperplanes corresponding to the three one-versus-all
(OVA) classifiers are represented by the dashed lines.

6.16. Generalized Linear Models 1195

scikit-learn user guide, Release 0.23.2

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.linear_model import SGDClassifier

import some data to play with
iris = datasets.load_iris()

we only take the first two features. We could
avoid this ugly slicing by using a two-dim dataset
X = iris.data[:, :2]
y = iris.target
colors = "bry"

shuffle
idx = np.arange(X.shape[0])
np.random.seed(13)
np.random.shuffle(idx)
X = X[idx]
y = y[idx]

standardize
mean = X.mean(axis=0)

(continues on next page)

1196 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

std = X.std(axis=0)
X = (X - mean) / std

h = .02 # step size in the mesh

clf = SGDClassifier(alpha=0.001, max_iter=100).fit(X, y)

create a mesh to plot in
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),

np.arange(y_min, y_max, h))

Plot the decision boundary. For that, we will assign a color to each
point in the mesh [x_min, x_max]x[y_min, y_max].
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
Put the result into a color plot
Z = Z.reshape(xx.shape)
cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired)
plt.axis('tight')

Plot also the training points
for i, color in zip(clf.classes_, colors):

idx = np.where(y == i)
plt.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i],

cmap=plt.cm.Paired, edgecolor='black', s=20)
plt.title("Decision surface of multi-class SGD")
plt.axis('tight')

Plot the three one-against-all classifiers
xmin, xmax = plt.xlim()
ymin, ymax = plt.ylim()
coef = clf.coef_
intercept = clf.intercept_

def plot_hyperplane(c, color):
def line(x0):

return (-(x0 * coef[c, 0]) - intercept[c]) / coef[c, 1]

plt.plot([xmin, xmax], [line(xmin), line(xmax)],
ls="--", color=color)

for i, color in zip(clf.classes_, colors):
plot_hyperplane(i, color)

plt.legend()
plt.show()

Total running time of the script: (0 minutes 0.103 seconds)

6.16.22 Orthogonal Matching Pursuit

Using orthogonal matching pursuit for recovering a sparse signal from a noisy measurement encoded with a dictionary

6.16. Generalized Linear Models 1197

scikit-learn user guide, Release 0.23.2

print(__doc__)

import matplotlib.pyplot as plt
import numpy as np
from sklearn.linear_model import OrthogonalMatchingPursuit
from sklearn.linear_model import OrthogonalMatchingPursuitCV
from sklearn.datasets import make_sparse_coded_signal

n_components, n_features = 512, 100
n_nonzero_coefs = 17

generate the data

y = Xw

(continues on next page)

1198 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

|x|_0 = n_nonzero_coefs

y, X, w = make_sparse_coded_signal(n_samples=1,
n_components=n_components,
n_features=n_features,
n_nonzero_coefs=n_nonzero_coefs,
random_state=0)

idx, = w.nonzero()

distort the clean signal
y_noisy = y + 0.05 * np.random.randn(len(y))

plot the sparse signal
plt.figure(figsize=(7, 7))
plt.subplot(4, 1, 1)
plt.xlim(0, 512)
plt.title("Sparse signal")
plt.stem(idx, w[idx], use_line_collection=True)

plot the noise-free reconstruction
omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs)
omp.fit(X, y)
coef = omp.coef_
idx_r, = coef.nonzero()
plt.subplot(4, 1, 2)
plt.xlim(0, 512)
plt.title("Recovered signal from noise-free measurements")
plt.stem(idx_r, coef[idx_r], use_line_collection=True)

plot the noisy reconstruction
omp.fit(X, y_noisy)
coef = omp.coef_
idx_r, = coef.nonzero()
plt.subplot(4, 1, 3)
plt.xlim(0, 512)
plt.title("Recovered signal from noisy measurements")
plt.stem(idx_r, coef[idx_r], use_line_collection=True)

plot the noisy reconstruction with number of non-zeros set by CV
omp_cv = OrthogonalMatchingPursuitCV()
omp_cv.fit(X, y_noisy)
coef = omp_cv.coef_
idx_r, = coef.nonzero()
plt.subplot(4, 1, 4)
plt.xlim(0, 512)
plt.title("Recovered signal from noisy measurements with CV")
plt.stem(idx_r, coef[idx_r], use_line_collection=True)

plt.subplots_adjust(0.06, 0.04, 0.94, 0.90, 0.20, 0.38)
plt.suptitle('Sparse signal recovery with Orthogonal Matching Pursuit',

fontsize=16)
plt.show()

Total running time of the script: (0 minutes 0.187 seconds)

6.16. Generalized Linear Models 1199

scikit-learn user guide, Release 0.23.2

6.16.23 Lasso and Elastic Net for Sparse Signals

Estimates Lasso and Elastic-Net regression models on a manually generated sparse signal corrupted with an additive
noise. Estimated coefficients are compared with the ground-truth.

Out:

Lasso(alpha=0.1)
r^2 on test data : 0.658064
ElasticNet(alpha=0.1, l1_ratio=0.7)
r^2 on test data : 0.642515

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from sklearn.metrics import r2_score

###

(continues on next page)

1200 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Generate some sparse data to play with
np.random.seed(42)

n_samples, n_features = 50, 100
X = np.random.randn(n_samples, n_features)

Decreasing coef w. alternated signs for visualization
idx = np.arange(n_features)
coef = (-1) ** idx * np.exp(-idx / 10)
coef[10:] = 0 # sparsify coef
y = np.dot(X, coef)

Add noise
y += 0.01 * np.random.normal(size=n_samples)

Split data in train set and test set
n_samples = X.shape[0]
X_train, y_train = X[:n_samples // 2], y[:n_samples // 2]
X_test, y_test = X[n_samples // 2:], y[n_samples // 2:]

###
Lasso
from sklearn.linear_model import Lasso

alpha = 0.1
lasso = Lasso(alpha=alpha)

y_pred_lasso = lasso.fit(X_train, y_train).predict(X_test)
r2_score_lasso = r2_score(y_test, y_pred_lasso)
print(lasso)
print("r^2 on test data : %f" % r2_score_lasso)

###
ElasticNet
from sklearn.linear_model import ElasticNet

enet = ElasticNet(alpha=alpha, l1_ratio=0.7)

y_pred_enet = enet.fit(X_train, y_train).predict(X_test)
r2_score_enet = r2_score(y_test, y_pred_enet)
print(enet)
print("r^2 on test data : %f" % r2_score_enet)

m, s, _ = plt.stem(np.where(enet.coef_)[0], enet.coef_[enet.coef_ != 0],
markerfmt='x', label='Elastic net coefficients',
use_line_collection=True)

plt.setp([m, s], color="#2ca02c")
m, s, _ = plt.stem(np.where(lasso.coef_)[0], lasso.coef_[lasso.coef_ != 0],

markerfmt='x', label='Lasso coefficients',
use_line_collection=True)

plt.setp([m, s], color='#ff7f0e')
plt.stem(np.where(coef)[0], coef[coef != 0], label='true coefficients',

markerfmt='bx', use_line_collection=True)

plt.legend(loc='best')
plt.title("Lasso R^2: %.3f, Elastic Net R^2: %.3f"

% (r2_score_lasso, r2_score_enet))
(continues on next page)

6.16. Generalized Linear Models 1201

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.show()

Total running time of the script: (0 minutes 0.086 seconds)

6.16.24 Curve Fitting with Bayesian Ridge Regression

Computes a Bayesian Ridge Regression of Sinusoids.

See Bayesian Ridge Regression for more information on the regressor.

In general, when fitting a curve with a polynomial by Bayesian ridge regression, the selection of initial values of
the regularization parameters (alpha, lambda) may be important. This is because the regularization parameters are
determined by an iterative procedure that depends on initial values.

In this example, the sinusoid is approximated by a polynomial using different pairs of initial values.

When starting from the default values (alpha_init = 1.90, lambda_init = 1.), the bias of the resulting curve is large, and
the variance is small. So, lambda_init should be relatively small (1.e-3) so as to reduce the bias.

Also, by evaluating log marginal likelihood (L) of these models, we can determine which one is better. It can be
concluded that the model with larger L is more likely.

print(__doc__)

Author: Yoshihiro Uchida <nimbus1after2a1sun7shower@gmail.com>

import numpy as np
import matplotlib.pyplot as plt

from sklearn.linear_model import BayesianRidge

def func(x): return np.sin(2*np.pi*x)

(continues on next page)

1202 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

###
Generate sinusoidal data with noise
size = 25
rng = np.random.RandomState(1234)
x_train = rng.uniform(0., 1., size)
y_train = func(x_train) + rng.normal(scale=0.1, size=size)
x_test = np.linspace(0., 1., 100)

###
Fit by cubic polynomial
n_order = 3
X_train = np.vander(x_train, n_order + 1, increasing=True)
X_test = np.vander(x_test, n_order + 1, increasing=True)

###
Plot the true and predicted curves with log marginal likelihood (L)
reg = BayesianRidge(tol=1e-6, fit_intercept=False, compute_score=True)
fig, axes = plt.subplots(1, 2, figsize=(8, 4))
for i, ax in enumerate(axes):

Bayesian ridge regression with different initial value pairs
if i == 0:

init = [1 / np.var(y_train), 1.] # Default values
elif i == 1:

init = [1., 1e-3]
reg.set_params(alpha_init=init[0], lambda_init=init[1])

reg.fit(X_train, y_train)
ymean, ystd = reg.predict(X_test, return_std=True)

ax.plot(x_test, func(x_test), color="blue", label="sin($2\\pi x$)")
ax.scatter(x_train, y_train, s=50, alpha=0.5, label="observation")
ax.plot(x_test, ymean, color="red", label="predict mean")
ax.fill_between(x_test, ymean-ystd, ymean+ystd,

color="pink", alpha=0.5, label="predict std")
ax.set_ylim(-1.3, 1.3)
ax.legend()
title = "$\\alpha$_init$={:.2f},\\ \\lambda$_init$={}$".format(

init[0], init[1])
if i == 0:

title += " (Default)"
ax.set_title(title, fontsize=12)
text = "$\\alpha={:.1f}$\n$\\lambda={:.3f}$\n$L={:.1f}$".format(

reg.alpha_, reg.lambda_, reg.scores_[-1])
ax.text(0.05, -1.0, text, fontsize=12)

plt.tight_layout()
plt.show()

Total running time of the script: (0 minutes 0.205 seconds)

6.16.25 Theil-Sen Regression

Computes a Theil-Sen Regression on a synthetic dataset.

See Theil-Sen estimator: generalized-median-based estimator for more information on the regressor.

6.16. Generalized Linear Models 1203

scikit-learn user guide, Release 0.23.2

Compared to the OLS (ordinary least squares) estimator, the Theil-Sen estimator is robust against outliers. It has
a breakdown point of about 29.3% in case of a simple linear regression which means that it can tolerate arbitrary
corrupted data (outliers) of up to 29.3% in the two-dimensional case.

The estimation of the model is done by calculating the slopes and intercepts of a subpopulation of all possible com-
binations of p subsample points. If an intercept is fitted, p must be greater than or equal to n_features + 1. The final
slope and intercept is then defined as the spatial median of these slopes and intercepts.

In certain cases Theil-Sen performs better than RANSAC which is also a robust method. This is illustrated in the second
example below where outliers with respect to the x-axis perturb RANSAC. Tuning the residual_threshold
parameter of RANSAC remedies this but in general a priori knowledge about the data and the nature of the outliers
is needed. Due to the computational complexity of Theil-Sen it is recommended to use it only for small problems in
terms of number of samples and features. For larger problems the max_subpopulation parameter restricts the
magnitude of all possible combinations of p subsample points to a randomly chosen subset and therefore also limits the
runtime. Therefore, Theil-Sen is applicable to larger problems with the drawback of losing some of its mathematical
properties since it then works on a random subset.

•

1204 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

Author: Florian Wilhelm -- <florian.wilhelm@gmail.com>
License: BSD 3 clause

import time
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression, TheilSenRegressor
from sklearn.linear_model import RANSACRegressor

print(__doc__)

estimators = [('OLS', LinearRegression()),
('Theil-Sen', TheilSenRegressor(random_state=42)),
('RANSAC', RANSACRegressor(random_state=42)),]

colors = {'OLS': 'turquoise', 'Theil-Sen': 'gold', 'RANSAC': 'lightgreen'}
lw = 2

###
Outliers only in the y direction

np.random.seed(0)
n_samples = 200
Linear model y = 3*x + N(2, 0.1**2)
x = np.random.randn(n_samples)
w = 3.
c = 2.
noise = 0.1 * np.random.randn(n_samples)

(continues on next page)

6.16. Generalized Linear Models 1205

scikit-learn user guide, Release 0.23.2

(continued from previous page)

y = w * x + c + noise
10% outliers
y[-20:] += -20 * x[-20:]
X = x[:, np.newaxis]

plt.scatter(x, y, color='indigo', marker='x', s=40)
line_x = np.array([-3, 3])
for name, estimator in estimators:

t0 = time.time()
estimator.fit(X, y)
elapsed_time = time.time() - t0
y_pred = estimator.predict(line_x.reshape(2, 1))
plt.plot(line_x, y_pred, color=colors[name], linewidth=lw,

label='%s (fit time: %.2fs)' % (name, elapsed_time))

plt.axis('tight')
plt.legend(loc='upper left')
plt.title("Corrupt y")

###
Outliers in the X direction

np.random.seed(0)
Linear model y = 3*x + N(2, 0.1**2)
x = np.random.randn(n_samples)
noise = 0.1 * np.random.randn(n_samples)
y = 3 * x + 2 + noise
10% outliers
x[-20:] = 9.9
y[-20:] += 22
X = x[:, np.newaxis]

plt.figure()
plt.scatter(x, y, color='indigo', marker='x', s=40)

line_x = np.array([-3, 10])
for name, estimator in estimators:

t0 = time.time()
estimator.fit(X, y)
elapsed_time = time.time() - t0
y_pred = estimator.predict(line_x.reshape(2, 1))
plt.plot(line_x, y_pred, color=colors[name], linewidth=lw,

label='%s (fit time: %.2fs)' % (name, elapsed_time))

plt.axis('tight')
plt.legend(loc='upper left')
plt.title("Corrupt x")
plt.show()

Total running time of the script: (0 minutes 0.757 seconds)

6.16.26 Plot multinomial and One-vs-Rest Logistic Regression

Plot decision surface of multinomial and One-vs-Rest Logistic Regression. The hyperplanes corresponding to the
three One-vs-Rest (OVR) classifiers are represented by the dashed lines.

1206 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

6.16. Generalized Linear Models 1207

scikit-learn user guide, Release 0.23.2

•

Out:

training score : 0.995 (multinomial)
training score : 0.976 (ovr)

print(__doc__)
Authors: Tom Dupre la Tour <tom.dupre-la-tour@m4x.org>
License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.linear_model import LogisticRegression

make 3-class dataset for classification
centers = [[-5, 0], [0, 1.5], [5, -1]]
X, y = make_blobs(n_samples=1000, centers=centers, random_state=40)
transformation = [[0.4, 0.2], [-0.4, 1.2]]
X = np.dot(X, transformation)

for multi_class in ('multinomial', 'ovr'):
clf = LogisticRegression(solver='sag', max_iter=100, random_state=42,

(continues on next page)

1208 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

multi_class=multi_class).fit(X, y)

print the training scores
print("training score : %.3f (%s)" % (clf.score(X, y), multi_class))

create a mesh to plot in
h = .02 # step size in the mesh
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),

np.arange(y_min, y_max, h))

Plot the decision boundary. For that, we will assign a color to each
point in the mesh [x_min, x_max]x[y_min, y_max].
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure()
plt.contourf(xx, yy, Z, cmap=plt.cm.Paired)
plt.title("Decision surface of LogisticRegression (%s)" % multi_class)
plt.axis('tight')

Plot also the training points
colors = "bry"
for i, color in zip(clf.classes_, colors):

idx = np.where(y == i)
plt.scatter(X[idx, 0], X[idx, 1], c=color, cmap=plt.cm.Paired,

edgecolor='black', s=20)

Plot the three one-against-all classifiers
xmin, xmax = plt.xlim()
ymin, ymax = plt.ylim()
coef = clf.coef_
intercept = clf.intercept_

def plot_hyperplane(c, color):
def line(x0):

return (-(x0 * coef[c, 0]) - intercept[c]) / coef[c, 1]
plt.plot([xmin, xmax], [line(xmin), line(xmax)],

ls="--", color=color)

for i, color in zip(clf.classes_, colors):
plot_hyperplane(i, color)

plt.show()

Total running time of the script: (0 minutes 0.339 seconds)

6.16.27 Robust linear estimator fitting

Here a sine function is fit with a polynomial of order 3, for values close to zero.

Robust fitting is demoed in different situations:

• No measurement errors, only modelling errors (fitting a sine with a polynomial)

• Measurement errors in X

6.16. Generalized Linear Models 1209

scikit-learn user guide, Release 0.23.2

• Measurement errors in y

The median absolute deviation to non corrupt new data is used to judge the quality of the prediction.

What we can see that:

• RANSAC is good for strong outliers in the y direction

• TheilSen is good for small outliers, both in direction X and y, but has a break point above which it performs
worse than OLS.

• The scores of HuberRegressor may not be compared directly to both TheilSen and RANSAC because it does
not attempt to completely filter the outliers but lessen their effect.

•

1210 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

•

6.16. Generalized Linear Models 1211

scikit-learn user guide, Release 0.23.2

•

•

from matplotlib import pyplot as plt
import numpy as np

from sklearn.linear_model import (
(continues on next page)

1212 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

LinearRegression, TheilSenRegressor, RANSACRegressor, HuberRegressor)
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make_pipeline

np.random.seed(42)

X = np.random.normal(size=400)
y = np.sin(X)
Make sure that it X is 2D
X = X[:, np.newaxis]

X_test = np.random.normal(size=200)
y_test = np.sin(X_test)
X_test = X_test[:, np.newaxis]

y_errors = y.copy()
y_errors[::3] = 3

X_errors = X.copy()
X_errors[::3] = 3

y_errors_large = y.copy()
y_errors_large[::3] = 10

X_errors_large = X.copy()
X_errors_large[::3] = 10

estimators = [('OLS', LinearRegression()),
('Theil-Sen', TheilSenRegressor(random_state=42)),
('RANSAC', RANSACRegressor(random_state=42)),
('HuberRegressor', HuberRegressor())]

colors = {'OLS': 'turquoise', 'Theil-Sen': 'gold', 'RANSAC': 'lightgreen',
→˓'HuberRegressor': 'black'}
linestyle = {'OLS': '-', 'Theil-Sen': '-.', 'RANSAC': '--', 'HuberRegressor': '--'}
lw = 3

x_plot = np.linspace(X.min(), X.max())
for title, this_X, this_y in [

('Modeling Errors Only', X, y),
('Corrupt X, Small Deviants', X_errors, y),
('Corrupt y, Small Deviants', X, y_errors),
('Corrupt X, Large Deviants', X_errors_large, y),
('Corrupt y, Large Deviants', X, y_errors_large)]:

plt.figure(figsize=(5, 4))
plt.plot(this_X[:, 0], this_y, 'b+')

for name, estimator in estimators:
model = make_pipeline(PolynomialFeatures(3), estimator)
model.fit(this_X, this_y)
mse = mean_squared_error(model.predict(X_test), y_test)
y_plot = model.predict(x_plot[:, np.newaxis])
plt.plot(x_plot, y_plot, color=colors[name], linestyle=linestyle[name],

linewidth=lw, label='%s: error = %.3f' % (name, mse))

legend_title = 'Error of Mean\nAbsolute Deviation\nto Non-corrupt Data'
legend = plt.legend(loc='upper right', frameon=False, title=legend_title,

(continues on next page)

6.16. Generalized Linear Models 1213

scikit-learn user guide, Release 0.23.2

(continued from previous page)

prop=dict(size='x-small'))
plt.xlim(-4, 10.2)
plt.ylim(-2, 10.2)
plt.title(title)

plt.show()

Total running time of the script: (0 minutes 2.117 seconds)

6.16.28 L1 Penalty and Sparsity in Logistic Regression

Comparison of the sparsity (percentage of zero coefficients) of solutions when L1, L2 and Elastic-Net penalty are used
for different values of C. We can see that large values of C give more freedom to the model. Conversely, smaller values
of C constrain the model more. In the L1 penalty case, this leads to sparser solutions. As expected, the Elastic-Net
penalty sparsity is between that of L1 and L2.

We classify 8x8 images of digits into two classes: 0-4 against 5-9. The visualization shows coefficients of the models
for varying C.

Out:

C=1.00
Sparsity with L1 penalty: 6.25%
Sparsity with Elastic-Net penalty: 4.69%

(continues on next page)

1214 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Sparsity with L2 penalty: 4.69%
Score with L1 penalty: 0.90
Score with Elastic-Net penalty: 0.90
Score with L2 penalty: 0.90
C=0.10
Sparsity with L1 penalty: 29.69%
Sparsity with Elastic-Net penalty: 12.50%
Sparsity with L2 penalty: 4.69%
Score with L1 penalty: 0.90
Score with Elastic-Net penalty: 0.90
Score with L2 penalty: 0.90
C=0.01
Sparsity with L1 penalty: 84.38%
Sparsity with Elastic-Net penalty: 68.75%
Sparsity with L2 penalty: 4.69%
Score with L1 penalty: 0.86
Score with Elastic-Net penalty: 0.88
Score with L2 penalty: 0.89

print(__doc__)

Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
Mathieu Blondel <mathieu@mblondel.org>
Andreas Mueller <amueller@ais.uni-bonn.de>
License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn.linear_model import LogisticRegression
from sklearn import datasets
from sklearn.preprocessing import StandardScaler

X, y = datasets.load_digits(return_X_y=True)

X = StandardScaler().fit_transform(X)

classify small against large digits
y = (y > 4).astype(np.int)

l1_ratio = 0.5 # L1 weight in the Elastic-Net regularization

fig, axes = plt.subplots(3, 3)

Set regularization parameter
for i, (C, axes_row) in enumerate(zip((1, 0.1, 0.01), axes)):

turn down tolerance for short training time
clf_l1_LR = LogisticRegression(C=C, penalty='l1', tol=0.01, solver='saga')
clf_l2_LR = LogisticRegression(C=C, penalty='l2', tol=0.01, solver='saga')
clf_en_LR = LogisticRegression(C=C, penalty='elasticnet', solver='saga',

l1_ratio=l1_ratio, tol=0.01)

(continues on next page)

6.16. Generalized Linear Models 1215

scikit-learn user guide, Release 0.23.2

(continued from previous page)

clf_l1_LR.fit(X, y)
clf_l2_LR.fit(X, y)
clf_en_LR.fit(X, y)

coef_l1_LR = clf_l1_LR.coef_.ravel()
coef_l2_LR = clf_l2_LR.coef_.ravel()
coef_en_LR = clf_en_LR.coef_.ravel()

coef_l1_LR contains zeros due to the
L1 sparsity inducing norm

sparsity_l1_LR = np.mean(coef_l1_LR == 0) * 100
sparsity_l2_LR = np.mean(coef_l2_LR == 0) * 100
sparsity_en_LR = np.mean(coef_en_LR == 0) * 100

print("C=%.2f" % C)
print("{:<40} {:.2f}%".format("Sparsity with L1 penalty:", sparsity_l1_LR))
print("{:<40} {:.2f}%".format("Sparsity with Elastic-Net penalty:",

sparsity_en_LR))
print("{:<40} {:.2f}%".format("Sparsity with L2 penalty:", sparsity_l2_LR))
print("{:<40} {:.2f}".format("Score with L1 penalty:",

clf_l1_LR.score(X, y)))
print("{:<40} {:.2f}".format("Score with Elastic-Net penalty:",

clf_en_LR.score(X, y)))
print("{:<40} {:.2f}".format("Score with L2 penalty:",

clf_l2_LR.score(X, y)))

if i == 0:
axes_row[0].set_title("L1 penalty")
axes_row[1].set_title("Elastic-Net\nl1_ratio = %s" % l1_ratio)
axes_row[2].set_title("L2 penalty")

for ax, coefs in zip(axes_row, [coef_l1_LR, coef_en_LR, coef_l2_LR]):
ax.imshow(np.abs(coefs.reshape(8, 8)), interpolation='nearest',

cmap='binary', vmax=1, vmin=0)
ax.set_xticks(())
ax.set_yticks(())

axes_row[0].set_ylabel('C = %s' % C)

plt.show()

Total running time of the script: (0 minutes 0.499 seconds)

6.16.29 Lasso and Elastic Net

Lasso and elastic net (L1 and L2 penalisation) implemented using a coordinate descent.

The coefficients can be forced to be positive.

1216 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

6.16. Generalized Linear Models 1217

scikit-learn user guide, Release 0.23.2

•

1218 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

Out:

Computing regularization path using the lasso...
Computing regularization path using the positive lasso...
Computing regularization path using the elastic net...
Computing regularization path using the positive elastic net...

print(__doc__)

Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
License: BSD 3 clause

from itertools import cycle
import numpy as np
import matplotlib.pyplot as plt

from sklearn.linear_model import lasso_path, enet_path
from sklearn import datasets

X, y = datasets.load_diabetes(return_X_y=True)

(continues on next page)

6.16. Generalized Linear Models 1219

scikit-learn user guide, Release 0.23.2

(continued from previous page)

X /= X.std(axis=0) # Standardize data (easier to set the l1_ratio parameter)

Compute paths

eps = 5e-3 # the smaller it is the longer is the path

print("Computing regularization path using the lasso...")
alphas_lasso, coefs_lasso, _ = lasso_path(X, y, eps=eps, fit_intercept=False)

print("Computing regularization path using the positive lasso...")
alphas_positive_lasso, coefs_positive_lasso, _ = lasso_path(

X, y, eps=eps, positive=True, fit_intercept=False)
print("Computing regularization path using the elastic net...")
alphas_enet, coefs_enet, _ = enet_path(

X, y, eps=eps, l1_ratio=0.8, fit_intercept=False)

print("Computing regularization path using the positive elastic net...")
alphas_positive_enet, coefs_positive_enet, _ = enet_path(

X, y, eps=eps, l1_ratio=0.8, positive=True, fit_intercept=False)

Display results

plt.figure(1)
colors = cycle(['b', 'r', 'g', 'c', 'k'])
neg_log_alphas_lasso = -np.log10(alphas_lasso)
neg_log_alphas_enet = -np.log10(alphas_enet)
for coef_l, coef_e, c in zip(coefs_lasso, coefs_enet, colors):

l1 = plt.plot(neg_log_alphas_lasso, coef_l, c=c)
l2 = plt.plot(neg_log_alphas_enet, coef_e, linestyle='--', c=c)

plt.xlabel('-Log(alpha)')
plt.ylabel('coefficients')
plt.title('Lasso and Elastic-Net Paths')
plt.legend((l1[-1], l2[-1]), ('Lasso', 'Elastic-Net'), loc='lower left')
plt.axis('tight')

plt.figure(2)
neg_log_alphas_positive_lasso = -np.log10(alphas_positive_lasso)
for coef_l, coef_pl, c in zip(coefs_lasso, coefs_positive_lasso, colors):

l1 = plt.plot(neg_log_alphas_lasso, coef_l, c=c)
l2 = plt.plot(neg_log_alphas_positive_lasso, coef_pl, linestyle='--', c=c)

plt.xlabel('-Log(alpha)')
plt.ylabel('coefficients')
plt.title('Lasso and positive Lasso')
plt.legend((l1[-1], l2[-1]), ('Lasso', 'positive Lasso'), loc='lower left')
plt.axis('tight')

plt.figure(3)
neg_log_alphas_positive_enet = -np.log10(alphas_positive_enet)
for (coef_e, coef_pe, c) in zip(coefs_enet, coefs_positive_enet, colors):

l1 = plt.plot(neg_log_alphas_enet, coef_e, c=c)
l2 = plt.plot(neg_log_alphas_positive_enet, coef_pe, linestyle='--', c=c)

(continues on next page)

1220 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.xlabel('-Log(alpha)')
plt.ylabel('coefficients')
plt.title('Elastic-Net and positive Elastic-Net')
plt.legend((l1[-1], l2[-1]), ('Elastic-Net', 'positive Elastic-Net'),

loc='lower left')
plt.axis('tight')
plt.show()

Total running time of the script: (0 minutes 0.292 seconds)

6.16.30 Automatic Relevance Determination Regression (ARD)

Fit regression model with Bayesian Ridge Regression.

See Bayesian Ridge Regression for more information on the regressor.

Compared to the OLS (ordinary least squares) estimator, the coefficient weights are slightly shifted toward zeros,
which stabilises them.

The histogram of the estimated weights is very peaked, as a sparsity-inducing prior is implied on the weights.

The estimation of the model is done by iteratively maximizing the marginal log-likelihood of the observations.

We also plot predictions and uncertainties for ARD for one dimensional regression using polynomial feature expan-
sion. Note the uncertainty starts going up on the right side of the plot. This is because these test samples are outside
of the range of the training samples.

6.16. Generalized Linear Models 1221

scikit-learn user guide, Release 0.23.2

•

1222 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

6.16. Generalized Linear Models 1223

scikit-learn user guide, Release 0.23.2

•

1224 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

from sklearn.linear_model import ARDRegression, LinearRegression

###
Generating simulated data with Gaussian weights

Parameters of the example
np.random.seed(0)
n_samples, n_features = 100, 100
Create Gaussian data
X = np.random.randn(n_samples, n_features)
Create weights with a precision lambda_ of 4.
lambda_ = 4.
w = np.zeros(n_features)
Only keep 10 weights of interest
relevant_features = np.random.randint(0, n_features, 10)
for i in relevant_features:

w[i] = stats.norm.rvs(loc=0, scale=1. / np.sqrt(lambda_))
Create noise with a precision alpha of 50.

(continues on next page)

6.16. Generalized Linear Models 1225

scikit-learn user guide, Release 0.23.2

(continued from previous page)

alpha_ = 50.
noise = stats.norm.rvs(loc=0, scale=1. / np.sqrt(alpha_), size=n_samples)
Create the target
y = np.dot(X, w) + noise

###
Fit the ARD Regression
clf = ARDRegression(compute_score=True)
clf.fit(X, y)

ols = LinearRegression()
ols.fit(X, y)

###
Plot the true weights, the estimated weights, the histogram of the
weights, and predictions with standard deviations
plt.figure(figsize=(6, 5))
plt.title("Weights of the model")
plt.plot(clf.coef_, color='darkblue', linestyle='-', linewidth=2,

label="ARD estimate")
plt.plot(ols.coef_, color='yellowgreen', linestyle=':', linewidth=2,

label="OLS estimate")
plt.plot(w, color='orange', linestyle='-', linewidth=2, label="Ground truth")
plt.xlabel("Features")
plt.ylabel("Values of the weights")
plt.legend(loc=1)

plt.figure(figsize=(6, 5))
plt.title("Histogram of the weights")
plt.hist(clf.coef_, bins=n_features, color='navy', log=True)
plt.scatter(clf.coef_[relevant_features], np.full(len(relevant_features), 5.),

color='gold', marker='o', label="Relevant features")
plt.ylabel("Features")
plt.xlabel("Values of the weights")
plt.legend(loc=1)

plt.figure(figsize=(6, 5))
plt.title("Marginal log-likelihood")
plt.plot(clf.scores_, color='navy', linewidth=2)
plt.ylabel("Score")
plt.xlabel("Iterations")

Plotting some predictions for polynomial regression
def f(x, noise_amount):

y = np.sqrt(x) * np.sin(x)
noise = np.random.normal(0, 1, len(x))
return y + noise_amount * noise

degree = 10
X = np.linspace(0, 10, 100)
y = f(X, noise_amount=1)
clf_poly = ARDRegression(threshold_lambda=1e5)
clf_poly.fit(np.vander(X, degree), y)

X_plot = np.linspace(0, 11, 25)
(continues on next page)

1226 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

y_plot = f(X_plot, noise_amount=0)
y_mean, y_std = clf_poly.predict(np.vander(X_plot, degree), return_std=True)
plt.figure(figsize=(6, 5))
plt.errorbar(X_plot, y_mean, y_std, color='navy',

label="Polynomial ARD", linewidth=2)
plt.plot(X_plot, y_plot, color='gold', linewidth=2,

label="Ground Truth")
plt.ylabel("Output y")
plt.xlabel("Feature X")
plt.legend(loc="lower left")
plt.show()

Total running time of the script: (0 minutes 0.420 seconds)

6.16.31 Bayesian Ridge Regression

Computes a Bayesian Ridge Regression on a synthetic dataset.

See Bayesian Ridge Regression for more information on the regressor.

Compared to the OLS (ordinary least squares) estimator, the coefficient weights are slightly shifted toward zeros,
which stabilises them.

As the prior on the weights is a Gaussian prior, the histogram of the estimated weights is Gaussian.

The estimation of the model is done by iteratively maximizing the marginal log-likelihood of the observations.

We also plot predictions and uncertainties for Bayesian Ridge Regression for one dimensional regression using poly-
nomial feature expansion. Note the uncertainty starts going up on the right side of the plot. This is because these test
samples are outside of the range of the training samples.

6.16. Generalized Linear Models 1227

scikit-learn user guide, Release 0.23.2

•

1228 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

6.16. Generalized Linear Models 1229

scikit-learn user guide, Release 0.23.2

•

1230 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

from sklearn.linear_model import BayesianRidge, LinearRegression

###
Generating simulated data with Gaussian weights
np.random.seed(0)
n_samples, n_features = 100, 100
X = np.random.randn(n_samples, n_features) # Create Gaussian data
Create weights with a precision lambda_ of 4.
lambda_ = 4.
w = np.zeros(n_features)
Only keep 10 weights of interest
relevant_features = np.random.randint(0, n_features, 10)
for i in relevant_features:

w[i] = stats.norm.rvs(loc=0, scale=1. / np.sqrt(lambda_))
Create noise with a precision alpha of 50.
alpha_ = 50.
noise = stats.norm.rvs(loc=0, scale=1. / np.sqrt(alpha_), size=n_samples)
Create the target

(continues on next page)

6.16. Generalized Linear Models 1231

scikit-learn user guide, Release 0.23.2

(continued from previous page)

y = np.dot(X, w) + noise

###
Fit the Bayesian Ridge Regression and an OLS for comparison
clf = BayesianRidge(compute_score=True)
clf.fit(X, y)

ols = LinearRegression()
ols.fit(X, y)

###
Plot true weights, estimated weights, histogram of the weights, and
predictions with standard deviations
lw = 2
plt.figure(figsize=(6, 5))
plt.title("Weights of the model")
plt.plot(clf.coef_, color='lightgreen', linewidth=lw,

label="Bayesian Ridge estimate")
plt.plot(w, color='gold', linewidth=lw, label="Ground truth")
plt.plot(ols.coef_, color='navy', linestyle='--', label="OLS estimate")
plt.xlabel("Features")
plt.ylabel("Values of the weights")
plt.legend(loc="best", prop=dict(size=12))

plt.figure(figsize=(6, 5))
plt.title("Histogram of the weights")
plt.hist(clf.coef_, bins=n_features, color='gold', log=True,

edgecolor='black')
plt.scatter(clf.coef_[relevant_features], np.full(len(relevant_features), 5.),

color='navy', label="Relevant features")
plt.ylabel("Features")
plt.xlabel("Values of the weights")
plt.legend(loc="upper left")

plt.figure(figsize=(6, 5))
plt.title("Marginal log-likelihood")
plt.plot(clf.scores_, color='navy', linewidth=lw)
plt.ylabel("Score")
plt.xlabel("Iterations")

Plotting some predictions for polynomial regression
def f(x, noise_amount):

y = np.sqrt(x) * np.sin(x)
noise = np.random.normal(0, 1, len(x))
return y + noise_amount * noise

degree = 10
X = np.linspace(0, 10, 100)
y = f(X, noise_amount=0.1)
clf_poly = BayesianRidge()
clf_poly.fit(np.vander(X, degree), y)

X_plot = np.linspace(0, 11, 25)
y_plot = f(X_plot, noise_amount=0)
y_mean, y_std = clf_poly.predict(np.vander(X_plot, degree), return_std=True)

(continues on next page)

1232 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.figure(figsize=(6, 5))
plt.errorbar(X_plot, y_mean, y_std, color='navy',

label="Polynomial Bayesian Ridge Regression", linewidth=lw)
plt.plot(X_plot, y_plot, color='gold', linewidth=lw,

label="Ground Truth")
plt.ylabel("Output y")
plt.xlabel("Feature X")
plt.legend(loc="lower left")
plt.show()

Total running time of the script: (0 minutes 0.381 seconds)

6.16.32 Lasso model selection: Cross-Validation / AIC / BIC

Use the Akaike information criterion (AIC), the Bayes Information criterion (BIC) and cross-validation to select an
optimal value of the regularization parameter alpha of the Lasso estimator.

Results obtained with LassoLarsIC are based on AIC/BIC criteria.

Information-criterion based model selection is very fast, but it relies on a proper estimation of degrees of freedom, are
derived for large samples (asymptotic results) and assume the model is correct, i.e. that the data are actually generated
by this model. They also tend to break when the problem is badly conditioned (more features than samples).

For cross-validation, we use 20-fold with 2 algorithms to compute the Lasso path: coordinate descent, as implemented
by the LassoCV class, and Lars (least angle regression) as implemented by the LassoLarsCV class. Both algorithms
give roughly the same results. They differ with regards to their execution speed and sources of numerical errors.

Lars computes a path solution only for each kink in the path. As a result, it is very efficient when there are only of few
kinks, which is the case if there are few features or samples. Also, it is able to compute the full path without setting
any meta parameter. On the opposite, coordinate descent compute the path points on a pre-specified grid (here we use
the default). Thus it is more efficient if the number of grid points is smaller than the number of kinks in the path. Such
a strategy can be interesting if the number of features is really large and there are enough samples to select a large
amount. In terms of numerical errors, for heavily correlated variables, Lars will accumulate more errors, while the
coordinate descent algorithm will only sample the path on a grid.

Note how the optimal value of alpha varies for each fold. This illustrates why nested-cross validation is necessary
when trying to evaluate the performance of a method for which a parameter is chosen by cross-validation: this choice
of parameter may not be optimal for unseen data.

6.16. Generalized Linear Models 1233

scikit-learn user guide, Release 0.23.2

•

1234 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

6.16. Generalized Linear Models 1235

scikit-learn user guide, Release 0.23.2

•

Out:

Computing regularization path using the coordinate descent lasso...
Computing regularization path using the Lars lasso...

print(__doc__)

Author: Olivier Grisel, Gael Varoquaux, Alexandre Gramfort
License: BSD 3 clause

import time

import numpy as np
import matplotlib.pyplot as plt

from sklearn.linear_model import LassoCV, LassoLarsCV, LassoLarsIC
from sklearn import datasets

This is to avoid division by zero while doing np.log10
EPSILON = 1e-4

X, y = datasets.load_diabetes(return_X_y=True)
(continues on next page)

1236 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

rng = np.random.RandomState(42)
X = np.c_[X, rng.randn(X.shape[0], 14)] # add some bad features

normalize data as done by Lars to allow for comparison
X /= np.sqrt(np.sum(X ** 2, axis=0))

###
LassoLarsIC: least angle regression with BIC/AIC criterion

model_bic = LassoLarsIC(criterion='bic')
t1 = time.time()
model_bic.fit(X, y)
t_bic = time.time() - t1
alpha_bic_ = model_bic.alpha_

model_aic = LassoLarsIC(criterion='aic')
model_aic.fit(X, y)
alpha_aic_ = model_aic.alpha_

def plot_ic_criterion(model, name, color):
criterion_ = model.criterion_
plt.semilogx(model.alphas_ + EPSILON, criterion_, '--', color=color,

linewidth=3, label='%s criterion' % name)
plt.axvline(model.alpha_ + EPSILON, color=color, linewidth=3,

label='alpha: %s estimate' % name)
plt.xlabel(r'α')
plt.ylabel('criterion')

plt.figure()
plot_ic_criterion(model_aic, 'AIC', 'b')
plot_ic_criterion(model_bic, 'BIC', 'r')
plt.legend()
plt.title('Information-criterion for model selection (training time %.3fs)'

% t_bic)

###
LassoCV: coordinate descent

Compute paths
print("Computing regularization path using the coordinate descent lasso...")
t1 = time.time()
model = LassoCV(cv=20).fit(X, y)
t_lasso_cv = time.time() - t1

Display results
plt.figure()
ymin, ymax = 2300, 3800
plt.semilogx(model.alphas_ + EPSILON, model.mse_path_, ':')
plt.plot(model.alphas_ + EPSILON, model.mse_path_.mean(axis=-1), 'k',

label='Average across the folds', linewidth=2)
plt.axvline(model.alpha_ + EPSILON, linestyle='--', color='k',

label='alpha: CV estimate')

plt.legend()
(continues on next page)

6.16. Generalized Linear Models 1237

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.xlabel(r'α')
plt.ylabel('Mean square error')
plt.title('Mean square error on each fold: coordinate descent '

'(train time: %.2fs)' % t_lasso_cv)
plt.axis('tight')
plt.ylim(ymin, ymax)

###
LassoLarsCV: least angle regression

Compute paths
print("Computing regularization path using the Lars lasso...")
t1 = time.time()
model = LassoLarsCV(cv=20).fit(X, y)
t_lasso_lars_cv = time.time() - t1

Display results
plt.figure()
plt.semilogx(model.cv_alphas_ + EPSILON, model.mse_path_, ':')
plt.semilogx(model.cv_alphas_ + EPSILON, model.mse_path_.mean(axis=-1), 'k',

label='Average across the folds', linewidth=2)
plt.axvline(model.alpha_, linestyle='--', color='k',

label='alpha CV')
plt.legend()

plt.xlabel(r'α')
plt.ylabel('Mean square error')
plt.title('Mean square error on each fold: Lars (train time: %.2fs)'

% t_lasso_lars_cv)
plt.axis('tight')
plt.ylim(ymin, ymax)

plt.show()

Total running time of the script: (0 minutes 0.898 seconds)

6.16.33 Multiclass sparse logistic regression on 20newgroups

Comparison of multinomial logistic L1 vs one-versus-rest L1 logistic regression to classify documents from the new-
groups20 dataset. Multinomial logistic regression yields more accurate results and is faster to train on the larger scale
dataset.

Here we use the l1 sparsity that trims the weights of not informative features to zero. This is good if the goal is to
extract the strongly discriminative vocabulary of each class. If the goal is to get the best predictive accuracy, it is better
to use the non sparsity-inducing l2 penalty instead.

A more traditional (and possibly better) way to predict on a sparse subset of input features would be to use univariate
feature selection followed by a traditional (l2-penalised) logistic regression model.

1238 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Out:

Dataset 20newsgroup, train_samples=9000, n_features=130107, n_classes=20
[model=One versus Rest, solver=saga] Number of epochs: 1
[model=One versus Rest, solver=saga] Number of epochs: 2
[model=One versus Rest, solver=saga] Number of epochs: 4
Test accuracy for model ovr: 0.7490
% non-zero coefficients for model ovr, per class:
[0.31743104 0.36815852 0.4181174 0.46115889 0.24595141 0.41350581
0.31281945 0.27054655 0.58720899 0.32972861 0.4158116 0.3312658
0.41888599 0.41120001 0.59643217 0.31666244 0.34279478 0.28130692
0.35278655 0.24748861]

Run time (4 epochs) for model ovr:3.20
[model=Multinomial, solver=saga] Number of epochs: 1
[model=Multinomial, solver=saga] Number of epochs: 3
[model=Multinomial, solver=saga] Number of epochs: 7
Test accuracy for model multinomial: 0.7450
% non-zero coefficients for model multinomial, per class:
[0.13219888 0.11452112 0.13066169 0.13681047 0.12066991 0.15909982
0.13450468 0.09146318 0.07916561 0.12143851 0.13911627 0.10760374
0.18984374 0.12143851 0.17524038 0.22289346 0.11605832 0.07916561
0.07301682 0.15141384]

Run time (7 epochs) for model multinomial:2.61
Example run in 11.215 s

6.16. Generalized Linear Models 1239

scikit-learn user guide, Release 0.23.2

import timeit
import warnings

import matplotlib.pyplot as plt
import numpy as np

from sklearn.datasets import fetch_20newsgroups_vectorized
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.exceptions import ConvergenceWarning

print(__doc__)
Author: Arthur Mensch

warnings.filterwarnings("ignore", category=ConvergenceWarning,
module="sklearn")

t0 = timeit.default_timer()

We use SAGA solver
solver = 'saga'

Turn down for faster run time
n_samples = 10000

X, y = fetch_20newsgroups_vectorized(subset='all', return_X_y=True)
X = X[:n_samples]
y = y[:n_samples]

X_train, X_test, y_train, y_test = train_test_split(X, y,
random_state=42,
stratify=y,
test_size=0.1)

train_samples, n_features = X_train.shape
n_classes = np.unique(y).shape[0]

print('Dataset 20newsgroup, train_samples=%i, n_features=%i, n_classes=%i'
% (train_samples, n_features, n_classes))

models = {'ovr': {'name': 'One versus Rest', 'iters': [1, 2, 4]},
'multinomial': {'name': 'Multinomial', 'iters': [1, 3, 7]}}

for model in models:
Add initial chance-level values for plotting purpose
accuracies = [1 / n_classes]
times = [0]
densities = [1]

model_params = models[model]

Small number of epochs for fast runtime
for this_max_iter in model_params['iters']:

print('[model=%s, solver=%s] Number of epochs: %s' %
(model_params['name'], solver, this_max_iter))

lr = LogisticRegression(solver=solver,

(continues on next page)

1240 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

multi_class=model,
penalty='l1',
max_iter=this_max_iter,
random_state=42,
)

t1 = timeit.default_timer()
lr.fit(X_train, y_train)
train_time = timeit.default_timer() - t1

y_pred = lr.predict(X_test)
accuracy = np.sum(y_pred == y_test) / y_test.shape[0]
density = np.mean(lr.coef_ != 0, axis=1) * 100
accuracies.append(accuracy)
densities.append(density)
times.append(train_time)

models[model]['times'] = times
models[model]['densities'] = densities
models[model]['accuracies'] = accuracies
print('Test accuracy for model %s: %.4f' % (model, accuracies[-1]))
print('%% non-zero coefficients for model %s, '

'per class:\n %s' % (model, densities[-1]))
print('Run time (%i epochs) for model %s:'

'%.2f' % (model_params['iters'][-1], model, times[-1]))

fig = plt.figure()
ax = fig.add_subplot(111)

for model in models:
name = models[model]['name']
times = models[model]['times']
accuracies = models[model]['accuracies']
ax.plot(times, accuracies, marker='o',

label='Model: %s' % name)
ax.set_xlabel('Train time (s)')
ax.set_ylabel('Test accuracy')

ax.legend()
fig.suptitle('Multinomial vs One-vs-Rest Logistic L1\n'

'Dataset %s' % '20newsgroups')
fig.tight_layout()
fig.subplots_adjust(top=0.85)
run_time = timeit.default_timer() - t0
print('Example run in %.3f s' % run_time)
plt.show()

Total running time of the script: (0 minutes 11.262 seconds)

6.16.34 Early stopping of Stochastic Gradient Descent

Stochastic Gradient Descent is an optimization technique which minimizes a loss function in a stochastic fashion,
performing a gradient descent step sample by sample. In particular, it is a very efficient method to fit linear models.

As a stochastic method, the loss function is not necessarily decreasing at each iteration, and convergence is only
guaranteed in expectation. For this reason, monitoring the convergence on the loss function can be difficult.

Another approach is to monitor convergence on a validation score. In this case, the input data is split into a training set
and a validation set. The model is then fitted on the training set and the stopping criterion is based on the prediction

6.16. Generalized Linear Models 1241

scikit-learn user guide, Release 0.23.2

score computed on the validation set. This enables us to find the least number of iterations which is sufficient to build
a model that generalizes well to unseen data and reduces the chance of over-fitting the training data.

This early stopping strategy is activated if early_stopping=True; otherwise the stopping criterion only uses
the training loss on the entire input data. To better control the early stopping strategy, we can specify a parameter
validation_fraction which set the fraction of the input dataset that we keep aside to compute the validation
score. The optimization will continue until the validation score did not improve by at least tol during the last
n_iter_no_change iterations. The actual number of iterations is available at the attribute n_iter_.

This example illustrates how the early stopping can used in the sklearn.linear_model.SGDClassifier
model to achieve almost the same accuracy as compared to a model built without early stopping. This can significantly
reduce training time. Note that scores differ between the stopping criteria even from early iterations because some of
the training data is held out with the validation stopping criterion.

Out:

No stopping criterion: ...
Training loss: ...
Validation score: ...

Authors: Tom Dupre la Tour
#
License: BSD 3 clause
import time

(continues on next page)

1242 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

import sys

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

from sklearn import linear_model
from sklearn.datasets import fetch_openml
from sklearn.model_selection import train_test_split
from sklearn.utils._testing import ignore_warnings
from sklearn.exceptions import ConvergenceWarning
from sklearn.utils import shuffle

print(__doc__)

def load_mnist(n_samples=None, class_0='0', class_1='8'):
"""Load MNIST, select two classes, shuffle and return only n_samples."""
Load data from http://openml.org/d/554
mnist = fetch_openml('mnist_784', version=1)

take only two classes for binary classification
mask = np.logical_or(mnist.target == class_0, mnist.target == class_1)

X, y = shuffle(mnist.data[mask], mnist.target[mask], random_state=42)
if n_samples is not None:

X, y = X[:n_samples], y[:n_samples]
return X, y

@ignore_warnings(category=ConvergenceWarning)
def fit_and_score(estimator, max_iter, X_train, X_test, y_train, y_test):

"""Fit the estimator on the train set and score it on both sets"""
estimator.set_params(max_iter=max_iter)
estimator.set_params(random_state=0)

start = time.time()
estimator.fit(X_train, y_train)

fit_time = time.time() - start
n_iter = estimator.n_iter_
train_score = estimator.score(X_train, y_train)
test_score = estimator.score(X_test, y_test)

return fit_time, n_iter, train_score, test_score

Define the estimators to compare
estimator_dict = {

'No stopping criterion':
linear_model.SGDClassifier(n_iter_no_change=3),
'Training loss':
linear_model.SGDClassifier(early_stopping=False, n_iter_no_change=3,

tol=0.1),
'Validation score':
linear_model.SGDClassifier(early_stopping=True, n_iter_no_change=3,

tol=0.0001, validation_fraction=0.2)
(continues on next page)

6.16. Generalized Linear Models 1243

scikit-learn user guide, Release 0.23.2

(continued from previous page)

}

Load the dataset
X, y = load_mnist(n_samples=10000)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5,

random_state=0)

results = []
for estimator_name, estimator in estimator_dict.items():

print(estimator_name + ': ', end='')
for max_iter in range(1, 50):

print('.', end='')
sys.stdout.flush()

fit_time, n_iter, train_score, test_score = fit_and_score(
estimator, max_iter, X_train, X_test, y_train, y_test)

results.append((estimator_name, max_iter, fit_time, n_iter,
train_score, test_score))

print('')

Transform the results in a pandas dataframe for easy plotting
columns = [

'Stopping criterion', 'max_iter', 'Fit time (sec)', 'n_iter_',
'Train score', 'Test score'

]
results_df = pd.DataFrame(results, columns=columns)

Define what to plot (x_axis, y_axis)
lines = 'Stopping criterion'
plot_list = [

('max_iter', 'Train score'),
('max_iter', 'Test score'),
('max_iter', 'n_iter_'),
('max_iter', 'Fit time (sec)'),

]

nrows = 2
ncols = int(np.ceil(len(plot_list) / 2.))
fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(6 * ncols,

4 * nrows))
axes[0, 0].get_shared_y_axes().join(axes[0, 0], axes[0, 1])

for ax, (x_axis, y_axis) in zip(axes.ravel(), plot_list):
for criterion, group_df in results_df.groupby(lines):

group_df.plot(x=x_axis, y=y_axis, label=criterion, ax=ax)
ax.set_title(y_axis)
ax.legend(title=lines)

fig.tight_layout()
plt.show()

Total running time of the script: (0 minutes 34.576 seconds)

1244 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

6.16.35 Poisson regression and non-normal loss

This example illustrates the use of log-linear Poisson regression on the French Motor Third-Party Liability Claims
dataset from1 and compares it with a linear model fitted with the usual least squared error and a non-linear GBRT
model fitted with the Poisson loss (and a log-link).

A few definitions:

• A policy is a contract between an insurance company and an individual: the policyholder, that is, the vehicle
driver in this case.

• A claim is the request made by a policyholder to the insurer to compensate for a loss covered by the insurance.

• The exposure is the duration of the insurance coverage of a given policy, in years.

• The claim frequency is the number of claims divided by the exposure, typically measured in number of claims
per year.

In this dataset, each sample corresponds to an insurance policy. Available features include driver age, vehicle age,
vehicle power, etc.

Our goal is to predict the expected frequency of claims following car accidents for a new policyholder given the
historical data over a population of policyholders.

print(__doc__)
Authors: Christian Lorentzen <lorentzen.ch@gmail.com>
Roman Yurchak <rth.yurchak@gmail.com>
Olivier Grisel <olivier.grisel@ensta.org>
License: BSD 3 clause
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

The French Motor Third-Party Liability Claims dataset

Let’s load the motor claim dataset from OpenML: https://www.openml.org/d/41214

from sklearn.datasets import fetch_openml

df = fetch_openml(data_id=41214, as_frame=True).frame
df

Out:

/home/circleci/project/sklearn/datasets/_openml.py:754: UserWarning: Version 1 of
→˓dataset freMTPL2freq is inactive, meaning that issues have been found in the
→˓dataset. Try using a newer version from this URL: https://www.openml.org/data/v1/
→˓download/20649148/freMTPL2freq.arff
warn("Version {} of dataset {} is inactive, meaning that issues have "

The number of claims (ClaimNb) is a positive integer that can be modeled as a Poisson distribution. It is then assumed
to be the number of discrete events occurring with a constant rate in a given time interval (Exposure, in units of
years).

Here we want to model the frequency y = ClaimNb / Exposure conditionally on X via a (scaled) Poisson
distribution, and use Exposure as sample_weight.

1 A. Noll, R. Salzmann and M.V. Wuthrich, Case Study: French Motor Third-Party Liability Claims (November 8, 2018).
doi:10.2139/ssrn.3164764

6.16. Generalized Linear Models 1245

https://www.openml.org/d/41214
https://www.openml.org/d/41214
https://www.openml.org/d/41214
http://dx.doi.org/10.2139/ssrn.3164764

scikit-learn user guide, Release 0.23.2

df["Frequency"] = df["ClaimNb"] / df["Exposure"]

print("Average Frequency = {}"
.format(np.average(df["Frequency"], weights=df["Exposure"])))

print("Fraction of exposure with zero claims = {0:.1%}"
.format(df.loc[df["ClaimNb"] == 0, "Exposure"].sum() /

df["Exposure"].sum()))

fig, (ax0, ax1, ax2) = plt.subplots(ncols=3, figsize=(16, 4))
ax0.set_title("Number of claims")
_ = df["ClaimNb"].hist(bins=30, log=True, ax=ax0)
ax1.set_title("Exposure in years")
_ = df["Exposure"].hist(bins=30, log=True, ax=ax1)
ax2.set_title("Frequency (number of claims per year)")
_ = df["Frequency"].hist(bins=30, log=True, ax=ax2)

Out:

Average Frequency = 0.10070308464041304
Fraction of exposure with zero claims = 93.9%

The remaining columns can be used to predict the frequency of claim events. Those columns are very heterogeneous
with a mix of categorical and numeric variables with different scales, possibly very unevenly distributed.

In order to fit linear models with those predictors it is therefore necessary to perform standard feature transformations
as follows:

from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import FunctionTransformer, OneHotEncoder
from sklearn.preprocessing import StandardScaler, KBinsDiscretizer
from sklearn.compose import ColumnTransformer

log_scale_transformer = make_pipeline(
FunctionTransformer(np.log, validate=False),
StandardScaler()

)

linear_model_preprocessor = ColumnTransformer(
[

("passthrough_numeric", "passthrough",
["BonusMalus"]),

("binned_numeric", KBinsDiscretizer(n_bins=10),
["VehAge", "DrivAge"]),

("log_scaled_numeric", log_scale_transformer,

(continues on next page)

1246 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

["Density"]),
("onehot_categorical", OneHotEncoder(),

["VehBrand", "VehPower", "VehGas", "Region", "Area"]),
],
remainder="drop",

)

A constant prediction baseline

It is worth noting that more than 93% of policyholders have zero claims. If we were to convert this problem into a
binary classification task, it would be significantly imbalanced, and even a simplistic model that would only predict
mean can achieve an accuracy of 93%.

To evaluate the pertinence of the used metrics, we will consider as a baseline a “dummy” estimator that constantly
predicts the mean frequency of the training sample.

from sklearn.dummy import DummyRegressor
from sklearn.pipeline import Pipeline
from sklearn.model_selection import train_test_split

df_train, df_test = train_test_split(df, test_size=0.33, random_state=0)

dummy = Pipeline([
("preprocessor", linear_model_preprocessor),
("regressor", DummyRegressor(strategy='mean')),

]).fit(df_train, df_train["Frequency"],
regressor__sample_weight=df_train["Exposure"])

Let’s compute the performance of this constant prediction baseline with 3 different regression metrics:

from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_poisson_deviance

def score_estimator(estimator, df_test):
"""Score an estimator on the test set."""
y_pred = estimator.predict(df_test)

print("MSE: %.3f" %
mean_squared_error(df_test["Frequency"], y_pred,

sample_weight=df_test["Exposure"]))
print("MAE: %.3f" %

mean_absolute_error(df_test["Frequency"], y_pred,
sample_weight=df_test["Exposure"]))

Ignore non-positive predictions, as they are invalid for
the Poisson deviance.
mask = y_pred > 0
if (~mask).any():

n_masked, n_samples = (~mask).sum(), mask.shape[0]
print(f"WARNING: Estimator yields invalid, non-positive predictions "

f" for {n_masked} samples out of {n_samples}. These predictions "
f"are ignored when computing the Poisson deviance.")

(continues on next page)

6.16. Generalized Linear Models 1247

scikit-learn user guide, Release 0.23.2

(continued from previous page)

print("mean Poisson deviance: %.3f" %
mean_poisson_deviance(df_test["Frequency"][mask],

y_pred[mask],
sample_weight=df_test["Exposure"][mask]))

print("Constant mean frequency evaluation:")
score_estimator(dummy, df_test)

Out:

Constant mean frequency evaluation:
MSE: 0.564
MAE: 0.189
mean Poisson deviance: 0.625

(Generalized) linear models

We start by modeling the target variable with the (l2 penalized) least squares linear regression model, more comonly
known as Ridge regression. We use a low penalization alpha, as we expect such a linear model to under-fit on such
a large dataset.

from sklearn.linear_model import Ridge

ridge_glm = Pipeline([
("preprocessor", linear_model_preprocessor),
("regressor", Ridge(alpha=1e-6)),

]).fit(df_train, df_train["Frequency"],
regressor__sample_weight=df_train["Exposure"])

The Poisson deviance cannot be computed on non-positive values predicted by the model. For models that do re-
turn a few non-positive predictions (e.g. Ridge) we ignore the corresponding samples, meaning that the obtained
Poisson deviance is approximate. An alternative approach could be to use TransformedTargetRegressor
meta-estimator to map y_pred to a strictly positive domain.

print("Ridge evaluation:")
score_estimator(ridge_glm, df_test)

Out:

Ridge evaluation:
MSE: 0.560
MAE: 0.177
WARNING: Estimator yields invalid, non-positive predictions for 1315 samples out of
→˓223745. These predictions are ignored when computing the Poisson deviance.
mean Poisson deviance: 0.601

Next we fit the Poisson regressor on the target variable. We set the regularization strength alpha to approximately 1e-
6 over number of samples (i.e. 1e-12) in order to mimic the Ridge regressor whose L2 penalty term scales differently
with the number of samples.

Since the Poisson regressor internally models the log of the expected target value instead of the expected value directly
(log vs identity link function), the relationship between X and y is not exactly linear anymore. Therefore the Poisson

1248 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

regressor is called a Generalized Linear Model (GLM) rather than a vanilla linear model as is the case for Ridge
regression.

from sklearn.linear_model import PoissonRegressor

n_samples = df_train.shape[0]

poisson_glm = Pipeline([
("preprocessor", linear_model_preprocessor),
("regressor", PoissonRegressor(alpha=1e-12, max_iter=300))

])
poisson_glm.fit(df_train, df_train["Frequency"],

regressor__sample_weight=df_train["Exposure"])

print("PoissonRegressor evaluation:")
score_estimator(poisson_glm, df_test)

Out:

PoissonRegressor evaluation:
MSE: 0.560
MAE: 0.186
mean Poisson deviance: 0.594

Gradient Boosting Regression Trees for Poisson regression

Finally, we will consider a non-linear model, namely Gradient Boosting Regression Trees. Tree-based models do not
require the categorical data to be one-hot encoded: instead, we can encode each category label with an arbitrary integer
using OrdinalEncoder. With this encoding, the trees will treat the categorical features as ordered features, which
might not be always a desired behavior. However this effect is limited for deep enough trees which are able to recover
the categorical nature of the features. The main advantage of the OrdinalEncoder over the OneHotEncoder is
that it will make training faster.

Gradient Boosting also gives the possibility to fit the trees with a Poisson loss (with an implicit log-link function)
instead of the default least-squares loss. Here we only fit trees with the Poisson loss to keep this example concise.

from sklearn.experimental import enable_hist_gradient_boosting # noqa
from sklearn.ensemble import HistGradientBoostingRegressor
from sklearn.preprocessing import OrdinalEncoder

tree_preprocessor = ColumnTransformer(
[

("categorical", OrdinalEncoder(),
["VehBrand", "VehPower", "VehGas", "Region", "Area"]),

("numeric", "passthrough",
["VehAge", "DrivAge", "BonusMalus", "Density"]),

],
remainder="drop",

)
poisson_gbrt = Pipeline([

("preprocessor", tree_preprocessor),
("regressor", HistGradientBoostingRegressor(loss="poisson",

max_leaf_nodes=128)),
])
poisson_gbrt.fit(df_train, df_train["Frequency"],

(continues on next page)

6.16. Generalized Linear Models 1249

scikit-learn user guide, Release 0.23.2

(continued from previous page)

regressor__sample_weight=df_train["Exposure"])

print("Poisson Gradient Boosted Trees evaluation:")
score_estimator(poisson_gbrt, df_test)

Out:

Poisson Gradient Boosted Trees evaluation:
MSE: 0.560
MAE: 0.184
mean Poisson deviance: 0.575

Like the Poisson GLM above, the gradient boosted trees model minimizes the Poisson deviance. However, because of
a higher predictive power, it reaches lower values of Poisson deviance.

Evaluating models with a single train / test split is prone to random fluctuations. If computing resources allow, it
should be verified that cross-validated performance metrics would lead to similar conclusions.

The qualitative difference between these models can also be visualized by comparing the histogram of observed target
values with that of predicted values:

fig, axes = plt.subplots(nrows=2, ncols=4, figsize=(16, 6), sharey=True)
fig.subplots_adjust(bottom=0.2)
n_bins = 20
for row_idx, label, df in zip(range(2),

["train", "test"],
[df_train, df_test]):

df["Frequency"].hist(bins=np.linspace(-1, 30, n_bins),
ax=axes[row_idx, 0])

axes[row_idx, 0].set_title("Data")
axes[row_idx, 0].set_yscale('log')
axes[row_idx, 0].set_xlabel("y (observed Frequency)")
axes[row_idx, 0].set_ylim([1e1, 5e5])
axes[row_idx, 0].set_ylabel(label + " samples")

for idx, model in enumerate([ridge_glm, poisson_glm, poisson_gbrt]):
y_pred = model.predict(df)

pd.Series(y_pred).hist(bins=np.linspace(-1, 4, n_bins),
ax=axes[row_idx, idx+1])

axes[row_idx, idx + 1].set(
title=model[-1].__class__.__name__,
yscale='log',
xlabel="y_pred (predicted expected Frequency)"

)
plt.tight_layout()

1250 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

The experimental data presents a long tail distribution for y. In all models, we predict the expected frequency of a
random variable, so we will have necessarily fewer extreme values than for the observed realizations of that random
variable. This explains that the mode of the histograms of model predictions doesn’t necessarily correspond to the
smallest value. Additionally, the normal distribution used in Ridge has a constant variance, while for the Poisson dis-
tribution used in PoissonRegressor and HistGradientBoostingRegressor, the variance is proportional
to the predicted expected value.

Thus, among the considered estimators, PoissonRegressor and HistGradientBoostingRegressor are
a-priori better suited for modeling the long tail distribution of the non-negative data as compared to the Ridge model
which makes a wrong assumption on the distribution of the target variable.

The HistGradientBoostingRegressor estimator has the most flexibility and is able to predict higher expected
values.

Note that we could have used the least squares loss for the HistGradientBoostingRegressor model. This
would wrongly assume a normal distributed response variable as does the Ridge model, and possibly also lead to
slightly negative predictions. However the gradient boosted trees would still perform relatively well and in particular
better than PoissonRegressor thanks to the flexibility of the trees combined with the large number of training
samples.

Evaluation of the calibration of predictions

To ensure that estimators yield reasonable predictions for different policyholder types, we can bin test samples accord-
ing to y_pred returned by each model. Then for each bin, we compare the mean predicted y_pred, with the mean
observed target:

from sklearn.utils import gen_even_slices

def _mean_frequency_by_risk_group(y_true, y_pred, sample_weight=None,
n_bins=100):

"""Compare predictions and observations for bins ordered by y_pred.

We order the samples by ``y_pred`` and split it in bins.
In each bin the observed mean is compared with the predicted mean.

Parameters

y_true: array-like of shape (n_samples,)

Ground truth (correct) target values.

(continues on next page)

6.16. Generalized Linear Models 1251

scikit-learn user guide, Release 0.23.2

(continued from previous page)

y_pred: array-like of shape (n_samples,)
Estimated target values.

sample_weight : array-like of shape (n_samples,)
Sample weights.

n_bins: int
Number of bins to use.

Returns

bin_centers: ndarray of shape (n_bins,)

bin centers
y_true_bin: ndarray of shape (n_bins,)

average y_pred for each bin
y_pred_bin: ndarray of shape (n_bins,)

average y_pred for each bin
"""
idx_sort = np.argsort(y_pred)
bin_centers = np.arange(0, 1, 1/n_bins) + 0.5/n_bins
y_pred_bin = np.zeros(n_bins)
y_true_bin = np.zeros(n_bins)

for n, sl in enumerate(gen_even_slices(len(y_true), n_bins)):
weights = sample_weight[idx_sort][sl]
y_pred_bin[n] = np.average(

y_pred[idx_sort][sl], weights=weights
)
y_true_bin[n] = np.average(

y_true[idx_sort][sl],
weights=weights

)
return bin_centers, y_true_bin, y_pred_bin

print(f"Actual number of claims: {df_test['ClaimNb'].sum()}")
fig, ax = plt.subplots(nrows=2, ncols=2, figsize=(12, 8))
plt.subplots_adjust(wspace=0.3)

for axi, model in zip(ax.ravel(), [ridge_glm, poisson_glm, poisson_gbrt,
dummy]):

y_pred = model.predict(df_test)
y_true = df_test["Frequency"].values
exposure = df_test["Exposure"].values
q, y_true_seg, y_pred_seg = _mean_frequency_by_risk_group(

y_true, y_pred, sample_weight=exposure, n_bins=10)

Name of the model after the estimator used in the last step of the
pipeline.
print(f"Predicted number of claims by {model[-1]}: "

f"{np.sum(y_pred * exposure):.1f}")

axi.plot(q, y_pred_seg, marker='x', linestyle="--", label="predictions")
axi.plot(q, y_true_seg, marker='o', linestyle="--", label="observations")
axi.set_xlim(0, 1.0)
axi.set_ylim(0, 0.5)
axi.set(

title=model[-1],
xlabel='Fraction of samples sorted by y_pred',

(continues on next page)

1252 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

ylabel='Mean Frequency (y_pred)'
)
axi.legend()

plt.tight_layout()

Out:

Actual number of claims: 11935.0
Predicted number of claims by Ridge(alpha=1e-06): 10692.9
Predicted number of claims by PoissonRegressor(alpha=1e-12, max_iter=300): 11932.0
Predicted number of claims by HistGradientBoostingRegressor(loss='poisson', max_leaf_
→˓nodes=128): 12109.6
Predicted number of claims by DummyRegressor(): 11931.2

The dummy regression model predicts a constant frequency. This model does not attribute the same tied rank to all
samples but is none-the-less globally well calibrated (to estimate the mean frequency of the entire population).

The Ridge regression model can predict very low expected frequencies that do not match the data. It can therefore
severly under-estimate the risk for some policyholders.

PoissonRegressor and HistGradientBoostingRegressor show better consistency between predicted
and observed targets, especially for low predicted target values.

The sum of all predictions also confirms the calibration issue of the Ridge model: it under-estimates by more than
3% the total number of claims in the test set while the other three models can approximately recover the total number
of claims of the test portfolio.

6.16. Generalized Linear Models 1253

scikit-learn user guide, Release 0.23.2

Evaluation of the ranking power

For some business applications, we are interested in the ability of the model to rank the riskiest from the safest
policyholders, irrespective of the absolute value of the prediction. In this case, the model evaluation would cast the
problem as a ranking problem rather than a regression problem.

To compare the 3 models from this perspective, one can plot the cumulative proportion of claims vs the cumulative
proportion of exposure for the test samples order by the model predictions, from safest to riskiest according to each
model.

This plot is called a Lorenz curve and can be summarized by the Gini index:

from sklearn.metrics import auc

def lorenz_curve(y_true, y_pred, exposure):
y_true, y_pred = np.asarray(y_true), np.asarray(y_pred)
exposure = np.asarray(exposure)

order samples by increasing predicted risk:
ranking = np.argsort(y_pred)
ranked_exposure = exposure[ranking]
ranked_frequencies = y_true[ranking]
ranked_exposure = exposure[ranking]
cumulated_claims = np.cumsum(ranked_frequencies * ranked_exposure)
cumulated_claims /= cumulated_claims[-1]
cumulated_exposure = np.cumsum(ranked_exposure)
cumulated_exposure /= cumulated_exposure[-1]
return cumulated_exposure, cumulated_claims

fig, ax = plt.subplots(figsize=(8, 8))

for model in [dummy, ridge_glm, poisson_glm, poisson_gbrt]:
y_pred = model.predict(df_test)
cum_exposure, cum_claims = lorenz_curve(df_test["Frequency"], y_pred,

df_test["Exposure"])
gini = 1 - 2 * auc(cum_exposure, cum_claims)
label = "{} (Gini: {:.2f})".format(model[-1], gini)
ax.plot(cum_exposure, cum_claims, linestyle="-", label=label)

Oracle model: y_pred == y_test
cum_exposure, cum_claims = lorenz_curve(df_test["Frequency"],

df_test["Frequency"],
df_test["Exposure"])

gini = 1 - 2 * auc(cum_exposure, cum_claims)
label = "Oracle (Gini: {:.2f})".format(gini)
ax.plot(cum_exposure, cum_claims, linestyle="-.", color="gray", label=label)

Random Baseline
ax.plot([0, 1], [0, 1], linestyle="--", color="black",

label="Random baseline")
ax.set(

title="Lorenz curves by model",
xlabel='Cumulative proportion of exposure (from safest to riskiest)',
ylabel='Cumulative proportion of claims'

)
ax.legend(loc="upper left")

1254 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Out:

<matplotlib.legend.Legend object at 0x7f635c7b3d60>

As expected, the dummy regressor is unable to correctly rank the samples and therefore performs the worst on this
plot.

The tree-based model is significantly better at ranking policyholders by risk while the two linear models perform
similarly.

All three models are significantly better than chance but also very far from making perfect predictions.

This last point is expected due to the nature of the problem: the occurrence of accidents is mostly dominated by
circumstantial causes that are not captured in the columns of the dataset and can indeed be considered as purely
random.

6.16. Generalized Linear Models 1255

scikit-learn user guide, Release 0.23.2

The linear models assume no interactions between the input variables which likely causes under-fitting. Inserting a
polynomial feature extractor (PolynomialFeatures) indeed increases their discrimative power by 2 points of
Gini index. In particular it improves the ability of the models to identify the top 5% riskiest profiles.

Main takeaways

• The performance of the models can be evaluated by their ability to yield well-calibrated predictions and a good
ranking.

• The calibration of the model can be assessed by plotting the mean observed value vs the mean predicted value
on groups of test samples binned by predicted risk.

• The least squares loss (along with the implicit use of the identity link function) of the Ridge regression model
seems to cause this model to be badly calibrated. In particular, it tends to underestimate the risk and can even
predict invalid negative frequencies.

• Using the Poisson loss with a log-link can correct these problems and lead to a well-calibrated linear model.

• The Gini index reflects the ability of a model to rank predictions irrespective of their absolute values, and
therefore only assess their ranking power.

• Despite the improvement in calibration, the ranking power of both linear models are comparable and well below
the ranking power of the Gradient Boosting Regression Trees.

• The Poisson deviance computed as an evaluation metric reflects both the calibration and the ranking power of the
model. It also makes a linear assumption on the ideal relationship between the expected value and the variance
of the response variable. For the sake of conciseness we did not check whether this assumption holds.

• Traditional regression metrics such as Mean Squared Error and Mean Absolute Error are hard to meaningfully
interpret on count values with many zeros.

plt.show()

Total running time of the script: (0 minutes 41.629 seconds)

6.16.36 Tweedie regression on insurance claims

This example illustrates the use of Poisson, Gamma and Tweedie regression on the French Motor Third-Party Liability
Claims dataset, and is inspired by an R tutorial1.

In this dataset, each sample corresponds to an insurance policy, i.e. a contract within an insurance company and an
individual (policyholder). Available features include driver age, vehicle age, vehicle power, etc.

A few definitions: a claim is the request made by a policyholder to the insurer to compensate for a loss covered by the
insurance. The claim amount is the amount of money that the insurer must pay. The exposure is the duration of the
insurance coverage of a given policy, in years.

Here our goal goal is to predict the expected value, i.e. the mean, of the total claim amount per exposure unit also
referred to as the pure premium.

There are several possibilities to do that, two of which are:

1. Model the number of claims with a Poisson distribution, and the average claim amount per claim, also known
as severity, as a Gamma distribution and multiply the predictions of both in order to get the total claim amount.

2. Model the total claim amount per exposure directly, typically with a Tweedie distribution of Tweedie power
𝑝 ∈ (1, 2).

1 A. Noll, R. Salzmann and M.V. Wuthrich, Case Study: French Motor Third-Party Liability Claims (November 8, 2018).
doi:10.2139/ssrn.3164764

1256 Chapter 6. Examples

https://www.openml.org/d/41214
https://www.openml.org/d/41214
http://dx.doi.org/10.2139/ssrn.3164764

scikit-learn user guide, Release 0.23.2

In this example we will illustrate both approaches. We start by defining a few helper functions for loading the data and
visualizing results.

print(__doc__)

Authors: Christian Lorentzen <lorentzen.ch@gmail.com>
Roman Yurchak <rth.yurchak@gmail.com>
Olivier Grisel <olivier.grisel@ensta.org>
License: BSD 3 clause
from functools import partial

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

from sklearn.datasets import fetch_openml
from sklearn.compose import ColumnTransformer
from sklearn.linear_model import PoissonRegressor, GammaRegressor
from sklearn.linear_model import TweedieRegressor
from sklearn.metrics import mean_tweedie_deviance
from sklearn.model_selection import train_test_split
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import FunctionTransformer, OneHotEncoder
from sklearn.preprocessing import StandardScaler, KBinsDiscretizer

from sklearn.metrics import mean_absolute_error, mean_squared_error, auc

def load_mtpl2(n_samples=100000):
"""Fetch the French Motor Third-Party Liability Claims dataset.

Parameters

n_samples: int, default=100000

number of samples to select (for faster run time). Full dataset has
678013 samples.

"""
freMTPL2freq dataset from https://www.openml.org/d/41214
df_freq = fetch_openml(data_id=41214, as_frame=True)['data']
df_freq['IDpol'] = df_freq['IDpol'].astype(np.int)
df_freq.set_index('IDpol', inplace=True)

freMTPL2sev dataset from https://www.openml.org/d/41215
df_sev = fetch_openml(data_id=41215, as_frame=True)['data']

sum ClaimAmount over identical IDs
df_sev = df_sev.groupby('IDpol').sum()

df = df_freq.join(df_sev, how="left")
df["ClaimAmount"].fillna(0, inplace=True)

unquote string fields
for column_name in df.columns[df.dtypes.values == np.object]:

df[column_name] = df[column_name].str.strip("'")
return df.iloc[:n_samples]

def plot_obs_pred(df, feature, weight, observed, predicted, y_label=None,
(continues on next page)

6.16. Generalized Linear Models 1257

scikit-learn user guide, Release 0.23.2

(continued from previous page)

title=None, ax=None, fill_legend=False):
"""Plot observed and predicted - aggregated per feature level.

Parameters

df : DataFrame

input data
feature: str

a column name of df for the feature to be plotted
weight : str

column name of df with the values of weights or exposure
observed : str

a column name of df with the observed target
predicted : DataFrame

a dataframe, with the same index as df, with the predicted target
fill_legend : bool, default=False

whether to show fill_between legend
"""
aggregate observed and predicted variables by feature level
df_ = df.loc[:, [feature, weight]].copy()
df_["observed"] = df[observed] * df[weight]
df_["predicted"] = predicted * df[weight]
df_ = (

df_.groupby([feature])[[weight, "observed", "predicted"]]
.sum()
.assign(observed=lambda x: x["observed"] / x[weight])
.assign(predicted=lambda x: x["predicted"] / x[weight])

)

ax = df_.loc[:, ["observed", "predicted"]].plot(style=".", ax=ax)
y_max = df_.loc[:, ["observed", "predicted"]].values.max() * 0.8
p2 = ax.fill_between(

df_.index,
0,
y_max * df_[weight] / df_[weight].values.max(),
color="g",
alpha=0.1,

)
if fill_legend:

ax.legend([p2], ["{} distribution".format(feature)])
ax.set(

ylabel=y_label if y_label is not None else None,
title=title if title is not None else "Train: Observed vs Predicted",

)

def score_estimator(
estimator, X_train, X_test, df_train, df_test, target, weights,
tweedie_powers=None,

):
"""Evaluate an estimator on train and test sets with different metrics"""

metrics = [
("D2 explained", None), # Use default scorer if it exists
("mean abs. error", mean_absolute_error),
("mean squared error", mean_squared_error),

]
(continues on next page)

1258 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

if tweedie_powers:
metrics += [(

"mean Tweedie dev p={:.4f}".format(power),
partial(mean_tweedie_deviance, power=power)

) for power in tweedie_powers]

res = []
for subset_label, X, df in [

("train", X_train, df_train),
("test", X_test, df_test),

]:
y, _weights = df[target], df[weights]
for score_label, metric in metrics:

if isinstance(estimator, tuple) and len(estimator) == 2:
Score the model consisting of the product of frequency and
severity models.
est_freq, est_sev = estimator
y_pred = est_freq.predict(X) * est_sev.predict(X)

else:
y_pred = estimator.predict(X)

if metric is None:
if not hasattr(estimator, "score"):

continue
score = estimator.score(X, y, sample_weight=_weights)

else:
score = metric(y, y_pred, sample_weight=_weights)

res.append(
{"subset": subset_label, "metric": score_label, "score": score}

)

res = (
pd.DataFrame(res)
.set_index(["metric", "subset"])
.score.unstack(-1)
.round(4)
.loc[:, ['train', 'test']]

)
return res

Loading datasets, basic feature extraction and target definitions

We construct the freMTPL2 dataset by joining the freMTPL2freq table, containing the number of claims (ClaimNb),
with the freMTPL2sev table, containing the claim amount (ClaimAmount) for the same policy ids (IDpol).

df = load_mtpl2(n_samples=60000)

Note: filter out claims with zero amount, as the severity model
requires strictly positive target values.
df.loc[(df["ClaimAmount"] == 0) & (df["ClaimNb"] >= 1), "ClaimNb"] = 0

Correct for unreasonable observations (that might be data error)
and a few exceptionally large claim amounts
df["ClaimNb"] = df["ClaimNb"].clip(upper=4)

(continues on next page)

6.16. Generalized Linear Models 1259

scikit-learn user guide, Release 0.23.2

(continued from previous page)

df["Exposure"] = df["Exposure"].clip(upper=1)
df["ClaimAmount"] = df["ClaimAmount"].clip(upper=200000)

log_scale_transformer = make_pipeline(
FunctionTransformer(func=np.log),
StandardScaler()

)

column_trans = ColumnTransformer(
[

("binned_numeric", KBinsDiscretizer(n_bins=10),
["VehAge", "DrivAge"]),

("onehot_categorical", OneHotEncoder(),
["VehBrand", "VehPower", "VehGas", "Region", "Area"]),

("passthrough_numeric", "passthrough",
["BonusMalus"]),

("log_scaled_numeric", log_scale_transformer,
["Density"]),

],
remainder="drop",

)
X = column_trans.fit_transform(df)

Insurances companies are interested in modeling the Pure Premium, that is
the expected total claim amount per unit of exposure for each policyholder
in their portfolio:
df["PurePremium"] = df["ClaimAmount"] / df["Exposure"]

This can be indirectly approximated by a 2-step modeling: the product of the
Frequency times the average claim amount per claim:
df["Frequency"] = df["ClaimNb"] / df["Exposure"]
df["AvgClaimAmount"] = df["ClaimAmount"] / np.fmax(df["ClaimNb"], 1)

with pd.option_context("display.max_columns", 15):
print(df[df.ClaimAmount > 0].head())

Out:

/home/circleci/project/sklearn/datasets/_openml.py:754: UserWarning: Version 1 of
→˓dataset freMTPL2freq is inactive, meaning that issues have been found in the
→˓dataset. Try using a newer version from this URL: https://www.openml.org/data/v1/
→˓download/20649148/freMTPL2freq.arff
warn("Version {} of dataset {} is inactive, meaning that issues have "

/home/circleci/project/sklearn/datasets/_openml.py:754: UserWarning: Version 1 of
→˓dataset freMTPL2sev is inactive, meaning that issues have been found in the dataset.
→˓ Try using a newer version from this URL: https://www.openml.org/data/v1/download/
→˓20649149/freMTPL2sev.arff
warn("Version {} of dataset {} is inactive, meaning that issues have "

/home/circleci/project/sklearn/preprocessing/_discretization.py:200: UserWarning:
→˓Bins whose width are too small (i.e., <= 1e-8) in feature 0 are removed. Consider
→˓decreasing the number of bins.
warnings.warn('Bins whose width are too small (i.e., <= '

ClaimNb Exposure Area VehPower VehAge DrivAge BonusMalus VehBrand \
IDpol
139 1.0 0.75 F 7.0 1.0 61.0 50.0 B12
190 1.0 0.14 B 12.0 5.0 50.0 60.0 B12
414 1.0 0.14 E 4.0 0.0 36.0 85.0 B12

(continues on next page)

1260 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

424 2.0 0.62 F 10.0 0.0 51.0 100.0 B12
463 1.0 0.31 A 5.0 0.0 45.0 50.0 B12

VehGas Density Region ClaimAmount PurePremium Frequency \
IDpol
139 Regular 27000.0 R11 303.00 404.000000 1.333333
190 Diesel 56.0 R25 1981.84 14156.000000 7.142857
414 Regular 4792.0 R11 1456.55 10403.928571 7.142857
424 Regular 27000.0 R11 10834.00 17474.193548 3.225806
463 Regular 12.0 R73 3986.67 12860.225806 3.225806

AvgClaimAmount
IDpol
139 303.00
190 1981.84
414 1456.55
424 5417.00
463 3986.67

Frequency model – Poisson distribution

The number of claims (ClaimNb) is a positive integer (0 included). Thus, this target can be modelled by a Poisson
distribution. It is then assumed to be the number of discrete events occuring with a constant rate in a given time
interval (Exposure, in units of years). Here we model the frequency y = ClaimNb / Exposure, which is still
a (scaled) Poisson distribution, and use Exposure as sample_weight.

df_train, df_test, X_train, X_test = train_test_split(df, X, random_state=0)

The parameters of the model are estimated by minimizing the Poisson deviance
on the training set via a quasi-Newton solver: l-BFGS. Some of the features
are collinear, we use a weak penalization to avoid numerical issues.
glm_freq = PoissonRegressor(alpha=1e-3, max_iter=400)
glm_freq.fit(X_train, df_train["Frequency"],

sample_weight=df_train["Exposure"])

scores = score_estimator(
glm_freq,
X_train,
X_test,
df_train,
df_test,
target="Frequency",
weights="Exposure",

)
print("Evaluation of PoissonRegressor on target Frequency")
print(scores)

Out:

Evaluation of PoissonRegressor on target Frequency
subset train test
metric
D2 explained 0.0590 0.0579
mean abs. error 0.1706 0.1661
mean squared error 0.3041 0.3043

6.16. Generalized Linear Models 1261

scikit-learn user guide, Release 0.23.2

We can visually compare observed and predicted values, aggregated by the drivers age (DrivAge), vehicle age
(VehAge) and the insurance bonus/malus (BonusMalus).

fig, ax = plt.subplots(ncols=2, nrows=2, figsize=(16, 8))
fig.subplots_adjust(hspace=0.3, wspace=0.2)

plot_obs_pred(
df=df_train,
feature="DrivAge",
weight="Exposure",
observed="Frequency",
predicted=glm_freq.predict(X_train),
y_label="Claim Frequency",
title="train data",
ax=ax[0, 0],

)

plot_obs_pred(
df=df_test,
feature="DrivAge",
weight="Exposure",
observed="Frequency",
predicted=glm_freq.predict(X_test),
y_label="Claim Frequency",
title="test data",
ax=ax[0, 1],
fill_legend=True

)

plot_obs_pred(
df=df_test,
feature="VehAge",
weight="Exposure",
observed="Frequency",
predicted=glm_freq.predict(X_test),
y_label="Claim Frequency",
title="test data",
ax=ax[1, 0],
fill_legend=True

)

plot_obs_pred(
df=df_test,
feature="BonusMalus",
weight="Exposure",
observed="Frequency",
predicted=glm_freq.predict(X_test),
y_label="Claim Frequency",
title="test data",
ax=ax[1, 1],
fill_legend=True

)

1262 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

According to the observed data, the frequency of accidents is higher for drivers younger than 30 years old, and is
positively correlated with the BonusMalus variable. Our model is able to mostly correctly model this behaviour.

Severity Model - Gamma distribution

The mean claim amount or severity (AvgClaimAmount) can be empirically shown to follow approximately a
Gamma distribution. We fit a GLM model for the severity with the same features as the frequency model.

Note:

• We filter out ClaimAmount == 0 as the Gamma distribution has support on (0,∞), not [0,∞).

• We use ClaimNb as sample_weight to account for policies that contain more than one claim.

mask_train = df_train["ClaimAmount"] > 0
mask_test = df_test["ClaimAmount"] > 0

glm_sev = GammaRegressor(alpha=10., max_iter=10000)

glm_sev.fit(
X_train[mask_train.values],
df_train.loc[mask_train, "AvgClaimAmount"],
sample_weight=df_train.loc[mask_train, "ClaimNb"],

)

scores = score_estimator(
glm_sev,
X_train[mask_train.values],
X_test[mask_test.values],
df_train[mask_train],
df_test[mask_test],
target="AvgClaimAmount",
weights="ClaimNb",

)
print("Evaluation of GammaRegressor on target AvgClaimAmount")
print(scores)

6.16. Generalized Linear Models 1263

scikit-learn user guide, Release 0.23.2

Out:

Evaluation of GammaRegressor on target AvgClaimAmount
subset train test
metric
D2 explained 4.300000e-03 -1.380000e-02
mean abs. error 1.699197e+03 2.027923e+03
mean squared error 4.548147e+07 6.094863e+07

Here, the scores for the test data call for caution as they are significantly worse than for the training data indicating an
overfit despite the strong regularization.

Note that the resulting model is the average claim amount per claim. As such, it is conditional on having at least one
claim, and cannot be used to predict the average claim amount per policy in general.

print("Mean AvgClaim Amount per policy: %.2f "
% df_train["AvgClaimAmount"].mean())

print("Mean AvgClaim Amount | NbClaim > 0: %.2f"
% df_train["AvgClaimAmount"][df_train["AvgClaimAmount"] > 0].mean())

print("Predicted Mean AvgClaim Amount | NbClaim > 0: %.2f"
% glm_sev.predict(X_train).mean())

Out:

Mean AvgClaim Amount per policy: 97.89
Mean AvgClaim Amount | NbClaim > 0: 1899.60
Predicted Mean AvgClaim Amount | NbClaim > 0: 1884.40

We can visually compare observed and predicted values, aggregated for the drivers age (DrivAge).

fig, ax = plt.subplots(ncols=1, nrows=2, figsize=(16, 6))

plot_obs_pred(
df=df_train.loc[mask_train],
feature="DrivAge",
weight="Exposure",
observed="AvgClaimAmount",
predicted=glm_sev.predict(X_train[mask_train.values]),
y_label="Average Claim Severity",
title="train data",
ax=ax[0],

)

plot_obs_pred(
df=df_test.loc[mask_test],
feature="DrivAge",
weight="Exposure",
observed="AvgClaimAmount",
predicted=glm_sev.predict(X_test[mask_test.values]),
y_label="Average Claim Severity",
title="test data",
ax=ax[1],
fill_legend=True

)
plt.tight_layout()

1264 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Overall, the drivers age (DrivAge) has a weak impact on the claim severity, both in observed and predicted data.

Pure Premium Modeling via a Product Model vs single TweedieRegressor

As mentioned in the introduction, the total claim amount per unit of exposure can be modeled as the product of the
prediction of the frequency model by the prediction of the severity model.

Alternatively, one can directly model the total loss with a unique Compound Poisson Gamma generalized linear model
(with a log link function). This model is a special case of the Tweedie GLM with a “power” parameter 𝑝 ∈ (1, 2).
Here, we fix apriori the power parameter of the Tweedie model to some arbitrary value (1.9) in the valid range.
Ideally one would select this value via grid-search by minimizing the negative log-likelihood of the Tweedie model,
but unfortunately the current implementation does not allow for this (yet).

We will compare the performance of both approaches. To quantify the performance of both models, one can compute
the mean deviance of the train and test data assuming a Compound Poisson-Gamma distribution of the total claim
amount. This is equivalent to a Tweedie distribution with a power parameter between 1 and 2.

The sklearn.metrics.mean_tweedie_deviance depends on a power parameter. As we do not know the
true value of the power parameter, we here compute the mean deviances for a grid of possible values, and compare
the models side by side, i.e. we compare them at identical values of power. Ideally, we hope that one model will be
consistently better than the other, regardless of power.

glm_pure_premium = TweedieRegressor(power=1.9, alpha=.1, max_iter=10000)
glm_pure_premium.fit(X_train, df_train["PurePremium"],

sample_weight=df_train["Exposure"])

tweedie_powers = [1.5, 1.7, 1.8, 1.9, 1.99, 1.999, 1.9999]

scores_product_model = score_estimator(
(glm_freq, glm_sev),
X_train,
X_test,
df_train,
df_test,
target="PurePremium",
weights="Exposure",
tweedie_powers=tweedie_powers,

)

scores_glm_pure_premium = score_estimator(

(continues on next page)

6.16. Generalized Linear Models 1265

scikit-learn user guide, Release 0.23.2

(continued from previous page)

glm_pure_premium,
X_train,
X_test,
df_train,
df_test,
target="PurePremium",
weights="Exposure",
tweedie_powers=tweedie_powers

)

scores = pd.concat([scores_product_model, scores_glm_pure_premium],
axis=1, sort=True,
keys=('Product Model', 'TweedieRegressor'))

print("Evaluation of the Product Model and the Tweedie Regressor "
"on target PurePremium")

with pd.option_context('display.expand_frame_repr', False):
print(scores)

Out:

Evaluation of the Product Model and the Tweedie Regressor on target PurePremium
Product Model TweedieRegressor

subset train test train test
D2 explained NaN NaN 2.550000e-02 2.480000e-02
mean Tweedie dev p=1.5000 8.217810e+01 8.637570e+01 7.960860e+01 8.618600e+01
mean Tweedie dev p=1.7000 3.833650e+01 3.919520e+01 3.737410e+01 3.917420e+01
mean Tweedie dev p=1.8000 3.106840e+01 3.148220e+01 3.047900e+01 3.148110e+01
mean Tweedie dev p=1.9000 3.396200e+01 3.420300e+01 3.360070e+01 3.420810e+01
mean Tweedie dev p=1.9900 1.989240e+02 1.996400e+02 1.986911e+02 1.996461e+02
mean Tweedie dev p=1.9990 1.886429e+03 1.892747e+03 1.886206e+03 1.892753e+03
mean Tweedie dev p=1.9999 1.876452e+04 1.882692e+04 1.876430e+04 1.882692e+04
mean abs. error 3.246758e+02 3.469564e+02 3.202543e+02 3.397078e+02
mean squared error 1.469184e+08 3.325892e+07 1.469328e+08 3.325470e+07

In this example, both modeling approaches yield comparable performance metrics. For implementation reasons, the
percentage of explained variance 𝐷2 is not available for the product model.

We can additionally validate these models by comparing observed and predicted total claim amount over the test and
train subsets. We see that, on average, both model tend to underestimate the total claim (but this behavior depends on
the amount of regularization).

res = []
for subset_label, X, df in [

("train", X_train, df_train),
("test", X_test, df_test),

]:
exposure = df["Exposure"].values
res.append(

{
"subset": subset_label,
"observed": df["ClaimAmount"].values.sum(),
"predicted, frequency*severity model": np.sum(

exposure * glm_freq.predict(X) * glm_sev.predict(X)
),
"predicted, tweedie, power=%.2f"
% glm_pure_premium.power: np.sum(

exposure * glm_pure_premium.predict(X)),
(continues on next page)

1266 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

}
)

print(pd.DataFrame(res).set_index("subset").T)

Out:

subset train test
observed 4.577616e+06 1.725665e+06
predicted, frequency*severity model 4.565308e+06 1.495330e+06
predicted, tweedie, power=1.90 4.451884e+06 1.432038e+06

Finally, we can compare the two models using a plot of cumulated claims: for each model, the policyholders are
ranked from safest to riskiest and the fraction of observed total cumulated claims is plotted on the y axis. This plot is
often called the ordered Lorenz curve of the model.

The Gini coefficient (based on the area under the curve) can be used as a model selection metric to quantify the ability
of the model to rank policyholders. Note that this metric does not reflect the ability of the models to make accurate
predictions in terms of absolute value of total claim amounts but only in terms of relative amounts as a ranking metric.

Both models are able to rank policyholders by risky-ness significantly better than chance although they are also both
far from perfect due to the natural difficulty of the prediction problem from few features.

Note that the Gini index only characterize the ranking performance of the model but not its calibration: any monotonic
transformation of the predictions leaves the Gini index of the model unchanged.

Finally one should highlight that the Compound Poisson Gamma model that is directly fit on the pure premium is
operationally simpler to develop and maintain as it consists in a single scikit-learn estimator instead of a pair of
models, each with its own set of hyperparameters.

def lorenz_curve(y_true, y_pred, exposure):
y_true, y_pred = np.asarray(y_true), np.asarray(y_pred)
exposure = np.asarray(exposure)

order samples by increasing predicted risk:
ranking = np.argsort(y_pred)
ranked_exposure = exposure[ranking]
ranked_pure_premium = y_true[ranking]
cumulated_claim_amount = np.cumsum(ranked_pure_premium * ranked_exposure)
cumulated_claim_amount /= cumulated_claim_amount[-1]
cumulated_samples = np.linspace(0, 1, len(cumulated_claim_amount))
return cumulated_samples, cumulated_claim_amount

fig, ax = plt.subplots(figsize=(8, 8))

y_pred_product = glm_freq.predict(X_test) * glm_sev.predict(X_test)
y_pred_total = glm_pure_premium.predict(X_test)

for label, y_pred in [("Frequency * Severity model", y_pred_product),
("Compound Poisson Gamma", y_pred_total)]:

ordered_samples, cum_claims = lorenz_curve(
df_test["PurePremium"], y_pred, df_test["Exposure"])

gini = 1 - 2 * auc(ordered_samples, cum_claims)
label += " (Gini index: {:.3f})".format(gini)
ax.plot(ordered_samples, cum_claims, linestyle="-", label=label)

(continues on next page)

6.16. Generalized Linear Models 1267

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Oracle model: y_pred == y_test
ordered_samples, cum_claims = lorenz_curve(

df_test["PurePremium"], df_test["PurePremium"], df_test["Exposure"])
gini = 1 - 2 * auc(ordered_samples, cum_claims)
label = "Oracle (Gini index: {:.3f})".format(gini)
ax.plot(ordered_samples, cum_claims, linestyle="-.", color="gray",

label=label)

Random baseline
ax.plot([0, 1], [0, 1], linestyle="--", color="black",

label="Random baseline")
ax.set(

title="Lorenz Curves",
xlabel=('Fraction of policyholders\n'

'(ordered by model from safest to riskiest)'),
ylabel='Fraction of total claim amount'

)
ax.legend(loc="upper left")
plt.plot()

1268 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Out:

[]

Total running time of the script: (0 minutes 19.136 seconds)

6.17 Inspection

Examples related to the sklearn.inspection module.

6.17. Inspection 1269

scikit-learn user guide, Release 0.23.2

6.17.1 Permutation Importance with Multicollinear or Correlated Features

In this example, we compute the permutation importance on the Wisconsin breast cancer dataset using
permutation_importance. The RandomForestClassifier can easily get about 97% accuracy on a test
dataset. Because this dataset contains multicollinear features, the permutation importance will show that none of the
features are important. One approach to handling multicollinearity is by performing hierarchical clustering on the
features’ Spearman rank-order correlations, picking a threshold, and keeping a single feature from each cluster.

Note: See also Permutation Importance vs Random Forest Feature Importance (MDI)

print(__doc__)
from collections import defaultdict

import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import spearmanr
from scipy.cluster import hierarchy

from sklearn.datasets import load_breast_cancer
from sklearn.ensemble import RandomForestClassifier
from sklearn.inspection import permutation_importance
from sklearn.model_selection import train_test_split

Random Forest Feature Importance on Breast Cancer Data

First, we train a random forest on the breast cancer dataset and evaluate its accuracy on a test set:

data = load_breast_cancer()
X, y = data.data, data.target
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)

clf = RandomForestClassifier(n_estimators=100, random_state=42)
clf.fit(X_train, y_train)
print("Accuracy on test data: {:.2f}".format(clf.score(X_test, y_test)))

Out:

Accuracy on test data: 0.97

Next, we plot the tree based feature importance and the permutation importance. The permutation importance plot
shows that permuting a feature drops the accuracy by at most 0.012, which would suggest that none of the features
are important. This is in contradiction with the high test accuracy computed above: some feature must be important.
The permutation importance is calculated on the training set to show how much the model relies on each feature during
training.

result = permutation_importance(clf, X_train, y_train, n_repeats=10,
random_state=42)

perm_sorted_idx = result.importances_mean.argsort()

tree_importance_sorted_idx = np.argsort(clf.feature_importances_)
tree_indices = np.arange(0, len(clf.feature_importances_)) + 0.5

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 8))
ax1.barh(tree_indices,

(continues on next page)

1270 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

clf.feature_importances_[tree_importance_sorted_idx], height=0.7)
ax1.set_yticklabels(data.feature_names[tree_importance_sorted_idx])
ax1.set_yticks(tree_indices)
ax1.set_ylim((0, len(clf.feature_importances_)))
ax2.boxplot(result.importances[perm_sorted_idx].T, vert=False,

labels=data.feature_names[perm_sorted_idx])
fig.tight_layout()
plt.show()

Handling Multicollinear Features

When features are collinear, permutating one feature will have little effect on the models performance because it
can get the same information from a correlated feature. One way to handle multicollinear features is by performing
hierarchical clustering on the Spearman rank-order correlations, picking a threshold, and keeping a single feature from
each cluster. First, we plot a heatmap of the correlated features:

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 8))
corr = spearmanr(X).correlation
corr_linkage = hierarchy.ward(corr)
dendro = hierarchy.dendrogram(

corr_linkage, labels=data.feature_names.tolist(), ax=ax1, leaf_rotation=90
)
dendro_idx = np.arange(0, len(dendro['ivl']))

ax2.imshow(corr[dendro['leaves'], :][:, dendro['leaves']])
ax2.set_xticks(dendro_idx)

(continues on next page)

6.17. Inspection 1271

scikit-learn user guide, Release 0.23.2

(continued from previous page)

ax2.set_yticks(dendro_idx)
ax2.set_xticklabels(dendro['ivl'], rotation='vertical')
ax2.set_yticklabels(dendro['ivl'])
fig.tight_layout()
plt.show()

Next, we manually pick a threshold by visual inspection of the dendrogram to group our features into clusters and
choose a feature from each cluster to keep, select those features from our dataset, and train a new random forest. The
test accuracy of the new random forest did not change much compared to the random forest trained on the complete
dataset.

cluster_ids = hierarchy.fcluster(corr_linkage, 1, criterion='distance')
cluster_id_to_feature_ids = defaultdict(list)
for idx, cluster_id in enumerate(cluster_ids):

cluster_id_to_feature_ids[cluster_id].append(idx)
selected_features = [v[0] for v in cluster_id_to_feature_ids.values()]

X_train_sel = X_train[:, selected_features]
X_test_sel = X_test[:, selected_features]

clf_sel = RandomForestClassifier(n_estimators=100, random_state=42)
clf_sel.fit(X_train_sel, y_train)
print("Accuracy on test data with features removed: {:.2f}".format(

clf_sel.score(X_test_sel, y_test)))

Out:

1272 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Accuracy on test data with features removed: 0.97

Total running time of the script: (0 minutes 3.611 seconds)

6.17.2 Permutation Importance vs Random Forest Feature Importance (MDI)

In this example, we will compare the impurity-based feature importance of RandomForestClassifier with the
permutation importance on the titanic dataset using permutation_importance. We will show that the impurity-
based feature importance can inflate the importance of numerical features.

Furthermore, the impurity-based feature importance of random forests suffers from being computed on statistics de-
rived from the training dataset: the importances can be high even for features that are not predictive of the target
variable, as long as the model has the capacity to use them to overfit.

This example shows how to use Permutation Importances as an alternative that can mitigate those limitations.

References:

[1] L. Breiman, “Random Forests”, Machine Learning, 45(1), 5-32,

2001. https://doi.org/10.1023/A:1010933404324

print(__doc__)
import matplotlib.pyplot as plt
import numpy as np

from sklearn.datasets import fetch_openml
from sklearn.ensemble import RandomForestClassifier
from sklearn.impute import SimpleImputer
from sklearn.inspection import permutation_importance
from sklearn.compose import ColumnTransformer
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import OneHotEncoder

Data Loading and Feature Engineering

Let’s use pandas to load a copy of the titanic dataset. The following shows how to apply separate preprocessing on
numerical and categorical features.

We further include two random variables that are not correlated in any way with the target variable (survived):

• random_num is a high cardinality numerical variable (as many unique values as records).

• random_cat is a low cardinality categorical variable (3 possible values).

X, y = fetch_openml("titanic", version=1, as_frame=True, return_X_y=True)
rng = np.random.RandomState(seed=42)
X['random_cat'] = rng.randint(3, size=X.shape[0])
X['random_num'] = rng.randn(X.shape[0])

categorical_columns = ['pclass', 'sex', 'embarked', 'random_cat']
numerical_columns = ['age', 'sibsp', 'parch', 'fare', 'random_num']

(continues on next page)

6.17. Inspection 1273

https://doi.org/10.1023/A:1010933404324

scikit-learn user guide, Release 0.23.2

(continued from previous page)

X = X[categorical_columns + numerical_columns]

X_train, X_test, y_train, y_test = train_test_split(
X, y, stratify=y, random_state=42)

categorical_pipe = Pipeline([
('imputer', SimpleImputer(strategy='constant', fill_value='missing')),
('onehot', OneHotEncoder(handle_unknown='ignore'))

])
numerical_pipe = Pipeline([

('imputer', SimpleImputer(strategy='mean'))
])

preprocessing = ColumnTransformer(
[('cat', categorical_pipe, categorical_columns),
('num', numerical_pipe, numerical_columns)])

rf = Pipeline([
('preprocess', preprocessing),
('classifier', RandomForestClassifier(random_state=42))

])
rf.fit(X_train, y_train)

Accuracy of the Model

Prior to inspecting the feature importances, it is important to check that the model predictive performance is high
enough. Indeed there would be little interest of inspecting the important features of a non-predictive model.

Here one can observe that the train accuracy is very high (the forest model has enough capacity to completely memorize
the training set) but it can still generalize well enough to the test set thanks to the built-in bagging of random forests.

It might be possible to trade some accuracy on the training set for a slightly better accuracy on the test set by limiting
the capacity of the trees (for instance by setting min_samples_leaf=5 or min_samples_leaf=10) so as to
limit overfitting while not introducing too much underfitting.

However let’s keep our high capacity random forest model for now so as to illustrate some pitfalls with feature impor-
tance on variables with many unique values.

print("RF train accuracy: %0.3f" % rf.score(X_train, y_train))
print("RF test accuracy: %0.3f" % rf.score(X_test, y_test))

Out:

RF train accuracy: 1.000
RF test accuracy: 0.817

Tree’s Feature Importance from Mean Decrease in Impurity (MDI)

The impurity-based feature importance ranks the numerical features to be the most important features. As a result, the
non-predictive random_num variable is ranked the most important!

This problem stems from two limitations of impurity-based feature importances:

• impurity-based importances are biased towards high cardinality features;

1274 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

• impurity-based importances are computed on training set statistics and therefore do not reflect the ability of
feature to be useful to make predictions that generalize to the test set (when the model has enough capacity).

ohe = (rf.named_steps['preprocess']
.named_transformers_['cat']
.named_steps['onehot'])

feature_names = ohe.get_feature_names(input_features=categorical_columns)
feature_names = np.r_[feature_names, numerical_columns]

tree_feature_importances = (
rf.named_steps['classifier'].feature_importances_)

sorted_idx = tree_feature_importances.argsort()

y_ticks = np.arange(0, len(feature_names))
fig, ax = plt.subplots()
ax.barh(y_ticks, tree_feature_importances[sorted_idx])
ax.set_yticklabels(feature_names[sorted_idx])
ax.set_yticks(y_ticks)
ax.set_title("Random Forest Feature Importances (MDI)")
fig.tight_layout()
plt.show()

As an alternative, the permutation importances of rf are computed on a held out test set. This shows that the low
cardinality categorical feature, sex is the most important feature.

Also note that both random features have very low importances (close to 0) as expected.

6.17. Inspection 1275

scikit-learn user guide, Release 0.23.2

result = permutation_importance(rf, X_test, y_test, n_repeats=10,
random_state=42, n_jobs=2)

sorted_idx = result.importances_mean.argsort()

fig, ax = plt.subplots()
ax.boxplot(result.importances[sorted_idx].T,

vert=False, labels=X_test.columns[sorted_idx])
ax.set_title("Permutation Importances (test set)")
fig.tight_layout()
plt.show()

It is also possible to compute the permutation importances on the training set. This reveals that random_num gets a
significantly higher importance ranking than when computed on the test set. The difference between those two plots is
a confirmation that the RF model has enough capacity to use that random numerical feature to overfit. You can further
confirm this by re-running this example with constrained RF with min_samples_leaf=10.

result = permutation_importance(rf, X_train, y_train, n_repeats=10,
random_state=42, n_jobs=2)

sorted_idx = result.importances_mean.argsort()

fig, ax = plt.subplots()
ax.boxplot(result.importances[sorted_idx].T,

vert=False, labels=X_train.columns[sorted_idx])
ax.set_title("Permutation Importances (train set)")
fig.tight_layout()

(continues on next page)

1276 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.show()

Total running time of the script: (0 minutes 3.719 seconds)

6.17.3 Partial Dependence Plots

Partial dependence plots show the dependence between the target function2 and a set of ‘target’ features, marginalizing
over the values of all other features (the complement features). Due to the limits of human perception, the size of the
target feature set must be small (usually, one or two) thus the target features are usually chosen among the most
important features.

This example shows how to obtain partial dependence plots from a MLPRegressor and a
HistGradientBoostingRegressor trained on the California housing dataset. The example is taken
from1.

The plots show four 1-way and two 1-way partial dependence plots (omitted for MLPRegressor due to computation
time). The target variables for the one-way PDP are: median income (MedInc), average occupants per household
(AvgOccup), median house age (HouseAge), and average rooms per household (AveRooms).

print(__doc__)

(continues on next page)

2 For classification you can think of it as the regression score before the link function.
1 T. Hastie, R. Tibshirani and J. Friedman, “Elements of Statistical Learning Ed. 2”, Springer, 2009.

6.17. Inspection 1277

scikit-learn user guide, Release 0.23.2

(continued from previous page)

from time import time
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import QuantileTransformer
from sklearn.pipeline import make_pipeline

from sklearn.inspection import partial_dependence
from sklearn.inspection import plot_partial_dependence
from sklearn.experimental import enable_hist_gradient_boosting # noqa
from sklearn.ensemble import HistGradientBoostingRegressor
from sklearn.neural_network import MLPRegressor
from sklearn.datasets import fetch_california_housing

California Housing data preprocessing

Center target to avoid gradient boosting init bias: gradient boosting with the ‘recursion’ method does not account for
the initial estimator (here the average target, by default)

cal_housing = fetch_california_housing()
X = pd.DataFrame(cal_housing.data, columns=cal_housing.feature_names)
y = cal_housing.target

y -= y.mean()

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1,
random_state=0)

Partial Dependence computation for multi-layer perceptron

Let’s fit a MLPRegressor and compute single-variable partial dependence plots

print("Training MLPRegressor...")
tic = time()
est = make_pipeline(QuantileTransformer(),

MLPRegressor(hidden_layer_sizes=(50, 50),
learning_rate_init=0.01,
early_stopping=True))

est.fit(X_train, y_train)
print("done in {:.3f}s".format(time() - tic))
print("Test R2 score: {:.2f}".format(est.score(X_test, y_test)))

Out:

Training MLPRegressor...
done in 3.354s
Test R2 score: 0.81

We configured a pipeline to scale the numerical input features and tuned the neural network size and learning rate to
get a reasonable compromise between training time and predictive performance on a test set.

1278 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Importantly, this tabular dataset has very different dynamic ranges for its features. Neural networks tend to be very
sensitive to features with varying scales and forgetting to preprocess the numeric feature would lead to a very poor
model.

It would be possible to get even higher predictive performance with a larger neural network but the training would also
be significantly more expensive.

Note that it is important to check that the model is accurate enough on a test set before plotting the partial dependence
since there would be little use in explaining the impact of a given feature on the prediction function of a poor model.

Let’s now compute the partial dependence plots for this neural network using the model-agnostic (brute-force) method:

print('Computing partial dependence plots...')
tic = time()
We don't compute the 2-way PDP (5, 1) here, because it is a lot slower
with the brute method.
features = ['MedInc', 'AveOccup', 'HouseAge', 'AveRooms']
plot_partial_dependence(est, X_train, features,

n_jobs=3, grid_resolution=20)
print("done in {:.3f}s".format(time() - tic))
fig = plt.gcf()
fig.suptitle('Partial dependence of house value on non-location features\n'

'for the California housing dataset, with MLPRegressor')
fig.subplots_adjust(hspace=0.3)

Out:

6.17. Inspection 1279

scikit-learn user guide, Release 0.23.2

Computing partial dependence plots...
done in 2.335s

Partial Dependence computation for Gradient Boosting

Let’s now fit a GradientBoostingRegressor and compute the partial dependence plots either or one or two variables at
a time.

print("Training GradientBoostingRegressor...")
tic = time()
est = HistGradientBoostingRegressor()
est.fit(X_train, y_train)
print("done in {:.3f}s".format(time() - tic))
print("Test R2 score: {:.2f}".format(est.score(X_test, y_test)))

Out:

Training GradientBoostingRegressor...
done in 0.438s
Test R2 score: 0.85

Here, we used the default hyperparameters for the gradient boosting model without any preprocessing as tree-based
models are naturally robust to monotonic transformations of numerical features.

Note that on this tabular dataset, Gradient Boosting Machines are both significantly faster to train and more accurate
than neural networks. It is also significantly cheaper to tune their hyperparameters (the default tend to work well while
this is not often the case for neural networks).

Finally, as we will see next, computing partial dependence plots tree-based models is also orders of magnitude faster
making it cheap to compute partial dependence plots for pairs of interacting features:

print('Computing partial dependence plots...')
tic = time()
features = ['MedInc', 'AveOccup', 'HouseAge', 'AveRooms',

('AveOccup', 'HouseAge')]
plot_partial_dependence(est, X_train, features,

n_jobs=3, grid_resolution=20)
print("done in {:.3f}s".format(time() - tic))
fig = plt.gcf()
fig.suptitle('Partial dependence of house value on non-location features\n'

'for the California housing dataset, with Gradient Boosting')
fig.subplots_adjust(wspace=0.4, hspace=0.3)

1280 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Out:

Computing partial dependence plots...
done in 0.272s

Analysis of the plots

We can clearly see that the median house price shows a linear relationship with the median income (top left) and that
the house price drops when the average occupants per household increases (top middle). The top right plot shows that
the house age in a district does not have a strong influence on the (median) house price; so does the average rooms per
household. The tick marks on the x-axis represent the deciles of the feature values in the training data.

We also observe that MLPRegressor has much smoother predictions than
HistGradientBoostingRegressor. For the plots to be comparable, it is necessary to subtract the av-
erage value of the target y: The ‘recursion’ method, used by default for HistGradientBoostingRegressor,
does not account for the initial predictor (in our case the average target). Setting the target average to 0 avoids this
bias.

Partial dependence plots with two target features enable us to visualize interactions among them. The two-way partial
dependence plot shows the dependence of median house price on joint values of house age and average occupants per
household. We can clearly see an interaction between the two features: for an average occupancy greater than two, the
house price is nearly independent of the house age, whereas for values less than two there is a strong dependence on
age.

6.17. Inspection 1281

scikit-learn user guide, Release 0.23.2

3D interaction plots

Let’s make the same partial dependence plot for the 2 features interaction, this time in 3 dimensions.

fig = plt.figure()

features = ('AveOccup', 'HouseAge')
pdp, axes = partial_dependence(est, X_train, features=features,

grid_resolution=20)
XX, YY = np.meshgrid(axes[0], axes[1])
Z = pdp[0].T
ax = Axes3D(fig)
surf = ax.plot_surface(XX, YY, Z, rstride=1, cstride=1,

cmap=plt.cm.BuPu, edgecolor='k')
ax.set_xlabel(features[0])
ax.set_ylabel(features[1])
ax.set_zlabel('Partial dependence')
pretty init view
ax.view_init(elev=22, azim=122)
plt.colorbar(surf)
plt.suptitle('Partial dependence of house value on median\n'

'age and average occupancy, with Gradient Boosting')
plt.subplots_adjust(top=0.9)

plt.show()

1282 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Total running time of the script: (0 minutes 6.775 seconds)

6.17.4 Common pitfalls in interpretation of coefficients of linear models

In linear models, the target value is modeled as a linear combination of the features (see the Linear Models User Guide
section for a description of a set of linear models available in scikit-learn). Coefficients in multiple linear models
represent the relationship between the given feature, 𝑋𝑖 and the target, 𝑦, assuming that all the other features remain
constant (conditional dependence). This is different from plotting 𝑋𝑖 versus 𝑦 and fitting a linear relationship: in that
case all possible values of the other features are taken into account in the estimation (marginal dependence).

This example will provide some hints in interpreting coefficient in linear models, pointing at problems that arise when
either the linear model is not appropriate to describe the dataset, or when features are correlated.

We will use data from the “Current Population Survey” from 1985 to predict wage as a function of various features
such as experience, age, or education.

• The dataset: wages

• The machine-learning pipeline

• Processing the dataset

• Interpreting coefficients: scale matters

• Checking the variability of the coefficients

• The problem of correlated variables

• Preprocessing numerical variables

• Linear models with regularization

• Linear models with sparse coefficients

• Lessons learned

print(__doc__)

import numpy as np
import scipy as sp
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

The dataset: wages

We fetch the data from OpenML. Note that setting the parameter as_frame to True will retrieve the data as a pandas
dataframe.

from sklearn.datasets import fetch_openml

survey = fetch_openml(data_id=534, as_frame=True)

Then, we identify features X and targets y: the column WAGE is our target variable (i.e., the variable which we want
to predict).

6.17. Inspection 1283

https://en.wikipedia.org/wiki/Conditional_dependence
https://www.openml.org/d/534
http://openml.org/

scikit-learn user guide, Release 0.23.2

X = survey.data[survey.feature_names]
X.describe(include="all")

Note that the dataset contains categorical and numerical variables. We will need to take this into account when
preprocessing the dataset thereafter.

X.head()

Our target for prediction: the wage. Wages are described as floating-point number in dollars per hour.

y = survey.target.values.ravel()
survey.target.head()

Out:

0 5.10
1 4.95
2 6.67
3 4.00
4 7.50
Name: WAGE, dtype: float64

We split the sample into a train and a test dataset. Only the train dataset will be used in the following exploratory
analysis. This is a way to emulate a real situation where predictions are performed on an unknown target, and we don’t
want our analysis and decisions to be biased by our knowledge of the test data.

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(
X, y, random_state=42

)

First, let’s get some insights by looking at the variable distributions and at the pairwise relationships between them.
Only numerical variables will be used. In the following plot, each dot represents a sample.

train_dataset = X_train.copy()
train_dataset.insert(0, "WAGE", y_train)
_ = sns.pairplot(train_dataset, kind='reg', diag_kind='kde')

1284 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Looking closely at the WAGE distribution reveals that it has a long tail. For this reason, we should take its logarithm to
turn it approximately into a normal distribution (linear models such as ridge or lasso work best for a normal distribution
of error).

The WAGE is increasing when EDUCATION is increasing. Note that the dependence between WAGE and EDUCA-
TION represented here is a marginal dependence, i.e., it describes the behavior of a specific variable without keeping
the others fixed.

Also, the EXPERIENCE and AGE are strongly linearly correlated.

The machine-learning pipeline

To design our machine-learning pipeline, we first manually check the type of data that we are dealing with:

6.17. Inspection 1285

scikit-learn user guide, Release 0.23.2

survey.data.info()

Out:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 534 entries, 0 to 533
Data columns (total 10 columns):
Column Non-Null Count Dtype

--- ------ -------------- -----
0 EDUCATION 534 non-null float64
1 SOUTH 534 non-null category
2 SEX 534 non-null category
3 EXPERIENCE 534 non-null float64
4 UNION 534 non-null category
5 AGE 534 non-null float64
6 RACE 534 non-null category
7 OCCUPATION 534 non-null category
8 SECTOR 534 non-null category
9 MARR 534 non-null category

dtypes: category(7), float64(3)
memory usage: 17.1 KB

As seen previously, the dataset contains columns with different data types and we need to apply a specific preprocessing
for each data types. In particular categorical variables cannot be included in linear model if not coded as integers first.
In addition, to avoid categorical features to be treated as ordered values, we need to one-hot-encode them. Our pre-
processor will

• one-hot encode (i.e., generate a column by category) the categorical columns;

• as a first approach (we will see after how the normalisation of numerical values will affect our discussion), keep
numerical values as they are.

from sklearn.compose import make_column_transformer
from sklearn.preprocessing import OneHotEncoder

categorical_columns = ['RACE', 'OCCUPATION', 'SECTOR',
'MARR', 'UNION', 'SEX', 'SOUTH']

numerical_columns = ['EDUCATION', 'EXPERIENCE', 'AGE']

preprocessor = make_column_transformer(
(OneHotEncoder(drop='if_binary'), categorical_columns),
remainder='passthrough'

)

To describe the dataset as a linear model we use a ridge regressor with a very small regularization and to model the
logarithm of the WAGE.

from sklearn.pipeline import make_pipeline
from sklearn.linear_model import Ridge
from sklearn.compose import TransformedTargetRegressor

model = make_pipeline(
preprocessor,
TransformedTargetRegressor(

regressor=Ridge(alpha=1e-10),
func=np.log10,
inverse_func=sp.special.exp10

(continues on next page)

1286 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

)
)

Processing the dataset

First, we fit the model.

_ = model.fit(X_train, y_train)

Then we check the performance of the computed model plotting its predictions on the test set and computing, for
example, the median absolute error of the model.

from sklearn.metrics import median_absolute_error

y_pred = model.predict(X_train)

mae = median_absolute_error(y_train, y_pred)
string_score = f'MAE on training set: {mae:.2f} $/hour'
y_pred = model.predict(X_test)
mae = median_absolute_error(y_test, y_pred)
string_score += f'\nMAE on testing set: {mae:.2f} $/hour'
fig, ax = plt.subplots(figsize=(5, 5))
plt.scatter(y_test, y_pred)
ax.plot([0, 1], [0, 1], transform=ax.transAxes, ls="--", c="red")
plt.text(3, 20, string_score)
plt.title('Ridge model, small regularization')
plt.ylabel('Model predictions')
plt.xlabel('Truths')
plt.xlim([0, 27])
_ = plt.ylim([0, 27])

6.17. Inspection 1287

scikit-learn user guide, Release 0.23.2

The model learnt is far from being a good model making accurate predictions: this is obvious when looking at the plot
above, where good predictions should lie on the red line.

In the following section, we will interpret the coefficients of the model. While we do so, we should keep in mind that
any conclusion we draw is about the model that we build, rather than about the true (real-world) generative process of
the data.

Interpreting coefficients: scale matters

First of all, we can take a look to the values of the coefficients of the regressor we have fitted.

feature_names = (model.named_steps['columntransformer']
.named_transformers_['onehotencoder']
.get_feature_names(input_features=categorical_columns))

feature_names = np.concatenate(
[feature_names, numerical_columns])

coefs = pd.DataFrame(
model.named_steps['transformedtargetregressor'].regressor_.coef_,
columns=['Coefficients'], index=feature_names

)

coefs

1288 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

The AGE coefficient is expressed in “dollars/hour per living years” while the EDUCATION one is expressed in “dol-
lars/hour per years of education”. This representation of the coefficients has the benefit of making clear the practical
predictions of the model: an increase of 1 year in AGE means a decrease of 0.030867 dollars/hour, while an increase
of 1 year in EDUCATION means an increase of 0.054699 dollars/hour. On the other hand, categorical variables
(as UNION or SEX) are adimensional numbers taking either the value 0 or 1. Their coefficients are expressed in
dollars/hour. Then, we cannot compare the magnitude of different coefficients since the features have different nat-
ural scales, and hence value ranges, because of their different unit of measure. This is more visible if we plot the
coefficients.

coefs.plot(kind='barh', figsize=(9, 7))
plt.title('Ridge model, small regularization')
plt.axvline(x=0, color='.5')
plt.subplots_adjust(left=.3)

Indeed, from the plot above the most important factor in determining WAGE appears to be the variable UNION, even
if our intuition might tell us that variables like EXPERIENCE should have more impact.

Looking at the coefficient plot to gauge feature importance can be misleading as some of them vary on a small scale,
while others, like AGE, varies a lot more, several decades.

This is visible if we compare the standard deviations of different features.

X_train_preprocessed = pd.DataFrame(
model.named_steps['columntransformer'].transform(X_train),

(continues on next page)

6.17. Inspection 1289

scikit-learn user guide, Release 0.23.2

(continued from previous page)

columns=feature_names
)

X_train_preprocessed.std(axis=0).plot(kind='barh', figsize=(9, 7))
plt.title('Features std. dev.')
plt.subplots_adjust(left=.3)

Multiplying the coefficients by the standard deviation of the related feature would reduce all the coefficients to the same
unit of measure. As we will see after this is equivalent to normalize numerical variables to their standard deviation, as
𝑦 =

∑︀
𝑐𝑜𝑒𝑓𝑖 ×𝑋𝑖 =

∑︀
(𝑐𝑜𝑒𝑓𝑖 × 𝑠𝑡𝑑𝑖)× (𝑋𝑖/𝑠𝑡𝑑𝑖).

In that way, we emphasize that the greater the variance of a feature, the larger the weight of the corresponding coeffi-
cient on the output, all else being equal.

coefs = pd.DataFrame(
model.named_steps['transformedtargetregressor'].regressor_.coef_ *
X_train_preprocessed.std(axis=0),
columns=['Coefficient importance'], index=feature_names

)
coefs.plot(kind='barh', figsize=(9, 7))
plt.title('Ridge model, small regularization')
plt.axvline(x=0, color='.5')
plt.subplots_adjust(left=.3)

1290 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Now that the coefficients have been scaled, we can safely compare them.

Warning: Why does the plot above suggest that an increase in age leads to a decrease in wage? Why the initial
pairplot is telling the opposite?

The plot above tells us about dependencies between a specific feature and the target when all other features remain
constant, i.e., conditional dependencies. An increase of the AGE will induce a decrease of the WAGE when all other
features remain constant. On the contrary, an increase of the EXPERIENCE will induce an increase of the WAGE
when all other features remain constant. Also, AGE, EXPERIENCE and EDUCATION are the three variables that
most influence the model.

Checking the variability of the coefficients

We can check the coefficient variability through cross-validation: it is a form of data perturbation (related to resam-
pling).

If coefficients vary significantly when changing the input dataset their robustness is not guaranteed, and they should
probably be interpreted with caution.

from sklearn.model_selection import cross_validate
from sklearn.model_selection import RepeatedKFold

(continues on next page)

6.17. Inspection 1291

https://en.wikipedia.org/wiki/Resampling_(statistics)
https://en.wikipedia.org/wiki/Resampling_(statistics)

scikit-learn user guide, Release 0.23.2

(continued from previous page)

cv_model = cross_validate(
model, X, y, cv=RepeatedKFold(n_splits=5, n_repeats=5),
return_estimator=True, n_jobs=-1

)
coefs = pd.DataFrame(

[est.named_steps['transformedtargetregressor'].regressor_.coef_ *
X_train_preprocessed.std(axis=0)
for est in cv_model['estimator']],

columns=feature_names
)
plt.figure(figsize=(9, 7))
sns.swarmplot(data=coefs, orient='h', color='k', alpha=0.5)
sns.boxplot(data=coefs, orient='h', color='cyan', saturation=0.5)
plt.axvline(x=0, color='.5')
plt.xlabel('Coefficient importance')
plt.title('Coefficient importance and its variability')
plt.subplots_adjust(left=.3)

1292 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

The problem of correlated variables

The AGE and EXPERIENCE coefficients are affected by strong variability which might be due to the collinearity
between the 2 features: as AGE and EXPERIENCE vary together in the data, their effect is difficult to tease apart.

To verify this interpretation we plot the variability of the AGE and EXPERIENCE coefficient.

plt.ylabel('Age coefficient')
plt.xlabel('Experience coefficient')
plt.grid(True)
plt.xlim(-0.4, 0.5)
plt.ylim(-0.4, 0.5)
plt.scatter(coefs["AGE"], coefs["EXPERIENCE"])
_ = plt.title('Co-variations of coefficients for AGE and EXPERIENCE '

'across folds')

Two regions are populated: when the EXPERIENCE coefficient is positive the AGE one is negative and viceversa.

To go further we remove one of the 2 features and check what is the impact on the model stability.

column_to_drop = ['AGE']

cv_model = cross_validate(
model, X.drop(columns=column_to_drop), y,
cv=RepeatedKFold(n_splits=5, n_repeats=5),
return_estimator=True, n_jobs=-1

(continues on next page)

6.17. Inspection 1293

scikit-learn user guide, Release 0.23.2

(continued from previous page)

)
coefs = pd.DataFrame(

[est.named_steps['transformedtargetregressor'].regressor_.coef_ *
X_train_preprocessed.drop(columns=column_to_drop).std(axis=0)
for est in cv_model['estimator']],

columns=feature_names[:-1]
)
plt.figure(figsize=(9, 7))
sns.swarmplot(data=coefs, orient='h', color='k', alpha=0.5)
sns.boxplot(data=coefs, orient='h', color='cyan', saturation=0.5)
plt.axvline(x=0, color='.5')
plt.title('Coefficient importance and its variability')
plt.xlabel('Coefficient importance')
plt.subplots_adjust(left=.3)

The estimation of the EXPERIENCE coefficient is now less variable and remain important for all models trained
during cross-validation.

Preprocessing numerical variables

As said above (see “The machine-learning pipeline”), we could also choose to scale numerical values before training
the model. This can be useful to apply a similar amount regularization to all of them in the Ridge. The preprocessor is

1294 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

redefined in order to subtract the mean and scale variables to unit variance.

from sklearn.preprocessing import StandardScaler

preprocessor = make_column_transformer(
(OneHotEncoder(drop='if_binary'), categorical_columns),
(StandardScaler(), numerical_columns),
remainder='passthrough'

)

The model will stay unchanged.

model = make_pipeline(
preprocessor,
TransformedTargetRegressor(

regressor=Ridge(alpha=1e-10),
func=np.log10,
inverse_func=sp.special.exp10

)
)

_ = model.fit(X_train, y_train)

Again, we check the performance of the computed model using, for example, the median absolute error of the model
and the R squared coefficient.

y_pred = model.predict(X_train)
mae = median_absolute_error(y_train, y_pred)
string_score = f'MAE on training set: {mae:.2f} $/hour'
y_pred = model.predict(X_test)
mae = median_absolute_error(y_test, y_pred)
string_score += f'\nMAE on testing set: {mae:.2f} $/hour'
fig, ax = plt.subplots(figsize=(6, 6))
plt.scatter(y_test, y_pred)
ax.plot([0, 1], [0, 1], transform=ax.transAxes, ls="--", c="red")

plt.text(3, 20, string_score)

plt.title('Ridge model, small regularization, normalized variables')
plt.ylabel('Model predictions')
plt.xlabel('Truths')
plt.xlim([0, 27])
_ = plt.ylim([0, 27])

6.17. Inspection 1295

scikit-learn user guide, Release 0.23.2

For the coefficient analysis, scaling is not needed this time.

coefs = pd.DataFrame(
model.named_steps['transformedtargetregressor'].regressor_.coef_,
columns=['Coefficients'], index=feature_names

)
coefs.plot(kind='barh', figsize=(9, 7))
plt.title('Ridge model, small regularization, normalized variables')
plt.axvline(x=0, color='.5')
plt.subplots_adjust(left=.3)

1296 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

We now inspect the coefficients across several cross-validation folds.

cv_model = cross_validate(
model, X, y, cv=RepeatedKFold(n_splits=5, n_repeats=5),
return_estimator=True, n_jobs=-1

)
coefs = pd.DataFrame(

[est.named_steps['transformedtargetregressor'].regressor_.coef_
for est in cv_model['estimator']],

columns=feature_names
)
plt.figure(figsize=(9, 7))
sns.swarmplot(data=coefs, orient='h', color='k', alpha=0.5)
sns.boxplot(data=coefs, orient='h', color='cyan', saturation=0.5)
plt.axvline(x=0, color='.5')
plt.title('Coefficient variability')
plt.subplots_adjust(left=.3)

6.17. Inspection 1297

scikit-learn user guide, Release 0.23.2

The result is quite similar to the non-normalized case.

Linear models with regularization

In machine-learning practice, Ridge Regression is more often used with non-negligible regularization.

Above, we limited this regularization to a very little amount. Regularization improves the conditioning of the problem
and reduces the variance of the estimates. RidgeCV applies cross validation in order to determine which value of the
regularization parameter (alpha) is best suited for prediction.

from sklearn.linear_model import RidgeCV

model = make_pipeline(
preprocessor,
TransformedTargetRegressor(

regressor=RidgeCV(alphas=np.logspace(-10, 10, 21)),
func=np.log10,
inverse_func=sp.special.exp10

)
)

_ = model.fit(X_train, y_train)

First we check which value of 𝛼 has been selected.

1298 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

model[-1].regressor_.alpha_

Out:

10.0

Then we check the quality of the predictions.

y_pred = model.predict(X_train)
mae = median_absolute_error(y_train, y_pred)
string_score = f'MAE on training set: {mae:.2f} $/hour'
y_pred = model.predict(X_test)
mae = median_absolute_error(y_test, y_pred)
string_score += f'\nMAE on testing set: {mae:.2f} $/hour'

fig, ax = plt.subplots(figsize=(6, 6))
plt.scatter(y_test, y_pred)
ax.plot([0, 1], [0, 1], transform=ax.transAxes, ls="--", c="red")

plt.text(3, 20, string_score)

plt.title('Ridge model, regularization, normalized variables')
plt.ylabel('Model predictions')
plt.xlabel('Truths')
plt.xlim([0, 27])
_ = plt.ylim([0, 27])

6.17. Inspection 1299

scikit-learn user guide, Release 0.23.2

The ability to reproduce the data of the regularized model is similar to the one of the non-regularized model.

coefs = pd.DataFrame(
model.named_steps['transformedtargetregressor'].regressor_.coef_,
columns=['Coefficients'], index=feature_names

)
coefs.plot(kind='barh', figsize=(9, 7))
plt.title('Ridge model, regularization, normalized variables')
plt.axvline(x=0, color='.5')
plt.subplots_adjust(left=.3)

1300 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

The coefficients are significantly different. AGE and EXPERIENCE coefficients are both positive but they now have
less influence on the prediction.

The regularization reduces the influence of correlated variables on the model because the weight is shared between the
two predictive variables, so neither alone would have strong weights.

On the other hand, the weights obtained with regularization are more stable (see the Ridge regression and classification
User Guide section). This increased stability is visible from the plot, obtained from data perturbations, in a cross
validation. This plot can be compared with the previous one.

cv_model = cross_validate(
model, X, y, cv=RepeatedKFold(n_splits=5, n_repeats=5),
return_estimator=True, n_jobs=-1

)
coefs = pd.DataFrame(

[est.named_steps['transformedtargetregressor'].regressor_.coef_ *
X_train_preprocessed.std(axis=0)
for est in cv_model['estimator']],

columns=feature_names
)

plt.ylabel('Age coefficient')
plt.xlabel('Experience coefficient')
plt.grid(True)

(continues on next page)

6.17. Inspection 1301

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.xlim(-0.4, 0.5)
plt.ylim(-0.4, 0.5)
plt.scatter(coefs["AGE"], coefs["EXPERIENCE"])
_ = plt.title('Co-variations of coefficients for AGE and EXPERIENCE '

'across folds')

Linear models with sparse coefficients

Another possibility to take into account correlated variables in the dataset, is to estimate sparse coefficients. In some
way we already did it manually when we dropped the AGE column in a previous Ridge estimation.

Lasso models (see the Lasso User Guide section) estimates sparse coefficients. LassoCV applies cross validation in
order to determine which value of the regularization parameter (alpha) is best suited for the model estimation.

from sklearn.linear_model import LassoCV

model = make_pipeline(
preprocessor,
TransformedTargetRegressor(

regressor=LassoCV(alphas=np.logspace(-10, 10, 21), max_iter=100000),
func=np.log10,
inverse_func=sp.special.exp10

)

(continues on next page)

1302 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

)

_ = model.fit(X_train, y_train)

First we verify which value of 𝛼 has been selected.

model[-1].regressor_.alpha_

Out:

0.001

Then we check the quality of the predictions.

y_pred = model.predict(X_train)
mae = median_absolute_error(y_train, y_pred)
string_score = f'MAE on training set: {mae:.2f} $/hour'
y_pred = model.predict(X_test)
mae = median_absolute_error(y_test, y_pred)
string_score += f'\nMAE on testing set: {mae:.2f} $/hour'

fig, ax = plt.subplots(figsize=(6, 6))
plt.scatter(y_test, y_pred)
ax.plot([0, 1], [0, 1], transform=ax.transAxes, ls="--", c="red")

plt.text(3, 20, string_score)

plt.title('Lasso model, regularization, normalized variables')
plt.ylabel('Model predictions')
plt.xlabel('Truths')
plt.xlim([0, 27])
_ = plt.ylim([0, 27])

6.17. Inspection 1303

scikit-learn user guide, Release 0.23.2

For our dataset, again the model is not very predictive.

coefs = pd.DataFrame(
model.named_steps['transformedtargetregressor'].regressor_.coef_,
columns=['Coefficients'], index=feature_names

)
coefs.plot(kind='barh', figsize=(9, 7))
plt.title('Lasso model, regularization, normalized variables')
plt.axvline(x=0, color='.5')
plt.subplots_adjust(left=.3)

1304 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

A Lasso model identifies the correlation between AGE and EXPERIENCE and suppresses one of them for the sake of
the prediction.

It is important to keep in mind that the coefficients that have been dropped may still be related to the outcome by
themselves: the model chose to suppress them because they bring little or no additional information on top of the other
features. Additionnaly, this selection is unstable for correlated features, and should be interpreted with caution.

Lessons learned

• Coefficients must be scaled to the same unit of measure to retrieve feature importance. Scaling them with the
standard-deviation of the feature is a useful proxy.

• Coefficients in multivariate linear models represent the dependency between a given feature and the target,
conditional on the other features.

• Correlated features induce instabilities in the coefficients of linear models and their effects cannot be well teased
apart.

• Different linear models respond differently to feature correlation and coefficients could significantly vary from
one another.

• Inspecting coefficients across the folds of a cross-validation loop gives an idea of their stability.

Total running time of the script: (0 minutes 8.252 seconds)

6.17. Inspection 1305

scikit-learn user guide, Release 0.23.2

6.18 Manifold learning

Examples concerning the sklearn.manifold module.

6.18.1 Swiss Roll reduction with LLE

An illustration of Swiss Roll reduction with locally linear embedding

Out:

Computing LLE embedding
Done. Reconstruction error: 1.36695e-08

Author: Fabian Pedregosa -- <fabian.pedregosa@inria.fr>
License: BSD 3 clause (C) INRIA 2011

print(__doc__)

(continues on next page)

1306 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

import matplotlib.pyplot as plt

This import is needed to modify the way figure behaves
from mpl_toolkits.mplot3d import Axes3D
Axes3D

#--
Locally linear embedding of the swiss roll

from sklearn import manifold, datasets
X, color = datasets.make_swiss_roll(n_samples=1500)

print("Computing LLE embedding")
X_r, err = manifold.locally_linear_embedding(X, n_neighbors=12,

n_components=2)
print("Done. Reconstruction error: %g" % err)

#--
Plot result

fig = plt.figure()

ax = fig.add_subplot(211, projection='3d')
ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=color, cmap=plt.cm.Spectral)

ax.set_title("Original data")
ax = fig.add_subplot(212)
ax.scatter(X_r[:, 0], X_r[:, 1], c=color, cmap=plt.cm.Spectral)
plt.axis('tight')
plt.xticks([]), plt.yticks([])
plt.title('Projected data')
plt.show()

Total running time of the script: (0 minutes 0.288 seconds)

6.18.2 Comparison of Manifold Learning methods

An illustration of dimensionality reduction on the S-curve dataset with various manifold learning methods.

For a discussion and comparison of these algorithms, see the manifold module page

For a similar example, where the methods are applied to a sphere dataset, see Manifold Learning methods on a severed
sphere

Note that the purpose of the MDS is to find a low-dimensional representation of the data (here 2D) in which the
distances respect well the distances in the original high-dimensional space, unlike other manifold-learning algorithms,
it does not seeks an isotropic representation of the data in the low-dimensional space.

6.18. Manifold learning 1307

scikit-learn user guide, Release 0.23.2

Out:

/home/circleci/project/sklearn/utils/validation.py:67: FutureWarning: Pass n_
→˓neighbors=10, n_components=2 as keyword args. From version 0.25 passing these as
→˓positional arguments will result in an error
warnings.warn("Pass {} as keyword args. From version 0.25 "

LLE: 0.083 sec
LTSA: 0.12 sec
Hessian LLE: 0.24 sec
Modified LLE: 0.19 sec
Isomap: 0.37 sec
MDS: 1.9 sec
SE: 0.071 sec
t-SNE: 6.7 sec

Author: Jake Vanderplas -- <vanderplas@astro.washington.edu>

print(__doc__)

from collections import OrderedDict
from functools import partial
from time import time

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.ticker import NullFormatter

from sklearn import manifold, datasets

(continues on next page)

1308 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Next line to silence pyflakes. This import is needed.
Axes3D

n_points = 1000
X, color = datasets.make_s_curve(n_points, random_state=0)
n_neighbors = 10
n_components = 2

Create figure
fig = plt.figure(figsize=(15, 8))
fig.suptitle("Manifold Learning with %i points, %i neighbors"

% (1000, n_neighbors), fontsize=14)

Add 3d scatter plot
ax = fig.add_subplot(251, projection='3d')
ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=color, cmap=plt.cm.Spectral)
ax.view_init(4, -72)

Set-up manifold methods
LLE = partial(manifold.LocallyLinearEmbedding,

n_neighbors, n_components, eigen_solver='auto')

methods = OrderedDict()
methods['LLE'] = LLE(method='standard')
methods['LTSA'] = LLE(method='ltsa')
methods['Hessian LLE'] = LLE(method='hessian')
methods['Modified LLE'] = LLE(method='modified')
methods['Isomap'] = manifold.Isomap(n_neighbors, n_components)
methods['MDS'] = manifold.MDS(n_components, max_iter=100, n_init=1)
methods['SE'] = manifold.SpectralEmbedding(n_components=n_components,

n_neighbors=n_neighbors)
methods['t-SNE'] = manifold.TSNE(n_components=n_components, init='pca',

random_state=0)

Plot results
for i, (label, method) in enumerate(methods.items()):

t0 = time()
Y = method.fit_transform(X)
t1 = time()
print("%s: %.2g sec" % (label, t1 - t0))
ax = fig.add_subplot(2, 5, 2 + i + (i > 3))
ax.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral)
ax.set_title("%s (%.2g sec)" % (label, t1 - t0))
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())
ax.axis('tight')

plt.show()

Total running time of the script: (0 minutes 10.170 seconds)

6.18.3 Multi-dimensional scaling

An illustration of the metric and non-metric MDS on generated noisy data.

The reconstructed points using the metric MDS and non metric MDS are slightly shifted to avoid overlapping.

6.18. Manifold learning 1309

scikit-learn user guide, Release 0.23.2

Author: Nelle Varoquaux <nelle.varoquaux@gmail.com>
License: BSD

print(__doc__)
import numpy as np

from matplotlib import pyplot as plt
from matplotlib.collections import LineCollection

from sklearn import manifold
from sklearn.metrics import euclidean_distances
from sklearn.decomposition import PCA

EPSILON = np.finfo(np.float32).eps
n_samples = 20
seed = np.random.RandomState(seed=3)
X_true = seed.randint(0, 20, 2 * n_samples).astype(np.float)
X_true = X_true.reshape((n_samples, 2))
Center the data
X_true -= X_true.mean()

similarities = euclidean_distances(X_true)

Add noise to the similarities
noise = np.random.rand(n_samples, n_samples)

(continues on next page)

1310 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

noise = noise + noise.T
noise[np.arange(noise.shape[0]), np.arange(noise.shape[0])] = 0
similarities += noise

mds = manifold.MDS(n_components=2, max_iter=3000, eps=1e-9, random_state=seed,
dissimilarity="precomputed", n_jobs=1)

pos = mds.fit(similarities).embedding_

nmds = manifold.MDS(n_components=2, metric=False, max_iter=3000, eps=1e-12,
dissimilarity="precomputed", random_state=seed, n_jobs=1,
n_init=1)

npos = nmds.fit_transform(similarities, init=pos)

Rescale the data
pos *= np.sqrt((X_true ** 2).sum()) / np.sqrt((pos ** 2).sum())
npos *= np.sqrt((X_true ** 2).sum()) / np.sqrt((npos ** 2).sum())

Rotate the data
clf = PCA(n_components=2)
X_true = clf.fit_transform(X_true)

pos = clf.fit_transform(pos)

npos = clf.fit_transform(npos)

fig = plt.figure(1)
ax = plt.axes([0., 0., 1., 1.])

s = 100
plt.scatter(X_true[:, 0], X_true[:, 1], color='navy', s=s, lw=0,

label='True Position')
plt.scatter(pos[:, 0], pos[:, 1], color='turquoise', s=s, lw=0, label='MDS')
plt.scatter(npos[:, 0], npos[:, 1], color='darkorange', s=s, lw=0, label='NMDS')
plt.legend(scatterpoints=1, loc='best', shadow=False)

similarities = similarities.max() / (similarities + EPSILON) * 100
np.fill_diagonal(similarities, 0)
Plot the edges
start_idx, end_idx = np.where(pos)
a sequence of (*line0*, *line1*, *line2*), where::
linen = (x0, y0), (x1, y1), ... (xm, ym)
segments = [[X_true[i, :], X_true[j, :]]

for i in range(len(pos)) for j in range(len(pos))]
values = np.abs(similarities)
lc = LineCollection(segments,

zorder=0, cmap=plt.cm.Blues,
norm=plt.Normalize(0, values.max()))

lc.set_array(similarities.flatten())
lc.set_linewidths(np.full(len(segments), 0.5))
ax.add_collection(lc)

plt.show()

Total running time of the script: (0 minutes 0.161 seconds)

6.18. Manifold learning 1311

scikit-learn user guide, Release 0.23.2

6.18.4 t-SNE: The effect of various perplexity values on the shape

An illustration of t-SNE on the two concentric circles and the S-curve datasets for different perplexity values.

We observe a tendency towards clearer shapes as the perplexity value increases.

The size, the distance and the shape of clusters may vary upon initialization, perplexity values and does not always
convey a meaning.

As shown below, t-SNE for higher perplexities finds meaningful topology of two concentric circles, however the size
and the distance of the circles varies slightly from the original. Contrary to the two circles dataset, the shapes visually
diverge from S-curve topology on the S-curve dataset even for larger perplexity values.

For further details, “How to Use t-SNE Effectively” https://distill.pub/2016/misread-tsne/ provides a good discussion
of the effects of various parameters, as well as interactive plots to explore those effects.

Out:

circles, perplexity=5 in 0.91 sec
circles, perplexity=30 in 1.3 sec
circles, perplexity=50 in 1.3 sec
circles, perplexity=100 in 1.4 sec
S-curve, perplexity=5 in 0.98 sec
S-curve, perplexity=30 in 1.3 sec
S-curve, perplexity=50 in 1.2 sec
S-curve, perplexity=100 in 1.7 sec
uniform grid, perplexity=5 in 0.9 sec
uniform grid, perplexity=30 in 1.2 sec
uniform grid, perplexity=50 in 1.2 sec
uniform grid, perplexity=100 in 1.6 sec

1312 Chapter 6. Examples

https://distill.pub/2016/misread-tsne/

scikit-learn user guide, Release 0.23.2

Author: Narine Kokhlikyan <narine@slice.com>
License: BSD

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from matplotlib.ticker import NullFormatter
from sklearn import manifold, datasets
from time import time

n_samples = 300
n_components = 2
(fig, subplots) = plt.subplots(3, 5, figsize=(15, 8))
perplexities = [5, 30, 50, 100]

X, y = datasets.make_circles(n_samples=n_samples, factor=.5, noise=.05)

red = y == 0
green = y == 1

ax = subplots[0][0]
ax.scatter(X[red, 0], X[red, 1], c="r")
ax.scatter(X[green, 0], X[green, 1], c="g")
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())
plt.axis('tight')

for i, perplexity in enumerate(perplexities):
ax = subplots[0][i + 1]

t0 = time()
tsne = manifold.TSNE(n_components=n_components, init='random',

random_state=0, perplexity=perplexity)
Y = tsne.fit_transform(X)
t1 = time()
print("circles, perplexity=%d in %.2g sec" % (perplexity, t1 - t0))
ax.set_title("Perplexity=%d" % perplexity)
ax.scatter(Y[red, 0], Y[red, 1], c="r")
ax.scatter(Y[green, 0], Y[green, 1], c="g")
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())
ax.axis('tight')

Another example using s-curve
X, color = datasets.make_s_curve(n_samples, random_state=0)

ax = subplots[1][0]
ax.scatter(X[:, 0], X[:, 2], c=color)
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())

for i, perplexity in enumerate(perplexities):
ax = subplots[1][i + 1]

t0 = time()

(continues on next page)

6.18. Manifold learning 1313

scikit-learn user guide, Release 0.23.2

(continued from previous page)

tsne = manifold.TSNE(n_components=n_components, init='random',
random_state=0, perplexity=perplexity)

Y = tsne.fit_transform(X)
t1 = time()
print("S-curve, perplexity=%d in %.2g sec" % (perplexity, t1 - t0))

ax.set_title("Perplexity=%d" % perplexity)
ax.scatter(Y[:, 0], Y[:, 1], c=color)
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())
ax.axis('tight')

Another example using a 2D uniform grid
x = np.linspace(0, 1, int(np.sqrt(n_samples)))
xx, yy = np.meshgrid(x, x)
X = np.hstack([

xx.ravel().reshape(-1, 1),
yy.ravel().reshape(-1, 1),

])
color = xx.ravel()
ax = subplots[2][0]
ax.scatter(X[:, 0], X[:, 1], c=color)
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())

for i, perplexity in enumerate(perplexities):
ax = subplots[2][i + 1]

t0 = time()
tsne = manifold.TSNE(n_components=n_components, init='random',

random_state=0, perplexity=perplexity)
Y = tsne.fit_transform(X)
t1 = time()
print("uniform grid, perplexity=%d in %.2g sec" % (perplexity, t1 - t0))

ax.set_title("Perplexity=%d" % perplexity)
ax.scatter(Y[:, 0], Y[:, 1], c=color)
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())
ax.axis('tight')

plt.show()

Total running time of the script: (0 minutes 15.629 seconds)

6.18.5 Manifold Learning methods on a severed sphere

An application of the different Manifold learning techniques on a spherical data-set. Here one can see the use of
dimensionality reduction in order to gain some intuition regarding the manifold learning methods. Regarding the
dataset, the poles are cut from the sphere, as well as a thin slice down its side. This enables the manifold learning
techniques to ‘spread it open’ whilst projecting it onto two dimensions.

For a similar example, where the methods are applied to the S-curve dataset, see Comparison of Manifold Learning
methods

1314 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Note that the purpose of the MDS is to find a low-dimensional representation of the data (here 2D) in which the
distances respect well the distances in the original high-dimensional space, unlike other manifold-learning algorithms,
it does not seeks an isotropic representation of the data in the low-dimensional space. Here the manifold problem
matches fairly that of representing a flat map of the Earth, as with map projection

Out:

/home/circleci/project/sklearn/utils/validation.py:67: FutureWarning: Pass n_
→˓neighbors=10, n_components=2 as keyword args. From version 0.25 passing these as
→˓positional arguments will result in an error
warnings.warn("Pass {} as keyword args. From version 0.25 "

standard: 0.092 sec
/home/circleci/project/sklearn/utils/validation.py:67: FutureWarning: Pass n_
→˓neighbors=10, n_components=2 as keyword args. From version 0.25 passing these as
→˓positional arguments will result in an error
warnings.warn("Pass {} as keyword args. From version 0.25 "

ltsa: 0.087 sec
/home/circleci/project/sklearn/utils/validation.py:67: FutureWarning: Pass n_
→˓neighbors=10, n_components=2 as keyword args. From version 0.25 passing these as
→˓positional arguments will result in an error
warnings.warn("Pass {} as keyword args. From version 0.25 "

hessian: 0.17 sec
/home/circleci/project/sklearn/utils/validation.py:67: FutureWarning: Pass n_
→˓neighbors=10, n_components=2 as keyword args. From version 0.25 passing these as
→˓positional arguments will result in an error
warnings.warn("Pass {} as keyword args. From version 0.25 "

modified: 0.14 sec
/home/circleci/project/sklearn/utils/validation.py:67: FutureWarning: Pass n_
→˓neighbors=10 as keyword args. From version 0.25 passing these as positional
→˓arguments will result in an error
warnings.warn("Pass {} as keyword args. From version 0.25 "

ISO: 0.22 sec
MDS: 0.97 sec
Spectral Embedding: 0.048 sec
t-SNE: 3.9 sec

6.18. Manifold learning 1315

https://en.wikipedia.org/wiki/Map_projection

scikit-learn user guide, Release 0.23.2

Author: Jaques Grobler <jaques.grobler@inria.fr>
License: BSD 3 clause

print(__doc__)

from time import time

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.ticker import NullFormatter

from sklearn import manifold
from sklearn.utils import check_random_state

Next line to silence pyflakes.
Axes3D

Variables for manifold learning.
n_neighbors = 10
n_samples = 1000

Create our sphere.
random_state = check_random_state(0)
p = random_state.rand(n_samples) * (2 * np.pi - 0.55)
t = random_state.rand(n_samples) * np.pi

Sever the poles from the sphere.
indices = ((t < (np.pi - (np.pi / 8))) & (t > ((np.pi / 8))))
colors = p[indices]
x, y, z = np.sin(t[indices]) * np.cos(p[indices]), \

np.sin(t[indices]) * np.sin(p[indices]), \
np.cos(t[indices])

Plot our dataset.
fig = plt.figure(figsize=(15, 8))
plt.suptitle("Manifold Learning with %i points, %i neighbors"

% (1000, n_neighbors), fontsize=14)

ax = fig.add_subplot(251, projection='3d')
ax.scatter(x, y, z, c=p[indices], cmap=plt.cm.rainbow)
ax.view_init(40, -10)

sphere_data = np.array([x, y, z]).T

Perform Locally Linear Embedding Manifold learning
methods = ['standard', 'ltsa', 'hessian', 'modified']
labels = ['LLE', 'LTSA', 'Hessian LLE', 'Modified LLE']

for i, method in enumerate(methods):
t0 = time()
trans_data = manifold\

.LocallyLinearEmbedding(n_neighbors, 2,
method=method).fit_transform(sphere_data).T

(continues on next page)

1316 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

t1 = time()
print("%s: %.2g sec" % (methods[i], t1 - t0))

ax = fig.add_subplot(252 + i)
plt.scatter(trans_data[0], trans_data[1], c=colors, cmap=plt.cm.rainbow)
plt.title("%s (%.2g sec)" % (labels[i], t1 - t0))
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())
plt.axis('tight')

Perform Isomap Manifold learning.
t0 = time()
trans_data = manifold.Isomap(n_neighbors, n_components=2)\

.fit_transform(sphere_data).T
t1 = time()
print("%s: %.2g sec" % ('ISO', t1 - t0))

ax = fig.add_subplot(257)
plt.scatter(trans_data[0], trans_data[1], c=colors, cmap=plt.cm.rainbow)
plt.title("%s (%.2g sec)" % ('Isomap', t1 - t0))
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())
plt.axis('tight')

Perform Multi-dimensional scaling.
t0 = time()
mds = manifold.MDS(2, max_iter=100, n_init=1)
trans_data = mds.fit_transform(sphere_data).T
t1 = time()
print("MDS: %.2g sec" % (t1 - t0))

ax = fig.add_subplot(258)
plt.scatter(trans_data[0], trans_data[1], c=colors, cmap=plt.cm.rainbow)
plt.title("MDS (%.2g sec)" % (t1 - t0))
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())
plt.axis('tight')

Perform Spectral Embedding.
t0 = time()
se = manifold.SpectralEmbedding(n_components=2,

n_neighbors=n_neighbors)
trans_data = se.fit_transform(sphere_data).T
t1 = time()
print("Spectral Embedding: %.2g sec" % (t1 - t0))

ax = fig.add_subplot(259)
plt.scatter(trans_data[0], trans_data[1], c=colors, cmap=plt.cm.rainbow)
plt.title("Spectral Embedding (%.2g sec)" % (t1 - t0))
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())
plt.axis('tight')

Perform t-distributed stochastic neighbor embedding.
t0 = time()
tsne = manifold.TSNE(n_components=2, init='pca', random_state=0)
trans_data = tsne.fit_transform(sphere_data).T

(continues on next page)

6.18. Manifold learning 1317

scikit-learn user guide, Release 0.23.2

(continued from previous page)

t1 = time()
print("t-SNE: %.2g sec" % (t1 - t0))

ax = fig.add_subplot(2, 5, 10)
plt.scatter(trans_data[0], trans_data[1], c=colors, cmap=plt.cm.rainbow)
plt.title("t-SNE (%.2g sec)" % (t1 - t0))
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())
plt.axis('tight')

plt.show()

Total running time of the script: (0 minutes 6.131 seconds)

6.18.6 Manifold learning on handwritten digits: Locally Linear Embedding,
Isomap. . .

An illustration of various embeddings on the digits dataset.

The RandomTreesEmbedding, from the sklearn.ensemble module, is not technically a manifold embedding
method, as it learn a high-dimensional representation on which we apply a dimensionality reduction method. However,
it is often useful to cast a dataset into a representation in which the classes are linearly-separable.

t-SNE will be initialized with the embedding that is generated by PCA in this example, which is not the default setting.
It ensures global stability of the embedding, i.e., the embedding does not depend on random initialization.

Linear Discriminant Analysis, from the sklearn.discriminant_analysis module, and Neighborhood Com-
ponents Analysis, from the sklearn.neighbors module, are supervised dimensionality reduction method, i.e.
they make use of the provided labels, contrary to other methods.

1318 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

6.18. Manifold learning 1319

scikit-learn user guide, Release 0.23.2

•

1320 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

6.18. Manifold learning 1321

scikit-learn user guide, Release 0.23.2

•

1322 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

6.18. Manifold learning 1323

scikit-learn user guide, Release 0.23.2

•

1324 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

6.18. Manifold learning 1325

scikit-learn user guide, Release 0.23.2

•

1326 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

6.18. Manifold learning 1327

scikit-learn user guide, Release 0.23.2

•

1328 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

6.18. Manifold learning 1329

scikit-learn user guide, Release 0.23.2

•

1330 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

6.18. Manifold learning 1331

scikit-learn user guide, Release 0.23.2

•

Out:

Computing random projection
Computing PCA projection
Computing Linear Discriminant Analysis projection
Computing Isomap projection
Done.
Computing LLE embedding
Done. Reconstruction error: 1.63544e-06
Computing modified LLE embedding
Done. Reconstruction error: 0.360613
Computing Hessian LLE embedding
Done. Reconstruction error: 0.212803
Computing LTSA embedding
Done. Reconstruction error: 0.212804
Computing MDS embedding
Done. Stress: 174889755.062254
Computing Totally Random Trees embedding
Computing Spectral embedding
Computing t-SNE embedding
Computing NCA projection

1332 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Authors: Fabian Pedregosa <fabian.pedregosa@inria.fr>
Olivier Grisel <olivier.grisel@ensta.org>
Mathieu Blondel <mathieu@mblondel.org>
Gael Varoquaux
License: BSD 3 clause (C) INRIA 2011

from time import time
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import offsetbox
from sklearn import (manifold, datasets, decomposition, ensemble,

discriminant_analysis, random_projection, neighbors)
print(__doc__)

digits = datasets.load_digits(n_class=6)
X = digits.data
y = digits.target
n_samples, n_features = X.shape
n_neighbors = 30

--
Scale and visualize the embedding vectors
def plot_embedding(X, title=None):

x_min, x_max = np.min(X, 0), np.max(X, 0)
X = (X - x_min) / (x_max - x_min)

plt.figure()
ax = plt.subplot(111)
for i in range(X.shape[0]):

plt.text(X[i, 0], X[i, 1], str(y[i]),
color=plt.cm.Set1(y[i] / 10.),
fontdict={'weight': 'bold', 'size': 9})

if hasattr(offsetbox, 'AnnotationBbox'):
only print thumbnails with matplotlib > 1.0
shown_images = np.array([[1., 1.]]) # just something big
for i in range(X.shape[0]):

dist = np.sum((X[i] - shown_images) ** 2, 1)
if np.min(dist) < 4e-3:

don't show points that are too close
continue

shown_images = np.r_[shown_images, [X[i]]]
imagebox = offsetbox.AnnotationBbox(

offsetbox.OffsetImage(digits.images[i], cmap=plt.cm.gray_r),
X[i])

ax.add_artist(imagebox)
plt.xticks([]), plt.yticks([])
if title is not None:

plt.title(title)

--
Plot images of the digits
n_img_per_row = 20
img = np.zeros((10 * n_img_per_row, 10 * n_img_per_row))
for i in range(n_img_per_row):

(continues on next page)

6.18. Manifold learning 1333

scikit-learn user guide, Release 0.23.2

(continued from previous page)

ix = 10 * i + 1
for j in range(n_img_per_row):

iy = 10 * j + 1
img[ix:ix + 8, iy:iy + 8] = X[i * n_img_per_row + j].reshape((8, 8))

plt.imshow(img, cmap=plt.cm.binary)
plt.xticks([])
plt.yticks([])
plt.title('A selection from the 64-dimensional digits dataset')

--
Random 2D projection using a random unitary matrix
print("Computing random projection")
rp = random_projection.SparseRandomProjection(n_components=2, random_state=42)
X_projected = rp.fit_transform(X)
plot_embedding(X_projected, "Random Projection of the digits")

--
Projection on to the first 2 principal components

print("Computing PCA projection")
t0 = time()
X_pca = decomposition.TruncatedSVD(n_components=2).fit_transform(X)
plot_embedding(X_pca,

"Principal Components projection of the digits (time %.2fs)" %
(time() - t0))

--
Projection on to the first 2 linear discriminant components

print("Computing Linear Discriminant Analysis projection")
X2 = X.copy()
X2.flat[::X.shape[1] + 1] += 0.01 # Make X invertible
t0 = time()
X_lda = discriminant_analysis.LinearDiscriminantAnalysis(n_components=2

).fit_transform(X2, y)
plot_embedding(X_lda,

"Linear Discriminant projection of the digits (time %.2fs)" %
(time() - t0))

--
Isomap projection of the digits dataset
print("Computing Isomap projection")
t0 = time()
X_iso = manifold.Isomap(n_neighbors=n_neighbors, n_components=2

).fit_transform(X)
print("Done.")
plot_embedding(X_iso,

"Isomap projection of the digits (time %.2fs)" %
(time() - t0))

--
Locally linear embedding of the digits dataset

(continues on next page)

1334 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

print("Computing LLE embedding")
clf = manifold.LocallyLinearEmbedding(n_neighbors=n_neighbors, n_components=2,

method='standard')
t0 = time()
X_lle = clf.fit_transform(X)
print("Done. Reconstruction error: %g" % clf.reconstruction_error_)
plot_embedding(X_lle,

"Locally Linear Embedding of the digits (time %.2fs)" %
(time() - t0))

--
Modified Locally linear embedding of the digits dataset
print("Computing modified LLE embedding")
clf = manifold.LocallyLinearEmbedding(n_neighbors=n_neighbors, n_components=2,

method='modified')
t0 = time()
X_mlle = clf.fit_transform(X)
print("Done. Reconstruction error: %g" % clf.reconstruction_error_)
plot_embedding(X_mlle,

"Modified Locally Linear Embedding of the digits (time %.2fs)" %
(time() - t0))

--
HLLE embedding of the digits dataset
print("Computing Hessian LLE embedding")
clf = manifold.LocallyLinearEmbedding(n_neighbors=n_neighbors, n_components=2,

method='hessian')
t0 = time()
X_hlle = clf.fit_transform(X)
print("Done. Reconstruction error: %g" % clf.reconstruction_error_)
plot_embedding(X_hlle,

"Hessian Locally Linear Embedding of the digits (time %.2fs)" %
(time() - t0))

--
LTSA embedding of the digits dataset
print("Computing LTSA embedding")
clf = manifold.LocallyLinearEmbedding(n_neighbors=n_neighbors, n_components=2,

method='ltsa')
t0 = time()
X_ltsa = clf.fit_transform(X)
print("Done. Reconstruction error: %g" % clf.reconstruction_error_)
plot_embedding(X_ltsa,

"Local Tangent Space Alignment of the digits (time %.2fs)" %
(time() - t0))

--
MDS embedding of the digits dataset
print("Computing MDS embedding")
clf = manifold.MDS(n_components=2, n_init=1, max_iter=100)
t0 = time()
X_mds = clf.fit_transform(X)
print("Done. Stress: %f" % clf.stress_)
plot_embedding(X_mds,

(continues on next page)

6.18. Manifold learning 1335

scikit-learn user guide, Release 0.23.2

(continued from previous page)

"MDS embedding of the digits (time %.2fs)" %
(time() - t0))

--
Random Trees embedding of the digits dataset
print("Computing Totally Random Trees embedding")
hasher = ensemble.RandomTreesEmbedding(n_estimators=200, random_state=0,

max_depth=5)
t0 = time()
X_transformed = hasher.fit_transform(X)
pca = decomposition.TruncatedSVD(n_components=2)
X_reduced = pca.fit_transform(X_transformed)

plot_embedding(X_reduced,
"Random forest embedding of the digits (time %.2fs)" %
(time() - t0))

--
Spectral embedding of the digits dataset
print("Computing Spectral embedding")
embedder = manifold.SpectralEmbedding(n_components=2, random_state=0,

eigen_solver="arpack")
t0 = time()
X_se = embedder.fit_transform(X)

plot_embedding(X_se,
"Spectral embedding of the digits (time %.2fs)" %
(time() - t0))

--
t-SNE embedding of the digits dataset
print("Computing t-SNE embedding")
tsne = manifold.TSNE(n_components=2, init='pca', random_state=0)
t0 = time()
X_tsne = tsne.fit_transform(X)

plot_embedding(X_tsne,
"t-SNE embedding of the digits (time %.2fs)" %
(time() - t0))

--
NCA projection of the digits dataset
print("Computing NCA projection")
nca = neighbors.NeighborhoodComponentsAnalysis(init='random',

n_components=2, random_state=0)
t0 = time()
X_nca = nca.fit_transform(X, y)

plot_embedding(X_nca,
"NCA embedding of the digits (time %.2fs)" %
(time() - t0))

plt.show()

Total running time of the script: (0 minutes 25.349 seconds)

1336 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

6.19 Miscellaneous

Miscellaneous and introductory examples for scikit-learn.

6.19.1 Compact estimator representations

This example illustrates the use of the print_changed_only global parameter.

Setting print_changed_only to True will alternate the representation of estimators to only show the parameters that
have been set to non-default values. This can be used to have more compact representations.

Out:

Default representation:
LogisticRegression(penalty='l1')

With changed_only option:
LogisticRegression(penalty='l1')

print(__doc__)

from sklearn.linear_model import LogisticRegression
from sklearn import set_config

lr = LogisticRegression(penalty='l1')
print('Default representation:')
print(lr)
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, l1_ratio=None, max_iter=100,
multi_class='auto', n_jobs=None, penalty='l1',
random_state=None, solver='warn', tol=0.0001, verbose=0,
warm_start=False)

set_config(print_changed_only=True)
print('\nWith changed_only option:')
print(lr)
LogisticRegression(penalty='l1')

Total running time of the script: (0 minutes 0.002 seconds)

6.19.2 ROC Curve with Visualization API

Scikit-learn defines a simple API for creating visualizations for machine learning. The key features of this API is to
allow for quick plotting and visual adjustments without recalculation. In this example, we will demonstrate how to
use the visualization API by comparing ROC curves.

print(__doc__)

6.19. Miscellaneous 1337

scikit-learn user guide, Release 0.23.2

Load Data and Train a SVC

First, we load the wine dataset and convert it to a binary classification problem. Then, we train a support vector
classifier on a training dataset.

import matplotlib.pyplot as plt
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import plot_roc_curve
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split

X, y = load_wine(return_X_y=True)
y = y == 2

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)
svc = SVC(random_state=42)
svc.fit(X_train, y_train)

Plotting the ROC Curve

Next, we plot the ROC curve with a single call to sklearn.metrics.plot_roc_curve. The returned
svc_disp object allows us to continue using the already computed ROC curve for the SVC in future plots.

svc_disp = plot_roc_curve(svc, X_test, y_test)
plt.show()

1338 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Training a Random Forest and Plotting the ROC Curve

We train a random forest classifier and create a plot comparing it to the SVC ROC curve. Notice how svc_disp
uses plot to plot the SVC ROC curve without recomputing the values of the roc curve itself. Furthermore, we pass
alpha=0.8 to the plot functions to adjust the alpha values of the curves.

rfc = RandomForestClassifier(n_estimators=10, random_state=42)
rfc.fit(X_train, y_train)
ax = plt.gca()
rfc_disp = plot_roc_curve(rfc, X_test, y_test, ax=ax, alpha=0.8)
svc_disp.plot(ax=ax, alpha=0.8)
plt.show()

6.19. Miscellaneous 1339

scikit-learn user guide, Release 0.23.2

Total running time of the script: (0 minutes 0.136 seconds)

6.19.3 Isotonic Regression

An illustration of the isotonic regression on generated data. The isotonic regression finds a non-decreasing approx-
imation of a function while minimizing the mean squared error on the training data. The benefit of such a model is
that it does not assume any form for the target function such as linearity. For comparison a linear regression is also
presented.

1340 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

print(__doc__)

Author: Nelle Varoquaux <nelle.varoquaux@gmail.com>
Alexandre Gramfort <alexandre.gramfort@inria.fr>
License: BSD

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection

from sklearn.linear_model import LinearRegression
from sklearn.isotonic import IsotonicRegression
from sklearn.utils import check_random_state

n = 100
x = np.arange(n)
rs = check_random_state(0)
y = rs.randint(-50, 50, size=(n,)) + 50. * np.log1p(np.arange(n))

###
Fit IsotonicRegression and LinearRegression models

ir = IsotonicRegression()

y_ = ir.fit_transform(x, y)

(continues on next page)

6.19. Miscellaneous 1341

scikit-learn user guide, Release 0.23.2

(continued from previous page)

lr = LinearRegression()
lr.fit(x[:, np.newaxis], y) # x needs to be 2d for LinearRegression

###
Plot result

segments = [[[i, y[i]], [i, y_[i]]] for i in range(n)]
lc = LineCollection(segments, zorder=0)
lc.set_array(np.ones(len(y)))
lc.set_linewidths(np.full(n, 0.5))

fig = plt.figure()
plt.plot(x, y, 'r.', markersize=12)
plt.plot(x, y_, 'b.-', markersize=12)
plt.plot(x, lr.predict(x[:, np.newaxis]), 'b-')
plt.gca().add_collection(lc)
plt.legend(('Data', 'Isotonic Fit', 'Linear Fit'), loc='lower right')
plt.title('Isotonic regression')
plt.show()

Total running time of the script: (0 minutes 0.068 seconds)

6.19.4 Visualizations with Display Objects

In this example, we will construct display objects, ConfusionMatrixDisplay , RocCurveDisplay , and
PrecisionRecallDisplay directly from their respective metrics. This is an alternative to using their corre-
sponding plot functions when a model’s predictions are already computed or expensive to compute. Note that this is
advanced usage, and in general we recommend using their respective plot functions.

print(__doc__)

Load Data and train model

For this example, we load a blood transfusion service center data set from OpenML <https://www.openml.
org/d/1464>. This is a binary classification problem where the target is whether an individual donated blood.
Then the data is split into a train and test dataset and a logistic regression is fitted wtih the train dataset.

from sklearn.datasets import fetch_openml
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import make_pipeline
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

X, y = fetch_openml(data_id=1464, return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y)

clf = make_pipeline(StandardScaler(), LogisticRegression(random_state=0))
clf.fit(X_train, y_train)

1342 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Create ConfusionMatrixDisplay

With the fitted model, we compute the predictions of the model on the test dataset. These predictions are
used to compute the confustion matrix which is plotted with the ConfusionMatrixDisplay

from sklearn.metrics import confusion_matrix
from sklearn.metrics import ConfusionMatrixDisplay

y_pred = clf.predict(X_test)
cm = confusion_matrix(y_test, y_pred)

cm_display = ConfusionMatrixDisplay(cm).plot()

Create RocCurveDisplay

The roc curve requires either the probabilities or the non-thresholded decision values from the estimator.
Since the logistic regression provides a decision function, we will use it to plot the roc curve:

from sklearn.metrics import roc_curve
from sklearn.metrics import RocCurveDisplay
y_score = clf.decision_function(X_test)

fpr, tpr, _ = roc_curve(y_test, y_score, pos_label=clf.classes_[1])
roc_display = RocCurveDisplay(fpr=fpr, tpr=tpr).plot()

6.19. Miscellaneous 1343

scikit-learn user guide, Release 0.23.2

Create PrecisionRecallDisplay

Similarly, the precision recall curve can be plotted using y_score from the prevision sections.

from sklearn.metrics import precision_recall_curve
from sklearn.metrics import PrecisionRecallDisplay

prec, recall, _ = precision_recall_curve(y_test, y_score,
pos_label=clf.classes_[1])

pr_display = PrecisionRecallDisplay(precision=prec, recall=recall).plot()

1344 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Combining the display objects into a single plot

The display objects store the computed values that were passed as arguments. This allows for the visu-
alizations to be easliy combined using matplotlib’s API. In the following example, we place the displays
next to each other in a row.

import matplotlib.pyplot as plt
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 8))

roc_display.plot(ax=ax1)
pr_display.plot(ax=ax2)
plt.show()

6.19. Miscellaneous 1345

scikit-learn user guide, Release 0.23.2

Total running time of the script: (0 minutes 0.312 seconds)

6.19.5 Advanced Plotting With Partial Dependence

The plot_partial_dependence function returns a PartialDependenceDisplay object that can be used
for plotting without needing to recalculate the partial dependence. In this example, we show how to plot partial
dependence plots and how to quickly customize the plot with the visualization API.

Note: See also ROC Curve with Visualization API

print(__doc__)

import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_diabetes
from sklearn.neural_network import MLPRegressor
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import make_pipeline
from sklearn.tree import DecisionTreeRegressor
from sklearn.inspection import plot_partial_dependence

Train models on the diabetes dataset

First, we train a decision tree and a multi-layer perceptron on the diabetes dataset.

1346 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

diabetes = load_diabetes()
X = pd.DataFrame(diabetes.data, columns=diabetes.feature_names)
y = diabetes.target

tree = DecisionTreeRegressor()
mlp = make_pipeline(StandardScaler(),

MLPRegressor(hidden_layer_sizes=(100, 100),
tol=1e-2, max_iter=500, random_state=0))

tree.fit(X, y)
mlp.fit(X, y)

Plotting partial dependence for two features

We plot partial dependence curves for features “age” and “bmi” (body mass index) for the decision tree. With two
features, plot_partial_dependence expects to plot two curves. Here the plot function place a grid of two plots
using the space defined by ax .

fig, ax = plt.subplots(figsize=(12, 6))
ax.set_title("Decision Tree")
tree_disp = plot_partial_dependence(tree, X, ["age", "bmi"], ax=ax)

Out:

/home/circleci/project/sklearn/tree/_classes.py:1254: FutureWarning: the classes_
→˓attribute is to be deprecated from version 0.22 and will be removed in 0.24.
warnings.warn(msg, FutureWarning)

The partial depdendence curves can be plotted for the multi-layer perceptron. In this case, line_kw is passed to
plot_partial_dependence to change the color of the curve.

fig, ax = plt.subplots(figsize=(12, 6))
ax.set_title("Multi-layer Perceptron")
mlp_disp = plot_partial_dependence(mlp, X, ["age", "bmi"], ax=ax,

line_kw={"c": "red"})

6.19. Miscellaneous 1347

scikit-learn user guide, Release 0.23.2

Plotting partial dependence of the two models together

The tree_disp and mlp_disp PartialDependenceDisplay objects contain all the computed information
needed to recreate the partial dependence curves. This means we can easily create additional plots without needing to
recompute the curves.

One way to plot the curves is to place them in the same figure, with the curves of each model on each row. First, we
create a figure with two axes within two rows and one column. The two axes are passed to the plot functions of
tree_disp and mlp_disp. The given axes will be used by the plotting function to draw the partial dependence.
The resulting plot places the decision tree partial dependence curves in the first row of the multi-layer perceptron in
the second row.

fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 10))
tree_disp.plot(ax=ax1)
ax1.set_title("Decision Tree")
mlp_disp.plot(ax=ax2, line_kw={"c": "red"})
ax2.set_title("Multi-layer Perceptron")

1348 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Out:

Text(0.5, 1.0, 'Multi-layer Perceptron')

Another way to compare the curves is to plot them on top of each other. Here, we create a figure with one row and two
columns. The axes are passed into the plot function as a list, which will plot the partial dependence curves of each
model on the same axes. The length of the axes list must be equal to the number of plots drawn.

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 6))
tree_disp.plot(ax=[ax1, ax2], line_kw={"label": "Decision Tree"})
mlp_disp.plot(ax=[ax1, ax2], line_kw={"label": "Multi-layer Perceptron",

"c": "red"})
ax1.legend()
ax2.legend()

6.19. Miscellaneous 1349

scikit-learn user guide, Release 0.23.2

Out:

<matplotlib.legend.Legend object at 0x7f6357c3ad00>

tree_disp.axes_ is a numpy array container the axes used to draw the partial dependence plots. This can be
passed to mlp_disp to have the same affect of drawing the plots on top of each other. Furthermore, the mlp_disp.
figure_ stores the figure, which allows for resizing the figure after calling plot. In this case tree_disp.axes_
has two dimensions, thus plot will only show the y label and y ticks on the left most plot.

tree_disp.plot(line_kw={"label": "Decision Tree"})
mlp_disp.plot(line_kw={"label": "Multi-layer Perceptron", "c": "red"},

ax=tree_disp.axes_)
tree_disp.figure_.set_size_inches(10, 6)
tree_disp.axes_[0, 0].legend()
tree_disp.axes_[0, 1].legend()
plt.show()

1350 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Plotting partial dependence for one feature

Here, we plot the partial dependence curves for a single feature, “age”, on the same axes. In this case, tree_disp.
axes_ is passed into the second plot function.

tree_disp = plot_partial_dependence(tree, X, ["age"])
mlp_disp = plot_partial_dependence(mlp, X, ["age"],

ax=tree_disp.axes_, line_kw={"c": "red"})

6.19. Miscellaneous 1351

scikit-learn user guide, Release 0.23.2

Out:

/home/circleci/project/sklearn/tree/_classes.py:1254: FutureWarning: the classes_
→˓attribute is to be deprecated from version 0.22 and will be removed in 0.24.
warnings.warn(msg, FutureWarning)

Total running time of the script: (0 minutes 2.971 seconds)

6.19.6 Face completion with a multi-output estimators

This example shows the use of multi-output estimator to complete images. The goal is to predict the lower half of a
face given its upper half.

The first column of images shows true faces. The next columns illustrate how extremely randomized trees, k nearest
neighbors, linear regression and ridge regression complete the lower half of those faces.

1352 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets import fetch_olivetti_faces
from sklearn.utils.validation import check_random_state

from sklearn.ensemble import ExtraTreesRegressor
(continues on next page)

6.19. Miscellaneous 1353

scikit-learn user guide, Release 0.23.2

(continued from previous page)

from sklearn.neighbors import KNeighborsRegressor
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import RidgeCV

Load the faces datasets
data, targets = fetch_olivetti_faces(return_X_y=True)

train = data[targets < 30]
test = data[targets >= 30] # Test on independent people

Test on a subset of people
n_faces = 5
rng = check_random_state(4)
face_ids = rng.randint(test.shape[0], size=(n_faces,))
test = test[face_ids, :]

n_pixels = data.shape[1]
Upper half of the faces
X_train = train[:, :(n_pixels + 1) // 2]
Lower half of the faces
y_train = train[:, n_pixels // 2:]
X_test = test[:, :(n_pixels + 1) // 2]
y_test = test[:, n_pixels // 2:]

Fit estimators
ESTIMATORS = {

"Extra trees": ExtraTreesRegressor(n_estimators=10, max_features=32,
random_state=0),

"K-nn": KNeighborsRegressor(),
"Linear regression": LinearRegression(),
"Ridge": RidgeCV(),

}

y_test_predict = dict()
for name, estimator in ESTIMATORS.items():

estimator.fit(X_train, y_train)
y_test_predict[name] = estimator.predict(X_test)

Plot the completed faces
image_shape = (64, 64)

n_cols = 1 + len(ESTIMATORS)
plt.figure(figsize=(2. * n_cols, 2.26 * n_faces))
plt.suptitle("Face completion with multi-output estimators", size=16)

for i in range(n_faces):
true_face = np.hstack((X_test[i], y_test[i]))

if i:
sub = plt.subplot(n_faces, n_cols, i * n_cols + 1)

else:
sub = plt.subplot(n_faces, n_cols, i * n_cols + 1,

title="true faces")

sub.axis("off")
sub.imshow(true_face.reshape(image_shape),

cmap=plt.cm.gray,
(continues on next page)

1354 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

interpolation="nearest")

for j, est in enumerate(sorted(ESTIMATORS)):
completed_face = np.hstack((X_test[i], y_test_predict[est][i]))

if i:
sub = plt.subplot(n_faces, n_cols, i * n_cols + 2 + j)

else:
sub = plt.subplot(n_faces, n_cols, i * n_cols + 2 + j,

title=est)

sub.axis("off")
sub.imshow(completed_face.reshape(image_shape),

cmap=plt.cm.gray,
interpolation="nearest")

plt.show()

Total running time of the script: (0 minutes 1.872 seconds)

6.19.7 Multilabel classification

This example simulates a multi-label document classification problem. The dataset is generated randomly based on
the following process:

• pick the number of labels: n ~ Poisson(n_labels)

• n times, choose a class c: c ~ Multinomial(theta)

• pick the document length: k ~ Poisson(length)

• k times, choose a word: w ~ Multinomial(theta_c)

In the above process, rejection sampling is used to make sure that n is more than 2, and that the document length is
never zero. Likewise, we reject classes which have already been chosen. The documents that are assigned to both
classes are plotted surrounded by two colored circles.

The classification is performed by projecting to the first two principal components found by PCA and CCA for visual-
isation purposes, followed by using the sklearn.multiclass.OneVsRestClassifier metaclassifier using
two SVCs with linear kernels to learn a discriminative model for each class. Note that PCA is used to perform an
unsupervised dimensionality reduction, while CCA is used to perform a supervised one.

Note: in the plot, “unlabeled samples” does not mean that we don’t know the labels (as in semi-supervised learning)
but that the samples simply do not have a label.

6.19. Miscellaneous 1355

scikit-learn user guide, Release 0.23.2

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets import make_multilabel_classification
from sklearn.multiclass import OneVsRestClassifier
from sklearn.svm import SVC
from sklearn.decomposition import PCA
from sklearn.cross_decomposition import CCA

def plot_hyperplane(clf, min_x, max_x, linestyle, label):
get the separating hyperplane
w = clf.coef_[0]
a = -w[0] / w[1]
xx = np.linspace(min_x - 5, max_x + 5) # make sure the line is long enough
yy = a * xx - (clf.intercept_[0]) / w[1]
plt.plot(xx, yy, linestyle, label=label)

def plot_subfigure(X, Y, subplot, title, transform):
if transform == "pca":

X = PCA(n_components=2).fit_transform(X)
elif transform == "cca":

(continues on next page)

1356 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

X = CCA(n_components=2).fit(X, Y).transform(X)
else:

raise ValueError

min_x = np.min(X[:, 0])
max_x = np.max(X[:, 0])

min_y = np.min(X[:, 1])
max_y = np.max(X[:, 1])

classif = OneVsRestClassifier(SVC(kernel='linear'))
classif.fit(X, Y)

plt.subplot(2, 2, subplot)
plt.title(title)

zero_class = np.where(Y[:, 0])
one_class = np.where(Y[:, 1])
plt.scatter(X[:, 0], X[:, 1], s=40, c='gray', edgecolors=(0, 0, 0))
plt.scatter(X[zero_class, 0], X[zero_class, 1], s=160, edgecolors='b',

facecolors='none', linewidths=2, label='Class 1')
plt.scatter(X[one_class, 0], X[one_class, 1], s=80, edgecolors='orange',

facecolors='none', linewidths=2, label='Class 2')

plot_hyperplane(classif.estimators_[0], min_x, max_x, 'k--',
'Boundary\nfor class 1')

plot_hyperplane(classif.estimators_[1], min_x, max_x, 'k-.',
'Boundary\nfor class 2')

plt.xticks(())
plt.yticks(())

plt.xlim(min_x - .5 * max_x, max_x + .5 * max_x)
plt.ylim(min_y - .5 * max_y, max_y + .5 * max_y)
if subplot == 2:

plt.xlabel('First principal component')
plt.ylabel('Second principal component')
plt.legend(loc="upper left")

plt.figure(figsize=(8, 6))

X, Y = make_multilabel_classification(n_classes=2, n_labels=1,
allow_unlabeled=True,
random_state=1)

plot_subfigure(X, Y, 1, "With unlabeled samples + CCA", "cca")
plot_subfigure(X, Y, 2, "With unlabeled samples + PCA", "pca")

X, Y = make_multilabel_classification(n_classes=2, n_labels=1,
allow_unlabeled=False,
random_state=1)

plot_subfigure(X, Y, 3, "Without unlabeled samples + CCA", "cca")
plot_subfigure(X, Y, 4, "Without unlabeled samples + PCA", "pca")

plt.subplots_adjust(.04, .02, .97, .94, .09, .2)
plt.show()

6.19. Miscellaneous 1357

scikit-learn user guide, Release 0.23.2

Total running time of the script: (0 minutes 0.168 seconds)

6.19.8 Comparing anomaly detection algorithms for outlier detection on toy
datasets

This example shows characteristics of different anomaly detection algorithms on 2D datasets. Datasets contain one or
two modes (regions of high density) to illustrate the ability of algorithms to cope with multimodal data.

For each dataset, 15% of samples are generated as random uniform noise. This proportion is the value given to the nu
parameter of the OneClassSVM and the contamination parameter of the other outlier detection algorithms. Decision
boundaries between inliers and outliers are displayed in black except for Local Outlier Factor (LOF) as it has no
predict method to be applied on new data when it is used for outlier detection.

The sklearn.svm.OneClassSVM is known to be sensitive to outliers and thus does not perform very well for
outlier detection. This estimator is best suited for novelty detection when the training set is not contaminated by
outliers. That said, outlier detection in high-dimension, or without any assumptions on the distribution of the inlying
data is very challenging, and a One-class SVM might give useful results in these situations depending on the value of
its hyperparameters.

sklearn.covariance.EllipticEnvelope assumes the data is Gaussian and learns an ellipse. It thus de-
grades when the data is not unimodal. Notice however that this estimator is robust to outliers.

sklearn.ensemble.IsolationForest and sklearn.neighbors.LocalOutlierFactor seem
to perform reasonably well for multi-modal data sets. The advantage of sklearn.neighbors.
LocalOutlierFactor over the other estimators is shown for the third data set, where the two modes have different
densities. This advantage is explained by the local aspect of LOF, meaning that it only compares the score of abnor-
mality of one sample with the scores of its neighbors.

Finally, for the last data set, it is hard to say that one sample is more abnormal than another sample as they are
uniformly distributed in a hypercube. Except for the sklearn.svm.OneClassSVM which overfits a little, all
estimators present decent solutions for this situation. In such a case, it would be wise to look more closely at the
scores of abnormality of the samples as a good estimator should assign similar scores to all the samples.

While these examples give some intuition about the algorithms, this intuition might not apply to very high dimensional
data.

Finally, note that parameters of the models have been here handpicked but that in practice they need to be adjusted. In
the absence of labelled data, the problem is completely unsupervised so model selection can be a challenge.

1358 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
Albert Thomas <albert.thomas@telecom-paristech.fr>
License: BSD 3 clause

import time

import numpy as np
import matplotlib

(continues on next page)

6.19. Miscellaneous 1359

scikit-learn user guide, Release 0.23.2

(continued from previous page)

import matplotlib.pyplot as plt

from sklearn import svm
from sklearn.datasets import make_moons, make_blobs
from sklearn.covariance import EllipticEnvelope
from sklearn.ensemble import IsolationForest
from sklearn.neighbors import LocalOutlierFactor

print(__doc__)

matplotlib.rcParams['contour.negative_linestyle'] = 'solid'

Example settings
n_samples = 300
outliers_fraction = 0.15
n_outliers = int(outliers_fraction * n_samples)
n_inliers = n_samples - n_outliers

define outlier/anomaly detection methods to be compared
anomaly_algorithms = [

("Robust covariance", EllipticEnvelope(contamination=outliers_fraction)),
("One-Class SVM", svm.OneClassSVM(nu=outliers_fraction, kernel="rbf",

gamma=0.1)),
("Isolation Forest", IsolationForest(contamination=outliers_fraction,

random_state=42)),
("Local Outlier Factor", LocalOutlierFactor(

n_neighbors=35, contamination=outliers_fraction))]

Define datasets
blobs_params = dict(random_state=0, n_samples=n_inliers, n_features=2)
datasets = [

make_blobs(centers=[[0, 0], [0, 0]], cluster_std=0.5,

**blobs_params)[0],
make_blobs(centers=[[2, 2], [-2, -2]], cluster_std=[0.5, 0.5],

**blobs_params)[0],
make_blobs(centers=[[2, 2], [-2, -2]], cluster_std=[1.5, .3],

**blobs_params)[0],
4. * (make_moons(n_samples=n_samples, noise=.05, random_state=0)[0] -

np.array([0.5, 0.25])),
14. * (np.random.RandomState(42).rand(n_samples, 2) - 0.5)]

Compare given classifiers under given settings
xx, yy = np.meshgrid(np.linspace(-7, 7, 150),

np.linspace(-7, 7, 150))

plt.figure(figsize=(len(anomaly_algorithms) * 2 + 3, 12.5))
plt.subplots_adjust(left=.02, right=.98, bottom=.001, top=.96, wspace=.05,

hspace=.01)

plot_num = 1
rng = np.random.RandomState(42)

for i_dataset, X in enumerate(datasets):
Add outliers
X = np.concatenate([X, rng.uniform(low=-6, high=6,

size=(n_outliers, 2))], axis=0)

(continues on next page)

1360 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

for name, algorithm in anomaly_algorithms:
t0 = time.time()
algorithm.fit(X)
t1 = time.time()
plt.subplot(len(datasets), len(anomaly_algorithms), plot_num)
if i_dataset == 0:

plt.title(name, size=18)

fit the data and tag outliers
if name == "Local Outlier Factor":

y_pred = algorithm.fit_predict(X)
else:

y_pred = algorithm.fit(X).predict(X)

plot the levels lines and the points
if name != "Local Outlier Factor": # LOF does not implement predict

Z = algorithm.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.contour(xx, yy, Z, levels=[0], linewidths=2, colors='black')

colors = np.array(['#377eb8', '#ff7f00'])
plt.scatter(X[:, 0], X[:, 1], s=10, color=colors[(y_pred + 1) // 2])

plt.xlim(-7, 7)
plt.ylim(-7, 7)
plt.xticks(())
plt.yticks(())
plt.text(.99, .01, ('%.2fs' % (t1 - t0)).lstrip('0'),

transform=plt.gca().transAxes, size=15,
horizontalalignment='right')

plot_num += 1

plt.show()

Total running time of the script: (0 minutes 4.268 seconds)

6.19.9 The Johnson-Lindenstrauss bound for embedding with random projections

The Johnson-Lindenstrauss lemma states that any high dimensional dataset can be randomly projected into a lower
dimensional Euclidean space while controlling the distortion in the pairwise distances.

print(__doc__)

import sys
from time import time
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from sklearn.random_projection import johnson_lindenstrauss_min_dim
from sklearn.random_projection import SparseRandomProjection
from sklearn.datasets import fetch_20newsgroups_vectorized
from sklearn.datasets import load_digits
from sklearn.metrics.pairwise import euclidean_distances
from sklearn.utils.fixes import parse_version

(continues on next page)

6.19. Miscellaneous 1361

https://en.wikipedia.org/wiki/ Johnson%E2%80%93Lindenstrauss_lemma

scikit-learn user guide, Release 0.23.2

(continued from previous page)

`normed` is being deprecated in favor of `density` in histograms
if parse_version(matplotlib.__version__) >= parse_version('2.1'):

density_param = {'density': True}
else:

density_param = {'normed': True}

Theoretical bounds

The distortion introduced by a random projection p is asserted by the fact that p is defining an eps-embedding with
good probability as defined by:

(1− 𝑒𝑝𝑠)‖𝑢− 𝑣‖2 < ‖𝑝(𝑢)− 𝑝(𝑣)‖2 < (1 + 𝑒𝑝𝑠)‖𝑢− 𝑣‖2

Where u and v are any rows taken from a dataset of shape [n_samples, n_features] and p is a projection by a random
Gaussian N(0, 1) matrix with shape [n_components, n_features] (or a sparse Achlioptas matrix).

The minimum number of components to guarantees the eps-embedding is given by:

𝑛_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 >= 4𝑙𝑜𝑔(𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠)/(𝑒𝑝𝑠2/2− 𝑒𝑝𝑠3/3)

The first plot shows that with an increasing number of samples n_samples, the minimal number of dimensions
n_components increased logarithmically in order to guarantee an eps-embedding.

range of admissible distortions
eps_range = np.linspace(0.1, 0.99, 5)
colors = plt.cm.Blues(np.linspace(0.3, 1.0, len(eps_range)))

range of number of samples (observation) to embed
n_samples_range = np.logspace(1, 9, 9)

plt.figure()
for eps, color in zip(eps_range, colors):

min_n_components = johnson_lindenstrauss_min_dim(n_samples_range, eps=eps)
plt.loglog(n_samples_range, min_n_components, color=color)

plt.legend(["eps = %0.1f" % eps for eps in eps_range], loc="lower right")
plt.xlabel("Number of observations to eps-embed")
plt.ylabel("Minimum number of dimensions")
plt.title("Johnson-Lindenstrauss bounds:\nn_samples vs n_components")
plt.show()

1362 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

The second plot shows that an increase of the admissible distortion eps allows to reduce drastically the minimal
number of dimensions n_components for a given number of samples n_samples

range of admissible distortions
eps_range = np.linspace(0.01, 0.99, 100)

range of number of samples (observation) to embed
n_samples_range = np.logspace(2, 6, 5)
colors = plt.cm.Blues(np.linspace(0.3, 1.0, len(n_samples_range)))

plt.figure()
for n_samples, color in zip(n_samples_range, colors):

min_n_components = johnson_lindenstrauss_min_dim(n_samples, eps=eps_range)
plt.semilogy(eps_range, min_n_components, color=color)

plt.legend(["n_samples = %d" % n for n in n_samples_range], loc="upper right")
plt.xlabel("Distortion eps")
plt.ylabel("Minimum number of dimensions")
plt.title("Johnson-Lindenstrauss bounds:\nn_components vs eps")
plt.show()

6.19. Miscellaneous 1363

scikit-learn user guide, Release 0.23.2

Empirical validation

We validate the above bounds on the 20 newsgroups text document (TF-IDF word frequencies) dataset or on the digits
dataset:

• for the 20 newsgroups dataset some 500 documents with 100k features in total are projected using a
sparse random matrix to smaller euclidean spaces with various values for the target number of dimensions
n_components.

• for the digits dataset, some 8x8 gray level pixels data for 500 handwritten digits pictures are randomly projected
to spaces for various larger number of dimensions n_components.

The default dataset is the 20 newsgroups dataset. To run the example on the digits dataset, pass the
--use-digits-dataset command line argument to this script.

if '--use-digits-dataset' in sys.argv:
data = load_digits().data[:500]

else:
data = fetch_20newsgroups_vectorized().data[:500]

For each value of n_components, we plot:

• 2D distribution of sample pairs with pairwise distances in original and projected spaces as x and y axis respec-
tively.

• 1D histogram of the ratio of those distances (projected / original).

1364 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

n_samples, n_features = data.shape
print("Embedding %d samples with dim %d using various random projections"

% (n_samples, n_features))

n_components_range = np.array([300, 1000, 10000])
dists = euclidean_distances(data, squared=True).ravel()

select only non-identical samples pairs
nonzero = dists != 0
dists = dists[nonzero]

for n_components in n_components_range:
t0 = time()
rp = SparseRandomProjection(n_components=n_components)
projected_data = rp.fit_transform(data)
print("Projected %d samples from %d to %d in %0.3fs"

% (n_samples, n_features, n_components, time() - t0))
if hasattr(rp, 'components_'):

n_bytes = rp.components_.data.nbytes
n_bytes += rp.components_.indices.nbytes
print("Random matrix with size: %0.3fMB" % (n_bytes / 1e6))

projected_dists = euclidean_distances(
projected_data, squared=True).ravel()[nonzero]

plt.figure()
min_dist = min(projected_dists.min(), dists.min())
max_dist = max(projected_dists.max(), dists.max())
plt.hexbin(dists, projected_dists, gridsize=100, cmap=plt.cm.PuBu,

extent=[min_dist, max_dist, min_dist, max_dist])
plt.xlabel("Pairwise squared distances in original space")
plt.ylabel("Pairwise squared distances in projected space")
plt.title("Pairwise distances distribution for n_components=%d" %

n_components)
cb = plt.colorbar()
cb.set_label('Sample pairs counts')

rates = projected_dists / dists
print("Mean distances rate: %0.2f (%0.2f)"

% (np.mean(rates), np.std(rates)))

plt.figure()
plt.hist(rates, bins=50, range=(0., 2.), edgecolor='k', **density_param)
plt.xlabel("Squared distances rate: projected / original")
plt.ylabel("Distribution of samples pairs")
plt.title("Histogram of pairwise distance rates for n_components=%d" %

n_components)

TODO: compute the expected value of eps and add them to the previous plot
as vertical lines / region

plt.show()

6.19. Miscellaneous 1365

scikit-learn user guide, Release 0.23.2

•

1366 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

6.19. Miscellaneous 1367

scikit-learn user guide, Release 0.23.2

•

1368 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

6.19. Miscellaneous 1369

scikit-learn user guide, Release 0.23.2

•

1370 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

Out:

Embedding 500 samples with dim 130107 using various random projections
Projected 500 samples from 130107 to 300 in 0.277s
Random matrix with size: 1.303MB
Mean distances rate: 1.01 (0.16)
Projected 500 samples from 130107 to 1000 in 0.961s
Random matrix with size: 4.325MB
Mean distances rate: 1.04 (0.11)
Projected 500 samples from 130107 to 10000 in 9.520s
Random matrix with size: 43.285MB
Mean distances rate: 0.99 (0.03)

We can see that for low values of n_components the distribution is wide with many distorted pairs and a skewed
distribution (due to the hard limit of zero ratio on the left as distances are always positives) while for larger values of
n_components the distortion is controlled and the distances are well preserved by the random projection.

Remarks

According to the JL lemma, projecting 500 samples without too much distortion will require at least several thousands
dimensions, irrespective of the number of features of the original dataset.

Hence using random projections on the digits dataset which only has 64 features in the input space does not make
sense: it does not allow for dimensionality reduction in this case.

On the twenty newsgroups on the other hand the dimensionality can be decreased from 56436 down to 10000 while
reasonably preserving pairwise distances.

6.19. Miscellaneous 1371

scikit-learn user guide, Release 0.23.2

Total running time of the script: (0 minutes 13.591 seconds)

6.19.10 Comparison of kernel ridge regression and SVR

Both kernel ridge regression (KRR) and SVR learn a non-linear function by employing the kernel trick, i.e., they
learn a linear function in the space induced by the respective kernel which corresponds to a non-linear function in the
original space. They differ in the loss functions (ridge versus epsilon-insensitive loss). In contrast to SVR, fitting a
KRR can be done in closed-form and is typically faster for medium-sized datasets. On the other hand, the learned
model is non-sparse and thus slower than SVR at prediction-time.

This example illustrates both methods on an artificial dataset, which consists of a sinusoidal target function and strong
noise added to every fifth datapoint. The first figure compares the learned model of KRR and SVR when both com-
plexity/regularization and bandwidth of the RBF kernel are optimized using grid-search. The learned functions are
very similar; however, fitting KRR is approx. seven times faster than fitting SVR (both with grid-search). However,
prediction of 100000 target values is more than tree times faster with SVR since it has learned a sparse model using
only approx. 1/3 of the 100 training datapoints as support vectors.

The next figure compares the time for fitting and prediction of KRR and SVR for different sizes of the training set.
Fitting KRR is faster than SVR for medium- sized training sets (less than 1000 samples); however, for larger training
sets SVR scales better. With regard to prediction time, SVR is faster than KRR for all sizes of the training set because
of the learned sparse solution. Note that the degree of sparsity and thus the prediction time depends on the parameters
epsilon and C of the SVR.

•

1372 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

6.19. Miscellaneous 1373

scikit-learn user guide, Release 0.23.2

•

Out:

SVR complexity and bandwidth selected and model fitted in 0.403 s
KRR complexity and bandwidth selected and model fitted in 0.148 s
Support vector ratio: 0.320
SVR prediction for 100000 inputs in 0.079 s
KRR prediction for 100000 inputs in 0.220 s

Authors: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
License: BSD 3 clause

import time

import numpy as np

from sklearn.svm import SVR
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import learning_curve
from sklearn.kernel_ridge import KernelRidge
import matplotlib.pyplot as plt

(continues on next page)

1374 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

rng = np.random.RandomState(0)

###
Generate sample data
X = 5 * rng.rand(10000, 1)
y = np.sin(X).ravel()

Add noise to targets
y[::5] += 3 * (0.5 - rng.rand(X.shape[0] // 5))

X_plot = np.linspace(0, 5, 100000)[:, None]

###
Fit regression model
train_size = 100
svr = GridSearchCV(SVR(kernel='rbf', gamma=0.1),

param_grid={"C": [1e0, 1e1, 1e2, 1e3],
"gamma": np.logspace(-2, 2, 5)})

kr = GridSearchCV(KernelRidge(kernel='rbf', gamma=0.1),
param_grid={"alpha": [1e0, 0.1, 1e-2, 1e-3],

"gamma": np.logspace(-2, 2, 5)})

t0 = time.time()
svr.fit(X[:train_size], y[:train_size])
svr_fit = time.time() - t0
print("SVR complexity and bandwidth selected and model fitted in %.3f s"

% svr_fit)

t0 = time.time()
kr.fit(X[:train_size], y[:train_size])
kr_fit = time.time() - t0
print("KRR complexity and bandwidth selected and model fitted in %.3f s"

% kr_fit)

sv_ratio = svr.best_estimator_.support_.shape[0] / train_size
print("Support vector ratio: %.3f" % sv_ratio)

t0 = time.time()
y_svr = svr.predict(X_plot)
svr_predict = time.time() - t0
print("SVR prediction for %d inputs in %.3f s"

% (X_plot.shape[0], svr_predict))

t0 = time.time()
y_kr = kr.predict(X_plot)
kr_predict = time.time() - t0
print("KRR prediction for %d inputs in %.3f s"

% (X_plot.shape[0], kr_predict))

###
Look at the results
sv_ind = svr.best_estimator_.support_
plt.scatter(X[sv_ind], y[sv_ind], c='r', s=50, label='SVR support vectors',

zorder=2, edgecolors=(0, 0, 0))
plt.scatter(X[:100], y[:100], c='k', label='data', zorder=1,

(continues on next page)

6.19. Miscellaneous 1375

scikit-learn user guide, Release 0.23.2

(continued from previous page)

edgecolors=(0, 0, 0))
plt.plot(X_plot, y_svr, c='r',

label='SVR (fit: %.3fs, predict: %.3fs)' % (svr_fit, svr_predict))
plt.plot(X_plot, y_kr, c='g',

label='KRR (fit: %.3fs, predict: %.3fs)' % (kr_fit, kr_predict))
plt.xlabel('data')
plt.ylabel('target')
plt.title('SVR versus Kernel Ridge')
plt.legend()

Visualize training and prediction time
plt.figure()

Generate sample data
X = 5 * rng.rand(10000, 1)
y = np.sin(X).ravel()
y[::5] += 3 * (0.5 - rng.rand(X.shape[0] // 5))
sizes = np.logspace(1, 4, 7).astype(np.int)
for name, estimator in {"KRR": KernelRidge(kernel='rbf', alpha=0.1,

gamma=10),
"SVR": SVR(kernel='rbf', C=1e1, gamma=10)}.items():

train_time = []
test_time = []
for train_test_size in sizes:

t0 = time.time()
estimator.fit(X[:train_test_size], y[:train_test_size])
train_time.append(time.time() - t0)

t0 = time.time()
estimator.predict(X_plot[:1000])
test_time.append(time.time() - t0)

plt.plot(sizes, train_time, 'o-', color="r" if name == "SVR" else "g",
label="%s (train)" % name)

plt.plot(sizes, test_time, 'o--', color="r" if name == "SVR" else "g",
label="%s (test)" % name)

plt.xscale("log")
plt.yscale("log")
plt.xlabel("Train size")
plt.ylabel("Time (seconds)")
plt.title('Execution Time')
plt.legend(loc="best")

Visualize learning curves
plt.figure()

svr = SVR(kernel='rbf', C=1e1, gamma=0.1)
kr = KernelRidge(kernel='rbf', alpha=0.1, gamma=0.1)
train_sizes, train_scores_svr, test_scores_svr = \

learning_curve(svr, X[:100], y[:100], train_sizes=np.linspace(0.1, 1, 10),
scoring="neg_mean_squared_error", cv=10)

train_sizes_abs, train_scores_kr, test_scores_kr = \
learning_curve(kr, X[:100], y[:100], train_sizes=np.linspace(0.1, 1, 10),

scoring="neg_mean_squared_error", cv=10)

plt.plot(train_sizes, -test_scores_svr.mean(1), 'o-', color="r",
(continues on next page)

1376 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

label="SVR")
plt.plot(train_sizes, -test_scores_kr.mean(1), 'o-', color="g",

label="KRR")
plt.xlabel("Train size")
plt.ylabel("Mean Squared Error")
plt.title('Learning curves')
plt.legend(loc="best")

plt.show()

Total running time of the script: (0 minutes 15.483 seconds)

6.19.11 Explicit feature map approximation for RBF kernels

An example illustrating the approximation of the feature map of an RBF kernel.

It shows how to use RBFSampler and Nystroem to approximate the feature map of an RBF kernel for classification
with an SVM on the digits dataset. Results using a linear SVM in the original space, a linear SVM using the approx-
imate mappings and using a kernelized SVM are compared. Timings and accuracy for varying amounts of Monte
Carlo samplings (in the case of RBFSampler, which uses random Fourier features) and different sized subsets of the
training set (for Nystroem) for the approximate mapping are shown.

Please note that the dataset here is not large enough to show the benefits of kernel approximation, as the exact SVM is
still reasonably fast.

Sampling more dimensions clearly leads to better classification results, but comes at a greater cost. This means there
is a tradeoff between runtime and accuracy, given by the parameter n_components. Note that solving the Linear
SVM and also the approximate kernel SVM could be greatly accelerated by using stochastic gradient descent via
sklearn.linear_model.SGDClassifier. This is not easily possible for the case of the kernelized SVM.

Python package and dataset imports, load dataset

Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org>
Andreas Mueller <amueller@ais.uni-bonn.de>
License: BSD 3 clause

print(__doc__)

Standard scientific Python imports
import matplotlib.pyplot as plt
import numpy as np
from time import time

Import datasets, classifiers and performance metrics
from sklearn import datasets, svm, pipeline
from sklearn.kernel_approximation import (RBFSampler,

Nystroem)
from sklearn.decomposition import PCA

The digits dataset
digits = datasets.load_digits(n_class=9)

6.19. Miscellaneous 1377

scikit-learn user guide, Release 0.23.2

Timing and accuracy plots

To apply an classifier on this data, we need to flatten the image, to turn the data in a (samples, feature) matrix:

n_samples = len(digits.data)
data = digits.data / 16.
data -= data.mean(axis=0)

We learn the digits on the first half of the digits
data_train, targets_train = (data[:n_samples // 2],

digits.target[:n_samples // 2])

Now predict the value of the digit on the second half:
data_test, targets_test = (data[n_samples // 2:],

digits.target[n_samples // 2:])
data_test = scaler.transform(data_test)

Create a classifier: a support vector classifier
kernel_svm = svm.SVC(gamma=.2)
linear_svm = svm.LinearSVC()

create pipeline from kernel approximation
and linear svm
feature_map_fourier = RBFSampler(gamma=.2, random_state=1)
feature_map_nystroem = Nystroem(gamma=.2, random_state=1)
fourier_approx_svm = pipeline.Pipeline([("feature_map", feature_map_fourier),

("svm", svm.LinearSVC())])

nystroem_approx_svm = pipeline.Pipeline([("feature_map", feature_map_nystroem),
("svm", svm.LinearSVC())])

fit and predict using linear and kernel svm:

kernel_svm_time = time()
kernel_svm.fit(data_train, targets_train)
kernel_svm_score = kernel_svm.score(data_test, targets_test)
kernel_svm_time = time() - kernel_svm_time

linear_svm_time = time()
linear_svm.fit(data_train, targets_train)
linear_svm_score = linear_svm.score(data_test, targets_test)
linear_svm_time = time() - linear_svm_time

sample_sizes = 30 * np.arange(1, 10)
fourier_scores = []
nystroem_scores = []
fourier_times = []
nystroem_times = []

for D in sample_sizes:
fourier_approx_svm.set_params(feature_map__n_components=D)
nystroem_approx_svm.set_params(feature_map__n_components=D)
start = time()
nystroem_approx_svm.fit(data_train, targets_train)
nystroem_times.append(time() - start)

start = time()

(continues on next page)

1378 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

fourier_approx_svm.fit(data_train, targets_train)
fourier_times.append(time() - start)

fourier_score = fourier_approx_svm.score(data_test, targets_test)
nystroem_score = nystroem_approx_svm.score(data_test, targets_test)
nystroem_scores.append(nystroem_score)
fourier_scores.append(fourier_score)

plot the results:
plt.figure(figsize=(16, 4))
accuracy = plt.subplot(121)
second y axis for timings
timescale = plt.subplot(122)

accuracy.plot(sample_sizes, nystroem_scores, label="Nystroem approx. kernel")
timescale.plot(sample_sizes, nystroem_times, '--',

label='Nystroem approx. kernel')

accuracy.plot(sample_sizes, fourier_scores, label="Fourier approx. kernel")
timescale.plot(sample_sizes, fourier_times, '--',

label='Fourier approx. kernel')

horizontal lines for exact rbf and linear kernels:
accuracy.plot([sample_sizes[0], sample_sizes[-1]],

[linear_svm_score, linear_svm_score], label="linear svm")
timescale.plot([sample_sizes[0], sample_sizes[-1]],

[linear_svm_time, linear_svm_time], '--', label='linear svm')

accuracy.plot([sample_sizes[0], sample_sizes[-1]],
[kernel_svm_score, kernel_svm_score], label="rbf svm")

timescale.plot([sample_sizes[0], sample_sizes[-1]],
[kernel_svm_time, kernel_svm_time], '--', label='rbf svm')

vertical line for dataset dimensionality = 64
accuracy.plot([64, 64], [0.7, 1], label="n_features")

legends and labels
accuracy.set_title("Classification accuracy")
timescale.set_title("Training times")
accuracy.set_xlim(sample_sizes[0], sample_sizes[-1])
accuracy.set_xticks(())
accuracy.set_ylim(np.min(fourier_scores), 1)
timescale.set_xlabel("Sampling steps = transformed feature dimension")
accuracy.set_ylabel("Classification accuracy")
timescale.set_ylabel("Training time in seconds")
accuracy.legend(loc='best')
timescale.legend(loc='best')
plt.tight_layout()
plt.show()

6.19. Miscellaneous 1379

scikit-learn user guide, Release 0.23.2

Decision Surfaces of RBF Kernel SVM and Linear SVM

The second plot visualized the decision surfaces of the RBF kernel SVM and the linear SVM with approximate kernel
maps. The plot shows decision surfaces of the classifiers projected onto the first two principal components of the
data. This visualization should be taken with a grain of salt since it is just an interesting slice through the decision
surface in 64 dimensions. In particular note that a datapoint (represented as a dot) does not necessarily be classified
into the region it is lying in, since it will not lie on the plane that the first two principal components span. The usage
of RBFSampler and Nystroem is described in detail in Kernel Approximation.

visualize the decision surface, projected down to the first
two principal components of the dataset
pca = PCA(n_components=8).fit(data_train)

X = pca.transform(data_train)

Generate grid along first two principal components
multiples = np.arange(-2, 2, 0.1)
steps along first component
first = multiples[:, np.newaxis] * pca.components_[0, :]
steps along second component
second = multiples[:, np.newaxis] * pca.components_[1, :]
combine
grid = first[np.newaxis, :, :] + second[:, np.newaxis, :]
flat_grid = grid.reshape(-1, data.shape[1])

title for the plots
titles = ['SVC with rbf kernel',

'SVC (linear kernel)\n with Fourier rbf feature map\n'
'n_components=100',
'SVC (linear kernel)\n with Nystroem rbf feature map\n'
'n_components=100']

plt.figure(figsize=(18, 7.5))
plt.rcParams.update({'font.size': 14})
predict and plot
for i, clf in enumerate((kernel_svm, nystroem_approx_svm,

fourier_approx_svm)):
Plot the decision boundary. For that, we will assign a color to each
point in the mesh [x_min, x_max]x[y_min, y_max].
plt.subplot(1, 3, i + 1)
Z = clf.predict(flat_grid)

Put the result into a color plot
Z = Z.reshape(grid.shape[:-1])
plt.contourf(multiples, multiples, Z, cmap=plt.cm.Paired)

(continues on next page)

1380 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.axis('off')

Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=targets_train, cmap=plt.cm.Paired,

edgecolors=(0, 0, 0))

plt.title(titles[i])
plt.tight_layout()
plt.show()

Total running time of the script: (0 minutes 1.366 seconds)

6.20 Missing Value Imputation

Examples concerning the sklearn.impute module.

6.20.1 Imputing missing values with variants of IterativeImputer

The sklearn.impute.IterativeImputer class is very flexible - it can be used with a variety of estimators
to do round-robin regression, treating every variable as an output in turn.

In this example we compare some estimators for the purpose of missing feature imputation with sklearn.impute.
IterativeImputer:

• BayesianRidge: regularized linear regression

• DecisionTreeRegressor: non-linear regression

• ExtraTreesRegressor: similar to missForest in R

• KNeighborsRegressor: comparable to other KNN imputation approaches

Of particular interest is the ability of sklearn.impute.IterativeImputer to mimic the behavior of miss-
Forest, a popular imputation package for R. In this example, we have chosen to use sklearn.ensemble.
ExtraTreesRegressor instead of sklearn.ensemble.RandomForestRegressor (as in missForest)
due to its increased speed.

6.20. Missing Value Imputation 1381

scikit-learn user guide, Release 0.23.2

Note that sklearn.neighbors.KNeighborsRegressor is different from KNN imputation, which learns
from samples with missing values by using a distance metric that accounts for missing values, rather than imput-
ing them.

The goal is to compare different estimators to see which one is best for the sklearn.impute.
IterativeImputer when using a sklearn.linear_model.BayesianRidge estimator on the California
housing dataset with a single value randomly removed from each row.

For this particular pattern of missing values we see that sklearn.ensemble.ExtraTreesRegressor and
sklearn.linear_model.BayesianRidge give the best results.

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

To use this experimental feature, we need to explicitly ask for it:
from sklearn.experimental import enable_iterative_imputer # noqa
from sklearn.datasets import fetch_california_housing
from sklearn.impute import SimpleImputer
from sklearn.impute import IterativeImputer
from sklearn.linear_model import BayesianRidge
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.neighbors import KNeighborsRegressor
from sklearn.pipeline import make_pipeline
from sklearn.model_selection import cross_val_score

N_SPLITS = 5

rng = np.random.RandomState(0)

X_full, y_full = fetch_california_housing(return_X_y=True)
~2k samples is enough for the purpose of the example.
Remove the following two lines for a slower run with different error bars.
X_full = X_full[::10]
y_full = y_full[::10]

(continues on next page)

1382 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

n_samples, n_features = X_full.shape

Estimate the score on the entire dataset, with no missing values
br_estimator = BayesianRidge()
score_full_data = pd.DataFrame(

cross_val_score(
br_estimator, X_full, y_full, scoring='neg_mean_squared_error',
cv=N_SPLITS

),
columns=['Full Data']

)

Add a single missing value to each row
X_missing = X_full.copy()
y_missing = y_full
missing_samples = np.arange(n_samples)
missing_features = rng.choice(n_features, n_samples, replace=True)
X_missing[missing_samples, missing_features] = np.nan

Estimate the score after imputation (mean and median strategies)
score_simple_imputer = pd.DataFrame()
for strategy in ('mean', 'median'):

estimator = make_pipeline(
SimpleImputer(missing_values=np.nan, strategy=strategy),
br_estimator

)
score_simple_imputer[strategy] = cross_val_score(

estimator, X_missing, y_missing, scoring='neg_mean_squared_error',
cv=N_SPLITS

)

Estimate the score after iterative imputation of the missing values
with different estimators
estimators = [

BayesianRidge(),
DecisionTreeRegressor(max_features='sqrt', random_state=0),
ExtraTreesRegressor(n_estimators=10, random_state=0),
KNeighborsRegressor(n_neighbors=15)

]
score_iterative_imputer = pd.DataFrame()
for impute_estimator in estimators:

estimator = make_pipeline(
IterativeImputer(random_state=0, estimator=impute_estimator),
br_estimator

)
score_iterative_imputer[impute_estimator.__class__.__name__] = \

cross_val_score(
estimator, X_missing, y_missing, scoring='neg_mean_squared_error',
cv=N_SPLITS

)

scores = pd.concat(
[score_full_data, score_simple_imputer, score_iterative_imputer],
keys=['Original', 'SimpleImputer', 'IterativeImputer'], axis=1

)

plot california housing results
(continues on next page)

6.20. Missing Value Imputation 1383

scikit-learn user guide, Release 0.23.2

(continued from previous page)

fig, ax = plt.subplots(figsize=(13, 6))
means = -scores.mean()
errors = scores.std()
means.plot.barh(xerr=errors, ax=ax)
ax.set_title('California Housing Regression with Different Imputation Methods')
ax.set_xlabel('MSE (smaller is better)')
ax.set_yticks(np.arange(means.shape[0]))
ax.set_yticklabels([" w/ ".join(label) for label in means.index.tolist()])
plt.tight_layout(pad=1)
plt.show()

Total running time of the script: (0 minutes 17.122 seconds)

6.20.2 Imputing missing values before building an estimator

Missing values can be replaced by the mean, the median or the most frequent value using the basic sklearn.
impute.SimpleImputer.

In this example we will investigate different imputation techniques:

• imputation by the constant value 0

• imputation by the mean value of each feature combined with a missing-ness indicator auxiliary variable

• k nearest neighbor imputation

• iterative imputation

We will use two datasets: Diabetes dataset which consists of 10 feature variables collected from diabetes patients with
an aim to predict disease progression and California Housing dataset for which the target is the median house value
for California districts.

As neither of these datasets have missing values, we will remove some values to create new versions with artificially
missing data. The performance of RandomForestRegressor on the full original dataset is then compared the
performance on the altered datasets with the artificially missing values imputed using different techniques.

print(__doc__)

Authors: Maria Telenczuk <https://github.com/maikia>
License: BSD 3 clause

Download the data and make missing values sets

First we download the two datasets. Diabetes dataset is shipped with scikit-learn. It has 442 entries, each
with 10 features. California Housing dataset is much larger with 20640 entries and 8 features. It needs to
be downloaded. We will only use the first 400 entries for the sake of speeding up the calculations but feel
free to use the whole dataset.

import numpy as np

from sklearn.datasets import fetch_california_housing
from sklearn.datasets import load_diabetes

rng = np.random.RandomState(42)

(continues on next page)

1384 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

X_diabetes, y_diabetes = load_diabetes(return_X_y=True)
X_california, y_california = fetch_california_housing(return_X_y=True)
X_california = X_california[:400]
y_california = y_california[:400]

def add_missing_values(X_full, y_full):
n_samples, n_features = X_full.shape

Add missing values in 75% of the lines
missing_rate = 0.75
n_missing_samples = int(n_samples * missing_rate)

missing_samples = np.zeros(n_samples, dtype=np.bool)
missing_samples[: n_missing_samples] = True

rng.shuffle(missing_samples)
missing_features = rng.randint(0, n_features, n_missing_samples)
X_missing = X_full.copy()
X_missing[missing_samples, missing_features] = np.nan
y_missing = y_full.copy()

return X_missing, y_missing

X_miss_california, y_miss_california = add_missing_values(
X_california, y_california)

X_miss_diabetes, y_miss_diabetes = add_missing_values(
X_diabetes, y_diabetes)

Impute the missing data and score

Now we will write a function which will score the results on the differently imputed data. Let’s look at each imputer
separately:

rng = np.random.RandomState(0)

from sklearn.ensemble import RandomForestRegressor

To use the experimental IterativeImputer, we need to explicitly ask for it:
from sklearn.experimental import enable_iterative_imputer # noqa
from sklearn.impute import SimpleImputer, KNNImputer, IterativeImputer
from sklearn.model_selection import cross_val_score
from sklearn.pipeline import make_pipeline

N_SPLITS = 5
regressor = RandomForestRegressor(random_state=0)

6.20. Missing Value Imputation 1385

scikit-learn user guide, Release 0.23.2

Missing information

In addition to imputing the missing values, the imputers have an add_indicator parameter that marks the values
that were missing, which might carry some information.

def get_scores_for_imputer(imputer, X_missing, y_missing):
estimator = make_pipeline(imputer, regressor)
impute_scores = cross_val_score(estimator, X_missing, y_missing,

scoring='neg_mean_squared_error',
cv=N_SPLITS)

return impute_scores

x_labels = ['Full data',
'Zero imputation',
'Mean Imputation',
'KNN Imputation',
'Iterative Imputation']

mses_california = np.zeros(5)
stds_california = np.zeros(5)
mses_diabetes = np.zeros(5)
stds_diabetes = np.zeros(5)

Estimate the score

First, we want to estimate the score on the original data:

def get_full_score(X_full, y_full):
full_scores = cross_val_score(regressor, X_full, y_full,

scoring='neg_mean_squared_error',
cv=N_SPLITS)

return full_scores.mean(), full_scores.std()

mses_california[0], stds_california[0] = get_full_score(X_california,
y_california)

mses_diabetes[0], stds_diabetes[0] = get_full_score(X_diabetes, y_diabetes)

Replace missing values by 0

Now we will estimate the score on the data where the missing values are replaced by 0:

def get_impute_zero_score(X_missing, y_missing):

imputer = SimpleImputer(missing_values=np.nan, add_indicator=True,
strategy='constant', fill_value=0)

zero_impute_scores = get_scores_for_imputer(imputer, X_missing, y_missing)
return zero_impute_scores.mean(), zero_impute_scores.std()

mses_california[1], stds_california[1] = get_impute_zero_score(
X_miss_california, y_miss_california)

(continues on next page)

1386 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

mses_diabetes[1], stds_diabetes[1] = get_impute_zero_score(X_miss_diabetes,
y_miss_diabetes)

kNN-imputation of the missing values

sklearn.impute.KNNImputer imputes missing values using the weighted or unweighted mean of the desired
number of nearest neighbors.

def get_impute_knn_score(X_missing, y_missing):
imputer = KNNImputer(missing_values=np.nan, add_indicator=True)
knn_impute_scores = get_scores_for_imputer(imputer, X_missing, y_missing)
return knn_impute_scores.mean(), knn_impute_scores.std()

mses_california[2], stds_california[2] = get_impute_knn_score(
X_miss_california, y_miss_california)

mses_diabetes[2], stds_diabetes[2] = get_impute_knn_score(X_miss_diabetes,
y_miss_diabetes)

Impute missing values with mean

def get_impute_mean(X_missing, y_missing):
imputer = SimpleImputer(missing_values=np.nan, strategy="mean",

add_indicator=True)
mean_impute_scores = get_scores_for_imputer(imputer, X_missing, y_missing)
return mean_impute_scores.mean(), mean_impute_scores.std()

mses_california[3], stds_california[3] = get_impute_mean(X_miss_california,
y_miss_california)

mses_diabetes[3], stds_diabetes[3] = get_impute_mean(X_miss_diabetes,
y_miss_diabetes)

Iterative imputation of the missing values

Another option is the sklearn.impute.IterativeImputer. This uses round-robin linear regression, mod-
eling each feature with missing values as a function of other features, in turn. The version implemented assumes
Gaussian (output) variables. If your features are obviously non-normal, consider transforming them to look more
normal to potentially improve performance.

def get_impute_iterative(X_missing, y_missing):
imputer = IterativeImputer(missing_values=np.nan, add_indicator=True,

random_state=0, n_nearest_features=5,
sample_posterior=True)

iterative_impute_scores = get_scores_for_imputer(imputer,
X_missing,
y_missing)

return iterative_impute_scores.mean(), iterative_impute_scores.std()

(continues on next page)

6.20. Missing Value Imputation 1387

scikit-learn user guide, Release 0.23.2

(continued from previous page)

mses_california[4], stds_california[4] = get_impute_iterative(
X_miss_california, y_miss_california)

mses_diabetes[4], stds_diabetes[4] = get_impute_iterative(X_miss_diabetes,
y_miss_diabetes)

mses_diabetes = mses_diabetes * -1
mses_california = mses_california * -1

Plot the results

Finally we are going to visualize the score:

import matplotlib.pyplot as plt

n_bars = len(mses_diabetes)
xval = np.arange(n_bars)

colors = ['r', 'g', 'b', 'orange', 'black']

plot diabetes results
plt.figure(figsize=(12, 6))
ax1 = plt.subplot(121)
for j in xval:

ax1.barh(j, mses_diabetes[j], xerr=stds_diabetes[j],
color=colors[j], alpha=0.6, align='center')

ax1.set_title('Imputation Techniques with Diabetes Data')
ax1.set_xlim(left=np.min(mses_diabetes) * 0.9,

right=np.max(mses_diabetes) * 1.1)
ax1.set_yticks(xval)
ax1.set_xlabel('MSE')
ax1.invert_yaxis()
ax1.set_yticklabels(x_labels)

plot california dataset results
ax2 = plt.subplot(122)
for j in xval:

ax2.barh(j, mses_california[j], xerr=stds_california[j],
color=colors[j], alpha=0.6, align='center')

ax2.set_title('Imputation Techniques with California Data')
ax2.set_yticks(xval)
ax2.set_xlabel('MSE')
ax2.invert_yaxis()
ax2.set_yticklabels([''] * n_bars)

plt.show()

You can also try different techniques. For instance, the median is a more
robust estimator for data with high magnitude variables which could dominate
results (otherwise known as a 'long tail').

1388 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Total running time of the script: (0 minutes 15.287 seconds)

6.21 Model Selection

Examples related to the sklearn.model_selection module.

6.21.1 Plotting Cross-Validated Predictions

This example shows how to use cross_val_predict to visualize prediction errors.

6.21. Model Selection 1389

scikit-learn user guide, Release 0.23.2

from sklearn import datasets
from sklearn.model_selection import cross_val_predict
from sklearn import linear_model
import matplotlib.pyplot as plt

lr = linear_model.LinearRegression()
X, y = datasets.load_diabetes(return_X_y=True)

cross_val_predict returns an array of the same size as `y` where each entry
is a prediction obtained by cross validation:
predicted = cross_val_predict(lr, X, y, cv=10)

fig, ax = plt.subplots()
ax.scatter(y, predicted, edgecolors=(0, 0, 0))
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw=4)
ax.set_xlabel('Measured')
ax.set_ylabel('Predicted')
plt.show()

Total running time of the script: (0 minutes 0.076 seconds)

6.21.2 Confusion matrix

Example of confusion matrix usage to evaluate the quality of the output of a classifier on the iris data set. The diagonal
elements represent the number of points for which the predicted label is equal to the true label, while off-diagonal

1390 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

elements are those that are mislabeled by the classifier. The higher the diagonal values of the confusion matrix the
better, indicating many correct predictions.

The figures show the confusion matrix with and without normalization by class support size (number of elements in
each class). This kind of normalization can be interesting in case of class imbalance to have a more visual interpretation
of which class is being misclassified.

Here the results are not as good as they could be as our choice for the regularization parameter C was not the best. In
real life applications this parameter is usually chosen using Tuning the hyper-parameters of an estimator.

•

6.21. Model Selection 1391

scikit-learn user guide, Release 0.23.2

•

Out:

Confusion matrix, without normalization
[[13 0 0]
[0 10 6]
[0 0 9]]

Normalized confusion matrix
[[1. 0. 0.]
[0. 0.62 0.38]
[0. 0. 1.]]

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from sklearn import svm, datasets
from sklearn.model_selection import train_test_split
from sklearn.metrics import plot_confusion_matrix

import some data to play with
iris = datasets.load_iris()

(continues on next page)

1392 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

X = iris.data
y = iris.target
class_names = iris.target_names

Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

Run classifier, using a model that is too regularized (C too low) to see
the impact on the results
classifier = svm.SVC(kernel='linear', C=0.01).fit(X_train, y_train)

np.set_printoptions(precision=2)

Plot non-normalized confusion matrix
titles_options = [("Confusion matrix, without normalization", None),

("Normalized confusion matrix", 'true')]
for title, normalize in titles_options:

disp = plot_confusion_matrix(classifier, X_test, y_test,
display_labels=class_names,
cmap=plt.cm.Blues,
normalize=normalize)

disp.ax_.set_title(title)

print(title)
print(disp.confusion_matrix)

plt.show()

Total running time of the script: (0 minutes 0.153 seconds)

6.21.3 Plotting Validation Curves

In this plot you can see the training scores and validation scores of an SVM for different values of the kernel parameter
gamma. For very low values of gamma, you can see that both the training score and the validation score are low.
This is called underfitting. Medium values of gamma will result in high values for both scores, i.e. the classifier is
performing fairly well. If gamma is too high, the classifier will overfit, which means that the training score is good but
the validation score is poor.

6.21. Model Selection 1393

scikit-learn user guide, Release 0.23.2

print(__doc__)

import matplotlib.pyplot as plt
import numpy as np

from sklearn.datasets import load_digits
from sklearn.svm import SVC
from sklearn.model_selection import validation_curve

X, y = load_digits(return_X_y=True)

param_range = np.logspace(-6, -1, 5)
train_scores, test_scores = validation_curve(

SVC(), X, y, param_name="gamma", param_range=param_range,
scoring="accuracy", n_jobs=1)

train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)

plt.title("Validation Curve with SVM")
plt.xlabel(r"γ")
plt.ylabel("Score")
plt.ylim(0.0, 1.1)
lw = 2

(continues on next page)

1394 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.semilogx(param_range, train_scores_mean, label="Training score",
color="darkorange", lw=lw)

plt.fill_between(param_range, train_scores_mean - train_scores_std,
train_scores_mean + train_scores_std, alpha=0.2,
color="darkorange", lw=lw)

plt.semilogx(param_range, test_scores_mean, label="Cross-validation score",
color="navy", lw=lw)

plt.fill_between(param_range, test_scores_mean - test_scores_std,
test_scores_mean + test_scores_std, alpha=0.2,
color="navy", lw=lw)

plt.legend(loc="best")
plt.show()

Total running time of the script: (0 minutes 13.337 seconds)

6.21.4 Underfitting vs. Overfitting

This example demonstrates the problems of underfitting and overfitting and how we can use linear regression with
polynomial features to approximate nonlinear functions. The plot shows the function that we want to approximate,
which is a part of the cosine function. In addition, the samples from the real function and the approximations of
different models are displayed. The models have polynomial features of different degrees. We can see that a linear
function (polynomial with degree 1) is not sufficient to fit the training samples. This is called underfitting. A
polynomial of degree 4 approximates the true function almost perfectly. However, for higher degrees the model
will overfit the training data, i.e. it learns the noise of the training data. We evaluate quantitatively overfitting /
underfitting by using cross-validation. We calculate the mean squared error (MSE) on the validation set, the higher,
the less likely the model generalizes correctly from the training data.

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import cross_val_score

def true_fun(X):

(continues on next page)

6.21. Model Selection 1395

scikit-learn user guide, Release 0.23.2

(continued from previous page)

return np.cos(1.5 * np.pi * X)

np.random.seed(0)

n_samples = 30
degrees = [1, 4, 15]

X = np.sort(np.random.rand(n_samples))
y = true_fun(X) + np.random.randn(n_samples) * 0.1

plt.figure(figsize=(14, 5))
for i in range(len(degrees)):

ax = plt.subplot(1, len(degrees), i + 1)
plt.setp(ax, xticks=(), yticks=())

polynomial_features = PolynomialFeatures(degree=degrees[i],
include_bias=False)

linear_regression = LinearRegression()
pipeline = Pipeline([("polynomial_features", polynomial_features),

("linear_regression", linear_regression)])
pipeline.fit(X[:, np.newaxis], y)

Evaluate the models using crossvalidation
scores = cross_val_score(pipeline, X[:, np.newaxis], y,

scoring="neg_mean_squared_error", cv=10)

X_test = np.linspace(0, 1, 100)
plt.plot(X_test, pipeline.predict(X_test[:, np.newaxis]), label="Model")
plt.plot(X_test, true_fun(X_test), label="True function")
plt.scatter(X, y, edgecolor='b', s=20, label="Samples")
plt.xlabel("x")
plt.ylabel("y")
plt.xlim((0, 1))
plt.ylim((-2, 2))
plt.legend(loc="best")
plt.title("Degree {}\nMSE = {:.2e}(+/- {:.2e})".format(

degrees[i], -scores.mean(), scores.std()))
plt.show()

Total running time of the script: (0 minutes 0.155 seconds)

6.21.5 Parameter estimation using grid search with cross-validation

This examples shows how a classifier is optimized by cross-validation, which is done using the sklearn.
model_selection.GridSearchCV object on a development set that comprises only half of the available labeled
data.

The performance of the selected hyper-parameters and trained model is then measured on a dedicated evaluation set
that was not used during the model selection step.

More details on tools available for model selection can be found in the sections on Cross-validation: evaluating
estimator performance and Tuning the hyper-parameters of an estimator.

Out:

1396 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Tuning hyper-parameters for precision

Best parameters set found on development set:

{'C': 10, 'gamma': 0.001, 'kernel': 'rbf'}

Grid scores on development set:

0.986 (+/-0.016) for {'C': 1, 'gamma': 0.001, 'kernel': 'rbf'}
0.959 (+/-0.028) for {'C': 1, 'gamma': 0.0001, 'kernel': 'rbf'}
0.988 (+/-0.017) for {'C': 10, 'gamma': 0.001, 'kernel': 'rbf'}
0.982 (+/-0.026) for {'C': 10, 'gamma': 0.0001, 'kernel': 'rbf'}
0.988 (+/-0.017) for {'C': 100, 'gamma': 0.001, 'kernel': 'rbf'}
0.983 (+/-0.026) for {'C': 100, 'gamma': 0.0001, 'kernel': 'rbf'}
0.988 (+/-0.017) for {'C': 1000, 'gamma': 0.001, 'kernel': 'rbf'}
0.983 (+/-0.026) for {'C': 1000, 'gamma': 0.0001, 'kernel': 'rbf'}
0.974 (+/-0.012) for {'C': 1, 'kernel': 'linear'}
0.974 (+/-0.012) for {'C': 10, 'kernel': 'linear'}
0.974 (+/-0.012) for {'C': 100, 'kernel': 'linear'}
0.974 (+/-0.012) for {'C': 1000, 'kernel': 'linear'}

Detailed classification report:

The model is trained on the full development set.
The scores are computed on the full evaluation set.

precision recall f1-score support

0 1.00 1.00 1.00 89
1 0.97 1.00 0.98 90
2 0.99 0.98 0.98 92
3 1.00 0.99 0.99 93
4 1.00 1.00 1.00 76
5 0.99 0.98 0.99 108
6 0.99 1.00 0.99 89
7 0.99 1.00 0.99 78
8 1.00 0.98 0.99 92
9 0.99 0.99 0.99 92

accuracy 0.99 899
macro avg 0.99 0.99 0.99 899

weighted avg 0.99 0.99 0.99 899

Tuning hyper-parameters for recall

Best parameters set found on development set:

{'C': 10, 'gamma': 0.001, 'kernel': 'rbf'}

Grid scores on development set:

0.986 (+/-0.019) for {'C': 1, 'gamma': 0.001, 'kernel': 'rbf'}
0.957 (+/-0.028) for {'C': 1, 'gamma': 0.0001, 'kernel': 'rbf'}
0.987 (+/-0.019) for {'C': 10, 'gamma': 0.001, 'kernel': 'rbf'}
0.981 (+/-0.028) for {'C': 10, 'gamma': 0.0001, 'kernel': 'rbf'}
0.987 (+/-0.019) for {'C': 100, 'gamma': 0.001, 'kernel': 'rbf'}

(continues on next page)

6.21. Model Selection 1397

scikit-learn user guide, Release 0.23.2

(continued from previous page)

0.982 (+/-0.026) for {'C': 100, 'gamma': 0.0001, 'kernel': 'rbf'}
0.987 (+/-0.019) for {'C': 1000, 'gamma': 0.001, 'kernel': 'rbf'}
0.982 (+/-0.026) for {'C': 1000, 'gamma': 0.0001, 'kernel': 'rbf'}
0.971 (+/-0.010) for {'C': 1, 'kernel': 'linear'}
0.971 (+/-0.010) for {'C': 10, 'kernel': 'linear'}
0.971 (+/-0.010) for {'C': 100, 'kernel': 'linear'}
0.971 (+/-0.010) for {'C': 1000, 'kernel': 'linear'}

Detailed classification report:

The model is trained on the full development set.
The scores are computed on the full evaluation set.

precision recall f1-score support

0 1.00 1.00 1.00 89
1 0.97 1.00 0.98 90
2 0.99 0.98 0.98 92
3 1.00 0.99 0.99 93
4 1.00 1.00 1.00 76
5 0.99 0.98 0.99 108
6 0.99 1.00 0.99 89
7 0.99 1.00 0.99 78
8 1.00 0.98 0.99 92
9 0.99 0.99 0.99 92

accuracy 0.99 899
macro avg 0.99 0.99 0.99 899

weighted avg 0.99 0.99 0.99 899

from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import classification_report
from sklearn.svm import SVC

print(__doc__)

Loading the Digits dataset
digits = datasets.load_digits()

To apply an classifier on this data, we need to flatten the image, to
turn the data in a (samples, feature) matrix:
n_samples = len(digits.images)
X = digits.images.reshape((n_samples, -1))
y = digits.target

Split the dataset in two equal parts
X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.5, random_state=0)

(continues on next page)

1398 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Set the parameters by cross-validation
tuned_parameters = [{'kernel': ['rbf'], 'gamma': [1e-3, 1e-4],

'C': [1, 10, 100, 1000]},
{'kernel': ['linear'], 'C': [1, 10, 100, 1000]}]

scores = ['precision', 'recall']

for score in scores:
print("# Tuning hyper-parameters for %s" % score)
print()

clf = GridSearchCV(
SVC(), tuned_parameters, scoring='%s_macro' % score

)
clf.fit(X_train, y_train)

print("Best parameters set found on development set:")
print()
print(clf.best_params_)
print()
print("Grid scores on development set:")
print()
means = clf.cv_results_['mean_test_score']
stds = clf.cv_results_['std_test_score']
for mean, std, params in zip(means, stds, clf.cv_results_['params']):

print("%0.3f (+/-%0.03f) for %r"
% (mean, std * 2, params))

print()

print("Detailed classification report:")
print()
print("The model is trained on the full development set.")
print("The scores are computed on the full evaluation set.")
print()
y_true, y_pred = y_test, clf.predict(X_test)
print(classification_report(y_true, y_pred))
print()

Note the problem is too easy: the hyperparameter plateau is too flat and the
output model is the same for precision and recall with ties in quality.

Total running time of the script: (0 minutes 4.411 seconds)

6.21.6 Comparing randomized search and grid search for hyperparameter estima-
tion

Compare randomized search and grid search for optimizing hyperparameters of a linear SVM with SGD training. All
parameters that influence the learning are searched simultaneously (except for the number of estimators, which poses
a time / quality tradeoff).

The randomized search and the grid search explore exactly the same space of parameters. The result in parameter
settings is quite similar, while the run time for randomized search is drastically lower.

The performance is may slightly worse for the randomized search, and is likely due to a noise effect and would not
carry over to a held-out test set.

6.21. Model Selection 1399

scikit-learn user guide, Release 0.23.2

Note that in practice, one would not search over this many different parameters simultaneously using grid search, but
pick only the ones deemed most important.

Out:

RandomizedSearchCV took 19.55 seconds for 20 candidates parameter settings.
Model with rank: 1
Mean validation score: 0.920 (std: 0.028)
Parameters: {'alpha': 0.07316411520495676, 'average': False, 'l1_ratio': 0.
→˓29007760721044407}

Model with rank: 2
Mean validation score: 0.920 (std: 0.029)
Parameters: {'alpha': 0.0005223493320259539, 'average': True, 'l1_ratio': 0.
→˓7936977033574206}

Model with rank: 3
Mean validation score: 0.918 (std: 0.031)
Parameters: {'alpha': 0.00025790124268693137, 'average': True, 'l1_ratio': 0.
→˓5699649107012649}

GridSearchCV took 108.43 seconds for 100 candidate parameter settings.
Model with rank: 1
Mean validation score: 0.931 (std: 0.026)
Parameters: {'alpha': 0.0001, 'average': True, 'l1_ratio': 0.0}

Model with rank: 2
Mean validation score: 0.928 (std: 0.030)
Parameters: {'alpha': 0.0001, 'average': True, 'l1_ratio': 0.1111111111111111}

Model with rank: 3
Mean validation score: 0.927 (std: 0.026)
Parameters: {'alpha': 0.0001, 'average': True, 'l1_ratio': 0.5555555555555556}

print(__doc__)

import numpy as np

from time import time
import scipy.stats as stats
from sklearn.utils.fixes import loguniform

from sklearn.model_selection import GridSearchCV, RandomizedSearchCV
from sklearn.datasets import load_digits
from sklearn.linear_model import SGDClassifier

get some data
X, y = load_digits(return_X_y=True)

build a classifier
clf = SGDClassifier(loss='hinge', penalty='elasticnet',

fit_intercept=True)

(continues on next page)

1400 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Utility function to report best scores
def report(results, n_top=3):

for i in range(1, n_top + 1):
candidates = np.flatnonzero(results['rank_test_score'] == i)
for candidate in candidates:

print("Model with rank: {0}".format(i))
print("Mean validation score: {0:.3f} (std: {1:.3f})"

.format(results['mean_test_score'][candidate],
results['std_test_score'][candidate]))

print("Parameters: {0}".format(results['params'][candidate]))
print("")

specify parameters and distributions to sample from
param_dist = {'average': [True, False],

'l1_ratio': stats.uniform(0, 1),
'alpha': loguniform(1e-4, 1e0)}

run randomized search
n_iter_search = 20
random_search = RandomizedSearchCV(clf, param_distributions=param_dist,

n_iter=n_iter_search)

start = time()
random_search.fit(X, y)
print("RandomizedSearchCV took %.2f seconds for %d candidates"

" parameter settings." % ((time() - start), n_iter_search))
report(random_search.cv_results_)

use a full grid over all parameters
param_grid = {'average': [True, False],

'l1_ratio': np.linspace(0, 1, num=10),
'alpha': np.power(10, np.arange(-4, 1, dtype=float))}

run grid search
grid_search = GridSearchCV(clf, param_grid=param_grid)
start = time()
grid_search.fit(X, y)

print("GridSearchCV took %.2f seconds for %d candidate parameter settings."
% (time() - start, len(grid_search.cv_results_['params'])))

report(grid_search.cv_results_)

Total running time of the script: (2 minutes 8.034 seconds)

6.21.7 Train error vs Test error

Illustration of how the performance of an estimator on unseen data (test data) is not the same as the performance on
training data. As the regularization increases the performance on train decreases while the performance on test is
optimal within a range of values of the regularization parameter. The example with an Elastic-Net regression model
and the performance is measured using the explained variance a.k.a. R^2.

6.21. Model Selection 1401

scikit-learn user guide, Release 0.23.2

Out:

Optimal regularization parameter : 0.00013141473626117567

print(__doc__)

Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
License: BSD 3 clause

import numpy as np
from sklearn import linear_model

###
Generate sample data
n_samples_train, n_samples_test, n_features = 75, 150, 500
np.random.seed(0)
coef = np.random.randn(n_features)
coef[50:] = 0.0 # only the top 10 features are impacting the model
X = np.random.randn(n_samples_train + n_samples_test, n_features)
y = np.dot(X, coef)

(continues on next page)

1402 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Split train and test data
X_train, X_test = X[:n_samples_train], X[n_samples_train:]
y_train, y_test = y[:n_samples_train], y[n_samples_train:]

###
Compute train and test errors
alphas = np.logspace(-5, 1, 60)
enet = linear_model.ElasticNet(l1_ratio=0.7, max_iter=10000)
train_errors = list()
test_errors = list()
for alpha in alphas:

enet.set_params(alpha=alpha)
enet.fit(X_train, y_train)
train_errors.append(enet.score(X_train, y_train))
test_errors.append(enet.score(X_test, y_test))

i_alpha_optim = np.argmax(test_errors)
alpha_optim = alphas[i_alpha_optim]
print("Optimal regularization parameter : %s" % alpha_optim)

Estimate the coef_ on full data with optimal regularization parameter
enet.set_params(alpha=alpha_optim)
coef_ = enet.fit(X, y).coef_

###
Plot results functions

import matplotlib.pyplot as plt
plt.subplot(2, 1, 1)
plt.semilogx(alphas, train_errors, label='Train')
plt.semilogx(alphas, test_errors, label='Test')
plt.vlines(alpha_optim, plt.ylim()[0], np.max(test_errors), color='k',

linewidth=3, label='Optimum on test')
plt.legend(loc='lower left')
plt.ylim([0, 1.2])
plt.xlabel('Regularization parameter')
plt.ylabel('Performance')

Show estimated coef_ vs true coef
plt.subplot(2, 1, 2)
plt.plot(coef, label='True coef')
plt.plot(coef_, label='Estimated coef')
plt.legend()
plt.subplots_adjust(0.09, 0.04, 0.94, 0.94, 0.26, 0.26)
plt.show()

Total running time of the script: (0 minutes 2.030 seconds)

6.21.8 Receiver Operating Characteristic (ROC) with cross validation

Example of Receiver Operating Characteristic (ROC) metric to evaluate classifier output quality using cross-validation.

ROC curves typically feature true positive rate on the Y axis, and false positive rate on the X axis. This means that the
top left corner of the plot is the “ideal” point - a false positive rate of zero, and a true positive rate of one. This is not
very realistic, but it does mean that a larger area under the curve (AUC) is usually better.

6.21. Model Selection 1403

scikit-learn user guide, Release 0.23.2

The “steepness” of ROC curves is also important, since it is ideal to maximize the true positive rate while minimizing
the false positive rate.

This example shows the ROC response of different datasets, created from K-fold cross-validation. Taking all of these
curves, it is possible to calculate the mean area under curve, and see the variance of the curve when the training set
is split into different subsets. This roughly shows how the classifier output is affected by changes in the training data,
and how different the splits generated by K-fold cross-validation are from one another.

Note:

See also sklearn.metrics.roc_auc_score, sklearn.model_selection.cross_val_score,
Receiver Operating Characteristic (ROC),

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from sklearn import svm, datasets
from sklearn.metrics import auc
from sklearn.metrics import plot_roc_curve
from sklearn.model_selection import StratifiedKFold

###

(continues on next page)

1404 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Data IO and generation

Import some data to play with
iris = datasets.load_iris()
X = iris.data
y = iris.target
X, y = X[y != 2], y[y != 2]
n_samples, n_features = X.shape

Add noisy features
random_state = np.random.RandomState(0)
X = np.c_[X, random_state.randn(n_samples, 200 * n_features)]

###
Classification and ROC analysis

Run classifier with cross-validation and plot ROC curves
cv = StratifiedKFold(n_splits=6)
classifier = svm.SVC(kernel='linear', probability=True,

random_state=random_state)

tprs = []
aucs = []
mean_fpr = np.linspace(0, 1, 100)

fig, ax = plt.subplots()
for i, (train, test) in enumerate(cv.split(X, y)):

classifier.fit(X[train], y[train])
viz = plot_roc_curve(classifier, X[test], y[test],

name='ROC fold {}'.format(i),
alpha=0.3, lw=1, ax=ax)

interp_tpr = np.interp(mean_fpr, viz.fpr, viz.tpr)
interp_tpr[0] = 0.0
tprs.append(interp_tpr)
aucs.append(viz.roc_auc)

ax.plot([0, 1], [0, 1], linestyle='--', lw=2, color='r',
label='Chance', alpha=.8)

mean_tpr = np.mean(tprs, axis=0)
mean_tpr[-1] = 1.0
mean_auc = auc(mean_fpr, mean_tpr)
std_auc = np.std(aucs)
ax.plot(mean_fpr, mean_tpr, color='b',

label=r'Mean ROC (AUC = %0.2f \pm %0.2f)' % (mean_auc, std_auc),
lw=2, alpha=.8)

std_tpr = np.std(tprs, axis=0)
tprs_upper = np.minimum(mean_tpr + std_tpr, 1)
tprs_lower = np.maximum(mean_tpr - std_tpr, 0)
ax.fill_between(mean_fpr, tprs_lower, tprs_upper, color='grey', alpha=.2,

label=r'\pm 1 std. dev.')

ax.set(xlim=[-0.05, 1.05], ylim=[-0.05, 1.05],
title="Receiver operating characteristic example")

ax.legend(loc="lower right")
plt.show()

6.21. Model Selection 1405

scikit-learn user guide, Release 0.23.2

Total running time of the script: (0 minutes 0.343 seconds)

6.21.9 Nested versus non-nested cross-validation

This example compares non-nested and nested cross-validation strategies on a classifier of the iris data set. Nested
cross-validation (CV) is often used to train a model in which hyperparameters also need to be optimized. Nested CV
estimates the generalization error of the underlying model and its (hyper)parameter search. Choosing the parameters
that maximize non-nested CV biases the model to the dataset, yielding an overly-optimistic score.

Model selection without nested CV uses the same data to tune model parameters and evaluate model performance.
Information may thus “leak” into the model and overfit the data. The magnitude of this effect is primarily dependent
on the size of the dataset and the stability of the model. See Cawley and Talbot1 for an analysis of these issues.

To avoid this problem, nested CV effectively uses a series of train/validation/test set splits. In the inner loop
(here executed by GridSearchCV), the score is approximately maximized by fitting a model to each training
set, and then directly maximized in selecting (hyper)parameters over the validation set. In the outer loop (here in
cross_val_score), generalization error is estimated by averaging test set scores over several dataset splits.

The example below uses a support vector classifier with a non-linear kernel to build a model with optimized hyperpa-
rameters by grid search. We compare the performance of non-nested and nested CV strategies by taking the difference
between their scores.

See Also:

• Cross-validation: evaluating estimator performance

• Tuning the hyper-parameters of an estimator

References:

1 Cawley, G.C.; Talbot, N.L.C. On over-fitting in model selection and subsequent selection bias in performance evaluation. J. Mach. Learn. Res
2010,11, 2079-2107.

1406 Chapter 6. Examples

http://jmlr.csail.mit.edu/papers/volume11/cawley10a/cawley10a.pdf
http://jmlr.csail.mit.edu/papers/volume11/cawley10a/cawley10a.pdf

scikit-learn user guide, Release 0.23.2

Out:

Average difference of 0.007581 with std. dev. of 0.007833.

from sklearn.datasets import load_iris
from matplotlib import pyplot as plt
from sklearn.svm import SVC
from sklearn.model_selection import GridSearchCV, cross_val_score, KFold
import numpy as np

print(__doc__)

Number of random trials
NUM_TRIALS = 30

Load the dataset
iris = load_iris()
X_iris = iris.data
y_iris = iris.target

(continues on next page)

6.21. Model Selection 1407

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Set up possible values of parameters to optimize over
p_grid = {"C": [1, 10, 100],

"gamma": [.01, .1]}

We will use a Support Vector Classifier with "rbf" kernel
svm = SVC(kernel="rbf")

Arrays to store scores
non_nested_scores = np.zeros(NUM_TRIALS)
nested_scores = np.zeros(NUM_TRIALS)

Loop for each trial
for i in range(NUM_TRIALS):

Choose cross-validation techniques for the inner and outer loops,
independently of the dataset.
E.g "GroupKFold", "LeaveOneOut", "LeaveOneGroupOut", etc.
inner_cv = KFold(n_splits=4, shuffle=True, random_state=i)
outer_cv = KFold(n_splits=4, shuffle=True, random_state=i)

Non_nested parameter search and scoring
clf = GridSearchCV(estimator=svm, param_grid=p_grid, cv=inner_cv)
clf.fit(X_iris, y_iris)
non_nested_scores[i] = clf.best_score_

Nested CV with parameter optimization
nested_score = cross_val_score(clf, X=X_iris, y=y_iris, cv=outer_cv)
nested_scores[i] = nested_score.mean()

score_difference = non_nested_scores - nested_scores

print("Average difference of {:6f} with std. dev. of {:6f}."
.format(score_difference.mean(), score_difference.std()))

Plot scores on each trial for nested and non-nested CV
plt.figure()
plt.subplot(211)
non_nested_scores_line, = plt.plot(non_nested_scores, color='r')
nested_line, = plt.plot(nested_scores, color='b')
plt.ylabel("score", fontsize="14")
plt.legend([non_nested_scores_line, nested_line],

["Non-Nested CV", "Nested CV"],
bbox_to_anchor=(0, .4, .5, 0))

plt.title("Non-Nested and Nested Cross Validation on Iris Dataset",
x=.5, y=1.1, fontsize="15")

Plot bar chart of the difference.
plt.subplot(212)
difference_plot = plt.bar(range(NUM_TRIALS), score_difference)
plt.xlabel("Individual Trial #")
plt.legend([difference_plot],

["Non-Nested CV - Nested CV Score"],
bbox_to_anchor=(0, 1, .8, 0))

plt.ylabel("score difference", fontsize="14")

plt.show()

1408 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Total running time of the script: (0 minutes 4.652 seconds)

6.21.10 Demonstration of multi-metric evaluation on cross_val_score and Grid-
SearchCV

Multiple metric parameter search can be done by setting the scoring parameter to a list of metric scorer names or a
dict mapping the scorer names to the scorer callables.

The scores of all the scorers are available in the cv_results_ dict at keys ending in '_<scorer_name>'
('mean_test_precision', 'rank_test_precision', etc. . .)

The best_estimator_, best_index_, best_score_ and best_params_ correspond to the scorer (key)
that is set to the refit attribute.

Author: Raghav RV <rvraghav93@gmail.com>
License: BSD

import numpy as np
from matplotlib import pyplot as plt

from sklearn.datasets import make_hastie_10_2
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import make_scorer
from sklearn.metrics import accuracy_score
from sklearn.tree import DecisionTreeClassifier

print(__doc__)

Running GridSearchCV using multiple evaluation metrics

X, y = make_hastie_10_2(n_samples=8000, random_state=42)

The scorers can be either be one of the predefined metric strings or a scorer
callable, like the one returned by make_scorer
scoring = {'AUC': 'roc_auc', 'Accuracy': make_scorer(accuracy_score)}

Setting refit='AUC', refits an estimator on the whole dataset with the
parameter setting that has the best cross-validated AUC score.
That estimator is made available at ``gs.best_estimator_`` along with
parameters like ``gs.best_score_``, ``gs.best_params_`` and
``gs.best_index_``
gs = GridSearchCV(DecisionTreeClassifier(random_state=42),

param_grid={'min_samples_split': range(2, 403, 10)},
scoring=scoring, refit='AUC', return_train_score=True)

gs.fit(X, y)
results = gs.cv_results_

Plotting the result

plt.figure(figsize=(13, 13))
plt.title("GridSearchCV evaluating using multiple scorers simultaneously",

fontsize=16)

(continues on next page)

6.21. Model Selection 1409

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.xlabel("min_samples_split")
plt.ylabel("Score")

ax = plt.gca()
ax.set_xlim(0, 402)
ax.set_ylim(0.73, 1)

Get the regular numpy array from the MaskedArray
X_axis = np.array(results['param_min_samples_split'].data, dtype=float)

for scorer, color in zip(sorted(scoring), ['g', 'k']):
for sample, style in (('train', '--'), ('test', '-')):

sample_score_mean = results['mean_%s_%s' % (sample, scorer)]
sample_score_std = results['std_%s_%s' % (sample, scorer)]
ax.fill_between(X_axis, sample_score_mean - sample_score_std,

sample_score_mean + sample_score_std,
alpha=0.1 if sample == 'test' else 0, color=color)

ax.plot(X_axis, sample_score_mean, style, color=color,
alpha=1 if sample == 'test' else 0.7,
label="%s (%s)" % (scorer, sample))

best_index = np.nonzero(results['rank_test_%s' % scorer] == 1)[0][0]
best_score = results['mean_test_%s' % scorer][best_index]

Plot a dotted vertical line at the best score for that scorer marked by x
ax.plot([X_axis[best_index],] * 2, [0, best_score],

linestyle='-.', color=color, marker='x', markeredgewidth=3, ms=8)

Annotate the best score for that scorer
ax.annotate("%0.2f" % best_score,

(X_axis[best_index], best_score + 0.005))

plt.legend(loc="best")
plt.grid(False)
plt.show()

1410 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Total running time of the script: (0 minutes 22.838 seconds)

6.21.11 Sample pipeline for text feature extraction and evaluation

The dataset used in this example is the 20 newsgroups dataset which will be automatically downloaded and then cached
and reused for the document classification example.

You can adjust the number of categories by giving their names to the dataset loader or setting them to None to get the
20 of them.

Here is a sample output of a run on a quad-core machine:

Loading 20 newsgroups dataset for categories:
['alt.atheism', 'talk.religion.misc']

(continues on next page)

6.21. Model Selection 1411

scikit-learn user guide, Release 0.23.2

(continued from previous page)

1427 documents
2 categories

Performing grid search...
pipeline: ['vect', 'tfidf', 'clf']
parameters:
{'clf__alpha': (1.0000000000000001e-05, 9.9999999999999995e-07),
'clf__max_iter': (10, 50, 80),
'clf__penalty': ('l2', 'elasticnet'),
'tfidf__use_idf': (True, False),
'vect__max_n': (1, 2),
'vect__max_df': (0.5, 0.75, 1.0),
'vect__max_features': (None, 5000, 10000, 50000)}

done in 1737.030s

Best score: 0.940
Best parameters set:

clf__alpha: 9.9999999999999995e-07
clf__max_iter: 50
clf__penalty: 'elasticnet'
tfidf__use_idf: True
vect__max_n: 2
vect__max_df: 0.75
vect__max_features: 50000

Author: Olivier Grisel <olivier.grisel@ensta.org>
Peter Prettenhofer <peter.prettenhofer@gmail.com>
Mathieu Blondel <mathieu@mblondel.org>
License: BSD 3 clause
from pprint import pprint
from time import time
import logging

from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.pipeline import Pipeline

print(__doc__)

Display progress logs on stdout
logging.basicConfig(level=logging.INFO,

format='%(asctime)s %(levelname)s %(message)s')

###
Load some categories from the training set
categories = [

'alt.atheism',
'talk.religion.misc',

]
Uncomment the following to do the analysis on all the categories
#categories = None

(continues on next page)

1412 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

print("Loading 20 newsgroups dataset for categories:")
print(categories)

data = fetch_20newsgroups(subset='train', categories=categories)
print("%d documents" % len(data.filenames))
print("%d categories" % len(data.target_names))
print()

###
Define a pipeline combining a text feature extractor with a simple
classifier
pipeline = Pipeline([

('vect', CountVectorizer()),
('tfidf', TfidfTransformer()),
('clf', SGDClassifier()),

])

uncommenting more parameters will give better exploring power but will
increase processing time in a combinatorial way
parameters = {

'vect__max_df': (0.5, 0.75, 1.0),
'vect__max_features': (None, 5000, 10000, 50000),
'vect__ngram_range': ((1, 1), (1, 2)), # unigrams or bigrams
'tfidf__use_idf': (True, False),
'tfidf__norm': ('l1', 'l2'),
'clf__max_iter': (20,),
'clf__alpha': (0.00001, 0.000001),
'clf__penalty': ('l2', 'elasticnet'),
'clf__max_iter': (10, 50, 80),

}

if __name__ == "__main__":
multiprocessing requires the fork to happen in a __main__ protected
block

find the best parameters for both the feature extraction and the
classifier
grid_search = GridSearchCV(pipeline, parameters, n_jobs=-1, verbose=1)

print("Performing grid search...")
print("pipeline:", [name for name, _ in pipeline.steps])
print("parameters:")
pprint(parameters)
t0 = time()
grid_search.fit(data.data, data.target)
print("done in %0.3fs" % (time() - t0))
print()

print("Best score: %0.3f" % grid_search.best_score_)
print("Best parameters set:")
best_parameters = grid_search.best_estimator_.get_params()
for param_name in sorted(parameters.keys()):

print("\t%s: %r" % (param_name, best_parameters[param_name]))

Total running time of the script: (0 minutes 0.000 seconds)

6.21. Model Selection 1413

scikit-learn user guide, Release 0.23.2

6.21.12 Balance model complexity and cross-validated score

This example balances model complexity and cross-validated score by finding a decent accuracy within 1 standard
deviation of the best accuracy score while minimising the number of PCA components [1].

The figure shows the trade-off between cross-validated score and the number of PCA components. The balanced
case is when n_components=10 and accuracy=0.88, which falls into the range within 1 standard deviation of the best
accuracy score.

[1] Hastie, T., Tibshirani, R.„ Friedman, J. (2001). Model Assessment and Selection. The Elements of Statistical
Learning (pp. 219-260). New York, NY, USA: Springer New York Inc..

Out:

The best_index_ is 2
The n_components selected is 10
The corresponding accuracy score is 0.88

Author: Wenhao Zhang <wenhaoz@ucla.edu>

print(__doc__)

(continues on next page)

1414 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets import load_digits
from sklearn.decomposition import PCA
from sklearn.model_selection import GridSearchCV
from sklearn.pipeline import Pipeline
from sklearn.svm import LinearSVC

def lower_bound(cv_results):
"""
Calculate the lower bound within 1 standard deviation
of the best `mean_test_scores`.

Parameters

cv_results : dict of numpy(masked) ndarrays

See attribute cv_results_ of `GridSearchCV`

Returns

float

Lower bound within 1 standard deviation of the
best `mean_test_score`.

"""
best_score_idx = np.argmax(cv_results['mean_test_score'])

return (cv_results['mean_test_score'][best_score_idx]
- cv_results['std_test_score'][best_score_idx])

def best_low_complexity(cv_results):
"""
Balance model complexity with cross-validated score.

Parameters

cv_results : dict of numpy(masked) ndarrays

See attribute cv_results_ of `GridSearchCV`.

Return

int

Index of a model that has the fewest PCA components
while has its test score within 1 standard deviation of the best
`mean_test_score`.

"""
threshold = lower_bound(cv_results)
candidate_idx = np.flatnonzero(cv_results['mean_test_score'] >= threshold)
best_idx = candidate_idx[cv_results['param_reduce_dim__n_components']

[candidate_idx].argmin()]
return best_idx

pipe = Pipeline([
(continues on next page)

6.21. Model Selection 1415

scikit-learn user guide, Release 0.23.2

(continued from previous page)

('reduce_dim', PCA(random_state=42)),
('classify', LinearSVC(random_state=42, C=0.01)),

])

param_grid = {
'reduce_dim__n_components': [6, 8, 10, 12, 14]

}

grid = GridSearchCV(pipe, cv=10, n_jobs=1, param_grid=param_grid,
scoring='accuracy', refit=best_low_complexity)

X, y = load_digits(return_X_y=True)
grid.fit(X, y)

n_components = grid.cv_results_['param_reduce_dim__n_components']
test_scores = grid.cv_results_['mean_test_score']

plt.figure()
plt.bar(n_components, test_scores, width=1.3, color='b')

lower = lower_bound(grid.cv_results_)
plt.axhline(np.max(test_scores), linestyle='--', color='y',

label='Best score')
plt.axhline(lower, linestyle='--', color='.5', label='Best score - 1 std')

plt.title("Balance model complexity and cross-validated score")
plt.xlabel('Number of PCA components used')
plt.ylabel('Digit classification accuracy')
plt.xticks(n_components.tolist())
plt.ylim((0, 1.0))
plt.legend(loc='upper left')

best_index_ = grid.best_index_

print("The best_index_ is %d" % best_index_)
print("The n_components selected is %d" % n_components[best_index_])
print("The corresponding accuracy score is %.2f"

% grid.cv_results_['mean_test_score'][best_index_])
plt.show()

Total running time of the script: (0 minutes 4.272 seconds)

6.21.13 Visualizing cross-validation behavior in scikit-learn

Choosing the right cross-validation object is a crucial part of fitting a model properly. There are many ways to split
data into training and test sets in order to avoid model overfitting, to standardize the number of groups in test sets, etc.

This example visualizes the behavior of several common scikit-learn objects for comparison.

from sklearn.model_selection import (TimeSeriesSplit, KFold, ShuffleSplit,
StratifiedKFold, GroupShuffleSplit,
GroupKFold, StratifiedShuffleSplit)

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Patch
np.random.seed(1338)
cmap_data = plt.cm.Paired

(continues on next page)

1416 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

cmap_cv = plt.cm.coolwarm
n_splits = 4

Visualize our data

First, we must understand the structure of our data. It has 100 randomly generated input datapoints, 3 classes split
unevenly across datapoints, and 10 “groups” split evenly across datapoints.

As we’ll see, some cross-validation objects do specific things with labeled data, others behave differently with grouped
data, and others do not use this information.

To begin, we’ll visualize our data.

Generate the class/group data
n_points = 100
X = np.random.randn(100, 10)

percentiles_classes = [.1, .3, .6]
y = np.hstack([[ii] * int(100 * perc)

for ii, perc in enumerate(percentiles_classes)])

Evenly spaced groups repeated once
groups = np.hstack([[ii] * 10 for ii in range(10)])

def visualize_groups(classes, groups, name):
Visualize dataset groups
fig, ax = plt.subplots()
ax.scatter(range(len(groups)), [.5] * len(groups), c=groups, marker='_',

lw=50, cmap=cmap_data)
ax.scatter(range(len(groups)), [3.5] * len(groups), c=classes, marker='_',

lw=50, cmap=cmap_data)
ax.set(ylim=[-1, 5], yticks=[.5, 3.5],

yticklabels=['Data\ngroup', 'Data\nclass'], xlabel="Sample index")

visualize_groups(y, groups, 'no groups')

6.21. Model Selection 1417

scikit-learn user guide, Release 0.23.2

Define a function to visualize cross-validation behavior

We’ll define a function that lets us visualize the behavior of each cross-validation object. We’ll perform 4 splits of the
data. On each split, we’ll visualize the indices chosen for the training set (in blue) and the test set (in red).

def plot_cv_indices(cv, X, y, group, ax, n_splits, lw=10):
"""Create a sample plot for indices of a cross-validation object."""

Generate the training/testing visualizations for each CV split
for ii, (tr, tt) in enumerate(cv.split(X=X, y=y, groups=group)):

Fill in indices with the training/test groups
indices = np.array([np.nan] * len(X))
indices[tt] = 1
indices[tr] = 0

Visualize the results
ax.scatter(range(len(indices)), [ii + .5] * len(indices),

c=indices, marker='_', lw=lw, cmap=cmap_cv,
vmin=-.2, vmax=1.2)

Plot the data classes and groups at the end
ax.scatter(range(len(X)), [ii + 1.5] * len(X),

c=y, marker='_', lw=lw, cmap=cmap_data)

(continues on next page)

1418 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

ax.scatter(range(len(X)), [ii + 2.5] * len(X),
c=group, marker='_', lw=lw, cmap=cmap_data)

Formatting
yticklabels = list(range(n_splits)) + ['class', 'group']
ax.set(yticks=np.arange(n_splits+2) + .5, yticklabels=yticklabels,

xlabel='Sample index', ylabel="CV iteration",
ylim=[n_splits+2.2, -.2], xlim=[0, 100])

ax.set_title('{}'.format(type(cv).__name__), fontsize=15)
return ax

Let’s see how it looks for the KFold cross-validation object:

fig, ax = plt.subplots()
cv = KFold(n_splits)
plot_cv_indices(cv, X, y, groups, ax, n_splits)

Out:

<matplotlib.axes._subplots.AxesSubplot object at 0x7f635d06c970>

As you can see, by default the KFold cross-validation iterator does not take either datapoint class or group into
consideration. We can change this by using the StratifiedKFold like so.

6.21. Model Selection 1419

scikit-learn user guide, Release 0.23.2

fig, ax = plt.subplots()
cv = StratifiedKFold(n_splits)
plot_cv_indices(cv, X, y, groups, ax, n_splits)

Out:

<matplotlib.axes._subplots.AxesSubplot object at 0x7f635d73aac0>

In this case, the cross-validation retained the same ratio of classes across each CV split. Next we’ll visualize this
behavior for a number of CV iterators.

Visualize cross-validation indices for many CV objects

Let’s visually compare the cross validation behavior for many scikit-learn cross-validation objects. Below we will
loop through several common cross-validation objects, visualizing the behavior of each.

Note how some use the group/class information while others do not.

cvs = [KFold, GroupKFold, ShuffleSplit, StratifiedKFold,
GroupShuffleSplit, StratifiedShuffleSplit, TimeSeriesSplit]

for cv in cvs:
this_cv = cv(n_splits=n_splits)

(continues on next page)

1420 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

fig, ax = plt.subplots(figsize=(6, 3))
plot_cv_indices(this_cv, X, y, groups, ax, n_splits)

ax.legend([Patch(color=cmap_cv(.8)), Patch(color=cmap_cv(.02))],
['Testing set', 'Training set'], loc=(1.02, .8))

Make the legend fit
plt.tight_layout()
fig.subplots_adjust(right=.7)

plt.show()

•

•

6.21. Model Selection 1421

scikit-learn user guide, Release 0.23.2

•

•

1422 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

•

6.21. Model Selection 1423

scikit-learn user guide, Release 0.23.2

•

Total running time of the script: (0 minutes 0.722 seconds)

6.21.14 Receiver Operating Characteristic (ROC)

Example of Receiver Operating Characteristic (ROC) metric to evaluate classifier output quality.

ROC curves typically feature true positive rate on the Y axis, and false positive rate on the X axis. This means that the
top left corner of the plot is the “ideal” point - a false positive rate of zero, and a true positive rate of one. This is not
very realistic, but it does mean that a larger area under the curve (AUC) is usually better.

The “steepness” of ROC curves is also important, since it is ideal to maximize the true positive rate while minimizing
the false positive rate.

ROC curves are typically used in binary classification to study the output of a classifier. In order to extend ROC
curve and ROC area to multi-label classification, it is necessary to binarize the output. One ROC curve can be drawn
per label, but one can also draw a ROC curve by considering each element of the label indicator matrix as a binary
prediction (micro-averaging).

Another evaluation measure for multi-label classification is macro-averaging, which gives equal weight to the classi-
fication of each label.

Note:

See also sklearn.metrics.roc_auc_score, Receiver Operating Characteristic (ROC) with cross validation

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from itertools import cycle

from sklearn import svm, datasets
from sklearn.metrics import roc_curve, auc
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import label_binarize
from sklearn.multiclass import OneVsRestClassifier

(continues on next page)

1424 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

from scipy import interp
from sklearn.metrics import roc_auc_score

Import some data to play with
iris = datasets.load_iris()
X = iris.data
y = iris.target

Binarize the output
y = label_binarize(y, classes=[0, 1, 2])
n_classes = y.shape[1]

Add noisy features to make the problem harder
random_state = np.random.RandomState(0)
n_samples, n_features = X.shape
X = np.c_[X, random_state.randn(n_samples, 200 * n_features)]

shuffle and split training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5,

random_state=0)

Learn to predict each class against the other
classifier = OneVsRestClassifier(svm.SVC(kernel='linear', probability=True,

random_state=random_state))
y_score = classifier.fit(X_train, y_train).decision_function(X_test)

Compute ROC curve and ROC area for each class
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):

fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])

Compute micro-average ROC curve and ROC area
fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_score.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])

Plot of a ROC curve for a specific class

plt.figure()
lw = 2
plt.plot(fpr[2], tpr[2], color='darkorange',

lw=lw, label='ROC curve (area = %0.2f)' % roc_auc[2])
plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc="lower right")
plt.show()

6.21. Model Selection 1425

scikit-learn user guide, Release 0.23.2

Plot ROC curves for the multilabel problem

Compute macro-average ROC curve and ROC area

First aggregate all false positive rates
all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)]))

Then interpolate all ROC curves at this points
mean_tpr = np.zeros_like(all_fpr)
for i in range(n_classes):

mean_tpr += interp(all_fpr, fpr[i], tpr[i])

Finally average it and compute AUC
mean_tpr /= n_classes

fpr["macro"] = all_fpr
tpr["macro"] = mean_tpr
roc_auc["macro"] = auc(fpr["macro"], tpr["macro"])

Plot all ROC curves
plt.figure()
plt.plot(fpr["micro"], tpr["micro"],

label='micro-average ROC curve (area = {0:0.2f})'
''.format(roc_auc["micro"]),

(continues on next page)

1426 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

color='deeppink', linestyle=':', linewidth=4)

plt.plot(fpr["macro"], tpr["macro"],
label='macro-average ROC curve (area = {0:0.2f})'

''.format(roc_auc["macro"]),
color='navy', linestyle=':', linewidth=4)

colors = cycle(['aqua', 'darkorange', 'cornflowerblue'])
for i, color in zip(range(n_classes), colors):

plt.plot(fpr[i], tpr[i], color=color, lw=lw,
label='ROC curve of class {0} (area = {1:0.2f})'
''.format(i, roc_auc[i]))

plt.plot([0, 1], [0, 1], 'k--', lw=lw)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Some extension of Receiver operating characteristic to multi-class')
plt.legend(loc="lower right")
plt.show()

Out:

6.21. Model Selection 1427

scikit-learn user guide, Release 0.23.2

/home/circleci/project/examples/model_selection/plot_roc.py:112: DeprecationWarning:
→˓scipy.interp is deprecated and will be removed in SciPy 2.0.0, use numpy.interp
→˓instead
mean_tpr += interp(all_fpr, fpr[i], tpr[i])

Area under ROC for the multiclass problem

The sklearn.metrics.roc_auc_score function can be used for multi-class classification. The multi-class
One-vs-One scheme compares every unique pairwise combination of classes. In this section, we calculate the AUC
using the OvR and OvO schemes. We report a macro average, and a prevalence-weighted average.

y_prob = classifier.predict_proba(X_test)

macro_roc_auc_ovo = roc_auc_score(y_test, y_prob, multi_class="ovo",
average="macro")

weighted_roc_auc_ovo = roc_auc_score(y_test, y_prob, multi_class="ovo",
average="weighted")

macro_roc_auc_ovr = roc_auc_score(y_test, y_prob, multi_class="ovr",
average="macro")

weighted_roc_auc_ovr = roc_auc_score(y_test, y_prob, multi_class="ovr",
average="weighted")

print("One-vs-One ROC AUC scores:\n{:.6f} (macro),\n{:.6f} "
"(weighted by prevalence)"
.format(macro_roc_auc_ovo, weighted_roc_auc_ovo))

print("One-vs-Rest ROC AUC scores:\n{:.6f} (macro),\n{:.6f} "
"(weighted by prevalence)"
.format(macro_roc_auc_ovr, weighted_roc_auc_ovr))

Out:

One-vs-One ROC AUC scores:
0.698586 (macro),
0.665839 (weighted by prevalence)
One-vs-Rest ROC AUC scores:
0.698586 (macro),
0.665839 (weighted by prevalence)

Total running time of the script: (0 minutes 0.269 seconds)

6.21.15 Precision-Recall

Example of Precision-Recall metric to evaluate classifier output quality.

Precision-Recall is a useful measure of success of prediction when the classes are very imbalanced. In information
retrieval, precision is a measure of result relevancy, while recall is a measure of how many truly relevant results are
returned.

The precision-recall curve shows the tradeoff between precision and recall for different threshold. A high area under
the curve represents both high recall and high precision, where high precision relates to a low false positive rate, and
high recall relates to a low false negative rate. High scores for both show that the classifier is returning accurate results
(high precision), as well as returning a majority of all positive results (high recall).

A system with high recall but low precision returns many results, but most of its predicted labels are incorrect when
compared to the training labels. A system with high precision but low recall is just the opposite, returning very few

1428 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

results, but most of its predicted labels are correct when compared to the training labels. An ideal system with high
precision and high recall will return many results, with all results labeled correctly.

Precision (𝑃) is defined as the number of true positives (𝑇𝑝) over the number of true positives plus the number of false
positives (𝐹𝑝).

𝑃 =
𝑇𝑝

𝑇𝑝+𝐹𝑝

Recall (𝑅) is defined as the number of true positives (𝑇𝑝) over the number of true positives plus the number of false
negatives (𝐹𝑛).

𝑅 =
𝑇𝑝

𝑇𝑝+𝐹𝑛

These quantities are also related to the (𝐹1) score, which is defined as the harmonic mean of precision and recall.

𝐹1 = 2𝑃×𝑅
𝑃+𝑅

Note that the precision may not decrease with recall. The definition of precision (𝑇𝑝

𝑇𝑝+𝐹𝑝
) shows that lowering the

threshold of a classifier may increase the denominator, by increasing the number of results returned. If the threshold
was previously set too high, the new results may all be true positives, which will increase precision. If the previous
threshold was about right or too low, further lowering the threshold will introduce false positives, decreasing precision.

Recall is defined as 𝑇𝑝

𝑇𝑝+𝐹𝑛
, where 𝑇𝑝 + 𝐹𝑛 does not depend on the classifier threshold. This means that lowering

the classifier threshold may increase recall, by increasing the number of true positive results. It is also possible that
lowering the threshold may leave recall unchanged, while the precision fluctuates.

The relationship between recall and precision can be observed in the stairstep area of the plot - at the edges of these
steps a small change in the threshold considerably reduces precision, with only a minor gain in recall.

Average precision (AP) summarizes such a plot as the weighted mean of precisions achieved at each threshold, with
the increase in recall from the previous threshold used as the weight:

AP =
∑︀

𝑛(𝑅𝑛 −𝑅𝑛−1)𝑃𝑛

where 𝑃𝑛 and 𝑅𝑛 are the precision and recall at the nth threshold. A pair (𝑅𝑘, 𝑃𝑘) is referred to as an operating point.

AP and the trapezoidal area under the operating points (sklearn.metrics.auc) are common ways to summarize
a precision-recall curve that lead to different results. Read more in the User Guide.

Precision-recall curves are typically used in binary classification to study the output of a classifier. In order to extend
the precision-recall curve and average precision to multi-class or multi-label classification, it is necessary to binarize
the output. One curve can be drawn per label, but one can also draw a precision-recall curve by considering each
element of the label indicator matrix as a binary prediction (micro-averaging).

Note:

See also sklearn.metrics.average_precision_score, sklearn.metrics.recall_score,
sklearn.metrics.precision_score, sklearn.metrics.f1_score

In binary classification settings

Create simple data

Try to differentiate the two first classes of the iris data

6.21. Model Selection 1429

scikit-learn user guide, Release 0.23.2

from sklearn import svm, datasets
from sklearn.model_selection import train_test_split
import numpy as np

iris = datasets.load_iris()
X = iris.data
y = iris.target

Add noisy features
random_state = np.random.RandomState(0)
n_samples, n_features = X.shape
X = np.c_[X, random_state.randn(n_samples, 200 * n_features)]

Limit to the two first classes, and split into training and test
X_train, X_test, y_train, y_test = train_test_split(X[y < 2], y[y < 2],

test_size=.5,
random_state=random_state)

Create a simple classifier
classifier = svm.LinearSVC(random_state=random_state)
classifier.fit(X_train, y_train)
y_score = classifier.decision_function(X_test)

Compute the average precision score

from sklearn.metrics import average_precision_score
average_precision = average_precision_score(y_test, y_score)

print('Average precision-recall score: {0:0.2f}'.format(
average_precision))

Out:

Average precision-recall score: 0.88

Plot the Precision-Recall curve

from sklearn.metrics import precision_recall_curve
from sklearn.metrics import plot_precision_recall_curve
import matplotlib.pyplot as plt

disp = plot_precision_recall_curve(classifier, X_test, y_test)
disp.ax_.set_title('2-class Precision-Recall curve: '

'AP={0:0.2f}'.format(average_precision))

1430 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Out:

Text(0.5, 1.0, '2-class Precision-Recall curve: AP=0.88')

In multi-label settings

Create multi-label data, fit, and predict

We create a multi-label dataset, to illustrate the precision-recall in multi-label settings

from sklearn.preprocessing import label_binarize

Use label_binarize to be multi-label like settings
Y = label_binarize(y, classes=[0, 1, 2])
n_classes = Y.shape[1]

Split into training and test
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=.5,

random_state=random_state)

We use OneVsRestClassifier for multi-label prediction
from sklearn.multiclass import OneVsRestClassifier

Run classifier
(continues on next page)

6.21. Model Selection 1431

scikit-learn user guide, Release 0.23.2

(continued from previous page)

classifier = OneVsRestClassifier(svm.LinearSVC(random_state=random_state))
classifier.fit(X_train, Y_train)
y_score = classifier.decision_function(X_test)

The average precision score in multi-label settings

from sklearn.metrics import precision_recall_curve
from sklearn.metrics import average_precision_score

For each class
precision = dict()
recall = dict()
average_precision = dict()
for i in range(n_classes):

precision[i], recall[i], _ = precision_recall_curve(Y_test[:, i],
y_score[:, i])

average_precision[i] = average_precision_score(Y_test[:, i], y_score[:, i])

A "micro-average": quantifying score on all classes jointly
precision["micro"], recall["micro"], _ = precision_recall_curve(Y_test.ravel(),

y_score.ravel())
average_precision["micro"] = average_precision_score(Y_test, y_score,

average="micro")
print('Average precision score, micro-averaged over all classes: {0:0.2f}'

.format(average_precision["micro"]))

Out:

Average precision score, micro-averaged over all classes: 0.43

Plot the micro-averaged Precision-Recall curve

plt.figure()
plt.step(recall['micro'], precision['micro'], where='post')

plt.xlabel('Recall')
plt.ylabel('Precision')
plt.ylim([0.0, 1.05])
plt.xlim([0.0, 1.0])
plt.title(

'Average precision score, micro-averaged over all classes: AP={0:0.2f}'
.format(average_precision["micro"]))

1432 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Out:

Text(0.5, 1.0, 'Average precision score, micro-averaged over all classes: AP=0.43')

Plot Precision-Recall curve for each class and iso-f1 curves

from itertools import cycle
setup plot details
colors = cycle(['navy', 'turquoise', 'darkorange', 'cornflowerblue', 'teal'])

plt.figure(figsize=(7, 8))
f_scores = np.linspace(0.2, 0.8, num=4)
lines = []
labels = []
for f_score in f_scores:

x = np.linspace(0.01, 1)
y = f_score * x / (2 * x - f_score)
l, = plt.plot(x[y >= 0], y[y >= 0], color='gray', alpha=0.2)
plt.annotate('f1={0:0.1f}'.format(f_score), xy=(0.9, y[45] + 0.02))

lines.append(l)
labels.append('iso-f1 curves')
l, = plt.plot(recall["micro"], precision["micro"], color='gold', lw=2)
lines.append(l)

(continues on next page)

6.21. Model Selection 1433

scikit-learn user guide, Release 0.23.2

(continued from previous page)

labels.append('micro-average Precision-recall (area = {0:0.2f})'
''.format(average_precision["micro"]))

for i, color in zip(range(n_classes), colors):
l, = plt.plot(recall[i], precision[i], color=color, lw=2)
lines.append(l)
labels.append('Precision-recall for class {0} (area = {1:0.2f})'

''.format(i, average_precision[i]))

fig = plt.gcf()
fig.subplots_adjust(bottom=0.25)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.title('Extension of Precision-Recall curve to multi-class')
plt.legend(lines, labels, loc=(0, -.38), prop=dict(size=14))

plt.show()

1434 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Total running time of the script: (0 minutes 0.238 seconds)

6.21.16 Plotting Learning Curves

In the first column, first row the learning curve of a naive Bayes classifier is shown for the digits dataset. Note that the
training score and the cross-validation score are both not very good at the end. However, the shape of the curve can
be found in more complex datasets very often: the training score is very high at the beginning and decreases and the
cross-validation score is very low at the beginning and increases. In the second column, first row we see the learning

6.21. Model Selection 1435

scikit-learn user guide, Release 0.23.2

curve of an SVM with RBF kernel. We can see clearly that the training score is still around the maximum and the
validation score could be increased with more training samples. The plots in the second row show the times required
by the models to train with various sizes of training dataset. The plots in the third row show how much time was
required to train the models for each training sizes.

1436 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

6.21. Model Selection 1437

scikit-learn user guide, Release 0.23.2

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.datasets import load_digits
from sklearn.model_selection import learning_curve
from sklearn.model_selection import ShuffleSplit

def plot_learning_curve(estimator, title, X, y, axes=None, ylim=None, cv=None,
n_jobs=None, train_sizes=np.linspace(.1, 1.0, 5)):

"""
Generate 3 plots: the test and training learning curve, the training
samples vs fit times curve, the fit times vs score curve.

Parameters

estimator : object type that implements the "fit" and "predict" methods

An object of that type which is cloned for each validation.

title : string
Title for the chart.

X : array-like, shape (n_samples, n_features)
Training vector, where n_samples is the number of samples and
n_features is the number of features.

y : array-like, shape (n_samples) or (n_samples, n_features), optional
Target relative to X for classification or regression;
None for unsupervised learning.

axes : array of 3 axes, optional (default=None)
Axes to use for plotting the curves.

ylim : tuple, shape (ymin, ymax), optional
Defines minimum and maximum yvalues plotted.

cv : int, cross-validation generator or an iterable, optional
Determines the cross-validation splitting strategy.
Possible inputs for cv are:

- None, to use the default 5-fold cross-validation,
- integer, to specify the number of folds.
- :term:`CV splitter`,
- An iterable yielding (train, test) splits as arrays of indices.

For integer/None inputs, if ``y`` is binary or multiclass,
:class:`StratifiedKFold` used. If the estimator is not a classifier
or if ``y`` is neither binary nor multiclass, :class:`KFold` is used.

Refer :ref:`User Guide <cross_validation>` for the various
cross-validators that can be used here.

n_jobs : int or None, optional (default=None)
Number of jobs to run in parallel.

(continues on next page)

1438 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.

train_sizes : array-like, shape (n_ticks,), dtype float or int
Relative or absolute numbers of training examples that will be used to
generate the learning curve. If the dtype is float, it is regarded as a
fraction of the maximum size of the training set (that is determined
by the selected validation method), i.e. it has to be within (0, 1].
Otherwise it is interpreted as absolute sizes of the training sets.
Note that for classification the number of samples usually have to
be big enough to contain at least one sample from each class.
(default: np.linspace(0.1, 1.0, 5))

"""
if axes is None:

_, axes = plt.subplots(1, 3, figsize=(20, 5))

axes[0].set_title(title)
if ylim is not None:

axes[0].set_ylim(*ylim)
axes[0].set_xlabel("Training examples")
axes[0].set_ylabel("Score")

train_sizes, train_scores, test_scores, fit_times, _ = \
learning_curve(estimator, X, y, cv=cv, n_jobs=n_jobs,

train_sizes=train_sizes,
return_times=True)

train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)
fit_times_mean = np.mean(fit_times, axis=1)
fit_times_std = np.std(fit_times, axis=1)

Plot learning curve
axes[0].grid()
axes[0].fill_between(train_sizes, train_scores_mean - train_scores_std,

train_scores_mean + train_scores_std, alpha=0.1,
color="r")

axes[0].fill_between(train_sizes, test_scores_mean - test_scores_std,
test_scores_mean + test_scores_std, alpha=0.1,
color="g")

axes[0].plot(train_sizes, train_scores_mean, 'o-', color="r",
label="Training score")

axes[0].plot(train_sizes, test_scores_mean, 'o-', color="g",
label="Cross-validation score")

axes[0].legend(loc="best")

Plot n_samples vs fit_times
axes[1].grid()
axes[1].plot(train_sizes, fit_times_mean, 'o-')
axes[1].fill_between(train_sizes, fit_times_mean - fit_times_std,

fit_times_mean + fit_times_std, alpha=0.1)
axes[1].set_xlabel("Training examples")
axes[1].set_ylabel("fit_times")
axes[1].set_title("Scalability of the model")

(continues on next page)

6.21. Model Selection 1439

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Plot fit_time vs score
axes[2].grid()
axes[2].plot(fit_times_mean, test_scores_mean, 'o-')
axes[2].fill_between(fit_times_mean, test_scores_mean - test_scores_std,

test_scores_mean + test_scores_std, alpha=0.1)
axes[2].set_xlabel("fit_times")
axes[2].set_ylabel("Score")
axes[2].set_title("Performance of the model")

return plt

fig, axes = plt.subplots(3, 2, figsize=(10, 15))

X, y = load_digits(return_X_y=True)

title = "Learning Curves (Naive Bayes)"
Cross validation with 100 iterations to get smoother mean test and train
score curves, each time with 20% data randomly selected as a validation set.
cv = ShuffleSplit(n_splits=100, test_size=0.2, random_state=0)

estimator = GaussianNB()
plot_learning_curve(estimator, title, X, y, axes=axes[:, 0], ylim=(0.7, 1.01),

cv=cv, n_jobs=4)

title = r"Learning Curves (SVM, RBF kernel, $\gamma=0.001$)"
SVC is more expensive so we do a lower number of CV iterations:
cv = ShuffleSplit(n_splits=10, test_size=0.2, random_state=0)
estimator = SVC(gamma=0.001)
plot_learning_curve(estimator, title, X, y, axes=axes[:, 1], ylim=(0.7, 1.01),

cv=cv, n_jobs=4)

plt.show()

Total running time of the script: (0 minutes 3.816 seconds)

6.22 Multioutput methods

Examples concerning the sklearn.multioutput module.

6.22.1 Classifier Chain

Example of using classifier chain on a multilabel dataset.

For this example we will use the yeast dataset which contains 2417 datapoints each with 103 features and 14 possible
labels. Each data point has at least one label. As a baseline we first train a logistic regression classifier for each of the
14 labels. To evaluate the performance of these classifiers we predict on a held-out test set and calculate the jaccard
score for each sample.

Next we create 10 classifier chains. Each classifier chain contains a logistic regression model for each of the 14 labels.
The models in each chain are ordered randomly. In addition to the 103 features in the dataset, each model gets the
predictions of the preceding models in the chain as features (note that by default at training time each model gets the
true labels as features). These additional features allow each chain to exploit correlations among the classes. The
Jaccard similarity score for each chain tends to be greater than that of the set independent logistic models.

1440 Chapter 6. Examples

https://www.openml.org/d/40597

scikit-learn user guide, Release 0.23.2

Because the models in each chain are arranged randomly there is significant variation in performance among the
chains. Presumably there is an optimal ordering of the classes in a chain that will yield the best performance. However
we do not know that ordering a priori. Instead we can construct an voting ensemble of classifier chains by averaging
the binary predictions of the chains and apply a threshold of 0.5. The Jaccard similarity score of the ensemble is
greater than that of the independent models and tends to exceed the score of each chain in the ensemble (although this
is not guaranteed with randomly ordered chains).

Author: Adam Kleczewski
License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_openml
from sklearn.multioutput import ClassifierChain
from sklearn.model_selection import train_test_split
from sklearn.multiclass import OneVsRestClassifier
from sklearn.metrics import jaccard_score
from sklearn.linear_model import LogisticRegression

print(__doc__)

Load a multi-label dataset from https://www.openml.org/d/40597
X, Y = fetch_openml('yeast', version=4, return_X_y=True)
Y = Y == 'TRUE'
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=.2,

random_state=0)

Fit an independent logistic regression model for each class using the
OneVsRestClassifier wrapper.
base_lr = LogisticRegression()
ovr = OneVsRestClassifier(base_lr)
ovr.fit(X_train, Y_train)

(continues on next page)

6.22. Multioutput methods 1441

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Y_pred_ovr = ovr.predict(X_test)
ovr_jaccard_score = jaccard_score(Y_test, Y_pred_ovr, average='samples')

Fit an ensemble of logistic regression classifier chains and take the
take the average prediction of all the chains.
chains = [ClassifierChain(base_lr, order='random', random_state=i)

for i in range(10)]
for chain in chains:

chain.fit(X_train, Y_train)

Y_pred_chains = np.array([chain.predict(X_test) for chain in
chains])

chain_jaccard_scores = [jaccard_score(Y_test, Y_pred_chain >= .5,
average='samples')

for Y_pred_chain in Y_pred_chains]

Y_pred_ensemble = Y_pred_chains.mean(axis=0)
ensemble_jaccard_score = jaccard_score(Y_test,

Y_pred_ensemble >= .5,
average='samples')

model_scores = [ovr_jaccard_score] + chain_jaccard_scores
model_scores.append(ensemble_jaccard_score)

model_names = ('Independent',
'Chain 1',
'Chain 2',
'Chain 3',
'Chain 4',
'Chain 5',
'Chain 6',
'Chain 7',
'Chain 8',
'Chain 9',
'Chain 10',
'Ensemble')

x_pos = np.arange(len(model_names))

Plot the Jaccard similarity scores for the independent model, each of the
chains, and the ensemble (note that the vertical axis on this plot does
not begin at 0).

fig, ax = plt.subplots(figsize=(7, 4))
ax.grid(True)
ax.set_title('Classifier Chain Ensemble Performance Comparison')
ax.set_xticks(x_pos)
ax.set_xticklabels(model_names, rotation='vertical')
ax.set_ylabel('Jaccard Similarity Score')
ax.set_ylim([min(model_scores) * .9, max(model_scores) * 1.1])
colors = ['r'] + ['b'] * len(chain_jaccard_scores) + ['g']
ax.bar(x_pos, model_scores, alpha=0.5, color=colors)
plt.tight_layout()
plt.show()

Total running time of the script: (0 minutes 3.992 seconds)

1442 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

6.23 Nearest Neighbors

Examples concerning the sklearn.neighbors module.

6.23.1 Nearest Neighbors regression

Demonstrate the resolution of a regression problem using a k-Nearest Neighbor and the interpolation of the target
using both barycenter and constant weights.

print(__doc__)

Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
Fabian Pedregosa <fabian.pedregosa@inria.fr>
#
License: BSD 3 clause (C) INRIA

###
Generate sample data
import numpy as np
import matplotlib.pyplot as plt
from sklearn import neighbors

(continues on next page)

6.23. Nearest Neighbors 1443

scikit-learn user guide, Release 0.23.2

(continued from previous page)

np.random.seed(0)
X = np.sort(5 * np.random.rand(40, 1), axis=0)
T = np.linspace(0, 5, 500)[:, np.newaxis]
y = np.sin(X).ravel()

Add noise to targets
y[::5] += 1 * (0.5 - np.random.rand(8))

###
Fit regression model
n_neighbors = 5

for i, weights in enumerate(['uniform', 'distance']):
knn = neighbors.KNeighborsRegressor(n_neighbors, weights=weights)
y_ = knn.fit(X, y).predict(T)

plt.subplot(2, 1, i + 1)
plt.scatter(X, y, color='darkorange', label='data')
plt.plot(T, y_, color='navy', label='prediction')
plt.axis('tight')
plt.legend()
plt.title("KNeighborsRegressor (k = %i, weights = '%s')" % (n_neighbors,

weights))

plt.tight_layout()
plt.show()

Total running time of the script: (0 minutes 0.133 seconds)

6.23.2 Outlier detection with Local Outlier Factor (LOF)

The Local Outlier Factor (LOF) algorithm is an unsupervised anomaly detection method which computes the local
density deviation of a given data point with respect to its neighbors. It considers as outliers the samples that have a
substantially lower density than their neighbors. This example shows how to use LOF for outlier detection which is
the default use case of this estimator in scikit-learn. Note that when LOF is used for outlier detection it has no predict,
decision_function and score_samples methods. See User Guide: for details on the difference between outlier detection
and novelty detection and how to use LOF for novelty detection.

The number of neighbors considered (parameter n_neighbors) is typically set 1) greater than the minimum number of
samples a cluster has to contain, so that other samples can be local outliers relative to this cluster, and 2) smaller than
the maximum number of close by samples that can potentially be local outliers. In practice, such informations are
generally not available, and taking n_neighbors=20 appears to work well in general.

1444 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

import numpy as np
import matplotlib.pyplot as plt
from sklearn.neighbors import LocalOutlierFactor

print(__doc__)

np.random.seed(42)

Generate train data
X_inliers = 0.3 * np.random.randn(100, 2)
X_inliers = np.r_[X_inliers + 2, X_inliers - 2]

Generate some outliers
X_outliers = np.random.uniform(low=-4, high=4, size=(20, 2))
X = np.r_[X_inliers, X_outliers]

n_outliers = len(X_outliers)
ground_truth = np.ones(len(X), dtype=int)
ground_truth[-n_outliers:] = -1

fit the model for outlier detection (default)
clf = LocalOutlierFactor(n_neighbors=20, contamination=0.1)
use fit_predict to compute the predicted labels of the training samples
(when LOF is used for outlier detection, the estimator has no predict,
decision_function and score_samples methods).

(continues on next page)

6.23. Nearest Neighbors 1445

scikit-learn user guide, Release 0.23.2

(continued from previous page)

y_pred = clf.fit_predict(X)
n_errors = (y_pred != ground_truth).sum()
X_scores = clf.negative_outlier_factor_

plt.title("Local Outlier Factor (LOF)")
plt.scatter(X[:, 0], X[:, 1], color='k', s=3., label='Data points')
plot circles with radius proportional to the outlier scores
radius = (X_scores.max() - X_scores) / (X_scores.max() - X_scores.min())
plt.scatter(X[:, 0], X[:, 1], s=1000 * radius, edgecolors='r',

facecolors='none', label='Outlier scores')
plt.axis('tight')
plt.xlim((-5, 5))
plt.ylim((-5, 5))
plt.xlabel("prediction errors: %d" % (n_errors))
legend = plt.legend(loc='upper left')
legend.legendHandles[0]._sizes = [10]
legend.legendHandles[1]._sizes = [20]
plt.show()

Total running time of the script: (0 minutes 0.067 seconds)

6.23.3 Nearest Neighbors Classification

Sample usage of Nearest Neighbors classification. It will plot the decision boundaries for each class.

•

1446 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn import neighbors, datasets

n_neighbors = 15

import some data to play with
iris = datasets.load_iris()

we only take the first two features. We could avoid this ugly
slicing by using a two-dim dataset
X = iris.data[:, :2]
y = iris.target

h = .02 # step size in the mesh

Create color maps
cmap_light = ListedColormap(['orange', 'cyan', 'cornflowerblue'])
cmap_bold = ListedColormap(['darkorange', 'c', 'darkblue'])

for weights in ['uniform', 'distance']:
we create an instance of Neighbours Classifier and fit the data.
clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights)
clf.fit(X, y)

(continues on next page)

6.23. Nearest Neighbors 1447

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Plot the decision boundary. For that, we will assign a color to each
point in the mesh [x_min, x_max]x[y_min, y_max].
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),

np.arange(y_min, y_max, h))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure()
plt.pcolormesh(xx, yy, Z, cmap=cmap_light)

Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold,

edgecolor='k', s=20)
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.title("3-Class classification (k = %i, weights = '%s')"

% (n_neighbors, weights))

plt.show()

Total running time of the script: (0 minutes 1.650 seconds)

6.23.4 Nearest Centroid Classification

Sample usage of Nearest Centroid classification. It will plot the decision boundaries for each class.

1448 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

6.23. Nearest Neighbors 1449

scikit-learn user guide, Release 0.23.2

•

Out:

None 0.8133333333333334
0.2 0.82

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn import datasets
from sklearn.neighbors import NearestCentroid

n_neighbors = 15

import some data to play with
iris = datasets.load_iris()
we only take the first two features. We could avoid this ugly
slicing by using a two-dim dataset
X = iris.data[:, :2]
y = iris.target

(continues on next page)

1450 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

h = .02 # step size in the mesh

Create color maps
cmap_light = ListedColormap(['orange', 'cyan', 'cornflowerblue'])
cmap_bold = ListedColormap(['darkorange', 'c', 'darkblue'])

for shrinkage in [None, .2]:
we create an instance of Neighbours Classifier and fit the data.
clf = NearestCentroid(shrink_threshold=shrinkage)
clf.fit(X, y)
y_pred = clf.predict(X)
print(shrinkage, np.mean(y == y_pred))
Plot the decision boundary. For that, we will assign a color to each
point in the mesh [x_min, x_max]x[y_min, y_max].
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),

np.arange(y_min, y_max, h))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure()
plt.pcolormesh(xx, yy, Z, cmap=cmap_light)

Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold,

edgecolor='k', s=20)
plt.title("3-Class classification (shrink_threshold=%r)"

% shrinkage)
plt.axis('tight')

plt.show()

Total running time of the script: (0 minutes 0.193 seconds)

6.23.5 Kernel Density Estimation

This example shows how kernel density estimation (KDE), a powerful non-parametric density estimation technique,
can be used to learn a generative model for a dataset. With this generative model in place, new samples can be drawn.
These new samples reflect the underlying model of the data.

6.23. Nearest Neighbors 1451

scikit-learn user guide, Release 0.23.2

Out:

best bandwidth: 3.79269019073225

import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets import load_digits
from sklearn.neighbors import KernelDensity
from sklearn.decomposition import PCA
from sklearn.model_selection import GridSearchCV

load the data
digits = load_digits()

project the 64-dimensional data to a lower dimension
pca = PCA(n_components=15, whiten=False)
data = pca.fit_transform(digits.data)

use grid search cross-validation to optimize the bandwidth

(continues on next page)

1452 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

params = {'bandwidth': np.logspace(-1, 1, 20)}
grid = GridSearchCV(KernelDensity(), params)
grid.fit(data)

print("best bandwidth: {0}".format(grid.best_estimator_.bandwidth))

use the best estimator to compute the kernel density estimate
kde = grid.best_estimator_

sample 44 new points from the data
new_data = kde.sample(44, random_state=0)
new_data = pca.inverse_transform(new_data)

turn data into a 4x11 grid
new_data = new_data.reshape((4, 11, -1))
real_data = digits.data[:44].reshape((4, 11, -1))

plot real digits and resampled digits
fig, ax = plt.subplots(9, 11, subplot_kw=dict(xticks=[], yticks=[]))
for j in range(11):

ax[4, j].set_visible(False)
for i in range(4):

im = ax[i, j].imshow(real_data[i, j].reshape((8, 8)),
cmap=plt.cm.binary, interpolation='nearest')

im.set_clim(0, 16)
im = ax[i + 5, j].imshow(new_data[i, j].reshape((8, 8)),

cmap=plt.cm.binary, interpolation='nearest')
im.set_clim(0, 16)

ax[0, 5].set_title('Selection from the input data')
ax[5, 5].set_title('"New" digits drawn from the kernel density model')

plt.show()

Total running time of the script: (0 minutes 4.812 seconds)

6.23.6 Caching nearest neighbors

This examples demonstrates how to precompute the k nearest neighbors before using them in KNeighborsClassifier.
KNeighborsClassifier can compute the nearest neighbors internally, but precomputing them can have several benefits,
such as finer parameter control, caching for multiple use, or custom implementations.

Here we use the caching property of pipelines to cache the nearest neighbors graph between multiple fits of KNeigh-
borsClassifier. The first call is slow since it computes the neighbors graph, while subsequent call are faster as they
do not need to recompute the graph. Here the durations are small since the dataset is small, but the gain can be more
substantial when the dataset grows larger, or when the grid of parameter to search is large.

6.23. Nearest Neighbors 1453

scikit-learn user guide, Release 0.23.2

Author: Tom Dupre la Tour
#
License: BSD 3 clause
from tempfile import TemporaryDirectory
import matplotlib.pyplot as plt

from sklearn.neighbors import KNeighborsTransformer, KNeighborsClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.datasets import load_digits
from sklearn.pipeline import Pipeline

print(__doc__)

X, y = load_digits(return_X_y=True)
n_neighbors_list = [1, 2, 3, 4, 5, 6, 7, 8, 9]

The transformer computes the nearest neighbors graph using the maximum number
of neighbors necessary in the grid search. The classifier model filters the
nearest neighbors graph as required by its own n_neighbors parameter.
graph_model = KNeighborsTransformer(n_neighbors=max(n_neighbors_list),

mode='distance')
classifier_model = KNeighborsClassifier(metric='precomputed')

Note that we give `memory` a directory to cache the graph computation
that will be used several times when tuning the hyperparameters of the
classifier.
with TemporaryDirectory(prefix="sklearn_graph_cache_") as tmpdir:

full_model = Pipeline(
steps=[('graph', graph_model), ('classifier', classifier_model)],
memory=tmpdir)

param_grid = {'classifier__n_neighbors': n_neighbors_list}
grid_model = GridSearchCV(full_model, param_grid)
grid_model.fit(X, y)

Plot the results of the grid search.
(continues on next page)

1454 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

fig, axes = plt.subplots(1, 2, figsize=(8, 4))
axes[0].errorbar(x=n_neighbors_list,

y=grid_model.cv_results_['mean_test_score'],
yerr=grid_model.cv_results_['std_test_score'])

axes[0].set(xlabel='n_neighbors', title='Classification accuracy')
axes[1].errorbar(x=n_neighbors_list, y=grid_model.cv_results_['mean_fit_time'],

yerr=grid_model.cv_results_['std_fit_time'], color='r')
axes[1].set(xlabel='n_neighbors', title='Fit time (with caching)')
fig.tight_layout()
plt.show()

Total running time of the script: (0 minutes 4.334 seconds)

6.23.7 Neighborhood Components Analysis Illustration

This example illustrates a learned distance metric that maximizes the nearest neighbors classification accuracy. It
provides a visual representation of this metric compared to the original point space. Please refer to the User Guide for
more information.

License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification
from sklearn.neighbors import NeighborhoodComponentsAnalysis
from matplotlib import cm
from scipy.special import logsumexp

print(__doc__)

Original points

First we create a data set of 9 samples from 3 classes, and plot the points in the original space. For this example, we
focus on the classification of point no. 3. The thickness of a link between point no. 3 and another point is proportional
to their distance.

X, y = make_classification(n_samples=9, n_features=2, n_informative=2,
n_redundant=0, n_classes=3, n_clusters_per_class=1,
class_sep=1.0, random_state=0)

plt.figure(1)
ax = plt.gca()
for i in range(X.shape[0]):

ax.text(X[i, 0], X[i, 1], str(i), va='center', ha='center')
ax.scatter(X[i, 0], X[i, 1], s=300, c=cm.Set1(y[[i]]), alpha=0.4)

ax.set_title("Original points")
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
ax.axis('equal') # so that boundaries are displayed correctly as circles

def link_thickness_i(X, i):

(continues on next page)

6.23. Nearest Neighbors 1455

scikit-learn user guide, Release 0.23.2

(continued from previous page)

diff_embedded = X[i] - X
dist_embedded = np.einsum('ij,ij->i', diff_embedded,

diff_embedded)
dist_embedded[i] = np.inf

compute exponentiated distances (use the log-sum-exp trick to
avoid numerical instabilities
exp_dist_embedded = np.exp(-dist_embedded -

logsumexp(-dist_embedded))
return exp_dist_embedded

def relate_point(X, i, ax):
pt_i = X[i]
for j, pt_j in enumerate(X):

thickness = link_thickness_i(X, i)
if i != j:

line = ([pt_i[0], pt_j[0]], [pt_i[1], pt_j[1]])
ax.plot(*line, c=cm.Set1(y[j]),

linewidth=5*thickness[j])

i = 3
relate_point(X, i, ax)
plt.show()

1456 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Learning an embedding

We use NeighborhoodComponentsAnalysis to learn an embedding and plot the points after the transforma-
tion. We then take the embedding and find the nearest neighbors.

nca = NeighborhoodComponentsAnalysis(max_iter=30, random_state=0)
nca = nca.fit(X, y)

plt.figure(2)
ax2 = plt.gca()
X_embedded = nca.transform(X)
relate_point(X_embedded, i, ax2)

for i in range(len(X)):
ax2.text(X_embedded[i, 0], X_embedded[i, 1], str(i),

va='center', ha='center')
ax2.scatter(X_embedded[i, 0], X_embedded[i, 1], s=300, c=cm.Set1(y[[i]]),

alpha=0.4)

ax2.set_title("NCA embedding")
ax2.axes.get_xaxis().set_visible(False)
ax2.axes.get_yaxis().set_visible(False)
ax2.axis('equal')
plt.show()

Total running time of the script: (0 minutes 0.121 seconds)

6.23. Nearest Neighbors 1457

scikit-learn user guide, Release 0.23.2

6.23.8 Novelty detection with Local Outlier Factor (LOF)

The Local Outlier Factor (LOF) algorithm is an unsupervised anomaly detection method which computes the local
density deviation of a given data point with respect to its neighbors. It considers as outliers the samples that have a
substantially lower density than their neighbors. This example shows how to use LOF for novelty detection. Note
that when LOF is used for novelty detection you MUST not use predict, decision_function and score_samples on the
training set as this would lead to wrong results. You must only use these methods on new unseen data (which are not
in the training set). See User Guide: for details on the difference between outlier detection and novelty detection and
how to use LOF for outlier detection.

The number of neighbors considered, (parameter n_neighbors) is typically set 1) greater than the minimum number
of samples a cluster has to contain, so that other samples can be local outliers relative to this cluster, and 2) smaller
than the maximum number of close by samples that can potentially be local outliers. In practice, such informations
are generally not available, and taking n_neighbors=20 appears to work well in general.

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from sklearn.neighbors import LocalOutlierFactor

print(__doc__)

np.random.seed(42)

xx, yy = np.meshgrid(np.linspace(-5, 5, 500), np.linspace(-5, 5, 500))

(continues on next page)

1458 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Generate normal (not abnormal) training observations
X = 0.3 * np.random.randn(100, 2)
X_train = np.r_[X + 2, X - 2]
Generate new normal (not abnormal) observations
X = 0.3 * np.random.randn(20, 2)
X_test = np.r_[X + 2, X - 2]
Generate some abnormal novel observations
X_outliers = np.random.uniform(low=-4, high=4, size=(20, 2))

fit the model for novelty detection (novelty=True)
clf = LocalOutlierFactor(n_neighbors=20, novelty=True, contamination=0.1)
clf.fit(X_train)
DO NOT use predict, decision_function and score_samples on X_train as this
would give wrong results but only on new unseen data (not used in X_train),
e.g. X_test, X_outliers or the meshgrid
y_pred_test = clf.predict(X_test)
y_pred_outliers = clf.predict(X_outliers)
n_error_test = y_pred_test[y_pred_test == -1].size
n_error_outliers = y_pred_outliers[y_pred_outliers == 1].size

plot the learned frontier, the points, and the nearest vectors to the plane
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

plt.title("Novelty Detection with LOF")
plt.contourf(xx, yy, Z, levels=np.linspace(Z.min(), 0, 7), cmap=plt.cm.PuBu)
a = plt.contour(xx, yy, Z, levels=[0], linewidths=2, colors='darkred')
plt.contourf(xx, yy, Z, levels=[0, Z.max()], colors='palevioletred')

s = 40
b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c='white', s=s, edgecolors='k')
b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c='blueviolet', s=s,

edgecolors='k')
c = plt.scatter(X_outliers[:, 0], X_outliers[:, 1], c='gold', s=s,

edgecolors='k')
plt.axis('tight')
plt.xlim((-5, 5))
plt.ylim((-5, 5))
plt.legend([a.collections[0], b1, b2, c],

["learned frontier", "training observations",
"new regular observations", "new abnormal observations"],

loc="upper left",
prop=matplotlib.font_manager.FontProperties(size=11))

plt.xlabel(
"errors novel regular: %d/40 ; errors novel abnormal: %d/40"
% (n_error_test, n_error_outliers))

plt.show()

Total running time of the script: (0 minutes 0.582 seconds)

6.23.9 Comparing Nearest Neighbors with and without Neighborhood Components
Analysis

An example comparing nearest neighbors classification with and without Neighborhood Components Analysis.

It will plot the class decision boundaries given by a Nearest Neighbors classifier when using the Euclidean distance

6.23. Nearest Neighbors 1459

scikit-learn user guide, Release 0.23.2

on the original features, versus using the Euclidean distance after the transformation learned by Neighborhood Com-
ponents Analysis. The latter aims to find a linear transformation that maximises the (stochastic) nearest neighbor
classification accuracy on the training set.

•

1460 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import (KNeighborsClassifier,

NeighborhoodComponentsAnalysis)
from sklearn.pipeline import Pipeline

print(__doc__)

n_neighbors = 1

dataset = datasets.load_iris()
X, y = dataset.data, dataset.target

we only take two features. We could avoid this ugly
slicing by using a two-dim dataset
X = X[:, [0, 2]]

X_train, X_test, y_train, y_test = \
train_test_split(X, y, stratify=y, test_size=0.7, random_state=42)

(continues on next page)

6.23. Nearest Neighbors 1461

scikit-learn user guide, Release 0.23.2

(continued from previous page)

h = .01 # step size in the mesh

Create color maps
cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF'])
cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF'])

names = ['KNN', 'NCA, KNN']

classifiers = [Pipeline([('scaler', StandardScaler()),
('knn', KNeighborsClassifier(n_neighbors=n_neighbors))
]),

Pipeline([('scaler', StandardScaler()),
('nca', NeighborhoodComponentsAnalysis()),
('knn', KNeighborsClassifier(n_neighbors=n_neighbors))
])

]

x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),

np.arange(y_min, y_max, h))

for name, clf in zip(names, classifiers):

clf.fit(X_train, y_train)
score = clf.score(X_test, y_test)

Plot the decision boundary. For that, we will assign a color to each
point in the mesh [x_min, x_max]x[y_min, y_max].
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure()
plt.pcolormesh(xx, yy, Z, cmap=cmap_light, alpha=.8)

Plot also the training and testing points
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold, edgecolor='k', s=20)
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.title("{} (k = {})".format(name, n_neighbors))
plt.text(0.9, 0.1, '{:.2f}'.format(score), size=15,

ha='center', va='center', transform=plt.gca().transAxes)

plt.show()

Total running time of the script: (0 minutes 18.443 seconds)

6.23.10 Dimensionality Reduction with Neighborhood Components Analysis

Sample usage of Neighborhood Components Analysis for dimensionality reduction.

This example compares different (linear) dimensionality reduction methods applied on the Digits data set. The data
set contains images of digits from 0 to 9 with approximately 180 samples of each class. Each image is of dimension
8x8 = 64, and is reduced to a two-dimensional data point.

Principal Component Analysis (PCA) applied to this data identifies the combination of attributes (principal compo-

1462 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

nents, or directions in the feature space) that account for the most variance in the data. Here we plot the different
samples on the 2 first principal components.

Linear Discriminant Analysis (LDA) tries to identify attributes that account for the most variance between classes. In
particular, LDA, in contrast to PCA, is a supervised method, using known class labels.

Neighborhood Components Analysis (NCA) tries to find a feature space such that a stochastic nearest neighbor algo-
rithm will give the best accuracy. Like LDA, it is a supervised method.

One can see that NCA enforces a clustering of the data that is visually meaningful despite the large reduction in
dimension.

•

6.23. Nearest Neighbors 1463

scikit-learn user guide, Release 0.23.2

•

1464 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.decomposition import PCA
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.neighbors import (KNeighborsClassifier,

NeighborhoodComponentsAnalysis)
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler

print(__doc__)

n_neighbors = 3
random_state = 0

Load Digits dataset
X, y = datasets.load_digits(return_X_y=True)

Split into train/test
X_train, X_test, y_train, y_test = \

train_test_split(X, y, test_size=0.5, stratify=y,
random_state=random_state)

dim = len(X[0])
(continues on next page)

6.23. Nearest Neighbors 1465

scikit-learn user guide, Release 0.23.2

(continued from previous page)

n_classes = len(np.unique(y))

Reduce dimension to 2 with PCA
pca = make_pipeline(StandardScaler(),

PCA(n_components=2, random_state=random_state))

Reduce dimension to 2 with LinearDiscriminantAnalysis
lda = make_pipeline(StandardScaler(),

LinearDiscriminantAnalysis(n_components=2))

Reduce dimension to 2 with NeighborhoodComponentAnalysis
nca = make_pipeline(StandardScaler(),

NeighborhoodComponentsAnalysis(n_components=2,
random_state=random_state))

Use a nearest neighbor classifier to evaluate the methods
knn = KNeighborsClassifier(n_neighbors=n_neighbors)

Make a list of the methods to be compared
dim_reduction_methods = [('PCA', pca), ('LDA', lda), ('NCA', nca)]

plt.figure()
for i, (name, model) in enumerate(dim_reduction_methods):

plt.figure()
plt.subplot(1, 3, i + 1, aspect=1)

Fit the method's model
model.fit(X_train, y_train)

Fit a nearest neighbor classifier on the embedded training set
knn.fit(model.transform(X_train), y_train)

Compute the nearest neighbor accuracy on the embedded test set
acc_knn = knn.score(model.transform(X_test), y_test)

Embed the data set in 2 dimensions using the fitted model
X_embedded = model.transform(X)

Plot the projected points and show the evaluation score
plt.scatter(X_embedded[:, 0], X_embedded[:, 1], c=y, s=30, cmap='Set1')
plt.title("{}, KNN (k={})\nTest accuracy = {:.2f}".format(name,

n_neighbors,
acc_knn))

plt.show()

Total running time of the script: (0 minutes 2.021 seconds)

6.23.11 Kernel Density Estimate of Species Distributions

This shows an example of a neighbors-based query (in particular a kernel density estimate) on geospatial data, using
a Ball Tree built upon the Haversine distance metric – i.e. distances over points in latitude/longitude. The dataset
is provided by Phillips et. al. (2006). If available, the example uses basemap to plot the coast lines and national
boundaries of South America.

This example does not perform any learning over the data (see Species distribution modeling for an example of classi-
fication based on the attributes in this dataset). It simply shows the kernel density estimate of observed data points in

1466 Chapter 6. Examples

https://matplotlib.org/basemap/

scikit-learn user guide, Release 0.23.2

geospatial coordinates.

The two species are:

• “Bradypus variegatus” , the Brown-throated Sloth.

• “Microryzomys minutus” , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia,
Ecuador, Peru, and Venezuela.

References

• “Maximum entropy modeling of species geographic distributions” S. J. Phillips, R. P. Anderson, R. E. Schapire
- Ecological Modelling, 190:231-259, 2006.

Out:

- computing KDE in spherical coordinates
- plot coastlines from coverage
- computing KDE in spherical coordinates
- plot coastlines from coverage

6.23. Nearest Neighbors 1467

http://www.iucnredlist.org/apps/redlist/details/3038/0
http://www.iucnredlist.org/details/13408/0
http://rob.schapire.net/papers/ecolmod.pdf

scikit-learn user guide, Release 0.23.2

Author: Jake Vanderplas <jakevdp@cs.washington.edu>
#
License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_species_distributions
from sklearn.neighbors import KernelDensity

if basemap is available, we'll use it.
otherwise, we'll improvise later...
try:

from mpl_toolkits.basemap import Basemap
basemap = True

except ImportError:
basemap = False

def construct_grids(batch):
"""Construct the map grid from the batch object

Parameters

batch : Batch object

The object returned by :func:`fetch_species_distributions`

Returns

(xgrid, ygrid) : 1-D arrays

The grid corresponding to the values in batch.coverages
"""
x,y coordinates for corner cells
xmin = batch.x_left_lower_corner + batch.grid_size
xmax = xmin + (batch.Nx * batch.grid_size)
ymin = batch.y_left_lower_corner + batch.grid_size
ymax = ymin + (batch.Ny * batch.grid_size)

x coordinates of the grid cells
xgrid = np.arange(xmin, xmax, batch.grid_size)
y coordinates of the grid cells
ygrid = np.arange(ymin, ymax, batch.grid_size)

return (xgrid, ygrid)

Get matrices/arrays of species IDs and locations
data = fetch_species_distributions()
species_names = ['Bradypus Variegatus', 'Microryzomys Minutus']

Xtrain = np.vstack([data['train']['dd lat'],
data['train']['dd long']]).T

ytrain = np.array([d.decode('ascii').startswith('micro')
for d in data['train']['species']], dtype='int')

Xtrain *= np.pi / 180. # Convert lat/long to radians

Set up the data grid for the contour plot
xgrid, ygrid = construct_grids(data)

(continues on next page)

1468 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

X, Y = np.meshgrid(xgrid[::5], ygrid[::5][::-1])
land_reference = data.coverages[6][::5, ::5]
land_mask = (land_reference > -9999).ravel()

xy = np.vstack([Y.ravel(), X.ravel()]).T
xy = xy[land_mask]
xy *= np.pi / 180.

Plot map of South America with distributions of each species
fig = plt.figure()
fig.subplots_adjust(left=0.05, right=0.95, wspace=0.05)

for i in range(2):
plt.subplot(1, 2, i + 1)

construct a kernel density estimate of the distribution
print(" - computing KDE in spherical coordinates")
kde = KernelDensity(bandwidth=0.04, metric='haversine',

kernel='gaussian', algorithm='ball_tree')
kde.fit(Xtrain[ytrain == i])

evaluate only on the land: -9999 indicates ocean
Z = np.full(land_mask.shape[0], -9999, dtype='int')
Z[land_mask] = np.exp(kde.score_samples(xy))
Z = Z.reshape(X.shape)

plot contours of the density
levels = np.linspace(0, Z.max(), 25)
plt.contourf(X, Y, Z, levels=levels, cmap=plt.cm.Reds)

if basemap:
print(" - plot coastlines using basemap")
m = Basemap(projection='cyl', llcrnrlat=Y.min(),

urcrnrlat=Y.max(), llcrnrlon=X.min(),
urcrnrlon=X.max(), resolution='c')

m.drawcoastlines()
m.drawcountries()

else:
print(" - plot coastlines from coverage")
plt.contour(X, Y, land_reference,

levels=[-9998], colors="k",
linestyles="solid")

plt.xticks([])
plt.yticks([])

plt.title(species_names[i])

plt.show()

Total running time of the script: (0 minutes 5.566 seconds)

6.23.12 Simple 1D Kernel Density Estimation

This example uses the sklearn.neighbors.KernelDensity class to demonstrate the principles of Kernel
Density Estimation in one dimension.

6.23. Nearest Neighbors 1469

scikit-learn user guide, Release 0.23.2

The first plot shows one of the problems with using histograms to visualize the density of points in 1D. Intuitively, a
histogram can be thought of as a scheme in which a unit “block” is stacked above each point on a regular grid. As
the top two panels show, however, the choice of gridding for these blocks can lead to wildly divergent ideas about
the underlying shape of the density distribution. If we instead center each block on the point it represents, we get the
estimate shown in the bottom left panel. This is a kernel density estimation with a “top hat” kernel. This idea can be
generalized to other kernel shapes: the bottom-right panel of the first figure shows a Gaussian kernel density estimate
over the same distribution.

Scikit-learn implements efficient kernel density estimation using either a Ball Tree or KD Tree structure, through the
sklearn.neighbors.KernelDensity estimator. The available kernels are shown in the second figure of this
example.

The third figure compares kernel density estimates for a distribution of 100 samples in 1 dimension. Though this
example uses 1D distributions, kernel density estimation is easily and efficiently extensible to higher dimensions as
well.

•

1470 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

6.23. Nearest Neighbors 1471

scikit-learn user guide, Release 0.23.2

•

Author: Jake Vanderplas <jakevdp@cs.washington.edu>
#
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from scipy.stats import norm
from sklearn.neighbors import KernelDensity
from sklearn.utils.fixes import parse_version

`normed` is being deprecated in favor of `density` in histograms
if parse_version(matplotlib.__version__) >= parse_version('2.1'):

density_param = {'density': True}
else:

density_param = {'normed': True}

--
Plot the progression of histograms to kernels
np.random.seed(1)
N = 20
X = np.concatenate((np.random.normal(0, 1, int(0.3 * N)),

np.random.normal(5, 1, int(0.7 * N))))[:, np.newaxis]
X_plot = np.linspace(-5, 10, 1000)[:, np.newaxis]
bins = np.linspace(-5, 10, 10)

fig, ax = plt.subplots(2, 2, sharex=True, sharey=True)
fig.subplots_adjust(hspace=0.05, wspace=0.05)

(continues on next page)

1472 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

histogram 1
ax[0, 0].hist(X[:, 0], bins=bins, fc='#AAAAFF', **density_param)
ax[0, 0].text(-3.5, 0.31, "Histogram")

histogram 2
ax[0, 1].hist(X[:, 0], bins=bins + 0.75, fc='#AAAAFF', **density_param)
ax[0, 1].text(-3.5, 0.31, "Histogram, bins shifted")

tophat KDE
kde = KernelDensity(kernel='tophat', bandwidth=0.75).fit(X)
log_dens = kde.score_samples(X_plot)
ax[1, 0].fill(X_plot[:, 0], np.exp(log_dens), fc='#AAAAFF')
ax[1, 0].text(-3.5, 0.31, "Tophat Kernel Density")

Gaussian KDE
kde = KernelDensity(kernel='gaussian', bandwidth=0.75).fit(X)
log_dens = kde.score_samples(X_plot)
ax[1, 1].fill(X_plot[:, 0], np.exp(log_dens), fc='#AAAAFF')
ax[1, 1].text(-3.5, 0.31, "Gaussian Kernel Density")

for axi in ax.ravel():
axi.plot(X[:, 0], np.full(X.shape[0], -0.01), '+k')
axi.set_xlim(-4, 9)
axi.set_ylim(-0.02, 0.34)

for axi in ax[:, 0]:
axi.set_ylabel('Normalized Density')

for axi in ax[1, :]:
axi.set_xlabel('x')

--
Plot all available kernels
X_plot = np.linspace(-6, 6, 1000)[:, None]
X_src = np.zeros((1, 1))

fig, ax = plt.subplots(2, 3, sharex=True, sharey=True)
fig.subplots_adjust(left=0.05, right=0.95, hspace=0.05, wspace=0.05)

def format_func(x, loc):
if x == 0:

return '0'
elif x == 1:

return 'h'
elif x == -1:

return '-h'
else:

return '%ih' % x

for i, kernel in enumerate(['gaussian', 'tophat', 'epanechnikov',
'exponential', 'linear', 'cosine']):

axi = ax.ravel()[i]
log_dens = KernelDensity(kernel=kernel).fit(X_src).score_samples(X_plot)
axi.fill(X_plot[:, 0], np.exp(log_dens), '-k', fc='#AAAAFF')
axi.text(-2.6, 0.95, kernel)

(continues on next page)

6.23. Nearest Neighbors 1473

scikit-learn user guide, Release 0.23.2

(continued from previous page)

axi.xaxis.set_major_formatter(plt.FuncFormatter(format_func))
axi.xaxis.set_major_locator(plt.MultipleLocator(1))
axi.yaxis.set_major_locator(plt.NullLocator())

axi.set_ylim(0, 1.05)
axi.set_xlim(-2.9, 2.9)

ax[0, 1].set_title('Available Kernels')

--
Plot a 1D density example
N = 100
np.random.seed(1)
X = np.concatenate((np.random.normal(0, 1, int(0.3 * N)),

np.random.normal(5, 1, int(0.7 * N))))[:, np.newaxis]

X_plot = np.linspace(-5, 10, 1000)[:, np.newaxis]

true_dens = (0.3 * norm(0, 1).pdf(X_plot[:, 0])
+ 0.7 * norm(5, 1).pdf(X_plot[:, 0]))

fig, ax = plt.subplots()
ax.fill(X_plot[:, 0], true_dens, fc='black', alpha=0.2,

label='input distribution')
colors = ['navy', 'cornflowerblue', 'darkorange']
kernels = ['gaussian', 'tophat', 'epanechnikov']
lw = 2

for color, kernel in zip(colors, kernels):
kde = KernelDensity(kernel=kernel, bandwidth=0.5).fit(X)
log_dens = kde.score_samples(X_plot)
ax.plot(X_plot[:, 0], np.exp(log_dens), color=color, lw=lw,

linestyle='-', label="kernel = '{0}'".format(kernel))

ax.text(6, 0.38, "N={0} points".format(N))

ax.legend(loc='upper left')
ax.plot(X[:, 0], -0.005 - 0.01 * np.random.random(X.shape[0]), '+k')

ax.set_xlim(-4, 9)
ax.set_ylim(-0.02, 0.4)
plt.show()

Total running time of the script: (0 minutes 0.391 seconds)

6.23.13 Approximate nearest neighbors in TSNE

This example presents how to chain KNeighborsTransformer and TSNE in a pipeline. It also shows how to wrap the
packages annoy and nmslib to replace KNeighborsTransformer and perform approximate nearest neighbors. These
packages can be installed with pip install annoy nmslib.

Note: Currently TSNE(metric='precomputed') does not modify the precomputed distances, and thus assumes
that precomputed euclidean distances are squared. In future versions, a parameter in TSNE will control the optional
squaring of precomputed distances (see #12401).

Note: In KNeighborsTransformer we use the definition which includes each training point as its own neighbor

1474 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

in the count of n_neighbors, and for compatibility reasons, one extra neighbor is computed when mode ==
'distance'. Please note that we do the same in the proposed wrappers.

Sample output:

Benchmarking on MNIST_2000:

AnnoyTransformer: 0.583 sec
NMSlibTransformer: 0.321 sec
KNeighborsTransformer: 1.225 sec
TSNE with AnnoyTransformer: 4.903 sec
TSNE with NMSlibTransformer: 5.009 sec
TSNE with KNeighborsTransformer: 6.210 sec
TSNE with internal NearestNeighbors: 6.365 sec

Benchmarking on MNIST_10000:

AnnoyTransformer: 4.457 sec
NMSlibTransformer: 2.080 sec
KNeighborsTransformer: 30.680 sec
TSNE with AnnoyTransformer: 30.225 sec
TSNE with NMSlibTransformer: 43.295 sec
TSNE with KNeighborsTransformer: 64.845 sec
TSNE with internal NearestNeighbors: 64.984 sec

Author: Tom Dupre la Tour
#
License: BSD 3 clause
import time
import sys

try:
import annoy

except ImportError:
print("The package 'annoy' is required to run this example.")
sys.exit()

try:
import nmslib

except ImportError:
print("The package 'nmslib' is required to run this example.")
sys.exit()

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import NullFormatter
from scipy.sparse import csr_matrix

from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.neighbors import KNeighborsTransformer
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.datasets import fetch_openml
from sklearn.pipeline import make_pipeline
from sklearn.manifold import TSNE
from sklearn.utils import shuffle

print(__doc__)

(continues on next page)

6.23. Nearest Neighbors 1475

scikit-learn user guide, Release 0.23.2

(continued from previous page)

class NMSlibTransformer(TransformerMixin, BaseEstimator):
"""Wrapper for using nmslib as sklearn's KNeighborsTransformer"""

def __init__(self, n_neighbors=5, metric='euclidean', method='sw-graph',
n_jobs=1):

self.n_neighbors = n_neighbors
self.method = method
self.metric = metric
self.n_jobs = n_jobs

def fit(self, X):
self.n_samples_fit_ = X.shape[0]

see more metric in the manual
https://github.com/nmslib/nmslib/tree/master/manual
space = {

'sqeuclidean': 'l2',
'euclidean': 'l2',
'cosine': 'cosinesimil',
'l1': 'l1',
'l2': 'l2',

}[self.metric]

self.nmslib_ = nmslib.init(method=self.method, space=space)
self.nmslib_.addDataPointBatch(X)
self.nmslib_.createIndex()
return self

def transform(self, X):
n_samples_transform = X.shape[0]

For compatibility reasons, as each sample is considered as its own
neighbor, one extra neighbor will be computed.
n_neighbors = self.n_neighbors + 1

results = self.nmslib_.knnQueryBatch(X, k=n_neighbors,
num_threads=self.n_jobs)

indices, distances = zip(*results)
indices, distances = np.vstack(indices), np.vstack(distances)

if self.metric == 'sqeuclidean':
distances **= 2

indptr = np.arange(0, n_samples_transform * n_neighbors + 1,
n_neighbors)

kneighbors_graph = csr_matrix((distances.ravel(), indices.ravel(),
indptr), shape=(n_samples_transform,

self.n_samples_fit_))

return kneighbors_graph

class AnnoyTransformer(TransformerMixin, BaseEstimator):
"""Wrapper for using annoy.AnnoyIndex as sklearn's KNeighborsTransformer"""

def __init__(self, n_neighbors=5, metric='euclidean', n_trees=10,
(continues on next page)

1476 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

search_k=-1):
self.n_neighbors = n_neighbors
self.n_trees = n_trees
self.search_k = search_k
self.metric = metric

def fit(self, X):
self.n_samples_fit_ = X.shape[0]
metric = self.metric if self.metric != 'sqeuclidean' else 'euclidean'
self.annoy_ = annoy.AnnoyIndex(X.shape[1], metric=metric)
for i, x in enumerate(X):

self.annoy_.add_item(i, x.tolist())
self.annoy_.build(self.n_trees)
return self

def transform(self, X):
return self._transform(X)

def fit_transform(self, X, y=None):
return self.fit(X)._transform(X=None)

def _transform(self, X):
"""As `transform`, but handles X is None for faster `fit_transform`."""

n_samples_transform = self.n_samples_fit_ if X is None else X.shape[0]

For compatibility reasons, as each sample is considered as its own
neighbor, one extra neighbor will be computed.
n_neighbors = self.n_neighbors + 1

indices = np.empty((n_samples_transform, n_neighbors),
dtype=np.int)

distances = np.empty((n_samples_transform, n_neighbors))

if X is None:
for i in range(self.annoy_.get_n_items()):

ind, dist = self.annoy_.get_nns_by_item(
i, n_neighbors, self.search_k, include_distances=True)

indices[i], distances[i] = ind, dist
else:

for i, x in enumerate(X):
indices[i], distances[i] = self.annoy_.get_nns_by_vector(

x.tolist(), n_neighbors, self.search_k,
include_distances=True)

if self.metric == 'sqeuclidean':
distances **= 2

indptr = np.arange(0, n_samples_transform * n_neighbors + 1,
n_neighbors)

kneighbors_graph = csr_matrix((distances.ravel(), indices.ravel(),
indptr), shape=(n_samples_transform,

self.n_samples_fit_))

return kneighbors_graph

(continues on next page)

6.23. Nearest Neighbors 1477

scikit-learn user guide, Release 0.23.2

(continued from previous page)

def test_transformers():
"""Test that AnnoyTransformer and KNeighborsTransformer give same results
"""
X = np.random.RandomState(42).randn(10, 2)

knn = KNeighborsTransformer()
Xt0 = knn.fit_transform(X)

ann = AnnoyTransformer()
Xt1 = ann.fit_transform(X)

nms = NMSlibTransformer()
Xt2 = nms.fit_transform(X)

assert_array_almost_equal(Xt0.toarray(), Xt1.toarray(), decimal=5)
assert_array_almost_equal(Xt0.toarray(), Xt2.toarray(), decimal=5)

def load_mnist(n_samples):
"""Load MNIST, shuffle the data, and return only n_samples."""
mnist = fetch_openml("mnist_784")
X, y = shuffle(mnist.data, mnist.target, random_state=2)
return X[:n_samples] / 255, y[:n_samples]

def run_benchmark():
datasets = [

('MNIST_2000', load_mnist(n_samples=2000)),
('MNIST_10000', load_mnist(n_samples=10000)),

]

n_iter = 500
perplexity = 30
TSNE requires a certain number of neighbors which depends on the
perplexity parameter.
Add one since we include each sample as its own neighbor.
n_neighbors = int(3. * perplexity + 1) + 1

transformers = [
('AnnoyTransformer', AnnoyTransformer(n_neighbors=n_neighbors,

metric='sqeuclidean')),
('NMSlibTransformer', NMSlibTransformer(n_neighbors=n_neighbors,

metric='sqeuclidean')),
('KNeighborsTransformer', KNeighborsTransformer(

n_neighbors=n_neighbors, mode='distance', metric='sqeuclidean')),
('TSNE with AnnoyTransformer', make_pipeline(

AnnoyTransformer(n_neighbors=n_neighbors, metric='sqeuclidean'),
TSNE(metric='precomputed', perplexity=perplexity,

method="barnes_hut", random_state=42, n_iter=n_iter),)),
('TSNE with NMSlibTransformer', make_pipeline(

NMSlibTransformer(n_neighbors=n_neighbors, metric='sqeuclidean'),
TSNE(metric='precomputed', perplexity=perplexity,

method="barnes_hut", random_state=42, n_iter=n_iter),)),
('TSNE with KNeighborsTransformer', make_pipeline(

KNeighborsTransformer(n_neighbors=n_neighbors, mode='distance',
metric='sqeuclidean'),

(continues on next page)

1478 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

TSNE(metric='precomputed', perplexity=perplexity,
method="barnes_hut", random_state=42, n_iter=n_iter),)),

('TSNE with internal NearestNeighbors',
TSNE(metric='sqeuclidean', perplexity=perplexity, method="barnes_hut",

random_state=42, n_iter=n_iter)),
]

init the plot
nrows = len(datasets)
ncols = np.sum([1 for name, model in transformers if 'TSNE' in name])
fig, axes = plt.subplots(nrows=nrows, ncols=ncols, squeeze=False,

figsize=(5 * ncols, 4 * nrows))
axes = axes.ravel()
i_ax = 0

for dataset_name, (X, y) in datasets:

msg = 'Benchmarking on %s:' % dataset_name
print('\n%s\n%s' % (msg, '-' * len(msg)))

for transformer_name, transformer in transformers:
start = time.time()
Xt = transformer.fit_transform(X)
duration = time.time() - start

print the duration report
longest = np.max([len(name) for name, model in transformers])
whitespaces = ' ' * (longest - len(transformer_name))
print('%s: %s%.3f sec' % (transformer_name, whitespaces, duration))

plot TSNE embedding which should be very similar across methods
if 'TSNE' in transformer_name:

axes[i_ax].set_title(transformer_name + '\non ' + dataset_name)
axes[i_ax].scatter(Xt[:, 0], Xt[:, 1], c=y.astype(np.int32),

alpha=0.2, cmap=plt.cm.viridis)
axes[i_ax].xaxis.set_major_formatter(NullFormatter())
axes[i_ax].yaxis.set_major_formatter(NullFormatter())
axes[i_ax].axis('tight')
i_ax += 1

fig.tight_layout()
plt.show()

if __name__ == '__main__':
test_transformers()
run_benchmark()

Total running time of the script: (0 minutes 0.000 seconds)

6.24 Neural Networks

Examples concerning the sklearn.neural_network module.

6.24. Neural Networks 1479

scikit-learn user guide, Release 0.23.2

6.24.1 Visualization of MLP weights on MNIST

Sometimes looking at the learned coefficients of a neural network can provide insight into the learning behavior. For
example if weights look unstructured, maybe some were not used at all, or if very large coefficients exist, maybe
regularization was too low or the learning rate too high.

This example shows how to plot some of the first layer weights in a MLPClassifier trained on the MNIST dataset.

The input data consists of 28x28 pixel handwritten digits, leading to 784 features in the dataset. Therefore the first
layer weight matrix have the shape (784, hidden_layer_sizes[0]). We can therefore visualize a single column of the
weight matrix as a 28x28 pixel image.

To make the example run faster, we use very few hidden units, and train only for a very short time. Training longer
would result in weights with a much smoother spatial appearance. The example will throw a warning because it
doesn’t converge, in this case this is what we want because of CI’s time constraints.

Out:

Iteration 1, loss = 0.32009978
Iteration 2, loss = 0.15347534
Iteration 3, loss = 0.11544755
Iteration 4, loss = 0.09279764
Iteration 5, loss = 0.07889367
Iteration 6, loss = 0.07170497
Iteration 7, loss = 0.06282111
Iteration 8, loss = 0.05530788

(continues on next page)

1480 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Iteration 9, loss = 0.04960484
Iteration 10, loss = 0.04645355
Training set score: 0.986800
Test set score: 0.970000

import warnings

import matplotlib.pyplot as plt
from sklearn.datasets import fetch_openml
from sklearn.exceptions import ConvergenceWarning
from sklearn.neural_network import MLPClassifier

print(__doc__)

Load data from https://www.openml.org/d/554
X, y = fetch_openml('mnist_784', version=1, return_X_y=True)
X = X / 255.

rescale the data, use the traditional train/test split
X_train, X_test = X[:60000], X[60000:]
y_train, y_test = y[:60000], y[60000:]

mlp = MLPClassifier(hidden_layer_sizes=(50,), max_iter=10, alpha=1e-4,
solver='sgd', verbose=10, random_state=1,
learning_rate_init=.1)

this example won't converge because of CI's time constraints, so we catch the
warning and are ignore it here
with warnings.catch_warnings():

warnings.filterwarnings("ignore", category=ConvergenceWarning,
module="sklearn")

mlp.fit(X_train, y_train)

print("Training set score: %f" % mlp.score(X_train, y_train))
print("Test set score: %f" % mlp.score(X_test, y_test))

fig, axes = plt.subplots(4, 4)
use global min / max to ensure all weights are shown on the same scale
vmin, vmax = mlp.coefs_[0].min(), mlp.coefs_[0].max()
for coef, ax in zip(mlp.coefs_[0].T, axes.ravel()):

ax.matshow(coef.reshape(28, 28), cmap=plt.cm.gray, vmin=.5 * vmin,
vmax=.5 * vmax)

ax.set_xticks(())
ax.set_yticks(())

plt.show()

Total running time of the script: (0 minutes 25.855 seconds)

6.24. Neural Networks 1481

scikit-learn user guide, Release 0.23.2

6.24.2 Restricted Boltzmann Machine features for digit classification

For greyscale image data where pixel values can be interpreted as degrees of blackness on a white background, like
handwritten digit recognition, the Bernoulli Restricted Boltzmann machine model (BernoulliRBM) can perform
effective non-linear feature extraction.

In order to learn good latent representations from a small dataset, we artificially generate more labeled data by per-
turbing the training data with linear shifts of 1 pixel in each direction.

This example shows how to build a classification pipeline with a BernoulliRBM feature extractor and a
LogisticRegression classifier. The hyperparameters of the entire model (learning rate, hidden layer size, regu-
larization) were optimized by grid search, but the search is not reproduced here because of runtime constraints.

Logistic regression on raw pixel values is presented for comparison. The example shows that the features extracted by
the BernoulliRBM help improve the classification accuracy.

Out:

[BernoulliRBM] Iteration 1, pseudo-likelihood = -25.39, time = 0.15s
[BernoulliRBM] Iteration 2, pseudo-likelihood = -23.77, time = 0.21s
[BernoulliRBM] Iteration 3, pseudo-likelihood = -22.94, time = 0.21s
[BernoulliRBM] Iteration 4, pseudo-likelihood = -21.91, time = 0.24s
[BernoulliRBM] Iteration 5, pseudo-likelihood = -21.69, time = 0.21s
[BernoulliRBM] Iteration 6, pseudo-likelihood = -21.06, time = 0.21s
[BernoulliRBM] Iteration 7, pseudo-likelihood = -20.89, time = 0.20s
[BernoulliRBM] Iteration 8, pseudo-likelihood = -20.64, time = 0.21s
[BernoulliRBM] Iteration 9, pseudo-likelihood = -20.36, time = 0.20s
[BernoulliRBM] Iteration 10, pseudo-likelihood = -20.09, time = 0.21s
Logistic regression using RBM features:

precision recall f1-score support

0 0.99 0.98 0.99 174
(continues on next page)

1482 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

1 0.92 0.93 0.93 184
2 0.95 0.95 0.95 166
3 0.95 0.88 0.91 194
4 0.97 0.94 0.95 186
5 0.92 0.92 0.92 181
6 0.98 0.97 0.97 207
7 0.93 0.98 0.95 154
8 0.89 0.90 0.89 182
9 0.88 0.92 0.90 169

accuracy 0.94 1797
macro avg 0.94 0.94 0.94 1797

weighted avg 0.94 0.94 0.94 1797

Logistic regression using raw pixel features:
precision recall f1-score support

0 0.90 0.92 0.91 174
1 0.60 0.58 0.59 184
2 0.76 0.85 0.80 166
3 0.78 0.79 0.78 194
4 0.82 0.84 0.83 186
5 0.76 0.76 0.76 181
6 0.90 0.87 0.89 207
7 0.85 0.88 0.87 154
8 0.67 0.58 0.62 182
9 0.75 0.76 0.75 169

accuracy 0.78 1797
macro avg 0.78 0.78 0.78 1797

weighted avg 0.78 0.78 0.78 1797

print(__doc__)

Authors: Yann N. Dauphin, Vlad Niculae, Gabriel Synnaeve
License: BSD

import numpy as np
import matplotlib.pyplot as plt

from scipy.ndimage import convolve
from sklearn import linear_model, datasets, metrics
from sklearn.model_selection import train_test_split
from sklearn.neural_network import BernoulliRBM
from sklearn.pipeline import Pipeline
from sklearn.base import clone

###
Setting up

(continues on next page)

6.24. Neural Networks 1483

scikit-learn user guide, Release 0.23.2

(continued from previous page)

def nudge_dataset(X, Y):
"""
This produces a dataset 5 times bigger than the original one,
by moving the 8x8 images in X around by 1px to left, right, down, up
"""
direction_vectors = [

[[0, 1, 0],
[0, 0, 0],
[0, 0, 0]],

[[0, 0, 0],
[1, 0, 0],
[0, 0, 0]],

[[0, 0, 0],
[0, 0, 1],
[0, 0, 0]],

[[0, 0, 0],
[0, 0, 0],
[0, 1, 0]]]

def shift(x, w):
return convolve(x.reshape((8, 8)), mode='constant', weights=w).ravel()

X = np.concatenate([X] +
[np.apply_along_axis(shift, 1, X, vector)
for vector in direction_vectors])

Y = np.concatenate([Y for _ in range(5)], axis=0)
return X, Y

Load Data
X, y = datasets.load_digits(return_X_y=True)
X = np.asarray(X, 'float32')
X, Y = nudge_dataset(X, y)
X = (X - np.min(X, 0)) / (np.max(X, 0) + 0.0001) # 0-1 scaling

X_train, X_test, Y_train, Y_test = train_test_split(
X, Y, test_size=0.2, random_state=0)

Models we will use
logistic = linear_model.LogisticRegression(solver='newton-cg', tol=1)
rbm = BernoulliRBM(random_state=0, verbose=True)

rbm_features_classifier = Pipeline(
steps=[('rbm', rbm), ('logistic', logistic)])

###
Training

Hyper-parameters. These were set by cross-validation,
using a GridSearchCV. Here we are not performing cross-validation to
save time.
rbm.learning_rate = 0.06
rbm.n_iter = 10

(continues on next page)

1484 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

More components tend to give better prediction performance, but larger
fitting time
rbm.n_components = 100
logistic.C = 6000

Training RBM-Logistic Pipeline
rbm_features_classifier.fit(X_train, Y_train)

Training the Logistic regression classifier directly on the pixel
raw_pixel_classifier = clone(logistic)
raw_pixel_classifier.C = 100.
raw_pixel_classifier.fit(X_train, Y_train)

###
Evaluation

Y_pred = rbm_features_classifier.predict(X_test)
print("Logistic regression using RBM features:\n%s\n" % (

metrics.classification_report(Y_test, Y_pred)))

Y_pred = raw_pixel_classifier.predict(X_test)
print("Logistic regression using raw pixel features:\n%s\n" % (

metrics.classification_report(Y_test, Y_pred)))

###
Plotting

plt.figure(figsize=(4.2, 4))
for i, comp in enumerate(rbm.components_):

plt.subplot(10, 10, i + 1)
plt.imshow(comp.reshape((8, 8)), cmap=plt.cm.gray_r,

interpolation='nearest')
plt.xticks(())
plt.yticks(())

plt.suptitle('100 components extracted by RBM', fontsize=16)
plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23)

plt.show()

Total running time of the script: (0 minutes 6.128 seconds)

6.24.3 Compare Stochastic learning strategies for MLPClassifier

This example visualizes some training loss curves for different stochastic learning strategies, including SGD and
Adam. Because of time-constraints, we use several small datasets, for which L-BFGS might be more suitable. The
general trend shown in these examples seems to carry over to larger datasets, however.

Note that those results can be highly dependent on the value of learning_rate_init.

6.24. Neural Networks 1485

scikit-learn user guide, Release 0.23.2

Out:

learning on dataset iris
training: constant learning-rate
Training set score: 0.980000
Training set loss: 0.096950
training: constant with momentum
Training set score: 0.980000
Training set loss: 0.049530
training: constant with Nesterov's momentum
Training set score: 0.980000
Training set loss: 0.049540
training: inv-scaling learning-rate
Training set score: 0.360000
Training set loss: 0.978444
training: inv-scaling with momentum
Training set score: 0.860000
Training set loss: 0.503452
training: inv-scaling with Nesterov's momentum
Training set score: 0.860000
Training set loss: 0.504185
training: adam
Training set score: 0.980000
Training set loss: 0.045311

learning on dataset digits
training: constant learning-rate
Training set score: 0.956038
Training set loss: 0.243802

(continues on next page)

1486 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

training: constant with momentum
Training set score: 0.992766
Training set loss: 0.041297
training: constant with Nesterov's momentum
Training set score: 0.993879
Training set loss: 0.042898
training: inv-scaling learning-rate
Training set score: 0.638843
Training set loss: 1.855465
training: inv-scaling with momentum
Training set score: 0.912632
Training set loss: 0.290584
training: inv-scaling with Nesterov's momentum
Training set score: 0.909293
Training set loss: 0.318387
training: adam
Training set score: 0.991653
Training set loss: 0.045934

learning on dataset circles
training: constant learning-rate
Training set score: 0.840000
Training set loss: 0.601052
training: constant with momentum
Training set score: 0.940000
Training set loss: 0.157334
training: constant with Nesterov's momentum
Training set score: 0.940000
Training set loss: 0.154453
training: inv-scaling learning-rate
Training set score: 0.500000
Training set loss: 0.692470
training: inv-scaling with momentum
Training set score: 0.500000
Training set loss: 0.689143
training: inv-scaling with Nesterov's momentum
Training set score: 0.500000
Training set loss: 0.689751
training: adam
Training set score: 0.940000
Training set loss: 0.150527

learning on dataset moons
training: constant learning-rate
Training set score: 0.850000
Training set loss: 0.341523
training: constant with momentum
Training set score: 0.850000
Training set loss: 0.336188
training: constant with Nesterov's momentum
Training set score: 0.850000
Training set loss: 0.335919
training: inv-scaling learning-rate
Training set score: 0.500000
Training set loss: 0.689015
training: inv-scaling with momentum
Training set score: 0.830000

(continues on next page)

6.24. Neural Networks 1487

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Training set loss: 0.512595
training: inv-scaling with Nesterov's momentum
Training set score: 0.830000
Training set loss: 0.513034
training: adam
Training set score: 0.930000
Training set loss: 0.170087

print(__doc__)

import warnings

import matplotlib.pyplot as plt

from sklearn.neural_network import MLPClassifier
from sklearn.preprocessing import MinMaxScaler
from sklearn import datasets
from sklearn.exceptions import ConvergenceWarning

different learning rate schedules and momentum parameters
params = [{'solver': 'sgd', 'learning_rate': 'constant', 'momentum': 0,

'learning_rate_init': 0.2},
{'solver': 'sgd', 'learning_rate': 'constant', 'momentum': .9,
'nesterovs_momentum': False, 'learning_rate_init': 0.2},

{'solver': 'sgd', 'learning_rate': 'constant', 'momentum': .9,
'nesterovs_momentum': True, 'learning_rate_init': 0.2},

{'solver': 'sgd', 'learning_rate': 'invscaling', 'momentum': 0,
'learning_rate_init': 0.2},

{'solver': 'sgd', 'learning_rate': 'invscaling', 'momentum': .9,
'nesterovs_momentum': True, 'learning_rate_init': 0.2},

{'solver': 'sgd', 'learning_rate': 'invscaling', 'momentum': .9,
'nesterovs_momentum': False, 'learning_rate_init': 0.2},

{'solver': 'adam', 'learning_rate_init': 0.01}]

labels = ["constant learning-rate", "constant with momentum",
"constant with Nesterov's momentum",
"inv-scaling learning-rate", "inv-scaling with momentum",
"inv-scaling with Nesterov's momentum", "adam"]

plot_args = [{'c': 'red', 'linestyle': '-'},
{'c': 'green', 'linestyle': '-'},
{'c': 'blue', 'linestyle': '-'},
{'c': 'red', 'linestyle': '--'},
{'c': 'green', 'linestyle': '--'},
{'c': 'blue', 'linestyle': '--'},
{'c': 'black', 'linestyle': '-'}]

def plot_on_dataset(X, y, ax, name):
for each dataset, plot learning for each learning strategy
print("\nlearning on dataset %s" % name)

(continues on next page)

1488 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

ax.set_title(name)

X = MinMaxScaler().fit_transform(X)
mlps = []
if name == "digits":

digits is larger but converges fairly quickly
max_iter = 15

else:
max_iter = 400

for label, param in zip(labels, params):
print("training: %s" % label)
mlp = MLPClassifier(random_state=0,

max_iter=max_iter, **param)

some parameter combinations will not converge as can be seen on the
plots so they are ignored here
with warnings.catch_warnings():

warnings.filterwarnings("ignore", category=ConvergenceWarning,
module="sklearn")

mlp.fit(X, y)

mlps.append(mlp)
print("Training set score: %f" % mlp.score(X, y))
print("Training set loss: %f" % mlp.loss_)

for mlp, label, args in zip(mlps, labels, plot_args):
ax.plot(mlp.loss_curve_, label=label, **args)

fig, axes = plt.subplots(2, 2, figsize=(15, 10))
load / generate some toy datasets
iris = datasets.load_iris()
X_digits, y_digits = datasets.load_digits(return_X_y=True)
data_sets = [(iris.data, iris.target),

(X_digits, y_digits),
datasets.make_circles(noise=0.2, factor=0.5, random_state=1),
datasets.make_moons(noise=0.3, random_state=0)]

for ax, data, name in zip(axes.ravel(), data_sets, ['iris', 'digits',
'circles', 'moons']):

plot_on_dataset(*data, ax=ax, name=name)

fig.legend(ax.get_lines(), labels, ncol=3, loc="upper center")
plt.show()

Total running time of the script: (0 minutes 4.869 seconds)

6.24.4 Varying regularization in Multi-layer Perceptron

A comparison of different values for regularization parameter ‘alpha’ on synthetic datasets. The plot shows that
different alphas yield different decision functions.

Alpha is a parameter for regularization term, aka penalty term, that combats overfitting by constraining the size of the
weights. Increasing alpha may fix high variance (a sign of overfitting) by encouraging smaller weights, resulting in
a decision boundary plot that appears with lesser curvatures. Similarly, decreasing alpha may fix high bias (a sign of
underfitting) by encouraging larger weights, potentially resulting in a more complicated decision boundary.

6.24. Neural Networks 1489

scikit-learn user guide, Release 0.23.2

print(__doc__)

Author: Issam H. Laradji
License: BSD 3 clause

import numpy as np
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_moons, make_circles, make_classification
from sklearn.neural_network import MLPClassifier
from sklearn.pipeline import make_pipeline

h = .02 # step size in the mesh

alphas = np.logspace(-5, 3, 5)
names = ['alpha ' + str(i) for i in alphas]

classifiers = []
for i in alphas:

classifiers.append(make_pipeline(
StandardScaler(),
MLPClassifier(solver='lbfgs', alpha=i,

random_state=1, max_iter=2000,
early_stopping=True,
hidden_layer_sizes=[100, 100])

))

X, y = make_classification(n_features=2, n_redundant=0, n_informative=2,
random_state=0, n_clusters_per_class=1)

rng = np.random.RandomState(2)
X += 2 * rng.uniform(size=X.shape)

(continues on next page)

1490 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

linearly_separable = (X, y)

datasets = [make_moons(noise=0.3, random_state=0),
make_circles(noise=0.2, factor=0.5, random_state=1),
linearly_separable]

figure = plt.figure(figsize=(17, 9))
i = 1
iterate over datasets
for X, y in datasets:

preprocess dataset, split into training and test part
X = StandardScaler().fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4)

x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),

np.arange(y_min, y_max, h))

just plot the dataset first
cm = plt.cm.RdBu
cm_bright = ListedColormap(['#FF0000', '#0000FF'])
ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
Plot the training points
ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright)
and testing points
ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6)
ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
ax.set_xticks(())
ax.set_yticks(())
i += 1

iterate over classifiers
for name, clf in zip(names, classifiers):

ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
clf.fit(X_train, y_train)
score = clf.score(X_test, y_test)

Plot the decision boundary. For that, we will assign a color to each
point in the mesh [x_min, x_max]x[y_min, y_max].
if hasattr(clf, "decision_function"):

Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
else:

Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]

Put the result into a color plot
Z = Z.reshape(xx.shape)
ax.contourf(xx, yy, Z, cmap=cm, alpha=.8)

Plot also the training points
ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright,

edgecolors='black', s=25)
and testing points
ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright,

alpha=0.6, edgecolors='black', s=25)

(continues on next page)

6.24. Neural Networks 1491

scikit-learn user guide, Release 0.23.2

(continued from previous page)

ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
ax.set_xticks(())
ax.set_yticks(())
ax.set_title(name)
ax.text(xx.max() - .3, yy.min() + .3, ('%.2f' % score).lstrip('0'),

size=15, horizontalalignment='right')
i += 1

figure.subplots_adjust(left=.02, right=.98)
plt.show()

Total running time of the script: (0 minutes 12.642 seconds)

6.25 Pipelines and composite estimators

Examples of how to compose transformers and pipelines from other estimators. See the User Guide.

6.25.1 Concatenating multiple feature extraction methods

In many real-world examples, there are many ways to extract features from a dataset. Often it is beneficial to combine
several methods to obtain good performance. This example shows how to use FeatureUnion to combine features
obtained by PCA and univariate selection.

Combining features using this transformer has the benefit that it allows cross validation and grid searches over the
whole process.

The combination used in this example is not particularly helpful on this dataset and is only used to illustrate the usage
of FeatureUnion.

Out:

Combined space has 3 features
Fitting 5 folds for each of 18 candidates, totalling 90 fits
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1, score=0.
→˓933, total= 0.0s
[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1, score=0.
→˓933, total= 0.0s
[Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 0.0s remaining: 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1, score=0.
→˓867, total= 0.0s
[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 0.0s remaining: 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1, score=0.
→˓933, total= 0.0s
[Parallel(n_jobs=1)]: Done 4 out of 4 | elapsed: 0.0s remaining: 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=0.1, score=1.
→˓000, total= 0.0s

(continues on next page)

1492 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

[Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 0.0s remaining: 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=1
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=1, score=0.
→˓900, total= 0.0s
[Parallel(n_jobs=1)]: Done 6 out of 6 | elapsed: 0.0s remaining: 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=1
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=1, score=1.
→˓000, total= 0.0s
[Parallel(n_jobs=1)]: Done 7 out of 7 | elapsed: 0.0s remaining: 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=1
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=1, score=0.
→˓867, total= 0.0s
[Parallel(n_jobs=1)]: Done 8 out of 8 | elapsed: 0.0s remaining: 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=1
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=1, score=0.
→˓933, total= 0.0s
[Parallel(n_jobs=1)]: Done 9 out of 9 | elapsed: 0.0s remaining: 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=1
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=1, score=1.
→˓000, total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=10
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=10, score=0.
→˓933, total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=10
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=10, score=1.
→˓000, total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=10
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=10, score=0.
→˓900, total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=10
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=10, score=0.
→˓933, total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=10
[CV] features__pca__n_components=1, features__univ_select__k=1, svm__C=10, score=1.
→˓000, total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1, score=0.
→˓933, total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1, score=0.
→˓967, total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1, score=0.
→˓933, total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1, score=0.
→˓933, total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=0.1, score=1.
→˓000, total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=1
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=1, score=0.
→˓933, total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=1
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=1, score=0.
→˓967, total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=1

(continues on next page)

6.25. Pipelines and composite estimators 1493

scikit-learn user guide, Release 0.23.2

(continued from previous page)

[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=1, score=0.
→˓933, total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=1
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=1, score=0.
→˓933, total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=1
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=1, score=1.
→˓000, total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=10
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=10, score=0.
→˓967, total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=10
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=10, score=0.
→˓967, total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=10
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=10, score=0.
→˓933, total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=10
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=10, score=0.
→˓933, total= 0.0s
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=10
[CV] features__pca__n_components=1, features__univ_select__k=2, svm__C=10, score=1.
→˓000, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1, score=0.
→˓933, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1, score=1.
→˓000, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1, score=0.
→˓867, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1, score=0.
→˓933, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=0.1, score=1.
→˓000, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=1
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=1, score=0.
→˓967, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=1
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=1, score=1.
→˓000, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=1
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=1, score=0.
→˓933, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=1
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=1, score=0.
→˓933, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=1
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=1, score=1.
→˓000, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=10
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=10, score=0.
→˓967, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=10

(continues on next page)

1494 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=10, score=0.
→˓967, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=10
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=10, score=0.
→˓900, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=10
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=10, score=0.
→˓933, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=10
[CV] features__pca__n_components=2, features__univ_select__k=1, svm__C=10, score=1.
→˓000, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1, score=0.
→˓967, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1, score=1.
→˓000, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1, score=0.
→˓933, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1, score=0.
→˓933, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=0.1, score=1.
→˓000, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=1
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=1, score=0.
→˓967, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=1
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=1, score=1.
→˓000, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=1
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=1, score=0.
→˓933, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=1
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=1, score=0.
→˓967, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=1
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=1, score=1.
→˓000, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=10
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=10, score=0.
→˓967, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=10
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=10, score=1.
→˓000, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=10
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=10, score=0.
→˓900, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=10
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=10, score=0.
→˓933, total= 0.0s
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=10
[CV] features__pca__n_components=2, features__univ_select__k=2, svm__C=10, score=1.
→˓000, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1

(continues on next page)

6.25. Pipelines and composite estimators 1495

scikit-learn user guide, Release 0.23.2

(continued from previous page)

[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1, score=0.
→˓967, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1, score=1.
→˓000, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1, score=0.
→˓933, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1, score=0.
→˓967, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=0.1, score=1.
→˓000, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=1
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=1, score=0.
→˓967, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=1
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=1, score=1.
→˓000, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=1
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=1, score=0.
→˓933, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=1
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=1, score=0.
→˓967, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=1
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=1, score=1.
→˓000, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=10
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=10, score=1.
→˓000, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=10
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=10, score=1.
→˓000, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=10
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=10, score=0.
→˓933, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=10
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=10, score=0.
→˓967, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=10
[CV] features__pca__n_components=3, features__univ_select__k=1, svm__C=10, score=1.
→˓000, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1, score=0.
→˓967, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1, score=1.
→˓000, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1, score=0.
→˓933, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1, score=0.
→˓967, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1

(continues on next page)

1496 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=0.1, score=1.
→˓000, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=1
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=1, score=0.
→˓967, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=1
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=1, score=1.
→˓000, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=1
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=1, score=0.
→˓967, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=1
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=1, score=0.
→˓967, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=1
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=1, score=1.
→˓000, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=10
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=10, score=1.
→˓000, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=10
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=10, score=1.
→˓000, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=10
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=10, score=0.
→˓900, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=10
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=10, score=0.
→˓967, total= 0.0s
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=10
[CV] features__pca__n_components=3, features__univ_select__k=2, svm__C=10, score=1.
→˓000, total= 0.0s
[Parallel(n_jobs=1)]: Done 90 out of 90 | elapsed: 0.4s finished
Pipeline(steps=[('features',

FeatureUnion(transformer_list=[('pca', PCA(n_components=3)),
('univ_select',
SelectKBest(k=1))])),

('svm', SVC(C=10, kernel='linear'))])

Author: Andreas Mueller <amueller@ais.uni-bonn.de>
#
License: BSD 3 clause

from sklearn.pipeline import Pipeline, FeatureUnion
from sklearn.model_selection import GridSearchCV
from sklearn.svm import SVC
from sklearn.datasets import load_iris
from sklearn.decomposition import PCA
from sklearn.feature_selection import SelectKBest

iris = load_iris()

(continues on next page)

6.25. Pipelines and composite estimators 1497

scikit-learn user guide, Release 0.23.2

(continued from previous page)

X, y = iris.data, iris.target

This dataset is way too high-dimensional. Better do PCA:
pca = PCA(n_components=2)

Maybe some original features where good, too?
selection = SelectKBest(k=1)

Build estimator from PCA and Univariate selection:

combined_features = FeatureUnion([("pca", pca), ("univ_select", selection)])

Use combined features to transform dataset:
X_features = combined_features.fit(X, y).transform(X)
print("Combined space has", X_features.shape[1], "features")

svm = SVC(kernel="linear")

Do grid search over k, n_components and C:

pipeline = Pipeline([("features", combined_features), ("svm", svm)])

param_grid = dict(features__pca__n_components=[1, 2, 3],
features__univ_select__k=[1, 2],
svm__C=[0.1, 1, 10])

grid_search = GridSearchCV(pipeline, param_grid=param_grid, verbose=10)
grid_search.fit(X, y)
print(grid_search.best_estimator_)

Total running time of the script: (0 minutes 0.386 seconds)

6.25.2 Pipelining: chaining a PCA and a logistic regression

The PCA does an unsupervised dimensionality reduction, while the logistic regression does the prediction.

We use a GridSearchCV to set the dimensionality of the PCA

1498 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Out:

Best parameter (CV score=0.920):
{'logistic__C': 0.046415888336127774, 'pca__n_components': 45}

print(__doc__)

Code source: Gaël Varoquaux
Modified for documentation by Jaques Grobler
License: BSD 3 clause

(continues on next page)

6.25. Pipelines and composite estimators 1499

scikit-learn user guide, Release 0.23.2

(continued from previous page)

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

from sklearn import datasets
from sklearn.decomposition import PCA
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV

Define a pipeline to search for the best combination of PCA truncation
and classifier regularization.
pca = PCA()
set the tolerance to a large value to make the example faster
logistic = LogisticRegression(max_iter=10000, tol=0.1)
pipe = Pipeline(steps=[('pca', pca), ('logistic', logistic)])

X_digits, y_digits = datasets.load_digits(return_X_y=True)

Parameters of pipelines can be set using ‘__’ separated parameter names:
param_grid = {

'pca__n_components': [5, 15, 30, 45, 64],
'logistic__C': np.logspace(-4, 4, 4),

}
search = GridSearchCV(pipe, param_grid, n_jobs=-1)
search.fit(X_digits, y_digits)
print("Best parameter (CV score=%0.3f):" % search.best_score_)
print(search.best_params_)

Plot the PCA spectrum
pca.fit(X_digits)

fig, (ax0, ax1) = plt.subplots(nrows=2, sharex=True, figsize=(6, 6))
ax0.plot(np.arange(1, pca.n_components_ + 1),

pca.explained_variance_ratio_, '+', linewidth=2)
ax0.set_ylabel('PCA explained variance ratio')

ax0.axvline(search.best_estimator_.named_steps['pca'].n_components,
linestyle=':', label='n_components chosen')

ax0.legend(prop=dict(size=12))

For each number of components, find the best classifier results
results = pd.DataFrame(search.cv_results_)
components_col = 'param_pca__n_components'
best_clfs = results.groupby(components_col).apply(

lambda g: g.nlargest(1, 'mean_test_score'))

best_clfs.plot(x=components_col, y='mean_test_score', yerr='std_test_score',
legend=False, ax=ax1)

ax1.set_ylabel('Classification accuracy (val)')
ax1.set_xlabel('n_components')

plt.xlim(-1, 70)

plt.tight_layout()
plt.show()

1500 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Total running time of the script: (0 minutes 7.838 seconds)

6.25.3 Selecting dimensionality reduction with Pipeline and GridSearchCV

This example constructs a pipeline that does dimensionality reduction followed by prediction with a support vector
classifier. It demonstrates the use of GridSearchCV and Pipeline to optimize over different classes of estimators
in a single CV run – unsupervised PCA and NMF dimensionality reductions are compared to univariate feature selection
during the grid search.

Additionally, Pipeline can be instantiated with the memory argument to memoize the transformers within the
pipeline, avoiding to fit again the same transformers over and over.

Note that the use of memory to enable caching becomes interesting when the fitting of a transformer is costly.

Illustration of Pipeline and GridSearchCV

This section illustrates the use of a Pipeline with GridSearchCV

Authors: Robert McGibbon, Joel Nothman, Guillaume Lemaitre

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_digits
from sklearn.model_selection import GridSearchCV
from sklearn.pipeline import Pipeline
from sklearn.svm import LinearSVC
from sklearn.decomposition import PCA, NMF
from sklearn.feature_selection import SelectKBest, chi2

print(__doc__)

pipe = Pipeline([
the reduce_dim stage is populated by the param_grid
('reduce_dim', 'passthrough'),
('classify', LinearSVC(dual=False, max_iter=10000))

])

N_FEATURES_OPTIONS = [2, 4, 8]
C_OPTIONS = [1, 10, 100, 1000]
param_grid = [

{
'reduce_dim': [PCA(iterated_power=7), NMF()],
'reduce_dim__n_components': N_FEATURES_OPTIONS,
'classify__C': C_OPTIONS

},
{

'reduce_dim': [SelectKBest(chi2)],
'reduce_dim__k': N_FEATURES_OPTIONS,
'classify__C': C_OPTIONS

},
]
reducer_labels = ['PCA', 'NMF', 'KBest(chi2)']

grid = GridSearchCV(pipe, n_jobs=1, param_grid=param_grid)
X, y = load_digits(return_X_y=True)

(continues on next page)

6.25. Pipelines and composite estimators 1501

scikit-learn user guide, Release 0.23.2

(continued from previous page)

grid.fit(X, y)

mean_scores = np.array(grid.cv_results_['mean_test_score'])
scores are in the order of param_grid iteration, which is alphabetical
mean_scores = mean_scores.reshape(len(C_OPTIONS), -1, len(N_FEATURES_OPTIONS))
select score for best C
mean_scores = mean_scores.max(axis=0)
bar_offsets = (np.arange(len(N_FEATURES_OPTIONS)) *

(len(reducer_labels) + 1) + .5)

plt.figure()
COLORS = 'bgrcmyk'
for i, (label, reducer_scores) in enumerate(zip(reducer_labels, mean_scores)):

plt.bar(bar_offsets + i, reducer_scores, label=label, color=COLORS[i])

plt.title("Comparing feature reduction techniques")
plt.xlabel('Reduced number of features')
plt.xticks(bar_offsets + len(reducer_labels) / 2, N_FEATURES_OPTIONS)
plt.ylabel('Digit classification accuracy')
plt.ylim((0, 1))
plt.legend(loc='upper left')

plt.show()

1502 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Caching transformers within a Pipeline

It is sometimes worthwhile storing the state of a specific transformer since it could be used again. Using a
pipeline in GridSearchCV triggers such situations. Therefore, we use the argument memory to enable
caching.

Warning: Note that this example is, however, only an illustration since for this specific case fitting
PCA is not necessarily slower than loading the cache. Hence, use the memory constructor parameter
when the fitting of a transformer is costly.

from joblib import Memory
from shutil import rmtree

Create a temporary folder to store the transformers of the pipeline
location = 'cachedir'
memory = Memory(location=location, verbose=10)
cached_pipe = Pipeline([('reduce_dim', PCA()),

('classify', LinearSVC(dual=False, max_iter=10000))],
memory=memory)

This time, a cached pipeline will be used within the grid search

Delete the temporary cache before exiting
memory.clear(warn=False)
rmtree(location)

The PCA fitting is only computed at the evaluation of the first configuration of the C parameter of the LinearSVC
classifier. The other configurations of C will trigger the loading of the cached PCA estimator data, leading to save pro-
cessing time. Therefore, the use of caching the pipeline using memory is highly beneficial when fitting a transformer
is costly.

Total running time of the script: (0 minutes 4.905 seconds)

6.25.4 Column Transformer with Mixed Types

This example illustrates how to apply different preprocessing and feature extraction pipelines to different subsets of
features, using sklearn.compose.ColumnTransformer. This is particularly handy for the case of datasets
that contain heterogeneous data types, since we may want to scale the numeric features and one-hot encode the cate-
gorical ones.

In this example, the numeric data is standard-scaled after mean-imputation, while the categorical data is one-hot
encoded after imputing missing values with a new category ('missing').

In addition, we show two different ways to dispatch the columns to the particular pre-processor: by column names and
by column data types.

Finally, the preprocessing pipeline is integrated in a full prediction pipeline using sklearn.pipeline.
Pipeline, together with a simple classification model.

Author: Pedro Morales <part.morales@gmail.com>
#
License: BSD 3 clause

(continues on next page)

6.25. Pipelines and composite estimators 1503

scikit-learn user guide, Release 0.23.2

(continued from previous page)

import numpy as np

from sklearn.compose import ColumnTransformer
from sklearn.datasets import fetch_openml
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split, GridSearchCV

np.random.seed(0)

Load data from https://www.openml.org/d/40945
X, y = fetch_openml("titanic", version=1, as_frame=True, return_X_y=True)

Alternatively X and y can be obtained directly from the frame attribute:
X = titanic.frame.drop('survived', axis=1)
y = titanic.frame['survived']

Use ColumnTransformer by selecting column by names

We will train our classifier with the following features:

Numeric Features:

• age: float;

• fare: float.

Categorical Features:

• embarked: categories encoded as strings {'C', 'S', 'Q'};

• sex: categories encoded as strings {'female', 'male'};

• pclass: ordinal integers {1, 2, 3}.

We create the preprocessing pipelines for both numeric and categorical data.

numeric_features = ['age', 'fare']
numeric_transformer = Pipeline(steps=[

('imputer', SimpleImputer(strategy='median')),
('scaler', StandardScaler())])

categorical_features = ['embarked', 'sex', 'pclass']
categorical_transformer = Pipeline(steps=[

('imputer', SimpleImputer(strategy='constant', fill_value='missing')),
('onehot', OneHotEncoder(handle_unknown='ignore'))])

preprocessor = ColumnTransformer(
transformers=[

('num', numeric_transformer, numeric_features),
('cat', categorical_transformer, categorical_features)])

Append classifier to preprocessing pipeline.
Now we have a full prediction pipeline.
clf = Pipeline(steps=[('preprocessor', preprocessor),

('classifier', LogisticRegression())])

(continues on next page)

1504 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

clf.fit(X_train, y_train)
print("model score: %.3f" % clf.score(X_test, y_test))

Out:

model score: 0.790

HTML representation of Pipeline

When the Pipeline is printed out in a jupyter notebook an HTML representation of the estimator is
displayed as follows:

from sklearn import set_config
set_config(display='diagram')
clf

Use ColumnTransformer by selecting column by data types

When dealing with a cleaned dataset, the preprocessing can be automatic by using the data types of the
column to decide whether to treat a column as a numerical or categorical feature. sklearn.compose.
make_column_selector gives this possibility. First, let’s only select a subset of columns to simplify
our example.

subset_feature = ['embarked', 'sex', 'pclass', 'age', 'fare']
X = X[subset_feature]

Then, we introspect the information regarding each column data type.

X.info()

Out:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1309 entries, 0 to 1308
Data columns (total 5 columns):
Column Non-Null Count Dtype

--- ------ -------------- -----
0 embarked 1307 non-null category
1 sex 1309 non-null category
2 pclass 1309 non-null float64
3 age 1046 non-null float64
4 fare 1308 non-null float64

dtypes: category(2), float64(3)
memory usage: 33.6 KB

We can observe that the embarked and sex columns were tagged as category columns when loading the
data with fetch_openml. Therefore, we can use this information to dispatch the categorical columns to the
categorical_transformer and the remaining columns to the numerical_transformer.

6.25. Pipelines and composite estimators 1505

scikit-learn user guide, Release 0.23.2

Note: In practice, you will have to handle yourself the column data type. If you want some columns to be considered
as category, you will have to convert them into categorical columns. If you are using pandas, you can refer to their
documentation regarding Categorical data.

from sklearn.compose import make_column_selector as selector

preprocessor = ColumnTransformer(transformers=[
('num', numeric_transformer, selector(dtype_exclude="category")),
('cat', categorical_transformer, selector(dtype_include="category"))

])

Reproduce the identical fit/score process
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

clf.fit(X_train, y_train)
print("model score: %.3f" % clf.score(X_test, y_test))

Out:

model score: 0.794

Using the prediction pipeline in a grid search

Grid search can also be performed on the different preprocessing steps defined in the
ColumnTransformer object, together with the classifier’s hyperparameters as part of the Pipeline.
We will search for both the imputer strategy of the numeric preprocessing and the regularization parameter
of the logistic regression using sklearn.model_selection.GridSearchCV .

param_grid = {
'preprocessor__num__imputer__strategy': ['mean', 'median'],
'classifier__C': [0.1, 1.0, 10, 100],

}

grid_search = GridSearchCV(clf, param_grid, cv=10)
grid_search.fit(X_train, y_train)

print(("best logistic regression from grid search: %.3f"
% grid_search.score(X_test, y_test)))

Out:

best logistic regression from grid search: 0.794

Total running time of the script: (0 minutes 2.749 seconds)

6.25.5 Column Transformer with Heterogeneous Data Sources

Datasets can often contain components that require different feature extraction and processing pipelines. This scenario
might occur when:

1. your dataset consists of heterogeneous data types (e.g. raster images and text captions),

2. your dataset is stored in a pandas.DataFrame and different columns require different processing pipelines.

1506 Chapter 6. Examples

https://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame

scikit-learn user guide, Release 0.23.2

This example demonstrates how to use ColumnTransformer on a dataset containing different types of features.
The choice of features is not particularly helpful, but serves to illustrate the technique.

Author: Matt Terry <matt.terry@gmail.com>
#
License: BSD 3 clause

import numpy as np

from sklearn.preprocessing import FunctionTransformer
from sklearn.datasets import fetch_20newsgroups
from sklearn.decomposition import TruncatedSVD
from sklearn.feature_extraction import DictVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import classification_report
from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer
from sklearn.svm import LinearSVC

20 newsgroups dataset

We will use the 20 newsgroups dataset, which comprises posts from newsgroups on 20 topics. This dataset is split
into train and test subsets based on messages posted before and after a specific date. We will only use posts from 2
categories to speed up running time.

categories = ['sci.med', 'sci.space']
X_train, y_train = fetch_20newsgroups(random_state=1,

subset='train',
categories=categories,
remove=('footers', 'quotes'),
return_X_y=True)

X_test, y_test = fetch_20newsgroups(random_state=1,
subset='test',
categories=categories,
remove=('footers', 'quotes'),
return_X_y=True)

Each feature comprises meta information about that post, such as the subject, and the body of the news post.

print(X_train[0])

Out:

From: mccall@mksol.dseg.ti.com (fred j mccall 575-3539)
Subject: Re: Metric vs English
Article-I.D.: mksol.1993Apr6.131900.8407
Organization: Texas Instruments Inc
Lines: 31

American, perhaps, but nothing military about it. I learned (mostly)
slugs when we talked English units in high school physics and while
the teacher was an ex-Navy fighter jock the book certainly wasn't
produced by the military.

(continues on next page)

6.25. Pipelines and composite estimators 1507

scikit-learn user guide, Release 0.23.2

(continued from previous page)

[Poundals were just too flinking small and made the math come out
funny; sort of the same reason proponents of SI give for using that.]

--
"Insisting on perfect safety is for people who don't have the balls to live
in the real world." -- Mary Shafer, NASA Ames Dryden

Creating transformers

First, we would like a transformer that extracts the subject and body of each post. Since this is a stateless transformation
(does not require state information from training data), we can define a function that performs the data transformation
then use FunctionTransformer to create a scikit-learn transformer.

def subject_body_extractor(posts):
construct object dtype array with two columns
first column = 'subject' and second column = 'body'
features = np.empty(shape=(len(posts), 2), dtype=object)
for i, text in enumerate(posts):

temporary variable `_` stores '\n\n'
headers, _, body = text.partition('\n\n')
store body text in second column
features[i, 1] = body

prefix = 'Subject:'
sub = ''
save text after 'Subject:' in first column
for line in headers.split('\n'):

if line.startswith(prefix):
sub = line[len(prefix):]
break

features[i, 0] = sub

return features

subject_body_transformer = FunctionTransformer(subject_body_extractor)

We will also create a transformer that extracts the length of the text and the number of sentences.

def text_stats(posts):
return [{'length': len(text),

'num_sentences': text.count('.')}
for text in posts]

text_stats_transformer = FunctionTransformer(text_stats)

Classification pipeline

The pipeline below extracts the subject and body from each post using SubjectBodyExtractor, producing a
(n_samples, 2) array. This array is then used to compute standard bag-of-words features for the subject and body as
well as text length and number of sentences on the body, using ColumnTransformer. We combine them, with
weights, then train a classifier on the combined set of features.

1508 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

pipeline = Pipeline([
Extract subject & body
('subjectbody', subject_body_transformer),
Use ColumnTransformer to combine the subject and body features
('union', ColumnTransformer(

[
bag-of-words for subject (col 0)
('subject', TfidfVectorizer(min_df=50), 0),
bag-of-words with decomposition for body (col 1)
('body_bow', Pipeline([

('tfidf', TfidfVectorizer()),
('best', TruncatedSVD(n_components=50)),

]), 1),
Pipeline for pulling text stats from post's body
('body_stats', Pipeline([

('stats', text_stats_transformer), # returns a list of dicts
('vect', DictVectorizer()), # list of dicts -> feature matrix

]), 1),
],
weight above ColumnTransformer features
transformer_weights={

'subject': 0.8,
'body_bow': 0.5,
'body_stats': 1.0,

}
)),
Use a SVC classifier on the combined features
('svc', LinearSVC(dual=False)),

], verbose=True)

Finally, we fit our pipeline on the training data and use it to predict topics for X_test. Performance metrics of our
pipeline are then printed.

pipeline.fit(X_train, y_train)
y_pred = pipeline.predict(X_test)
print('Classification report:\n\n{}'.format(

classification_report(y_test, y_pred))
)

Out:

[Pipeline] (step 1 of 3) Processing subjectbody, total= 0.0s
[Pipeline] (step 2 of 3) Processing union, total= 0.5s
[Pipeline] (step 3 of 3) Processing svc, total= 0.0s
Classification report:

precision recall f1-score support

0 0.84 0.88 0.86 396
1 0.87 0.83 0.85 394

accuracy 0.85 790
macro avg 0.85 0.85 0.85 790

weighted avg 0.85 0.85 0.85 790

Total running time of the script: (0 minutes 2.772 seconds)

6.25. Pipelines and composite estimators 1509

scikit-learn user guide, Release 0.23.2

6.25.6 Effect of transforming the targets in regression model

In this example, we give an overview of the sklearn.compose.TransformedTargetRegressor. Two
examples illustrate the benefit of transforming the targets before learning a linear regression model. The first example
uses synthetic data while the second example is based on the Boston housing data set.

Author: Guillaume Lemaitre <guillaume.lemaitre@inria.fr>
License: BSD 3 clause

import numpy as np
import matplotlib
import matplotlib.pyplot as plt

print(__doc__)

Synthetic example

from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
from sklearn.linear_model import RidgeCV
from sklearn.compose import TransformedTargetRegressor
from sklearn.metrics import median_absolute_error, r2_score
from sklearn.utils.fixes import parse_version

`normed` is being deprecated in favor of `density` in histograms
if parse_version(matplotlib.__version__) >= parse_version('2.1'):

density_param = {'density': True}
else:

density_param = {'normed': True}

A synthetic random regression problem is generated. The targets y are modified by: (i) translating all targets such
that all entries are non-negative and (ii) applying an exponential function to obtain non-linear targets which cannot be
fitted using a simple linear model.

Therefore, a logarithmic (np.log1p) and an exponential function (np.expm1) will be used to transform the targets
before training a linear regression model and using it for prediction.

X, y = make_regression(n_samples=10000, noise=100, random_state=0)
y = np.exp((y + abs(y.min())) / 200)
y_trans = np.log1p(y)

The following illustrate the probability density functions of the target before and after applying the logarithmic func-
tions.

f, (ax0, ax1) = plt.subplots(1, 2)

ax0.hist(y, bins=100, **density_param)
ax0.set_xlim([0, 2000])
ax0.set_ylabel('Probability')
ax0.set_xlabel('Target')
ax0.set_title('Target distribution')

ax1.hist(y_trans, bins=100, **density_param)
ax1.set_ylabel('Probability')

(continues on next page)

1510 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

ax1.set_xlabel('Target')
ax1.set_title('Transformed target distribution')

f.suptitle("Synthetic data", y=0.035)
f.tight_layout(rect=[0.05, 0.05, 0.95, 0.95])

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

At first, a linear model will be applied on the original targets. Due to the non-linearity, the model trained will not
be precise during the prediction. Subsequently, a logarithmic function is used to linearize the targets, allowing better
prediction even with a similar linear model as reported by the median absolute error (MAE).

f, (ax0, ax1) = plt.subplots(1, 2, sharey=True)

regr = RidgeCV()
regr.fit(X_train, y_train)
y_pred = regr.predict(X_test)

ax0.scatter(y_test, y_pred)
ax0.plot([0, 2000], [0, 2000], '--k')
ax0.set_ylabel('Target predicted')
ax0.set_xlabel('True Target')
ax0.set_title('Ridge regression \n without target transformation')
ax0.text(100, 1750, r'R^2=%.2f, MAE=%.2f' % (

(continues on next page)

6.25. Pipelines and composite estimators 1511

scikit-learn user guide, Release 0.23.2

(continued from previous page)

r2_score(y_test, y_pred), median_absolute_error(y_test, y_pred)))
ax0.set_xlim([0, 2000])
ax0.set_ylim([0, 2000])

regr_trans = TransformedTargetRegressor(regressor=RidgeCV(),
func=np.log1p,
inverse_func=np.expm1)

regr_trans.fit(X_train, y_train)
y_pred = regr_trans.predict(X_test)

ax1.scatter(y_test, y_pred)
ax1.plot([0, 2000], [0, 2000], '--k')
ax1.set_ylabel('Target predicted')
ax1.set_xlabel('True Target')
ax1.set_title('Ridge regression \n with target transformation')
ax1.text(100, 1750, r'R^2=%.2f, MAE=%.2f' % (

r2_score(y_test, y_pred), median_absolute_error(y_test, y_pred)))
ax1.set_xlim([0, 2000])
ax1.set_ylim([0, 2000])

f.suptitle("Synthetic data", y=0.035)
f.tight_layout(rect=[0.05, 0.05, 0.95, 0.95])

1512 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Real-world data set

In a similar manner, the boston housing data set is used to show the impact of transforming the targets before learning a
model. In this example, the targets to be predicted corresponds to the weighted distances to the five Boston employment
centers.

from sklearn.datasets import load_boston
from sklearn.preprocessing import QuantileTransformer, quantile_transform

dataset = load_boston()
target = np.array(dataset.feature_names) == "DIS"
X = dataset.data[:, np.logical_not(target)]
y = dataset.data[:, target].squeeze()
y_trans = quantile_transform(dataset.data[:, target],

n_quantiles=300,
output_distribution='normal',
copy=True).squeeze()

A sklearn.preprocessing.QuantileTransformer is used such that the targets follows a normal distri-
bution before applying a sklearn.linear_model.RidgeCV model.

f, (ax0, ax1) = plt.subplots(1, 2)

ax0.hist(y, bins=100, **density_param)
ax0.set_ylabel('Probability')
ax0.set_xlabel('Target')
ax0.set_title('Target distribution')

ax1.hist(y_trans, bins=100, **density_param)
ax1.set_ylabel('Probability')
ax1.set_xlabel('Target')
ax1.set_title('Transformed target distribution')

f.suptitle("Boston housing data: distance to employment centers", y=0.035)
f.tight_layout(rect=[0.05, 0.05, 0.95, 0.95])

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)

6.25. Pipelines and composite estimators 1513

scikit-learn user guide, Release 0.23.2

The effect of the transformer is weaker than on the synthetic data. However, the transform induces a decrease of the
MAE.

f, (ax0, ax1) = plt.subplots(1, 2, sharey=True)

regr = RidgeCV()
regr.fit(X_train, y_train)
y_pred = regr.predict(X_test)

ax0.scatter(y_test, y_pred)
ax0.plot([0, 10], [0, 10], '--k')
ax0.set_ylabel('Target predicted')
ax0.set_xlabel('True Target')
ax0.set_title('Ridge regression \n without target transformation')
ax0.text(1, 9, r'R^2=%.2f, MAE=%.2f' % (

r2_score(y_test, y_pred), median_absolute_error(y_test, y_pred)))
ax0.set_xlim([0, 10])
ax0.set_ylim([0, 10])

regr_trans = TransformedTargetRegressor(
regressor=RidgeCV(),
transformer=QuantileTransformer(n_quantiles=300,

output_distribution='normal'))
regr_trans.fit(X_train, y_train)
y_pred = regr_trans.predict(X_test)

(continues on next page)

1514 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

ax1.scatter(y_test, y_pred)
ax1.plot([0, 10], [0, 10], '--k')
ax1.set_ylabel('Target predicted')
ax1.set_xlabel('True Target')
ax1.set_title('Ridge regression \n with target transformation')
ax1.text(1, 9, r'R^2=%.2f, MAE=%.2f' % (

r2_score(y_test, y_pred), median_absolute_error(y_test, y_pred)))
ax1.set_xlim([0, 10])
ax1.set_ylim([0, 10])

f.suptitle("Boston housing data: distance to employment centers", y=0.035)
f.tight_layout(rect=[0.05, 0.05, 0.95, 0.95])

plt.show()

Total running time of the script: (0 minutes 1.161 seconds)

6.26 Preprocessing

Examples concerning the sklearn.preprocessing module.

6.26. Preprocessing 1515

scikit-learn user guide, Release 0.23.2

6.26.1 Using FunctionTransformer to select columns

Shows how to use a function transformer in a pipeline. If you know your dataset’s first principle component is irrelevant
for a classification task, you can use the FunctionTransformer to select all but the first column of the PCA transformed
data.

•

1516 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

import matplotlib.pyplot as plt
import numpy as np

from sklearn.model_selection import train_test_split
from sklearn.decomposition import PCA
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import FunctionTransformer

def _generate_vector(shift=0.5, noise=15):
return np.arange(1000) + (np.random.rand(1000) - shift) * noise

def generate_dataset():
"""
This dataset is two lines with a slope ~ 1, where one has
a y offset of ~100
"""
return np.vstack((

np.vstack((
_generate_vector(),
_generate_vector() + 100,

)).T,
np.vstack((

_generate_vector(),
_generate_vector(),

)).T,
(continues on next page)

6.26. Preprocessing 1517

scikit-learn user guide, Release 0.23.2

(continued from previous page)

)), np.hstack((np.zeros(1000), np.ones(1000)))

def all_but_first_column(X):
return X[:, 1:]

def drop_first_component(X, y):
"""
Create a pipeline with PCA and the column selector and use it to
transform the dataset.
"""
pipeline = make_pipeline(

PCA(), FunctionTransformer(all_but_first_column),
)
X_train, X_test, y_train, y_test = train_test_split(X, y)
pipeline.fit(X_train, y_train)
return pipeline.transform(X_test), y_test

if __name__ == '__main__':
X, y = generate_dataset()
lw = 0
plt.figure()
plt.scatter(X[:, 0], X[:, 1], c=y, lw=lw)
plt.figure()
X_transformed, y_transformed = drop_first_component(*generate_dataset())
plt.scatter(

X_transformed[:, 0],
np.zeros(len(X_transformed)),
c=y_transformed,
lw=lw,
s=60

)
plt.show()

Total running time of the script: (0 minutes 0.117 seconds)

6.26.2 Using KBinsDiscretizer to discretize continuous features

The example compares prediction result of linear regression (linear model) and decision tree (tree based model) with
and without discretization of real-valued features.

As is shown in the result before discretization, linear model is fast to build and relatively straightforward to interpret,
but can only model linear relationships, while decision tree can build a much more complex model of the data. One
way to make linear model more powerful on continuous data is to use discretization (also known as binning). In the
example, we discretize the feature and one-hot encode the transformed data. Note that if the bins are not reasonably
wide, there would appear to be a substantially increased risk of overfitting, so the discretizer parameters should usually
be tuned under cross validation.

After discretization, linear regression and decision tree make exactly the same prediction. As features are constant
within each bin, any model must predict the same value for all points within a bin. Compared with the result before
discretization, linear model become much more flexible while decision tree gets much less flexible. Note that bin-
ning features generally has no beneficial effect for tree-based models, as these models can learn to split up the data
anywhere.

1518 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Author: Andreas Müller
Hanmin Qin <qinhanmin2005@sina.com>
License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import KBinsDiscretizer
from sklearn.tree import DecisionTreeRegressor

print(__doc__)

construct the dataset
rnd = np.random.RandomState(42)
X = rnd.uniform(-3, 3, size=100)
y = np.sin(X) + rnd.normal(size=len(X)) / 3
X = X.reshape(-1, 1)

transform the dataset with KBinsDiscretizer
enc = KBinsDiscretizer(n_bins=10, encode='onehot')
X_binned = enc.fit_transform(X)

predict with original dataset
fig, (ax1, ax2) = plt.subplots(ncols=2, sharey=True, figsize=(10, 4))
line = np.linspace(-3, 3, 1000, endpoint=False).reshape(-1, 1)
reg = LinearRegression().fit(X, y)
ax1.plot(line, reg.predict(line), linewidth=2, color='green',

label="linear regression")
reg = DecisionTreeRegressor(min_samples_split=3, random_state=0).fit(X, y)
ax1.plot(line, reg.predict(line), linewidth=2, color='red',

label="decision tree")
ax1.plot(X[:, 0], y, 'o', c='k')
ax1.legend(loc="best")
ax1.set_ylabel("Regression output")
ax1.set_xlabel("Input feature")
ax1.set_title("Result before discretization")

predict with transformed dataset
line_binned = enc.transform(line)

(continues on next page)

6.26. Preprocessing 1519

scikit-learn user guide, Release 0.23.2

(continued from previous page)

reg = LinearRegression().fit(X_binned, y)
ax2.plot(line, reg.predict(line_binned), linewidth=2, color='green',

linestyle='-', label='linear regression')
reg = DecisionTreeRegressor(min_samples_split=3,

random_state=0).fit(X_binned, y)
ax2.plot(line, reg.predict(line_binned), linewidth=2, color='red',

linestyle=':', label='decision tree')
ax2.plot(X[:, 0], y, 'o', c='k')
ax2.vlines(enc.bin_edges_[0], *plt.gca().get_ylim(), linewidth=1, alpha=.2)
ax2.legend(loc="best")
ax2.set_xlabel("Input feature")
ax2.set_title("Result after discretization")

plt.tight_layout()
plt.show()

Total running time of the script: (0 minutes 0.154 seconds)

6.26.3 Demonstrating the different strategies of KBinsDiscretizer

This example presents the different strategies implemented in KBinsDiscretizer:

• ‘uniform’: The discretization is uniform in each feature, which means that the bin widths are constant in each
dimension.

• quantile’: The discretization is done on the quantiled values, which means that each bin has approximately the
same number of samples.

• ‘kmeans’: The discretization is based on the centroids of a KMeans clustering procedure.

The plot shows the regions where the discretized encoding is constant.

1520 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Author: Tom Dupré la Tour
License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn.preprocessing import KBinsDiscretizer
from sklearn.datasets import make_blobs

print(__doc__)

strategies = ['uniform', 'quantile', 'kmeans']

n_samples = 200
centers_0 = np.array([[0, 0], [0, 5], [2, 4], [8, 8]])
centers_1 = np.array([[0, 0], [3, 1]])

construct the datasets
random_state = 42
X_list = [

np.random.RandomState(random_state).uniform(-3, 3, size=(n_samples, 2)),
make_blobs(n_samples=[n_samples // 10, n_samples * 4 // 10,

n_samples // 10, n_samples * 4 // 10],
cluster_std=0.5, centers=centers_0,
random_state=random_state)[0],

make_blobs(n_samples=[n_samples // 5, n_samples * 4 // 5],
cluster_std=0.5, centers=centers_1,
random_state=random_state)[0],

]

(continues on next page)

6.26. Preprocessing 1521

scikit-learn user guide, Release 0.23.2

(continued from previous page)

figure = plt.figure(figsize=(14, 9))
i = 1
for ds_cnt, X in enumerate(X_list):

ax = plt.subplot(len(X_list), len(strategies) + 1, i)
ax.scatter(X[:, 0], X[:, 1], edgecolors='k')
if ds_cnt == 0:

ax.set_title("Input data", size=14)

xx, yy = np.meshgrid(
np.linspace(X[:, 0].min(), X[:, 0].max(), 300),
np.linspace(X[:, 1].min(), X[:, 1].max(), 300))

grid = np.c_[xx.ravel(), yy.ravel()]

ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
ax.set_xticks(())
ax.set_yticks(())

i += 1
transform the dataset with KBinsDiscretizer
for strategy in strategies:

enc = KBinsDiscretizer(n_bins=4, encode='ordinal', strategy=strategy)
enc.fit(X)
grid_encoded = enc.transform(grid)

ax = plt.subplot(len(X_list), len(strategies) + 1, i)

horizontal stripes
horizontal = grid_encoded[:, 0].reshape(xx.shape)
ax.contourf(xx, yy, horizontal, alpha=.5)
vertical stripes
vertical = grid_encoded[:, 1].reshape(xx.shape)
ax.contourf(xx, yy, vertical, alpha=.5)

ax.scatter(X[:, 0], X[:, 1], edgecolors='k')
ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
ax.set_xticks(())
ax.set_yticks(())
if ds_cnt == 0:

ax.set_title("strategy='%s'" % (strategy,), size=14)

i += 1

plt.tight_layout()
plt.show()

Total running time of the script: (0 minutes 0.671 seconds)

6.26.4 Importance of Feature Scaling

Feature scaling through standardization (or Z-score normalization) can be an important preprocessing step for many
machine learning algorithms. Standardization involves rescaling the features such that they have the properties of a
standard normal distribution with a mean of zero and a standard deviation of one.

1522 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

While many algorithms (such as SVM, K-nearest neighbors, and logistic regression) require features to be normalized,
intuitively we can think of Principle Component Analysis (PCA) as being a prime example of when normalization is
important. In PCA we are interested in the components that maximize the variance. If one component (e.g. human
height) varies less than another (e.g. weight) because of their respective scales (meters vs. kilos), PCA might determine
that the direction of maximal variance more closely corresponds with the ‘weight’ axis, if those features are not scaled.
As a change in height of one meter can be considered much more important than the change in weight of one kilogram,
this is clearly incorrect.

To illustrate this, PCA is performed comparing the use of data with StandardScaler applied, to unscaled data.
The results are visualized and a clear difference noted. The 1st principal component in the unscaled set can be seen. It
can be seen that feature #13 dominates the direction, being a whole two orders of magnitude above the other features.
This is contrasted when observing the principal component for the scaled version of the data. In the scaled version,
the orders of magnitude are roughly the same across all the features.

The dataset used is the Wine Dataset available at UCI. This dataset has continuous features that are heterogeneous in
scale due to differing properties that they measure (i.e alcohol content, and malic acid).

The transformed data is then used to train a naive Bayes classifier, and a clear difference in prediction accuracies is
observed wherein the dataset which is scaled before PCA vastly outperforms the unscaled version.

Out:

Prediction accuracy for the normal test dataset with PCA
81.48%

Prediction accuracy for the standardized test dataset with PCA
98.15%

(continues on next page)

6.26. Preprocessing 1523

scikit-learn user guide, Release 0.23.2

(continued from previous page)

PC 1 without scaling:
[1.76e-03 -8.36e-04 1.55e-04 -5.31e-03 2.02e-02 1.02e-03 1.53e-03
-1.12e-04 6.31e-04 2.33e-03 1.54e-04 7.43e-04 1.00e+00]

PC 1 with scaling:
[0.13 -0.26 -0.01 -0.23 0.16 0.39 0.42 -0.28 0.33 -0.11 0.3 0.38
0.28]

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.naive_bayes import GaussianNB
from sklearn import metrics
import matplotlib.pyplot as plt
from sklearn.datasets import load_wine
from sklearn.pipeline import make_pipeline
print(__doc__)

Code source: Tyler Lanigan <tylerlanigan@gmail.com>
Sebastian Raschka <mail@sebastianraschka.com>

License: BSD 3 clause

RANDOM_STATE = 42
FIG_SIZE = (10, 7)

features, target = load_wine(return_X_y=True)

Make a train/test split using 30% test size
X_train, X_test, y_train, y_test = train_test_split(features, target,

test_size=0.30,
random_state=RANDOM_STATE)

Fit to data and predict using pipelined GNB and PCA.
unscaled_clf = make_pipeline(PCA(n_components=2), GaussianNB())
unscaled_clf.fit(X_train, y_train)
pred_test = unscaled_clf.predict(X_test)

Fit to data and predict using pipelined scaling, GNB and PCA.
std_clf = make_pipeline(StandardScaler(), PCA(n_components=2), GaussianNB())
std_clf.fit(X_train, y_train)
pred_test_std = std_clf.predict(X_test)

Show prediction accuracies in scaled and unscaled data.
print('\nPrediction accuracy for the normal test dataset with PCA')
print('{:.2%}\n'.format(metrics.accuracy_score(y_test, pred_test)))

print('\nPrediction accuracy for the standardized test dataset with PCA')

(continues on next page)

1524 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

print('{:.2%}\n'.format(metrics.accuracy_score(y_test, pred_test_std)))

Extract PCA from pipeline
pca = unscaled_clf.named_steps['pca']
pca_std = std_clf.named_steps['pca']

Show first principal components
print('\nPC 1 without scaling:\n', pca.components_[0])
print('\nPC 1 with scaling:\n', pca_std.components_[0])

Use PCA without and with scale on X_train data for visualization.
X_train_transformed = pca.transform(X_train)
scaler = std_clf.named_steps['standardscaler']
X_train_std_transformed = pca_std.transform(scaler.transform(X_train))

visualize standardized vs. untouched dataset with PCA performed
fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=FIG_SIZE)

for l, c, m in zip(range(0, 3), ('blue', 'red', 'green'), ('^', 's', 'o')):
ax1.scatter(X_train_transformed[y_train == l, 0],

X_train_transformed[y_train == l, 1],
color=c,
label='class %s' % l,
alpha=0.5,
marker=m
)

for l, c, m in zip(range(0, 3), ('blue', 'red', 'green'), ('^', 's', 'o')):
ax2.scatter(X_train_std_transformed[y_train == l, 0],

X_train_std_transformed[y_train == l, 1],
color=c,
label='class %s' % l,
alpha=0.5,
marker=m
)

ax1.set_title('Training dataset after PCA')
ax2.set_title('Standardized training dataset after PCA')

for ax in (ax1, ax2):
ax.set_xlabel('1st principal component')
ax.set_ylabel('2nd principal component')
ax.legend(loc='upper right')
ax.grid()

plt.tight_layout()

plt.show()

Total running time of the script: (0 minutes 0.192 seconds)

6.26.5 Map data to a normal distribution

This example demonstrates the use of the Box-Cox and Yeo-Johnson transforms through PowerTransformer to
map data from various distributions to a normal distribution.

6.26. Preprocessing 1525

scikit-learn user guide, Release 0.23.2

The power transform is useful as a transformation in modeling problems where homoscedasticity and normality are de-
sired. Below are examples of Box-Cox and Yeo-Johnwon applied to six different probability distributions: Lognormal,
Chi-squared, Weibull, Gaussian, Uniform, and Bimodal.

Note that the transformations successfully map the data to a normal distribution when applied to certain datasets, but
are ineffective with others. This highlights the importance of visualizing the data before and after transformation.

Also note that even though Box-Cox seems to perform better than Yeo-Johnson for lognormal and chi-squared distri-
butions, keep in mind that Box-Cox does not support inputs with negative values.

For comparison, we also add the output from QuantileTransformer. It can force any arbitrary distribution into
a gaussian, provided that there are enough training samples (thousands). Because it is a non-parametric method, it is
harder to interpret than the parametric ones (Box-Cox and Yeo-Johnson).

On “small” datasets (less than a few hundred points), the quantile transformer is prone to overfitting. The use of the
power transform is then recommended.

1526 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Author: Eric Chang <ericchang2017@u.northwestern.edu>
Nicolas Hug <contact@nicolas-hug.com>
License: BSD 3 clause

(continues on next page)

6.26. Preprocessing 1527

scikit-learn user guide, Release 0.23.2

(continued from previous page)

import numpy as np
import matplotlib.pyplot as plt

from sklearn.preprocessing import PowerTransformer
from sklearn.preprocessing import QuantileTransformer
from sklearn.model_selection import train_test_split

print(__doc__)

N_SAMPLES = 1000
FONT_SIZE = 6
BINS = 30

rng = np.random.RandomState(304)
bc = PowerTransformer(method='box-cox')
yj = PowerTransformer(method='yeo-johnson')
n_quantiles is set to the training set size rather than the default value
to avoid a warning being raised by this example
qt = QuantileTransformer(n_quantiles=500, output_distribution='normal',

random_state=rng)
size = (N_SAMPLES, 1)

lognormal distribution
X_lognormal = rng.lognormal(size=size)

chi-squared distribution
df = 3
X_chisq = rng.chisquare(df=df, size=size)

weibull distribution
a = 50
X_weibull = rng.weibull(a=a, size=size)

gaussian distribution
loc = 100
X_gaussian = rng.normal(loc=loc, size=size)

uniform distribution
X_uniform = rng.uniform(low=0, high=1, size=size)

bimodal distribution
loc_a, loc_b = 100, 105
X_a, X_b = rng.normal(loc=loc_a, size=size), rng.normal(loc=loc_b, size=size)
X_bimodal = np.concatenate([X_a, X_b], axis=0)

create plots
distributions = [

('Lognormal', X_lognormal),
('Chi-squared', X_chisq),
('Weibull', X_weibull),
('Gaussian', X_gaussian),
('Uniform', X_uniform),
('Bimodal', X_bimodal)

(continues on next page)

1528 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

]

colors = ['#D81B60', '#0188FF', '#FFC107',
'#B7A2FF', '#000000', '#2EC5AC']

fig, axes = plt.subplots(nrows=8, ncols=3, figsize=plt.figaspect(2))
axes = axes.flatten()
axes_idxs = [(0, 3, 6, 9), (1, 4, 7, 10), (2, 5, 8, 11), (12, 15, 18, 21),

(13, 16, 19, 22), (14, 17, 20, 23)]
axes_list = [(axes[i], axes[j], axes[k], axes[l])

for (i, j, k, l) in axes_idxs]

for distribution, color, axes in zip(distributions, colors, axes_list):
name, X = distribution
X_train, X_test = train_test_split(X, test_size=.5)

perform power transforms and quantile transform
X_trans_bc = bc.fit(X_train).transform(X_test)
lmbda_bc = round(bc.lambdas_[0], 2)
X_trans_yj = yj.fit(X_train).transform(X_test)
lmbda_yj = round(yj.lambdas_[0], 2)
X_trans_qt = qt.fit(X_train).transform(X_test)

ax_original, ax_bc, ax_yj, ax_qt = axes

ax_original.hist(X_train, color=color, bins=BINS)
ax_original.set_title(name, fontsize=FONT_SIZE)
ax_original.tick_params(axis='both', which='major', labelsize=FONT_SIZE)

for ax, X_trans, meth_name, lmbda in zip(
(ax_bc, ax_yj, ax_qt),
(X_trans_bc, X_trans_yj, X_trans_qt),
('Box-Cox', 'Yeo-Johnson', 'Quantile transform'),
(lmbda_bc, lmbda_yj, None)):

ax.hist(X_trans, color=color, bins=BINS)
title = 'After {}'.format(meth_name)
if lmbda is not None:

title += r'\nλ = {}'.format(lmbda)
ax.set_title(title, fontsize=FONT_SIZE)
ax.tick_params(axis='both', which='major', labelsize=FONT_SIZE)
ax.set_xlim([-3.5, 3.5])

plt.tight_layout()
plt.show()

Total running time of the script: (0 minutes 1.727 seconds)

6.26.6 Feature discretization

A demonstration of feature discretization on synthetic classification datasets. Feature discretization decomposes each
feature into a set of bins, here equally distributed in width. The discrete values are then one-hot encoded, and given to
a linear classifier. This preprocessing enables a non-linear behavior even though the classifier is linear.

On this example, the first two rows represent linearly non-separable datasets (moons and concentric circles) while the

6.26. Preprocessing 1529

scikit-learn user guide, Release 0.23.2

third is approximately linearly separable. On the two linearly non-separable datasets, feature discretization largely
increases the performance of linear classifiers. On the linearly separable dataset, feature discretization decreases the
performance of linear classifiers. Two non-linear classifiers are also shown for comparison.

This example should be taken with a grain of salt, as the intuition conveyed does not necessarily carry over to real
datasets. Particularly in high-dimensional spaces, data can more easily be separated linearly. Moreover, using feature
discretization and one-hot encoding increases the number of features, which easily lead to overfitting when the number
of samples is small.

The plots show training points in solid colors and testing points semi-transparent. The lower right shows the classifi-
cation accuracy on the test set.

Out:

dataset 0

LogisticRegression: 0.86
LinearSVC: 0.86
KBinsDiscretizer + LogisticRegression: 0.86
KBinsDiscretizer + LinearSVC: 0.92
GradientBoostingClassifier: 0.90
SVC: 0.94

dataset 1

LogisticRegression: 0.40
LinearSVC: 0.40
KBinsDiscretizer + LogisticRegression: 0.88
KBinsDiscretizer + LinearSVC: 0.86
GradientBoostingClassifier: 0.80
SVC: 0.84

dataset 2

LogisticRegression: 0.98
LinearSVC: 0.98
KBinsDiscretizer + LogisticRegression: 0.94
KBinsDiscretizer + LinearSVC: 0.94
GradientBoostingClassifier: 0.88
SVC: 0.98

1530 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Code source: Tom Dupré la Tour
Adapted from plot_classifier_comparison by Gaël Varoquaux and Andreas Müller
#
License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_moons, make_circles, make_classification
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import GridSearchCV
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import KBinsDiscretizer
from sklearn.svm import SVC, LinearSVC
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.utils._testing import ignore_warnings
from sklearn.exceptions import ConvergenceWarning

print(__doc__)

h = .02 # step size in the mesh

def get_name(estimator):
name = estimator.__class__.__name__
if name == 'Pipeline':

name = [get_name(est[1]) for est in estimator.steps]
name = ' + '.join(name)

return name

list of (estimator, param_grid), where param_grid is used in GridSearchCV
classifiers = [

(LogisticRegression(random_state=0), {
'C': np.logspace(-2, 7, 10)

}),
(LinearSVC(random_state=0), {

'C': np.logspace(-2, 7, 10)
}),
(make_pipeline(

KBinsDiscretizer(encode='onehot'),
LogisticRegression(random_state=0)), {

'kbinsdiscretizer__n_bins': np.arange(2, 10),
'logisticregression__C': np.logspace(-2, 7, 10),

}),
(make_pipeline(

KBinsDiscretizer(encode='onehot'), LinearSVC(random_state=0)), {
'kbinsdiscretizer__n_bins': np.arange(2, 10),
'linearsvc__C': np.logspace(-2, 7, 10),

}),
(GradientBoostingClassifier(n_estimators=50, random_state=0), {

'learning_rate': np.logspace(-4, 0, 10)

(continues on next page)

6.26. Preprocessing 1531

scikit-learn user guide, Release 0.23.2

(continued from previous page)

}),
(SVC(random_state=0), {

'C': np.logspace(-2, 7, 10)
}),

]

names = [get_name(e) for e, g in classifiers]

n_samples = 100
datasets = [

make_moons(n_samples=n_samples, noise=0.2, random_state=0),
make_circles(n_samples=n_samples, noise=0.2, factor=0.5, random_state=1),
make_classification(n_samples=n_samples, n_features=2, n_redundant=0,

n_informative=2, random_state=2,
n_clusters_per_class=1)

]

fig, axes = plt.subplots(nrows=len(datasets), ncols=len(classifiers) + 1,
figsize=(21, 9))

cm = plt.cm.PiYG
cm_bright = ListedColormap(['#b30065', '#178000'])

iterate over datasets
for ds_cnt, (X, y) in enumerate(datasets):

print('\ndataset %d\n---------' % ds_cnt)

preprocess dataset, split into training and test part
X = StandardScaler().fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=.5, random_state=42)

create the grid for background colors
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(

np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))

plot the dataset first
ax = axes[ds_cnt, 0]
if ds_cnt == 0:

ax.set_title("Input data")
plot the training points
ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright,

edgecolors='k')
and testing points
ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6,

edgecolors='k')
ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
ax.set_xticks(())
ax.set_yticks(())

iterate over classifiers
for est_idx, (name, (estimator, param_grid)) in \

enumerate(zip(names, classifiers)):
ax = axes[ds_cnt, est_idx + 1]

(continues on next page)

1532 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

clf = GridSearchCV(estimator=estimator, param_grid=param_grid)
with ignore_warnings(category=ConvergenceWarning):

clf.fit(X_train, y_train)
score = clf.score(X_test, y_test)
print('%s: %.2f' % (name, score))

plot the decision boundary. For that, we will assign a color to each
point in the mesh [x_min, x_max]*[y_min, y_max].
if hasattr(clf, "decision_function"):

Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
else:

Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]

put the result into a color plot
Z = Z.reshape(xx.shape)
ax.contourf(xx, yy, Z, cmap=cm, alpha=.8)

plot the training points
ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright,

edgecolors='k')
and testing points
ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright,

edgecolors='k', alpha=0.6)
ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
ax.set_xticks(())
ax.set_yticks(())

if ds_cnt == 0:
ax.set_title(name.replace(' + ', '\n'))

ax.text(0.95, 0.06, ('%.2f' % score).lstrip('0'), size=15,
bbox=dict(boxstyle='round', alpha=0.8, facecolor='white'),
transform=ax.transAxes, horizontalalignment='right')

plt.tight_layout()

Add suptitles above the figure
plt.subplots_adjust(top=0.90)
suptitles = [

'Linear classifiers',
'Feature discretization and linear classifiers',
'Non-linear classifiers',

]
for i, suptitle in zip([1, 3, 5], suptitles):

ax = axes[0, i]
ax.text(1.05, 1.25, suptitle, transform=ax.transAxes,

horizontalalignment='center', size='x-large')
plt.show()

Total running time of the script: (0 minutes 21.708 seconds)

6.26. Preprocessing 1533

scikit-learn user guide, Release 0.23.2

6.26.7 Compare the effect of different scalers on data with outliers

Feature 0 (median income in a block) and feature 5 (number of households) of the California housing dataset have
very different scales and contain some very large outliers. These two characteristics lead to difficulties to visualize
the data and, more importantly, they can degrade the predictive performance of many machine learning algorithms.
Unscaled data can also slow down or even prevent the convergence of many gradient-based estimators.

Indeed many estimators are designed with the assumption that each feature takes values close to zero or more im-
portantly that all features vary on comparable scales. In particular, metric-based and gradient-based estimators often
assume approximately standardized data (centered features with unit variances). A notable exception are decision
tree-based estimators that are robust to arbitrary scaling of the data.

This example uses different scalers, transformers, and normalizers to bring the data within a pre-defined range.

Scalers are linear (or more precisely affine) transformers and differ from each other in the way to estimate the param-
eters used to shift and scale each feature.

QuantileTransformer provides non-linear transformations in which distances between marginal outliers and
inliers are shrunk. PowerTransformer provides non-linear transformations in which data is mapped to a normal
distribution to stabilize variance and minimize skewness.

Unlike the previous transformations, normalization refers to a per sample transformation instead of a per feature
transformation.

The following code is a bit verbose, feel free to jump directly to the analysis of the results.

Author: Raghav RV <rvraghav93@gmail.com>
Guillaume Lemaitre <g.lemaitre58@gmail.com>
Thomas Unterthiner
License: BSD 3 clause

import numpy as np

import matplotlib as mpl
from matplotlib import pyplot as plt
from matplotlib import cm

from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import minmax_scale
from sklearn.preprocessing import MaxAbsScaler
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import RobustScaler
from sklearn.preprocessing import Normalizer
from sklearn.preprocessing import QuantileTransformer
from sklearn.preprocessing import PowerTransformer

from sklearn.datasets import fetch_california_housing

print(__doc__)

dataset = fetch_california_housing()
X_full, y_full = dataset.data, dataset.target

Take only 2 features to make visualization easier
Feature of 0 has a long tail distribution.
Feature 5 has a few but very large outliers.

X = X_full[:, [0, 5]]

(continues on next page)

1534 Chapter 6. Examples

https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html

scikit-learn user guide, Release 0.23.2

(continued from previous page)

distributions = [
('Unscaled data', X),
('Data after standard scaling',

StandardScaler().fit_transform(X)),
('Data after min-max scaling',

MinMaxScaler().fit_transform(X)),
('Data after max-abs scaling',

MaxAbsScaler().fit_transform(X)),
('Data after robust scaling',

RobustScaler(quantile_range=(25, 75)).fit_transform(X)),
('Data after power transformation (Yeo-Johnson)',
PowerTransformer(method='yeo-johnson').fit_transform(X)),

('Data after power transformation (Box-Cox)',
PowerTransformer(method='box-cox').fit_transform(X)),

('Data after quantile transformation (gaussian pdf)',
QuantileTransformer(output_distribution='normal')
.fit_transform(X)),

('Data after quantile transformation (uniform pdf)',
QuantileTransformer(output_distribution='uniform')
.fit_transform(X)),

('Data after sample-wise L2 normalizing',
Normalizer().fit_transform(X)),

]

scale the output between 0 and 1 for the colorbar
y = minmax_scale(y_full)

plasma does not exist in matplotlib < 1.5
cmap = getattr(cm, 'plasma_r', cm.hot_r)

def create_axes(title, figsize=(16, 6)):
fig = plt.figure(figsize=figsize)
fig.suptitle(title)

define the axis for the first plot
left, width = 0.1, 0.22
bottom, height = 0.1, 0.7
bottom_h = height + 0.15
left_h = left + width + 0.02

rect_scatter = [left, bottom, width, height]
rect_histx = [left, bottom_h, width, 0.1]
rect_histy = [left_h, bottom, 0.05, height]

ax_scatter = plt.axes(rect_scatter)
ax_histx = plt.axes(rect_histx)
ax_histy = plt.axes(rect_histy)

define the axis for the zoomed-in plot
left = width + left + 0.2
left_h = left + width + 0.02

rect_scatter = [left, bottom, width, height]
rect_histx = [left, bottom_h, width, 0.1]
rect_histy = [left_h, bottom, 0.05, height]

ax_scatter_zoom = plt.axes(rect_scatter)
(continues on next page)

6.26. Preprocessing 1535

scikit-learn user guide, Release 0.23.2

(continued from previous page)

ax_histx_zoom = plt.axes(rect_histx)
ax_histy_zoom = plt.axes(rect_histy)

define the axis for the colorbar
left, width = width + left + 0.13, 0.01

rect_colorbar = [left, bottom, width, height]
ax_colorbar = plt.axes(rect_colorbar)

return ((ax_scatter, ax_histy, ax_histx),
(ax_scatter_zoom, ax_histy_zoom, ax_histx_zoom),
ax_colorbar)

def plot_distribution(axes, X, y, hist_nbins=50, title="",
x0_label="", x1_label=""):

ax, hist_X1, hist_X0 = axes

ax.set_title(title)
ax.set_xlabel(x0_label)
ax.set_ylabel(x1_label)

The scatter plot
colors = cmap(y)
ax.scatter(X[:, 0], X[:, 1], alpha=0.5, marker='o', s=5, lw=0, c=colors)

Removing the top and the right spine for aesthetics
make nice axis layout
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.get_xaxis().tick_bottom()
ax.get_yaxis().tick_left()
ax.spines['left'].set_position(('outward', 10))
ax.spines['bottom'].set_position(('outward', 10))

Histogram for axis X1 (feature 5)
hist_X1.set_ylim(ax.get_ylim())
hist_X1.hist(X[:, 1], bins=hist_nbins, orientation='horizontal',

color='grey', ec='grey')
hist_X1.axis('off')

Histogram for axis X0 (feature 0)
hist_X0.set_xlim(ax.get_xlim())
hist_X0.hist(X[:, 0], bins=hist_nbins, orientation='vertical',

color='grey', ec='grey')
hist_X0.axis('off')

Two plots will be shown for each scaler/normalizer/transformer. The left figure will show a scatter plot of the full data
set while the right figure will exclude the extreme values considering only 99 % of the data set, excluding marginal
outliers. In addition, the marginal distributions for each feature will be shown on the side of the scatter plot.

def make_plot(item_idx):
title, X = distributions[item_idx]
ax_zoom_out, ax_zoom_in, ax_colorbar = create_axes(title)
axarr = (ax_zoom_out, ax_zoom_in)
plot_distribution(axarr[0], X, y, hist_nbins=200,

(continues on next page)

1536 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

x0_label="Median Income",
x1_label="Number of households",
title="Full data")

zoom-in
zoom_in_percentile_range = (0, 99)
cutoffs_X0 = np.percentile(X[:, 0], zoom_in_percentile_range)
cutoffs_X1 = np.percentile(X[:, 1], zoom_in_percentile_range)

non_outliers_mask = (
np.all(X > [cutoffs_X0[0], cutoffs_X1[0]], axis=1) &
np.all(X < [cutoffs_X0[1], cutoffs_X1[1]], axis=1))

plot_distribution(axarr[1], X[non_outliers_mask], y[non_outliers_mask],
hist_nbins=50,
x0_label="Median Income",
x1_label="Number of households",
title="Zoom-in")

norm = mpl.colors.Normalize(y_full.min(), y_full.max())
mpl.colorbar.ColorbarBase(ax_colorbar, cmap=cmap,

norm=norm, orientation='vertical',
label='Color mapping for values of y')

Original data

Each transformation is plotted showing two transformed features, with the left plot showing the entire dataset, and
the right zoomed-in to show the dataset without the marginal outliers. A large majority of the samples are compacted
to a specific range, [0, 10] for the median income and [0, 6] for the number of households. Note that there are
some marginal outliers (some blocks have more than 1200 households). Therefore, a specific pre-processing can
be very beneficial depending of the application. In the following, we present some insights and behaviors of those
pre-processing methods in the presence of marginal outliers.

make_plot(0)

6.26. Preprocessing 1537

scikit-learn user guide, Release 0.23.2

StandardScaler

StandardScaler removes the mean and scales the data to unit variance. However, the outliers have an influence
when computing the empirical mean and standard deviation which shrink the range of the feature values as shown in
the left figure below. Note in particular that because the outliers on each feature have different magnitudes, the spread
of the transformed data on each feature is very different: most of the data lie in the [-2, 4] range for the transformed
median income feature while the same data is squeezed in the smaller [-0.2, 0.2] range for the transformed number of
households.

StandardScaler therefore cannot guarantee balanced feature scales in the presence of outliers.

make_plot(1)

MinMaxScaler

MinMaxScaler rescales the data set such that all feature values are in the range [0, 1] as shown in the right panel
below. However, this scaling compress all inliers in the narrow range [0, 0.005] for the transformed number of
households.

As StandardScaler, MinMaxScaler is very sensitive to the presence of outliers.

make_plot(2)

1538 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

MaxAbsScaler

MaxAbsScaler differs from the previous scaler such that the absolute values are mapped in the range [0, 1]. On
positive only data, this scaler behaves similarly to MinMaxScaler and therefore also suffers from the presence of
large outliers.

make_plot(3)

RobustScaler

Unlike the previous scalers, the centering and scaling statistics of this scaler are based on percentiles and are therefore
not influenced by a few number of very large marginal outliers. Consequently, the resulting range of the transformed
feature values is larger than for the previous scalers and, more importantly, are approximately similar: for both features
most of the transformed values lie in a [-2, 3] range as seen in the zoomed-in figure. Note that the outliers themselves
are still present in the transformed data. If a separate outlier clipping is desirable, a non-linear transformation is
required (see below).

make_plot(4)

6.26. Preprocessing 1539

scikit-learn user guide, Release 0.23.2

PowerTransformer

PowerTransformer applies a power transformation to each feature to make the data more Gaussian-like. Cur-
rently, PowerTransformer implements the Yeo-Johnson and Box-Cox transforms. The power transform finds
the optimal scaling factor to stabilize variance and mimimize skewness through maximum likelihood estimation. By
default, PowerTransformer also applies zero-mean, unit variance normalization to the transformed output. Note
that Box-Cox can only be applied to strictly positive data. Income and number of households happen to be strictly
positive, but if negative values are present the Yeo-Johnson transformed is to be preferred.

make_plot(5)
make_plot(6)

•

•

QuantileTransformer (Gaussian output)

QuantileTransformer has an additional output_distribution parameter allowing to match a Gaussian
distribution instead of a uniform distribution. Note that this non-parametetric transformer introduces saturation arti-
facts for extreme values.

make_plot(7)

1540 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

QuantileTransformer (uniform output)

QuantileTransformer applies a non-linear transformation such that the probability density function of each
feature will be mapped to a uniform distribution. In this case, all the data will be mapped in the range [0, 1], even the
outliers which cannot be distinguished anymore from the inliers.

As RobustScaler, QuantileTransformer is robust to outliers in the sense that adding or removing outliers in
the training set will yield approximately the same transformation on held out data. But contrary to RobustScaler,
QuantileTransformer will also automatically collapse any outlier by setting them to the a priori defined range
boundaries (0 and 1).

make_plot(8)

Normalizer

The Normalizer rescales the vector for each sample to have unit norm, independently of the distribution of the
samples. It can be seen on both figures below where all samples are mapped onto the unit circle. In our example the
two selected features have only positive values; therefore the transformed data only lie in the positive quadrant. This
would not be the case if some original features had a mix of positive and negative values.

6.26. Preprocessing 1541

scikit-learn user guide, Release 0.23.2

make_plot(9)

plt.show()

Total running time of the script: (0 minutes 8.220 seconds)

6.27 Semi Supervised Classification

Examples concerning the sklearn.semi_supervised module.

6.27.1 Decision boundary of label propagation versus SVM on the Iris dataset

Comparison for decision boundary generated on iris dataset between Label Propagation and SVM.

This demonstrates Label Propagation learning a good boundary even with a small amount of labeled data.

1542 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

print(__doc__)

Authors: Clay Woolam <clay@woolam.org>
License: BSD

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn import svm
from sklearn.semi_supervised import LabelSpreading

rng = np.random.RandomState(0)

iris = datasets.load_iris()

X = iris.data[:, :2]
y = iris.target

step size in the mesh
h = .02

y_30 = np.copy(y)
y_30[rng.rand(len(y)) < 0.3] = -1
y_50 = np.copy(y)
y_50[rng.rand(len(y)) < 0.5] = -1

(continues on next page)

6.27. Semi Supervised Classification 1543

scikit-learn user guide, Release 0.23.2

(continued from previous page)

we create an instance of SVM and fit out data. We do not scale our
data since we want to plot the support vectors
ls30 = (LabelSpreading().fit(X, y_30), y_30)
ls50 = (LabelSpreading().fit(X, y_50), y_50)
ls100 = (LabelSpreading().fit(X, y), y)
rbf_svc = (svm.SVC(kernel='rbf', gamma=.5).fit(X, y), y)

create a mesh to plot in
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),

np.arange(y_min, y_max, h))

title for the plots
titles = ['Label Spreading 30% data',

'Label Spreading 50% data',
'Label Spreading 100% data',
'SVC with rbf kernel']

color_map = {-1: (1, 1, 1), 0: (0, 0, .9), 1: (1, 0, 0), 2: (.8, .6, 0)}

for i, (clf, y_train) in enumerate((ls30, ls50, ls100, rbf_svc)):
Plot the decision boundary. For that, we will assign a color to each
point in the mesh [x_min, x_max]x[y_min, y_max].
plt.subplot(2, 2, i + 1)
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, cmap=plt.cm.Paired)
plt.axis('off')

Plot also the training points
colors = [color_map[y] for y in y_train]
plt.scatter(X[:, 0], X[:, 1], c=colors, edgecolors='black')

plt.title(titles[i])

plt.suptitle("Unlabeled points are colored white", y=0.1)
plt.show()

Total running time of the script: (0 minutes 0.923 seconds)

6.27.2 Label Propagation learning a complex structure

Example of LabelPropagation learning a complex internal structure to demonstrate “manifold learning”. The outer
circle should be labeled “red” and the inner circle “blue”. Because both label groups lie inside their own distinct
shape, we can see that the labels propagate correctly around the circle.

1544 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

print(__doc__)

Authors: Clay Woolam <clay@woolam.org>
Andreas Mueller <amueller@ais.uni-bonn.de>
License: BSD

import numpy as np
import matplotlib.pyplot as plt
from sklearn.semi_supervised import LabelSpreading
from sklearn.datasets import make_circles

generate ring with inner box
n_samples = 200
X, y = make_circles(n_samples=n_samples, shuffle=False)
outer, inner = 0, 1
labels = np.full(n_samples, -1.)
labels[0] = outer
labels[-1] = inner

###
Learn with LabelSpreading
label_spread = LabelSpreading(kernel='knn', alpha=0.8)
label_spread.fit(X, labels)

###
Plot output labels
output_labels = label_spread.transduction_
plt.figure(figsize=(8.5, 4))
plt.subplot(1, 2, 1)
plt.scatter(X[labels == outer, 0], X[labels == outer, 1], color='navy',

marker='s', lw=0, label="outer labeled", s=10)
plt.scatter(X[labels == inner, 0], X[labels == inner, 1], color='c',

marker='s', lw=0, label='inner labeled', s=10)
plt.scatter(X[labels == -1, 0], X[labels == -1, 1], color='darkorange',

marker='.', label='unlabeled')
plt.legend(scatterpoints=1, shadow=False, loc='upper right')
plt.title("Raw data (2 classes=outer and inner)")

(continues on next page)

6.27. Semi Supervised Classification 1545

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.subplot(1, 2, 2)
output_label_array = np.asarray(output_labels)
outer_numbers = np.where(output_label_array == outer)[0]
inner_numbers = np.where(output_label_array == inner)[0]
plt.scatter(X[outer_numbers, 0], X[outer_numbers, 1], color='navy',

marker='s', lw=0, s=10, label="outer learned")
plt.scatter(X[inner_numbers, 0], X[inner_numbers, 1], color='c',

marker='s', lw=0, s=10, label="inner learned")
plt.legend(scatterpoints=1, shadow=False, loc='upper right')
plt.title("Labels learned with Label Spreading (KNN)")

plt.subplots_adjust(left=0.07, bottom=0.07, right=0.93, top=0.92)
plt.show()

Total running time of the script: (0 minutes 0.115 seconds)

6.27.3 Label Propagation digits: Demonstrating performance

This example demonstrates the power of semisupervised learning by training a Label Spreading model to classify
handwritten digits with sets of very few labels.

The handwritten digit dataset has 1797 total points. The model will be trained using all points, but only 30 will be
labeled. Results in the form of a confusion matrix and a series of metrics over each class will be very good.

At the end, the top 10 most uncertain predictions will be shown.

1546 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Out:

Label Spreading model: 40 labeled & 300 unlabeled points (340 total)
precision recall f1-score support

0 1.00 1.00 1.00 27
1 0.82 1.00 0.90 37
2 1.00 0.86 0.92 28
3 1.00 0.80 0.89 35
4 0.92 1.00 0.96 24
5 0.74 0.94 0.83 34
6 0.89 0.96 0.92 25
7 0.94 0.89 0.91 35
8 1.00 0.68 0.81 31
9 0.81 0.88 0.84 24

accuracy 0.90 300
macro avg 0.91 0.90 0.90 300

weighted avg 0.91 0.90 0.90 300

Confusion matrix
[[27 0 0 0 0 0 0 0 0 0]
[0 37 0 0 0 0 0 0 0 0]
[0 1 24 0 0 0 2 1 0 0]
[0 0 0 28 0 5 0 1 0 1]
[0 0 0 0 24 0 0 0 0 0]
[0 0 0 0 0 32 0 0 0 2]

(continues on next page)

6.27. Semi Supervised Classification 1547

scikit-learn user guide, Release 0.23.2

(continued from previous page)

[0 0 0 0 0 1 24 0 0 0]
[0 0 0 0 1 3 0 31 0 0]
[0 7 0 0 0 0 1 0 21 2]
[0 0 0 0 1 2 0 0 0 21]]

print(__doc__)

Authors: Clay Woolam <clay@woolam.org>
License: BSD

import numpy as np
import matplotlib.pyplot as plt

from scipy import stats

from sklearn import datasets
from sklearn.semi_supervised import LabelSpreading

from sklearn.metrics import confusion_matrix, classification_report

digits = datasets.load_digits()
rng = np.random.RandomState(2)
indices = np.arange(len(digits.data))
rng.shuffle(indices)

X = digits.data[indices[:340]]
y = digits.target[indices[:340]]
images = digits.images[indices[:340]]

n_total_samples = len(y)
n_labeled_points = 40

indices = np.arange(n_total_samples)

unlabeled_set = indices[n_labeled_points:]

###
Shuffle everything around
y_train = np.copy(y)
y_train[unlabeled_set] = -1

###
Learn with LabelSpreading
lp_model = LabelSpreading(gamma=.25, max_iter=20)
lp_model.fit(X, y_train)
predicted_labels = lp_model.transduction_[unlabeled_set]
true_labels = y[unlabeled_set]

cm = confusion_matrix(true_labels, predicted_labels, labels=lp_model.classes_)

print("Label Spreading model: %d labeled & %d unlabeled points (%d total)" %

(continues on next page)

1548 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

(n_labeled_points, n_total_samples - n_labeled_points, n_total_samples))

print(classification_report(true_labels, predicted_labels))

print("Confusion matrix")
print(cm)

###
Calculate uncertainty values for each transduced distribution
pred_entropies = stats.distributions.entropy(lp_model.label_distributions_.T)

###
Pick the top 10 most uncertain labels
uncertainty_index = np.argsort(pred_entropies)[-10:]

###
Plot
f = plt.figure(figsize=(7, 5))
for index, image_index in enumerate(uncertainty_index):

image = images[image_index]

sub = f.add_subplot(2, 5, index + 1)
sub.imshow(image, cmap=plt.cm.gray_r)
plt.xticks([])
plt.yticks([])
sub.set_title('predict: %i\ntrue: %i' % (

lp_model.transduction_[image_index], y[image_index]))

f.suptitle('Learning with small amount of labeled data')
plt.show()

Total running time of the script: (0 minutes 0.216 seconds)

6.27.4 Label Propagation digits active learning

Demonstrates an active learning technique to learn handwritten digits using label propagation.

We start by training a label propagation model with only 10 labeled points, then we select the top five most uncertain
points to label. Next, we train with 15 labeled points (original 10 + 5 new ones). We repeat this process four times
to have a model trained with 30 labeled examples. Note you can increase this to label more than 30 by changing
max_iterations. Labeling more than 30 can be useful to get a sense for the speed of convergence of this active
learning technique.

A plot will appear showing the top 5 most uncertain digits for each iteration of training. These may or may not contain
mistakes, but we will train the next model with their true labels.

6.27. Semi Supervised Classification 1549

scikit-learn user guide, Release 0.23.2

Out:

Iteration 0 __
Label Spreading model: 40 labeled & 290 unlabeled (330 total)

precision recall f1-score support

0 1.00 1.00 1.00 22
1 0.78 0.69 0.73 26
2 0.93 0.93 0.93 29
3 1.00 0.89 0.94 27
4 0.92 0.96 0.94 23
5 0.96 0.70 0.81 33
6 0.97 0.97 0.97 35
7 0.94 0.91 0.92 33
8 0.62 0.89 0.74 28
9 0.73 0.79 0.76 34

accuracy 0.87 290
macro avg 0.89 0.87 0.87 290

weighted avg 0.88 0.87 0.87 290

Confusion matrix
[[22 0 0 0 0 0 0 0 0 0]
[0 18 2 0 0 0 1 0 5 0]
[0 0 27 0 0 0 0 0 2 0]
[0 0 0 24 0 0 0 0 3 0]

(continues on next page)

1550 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

[0 1 0 0 22 0 0 0 0 0]
[0 0 0 0 0 23 0 0 0 10]
[0 1 0 0 0 0 34 0 0 0]
[0 0 0 0 0 0 0 30 3 0]
[0 3 0 0 0 0 0 0 25 0]
[0 0 0 0 2 1 0 2 2 27]]

Iteration 1 __
Label Spreading model: 45 labeled & 285 unlabeled (330 total)

precision recall f1-score support

0 1.00 1.00 1.00 22
1 0.79 1.00 0.88 22
2 1.00 0.93 0.96 29
3 1.00 1.00 1.00 26
4 0.92 0.96 0.94 23
5 0.96 0.70 0.81 33
6 1.00 0.97 0.99 35
7 0.94 0.91 0.92 33
8 0.77 0.86 0.81 28
9 0.73 0.79 0.76 34

accuracy 0.90 285
macro avg 0.91 0.91 0.91 285

weighted avg 0.91 0.90 0.90 285

Confusion matrix
[[22 0 0 0 0 0 0 0 0 0]
[0 22 0 0 0 0 0 0 0 0]
[0 0 27 0 0 0 0 0 2 0]
[0 0 0 26 0 0 0 0 0 0]
[0 1 0 0 22 0 0 0 0 0]
[0 0 0 0 0 23 0 0 0 10]
[0 1 0 0 0 0 34 0 0 0]
[0 0 0 0 0 0 0 30 3 0]
[0 4 0 0 0 0 0 0 24 0]
[0 0 0 0 2 1 0 2 2 27]]

Iteration 2 __
Label Spreading model: 50 labeled & 280 unlabeled (330 total)

precision recall f1-score support

0 1.00 1.00 1.00 22
1 0.85 1.00 0.92 22
2 1.00 1.00 1.00 28
3 1.00 1.00 1.00 26
4 0.87 1.00 0.93 20
5 0.96 0.70 0.81 33
6 1.00 0.97 0.99 35
7 0.94 1.00 0.97 32
8 0.92 0.86 0.89 28
9 0.73 0.79 0.76 34

accuracy 0.92 280
macro avg 0.93 0.93 0.93 280

weighted avg 0.93 0.92 0.92 280

Confusion matrix
[[22 0 0 0 0 0 0 0 0 0]

(continues on next page)

6.27. Semi Supervised Classification 1551

scikit-learn user guide, Release 0.23.2

(continued from previous page)

[0 22 0 0 0 0 0 0 0 0]
[0 0 28 0 0 0 0 0 0 0]
[0 0 0 26 0 0 0 0 0 0]
[0 0 0 0 20 0 0 0 0 0]
[0 0 0 0 0 23 0 0 0 10]
[0 1 0 0 0 0 34 0 0 0]
[0 0 0 0 0 0 0 32 0 0]
[0 3 0 0 1 0 0 0 24 0]
[0 0 0 0 2 1 0 2 2 27]]

Iteration 3 __
Label Spreading model: 55 labeled & 275 unlabeled (330 total)

precision recall f1-score support

0 1.00 1.00 1.00 22
1 0.85 1.00 0.92 22
2 1.00 1.00 1.00 27
3 1.00 1.00 1.00 26
4 0.87 1.00 0.93 20
5 0.96 0.87 0.92 31
6 1.00 0.97 0.99 35
7 1.00 1.00 1.00 31
8 0.92 0.86 0.89 28
9 0.88 0.85 0.86 33

accuracy 0.95 275
macro avg 0.95 0.95 0.95 275

weighted avg 0.95 0.95 0.95 275

Confusion matrix
[[22 0 0 0 0 0 0 0 0 0]
[0 22 0 0 0 0 0 0 0 0]
[0 0 27 0 0 0 0 0 0 0]
[0 0 0 26 0 0 0 0 0 0]
[0 0 0 0 20 0 0 0 0 0]
[0 0 0 0 0 27 0 0 0 4]
[0 1 0 0 0 0 34 0 0 0]
[0 0 0 0 0 0 0 31 0 0]
[0 3 0 0 1 0 0 0 24 0]
[0 0 0 0 2 1 0 0 2 28]]

Iteration 4 __
Label Spreading model: 60 labeled & 270 unlabeled (330 total)

precision recall f1-score support

0 1.00 1.00 1.00 22
1 0.96 1.00 0.98 22
2 1.00 0.96 0.98 27
3 0.96 1.00 0.98 25
4 0.86 1.00 0.93 19
5 0.96 0.87 0.92 31
6 1.00 0.97 0.99 35
7 1.00 1.00 1.00 31
8 0.92 0.96 0.94 25
9 0.88 0.85 0.86 33

accuracy 0.96 270
macro avg 0.95 0.96 0.96 270

weighted avg 0.96 0.96 0.96 270
(continues on next page)

1552 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Confusion matrix
[[22 0 0 0 0 0 0 0 0 0]
[0 22 0 0 0 0 0 0 0 0]
[0 0 26 1 0 0 0 0 0 0]
[0 0 0 25 0 0 0 0 0 0]
[0 0 0 0 19 0 0 0 0 0]
[0 0 0 0 0 27 0 0 0 4]
[0 1 0 0 0 0 34 0 0 0]
[0 0 0 0 0 0 0 31 0 0]
[0 0 0 0 1 0 0 0 24 0]
[0 0 0 0 2 1 0 0 2 28]]

print(__doc__)

Authors: Clay Woolam <clay@woolam.org>
License: BSD

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

from sklearn import datasets
from sklearn.semi_supervised import LabelSpreading
from sklearn.metrics import classification_report, confusion_matrix

digits = datasets.load_digits()
rng = np.random.RandomState(0)
indices = np.arange(len(digits.data))
rng.shuffle(indices)

X = digits.data[indices[:330]]
y = digits.target[indices[:330]]
images = digits.images[indices[:330]]

n_total_samples = len(y)
n_labeled_points = 40
max_iterations = 5

unlabeled_indices = np.arange(n_total_samples)[n_labeled_points:]
f = plt.figure()

for i in range(max_iterations):
if len(unlabeled_indices) == 0:

print("No unlabeled items left to label.")
break

y_train = np.copy(y)
y_train[unlabeled_indices] = -1

lp_model = LabelSpreading(gamma=0.25, max_iter=20)
lp_model.fit(X, y_train)

(continues on next page)

6.27. Semi Supervised Classification 1553

scikit-learn user guide, Release 0.23.2

(continued from previous page)

predicted_labels = lp_model.transduction_[unlabeled_indices]
true_labels = y[unlabeled_indices]

cm = confusion_matrix(true_labels, predicted_labels,
labels=lp_model.classes_)

print("Iteration %i %s" % (i, 70 * "_"))
print("Label Spreading model: %d labeled & %d unlabeled (%d total)"

% (n_labeled_points, n_total_samples - n_labeled_points,
n_total_samples))

print(classification_report(true_labels, predicted_labels))

print("Confusion matrix")
print(cm)

compute the entropies of transduced label distributions
pred_entropies = stats.distributions.entropy(

lp_model.label_distributions_.T)

select up to 5 digit examples that the classifier is most uncertain about
uncertainty_index = np.argsort(pred_entropies)[::-1]
uncertainty_index = uncertainty_index[

np.in1d(uncertainty_index, unlabeled_indices)][:5]

keep track of indices that we get labels for
delete_indices = np.array([], dtype=int)

for more than 5 iterations, visualize the gain only on the first 5
if i < 5:

f.text(.05, (1 - (i + 1) * .183),
"model %d\n\nfit with\n%d labels" %
((i + 1), i * 5 + 10), size=10)

for index, image_index in enumerate(uncertainty_index):
image = images[image_index]

for more than 5 iterations, visualize the gain only on the first 5
if i < 5:

sub = f.add_subplot(5, 5, index + 1 + (5 * i))
sub.imshow(image, cmap=plt.cm.gray_r, interpolation='none')
sub.set_title("predict: %i\ntrue: %i" % (

lp_model.transduction_[image_index], y[image_index]), size=10)
sub.axis('off')

labeling 5 points, remote from labeled set
delete_index, = np.where(unlabeled_indices == image_index)
delete_indices = np.concatenate((delete_indices, delete_index))

unlabeled_indices = np.delete(unlabeled_indices, delete_indices)
n_labeled_points += len(uncertainty_index)

f.suptitle("Active learning with Label Propagation.\nRows show 5 most "
"uncertain labels to learn with the next model.", y=1.15)

plt.subplots_adjust(left=0.2, bottom=0.03, right=0.9, top=0.9, wspace=0.2,
hspace=0.85)

plt.show()

1554 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Total running time of the script: (0 minutes 0.422 seconds)

6.28 Support Vector Machines

Examples concerning the sklearn.svm module.

6.28.1 Non-linear SVM

Perform binary classification using non-linear SVC with RBF kernel. The target to predict is a XOR of the inputs.

The color map illustrates the decision function learned by the SVC.

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm

xx, yy = np.meshgrid(np.linspace(-3, 3, 500),
np.linspace(-3, 3, 500))

np.random.seed(0)
X = np.random.randn(300, 2)
Y = np.logical_xor(X[:, 0] > 0, X[:, 1] > 0)

(continues on next page)

6.28. Support Vector Machines 1555

scikit-learn user guide, Release 0.23.2

(continued from previous page)

fit the model
clf = svm.NuSVC(gamma='auto')
clf.fit(X, Y)

plot the decision function for each datapoint on the grid
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

plt.imshow(Z, interpolation='nearest',
extent=(xx.min(), xx.max(), yy.min(), yy.max()), aspect='auto',
origin='lower', cmap=plt.cm.PuOr_r)

contours = plt.contour(xx, yy, Z, levels=[0], linewidths=2,
linestyles='dashed')

plt.scatter(X[:, 0], X[:, 1], s=30, c=Y, cmap=plt.cm.Paired,
edgecolors='k')

plt.xticks(())
plt.yticks(())
plt.axis([-3, 3, -3, 3])
plt.show()

Total running time of the script: (0 minutes 1.077 seconds)

6.28.2 SVM: Maximum margin separating hyperplane

Plot the maximum margin separating hyperplane within a two-class separable dataset using a Support Vector Machine
classifier with linear kernel.

1556 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
from sklearn.datasets import make_blobs

we create 40 separable points
X, y = make_blobs(n_samples=40, centers=2, random_state=6)

fit the model, don't regularize for illustration purposes
clf = svm.SVC(kernel='linear', C=1000)
clf.fit(X, y)

plt.scatter(X[:, 0], X[:, 1], c=y, s=30, cmap=plt.cm.Paired)

plot the decision function
ax = plt.gca()
xlim = ax.get_xlim()
ylim = ax.get_ylim()

create grid to evaluate model
xx = np.linspace(xlim[0], xlim[1], 30)
yy = np.linspace(ylim[0], ylim[1], 30)

(continues on next page)

6.28. Support Vector Machines 1557

scikit-learn user guide, Release 0.23.2

(continued from previous page)

YY, XX = np.meshgrid(yy, xx)
xy = np.vstack([XX.ravel(), YY.ravel()]).T
Z = clf.decision_function(xy).reshape(XX.shape)

plot decision boundary and margins
ax.contour(XX, YY, Z, colors='k', levels=[-1, 0, 1], alpha=0.5,

linestyles=['--', '-', '--'])
plot support vectors
ax.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=100,

linewidth=1, facecolors='none', edgecolors='k')
plt.show()

Total running time of the script: (0 minutes 0.067 seconds)

6.28.3 SVM with custom kernel

Simple usage of Support Vector Machines to classify a sample. It will plot the decision surface and the support vectors.

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm, datasets

(continues on next page)

1558 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

import some data to play with
iris = datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features. We could

avoid this ugly slicing by using a two-dim dataset
Y = iris.target

def my_kernel(X, Y):
"""
We create a custom kernel:

(2 0)
k(X, Y) = X () Y.T

(0 1)
"""
M = np.array([[2, 0], [0, 1.0]])
return np.dot(np.dot(X, M), Y.T)

h = .02 # step size in the mesh

we create an instance of SVM and fit out data.
clf = svm.SVC(kernel=my_kernel)
clf.fit(X, Y)

Plot the decision boundary. For that, we will assign a color to each
point in the mesh [x_min, x_max]x[y_min, y_max].
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)

Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired, edgecolors='k')
plt.title('3-Class classification using Support Vector Machine with custom'

' kernel')
plt.axis('tight')
plt.show()

Total running time of the script: (0 minutes 0.157 seconds)

6.28.4 Plot the support vectors in LinearSVC

Unlike SVC (based on LIBSVM), LinearSVC (based on LIBLINEAR) does not provide the support vectors. This
example demonstrates how to obtain the support vectors in LinearSVC.

6.28. Support Vector Machines 1559

scikit-learn user guide, Release 0.23.2

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.svm import LinearSVC

X, y = make_blobs(n_samples=40, centers=2, random_state=0)

plt.figure(figsize=(10, 5))
for i, C in enumerate([1, 100]):

"hinge" is the standard SVM loss
clf = LinearSVC(C=C, loss="hinge", random_state=42).fit(X, y)
obtain the support vectors through the decision function
decision_function = clf.decision_function(X)
we can also calculate the decision function manually
decision_function = np.dot(X, clf.coef_[0]) + clf.intercept_[0]
support_vector_indices = np.where((2 * y - 1) * decision_function <= 1)[0]
support_vectors = X[support_vector_indices]

plt.subplot(1, 2, i + 1)
plt.scatter(X[:, 0], X[:, 1], c=y, s=30, cmap=plt.cm.Paired)
ax = plt.gca()
xlim = ax.get_xlim()
ylim = ax.get_ylim()
xx, yy = np.meshgrid(np.linspace(xlim[0], xlim[1], 50),

np.linspace(ylim[0], ylim[1], 50))
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.contour(xx, yy, Z, colors='k', levels=[-1, 0, 1], alpha=0.5,

linestyles=['--', '-', '--'])
plt.scatter(support_vectors[:, 0], support_vectors[:, 1], s=100,

linewidth=1, facecolors='none', edgecolors='k')
plt.title("C=" + str(C))

plt.tight_layout()
plt.show()

Total running time of the script: (0 minutes 0.205 seconds)

1560 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

6.28.5 SVM Tie Breaking Example

Tie breaking is costly if decision_function_shape='ovr', and therefore it is not enabled by default.
This example illustrates the effect of the break_ties parameter for a multiclass classification problem and
decision_function_shape='ovr'.

The two plots differ only in the area in the middle where the classes are tied. If break_ties=False, all input in
that area would be classified as one class, whereas if break_ties=True, the tie-breaking mechanism will create a
non-convex decision boundary in that area.

6.28. Support Vector Machines 1561

scikit-learn user guide, Release 0.23.2

print(__doc__)

Code source: Andreas Mueller, Adrin Jalali

(continues on next page)

1562 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from sklearn.svm import SVC
from sklearn.datasets import make_blobs

X, y = make_blobs(random_state=27)

fig, sub = plt.subplots(2, 1, figsize=(5, 8))
titles = ("break_ties = False",

"break_ties = True")

for break_ties, title, ax in zip((False, True), titles, sub.flatten()):

svm = SVC(kernel="linear", C=1, break_ties=break_ties,
decision_function_shape='ovr').fit(X, y)

xlim = [X[:, 0].min(), X[:, 0].max()]
ylim = [X[:, 1].min(), X[:, 1].max()]

xs = np.linspace(xlim[0], xlim[1], 1000)
ys = np.linspace(ylim[0], ylim[1], 1000)
xx, yy = np.meshgrid(xs, ys)

pred = svm.predict(np.c_[xx.ravel(), yy.ravel()])

colors = [plt.cm.Accent(i) for i in [0, 4, 7]]

points = ax.scatter(X[:, 0], X[:, 1], c=y, cmap="Accent")
classes = [(0, 1), (0, 2), (1, 2)]
line = np.linspace(X[:, 1].min() - 5, X[:, 1].max() + 5)
ax.imshow(-pred.reshape(xx.shape), cmap="Accent", alpha=.2,

extent=(xlim[0], xlim[1], ylim[1], ylim[0]))

for coef, intercept, col in zip(svm.coef_, svm.intercept_, classes):
line2 = -(line * coef[1] + intercept) / coef[0]
ax.plot(line2, line, "-", c=colors[col[0]])
ax.plot(line2, line, "--", c=colors[col[1]])

ax.set_xlim(xlim)
ax.set_ylim(ylim)
ax.set_title(title)
ax.set_aspect("equal")

plt.show()

Total running time of the script: (0 minutes 0.930 seconds)

6.28.6 SVM: Weighted samples

Plot decision function of a weighted dataset, where the size of points is proportional to its weight.

The sample weighting rescales the C parameter, which means that the classifier puts more emphasis on getting these
points right. The effect might often be subtle. To emphasize the effect here, we particularly weight outliers, making
the deformation of the decision boundary very visible.

6.28. Support Vector Machines 1563

scikit-learn user guide, Release 0.23.2

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm

def plot_decision_function(classifier, sample_weight, axis, title):
plot the decision function
xx, yy = np.meshgrid(np.linspace(-4, 5, 500), np.linspace(-4, 5, 500))

Z = classifier.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

plot the line, the points, and the nearest vectors to the plane
axis.contourf(xx, yy, Z, alpha=0.75, cmap=plt.cm.bone)
axis.scatter(X[:, 0], X[:, 1], c=y, s=100 * sample_weight, alpha=0.9,

cmap=plt.cm.bone, edgecolors='black')

axis.axis('off')
axis.set_title(title)

we create 20 points
np.random.seed(0)
X = np.r_[np.random.randn(10, 2) + [1, 1], np.random.randn(10, 2)]
y = [1] * 10 + [-1] * 10
sample_weight_last_ten = abs(np.random.randn(len(X)))
sample_weight_constant = np.ones(len(X))
and bigger weights to some outliers
sample_weight_last_ten[15:] *= 5
sample_weight_last_ten[9] *= 15

for reference, first fit without sample weights

fit the model
clf_weights = svm.SVC(gamma=1)
clf_weights.fit(X, y, sample_weight=sample_weight_last_ten)

(continues on next page)

1564 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

clf_no_weights = svm.SVC(gamma=1)
clf_no_weights.fit(X, y)

fig, axes = plt.subplots(1, 2, figsize=(14, 6))
plot_decision_function(clf_no_weights, sample_weight_constant, axes[0],

"Constant weights")
plot_decision_function(clf_weights, sample_weight_last_ten, axes[1],

"Modified weights")

plt.show()

Total running time of the script: (0 minutes 0.400 seconds)

6.28.7 SVM: Separating hyperplane for unbalanced classes

Find the optimal separating hyperplane using an SVC for classes that are unbalanced.

We first find the separating plane with a plain SVC and then plot (dashed) the separating hyperplane with automatically
correction for unbalanced classes.

Note: This example will also work by replacing SVC(kernel="linear") with
SGDClassifier(loss="hinge"). Setting the loss parameter of the SGDClassifier equal to hinge will
yield behaviour such as that of a SVC with a linear kernel.

For example try instead of the SVC:

clf = SGDClassifier(n_iter=100, alpha=0.01)

6.28. Support Vector Machines 1565

scikit-learn user guide, Release 0.23.2

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
from sklearn.datasets import make_blobs

we create two clusters of random points
n_samples_1 = 1000
n_samples_2 = 100
centers = [[0.0, 0.0], [2.0, 2.0]]
clusters_std = [1.5, 0.5]
X, y = make_blobs(n_samples=[n_samples_1, n_samples_2],

centers=centers,
cluster_std=clusters_std,
random_state=0, shuffle=False)

fit the model and get the separating hyperplane
clf = svm.SVC(kernel='linear', C=1.0)
clf.fit(X, y)

fit the model and get the separating hyperplane using weighted classes
wclf = svm.SVC(kernel='linear', class_weight={1: 10})
wclf.fit(X, y)

(continues on next page)

1566 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plot the samples
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired, edgecolors='k')

plot the decision functions for both classifiers
ax = plt.gca()
xlim = ax.get_xlim()
ylim = ax.get_ylim()

create grid to evaluate model
xx = np.linspace(xlim[0], xlim[1], 30)
yy = np.linspace(ylim[0], ylim[1], 30)
YY, XX = np.meshgrid(yy, xx)
xy = np.vstack([XX.ravel(), YY.ravel()]).T

get the separating hyperplane
Z = clf.decision_function(xy).reshape(XX.shape)

plot decision boundary and margins
a = ax.contour(XX, YY, Z, colors='k', levels=[0], alpha=0.5, linestyles=['-'])

get the separating hyperplane for weighted classes
Z = wclf.decision_function(xy).reshape(XX.shape)

plot decision boundary and margins for weighted classes
b = ax.contour(XX, YY, Z, colors='r', levels=[0], alpha=0.5, linestyles=['-'])

plt.legend([a.collections[0], b.collections[0]], ["non weighted", "weighted"],
loc="upper right")

plt.show()

Total running time of the script: (0 minutes 0.135 seconds)

6.28.8 SVM-Kernels

Three different types of SVM-Kernels are displayed below. The polynomial and RBF are especially useful when the
data-points are not linearly separable.

6.28. Support Vector Machines 1567

scikit-learn user guide, Release 0.23.2

•

•

1568 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

print(__doc__)

Code source: Gaël Varoquaux
License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm

Our dataset and targets
X = np.c_[(.4, -.7),

(-1.5, -1),
(-1.4, -.9),
(-1.3, -1.2),
(-1.1, -.2),
(-1.2, -.4),
(-.5, 1.2),
(-1.5, 2.1),
(1, 1),
--
(1.3, .8),
(1.2, .5),
(.2, -2),
(.5, -2.4),
(.2, -2.3),
(0, -2.7),
(1.3, 2.1)].T

Y = [0] * 8 + [1] * 8

figure number
fignum = 1

fit the model
for kernel in ('linear', 'poly', 'rbf'):

clf = svm.SVC(kernel=kernel, gamma=2)

(continues on next page)

6.28. Support Vector Machines 1569

scikit-learn user guide, Release 0.23.2

(continued from previous page)

clf.fit(X, Y)

plot the line, the points, and the nearest vectors to the plane
plt.figure(fignum, figsize=(4, 3))
plt.clf()

plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80,
facecolors='none', zorder=10, edgecolors='k')

plt.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=plt.cm.Paired,
edgecolors='k')

plt.axis('tight')
x_min = -3
x_max = 3
y_min = -3
y_max = 3

XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j]
Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()])

Put the result into a color plot
Z = Z.reshape(XX.shape)
plt.figure(fignum, figsize=(4, 3))
plt.pcolormesh(XX, YY, Z > 0, cmap=plt.cm.Paired)
plt.contour(XX, YY, Z, colors=['k', 'k', 'k'], linestyles=['--', '-', '--'],

levels=[-.5, 0, .5])

plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)

plt.xticks(())
plt.yticks(())
fignum = fignum + 1

plt.show()

Total running time of the script: (0 minutes 0.205 seconds)

6.28.9 SVM-Anova: SVM with univariate feature selection

This example shows how to perform univariate feature selection before running a SVC (support vector classifier) to
improve the classification scores. We use the iris dataset (4 features) and add 36 non-informative features. We can find
that our model achieves best performance when we select around 10% of features.

1570 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.feature_selection import SelectPercentile, chi2
from sklearn.model_selection import cross_val_score
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC

###
Import some data to play with
X, y = load_iris(return_X_y=True)
Add non-informative features
np.random.seed(0)
X = np.hstack((X, 2 * np.random.random((X.shape[0], 36))))

###
Create a feature-selection transform, a scaler and an instance of SVM that we
combine together to have an full-blown estimator
clf = Pipeline([('anova', SelectPercentile(chi2)),

('scaler', StandardScaler()),
('svc', SVC(gamma="auto"))])

(continues on next page)

6.28. Support Vector Machines 1571

scikit-learn user guide, Release 0.23.2

(continued from previous page)

###
Plot the cross-validation score as a function of percentile of features
score_means = list()
score_stds = list()
percentiles = (1, 3, 6, 10, 15, 20, 30, 40, 60, 80, 100)

for percentile in percentiles:
clf.set_params(anova__percentile=percentile)
this_scores = cross_val_score(clf, X, y)
score_means.append(this_scores.mean())
score_stds.append(this_scores.std())

plt.errorbar(percentiles, score_means, np.array(score_stds))
plt.title(

'Performance of the SVM-Anova varying the percentile of features selected')
plt.xticks(np.linspace(0, 100, 11, endpoint=True))
plt.xlabel('Percentile')
plt.ylabel('Accuracy Score')
plt.axis('tight')
plt.show()

Total running time of the script: (0 minutes 0.277 seconds)

6.28.10 Support Vector Regression (SVR) using linear and non-linear kernels

Toy example of 1D regression using linear, polynomial and RBF kernels.

1572 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

print(__doc__)

import numpy as np
from sklearn.svm import SVR
import matplotlib.pyplot as plt

###
Generate sample data
X = np.sort(5 * np.random.rand(40, 1), axis=0)
y = np.sin(X).ravel()

###
Add noise to targets
y[::5] += 3 * (0.5 - np.random.rand(8))

###
Fit regression model
svr_rbf = SVR(kernel='rbf', C=100, gamma=0.1, epsilon=.1)
svr_lin = SVR(kernel='linear', C=100, gamma='auto')
svr_poly = SVR(kernel='poly', C=100, gamma='auto', degree=3, epsilon=.1,

coef0=1)

###
Look at the results
lw = 2

svrs = [svr_rbf, svr_lin, svr_poly]
kernel_label = ['RBF', 'Linear', 'Polynomial']
model_color = ['m', 'c', 'g']

fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(15, 10), sharey=True)
for ix, svr in enumerate(svrs):

axes[ix].plot(X, svr.fit(X, y).predict(X), color=model_color[ix], lw=lw,
label='{} model'.format(kernel_label[ix]))

axes[ix].scatter(X[svr.support_], y[svr.support_], facecolor="none",
edgecolor=model_color[ix], s=50,
label='{} support vectors'.format(kernel_label[ix]))

axes[ix].scatter(X[np.setdiff1d(np.arange(len(X)), svr.support_)],
y[np.setdiff1d(np.arange(len(X)), svr.support_)],
facecolor="none", edgecolor="k", s=50,
label='other training data')

axes[ix].legend(loc='upper center', bbox_to_anchor=(0.5, 1.1),
ncol=1, fancybox=True, shadow=True)

fig.text(0.5, 0.04, 'data', ha='center', va='center')
fig.text(0.06, 0.5, 'target', ha='center', va='center', rotation='vertical')
fig.suptitle("Support Vector Regression", fontsize=14)
plt.show()

Total running time of the script: (0 minutes 3.433 seconds)

6.28.11 SVM Margins Example

The plots below illustrate the effect the parameter C has on the separation line. A large value of C basically tells our
model that we do not have that much faith in our data’s distribution, and will only consider points close to line of
separation.

6.28. Support Vector Machines 1573

scikit-learn user guide, Release 0.23.2

A small value of C includes more/all the observations, allowing the margins to be calculated using all the data in the
area.

•

•

print(__doc__)

Code source: Gaël Varoquaux
Modified for documentation by Jaques Grobler
License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm

we create 40 separable points
np.random.seed(0)
X = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]]

(continues on next page)

1574 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Y = [0] * 20 + [1] * 20

figure number
fignum = 1

fit the model
for name, penalty in (('unreg', 1), ('reg', 0.05)):

clf = svm.SVC(kernel='linear', C=penalty)
clf.fit(X, Y)

get the separating hyperplane
w = clf.coef_[0]
a = -w[0] / w[1]
xx = np.linspace(-5, 5)
yy = a * xx - (clf.intercept_[0]) / w[1]

plot the parallels to the separating hyperplane that pass through the
support vectors (margin away from hyperplane in direction
perpendicular to hyperplane). This is sqrt(1+a^2) away vertically in
2-d.
margin = 1 / np.sqrt(np.sum(clf.coef_ ** 2))
yy_down = yy - np.sqrt(1 + a ** 2) * margin
yy_up = yy + np.sqrt(1 + a ** 2) * margin

plot the line, the points, and the nearest vectors to the plane
plt.figure(fignum, figsize=(4, 3))
plt.clf()
plt.plot(xx, yy, 'k-')
plt.plot(xx, yy_down, 'k--')
plt.plot(xx, yy_up, 'k--')

plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80,
facecolors='none', zorder=10, edgecolors='k')

plt.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=plt.cm.Paired,
edgecolors='k')

plt.axis('tight')
x_min = -4.8
x_max = 4.2
y_min = -6
y_max = 6

XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j]
Z = clf.predict(np.c_[XX.ravel(), YY.ravel()])

Put the result into a color plot
Z = Z.reshape(XX.shape)
plt.figure(fignum, figsize=(4, 3))
plt.pcolormesh(XX, YY, Z, cmap=plt.cm.Paired)

plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)

plt.xticks(())
plt.yticks(())
fignum = fignum + 1

(continues on next page)

6.28. Support Vector Machines 1575

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.show()

Total running time of the script: (0 minutes 0.127 seconds)

6.28.12 One-class SVM with non-linear kernel (RBF)

An example using a one-class SVM for novelty detection.

One-class SVM is an unsupervised algorithm that learns a decision function for novelty detection: classifying new
data as similar or different to the training set.

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.font_manager
from sklearn import svm

xx, yy = np.meshgrid(np.linspace(-5, 5, 500), np.linspace(-5, 5, 500))
Generate train data
X = 0.3 * np.random.randn(100, 2)
X_train = np.r_[X + 2, X - 2]

(continues on next page)

1576 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Generate some regular novel observations
X = 0.3 * np.random.randn(20, 2)
X_test = np.r_[X + 2, X - 2]
Generate some abnormal novel observations
X_outliers = np.random.uniform(low=-4, high=4, size=(20, 2))

fit the model
clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.1)
clf.fit(X_train)
y_pred_train = clf.predict(X_train)
y_pred_test = clf.predict(X_test)
y_pred_outliers = clf.predict(X_outliers)
n_error_train = y_pred_train[y_pred_train == -1].size
n_error_test = y_pred_test[y_pred_test == -1].size
n_error_outliers = y_pred_outliers[y_pred_outliers == 1].size

plot the line, the points, and the nearest vectors to the plane
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

plt.title("Novelty Detection")
plt.contourf(xx, yy, Z, levels=np.linspace(Z.min(), 0, 7), cmap=plt.cm.PuBu)
a = plt.contour(xx, yy, Z, levels=[0], linewidths=2, colors='darkred')
plt.contourf(xx, yy, Z, levels=[0, Z.max()], colors='palevioletred')

s = 40
b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c='white', s=s, edgecolors='k')
b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c='blueviolet', s=s,

edgecolors='k')
c = plt.scatter(X_outliers[:, 0], X_outliers[:, 1], c='gold', s=s,

edgecolors='k')
plt.axis('tight')
plt.xlim((-5, 5))
plt.ylim((-5, 5))
plt.legend([a.collections[0], b1, b2, c],

["learned frontier", "training observations",
"new regular observations", "new abnormal observations"],

loc="upper left",
prop=matplotlib.font_manager.FontProperties(size=11))

plt.xlabel(
"error train: %d/200 ; errors novel regular: %d/40 ; "
"errors novel abnormal: %d/40"
% (n_error_train, n_error_test, n_error_outliers))

plt.show()

Total running time of the script: (0 minutes 0.270 seconds)

6.28.13 Plot different SVM classifiers in the iris dataset

Comparison of different linear SVM classifiers on a 2D projection of the iris dataset. We only consider the first 2
features of this dataset:

• Sepal length

• Sepal width

This example shows how to plot the decision surface for four SVM classifiers with different kernels.

6.28. Support Vector Machines 1577

scikit-learn user guide, Release 0.23.2

The linear models LinearSVC() and SVC(kernel='linear') yield slightly different decision boundaries.
This can be a consequence of the following differences:

• LinearSVC minimizes the squared hinge loss while SVC minimizes the regular hinge loss.

• LinearSVC uses the One-vs-All (also known as One-vs-Rest) multiclass reduction while SVC uses the One-
vs-One multiclass reduction.

Both linear models have linear decision boundaries (intersecting hyperplanes) while the non-linear kernel models
(polynomial or Gaussian RBF) have more flexible non-linear decision boundaries with shapes that depend on the kind
of kernel and its parameters.

Note: while plotting the decision function of classifiers for toy 2D datasets can help get an intuitive understanding
of their respective expressive power, be aware that those intuitions don’t always generalize to more realistic high-
dimensional problems.

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm, datasets

def make_meshgrid(x, y, h=.02):
"""Create a mesh of points to plot in

(continues on next page)

1578 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Parameters

x: data to base x-axis meshgrid on
y: data to base y-axis meshgrid on
h: stepsize for meshgrid, optional

Returns

xx, yy : ndarray
"""
x_min, x_max = x.min() - 1, x.max() + 1
y_min, y_max = y.min() - 1, y.max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),

np.arange(y_min, y_max, h))
return xx, yy

def plot_contours(ax, clf, xx, yy, **params):
"""Plot the decision boundaries for a classifier.

Parameters

ax: matplotlib axes object
clf: a classifier
xx: meshgrid ndarray
yy: meshgrid ndarray
params: dictionary of params to pass to contourf, optional
"""
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
out = ax.contourf(xx, yy, Z, **params)
return out

import some data to play with
iris = datasets.load_iris()
Take the first two features. We could avoid this by using a two-dim dataset
X = iris.data[:, :2]
y = iris.target

we create an instance of SVM and fit out data. We do not scale our
data since we want to plot the support vectors
C = 1.0 # SVM regularization parameter
models = (svm.SVC(kernel='linear', C=C),

svm.LinearSVC(C=C, max_iter=10000),
svm.SVC(kernel='rbf', gamma=0.7, C=C),
svm.SVC(kernel='poly', degree=3, gamma='auto', C=C))

models = (clf.fit(X, y) for clf in models)

title for the plots
titles = ('SVC with linear kernel',

'LinearSVC (linear kernel)',
'SVC with RBF kernel',
'SVC with polynomial (degree 3) kernel')

Set-up 2x2 grid for plotting.
(continues on next page)

6.28. Support Vector Machines 1579

scikit-learn user guide, Release 0.23.2

(continued from previous page)

fig, sub = plt.subplots(2, 2)
plt.subplots_adjust(wspace=0.4, hspace=0.4)

X0, X1 = X[:, 0], X[:, 1]
xx, yy = make_meshgrid(X0, X1)

for clf, title, ax in zip(models, titles, sub.flatten()):
plot_contours(ax, clf, xx, yy,

cmap=plt.cm.coolwarm, alpha=0.8)
ax.scatter(X0, X1, c=y, cmap=plt.cm.coolwarm, s=20, edgecolors='k')
ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
ax.set_xlabel('Sepal length')
ax.set_ylabel('Sepal width')
ax.set_xticks(())
ax.set_yticks(())
ax.set_title(title)

plt.show()

Total running time of the script: (0 minutes 0.490 seconds)

6.28.14 Scaling the regularization parameter for SVCs

The following example illustrates the effect of scaling the regularization parameter when using Support Vector Ma-
chines for classification. For SVC classification, we are interested in a risk minimization for the equation:

𝐶
∑︁
𝑖=1,𝑛

ℒ(𝑓(𝑥𝑖), 𝑦𝑖) + Ω(𝑤)

where

• 𝐶 is used to set the amount of regularization

• ℒ is a loss function of our samples and our model parameters.

• Ω is a penalty function of our model parameters

If we consider the loss function to be the individual error per sample, then the data-fit term, or the sum of the error for
each sample, will increase as we add more samples. The penalization term, however, will not increase.

When using, for example, cross validation, to set the amount of regularization with C, there will be a different amount
of samples between the main problem and the smaller problems within the folds of the cross validation.

Since our loss function is dependent on the amount of samples, the latter will influence the selected value of
C. The question that arises is How do we optimally adjust C to account for the different
amount of training samples?

The figures below are used to illustrate the effect of scaling our C to compensate for the change in the number of
samples, in the case of using an l1 penalty, as well as the l2 penalty.

l1-penalty case

In the l1 case, theory says that prediction consistency (i.e. that under given hypothesis, the estimator learned predicts
as well as a model knowing the true distribution) is not possible because of the bias of the l1. It does say, however,
that model consistency, in terms of finding the right set of non-zero parameters as well as their signs, can be achieved
by scaling C1.

1580 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

l2-penalty case

The theory says that in order to achieve prediction consistency, the penalty parameter should be kept constant as the
number of samples grow.

Simulations

The two figures below plot the values of C on the x-axis and the corresponding cross-validation scores on the
y-axis, for several different fractions of a generated data-set.

In the l1 penalty case, the cross-validation-error correlates best with the test-error, when scaling our Cwith the number
of samples, n, which can be seen in the first figure.

For the l2 penalty case, the best result comes from the case where C is not scaled.

Note:

Two separate datasets are used for the two different plots. The reason behind this is the l1 case works better on
sparse data, while l2 is better suited to the non-sparse case.

6.28. Support Vector Machines 1581

scikit-learn user guide, Release 0.23.2

•

1582 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

print(__doc__)

Author: Andreas Mueller <amueller@ais.uni-bonn.de>
Jaques Grobler <jaques.grobler@inria.fr>
License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt

from sklearn.svm import LinearSVC

(continues on next page)

6.28. Support Vector Machines 1583

scikit-learn user guide, Release 0.23.2

(continued from previous page)

from sklearn.model_selection import ShuffleSplit
from sklearn.model_selection import GridSearchCV
from sklearn.utils import check_random_state
from sklearn import datasets

rnd = check_random_state(1)

set up dataset
n_samples = 100
n_features = 300

l1 data (only 5 informative features)
X_1, y_1 = datasets.make_classification(n_samples=n_samples,

n_features=n_features, n_informative=5,
random_state=1)

l2 data: non sparse, but less features
y_2 = np.sign(.5 - rnd.rand(n_samples))
X_2 = rnd.randn(n_samples, n_features // 5) + y_2[:, np.newaxis]
X_2 += 5 * rnd.randn(n_samples, n_features // 5)

clf_sets = [(LinearSVC(penalty='l1', loss='squared_hinge', dual=False,
tol=1e-3),

np.logspace(-2.3, -1.3, 10), X_1, y_1),
(LinearSVC(penalty='l2', loss='squared_hinge', dual=True),
np.logspace(-4.5, -2, 10), X_2, y_2)]

colors = ['navy', 'cyan', 'darkorange']
lw = 2

for clf, cs, X, y in clf_sets:
set up the plot for each regressor
fig, axes = plt.subplots(nrows=2, sharey=True, figsize=(9, 10))

for k, train_size in enumerate(np.linspace(0.3, 0.7, 3)[::-1]):
param_grid = dict(C=cs)
To get nice curve, we need a large number of iterations to
reduce the variance
grid = GridSearchCV(clf, refit=False, param_grid=param_grid,

cv=ShuffleSplit(train_size=train_size,
test_size=.3,
n_splits=250, random_state=1))

grid.fit(X, y)
scores = grid.cv_results_['mean_test_score']

scales = [(1, 'No scaling'),
((n_samples * train_size), '1/n_samples'),
]

for ax, (scaler, name) in zip(axes, scales):
ax.set_xlabel('C')
ax.set_ylabel('CV Score')
grid_cs = cs * float(scaler) # scale the C's
ax.semilogx(grid_cs, scores, label="fraction %.2f" %

train_size, color=colors[k], lw=lw)
ax.set_title('scaling=%s, penalty=%s, loss=%s' %

(name, clf.penalty, clf.loss))
(continues on next page)

1584 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.legend(loc="best")
plt.show()

Total running time of the script: (0 minutes 18.753 seconds)

6.28.15 RBF SVM parameters

This example illustrates the effect of the parameters gamma and C of the Radial Basis Function (RBF) kernel SVM.

Intuitively, the gamma parameter defines how far the influence of a single training example reaches, with low values
meaning ‘far’ and high values meaning ‘close’. The gamma parameters can be seen as the inverse of the radius of
influence of samples selected by the model as support vectors.

The C parameter trades off correct classification of training examples against maximization of the decision function’s
margin. For larger values of C, a smaller margin will be accepted if the decision function is better at classifying all
training points correctly. A lower C will encourage a larger margin, therefore a simpler decision function, at the cost
of training accuracy. In other words‘‘C‘‘ behaves as a regularization parameter in the SVM.

The first plot is a visualization of the decision function for a variety of parameter values on a simplified classification
problem involving only 2 input features and 2 possible target classes (binary classification). Note that this kind of plot
is not possible to do for problems with more features or target classes.

The second plot is a heatmap of the classifier’s cross-validation accuracy as a function of C and gamma. For this
example we explore a relatively large grid for illustration purposes. In practice, a logarithmic grid from 10−3 to 103

is usually sufficient. If the best parameters lie on the boundaries of the grid, it can be extended in that direction in a
subsequent search.

Note that the heat map plot has a special colorbar with a midpoint value close to the score values of the best performing
models so as to make it easy to tell them apart in the blink of an eye.

The behavior of the model is very sensitive to the gamma parameter. If gamma is too large, the radius of the area of
influence of the support vectors only includes the support vector itself and no amount of regularization with C will be
able to prevent overfitting.

When gamma is very small, the model is too constrained and cannot capture the complexity or “shape” of the data.
The region of influence of any selected support vector would include the whole training set. The resulting model will
behave similarly to a linear model with a set of hyperplanes that separate the centers of high density of any pair of two
classes.

For intermediate values, we can see on the second plot that good models can be found on a diagonal of C and gamma.
Smooth models (lower gamma values) can be made more complex by increasing the importance of classifying each
point correctly (larger C values) hence the diagonal of good performing models.

Finally one can also observe that for some intermediate values of gamma we get equally performing models when C
becomes very large: it is not necessary to regularize by enforcing a larger margin. The radius of the RBF kernel alone
acts as a good structural regularizer. In practice though it might still be interesting to simplify the decision function
with a lower value of C so as to favor models that use less memory and that are faster to predict.

We should also note that small differences in scores results from the random splits of the cross-validation procedure.
Those spurious variations can be smoothed out by increasing the number of CV iterations n_splits at the expense
of compute time. Increasing the value number of C_range and gamma_range steps will increase the resolution of
the hyper-parameter heat map.

6.28. Support Vector Machines 1585

scikit-learn user guide, Release 0.23.2

•

1586 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

Out:

The best parameters are {'C': 1.0, 'gamma': 0.1} with a score of 0.97

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import Normalize

from sklearn.svm import SVC
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import load_iris
from sklearn.model_selection import StratifiedShuffleSplit
from sklearn.model_selection import GridSearchCV

Utility function to move the midpoint of a colormap to be around
the values of interest.

class MidpointNormalize(Normalize):

(continues on next page)

6.28. Support Vector Machines 1587

scikit-learn user guide, Release 0.23.2

(continued from previous page)

def __init__(self, vmin=None, vmax=None, midpoint=None, clip=False):
self.midpoint = midpoint
Normalize.__init__(self, vmin, vmax, clip)

def __call__(self, value, clip=None):
x, y = [self.vmin, self.midpoint, self.vmax], [0, 0.5, 1]
return np.ma.masked_array(np.interp(value, x, y))

###
Load and prepare data set
#
dataset for grid search

iris = load_iris()
X = iris.data
y = iris.target

Dataset for decision function visualization: we only keep the first two
features in X and sub-sample the dataset to keep only 2 classes and
make it a binary classification problem.

X_2d = X[:, :2]
X_2d = X_2d[y > 0]
y_2d = y[y > 0]
y_2d -= 1

It is usually a good idea to scale the data for SVM training.
We are cheating a bit in this example in scaling all of the data,
instead of fitting the transformation on the training set and
just applying it on the test set.

scaler = StandardScaler()
X = scaler.fit_transform(X)
X_2d = scaler.fit_transform(X_2d)

###
Train classifiers
#
For an initial search, a logarithmic grid with basis
10 is often helpful. Using a basis of 2, a finer
tuning can be achieved but at a much higher cost.

C_range = np.logspace(-2, 10, 13)
gamma_range = np.logspace(-9, 3, 13)
param_grid = dict(gamma=gamma_range, C=C_range)
cv = StratifiedShuffleSplit(n_splits=5, test_size=0.2, random_state=42)
grid = GridSearchCV(SVC(), param_grid=param_grid, cv=cv)
grid.fit(X, y)

print("The best parameters are %s with a score of %0.2f"
% (grid.best_params_, grid.best_score_))

Now we need to fit a classifier for all parameters in the 2d version
(we use a smaller set of parameters here because it takes a while to train)

C_2d_range = [1e-2, 1, 1e2]
gamma_2d_range = [1e-1, 1, 1e1]

(continues on next page)

1588 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

classifiers = []
for C in C_2d_range:

for gamma in gamma_2d_range:
clf = SVC(C=C, gamma=gamma)
clf.fit(X_2d, y_2d)
classifiers.append((C, gamma, clf))

###
Visualization
#
draw visualization of parameter effects

plt.figure(figsize=(8, 6))
xx, yy = np.meshgrid(np.linspace(-3, 3, 200), np.linspace(-3, 3, 200))
for (k, (C, gamma, clf)) in enumerate(classifiers):

evaluate decision function in a grid
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

visualize decision function for these parameters
plt.subplot(len(C_2d_range), len(gamma_2d_range), k + 1)
plt.title("gamma=10^%d, C=10^%d" % (np.log10(gamma), np.log10(C)),

size='medium')

visualize parameter's effect on decision function
plt.pcolormesh(xx, yy, -Z, cmap=plt.cm.RdBu)
plt.scatter(X_2d[:, 0], X_2d[:, 1], c=y_2d, cmap=plt.cm.RdBu_r,

edgecolors='k')
plt.xticks(())
plt.yticks(())
plt.axis('tight')

scores = grid.cv_results_['mean_test_score'].reshape(len(C_range),
len(gamma_range))

Draw heatmap of the validation accuracy as a function of gamma and C
#
The score are encoded as colors with the hot colormap which varies from dark
red to bright yellow. As the most interesting scores are all located in the
0.92 to 0.97 range we use a custom normalizer to set the mid-point to 0.92 so
as to make it easier to visualize the small variations of score values in the
interesting range while not brutally collapsing all the low score values to
the same color.

plt.figure(figsize=(8, 6))
plt.subplots_adjust(left=.2, right=0.95, bottom=0.15, top=0.95)
plt.imshow(scores, interpolation='nearest', cmap=plt.cm.hot,

norm=MidpointNormalize(vmin=0.2, midpoint=0.92))
plt.xlabel('gamma')
plt.ylabel('C')
plt.colorbar()
plt.xticks(np.arange(len(gamma_range)), gamma_range, rotation=45)
plt.yticks(np.arange(len(C_range)), C_range)
plt.title('Validation accuracy')
plt.show()

Total running time of the script: (0 minutes 4.093 seconds)

6.28. Support Vector Machines 1589

scikit-learn user guide, Release 0.23.2

6.29 Tutorial exercises

Exercises for the tutorials

6.29.1 Digits Classification Exercise

A tutorial exercise regarding the use of classification techniques on the Digits dataset.

This exercise is used in the Classification part of the Supervised learning: predicting an output variable from high-
dimensional observations section of the A tutorial on statistical-learning for scientific data processing.

Out:

KNN score: 0.961111
LogisticRegression score: 0.933333

print(__doc__)

from sklearn import datasets, neighbors, linear_model

X_digits, y_digits = datasets.load_digits(return_X_y=True)
X_digits = X_digits / X_digits.max()

n_samples = len(X_digits)

X_train = X_digits[:int(.9 * n_samples)]
y_train = y_digits[:int(.9 * n_samples)]
X_test = X_digits[int(.9 * n_samples):]
y_test = y_digits[int(.9 * n_samples):]

knn = neighbors.KNeighborsClassifier()
logistic = linear_model.LogisticRegression(max_iter=1000)

print('KNN score: %f' % knn.fit(X_train, y_train).score(X_test, y_test))
print('LogisticRegression score: %f'

% logistic.fit(X_train, y_train).score(X_test, y_test))

Total running time of the script: (0 minutes 0.296 seconds)

6.29.2 Cross-validation on Digits Dataset Exercise

A tutorial exercise using Cross-validation with an SVM on the Digits dataset.

This exercise is used in the Cross-validation generators part of the Model selection: choosing estimators and their
parameters section of the A tutorial on statistical-learning for scientific data processing.

1590 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

print(__doc__)

import numpy as np
from sklearn.model_selection import cross_val_score
from sklearn import datasets, svm

X, y = datasets.load_digits(return_X_y=True)

svc = svm.SVC(kernel='linear')
C_s = np.logspace(-10, 0, 10)

scores = list()
scores_std = list()
for C in C_s:

svc.C = C
this_scores = cross_val_score(svc, X, y, n_jobs=1)
scores.append(np.mean(this_scores))
scores_std.append(np.std(this_scores))

Do the plotting
import matplotlib.pyplot as plt
plt.figure()
plt.semilogx(C_s, scores)
plt.semilogx(C_s, np.array(scores) + np.array(scores_std), 'b--')

(continues on next page)

6.29. Tutorial exercises 1591

scikit-learn user guide, Release 0.23.2

(continued from previous page)

plt.semilogx(C_s, np.array(scores) - np.array(scores_std), 'b--')
locs, labels = plt.yticks()
plt.yticks(locs, list(map(lambda x: "%g" % x, locs)))
plt.ylabel('CV score')
plt.xlabel('Parameter C')
plt.ylim(0, 1.1)
plt.show()

Total running time of the script: (0 minutes 8.660 seconds)

6.29.3 SVM Exercise

A tutorial exercise for using different SVM kernels.

This exercise is used in the Using kernels part of the Supervised learning: predicting an output variable from high-
dimensional observations section of the A tutorial on statistical-learning for scientific data processing.

•

1592 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

•

6.29. Tutorial exercises 1593

scikit-learn user guide, Release 0.23.2

•

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets, svm

iris = datasets.load_iris()
X = iris.data
y = iris.target

X = X[y != 0, :2]
y = y[y != 0]

n_sample = len(X)

np.random.seed(0)
order = np.random.permutation(n_sample)
X = X[order]
y = y[order].astype(np.float)

X_train = X[:int(.9 * n_sample)]
y_train = y[:int(.9 * n_sample)]
X_test = X[int(.9 * n_sample):]
y_test = y[int(.9 * n_sample):]

fit the model
(continues on next page)

1594 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

for kernel in ('linear', 'rbf', 'poly'):
clf = svm.SVC(kernel=kernel, gamma=10)
clf.fit(X_train, y_train)

plt.figure()
plt.clf()
plt.scatter(X[:, 0], X[:, 1], c=y, zorder=10, cmap=plt.cm.Paired,

edgecolor='k', s=20)

Circle out the test data
plt.scatter(X_test[:, 0], X_test[:, 1], s=80, facecolors='none',

zorder=10, edgecolor='k')

plt.axis('tight')
x_min = X[:, 0].min()
x_max = X[:, 0].max()
y_min = X[:, 1].min()
y_max = X[:, 1].max()

XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j]
Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()])

Put the result into a color plot
Z = Z.reshape(XX.shape)
plt.pcolormesh(XX, YY, Z > 0, cmap=plt.cm.Paired)
plt.contour(XX, YY, Z, colors=['k', 'k', 'k'],

linestyles=['--', '-', '--'], levels=[-.5, 0, .5])

plt.title(kernel)
plt.show()

Total running time of the script: (0 minutes 5.440 seconds)

6.29.4 Cross-validation on diabetes Dataset Exercise

A tutorial exercise which uses cross-validation with linear models.

This exercise is used in the Cross-validated estimators part of the Model selection: choosing estimators and their
parameters section of the A tutorial on statistical-learning for scientific data processing.

6.29. Tutorial exercises 1595

scikit-learn user guide, Release 0.23.2

Out:

Answer to the bonus question: how much can you trust the selection of alpha?

Alpha parameters maximising the generalization score on different
subsets of the data:
[fold 0] alpha: 0.05968, score: 0.54209
[fold 1] alpha: 0.04520, score: 0.15523
[fold 2] alpha: 0.07880, score: 0.45193

Answer: Not very much since we obtained different alphas for different
subsets of the data and moreover, the scores for these alphas differ
quite substantially.

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from sklearn import datasets

(continues on next page)

1596 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

from sklearn.linear_model import LassoCV
from sklearn.linear_model import Lasso
from sklearn.model_selection import KFold
from sklearn.model_selection import GridSearchCV

X, y = datasets.load_diabetes(return_X_y=True)
X = X[:150]
y = y[:150]

lasso = Lasso(random_state=0, max_iter=10000)
alphas = np.logspace(-4, -0.5, 30)

tuned_parameters = [{'alpha': alphas}]
n_folds = 5

clf = GridSearchCV(lasso, tuned_parameters, cv=n_folds, refit=False)
clf.fit(X, y)
scores = clf.cv_results_['mean_test_score']
scores_std = clf.cv_results_['std_test_score']
plt.figure().set_size_inches(8, 6)
plt.semilogx(alphas, scores)

plot error lines showing +/- std. errors of the scores
std_error = scores_std / np.sqrt(n_folds)

plt.semilogx(alphas, scores + std_error, 'b--')
plt.semilogx(alphas, scores - std_error, 'b--')

alpha=0.2 controls the translucency of the fill color
plt.fill_between(alphas, scores + std_error, scores - std_error, alpha=0.2)

plt.ylabel('CV score +/- std error')
plt.xlabel('alpha')
plt.axhline(np.max(scores), linestyle='--', color='.5')
plt.xlim([alphas[0], alphas[-1]])

###
Bonus: how much can you trust the selection of alpha?

To answer this question we use the LassoCV object that sets its alpha
parameter automatically from the data by internal cross-validation (i.e. it
performs cross-validation on the training data it receives).
We use external cross-validation to see how much the automatically obtained
alphas differ across different cross-validation folds.
lasso_cv = LassoCV(alphas=alphas, random_state=0, max_iter=10000)
k_fold = KFold(3)

print("Answer to the bonus question:",
"how much can you trust the selection of alpha?")

print()
print("Alpha parameters maximising the generalization score on different")
print("subsets of the data:")
for k, (train, test) in enumerate(k_fold.split(X, y)):

lasso_cv.fit(X[train], y[train])
print("[fold {0}] alpha: {1:.5f}, score: {2:.5f}".

format(k, lasso_cv.alpha_, lasso_cv.score(X[test], y[test])))
print()

(continues on next page)

6.29. Tutorial exercises 1597

scikit-learn user guide, Release 0.23.2

(continued from previous page)

print("Answer: Not very much since we obtained different alphas for different")
print("subsets of the data and moreover, the scores for these alphas differ")
print("quite substantially.")

plt.show()

Total running time of the script: (0 minutes 0.542 seconds)

6.30 Working with text documents

Examples concerning the sklearn.feature_extraction.text module.

6.30.1 FeatureHasher and DictVectorizer Comparison

Compares FeatureHasher and DictVectorizer by using both to vectorize text documents.

The example demonstrates syntax and speed only; it doesn’t actually do anything useful with the extracted vectors.
See the example scripts {document_classification_20newsgroups,clustering}.py for actual learning on text documents.

A discrepancy between the number of terms reported for DictVectorizer and for FeatureHasher is to be expected due
to hash collisions.

Out:

Usage: /home/circleci/project/examples/text/plot_hashing_vs_dict_vectorizer.py [n_
→˓features_for_hashing]

The default number of features is 2**18.

Loading 20 newsgroups training data
3803 documents - 6.245MB

DictVectorizer
done in 1.034657s at 6.036MB/s
Found 47928 unique terms

FeatureHasher on frequency dicts
done in 0.639051s at 9.772MB/s
Found 43873 unique terms

FeatureHasher on raw tokens
done in 0.603110s at 10.354MB/s
Found 43873 unique terms

Author: Lars Buitinck
License: BSD 3 clause
from collections import defaultdict
import re
import sys
from time import time

(continues on next page)

1598 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

import numpy as np

from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction import DictVectorizer, FeatureHasher

def n_nonzero_columns(X):
"""Returns the number of non-zero columns in a CSR matrix X."""
return len(np.unique(X.nonzero()[1]))

def tokens(doc):
"""Extract tokens from doc.

This uses a simple regex to break strings into tokens. For a more
principled approach, see CountVectorizer or TfidfVectorizer.
"""
return (tok.lower() for tok in re.findall(r"\w+", doc))

def token_freqs(doc):
"""Extract a dict mapping tokens from doc to their frequencies."""
freq = defaultdict(int)
for tok in tokens(doc):

freq[tok] += 1
return freq

categories = [
'alt.atheism',
'comp.graphics',
'comp.sys.ibm.pc.hardware',
'misc.forsale',
'rec.autos',
'sci.space',
'talk.religion.misc',

]
Uncomment the following line to use a larger set (11k+ documents)
categories = None

print(__doc__)
print("Usage: %s [n_features_for_hashing]" % sys.argv[0])
print(" The default number of features is 2**18.")
print()

try:
n_features = int(sys.argv[1])

except IndexError:
n_features = 2 ** 18

except ValueError:
print("not a valid number of features: %r" % sys.argv[1])
sys.exit(1)

print("Loading 20 newsgroups training data")
raw_data, _ = fetch_20newsgroups(subset='train', categories=categories,

(continues on next page)

6.30. Working with text documents 1599

scikit-learn user guide, Release 0.23.2

(continued from previous page)

return_X_y=True)
data_size_mb = sum(len(s.encode('utf-8')) for s in raw_data) / 1e6
print("%d documents - %0.3fMB" % (len(raw_data), data_size_mb))
print()

print("DictVectorizer")
t0 = time()
vectorizer = DictVectorizer()
vectorizer.fit_transform(token_freqs(d) for d in raw_data)
duration = time() - t0
print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration))
print("Found %d unique terms" % len(vectorizer.get_feature_names()))
print()

print("FeatureHasher on frequency dicts")
t0 = time()
hasher = FeatureHasher(n_features=n_features)
X = hasher.transform(token_freqs(d) for d in raw_data)
duration = time() - t0
print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration))
print("Found %d unique terms" % n_nonzero_columns(X))
print()

print("FeatureHasher on raw tokens")
t0 = time()
hasher = FeatureHasher(n_features=n_features, input_type="string")
X = hasher.transform(tokens(d) for d in raw_data)
duration = time() - t0
print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration))
print("Found %d unique terms" % n_nonzero_columns(X))

Total running time of the script: (0 minutes 2.546 seconds)

6.30.2 Clustering text documents using k-means

This is an example showing how the scikit-learn can be used to cluster documents by topics using a bag-of-words
approach. This example uses a scipy.sparse matrix to store the features instead of standard numpy arrays.

Two feature extraction methods can be used in this example:

• TfidfVectorizer uses a in-memory vocabulary (a python dict) to map the most frequent words to features indices
and hence compute a word occurrence frequency (sparse) matrix. The word frequencies are then reweighted
using the Inverse Document Frequency (IDF) vector collected feature-wise over the corpus.

• HashingVectorizer hashes word occurrences to a fixed dimensional space, possibly with collisions. The word
count vectors are then normalized to each have l2-norm equal to one (projected to the euclidean unit-ball) which
seems to be important for k-means to work in high dimensional space.

HashingVectorizer does not provide IDF weighting as this is a stateless model (the fit method does nothing).
When IDF weighting is needed it can be added by pipelining its output to a TfidfTransformer instance.

Two algorithms are demoed: ordinary k-means and its more scalable cousin minibatch k-means.

Additionally, latent semantic analysis can also be used to reduce dimensionality and discover latent patterns in the
data.

It can be noted that k-means (and minibatch k-means) are very sensitive to feature scaling and that in this case the IDF
weighting helps improve the quality of the clustering by quite a lot as measured against the “ground truth” provided

1600 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

by the class label assignments of the 20 newsgroups dataset.

This improvement is not visible in the Silhouette Coefficient which is small for both as this measure seem to suffer
from the phenomenon called “Concentration of Measure” or “Curse of Dimensionality” for high dimensional datasets
such as text data. Other measures such as V-measure and Adjusted Rand Index are information theoretic based eval-
uation scores: as they are only based on cluster assignments rather than distances, hence not affected by the curse of
dimensionality.

Note: as k-means is optimizing a non-convex objective function, it will likely end up in a local optimum. Several runs
with independent random init might be necessary to get a good convergence.

Out:

Usage: plot_document_clustering.py [options]

Options:
-h, --help show this help message and exit
--lsa=N_COMPONENTS Preprocess documents with latent semantic analysis.
--no-minibatch Use ordinary k-means algorithm (in batch mode).
--no-idf Disable Inverse Document Frequency feature weighting.
--use-hashing Use a hashing feature vectorizer
--n-features=N_FEATURES

Maximum number of features (dimensions) to extract
from text.

--verbose Print progress reports inside k-means algorithm.
Loading 20 newsgroups dataset for categories:
['alt.atheism', 'talk.religion.misc', 'comp.graphics', 'sci.space']
3387 documents
4 categories

Extracting features from the training dataset using a sparse vectorizer
done in 0.740927s
n_samples: 3387, n_features: 10000

Clustering sparse data with MiniBatchKMeans(batch_size=1000, init_size=1000, n_
→˓clusters=4, n_init=1,

verbose=False)
done in 0.063s

Homogeneity: 0.219
Completeness: 0.338
V-measure: 0.266
Adjusted Rand-Index: 0.113
Silhouette Coefficient: 0.005

Top terms per cluster:
Cluster 0: cc ibm au buffalo monash com vnet software nicho university
Cluster 1: space nasa henry access digex toronto gov pat alaska shuttle
Cluster 2: com god university article don know graphics people posting like
Cluster 3: sgi keith livesey morality jon solntze wpd caltech objective moral

Author: Peter Prettenhofer <peter.prettenhofer@gmail.com>
Lars Buitinck

(continues on next page)

6.30. Working with text documents 1601

scikit-learn user guide, Release 0.23.2

(continued from previous page)

License: BSD 3 clause
from sklearn.datasets import fetch_20newsgroups
from sklearn.decomposition import TruncatedSVD
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import Normalizer
from sklearn import metrics

from sklearn.cluster import KMeans, MiniBatchKMeans

import logging
from optparse import OptionParser
import sys
from time import time

import numpy as np

Display progress logs on stdout
logging.basicConfig(level=logging.INFO,

format='%(asctime)s %(levelname)s %(message)s')

parse commandline arguments
op = OptionParser()
op.add_option("--lsa",

dest="n_components", type="int",
help="Preprocess documents with latent semantic analysis.")

op.add_option("--no-minibatch",
action="store_false", dest="minibatch", default=True,
help="Use ordinary k-means algorithm (in batch mode).")

op.add_option("--no-idf",
action="store_false", dest="use_idf", default=True,
help="Disable Inverse Document Frequency feature weighting.")

op.add_option("--use-hashing",
action="store_true", default=False,
help="Use a hashing feature vectorizer")

op.add_option("--n-features", type=int, default=10000,
help="Maximum number of features (dimensions)"

" to extract from text.")
op.add_option("--verbose",

action="store_true", dest="verbose", default=False,
help="Print progress reports inside k-means algorithm.")

print(__doc__)
op.print_help()

def is_interactive():
return not hasattr(sys.modules['__main__'], '__file__')

work-around for Jupyter notebook and IPython console
argv = [] if is_interactive() else sys.argv[1:]
(opts, args) = op.parse_args(argv)
if len(args) > 0:

(continues on next page)

1602 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

op.error("this script takes no arguments.")
sys.exit(1)

###
Load some categories from the training set
categories = [

'alt.atheism',
'talk.religion.misc',
'comp.graphics',
'sci.space',

]
Uncomment the following to do the analysis on all the categories
categories = None

print("Loading 20 newsgroups dataset for categories:")
print(categories)

dataset = fetch_20newsgroups(subset='all', categories=categories,
shuffle=True, random_state=42)

print("%d documents" % len(dataset.data))
print("%d categories" % len(dataset.target_names))
print()

labels = dataset.target
true_k = np.unique(labels).shape[0]

print("Extracting features from the training dataset "
"using a sparse vectorizer")

t0 = time()
if opts.use_hashing:

if opts.use_idf:
Perform an IDF normalization on the output of HashingVectorizer
hasher = HashingVectorizer(n_features=opts.n_features,

stop_words='english', alternate_sign=False,
norm=None)

vectorizer = make_pipeline(hasher, TfidfTransformer())
else:

vectorizer = HashingVectorizer(n_features=opts.n_features,
stop_words='english',
alternate_sign=False, norm='l2')

else:
vectorizer = TfidfVectorizer(max_df=0.5, max_features=opts.n_features,

min_df=2, stop_words='english',
use_idf=opts.use_idf)

X = vectorizer.fit_transform(dataset.data)

print("done in %fs" % (time() - t0))
print("n_samples: %d, n_features: %d" % X.shape)
print()

if opts.n_components:
print("Performing dimensionality reduction using LSA")
t0 = time()
Vectorizer results are normalized, which makes KMeans behave as
spherical k-means for better results. Since LSA/SVD results are

(continues on next page)

6.30. Working with text documents 1603

scikit-learn user guide, Release 0.23.2

(continued from previous page)

not normalized, we have to redo the normalization.
svd = TruncatedSVD(opts.n_components)
normalizer = Normalizer(copy=False)
lsa = make_pipeline(svd, normalizer)

X = lsa.fit_transform(X)

print("done in %fs" % (time() - t0))

explained_variance = svd.explained_variance_ratio_.sum()
print("Explained variance of the SVD step: {}%".format(

int(explained_variance * 100)))

print()

###
Do the actual clustering

if opts.minibatch:
km = MiniBatchKMeans(n_clusters=true_k, init='k-means++', n_init=1,

init_size=1000, batch_size=1000, verbose=opts.verbose)
else:

km = KMeans(n_clusters=true_k, init='k-means++', max_iter=100, n_init=1,
verbose=opts.verbose)

print("Clustering sparse data with %s" % km)
t0 = time()
km.fit(X)
print("done in %0.3fs" % (time() - t0))
print()

print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels, km.labels_))
print("Completeness: %0.3f" % metrics.completeness_score(labels, km.labels_))
print("V-measure: %0.3f" % metrics.v_measure_score(labels, km.labels_))
print("Adjusted Rand-Index: %.3f"

% metrics.adjusted_rand_score(labels, km.labels_))
print("Silhouette Coefficient: %0.3f"

% metrics.silhouette_score(X, km.labels_, sample_size=1000))

print()

if not opts.use_hashing:
print("Top terms per cluster:")

if opts.n_components:
original_space_centroids = svd.inverse_transform(km.cluster_centers_)
order_centroids = original_space_centroids.argsort()[:, ::-1]

else:
order_centroids = km.cluster_centers_.argsort()[:, ::-1]

terms = vectorizer.get_feature_names()
for i in range(true_k):

print("Cluster %d:" % i, end='')
for ind in order_centroids[i, :10]:

print(' %s' % terms[ind], end='')
(continues on next page)

1604 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

print()

Total running time of the script: (0 minutes 1.098 seconds)

6.30.3 Classification of text documents using sparse features

This is an example showing how scikit-learn can be used to classify documents by topics using a bag-of-words ap-
proach. This example uses a scipy.sparse matrix to store the features and demonstrates various classifiers that can
efficiently handle sparse matrices.

The dataset used in this example is the 20 newsgroups dataset. It will be automatically downloaded, then cached.

Author: Peter Prettenhofer <peter.prettenhofer@gmail.com>
Olivier Grisel <olivier.grisel@ensta.org>
Mathieu Blondel <mathieu@mblondel.org>
Lars Buitinck
License: BSD 3 clause
import logging
import numpy as np
from optparse import OptionParser
import sys
from time import time
import matplotlib.pyplot as plt

from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.feature_selection import SelectFromModel
from sklearn.feature_selection import SelectKBest, chi2
from sklearn.linear_model import RidgeClassifier
from sklearn.pipeline import Pipeline
from sklearn.svm import LinearSVC
from sklearn.linear_model import SGDClassifier
from sklearn.linear_model import Perceptron
from sklearn.linear_model import PassiveAggressiveClassifier
from sklearn.naive_bayes import BernoulliNB, ComplementNB, MultinomialNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neighbors import NearestCentroid
from sklearn.ensemble import RandomForestClassifier
from sklearn.utils.extmath import density
from sklearn import metrics

Display progress logs on stdout
logging.basicConfig(level=logging.INFO,

format='%(asctime)s %(levelname)s %(message)s')

op = OptionParser()
op.add_option("--report",

action="store_true", dest="print_report",
help="Print a detailed classification report.")

op.add_option("--chi2_select",
action="store", type="int", dest="select_chi2",
help="Select some number of features using a chi-squared test")

op.add_option("--confusion_matrix",

(continues on next page)

6.30. Working with text documents 1605

scikit-learn user guide, Release 0.23.2

(continued from previous page)

action="store_true", dest="print_cm",
help="Print the confusion matrix.")

op.add_option("--top10",
action="store_true", dest="print_top10",
help="Print ten most discriminative terms per class"

" for every classifier.")
op.add_option("--all_categories",

action="store_true", dest="all_categories",
help="Whether to use all categories or not.")

op.add_option("--use_hashing",
action="store_true",
help="Use a hashing vectorizer.")

op.add_option("--n_features",
action="store", type=int, default=2 ** 16,
help="n_features when using the hashing vectorizer.")

op.add_option("--filtered",
action="store_true",
help="Remove newsgroup information that is easily overfit: "

"headers, signatures, and quoting.")

def is_interactive():
return not hasattr(sys.modules['__main__'], '__file__')

work-around for Jupyter notebook and IPython console
argv = [] if is_interactive() else sys.argv[1:]
(opts, args) = op.parse_args(argv)
if len(args) > 0:

op.error("this script takes no arguments.")
sys.exit(1)

print(__doc__)
op.print_help()
print()

Out:

Usage: plot_document_classification_20newsgroups.py [options]

Options:
-h, --help show this help message and exit
--report Print a detailed classification report.
--chi2_select=SELECT_CHI2

Select some number of features using a chi-squared
test

--confusion_matrix Print the confusion matrix.
--top10 Print ten most discriminative terms per class for

every classifier.
--all_categories Whether to use all categories or not.
--use_hashing Use a hashing vectorizer.
--n_features=N_FEATURES

n_features when using the hashing vectorizer.
--filtered Remove newsgroup information that is easily overfit:

headers, signatures, and quoting.

1606 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

Load data from the training set

Let’s load data from the newsgroups dataset which comprises around 18000 newsgroups posts on 20 topics split in
two subsets: one for training (or development) and the other one for testing (or for performance evaluation).

if opts.all_categories:
categories = None

else:
categories = [

'alt.atheism',
'talk.religion.misc',
'comp.graphics',
'sci.space',

]

if opts.filtered:
remove = ('headers', 'footers', 'quotes')

else:
remove = ()

print("Loading 20 newsgroups dataset for categories:")
print(categories if categories else "all")

data_train = fetch_20newsgroups(subset='train', categories=categories,
shuffle=True, random_state=42,
remove=remove)

data_test = fetch_20newsgroups(subset='test', categories=categories,
shuffle=True, random_state=42,
remove=remove)

print('data loaded')

order of labels in `target_names` can be different from `categories`
target_names = data_train.target_names

def size_mb(docs):
return sum(len(s.encode('utf-8')) for s in docs) / 1e6

data_train_size_mb = size_mb(data_train.data)
data_test_size_mb = size_mb(data_test.data)

print("%d documents - %0.3fMB (training set)" % (
len(data_train.data), data_train_size_mb))

print("%d documents - %0.3fMB (test set)" % (
len(data_test.data), data_test_size_mb))

print("%d categories" % len(target_names))
print()

split a training set and a test set
y_train, y_test = data_train.target, data_test.target

print("Extracting features from the training data using a sparse vectorizer")
t0 = time()
if opts.use_hashing:

vectorizer = HashingVectorizer(stop_words='english', alternate_sign=False,
n_features=opts.n_features)

(continues on next page)

6.30. Working with text documents 1607

scikit-learn user guide, Release 0.23.2

(continued from previous page)

X_train = vectorizer.transform(data_train.data)
else:

vectorizer = TfidfVectorizer(sublinear_tf=True, max_df=0.5,
stop_words='english')

X_train = vectorizer.fit_transform(data_train.data)
duration = time() - t0
print("done in %fs at %0.3fMB/s" % (duration, data_train_size_mb / duration))
print("n_samples: %d, n_features: %d" % X_train.shape)
print()

print("Extracting features from the test data using the same vectorizer")
t0 = time()
X_test = vectorizer.transform(data_test.data)
duration = time() - t0
print("done in %fs at %0.3fMB/s" % (duration, data_test_size_mb / duration))
print("n_samples: %d, n_features: %d" % X_test.shape)
print()

mapping from integer feature name to original token string
if opts.use_hashing:

feature_names = None
else:

feature_names = vectorizer.get_feature_names()

if opts.select_chi2:
print("Extracting %d best features by a chi-squared test" %

opts.select_chi2)
t0 = time()
ch2 = SelectKBest(chi2, k=opts.select_chi2)
X_train = ch2.fit_transform(X_train, y_train)
X_test = ch2.transform(X_test)
if feature_names:

keep selected feature names
feature_names = [feature_names[i] for i

in ch2.get_support(indices=True)]
print("done in %fs" % (time() - t0))
print()

if feature_names:
feature_names = np.asarray(feature_names)

def trim(s):
"""Trim string to fit on terminal (assuming 80-column display)"""
return s if len(s) <= 80 else s[:77] + "..."

Out:

Loading 20 newsgroups dataset for categories:
['alt.atheism', 'talk.religion.misc', 'comp.graphics', 'sci.space']
data loaded
2034 documents - 3.980MB (training set)
1353 documents - 2.867MB (test set)
4 categories

Extracting features from the training data using a sparse vectorizer
done in 0.485259s at 8.201MB/s

(continues on next page)

1608 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

n_samples: 2034, n_features: 33809

Extracting features from the test data using the same vectorizer
done in 0.300087s at 9.556MB/s
n_samples: 1353, n_features: 33809

Benchmark classifiers

We train and test the datasets with 15 different classification models and get performance results for each model.

def benchmark(clf):
print('_' * 80)
print("Training: ")
print(clf)
t0 = time()
clf.fit(X_train, y_train)
train_time = time() - t0
print("train time: %0.3fs" % train_time)

t0 = time()
pred = clf.predict(X_test)
test_time = time() - t0
print("test time: %0.3fs" % test_time)

score = metrics.accuracy_score(y_test, pred)
print("accuracy: %0.3f" % score)

if hasattr(clf, 'coef_'):
print("dimensionality: %d" % clf.coef_.shape[1])
print("density: %f" % density(clf.coef_))

if opts.print_top10 and feature_names is not None:
print("top 10 keywords per class:")
for i, label in enumerate(target_names):

top10 = np.argsort(clf.coef_[i])[-10:]
print(trim("%s: %s" % (label, " ".join(feature_names[top10]))))

print()

if opts.print_report:
print("classification report:")
print(metrics.classification_report(y_test, pred,

target_names=target_names))

if opts.print_cm:
print("confusion matrix:")
print(metrics.confusion_matrix(y_test, pred))

print()
clf_descr = str(clf).split('(')[0]
return clf_descr, score, train_time, test_time

results = []
for clf, name in (

(RidgeClassifier(tol=1e-2, solver="sag"), "Ridge Classifier"),

(continues on next page)

6.30. Working with text documents 1609

scikit-learn user guide, Release 0.23.2

(continued from previous page)

(Perceptron(max_iter=50), "Perceptron"),
(PassiveAggressiveClassifier(max_iter=50),
"Passive-Aggressive"),
(KNeighborsClassifier(n_neighbors=10), "kNN"),
(RandomForestClassifier(), "Random forest")):

print('=' * 80)
print(name)
results.append(benchmark(clf))

for penalty in ["l2", "l1"]:
print('=' * 80)
print("%s penalty" % penalty.upper())
Train Liblinear model
results.append(benchmark(LinearSVC(penalty=penalty, dual=False,

tol=1e-3)))

Train SGD model
results.append(benchmark(SGDClassifier(alpha=.0001, max_iter=50,

penalty=penalty)))

Train SGD with Elastic Net penalty
print('=' * 80)
print("Elastic-Net penalty")
results.append(benchmark(SGDClassifier(alpha=.0001, max_iter=50,

penalty="elasticnet")))

Train NearestCentroid without threshold
print('=' * 80)
print("NearestCentroid (aka Rocchio classifier)")
results.append(benchmark(NearestCentroid()))

Train sparse Naive Bayes classifiers
print('=' * 80)
print("Naive Bayes")
results.append(benchmark(MultinomialNB(alpha=.01)))
results.append(benchmark(BernoulliNB(alpha=.01)))
results.append(benchmark(ComplementNB(alpha=.1)))

print('=' * 80)
print("LinearSVC with L1-based feature selection")
The smaller C, the stronger the regularization.
The more regularization, the more sparsity.
results.append(benchmark(Pipeline([

('feature_selection', SelectFromModel(LinearSVC(penalty="l1", dual=False,
tol=1e-3))),

('classification', LinearSVC(penalty="l2"))])))

Out:

==
Ridge Classifier
__
Training:
RidgeClassifier(solver='sag', tol=0.01)
/home/circleci/project/sklearn/linear_model/_ridge.py:555: UserWarning: "sag" solver
→˓requires many iterations to fit an intercept with sparse inputs. Either set the
→˓solver to "auto" or "sparse_cg", or set a low "tol" and a high "max_iter"
→˓(especially if inputs are not standardized). (continues on next page)

1610 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

warnings.warn(
train time: 0.169s
test time: 0.001s
accuracy: 0.897
dimensionality: 33809
density: 1.000000

==
Perceptron
__
Training:
Perceptron(max_iter=50)
train time: 0.016s
test time: 0.002s
accuracy: 0.888
dimensionality: 33809
density: 0.255302

==
Passive-Aggressive
__
Training:
PassiveAggressiveClassifier(max_iter=50)
train time: 0.029s
test time: 0.002s
accuracy: 0.902
dimensionality: 33809
density: 0.692841

==
kNN
__
Training:
KNeighborsClassifier(n_neighbors=10)
train time: 0.002s
test time: 0.171s
accuracy: 0.858

==
Random forest
__
Training:
RandomForestClassifier()
train time: 1.452s
test time: 0.069s
accuracy: 0.837

==
L2 penalty
__
Training:
LinearSVC(dual=False, tol=0.001)
train time: 0.074s
test time: 0.001s

(continues on next page)

6.30. Working with text documents 1611

scikit-learn user guide, Release 0.23.2

(continued from previous page)

accuracy: 0.900
dimensionality: 33809
density: 1.000000

__
Training:
SGDClassifier(max_iter=50)
train time: 0.022s
test time: 0.002s
accuracy: 0.899
dimensionality: 33809
density: 0.569944

==
L1 penalty
__
Training:
LinearSVC(dual=False, penalty='l1', tol=0.001)
train time: 0.195s
test time: 0.001s
accuracy: 0.873
dimensionality: 33809
density: 0.005561

__
Training:
SGDClassifier(max_iter=50, penalty='l1')
train time: 0.097s
test time: 0.002s
accuracy: 0.888
dimensionality: 33809
density: 0.022982

==
Elastic-Net penalty
__
Training:
SGDClassifier(max_iter=50, penalty='elasticnet')
train time: 0.139s
test time: 0.002s
accuracy: 0.902
dimensionality: 33809
density: 0.187502

==
NearestCentroid (aka Rocchio classifier)
__
Training:
NearestCentroid()
train time: 0.006s
test time: 0.002s
accuracy: 0.855

(continues on next page)

1612 Chapter 6. Examples

scikit-learn user guide, Release 0.23.2

(continued from previous page)

==
Naive Bayes
__
Training:
MultinomialNB(alpha=0.01)
train time: 0.006s
test time: 0.001s
accuracy: 0.899
dimensionality: 33809
density: 1.000000

__
Training:
BernoulliNB(alpha=0.01)
train time: 0.007s
test time: 0.005s
accuracy: 0.884
dimensionality: 33809
density: 1.000000

__
Training:
ComplementNB(alpha=0.1)
train time: 0.007s
test time: 0.001s
accuracy: 0.911
dimensionality: 33809
density: 1.000000

==
LinearSVC with L1-based feature selection
__
Training:
Pipeline(steps=[('feature_selection',

SelectFromModel(estimator=LinearSVC(dual=False, penalty='l1',
tol=0.001))),

('classification', LinearSVC())])
train time: 0.203s
test time: 0.003s
accuracy: 0.880

Add plots

The bar plot indicates the accuracy, training time (normalized) and test time (normalized) of each classifier.

indices = np.arange(len(results))

results = [[x[i] for x in results] for i in range(4)]

clf_names, score, training_time, test_time = results
training_time = np.array(training_time) / np.max(training_time)

(continues on next page)

6.30. Working with text documents 1613

scikit-learn user guide, Release 0.23.2

(continued from previous page)

test_time = np.array(test_time) / np.max(test_time)

plt.figure(figsize=(12, 8))
plt.title("Score")
plt.barh(indices, score, .2, label="score", color='navy')
plt.barh(indices + .3, training_time, .2, label="training time",

color='c')
plt.barh(indices + .6, test_time, .2, label="test time", color='darkorange')
plt.yticks(())
plt.legend(loc='best')
plt.subplots_adjust(left=.25)
plt.subplots_adjust(top=.95)
plt.subplots_adjust(bottom=.05)

for i, c in zip(indices, clf_names):
plt.text(-.3, i, c)

plt.show()

Total running time of the script: (0 minutes 4.127 seconds)

1614 Chapter 6. Examples

CHAPTER

SEVEN

API REFERENCE

This is the class and function reference of scikit-learn. Please refer to the full user guide for further details, as the class
and function raw specifications may not be enough to give full guidelines on their uses. For reference on concepts
repeated across the API, see Glossary of Common Terms and API Elements.

7.1 sklearn.base: Base classes and utility functions

Base classes for all estimators.

Used for VotingClassifier

7.1.1 Base classes

base.BaseEstimator Base class for all estimators in scikit-learn
base.BiclusterMixin Mixin class for all bicluster estimators in scikit-learn
base.ClassifierMixin Mixin class for all classifiers in scikit-learn.
base.ClusterMixin Mixin class for all cluster estimators in scikit-learn.
base.DensityMixin Mixin class for all density estimators in scikit-learn.
base.RegressorMixin Mixin class for all regression estimators in scikit-learn.
base.TransformerMixin Mixin class for all transformers in scikit-learn.
feature_selection.SelectorMixin Transformer mixin that performs feature selection given

a support mask

sklearn.base.BaseEstimator

class sklearn.base.BaseEstimator
Base class for all estimators in scikit-learn

Notes

All estimators should specify all the parameters that can be set at the class level in their __init__ as explicit
keyword arguments (no *args or **kwargs).

Methods

1615

scikit-learn user guide, Release 0.23.2

get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.

__init__(*args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.base.BaseEstimator

• Approximate nearest neighbors in TSNE

sklearn.base.BiclusterMixin

class sklearn.base.BiclusterMixin
Mixin class for all bicluster estimators in scikit-learn

Attributes

biclusters_ Convenient way to get row and column indicators together.

Methods

get_indices(i) Row and column indices of the i’th bicluster.
get_shape(i) Shape of the i’th bicluster.
get_submatrix(i, data) Return the submatrix corresponding to bicluster i.

__init__(*args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

property biclusters_

1616 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Convenient way to get row and column indicators together.

Returns the rows_ and columns_ members.

get_indices(i)
Row and column indices of the i’th bicluster.

Only works if rows_ and columns_ attributes exist.

Parameters

i [int] The index of the cluster.

Returns

row_ind [ndarray, dtype=np.intp] Indices of rows in the dataset that belong to the bicluster.

col_ind [ndarray, dtype=np.intp] Indices of columns in the dataset that belong to the biclus-
ter.

get_shape(i)
Shape of the i’th bicluster.

Parameters

i [int] The index of the cluster.

Returns

shape [tuple (int, int)] Number of rows and columns (resp.) in the bicluster.

get_submatrix(i, data)
Return the submatrix corresponding to bicluster i.

Parameters

i [int] The index of the cluster.

data [array-like] The data.

Returns

submatrix [ndarray] The submatrix corresponding to bicluster i.

Notes

Works with sparse matrices. Only works if rows_ and columns_ attributes exist.

sklearn.base.ClassifierMixin

class sklearn.base.ClassifierMixin
Mixin class for all classifiers in scikit-learn.

Methods

score(X, y[, sample_weight]) Return the mean accuracy on the given test data and
labels.

__init__(*args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

7.1. sklearn.base: Base classes and utility functions 1617

scikit-learn user guide, Release 0.23.2

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

sklearn.base.ClusterMixin

class sklearn.base.ClusterMixin
Mixin class for all cluster estimators in scikit-learn.

Methods

fit_predict(X[, y]) Perform clustering on X and returns cluster labels.

__init__(*args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

fit_predict(X, y=None)
Perform clustering on X and returns cluster labels.

Parameters

X [array-like of shape (n_samples, n_features)] Input data.

y [Ignored] Not used, present for API consistency by convention.

Returns

labels [ndarray of shape (n_samples,)] Cluster labels.

sklearn.base.DensityMixin

class sklearn.base.DensityMixin
Mixin class for all density estimators in scikit-learn.

Methods

score(X[, y]) Return the score of the model on the data X

__init__(*args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

score(X, y=None)

1618 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Return the score of the model on the data X

Parameters

X [array-like of shape (n_samples, n_features)]

y [Ignored] Not used, present for API consistency by convention.

Returns

score [float]

sklearn.base.RegressorMixin

class sklearn.base.RegressorMixin
Mixin class for all regression estimators in scikit-learn.

Methods

score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the
prediction.

__init__(*args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

7.1. sklearn.base: Base classes and utility functions 1619

scikit-learn user guide, Release 0.23.2

sklearn.base.TransformerMixin

class sklearn.base.TransformerMixin
Mixin class for all transformers in scikit-learn.

Methods

fit_transform(X[, y]) Fit to data, then transform it.

__init__(*args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

Examples using sklearn.base.TransformerMixin

• Approximate nearest neighbors in TSNE

sklearn.feature_selection.SelectorMixin

class sklearn.feature_selection.SelectorMixin
Transformer mixin that performs feature selection given a support mask

This mixin provides a feature selector implementation with transform and inverse_transform func-
tionality given an implementation of _get_support_mask.

Methods

fit_transform(X[, y]) Fit to data, then transform it.
get_support([indices]) Get a mask, or integer index, of the features selected
inverse_transform(X) Reverse the transformation operation
transform(X) Reduce X to the selected features.

__init__(*args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

1620 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_support(indices=False)
Get a mask, or integer index, of the features selected

Parameters

indices [boolean (default False)] If True, the return value will be an array of integers, rather
than a boolean mask.

Returns

support [array] An index that selects the retained features from a feature vector. If
indices is False, this is a boolean array of shape [# input features], in which an ele-
ment is True iff its corresponding feature is selected for retention. If indices is True,
this is an integer array of shape [# output features] whose values are indices into the input
feature vector.

inverse_transform(X)
Reverse the transformation operation

Parameters

X [array of shape [n_samples, n_selected_features]] The input samples.

Returns

X_r [array of shape [n_samples, n_original_features]] X with columns of zeros inserted
where features would have been removed by transform.

transform(X)
Reduce X to the selected features.

Parameters

X [array of shape [n_samples, n_features]] The input samples.

Returns

X_r [array of shape [n_samples, n_selected_features]] The input samples with only the se-
lected features.

7.1.2 Functions

base.clone(estimator, *[, safe]) Constructs a new estimator with the same parameters.
base.is_classifier(estimator) Return True if the given estimator is (probably) a clas-

sifier.
base.is_regressor(estimator) Return True if the given estimator is (probably) a regres-

sor.
config_context(**new_config) Context manager for global scikit-learn configuration

Continued on next page

7.1. sklearn.base: Base classes and utility functions 1621

scikit-learn user guide, Release 0.23.2

Table 10 – continued from previous page
get_config() Retrieve current values for configuration set by

set_config
set_config([assume_finite, working_memory, . . .]) Set global scikit-learn configuration
show_versions() Print useful debugging information”

sklearn.base.clone

sklearn.base.clone(estimator, *, safe=True)
Constructs a new estimator with the same parameters.

Clone does a deep copy of the model in an estimator without actually copying attached data. It yields a new
estimator with the same parameters that has not been fit on any data.

Parameters

estimator [{list, tuple, set} of estimator objects or estimator object] The estimator or group of
estimators to be cloned.

safe [bool, default=True] If safe is false, clone will fall back to a deep copy on objects that are
not estimators.

sklearn.base.is_classifier

sklearn.base.is_classifier(estimator)
Return True if the given estimator is (probably) a classifier.

Parameters

estimator [object] Estimator object to test.

Returns

out [bool] True if estimator is a classifier and False otherwise.

sklearn.base.is_regressor

sklearn.base.is_regressor(estimator)
Return True if the given estimator is (probably) a regressor.

Parameters

estimator [object] Estimator object to test.

Returns

out [bool] True if estimator is a regressor and False otherwise.

sklearn.config_context

sklearn.config_context(**new_config)
Context manager for global scikit-learn configuration

Parameters

assume_finite [bool, optional] If True, validation for finiteness will be skipped, saving time, but
leading to potential crashes. If False, validation for finiteness will be performed, avoiding
error. Global default: False.

1622 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

working_memory [int, optional] If set, scikit-learn will attempt to limit the size of temporary
arrays to this number of MiB (per job when parallelised), often saving both computation
time and memory on expensive operations that can be performed in chunks. Global default:
1024.

print_changed_only [bool, optional] If True, only the parameters that were set to non-default
values will be printed when printing an estimator. For example, print(SVC()) while
True will only print ‘SVC()’, but would print ‘SVC(C=1.0, cache_size=200, . . .)’ with all
the non-changed parameters when False. Default is True.

Changed in version 0.23: Default changed from False to True.

display [{‘text’, ‘diagram’}, optional] If ‘diagram’, estimators will be displayed as a diagram
in a Jupyter lab or notebook context. If ‘text’, estimators will be displayed as text. Default
is ‘text’.

New in version 0.23.

See also:

set_config Set global scikit-learn configuration

get_config Retrieve current values of the global configuration

Notes

All settings, not just those presently modified, will be returned to their previous values when the context manager
is exited. This is not thread-safe.

Examples

>>> import sklearn
>>> from sklearn.utils.validation import assert_all_finite
>>> with sklearn.config_context(assume_finite=True):
... assert_all_finite([float('nan')])
>>> with sklearn.config_context(assume_finite=True):
... with sklearn.config_context(assume_finite=False):
... assert_all_finite([float('nan')])
Traceback (most recent call last):
...
ValueError: Input contains NaN, ...

sklearn.get_config

sklearn.get_config()
Retrieve current values for configuration set by set_config

Returns

config [dict] Keys are parameter names that can be passed to set_config.

See also:

config_context Context manager for global scikit-learn configuration

set_config Set global scikit-learn configuration

7.1. sklearn.base: Base classes and utility functions 1623

scikit-learn user guide, Release 0.23.2

sklearn.set_config

sklearn.set_config(assume_finite=None, working_memory=None, print_changed_only=None, dis-
play=None)

Set global scikit-learn configuration

New in version 0.19.

Parameters

assume_finite [bool, optional] If True, validation for finiteness will be skipped, saving time, but
leading to potential crashes. If False, validation for finiteness will be performed, avoiding
error. Global default: False.

New in version 0.19.

working_memory [int, optional] If set, scikit-learn will attempt to limit the size of temporary
arrays to this number of MiB (per job when parallelised), often saving both computation
time and memory on expensive operations that can be performed in chunks. Global default:
1024.

New in version 0.20.

print_changed_only [bool, optional] If True, only the parameters that were set to non-default
values will be printed when printing an estimator. For example, print(SVC()) while
True will only print ‘SVC()’ while the default behaviour would be to print ‘SVC(C=1.0,
cache_size=200, . . .)’ with all the non-changed parameters.

New in version 0.21.

display [{‘text’, ‘diagram’}, optional] If ‘diagram’, estimators will be displayed as a diagram
in a Jupyter lab or notebook context. If ‘text’, estimators will be displayed as text. Default
is ‘text’.

New in version 0.23.

See also:

config_context Context manager for global scikit-learn configuration

get_config Retrieve current values of the global configuration

Examples using sklearn.set_config

• Release Highlights for scikit-learn 0.23

• Compact estimator representations

• Column Transformer with Mixed Types

sklearn.show_versions

sklearn.show_versions()
Print useful debugging information”

New in version 0.20.

1624 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

7.2 sklearn.calibration: Probability Calibration

Calibration of predicted probabilities.

User guide: See the Probability calibration section for further details.

calibration.CalibratedClassifierCV ([. . .]) Probability calibration with isotonic regression or logis-
tic regression.

7.2.1 sklearn.calibration.CalibratedClassifierCV

class sklearn.calibration.CalibratedClassifierCV(base_estimator=None, *,
method=’sigmoid’, cv=None)

Probability calibration with isotonic regression or logistic regression.

The calibration is based on the decision_function method of the base_estimator if it exists, else on pre-
dict_proba.

Read more in the User Guide.

Parameters

base_estimator [instance BaseEstimator] The classifier whose output need to be calibrated to
provide more accurate predict_proba outputs.

method [‘sigmoid’ or ‘isotonic’] The method to use for calibration. Can be ‘sigmoid’ which
corresponds to Platt’s method (i.e. a logistic regression model) or ‘isotonic’ which is a non-
parametric approach. It is not advised to use isotonic calibration with too few calibration
samples (<<1000) since it tends to overfit.

cv [integer, cross-validation generator, iterable or “prefit”, optional] Determines the cross-
validation splitting strategy. Possible inputs for cv are:

• None, to use the default 5-fold cross-validation,

• integer, to specify the number of folds.

• CV splitter,

• An iterable yielding (train, test) splits as arrays of indices.

For integer/None inputs, if y is binary or multiclass, sklearn.model_selection.
StratifiedKFold is used. If y is neither binary nor multiclass, sklearn.
model_selection.KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

If “prefit” is passed, it is assumed that base_estimator has been fitted already and all
data is used for calibration.

Changed in version 0.22: cv default value if None changed from 3-fold to 5-fold.

Attributes

classes_ [array, shape (n_classes)] The class labels.

calibrated_classifiers_ [list (len() equal to cv or 1 if cv == “prefit”)] The list of calibrated
classifiers, one for each cross-validation fold, which has been fitted on all but the validation
fold and calibrated on the validation fold.

7.2. sklearn.calibration: Probability Calibration 1625

scikit-learn user guide, Release 0.23.2

References

[1], [2], [3], [4]

Methods

fit(X, y[, sample_weight]) Fit the calibrated model
get_params([deep]) Get parameters for this estimator.
predict(X) Predict the target of new samples.
predict_proba(X) Posterior probabilities of classification
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(base_estimator=None, *, method=’sigmoid’, cv=None)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y, sample_weight=None)
Fit the calibrated model

Parameters

X [array-like, shape (n_samples, n_features)] Training data.

y [array-like, shape (n_samples,)] Target values.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights. If None,
then samples are equally weighted.

Returns

self [object] Returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict the target of new samples. The predicted class is the class that has the highest probability, and can
thus be different from the prediction of the uncalibrated classifier.

Parameters

X [array-like, shape (n_samples, n_features)] The samples.

Returns

C [array, shape (n_samples,)] The predicted class.

predict_proba(X)
Posterior probabilities of classification

This function returns posterior probabilities of classification according to each class on an array of test
vectors X.

1626 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Parameters

X [array-like, shape (n_samples, n_features)] The samples.

Returns

C [array, shape (n_samples, n_classes)] The predicted probas.

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.calibration.CalibratedClassifierCV

• Probability Calibration curves

• Probability calibration of classifiers

• Probability Calibration for 3-class classification

calibration.calibration_curve(y_true,
y_prob, *)

Compute true and predicted probabilities for a calibra-
tion curve.

7.2.2 sklearn.calibration.calibration_curve

sklearn.calibration.calibration_curve(y_true, y_prob, *, normalize=False, n_bins=5, strat-
egy=’uniform’)

Compute true and predicted probabilities for a calibration curve.

The method assumes the inputs come from a binary classifier, and discretize the [0, 1] interval into bins.

Calibration curves may also be referred to as reliability diagrams.

Read more in the User Guide.

7.2. sklearn.calibration: Probability Calibration 1627

scikit-learn user guide, Release 0.23.2

Parameters

y_true [array-like of shape (n_samples,)] True targets.

y_prob [array-like of shape (n_samples,)] Probabilities of the positive class.

normalize [bool, default=False] Whether y_prob needs to be normalized into the [0, 1] interval,
i.e. is not a proper probability. If True, the smallest value in y_prob is linearly mapped onto
0 and the largest one onto 1.

n_bins [int, default=5] Number of bins to discretize the [0, 1] interval. A bigger number re-
quires more data. Bins with no samples (i.e. without corresponding values in y_prob) will
not be returned, thus the returned arrays may have less than n_bins values.

strategy [{‘uniform’, ‘quantile’}, default=’uniform’] Strategy used to define the widths of the
bins.

uniform The bins have identical widths.

quantile The bins have the same number of samples and depend on y_prob.

Returns

prob_true [ndarray of shape (n_bins,) or smaller] The proportion of samples whose class is the
positive class, in each bin (fraction of positives).

prob_pred [ndarray of shape (n_bins,) or smaller] The mean predicted probability in each bin.

References

Alexandru Niculescu-Mizil and Rich Caruana (2005) Predicting Good Probabilities With Supervised Learning,
in Proceedings of the 22nd International Conference on Machine Learning (ICML). See section 4 (Qualitative
Analysis of Predictions).

Examples using sklearn.calibration.calibration_curve

• Comparison of Calibration of Classifiers

• Probability Calibration curves

7.3 sklearn.cluster: Clustering

The sklearn.cluster module gathers popular unsupervised clustering algorithms.

User guide: See the Clustering and Biclustering sections for further details.

7.3.1 Classes

cluster.AffinityPropagation(*[, damping,
. . .])

Perform Affinity Propagation Clustering of data.

cluster.AgglomerativeClustering([. . .]) Agglomerative Clustering
cluster.Birch(*[, threshold, . . .]) Implements the Birch clustering algorithm.
cluster.DBSCAN ([eps, min_samples, metric, . . .]) Perform DBSCAN clustering from vector array or dis-

tance matrix.
Continued on next page

1628 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Table 14 – continued from previous page
cluster.FeatureAgglomeration([n_clusters,
. . .])

Agglomerate features.

cluster.KMeans([n_clusters, init, n_init, . . .]) K-Means clustering.
cluster.MiniBatchKMeans([n_clusters, init,
. . .])

Mini-Batch K-Means clustering.

cluster.MeanShift(*[, bandwidth, seeds, . . .]) Mean shift clustering using a flat kernel.
cluster.OPTICS(*[, min_samples, max_eps, . . .]) Estimate clustering structure from vector array.
cluster.SpectralClustering([n_clusters,
. . .])

Apply clustering to a projection of the normalized
Laplacian.

cluster.SpectralBiclustering([n_clusters,
. . .])

Spectral biclustering (Kluger, 2003).

cluster.SpectralCoclustering([n_clusters,
. . .])

Spectral Co-Clustering algorithm (Dhillon, 2001).

sklearn.cluster.AffinityPropagation

class sklearn.cluster.AffinityPropagation(*, damping=0.5, max_iter=200, conver-
gence_iter=15, copy=True, preference=None,
affinity=’euclidean’, verbose=False, ran-
dom_state=’warn’)

Perform Affinity Propagation Clustering of data.

Read more in the User Guide.

Parameters

damping [float, default=0.5] Damping factor (between 0.5 and 1) is the extent to which the
current value is maintained relative to incoming values (weighted 1 - damping). This in
order to avoid numerical oscillations when updating these values (messages).

max_iter [int, default=200] Maximum number of iterations.

convergence_iter [int, default=15] Number of iterations with no change in the number of esti-
mated clusters that stops the convergence.

copy [bool, default=True] Make a copy of input data.

preference [array-like of shape (n_samples,) or float, default=None] Preferences for each point
- points with larger values of preferences are more likely to be chosen as exemplars. The
number of exemplars, ie of clusters, is influenced by the input preferences value. If the pref-
erences are not passed as arguments, they will be set to the median of the input similarities.

affinity [{‘euclidean’, ‘precomputed’}, default=’euclidean’] Which affinity to use. At the mo-
ment ‘precomputed’ and euclidean are supported. ‘euclidean’ uses the negative squared
euclidean distance between points.

verbose [bool, default=False] Whether to be verbose.

random_state [int or np.random.RandomStateInstance, default: 0] Pseudo-random number
generator to control the starting state. Use an int for reproducible results across function
calls. See the Glossary.

New in version 0.23: this parameter was previously hardcoded as 0.

Attributes

cluster_centers_indices_ [ndarray of shape (n_clusters,)] Indices of cluster centers

cluster_centers_ [ndarray of shape (n_clusters, n_features)] Cluster centers (if affinity !=
precomputed).

7.3. sklearn.cluster: Clustering 1629

scikit-learn user guide, Release 0.23.2

labels_ [ndarray of shape (n_samples,)] Labels of each point

affinity_matrix_ [ndarray of shape (n_samples, n_samples)] Stores the affinity matrix used in
fit.

n_iter_ [int] Number of iterations taken to converge.

Notes

For an example, see examples/cluster/plot_affinity_propagation.py.

The algorithmic complexity of affinity propagation is quadratic in the number of points.

When fit does not converge, cluster_centers_ becomes an empty array and all training samples will be
labelled as -1. In addition, predict will then label every sample as -1.

When all training samples have equal similarities and equal preferences, the assignment of cluster centers and
labels depends on the preference. If the preference is smaller than the similarities, fit will result in a single
cluster center and label 0 for every sample. Otherwise, every training sample becomes its own cluster center
and is assigned a unique label.

References

Brendan J. Frey and Delbert Dueck, “Clustering by Passing Messages Between Data Points”, Science Feb. 2007

Examples

>>> from sklearn.cluster import AffinityPropagation
>>> import numpy as np
>>> X = np.array([[1, 2], [1, 4], [1, 0],
... [4, 2], [4, 4], [4, 0]])
>>> clustering = AffinityPropagation(random_state=5).fit(X)
>>> clustering
AffinityPropagation(random_state=5)
>>> clustering.labels_
array([0, 0, 0, 1, 1, 1])
>>> clustering.predict([[0, 0], [4, 4]])
array([0, 1])
>>> clustering.cluster_centers_
array([[1, 2],

[4, 2]])

Methods

fit(X[, y]) Fit the clustering from features, or affinity matrix.
fit_predict(X[, y]) Fit the clustering from features or affinity matrix, and

return cluster labels.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict the closest cluster each sample in X belongs

to.
set_params(**params) Set the parameters of this estimator.

1630 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

__init__(*, damping=0.5, max_iter=200, convergence_iter=15, copy=True, preference=None, affin-
ity=’euclidean’, verbose=False, random_state=’warn’)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Fit the clustering from features, or affinity matrix.

Parameters

X [array-like or sparse matrix, shape (n_samples, n_features), or array-like, shape
(n_samples, n_samples)] Training instances to cluster, or similarities / affinities between
instances if affinity='precomputed'. If a sparse feature matrix is provided, it will
be converted into a sparse csr_matrix.

y [Ignored] Not used, present here for API consistency by convention.

Returns

self

fit_predict(X, y=None)
Fit the clustering from features or affinity matrix, and return cluster labels.

Parameters

X [array-like or sparse matrix, shape (n_samples, n_features), or array-like, shape
(n_samples, n_samples)] Training instances to cluster, or similarities / affinities between
instances if affinity='precomputed'. If a sparse feature matrix is provided, it will
be converted into a sparse csr_matrix.

y [Ignored] Not used, present here for API consistency by convention.

Returns

labels [ndarray, shape (n_samples,)] Cluster labels.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict the closest cluster each sample in X belongs to.

Parameters

X [array-like or sparse matrix, shape (n_samples, n_features)] New data to predict. If a
sparse matrix is provided, it will be converted into a sparse csr_matrix.

Returns

labels [ndarray, shape (n_samples,)] Cluster labels.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

7.3. sklearn.cluster: Clustering 1631

scikit-learn user guide, Release 0.23.2

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.cluster.AffinityPropagation

• Demo of affinity propagation clustering algorithm

• Comparing different clustering algorithms on toy datasets

sklearn.cluster.AgglomerativeClustering

class sklearn.cluster.AgglomerativeClustering(n_clusters=2, *, affinity=’euclidean’,
memory=None, connectivity=None, com-
pute_full_tree=’auto’, linkage=’ward’,
distance_threshold=None)

Agglomerative Clustering

Recursively merges the pair of clusters that minimally increases a given linkage distance.

Read more in the User Guide.

Parameters

n_clusters [int or None, default=2] The number of clusters to find. It must be None if
distance_threshold is not None.

affinity [str or callable, default=’euclidean’] Metric used to compute the linkage. Can be “eu-
clidean”, “l1”, “l2”, “manhattan”, “cosine”, or “precomputed”. If linkage is “ward”, only
“euclidean” is accepted. If “precomputed”, a distance matrix (instead of a similarity matrix)
is needed as input for the fit method.

memory [str or object with the joblib.Memory interface, default=None] Used to cache the out-
put of the computation of the tree. By default, no caching is done. If a string is given, it is
the path to the caching directory.

connectivity [array-like or callable, default=None] Connectivity matrix. Defines for each sam-
ple the neighboring samples following a given structure of the data. This can be a connec-
tivity matrix itself or a callable that transforms the data into a connectivity matrix, such as
derived from kneighbors_graph. Default is None, i.e, the hierarchical clustering algorithm
is unstructured.

compute_full_tree [‘auto’ or bool, default=’auto’] Stop early the construction of the tree at
n_clusters. This is useful to decrease computation time if the number of clusters is not small
compared to the number of samples. This option is useful only when specifying a connectiv-
ity matrix. Note also that when varying the number of clusters and using caching, it may be
advantageous to compute the full tree. It must be True if distance_threshold is not
None. By default compute_full_tree is “auto”, which is equivalent to True when
distance_threshold is not None or that n_clusters is inferior to the maximum
between 100 or 0.02 * n_samples. Otherwise, “auto” is equivalent to False.

linkage [{“ward”, “complete”, “average”, “single”}, default=”ward”] Which linkage criterion
to use. The linkage criterion determines which distance to use between sets of observation.
The algorithm will merge the pairs of cluster that minimize this criterion.

1632 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

• ward minimizes the variance of the clusters being merged.

• average uses the average of the distances of each observation of the two sets.

• complete or maximum linkage uses the maximum distances between all observations of
the two sets.

• single uses the minimum of the distances between all observations of the two sets.

New in version 0.20: Added the ‘single’ option

distance_threshold [float, default=None] The linkage distance threshold above which,
clusters will not be merged. If not None, n_clusters must be None and
compute_full_tree must be True.

New in version 0.21.

Attributes

n_clusters_ [int] The number of clusters found by the algorithm. If
distance_threshold=None, it will be equal to the given n_clusters.

labels_ [ndarray of shape (n_samples)] cluster labels for each point

n_leaves_ [int] Number of leaves in the hierarchical tree.

n_connected_components_ [int] The estimated number of connected components in the graph.

New in version 0.21: n_connected_components_ was added to replace
n_components_.

children_ [array-like of shape (n_samples-1, 2)] The children of each non-leaf node. Val-
ues less than n_samples correspond to leaves of the tree which are the original sam-
ples. A node i greater than or equal to n_samples is a non-leaf node and has children
children_[i - n_samples]. Alternatively at the i-th iteration, children[i][0] and
children[i][1] are merged to form node n_samples + i

Examples

>>> from sklearn.cluster import AgglomerativeClustering
>>> import numpy as np
>>> X = np.array([[1, 2], [1, 4], [1, 0],
... [4, 2], [4, 4], [4, 0]])
>>> clustering = AgglomerativeClustering().fit(X)
>>> clustering
AgglomerativeClustering()
>>> clustering.labels_
array([1, 1, 1, 0, 0, 0])

Methods

fit(X[, y]) Fit the hierarchical clustering from features, or dis-
tance matrix.

fit_predict(X[, y]) Fit the hierarchical clustering from features or dis-
tance matrix, and return cluster labels.

get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.

7.3. sklearn.cluster: Clustering 1633

scikit-learn user guide, Release 0.23.2

__init__(n_clusters=2, *, affinity=’euclidean’, memory=None, connectivity=None, com-
pute_full_tree=’auto’, linkage=’ward’, distance_threshold=None)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Fit the hierarchical clustering from features, or distance matrix.

Parameters

X [array-like, shape (n_samples, n_features) or (n_samples, n_samples)] Training instances
to cluster, or distances between instances if affinity='precomputed'.

y [Ignored] Not used, present here for API consistency by convention.

Returns

self

fit_predict(X, y=None)
Fit the hierarchical clustering from features or distance matrix, and return cluster labels.

Parameters

X [array-like, shape (n_samples, n_features) or (n_samples, n_samples)] Training instances
to cluster, or distances between instances if affinity='precomputed'.

y [Ignored] Not used, present here for API consistency by convention.

Returns

labels [ndarray, shape (n_samples,)] Cluster labels.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.cluster.AgglomerativeClustering

• Plot Hierarchical Clustering Dendrogram

• Agglomerative clustering with and without structure

• Various Agglomerative Clustering on a 2D embedding of digits

1634 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

• A demo of structured Ward hierarchical clustering on an image of coins

• Hierarchical clustering: structured vs unstructured ward

• Agglomerative clustering with different metrics

• Inductive Clustering

• Comparing different hierarchical linkage methods on toy datasets

• Comparing different clustering algorithms on toy datasets

sklearn.cluster.Birch

class sklearn.cluster.Birch(*, threshold=0.5, branching_factor=50, n_clusters=3, com-
pute_labels=True, copy=True)

Implements the Birch clustering algorithm.

It is a memory-efficient, online-learning algorithm provided as an alternative to MiniBatchKMeans. It con-
structs a tree data structure with the cluster centroids being read off the leaf. These can be either the final cluster
centroids or can be provided as input to another clustering algorithm such as AgglomerativeClustering.

Read more in the User Guide.

New in version 0.16.

Parameters

threshold [float, default=0.5] The radius of the subcluster obtained by merging a new sample
and the closest subcluster should be lesser than the threshold. Otherwise a new subcluster is
started. Setting this value to be very low promotes splitting and vice-versa.

branching_factor [int, default=50] Maximum number of CF subclusters in each node. If a new
samples enters such that the number of subclusters exceed the branching_factor then that
node is split into two nodes with the subclusters redistributed in each. The parent subcluster
of that node is removed and two new subclusters are added as parents of the 2 split nodes.

n_clusters [int, instance of sklearn.cluster model, default=3] Number of clusters after the final
clustering step, which treats the subclusters from the leaves as new samples.

• None : the final clustering step is not performed and the subclusters are returned as they
are.

• sklearn.cluster Estimator : If a model is provided, the model is fit treating the
subclusters as new samples and the initial data is mapped to the label of the closest sub-
cluster.

• int : the model fit is AgglomerativeClustering with n_clusters set to be
equal to the int.

compute_labels [bool, default=True] Whether or not to compute labels for each fit.

copy [bool, default=True] Whether or not to make a copy of the given data. If set to False, the
initial data will be overwritten.

Attributes

root_ [_CFNode] Root of the CFTree.

dummy_leaf_ [_CFNode] Start pointer to all the leaves.

subcluster_centers_ [ndarray] Centroids of all subclusters read directly from the leaves.

7.3. sklearn.cluster: Clustering 1635

scikit-learn user guide, Release 0.23.2

subcluster_labels_ [ndarray] Labels assigned to the centroids of the subclusters after they are
clustered globally.

labels_ [ndarray of shape (n_samples,)] Array of labels assigned to the input data. if partial_fit
is used instead of fit, they are assigned to the last batch of data.

See also:

MiniBatchKMeans Alternative implementation that does incremental updates of the centers’ positions using
mini-batches.

Notes

The tree data structure consists of nodes with each node consisting of a number of subclusters. The maximum
number of subclusters in a node is determined by the branching factor. Each subcluster maintains a linear sum,
squared sum and the number of samples in that subcluster. In addition, each subcluster can also have a node as
its child, if the subcluster is not a member of a leaf node.

For a new point entering the root, it is merged with the subcluster closest to it and the linear sum, squared sum
and the number of samples of that subcluster are updated. This is done recursively till the properties of the leaf
node are updated.

References

• Tian Zhang, Raghu Ramakrishnan, Maron Livny BIRCH: An efficient data clustering method for large
databases. https://www.cs.sfu.ca/CourseCentral/459/han/papers/zhang96.pdf

• Roberto Perdisci JBirch - Java implementation of BIRCH clustering algorithm https://code.google.com/
archive/p/jbirch

Examples

>>> from sklearn.cluster import Birch
>>> X = [[0, 1], [0.3, 1], [-0.3, 1], [0, -1], [0.3, -1], [-0.3, -1]]
>>> brc = Birch(n_clusters=None)
>>> brc.fit(X)
Birch(n_clusters=None)
>>> brc.predict(X)
array([0, 0, 0, 1, 1, 1])

Methods

fit(X[, y]) Build a CF Tree for the input data.
fit_predict(X[, y]) Perform clustering on X and returns cluster labels.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
partial_fit([X, y]) Online learning.
predict(X) Predict data using the centroids_ of subclusters.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform X into subcluster centroids dimension.

1636 Chapter 7. API Reference

https://www.cs.sfu.ca/CourseCentral/459/han/papers/zhang96.pdf
https://code.google.com/archive/p/jbirch
https://code.google.com/archive/p/jbirch

scikit-learn user guide, Release 0.23.2

__init__(*, threshold=0.5, branching_factor=50, n_clusters=3, compute_labels=True, copy=True)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Build a CF Tree for the input data.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Input data.

y [Ignored] Not used, present here for API consistency by convention.

Returns

self Fitted estimator.

fit_predict(X, y=None)
Perform clustering on X and returns cluster labels.

Parameters

X [array-like of shape (n_samples, n_features)] Input data.

y [Ignored] Not used, present for API consistency by convention.

Returns

labels [ndarray of shape (n_samples,)] Cluster labels.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

partial_fit(X=None, y=None)
Online learning. Prevents rebuilding of CFTree from scratch.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features), default=None] Input data.
If X is not provided, only the global clustering step is done.

y [Ignored] Not used, present here for API consistency by convention.

Returns

7.3. sklearn.cluster: Clustering 1637

scikit-learn user guide, Release 0.23.2

self Fitted estimator.

predict(X)
Predict data using the centroids_ of subclusters.

Avoid computation of the row norms of X.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Input data.

Returns

labels [ndarray of shape(n_samples,)] Labelled data.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Transform X into subcluster centroids dimension.

Each dimension represents the distance from the sample point to each cluster centroid.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Input data.

Returns

X_trans [{array-like, sparse matrix} of shape (n_samples, n_clusters)] Transformed data.

Examples using sklearn.cluster.Birch

• Compare BIRCH and MiniBatchKMeans

• Comparing different clustering algorithms on toy datasets

sklearn.cluster.DBSCAN

class sklearn.cluster.DBSCAN(eps=0.5, *, min_samples=5, metric=’euclidean’, met-
ric_params=None, algorithm=’auto’, leaf_size=30, p=None,
n_jobs=None)

Perform DBSCAN clustering from vector array or distance matrix.

DBSCAN - Density-Based Spatial Clustering of Applications with Noise. Finds core samples of high density
and expands clusters from them. Good for data which contains clusters of similar density.

Read more in the User Guide.

Parameters

1638 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

eps [float, default=0.5] The maximum distance between two samples for one to be considered
as in the neighborhood of the other. This is not a maximum bound on the distances of points
within a cluster. This is the most important DBSCAN parameter to choose appropriately for
your data set and distance function.

min_samples [int, default=5] The number of samples (or total weight) in a neighborhood for a
point to be considered as a core point. This includes the point itself.

metric [string, or callable, default=’euclidean’] The metric to use when calculating distance
between instances in a feature array. If metric is a string or callable, it must be one of the
options allowed by sklearn.metrics.pairwise_distances for its metric param-
eter. If metric is “precomputed”, X is assumed to be a distance matrix and must be square.
X may be a Glossary, in which case only “nonzero” elements may be considered neighbors
for DBSCAN.

New in version 0.17: metric precomputed to accept precomputed sparse matrix.

metric_params [dict, default=None] Additional keyword arguments for the metric function.

New in version 0.19.

algorithm [{‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, default=’auto’] The algorithm to be used by
the NearestNeighbors module to compute pointwise distances and find nearest neighbors.
See NearestNeighbors module documentation for details.

leaf_size [int, default=30] Leaf size passed to BallTree or cKDTree. This can affect the speed
of the construction and query, as well as the memory required to store the tree. The optimal
value depends on the nature of the problem.

p [float, default=None] The power of the Minkowski metric to be used to calculate distance
between points.

n_jobs [int, default=None] The number of parallel jobs to run. None means 1 unless in a
joblib.parallel_backend context. -1 means using all processors. See Glossary
for more details.

Attributes

core_sample_indices_ [ndarray of shape (n_core_samples,)] Indices of core samples.

components_ [ndarray of shape (n_core_samples, n_features)] Copy of each core sample found
by training.

labels_ [ndarray of shape (n_samples)] Cluster labels for each point in the dataset given to fit().
Noisy samples are given the label -1.

See also:

OPTICS A similar clustering at multiple values of eps. Our implementation is optimized for memory usage.

Notes

For an example, see examples/cluster/plot_dbscan.py.

This implementation bulk-computes all neighborhood queries, which increases the memory complexity to
O(n.d) where d is the average number of neighbors, while original DBSCAN had memory complexity O(n).
It may attract a higher memory complexity when querying these nearest neighborhoods, depending on the
algorithm.

7.3. sklearn.cluster: Clustering 1639

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

One way to avoid the query complexity is to pre-compute sparse neighborhoods in chunks
using NearestNeighbors.radius_neighbors_graph with mode='distance', then using
metric='precomputed' here.

Another way to reduce memory and computation time is to remove (near-)duplicate points and use
sample_weight instead.

cluster.OPTICS provides a similar clustering with lower memory usage.

References

Ester, M., H. P. Kriegel, J. Sander, and X. Xu, “A Density-Based Algorithm for Discovering Clusters in Large
Spatial Databases with Noise”. In: Proceedings of the 2nd International Conference on Knowledge Discovery
and Data Mining, Portland, OR, AAAI Press, pp. 226-231. 1996

Schubert, E., Sander, J., Ester, M., Kriegel, H. P., & Xu, X. (2017). DBSCAN revisited, revisited: why and how
you should (still) use DBSCAN. ACM Transactions on Database Systems (TODS), 42(3), 19.

Examples

>>> from sklearn.cluster import DBSCAN
>>> import numpy as np
>>> X = np.array([[1, 2], [2, 2], [2, 3],
... [8, 7], [8, 8], [25, 80]])
>>> clustering = DBSCAN(eps=3, min_samples=2).fit(X)
>>> clustering.labels_
array([0, 0, 0, 1, 1, -1])
>>> clustering
DBSCAN(eps=3, min_samples=2)

Methods

fit(X[, y, sample_weight]) Perform DBSCAN clustering from features, or dis-
tance matrix.

fit_predict(X[, y, sample_weight]) Perform DBSCAN clustering from features or dis-
tance matrix, and return cluster labels.

get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.

__init__(eps=0.5, *, min_samples=5, metric=’euclidean’, metric_params=None, algorithm=’auto’,
leaf_size=30, p=None, n_jobs=None)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None, sample_weight=None)
Perform DBSCAN clustering from features, or distance matrix.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features), or (n_samples,
n_samples)] Training instances to cluster, or distances between instances if
metric='precomputed'. If a sparse matrix is provided, it will be converted into
a sparse csr_matrix.

sample_weight [array-like of shape (n_samples,), default=None] Weight of each sample,

1640 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

such that a sample with a weight of at least min_samples is by itself a core sample;
a sample with a negative weight may inhibit its eps-neighbor from being core. Note that
weights are absolute, and default to 1.

y [Ignored] Not used, present here for API consistency by convention.

Returns

self

fit_predict(X, y=None, sample_weight=None)
Perform DBSCAN clustering from features or distance matrix, and return cluster labels.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features), or (n_samples,
n_samples)] Training instances to cluster, or distances between instances if
metric='precomputed'. If a sparse matrix is provided, it will be converted into
a sparse csr_matrix.

sample_weight [array-like of shape (n_samples,), default=None] Weight of each sample,
such that a sample with a weight of at least min_samples is by itself a core sample;
a sample with a negative weight may inhibit its eps-neighbor from being core. Note that
weights are absolute, and default to 1.

y [Ignored] Not used, present here for API consistency by convention.

Returns

labels [ndarray of shape (n_samples,)] Cluster labels. Noisy samples are given the label -1.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.cluster.DBSCAN

• Demo of DBSCAN clustering algorithm

• Demo of OPTICS clustering algorithm

7.3. sklearn.cluster: Clustering 1641

scikit-learn user guide, Release 0.23.2

• Comparing different clustering algorithms on toy datasets

sklearn.cluster.FeatureAgglomeration

class sklearn.cluster.FeatureAgglomeration(n_clusters=2, *, affinity=’euclidean’,
memory=None, connectivity=None, com-
pute_full_tree=’auto’, linkage=’ward’,
pooling_func=<function mean>, dis-
tance_threshold=None)

Agglomerate features.

Similar to AgglomerativeClustering, but recursively merges features instead of samples.

Read more in the User Guide.

Parameters

n_clusters [int, default=2] The number of clusters to find. It must be None if
distance_threshold is not None.

affinity [str or callable, default=’euclidean’] Metric used to compute the linkage. Can be “eu-
clidean”, “l1”, “l2”, “manhattan”, “cosine”, or ‘precomputed’. If linkage is “ward”, only
“euclidean” is accepted.

memory [str or object with the joblib.Memory interface, default=None] Used to cache the out-
put of the computation of the tree. By default, no caching is done. If a string is given, it is
the path to the caching directory.

connectivity [array-like or callable, default=None] Connectivity matrix. Defines for each fea-
ture the neighboring features following a given structure of the data. This can be a connec-
tivity matrix itself or a callable that transforms the data into a connectivity matrix, such as
derived from kneighbors_graph. Default is None, i.e, the hierarchical clustering algorithm
is unstructured.

compute_full_tree [‘auto’ or bool, optional, default=’auto’] Stop early the construction of
the tree at n_clusters. This is useful to decrease computation time if the number of
clusters is not small compared to the number of features. This option is useful only
when specifying a connectivity matrix. Note also that when varying the number of clus-
ters and using caching, it may be advantageous to compute the full tree. It must be
True if distance_threshold is not None. By default compute_full_tree is
“auto”, which is equivalent to True when distance_threshold is not None or that
n_clusters is inferior to the maximum between 100 or 0.02 * n_samples. Other-
wise, “auto” is equivalent to False.

linkage [{‘ward’, ‘complete’, ‘average’, ‘single’}, default=’ward’] Which linkage criterion to
use. The linkage criterion determines which distance to use between sets of features. The
algorithm will merge the pairs of cluster that minimize this criterion.

• ward minimizes the variance of the clusters being merged.

• average uses the average of the distances of each feature of the two sets.

• complete or maximum linkage uses the maximum distances between all features of the
two sets.

• single uses the minimum of the distances between all observations of the two sets.

pooling_func [callable, default=np.mean] This combines the values of agglomerated features
into a single value, and should accept an array of shape [M, N] and the keyword argument
axis=1, and reduce it to an array of size [M].

1642 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

distance_threshold [float, default=None] The linkage distance threshold above which,
clusters will not be merged. If not None, n_clusters must be None and
compute_full_tree must be True.

New in version 0.21.

Attributes

n_clusters_ [int] The number of clusters found by the algorithm. If
distance_threshold=None, it will be equal to the given n_clusters.

labels_ [array-like of (n_features,)] cluster labels for each feature.

n_leaves_ [int] Number of leaves in the hierarchical tree.

n_connected_components_ [int] The estimated number of connected components in the graph.

New in version 0.21: n_connected_components_ was added to replace
n_components_.

children_ [array-like of shape (n_nodes-1, 2)] The children of each non-leaf node. Values
less than n_features correspond to leaves of the tree which are the original samples.
A node i greater than or equal to n_features is a non-leaf node and has children
children_[i - n_features]. Alternatively at the i-th iteration, children[i][0] and
children[i][1] are merged to form node n_features + i

distances_ [array-like of shape (n_nodes-1,)] Distances between nodes in the corresponding
place in children_. Only computed if distance_threshold is not None.

Examples

>>> import numpy as np
>>> from sklearn import datasets, cluster
>>> digits = datasets.load_digits()
>>> images = digits.images
>>> X = np.reshape(images, (len(images), -1))
>>> agglo = cluster.FeatureAgglomeration(n_clusters=32)
>>> agglo.fit(X)
FeatureAgglomeration(n_clusters=32)
>>> X_reduced = agglo.transform(X)
>>> X_reduced.shape
(1797, 32)

Methods

fit(X[, y]) Fit the hierarchical clustering on the data
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
inverse_transform(Xred) Inverse the transformation.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform a new matrix using the built clustering

__init__(n_clusters=2, *, affinity=’euclidean’, memory=None, connectivity=None, com-
pute_full_tree=’auto’, linkage=’ward’, pooling_func=<function mean>, dis-
tance_threshold=None)

Initialize self. See help(type(self)) for accurate signature.

7.3. sklearn.cluster: Clustering 1643

scikit-learn user guide, Release 0.23.2

fit(X, y=None, **params)
Fit the hierarchical clustering on the data

Parameters

X [array-like of shape (n_samples, n_features)] The data

y [Ignored]

Returns

self

property fit_predict
Fit the hierarchical clustering from features or distance matrix, and return cluster labels.

Parameters

X [array-like, shape (n_samples, n_features) or (n_samples, n_samples)] Training instances
to cluster, or distances between instances if affinity='precomputed'.

y [Ignored] Not used, present here for API consistency by convention.

Returns

labels [ndarray, shape (n_samples,)] Cluster labels.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

inverse_transform(Xred)
Inverse the transformation. Return a vector of size nb_features with the values of Xred assigned to each
group of features

Parameters

Xred [array-like of shape (n_samples, n_clusters) or (n_clusters,)] The values to be assigned
to each cluster of samples

Returns

1644 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

X [array, shape=[n_samples, n_features] or [n_features]] A vector of size n_samples with
the values of Xred assigned to each of the cluster of samples.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Transform a new matrix using the built clustering

Parameters

X [array-like of shape (n_samples, n_features) or (n_samples,)] A M by N array of M ob-
servations in N dimensions or a length M array of M one-dimensional observations.

Returns

Y [array, shape = [n_samples, n_clusters] or [n_clusters]] The pooled values for each feature
cluster.

Examples using sklearn.cluster.FeatureAgglomeration

• Feature agglomeration

• Feature agglomeration vs. univariate selection

sklearn.cluster.KMeans

class sklearn.cluster.KMeans(n_clusters=8, *, init=’k-means++’, n_init=10, max_iter=300,
tol=0.0001, precompute_distances=’deprecated’, verbose=0,
random_state=None, copy_x=True, n_jobs=’deprecated’, algo-
rithm=’auto’)

K-Means clustering.

Read more in the User Guide.

Parameters

n_clusters [int, default=8] The number of clusters to form as well as the number of centroids
to generate.

init [{‘k-means++’, ‘random’, ndarray, callable}, default=’k-means++’] Method for initializa-
tion:

‘k-means++’ : selects initial cluster centers for k-mean clustering in a smart way to speed
up convergence. See section Notes in k_init for more details.

‘random’: choose n_clusters observations (rows) at random from data for the initial
centroids.

7.3. sklearn.cluster: Clustering 1645

scikit-learn user guide, Release 0.23.2

If an ndarray is passed, it should be of shape (n_clusters, n_features) and gives the initial
centers.

If a callable is passed, it should take arguments X, n_clusters and a random state and return
an initialization.

n_init [int, default=10] Number of time the k-means algorithm will be run with different cen-
troid seeds. The final results will be the best output of n_init consecutive runs in terms of
inertia.

max_iter [int, default=300] Maximum number of iterations of the k-means algorithm for a
single run.

tol [float, default=1e-4] Relative tolerance with regards to Frobenius norm of the difference in
the cluster centers of two consecutive iterations to declare convergence.

precompute_distances [{‘auto’, True, False}, default=’auto’] Precompute distances (faster but
takes more memory).

‘auto’ : do not precompute distances if n_samples * n_clusters > 12 million. This corre-
sponds to about 100MB overhead per job using double precision.

True : always precompute distances.

False : never precompute distances.

Deprecated since version 0.23: ‘precompute_distances’ was deprecated in version 0.22 and
will be removed in 0.25. It has no effect.

verbose [int, default=0] Verbosity mode.

random_state [int, RandomState instance, default=None] Determines random number gener-
ation for centroid initialization. Use an int to make the randomness deterministic. See
Glossary.

copy_x [bool, default=True] When pre-computing distances it is more numerically accurate to
center the data first. If copy_x is True (default), then the original data is not modified.
If False, the original data is modified, and put back before the function returns, but small
numerical differences may be introduced by subtracting and then adding the data mean.
Note that if the original data is not C-contiguous, a copy will be made even if copy_x is
False. If the original data is sparse, but not in CSR format, a copy will be made even if
copy_x is False.

n_jobs [int, default=None] The number of OpenMP threads to use for the computation. Par-
allelism is sample-wise on the main cython loop which assigns each sample to its closest
center.

None or -1 means using all processors.

Deprecated since version 0.23: n_jobswas deprecated in version 0.23 and will be removed
in 0.25.

algorithm [{“auto”, “full”, “elkan”}, default=”auto”] K-means algorithm to use. The classical
EM-style algorithm is “full”. The “elkan” variation is more efficient on data with well-
defined clusters, by using the triangle inequality. However it’s more memory intensive due
to the allocation of an extra array of shape (n_samples, n_clusters).

For now “auto” (kept for backward compatibiliy) chooses “elkan” but it might change in the
future for a better heuristic.

Changed in version 0.18: Added Elkan algorithm

Attributes

1646 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

cluster_centers_ [ndarray of shape (n_clusters, n_features)] Coordinates of cluster centers. If
the algorithm stops before fully converging (see tol and max_iter), these will not be
consistent with labels_.

labels_ [ndarray of shape (n_samples,)] Labels of each point

inertia_ [float] Sum of squared distances of samples to their closest cluster center.

n_iter_ [int] Number of iterations run.

See also:

MiniBatchKMeans Alternative online implementation that does incremental updates of the centers positions
using mini-batches. For large scale learning (say n_samples > 10k) MiniBatchKMeans is probably much
faster than the default batch implementation.

Notes

The k-means problem is solved using either Lloyd’s or Elkan’s algorithm.

The average complexity is given by O(k n T), were n is the number of samples and T is the number of iteration.

The worst case complexity is given by O(n^(k+2/p)) with n = n_samples, p = n_features. (D. Arthur and S.
Vassilvitskii, ‘How slow is the k-means method?’ SoCG2006)

In practice, the k-means algorithm is very fast (one of the fastest clustering algorithms available), but it falls in
local minima. That’s why it can be useful to restart it several times.

If the algorithm stops before fully converging (because of tol or max_iter), labels_ and
cluster_centers_ will not be consistent, i.e. the cluster_centers_ will not be the means of the
points in each cluster. Also, the estimator will reassign labels_ after the last iteration to make labels_
consistent with predict on the training set.

Examples

>>> from sklearn.cluster import KMeans
>>> import numpy as np
>>> X = np.array([[1, 2], [1, 4], [1, 0],
... [10, 2], [10, 4], [10, 0]])
>>> kmeans = KMeans(n_clusters=2, random_state=0).fit(X)
>>> kmeans.labels_
array([1, 1, 1, 0, 0, 0], dtype=int32)
>>> kmeans.predict([[0, 0], [12, 3]])
array([1, 0], dtype=int32)
>>> kmeans.cluster_centers_
array([[10., 2.],

[1., 2.]])

Methods

fit(X[, y, sample_weight]) Compute k-means clustering.
fit_predict(X[, y, sample_weight]) Compute cluster centers and predict cluster index for

each sample.
Continued on next page

7.3. sklearn.cluster: Clustering 1647

scikit-learn user guide, Release 0.23.2

Table 20 – continued from previous page
fit_transform(X[, y, sample_weight]) Compute clustering and transform X to cluster-

distance space.
get_params([deep]) Get parameters for this estimator.
predict(X[, sample_weight]) Predict the closest cluster each sample in X belongs

to.
score(X[, y, sample_weight]) Opposite of the value of X on the K-means objective.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform X to a cluster-distance space.

__init__(n_clusters=8, *, init=’k-means++’, n_init=10, max_iter=300, tol=0.0001, pre-
compute_distances=’deprecated’, verbose=0, random_state=None, copy_x=True,
n_jobs=’deprecated’, algorithm=’auto’)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None, sample_weight=None)
Compute k-means clustering.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training instances to clus-
ter. It must be noted that the data will be converted to C ordering, which will cause a
memory copy if the given data is not C-contiguous. If a sparse matrix is passed, a copy
will be made if it’s not in CSR format.

y [Ignored] Not used, present here for API consistency by convention.

sample_weight [array-like of shape (n_samples,), default=None] The weights for each ob-
servation in X. If None, all observations are assigned equal weight.

New in version 0.20.

Returns

self Fitted estimator.

fit_predict(X, y=None, sample_weight=None)
Compute cluster centers and predict cluster index for each sample.

Convenience method; equivalent to calling fit(X) followed by predict(X).

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] New data to transform.

y [Ignored] Not used, present here for API consistency by convention.

sample_weight [array-like of shape (n_samples,), default=None] The weights for each ob-
servation in X. If None, all observations are assigned equal weight.

Returns

labels [ndarray of shape (n_samples,)] Index of the cluster each sample belongs to.

fit_transform(X, y=None, sample_weight=None)
Compute clustering and transform X to cluster-distance space.

Equivalent to fit(X).transform(X), but more efficiently implemented.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] New data to transform.

y [Ignored] Not used, present here for API consistency by convention.

1648 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

sample_weight [array-like of shape (n_samples,), default=None] The weights for each ob-
servation in X. If None, all observations are assigned equal weight.

Returns

X_new [array of shape (n_samples, n_clusters)] X transformed in the new space.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X, sample_weight=None)
Predict the closest cluster each sample in X belongs to.

In the vector quantization literature, cluster_centers_ is called the code book and each value re-
turned by predict is the index of the closest code in the code book.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] New data to predict.

sample_weight [array-like of shape (n_samples,), default=None] The weights for each ob-
servation in X. If None, all observations are assigned equal weight.

Returns

labels [ndarray of shape (n_samples,)] Index of the cluster each sample belongs to.

score(X, y=None, sample_weight=None)
Opposite of the value of X on the K-means objective.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] New data.

y [Ignored] Not used, present here for API consistency by convention.

sample_weight [array-like of shape (n_samples,), default=None] The weights for each ob-
servation in X. If None, all observations are assigned equal weight.

Returns

score [float] Opposite of the value of X on the K-means objective.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

7.3. sklearn.cluster: Clustering 1649

scikit-learn user guide, Release 0.23.2

transform(X)
Transform X to a cluster-distance space.

In the new space, each dimension is the distance to the cluster centers. Note that even if X is sparse, the
array returned by transform will typically be dense.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] New data to transform.

Returns

X_new [ndarray of shape (n_samples, n_clusters)] X transformed in the new space.

Examples using sklearn.cluster.KMeans

• Release Highlights for scikit-learn 0.23

• Demonstration of k-means assumptions

• Vector Quantization Example

• K-means Clustering

• Color Quantization using K-Means

• Empirical evaluation of the impact of k-means initialization

• Comparison of the K-Means and MiniBatchKMeans clustering algorithms

• A demo of K-Means clustering on the handwritten digits data

• Selecting the number of clusters with silhouette analysis on KMeans clustering

• Clustering text documents using k-means

sklearn.cluster.MiniBatchKMeans

class sklearn.cluster.MiniBatchKMeans(n_clusters=8, *, init=’k-means++’,
max_iter=100, batch_size=100, verbose=0, com-
pute_labels=True, random_state=None, tol=0.0,
max_no_improvement=10, init_size=None, n_init=3,
reassignment_ratio=0.01)

Mini-Batch K-Means clustering.

Read more in the User Guide.

Parameters

n_clusters [int, default=8] The number of clusters to form as well as the number of centroids
to generate.

init [{‘k-means++’, ‘random’} or ndarray of shape (n_clusters, n_features), default=’k-
means++’] Method for initialization

‘k-means++’ : selects initial cluster centers for k-mean clustering in a smart way to speed
up convergence. See section Notes in k_init for more details.

‘random’: choose k observations (rows) at random from data for the initial centroids.

If an ndarray is passed, it should be of shape (n_clusters, n_features) and gives the initial
centers.

1650 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

max_iter [int, default=100] Maximum number of iterations over the complete dataset before
stopping independently of any early stopping criterion heuristics.

batch_size [int, default=100] Size of the mini batches.

verbose [int, default=0] Verbosity mode.

compute_labels [bool, default=True] Compute label assignment and inertia for the complete
dataset once the minibatch optimization has converged in fit.

random_state [int, RandomState instance, default=None] Determines random number genera-
tion for centroid initialization and random reassignment. Use an int to make the randomness
deterministic. See Glossary.

tol [float, default=0.0] Control early stopping based on the relative center changes as measured
by a smoothed, variance-normalized of the mean center squared position changes. This
early stopping heuristics is closer to the one used for the batch variant of the algorithms but
induces a slight computational and memory overhead over the inertia heuristic.

To disable convergence detection based on normalized center change, set tol to 0.0 (default).

max_no_improvement [int, default=10] Control early stopping based on the consecutive num-
ber of mini batches that does not yield an improvement on the smoothed inertia.

To disable convergence detection based on inertia, set max_no_improvement to None.

init_size [int, default=None] Number of samples to randomly sample for speeding up the initial-
ization (sometimes at the expense of accuracy): the only algorithm is initialized by running
a batch KMeans on a random subset of the data. This needs to be larger than n_clusters.

If None, init_size= 3 * batch_size.

n_init [int, default=3] Number of random initializations that are tried. In contrast to KMeans,
the algorithm is only run once, using the best of the n_init initializations as measured by
inertia.

reassignment_ratio [float, default=0.01] Control the fraction of the maximum number of
counts for a center to be reassigned. A higher value means that low count centers are more
easily reassigned, which means that the model will take longer to converge, but should con-
verge in a better clustering.

Attributes

cluster_centers_ [ndarray of shape (n_clusters, n_features)] Coordinates of cluster centers

labels_ [int] Labels of each point (if compute_labels is set to True).

inertia_ [float] The value of the inertia criterion associated with the chosen partition (if com-
pute_labels is set to True). The inertia is defined as the sum of square distances of samples
to their nearest neighbor.

See also:

KMeans The classic implementation of the clustering method based on the Lloyd’s algorithm. It consumes the
whole set of input data at each iteration.

Notes

See https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf

7.3. sklearn.cluster: Clustering 1651

https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf

scikit-learn user guide, Release 0.23.2

Examples

>>> from sklearn.cluster import MiniBatchKMeans
>>> import numpy as np
>>> X = np.array([[1, 2], [1, 4], [1, 0],
... [4, 2], [4, 0], [4, 4],
... [4, 5], [0, 1], [2, 2],
... [3, 2], [5, 5], [1, -1]])
>>> # manually fit on batches
>>> kmeans = MiniBatchKMeans(n_clusters=2,
... random_state=0,
... batch_size=6)
>>> kmeans = kmeans.partial_fit(X[0:6,:])
>>> kmeans = kmeans.partial_fit(X[6:12,:])
>>> kmeans.cluster_centers_
array([[2. , 1.],

[3.5, 4.5]])
>>> kmeans.predict([[0, 0], [4, 4]])
array([0, 1], dtype=int32)
>>> # fit on the whole data
>>> kmeans = MiniBatchKMeans(n_clusters=2,
... random_state=0,
... batch_size=6,
... max_iter=10).fit(X)
>>> kmeans.cluster_centers_
array([[3.95918367, 2.40816327],

[1.12195122, 1.3902439]])
>>> kmeans.predict([[0, 0], [4, 4]])
array([1, 0], dtype=int32)

Methods

fit(X[, y, sample_weight]) Compute the centroids on X by chunking it into
mini-batches.

fit_predict(X[, y, sample_weight]) Compute cluster centers and predict cluster index for
each sample.

fit_transform(X[, y, sample_weight]) Compute clustering and transform X to cluster-
distance space.

get_params([deep]) Get parameters for this estimator.
partial_fit(X[, y, sample_weight]) Update k means estimate on a single mini-batch X.
predict(X[, sample_weight]) Predict the closest cluster each sample in X belongs

to.
score(X[, y, sample_weight]) Opposite of the value of X on the K-means objective.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform X to a cluster-distance space.

__init__(n_clusters=8, *, init=’k-means++’, max_iter=100, batch_size=100, verbose=0,
compute_labels=True, random_state=None, tol=0.0, max_no_improvement=10,
init_size=None, n_init=3, reassignment_ratio=0.01)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None, sample_weight=None)
Compute the centroids on X by chunking it into mini-batches.

Parameters

1652 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

X [array-like or sparse matrix, shape=(n_samples, n_features)] Training instances to cluster.
It must be noted that the data will be converted to C ordering, which will cause a memory
copy if the given data is not C-contiguous.

y [Ignored] Not used, present here for API consistency by convention.

sample_weight [array-like, shape (n_samples,), optional] The weights for each observation
in X. If None, all observations are assigned equal weight (default: None).

New in version 0.20.

Returns

self

fit_predict(X, y=None, sample_weight=None)
Compute cluster centers and predict cluster index for each sample.

Convenience method; equivalent to calling fit(X) followed by predict(X).

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] New data to transform.

y [Ignored] Not used, present here for API consistency by convention.

sample_weight [array-like of shape (n_samples,), default=None] The weights for each ob-
servation in X. If None, all observations are assigned equal weight.

Returns

labels [ndarray of shape (n_samples,)] Index of the cluster each sample belongs to.

fit_transform(X, y=None, sample_weight=None)
Compute clustering and transform X to cluster-distance space.

Equivalent to fit(X).transform(X), but more efficiently implemented.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] New data to transform.

y [Ignored] Not used, present here for API consistency by convention.

sample_weight [array-like of shape (n_samples,), default=None] The weights for each ob-
servation in X. If None, all observations are assigned equal weight.

Returns

X_new [array of shape (n_samples, n_clusters)] X transformed in the new space.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

partial_fit(X, y=None, sample_weight=None)
Update k means estimate on a single mini-batch X.

Parameters

7.3. sklearn.cluster: Clustering 1653

scikit-learn user guide, Release 0.23.2

X [array-like of shape (n_samples, n_features)] Coordinates of the data points to cluster. It
must be noted that X will be copied if it is not C-contiguous.

y [Ignored] Not used, present here for API consistency by convention.

sample_weight [array-like, shape (n_samples,), optional] The weights for each observation
in X. If None, all observations are assigned equal weight (default: None).

Returns

self

predict(X, sample_weight=None)
Predict the closest cluster each sample in X belongs to.

In the vector quantization literature, cluster_centers_ is called the code book and each value re-
turned by predict is the index of the closest code in the code book.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] New data to predict.

sample_weight [array-like, shape (n_samples,), optional] The weights for each observation
in X. If None, all observations are assigned equal weight (default: None).

Returns

labels [array, shape [n_samples,]] Index of the cluster each sample belongs to.

score(X, y=None, sample_weight=None)
Opposite of the value of X on the K-means objective.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] New data.

y [Ignored] Not used, present here for API consistency by convention.

sample_weight [array-like of shape (n_samples,), default=None] The weights for each ob-
servation in X. If None, all observations are assigned equal weight.

Returns

score [float] Opposite of the value of X on the K-means objective.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Transform X to a cluster-distance space.

In the new space, each dimension is the distance to the cluster centers. Note that even if X is sparse, the
array returned by transform will typically be dense.

Parameters

1654 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

X [{array-like, sparse matrix} of shape (n_samples, n_features)] New data to transform.

Returns

X_new [ndarray of shape (n_samples, n_clusters)] X transformed in the new space.

Examples using sklearn.cluster.MiniBatchKMeans

• Biclustering documents with the Spectral Co-clustering algorithm

• Online learning of a dictionary of parts of faces

• Compare BIRCH and MiniBatchKMeans

• Empirical evaluation of the impact of k-means initialization

• Comparison of the K-Means and MiniBatchKMeans clustering algorithms

• Comparing different clustering algorithms on toy datasets

• Faces dataset decompositions

• Clustering text documents using k-means

sklearn.cluster.MeanShift

class sklearn.cluster.MeanShift(*, bandwidth=None, seeds=None, bin_seeding=False,
min_bin_freq=1, cluster_all=True, n_jobs=None,
max_iter=300)

Mean shift clustering using a flat kernel.

Mean shift clustering aims to discover “blobs” in a smooth density of samples. It is a centroid-based algo-
rithm, which works by updating candidates for centroids to be the mean of the points within a given region.
These candidates are then filtered in a post-processing stage to eliminate near-duplicates to form the final set of
centroids.

Seeding is performed using a binning technique for scalability.

Read more in the User Guide.

Parameters

bandwidth [float, default=None] Bandwidth used in the RBF kernel.

If not given, the bandwidth is estimated using sklearn.cluster.estimate_bandwidth; see the
documentation for that function for hints on scalability (see also the Notes, below).

seeds [array-like of shape (n_samples, n_features), default=None] Seeds used to initialize ker-
nels. If not set, the seeds are calculated by clustering.get_bin_seeds with bandwidth as the
grid size and default values for other parameters.

bin_seeding [bool, default=False] If true, initial kernel locations are not locations of all points,
but rather the location of the discretized version of points, where points are binned onto a
grid whose coarseness corresponds to the bandwidth. Setting this option to True will speed
up the algorithm because fewer seeds will be initialized. The default value is False. Ignored
if seeds argument is not None.

min_bin_freq [int, default=1] To speed up the algorithm, accept only those bins with at least
min_bin_freq points as seeds.

7.3. sklearn.cluster: Clustering 1655

scikit-learn user guide, Release 0.23.2

cluster_all [bool, default=True] If true, then all points are clustered, even those orphans that
are not within any kernel. Orphans are assigned to the nearest kernel. If false, then orphans
are given cluster label -1.

n_jobs [int, default=None] The number of jobs to use for the computation. This works by
computing each of the n_init runs in parallel.

None means 1 unless in a joblib.parallel_backend context. -1 means using all
processors. See Glossary for more details.

max_iter [int, default=300] Maximum number of iterations, per seed point before the clustering
operation terminates (for that seed point), if has not converged yet.

New in version 0.22.

Attributes

cluster_centers_ [array, [n_clusters, n_features]] Coordinates of cluster centers.

labels_ [array of shape (n_samples,)] Labels of each point.

n_iter_ [int] Maximum number of iterations performed on each seed.

New in version 0.22.

Notes

Scalability:

Because this implementation uses a flat kernel and a Ball Tree to look up members of each kernel, the complexity
will tend towards O(T*n*log(n)) in lower dimensions, with n the number of samples and T the number of points.
In higher dimensions the complexity will tend towards O(T*n^2).

Scalability can be boosted by using fewer seeds, for example by using a higher value of min_bin_freq in the
get_bin_seeds function.

Note that the estimate_bandwidth function is much less scalable than the mean shift algorithm and will be the
bottleneck if it is used.

References

Dorin Comaniciu and Peter Meer, “Mean Shift: A robust approach toward feature space analysis”. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence. 2002. pp. 603-619.

Examples

>>> from sklearn.cluster import MeanShift
>>> import numpy as np
>>> X = np.array([[1, 1], [2, 1], [1, 0],
... [4, 7], [3, 5], [3, 6]])
>>> clustering = MeanShift(bandwidth=2).fit(X)
>>> clustering.labels_
array([1, 1, 1, 0, 0, 0])
>>> clustering.predict([[0, 0], [5, 5]])
array([1, 0])
>>> clustering
MeanShift(bandwidth=2)

1656 Chapter 7. API Reference

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

Methods

fit(X[, y]) Perform clustering.
fit_predict(X[, y]) Perform clustering on X and returns cluster labels.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict the closest cluster each sample in X belongs

to.
set_params(**params) Set the parameters of this estimator.

__init__(*, bandwidth=None, seeds=None, bin_seeding=False, min_bin_freq=1, cluster_all=True,
n_jobs=None, max_iter=300)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Perform clustering.

Parameters

X [array-like of shape (n_samples, n_features)] Samples to cluster.

y [Ignored]

fit_predict(X, y=None)
Perform clustering on X and returns cluster labels.

Parameters

X [array-like of shape (n_samples, n_features)] Input data.

y [Ignored] Not used, present for API consistency by convention.

Returns

labels [ndarray of shape (n_samples,)] Cluster labels.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict the closest cluster each sample in X belongs to.

Parameters

X [{array-like, sparse matrix}, shape=[n_samples, n_features]] New data to predict.

Returns

labels [array, shape [n_samples,]] Index of the cluster each sample belongs to.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

7.3. sklearn.cluster: Clustering 1657

scikit-learn user guide, Release 0.23.2

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.cluster.MeanShift

• A demo of the mean-shift clustering algorithm

• Comparing different clustering algorithms on toy datasets

sklearn.cluster.OPTICS

class sklearn.cluster.OPTICS(*, min_samples=5, max_eps=inf, metric=’minkowski’, p=2,
metric_params=None, cluster_method=’xi’, eps=None, xi=0.05,
predecessor_correction=True, min_cluster_size=None, algo-
rithm=’auto’, leaf_size=30, n_jobs=None)

Estimate clustering structure from vector array.

OPTICS (Ordering Points To Identify the Clustering Structure), closely related to DBSCAN, finds core sample
of high density and expands clusters from them [1]. Unlike DBSCAN, keeps cluster hierarchy for a variable
neighborhood radius. Better suited for usage on large datasets than the current sklearn implementation of DB-
SCAN.

Clusters are then extracted using a DBSCAN-like method (cluster_method = ‘dbscan’) or an automatic technique
proposed in [1] (cluster_method = ‘xi’).

This implementation deviates from the original OPTICS by first performing k-nearest-neighborhood searches
on all points to identify core sizes, then computing only the distances to unprocessed points when constructing
the cluster order. Note that we do not employ a heap to manage the expansion candidates, so the time complexity
will be O(n^2).

Read more in the User Guide.

Parameters

min_samples [int > 1 or float between 0 and 1 (default=5)] The number of samples in a neigh-
borhood for a point to be considered as a core point. Also, up and down steep regions can’t
have more then min_samples consecutive non-steep points. Expressed as an absolute
number or a fraction of the number of samples (rounded to be at least 2).

max_eps [float, optional (default=np.inf)] The maximum distance between two samples for one
to be considered as in the neighborhood of the other. Default value of np.inf will identify
clusters across all scales; reducing max_eps will result in shorter run times.

metric [str or callable, optional (default=’minkowski’)] Metric to use for distance computation.
Any metric from scikit-learn or scipy.spatial.distance can be used.

If metric is a callable function, it is called on each pair of instances (rows) and the resulting
value recorded. The callable should take two arrays as input and return one value indicating
the distance between them. This works for Scipy’s metrics, but is less efficient than passing
the metric name as a string. If metric is “precomputed”, X is assumed to be a distance matrix
and must be square.

Valid values for metric are:

• from scikit-learn: [‘cityblock’, ‘cosine’, ‘euclidean’, ‘l1’, ‘l2’, ‘manhattan’]

1658 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

• from scipy.spatial.distance: [‘braycurtis’, ‘canberra’, ‘chebyshev’, ‘correlation’, ‘dice’,
‘hamming’, ‘jaccard’, ‘kulsinski’, ‘mahalanobis’, ‘minkowski’, ‘rogerstanimoto’, ‘rus-
sellrao’, ‘seuclidean’, ‘sokalmichener’, ‘sokalsneath’, ‘sqeuclidean’, ‘yule’]

See the documentation for scipy.spatial.distance for details on these metrics.

p [int, optional (default=2)] Parameter for the Minkowski metric from sklearn.metrics.
pairwise_distances. When p = 1, this is equivalent to using manhattan_distance (l1),
and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.

metric_params [dict, optional (default=None)] Additional keyword arguments for the metric
function.

cluster_method [str, optional (default=’xi’)] The extraction method used to extract clusters
using the calculated reachability and ordering. Possible values are “xi” and “dbscan”.

eps [float, optional (default=None)] The maximum distance between two samples for one to be
considered as in the neighborhood of the other. By default it assumes the same value as
max_eps. Used only when cluster_method='dbscan'.

xi [float, between 0 and 1, optional (default=0.05)] Determines the minimum steepness on the
reachability plot that constitutes a cluster boundary. For example, an upwards point in the
reachability plot is defined by the ratio from one point to its successor being at most 1-xi.
Used only when cluster_method='xi'.

predecessor_correction [bool, optional (default=True)] Correct clusters according to the pre-
decessors calculated by OPTICS [2]. This parameter has minimal effect on most datasets.
Used only when cluster_method='xi'.

min_cluster_size [int > 1 or float between 0 and 1 (default=None)] Minimum number of sam-
ples in an OPTICS cluster, expressed as an absolute number or a fraction of the number of
samples (rounded to be at least 2). If None, the value of min_samples is used instead.
Used only when cluster_method='xi'.

algorithm [{‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, optional] Algorithm used to compute the
nearest neighbors:

• ‘ball_tree’ will use BallTree

• ‘kd_tree’ will use KDTree

• ‘brute’ will use a brute-force search.

• ‘auto’ will attempt to decide the most appropriate algorithm based on the values passed
to fit method. (default)

Note: fitting on sparse input will override the setting of this parameter, using brute force.

leaf_size [int, optional (default=30)] Leaf size passed to BallTree or KDTree. This can
affect the speed of the construction and query, as well as the memory required to store the
tree. The optimal value depends on the nature of the problem.

n_jobs [int or None, optional (default=None)] The number of parallel jobs to run for neighbors
search. None means 1 unless in a joblib.parallel_backend context. -1 means
using all processors. See Glossary for more details.

Attributes

labels_ [array, shape (n_samples,)] Cluster labels for each point in the dataset given
to fit(). Noisy samples and points which are not included in a leaf cluster of
cluster_hierarchy_ are labeled as -1.

7.3. sklearn.cluster: Clustering 1659

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

reachability_ [array, shape (n_samples,)] Reachability distances per sample, indexed by object
order. Use clust.reachability_[clust.ordering_] to access in cluster order.

ordering_ [array, shape (n_samples,)] The cluster ordered list of sample indices.

core_distances_ [array, shape (n_samples,)] Distance at which each sample becomes a core
point, indexed by object order. Points which will never be core have a distance of inf. Use
clust.core_distances_[clust.ordering_] to access in cluster order.

predecessor_ [array, shape (n_samples,)] Point that a sample was reached from, indexed by
object order. Seed points have a predecessor of -1.

cluster_hierarchy_ [array, shape (n_clusters, 2)] The list of clusters in the form of [start,
end] in each row, with all indices inclusive. The clusters are ordered according
to (end, -start) (ascending) so that larger clusters encompassing smaller clusters
come after those smaller ones. Since labels_ does not reflect the hierarchy, usually
len(cluster_hierarchy_) > np.unique(optics.labels_). Please also
note that these indices are of the ordering_, i.e. X[ordering_][start:end +
1] form a cluster. Only available when cluster_method='xi'.

See also:

DBSCAN A similar clustering for a specified neighborhood radius (eps). Our implementation is optimized for
runtime.

References

[1], [2]

Examples

>>> from sklearn.cluster import OPTICS
>>> import numpy as np
>>> X = np.array([[1, 2], [2, 5], [3, 6],
... [8, 7], [8, 8], [7, 3]])
>>> clustering = OPTICS(min_samples=2).fit(X)
>>> clustering.labels_
array([0, 0, 0, 1, 1, 1])

Methods

fit(X[, y]) Perform OPTICS clustering.
fit_predict(X[, y]) Perform clustering on X and returns cluster labels.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.

__init__(*, min_samples=5, max_eps=inf, metric=’minkowski’, p=2, metric_params=None,
cluster_method=’xi’, eps=None, xi=0.05, predecessor_correction=True,
min_cluster_size=None, algorithm=’auto’, leaf_size=30, n_jobs=None)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Perform OPTICS clustering.

1660 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Extracts an ordered list of points and reachability distances, and performs initial clustering using max_eps
distance specified at OPTICS object instantiation.

Parameters

X [array, shape (n_samples, n_features), or (n_samples, n_samples) if met-
ric=’precomputed’] A feature array, or array of distances between samples if met-
ric=’precomputed’.

y [ignored] Ignored.

Returns

self [instance of OPTICS] The instance.

fit_predict(X, y=None)
Perform clustering on X and returns cluster labels.

Parameters

X [array-like of shape (n_samples, n_features)] Input data.

y [Ignored] Not used, present for API consistency by convention.

Returns

labels [ndarray of shape (n_samples,)] Cluster labels.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.cluster.OPTICS

• Demo of OPTICS clustering algorithm

• Comparing different clustering algorithms on toy datasets

7.3. sklearn.cluster: Clustering 1661

scikit-learn user guide, Release 0.23.2

sklearn.cluster.SpectralClustering

class sklearn.cluster.SpectralClustering(n_clusters=8, *, eigen_solver=None,
n_components=None, random_state=None,
n_init=10, gamma=1.0, affinity=’rbf’,
n_neighbors=10, eigen_tol=0.0, as-
sign_labels=’kmeans’, degree=3, coef0=1,
kernel_params=None, n_jobs=None)

Apply clustering to a projection of the normalized Laplacian.

In practice Spectral Clustering is very useful when the structure of the individual clusters is highly non-convex
or more generally when a measure of the center and spread of the cluster is not a suitable description of the
complete cluster. For instance when clusters are nested circles on the 2D plane.

If affinity is the adjacency matrix of a graph, this method can be used to find normalized graph cuts.

When calling fit, an affinity matrix is constructed using either kernel function such the Gaussian (aka RBF)
kernel of the euclidean distanced d(X, X):

np.exp(-gamma * d(X,X) ** 2)

or a k-nearest neighbors connectivity matrix.

Alternatively, using precomputed, a user-provided affinity matrix can be used.

Read more in the User Guide.

Parameters

n_clusters [integer, optional] The dimension of the projection subspace.

eigen_solver [{None, ‘arpack’, ‘lobpcg’, or ‘amg’}] The eigenvalue decomposition strategy to
use. AMG requires pyamg to be installed. It can be faster on very large, sparse problems,
but may also lead to instabilities.

n_components [integer, optional, default=n_clusters] Number of eigen vectors to use for the
spectral embedding

random_state [int, RandomState instance, default=None] A pseudo random number gen-
erator used for the initialization of the lobpcg eigen vectors decomposition when
eigen_solver='amg' and by the K-Means initialization. Use an int to make the ran-
domness deterministic. See Glossary.

n_init [int, optional, default: 10] Number of time the k-means algorithm will be run with dif-
ferent centroid seeds. The final results will be the best output of n_init consecutive runs in
terms of inertia.

gamma [float, default=1.0] Kernel coefficient for rbf, poly, sigmoid, laplacian and chi2 kernels.
Ignored for affinity='nearest_neighbors'.

affinity [string or callable, default ‘rbf’]

How to construct the affinity matrix.

• ‘nearest_neighbors’ : construct the affinity matrix by computing a graph of nearest
neighbors.

• ‘rbf’ : construct the affinity matrix using a radial basis function (RBF) kernel.

• ‘precomputed’ : interpret X as a precomputed affinity matrix.

1662 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

• ‘precomputed_nearest_neighbors’ : interpret X as a sparse graph of precomputed near-
est neighbors, and constructs the affinity matrix by selecting the n_neighbors near-
est neighbors.

• one of the kernels supported by pairwise_kernels.

Only kernels that produce similarity scores (non-negative values that increase with similar-
ity) should be used. This property is not checked by the clustering algorithm.

n_neighbors [integer] Number of neighbors to use when constructing the affinity matrix using
the nearest neighbors method. Ignored for affinity='rbf'.

eigen_tol [float, optional, default: 0.0] Stopping criterion for eigendecomposition of the Lapla-
cian matrix when eigen_solver='arpack'.

assign_labels [{‘kmeans’, ‘discretize’}, default: ‘kmeans’] The strategy to use to assign labels
in the embedding space. There are two ways to assign labels after the laplacian embedding.
k-means can be applied and is a popular choice. But it can also be sensitive to initialization.
Discretization is another approach which is less sensitive to random initialization.

degree [float, default=3] Degree of the polynomial kernel. Ignored by other kernels.

coef0 [float, default=1] Zero coefficient for polynomial and sigmoid kernels. Ignored by other
kernels.

kernel_params [dictionary of string to any, optional] Parameters (keyword arguments) and
values for kernel passed as callable object. Ignored by other kernels.

n_jobs [int or None, optional (default=None)] The number of parallel jobs to run. None means
1 unless in a joblib.parallel_backend context. -1means using all processors. See
Glossary for more details.

Attributes

affinity_matrix_ [array-like, shape (n_samples, n_samples)] Affinity matrix used for cluster-
ing. Available only if after calling fit.

labels_ [array, shape (n_samples,)] Labels of each point

Notes

If you have an affinity matrix, such as a distance matrix, for which 0 means identical elements, and high values
means very dissimilar elements, it can be transformed in a similarity matrix that is well suited for the algorithm
by applying the Gaussian (RBF, heat) kernel:

np.exp(- dist_matrix ** 2 / (2. * delta ** 2))

Where delta is a free parameter representing the width of the Gaussian kernel.

Another alternative is to take a symmetric version of the k nearest neighbors connectivity matrix of the points.

If the pyamg package is installed, it is used: this greatly speeds up computation.

References

• Normalized cuts and image segmentation, 2000 Jianbo Shi, Jitendra Malik http://citeseer.ist.psu.edu/
viewdoc/summary?doi=10.1.1.160.2324

• A Tutorial on Spectral Clustering, 2007 Ulrike von Luxburg http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.165.9323

7.3. sklearn.cluster: Clustering 1663

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.2324
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.2324
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.9323
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.9323

scikit-learn user guide, Release 0.23.2

• Multiclass spectral clustering, 2003 Stella X. Yu, Jianbo Shi https://www1.icsi.berkeley.edu/~stellayu/
publication/doc/2003kwayICCV.pdf

Examples

>>> from sklearn.cluster import SpectralClustering
>>> import numpy as np
>>> X = np.array([[1, 1], [2, 1], [1, 0],
... [4, 7], [3, 5], [3, 6]])
>>> clustering = SpectralClustering(n_clusters=2,
... assign_labels="discretize",
... random_state=0).fit(X)
>>> clustering.labels_
array([1, 1, 1, 0, 0, 0])
>>> clustering
SpectralClustering(assign_labels='discretize', n_clusters=2,

random_state=0)

Methods

fit(X[, y]) Perform spectral clustering from features, or affinity
matrix.

fit_predict(X[, y]) Perform spectral clustering from features, or affinity
matrix, and return cluster labels.

get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.

__init__(n_clusters=8, *, eigen_solver=None, n_components=None, random_state=None,
n_init=10, gamma=1.0, affinity=’rbf’, n_neighbors=10, eigen_tol=0.0, as-
sign_labels=’kmeans’, degree=3, coef0=1, kernel_params=None, n_jobs=None)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Perform spectral clustering from features, or affinity matrix.

Parameters

X [array-like or sparse matrix, shape (n_samples, n_features), or array-like, shape
(n_samples, n_samples)] Training instances to cluster, or similarities / affinities between
instances if affinity='precomputed'. If a sparse matrix is provided in a format
other than csr_matrix, csc_matrix, or coo_matrix, it will be converted into a
sparse csr_matrix.

y [Ignored] Not used, present here for API consistency by convention.

Returns

self

fit_predict(X, y=None)
Perform spectral clustering from features, or affinity matrix, and return cluster labels.

Parameters

X [array-like or sparse matrix, shape (n_samples, n_features), or array-like, shape
(n_samples, n_samples)] Training instances to cluster, or similarities / affinities between

1664 Chapter 7. API Reference

https://www1.icsi.berkeley.edu/~stellayu/publication/doc/2003kwayICCV.pdf
https://www1.icsi.berkeley.edu/~stellayu/publication/doc/2003kwayICCV.pdf

scikit-learn user guide, Release 0.23.2

instances if affinity='precomputed'. If a sparse matrix is provided in a format
other than csr_matrix, csc_matrix, or coo_matrix, it will be converted into a
sparse csr_matrix.

y [Ignored] Not used, present here for API consistency by convention.

Returns

labels [ndarray, shape (n_samples,)] Cluster labels.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.cluster.SpectralClustering

• Comparing different clustering algorithms on toy datasets

sklearn.cluster.SpectralBiclustering

class sklearn.cluster.SpectralBiclustering(n_clusters=3, *, method=’bistochastic’,
n_components=6, n_best=3,
svd_method=’randomized’,
n_svd_vecs=None, mini_batch=False, init=’k-
means++’, n_init=10, n_jobs=’deprecated’,
random_state=None)

Spectral biclustering (Kluger, 2003).

Partitions rows and columns under the assumption that the data has an underlying checkerboard structure. For
instance, if there are two row partitions and three column partitions, each row will belong to three biclusters,
and each column will belong to two biclusters. The outer product of the corresponding row and column label
vectors gives this checkerboard structure.

Read more in the User Guide.

Parameters

7.3. sklearn.cluster: Clustering 1665

scikit-learn user guide, Release 0.23.2

n_clusters [int or tuple (n_row_clusters, n_column_clusters), default=3] The number of row
and column clusters in the checkerboard structure.

method [{‘bistochastic’, ‘scale’, ‘log’}, default=’bistochastic’] Method of normalizing and
converting singular vectors into biclusters. May be one of ‘scale’, ‘bistochastic’, or ‘log’.
The authors recommend using ‘log’. If the data is sparse, however, log normalization will
not work, which is why the default is ‘bistochastic’.

Warning: if method='log', the data must be sparse.

n_components [int, default=6] Number of singular vectors to check.

n_best [int, default=3] Number of best singular vectors to which to project the data for cluster-
ing.

svd_method [{‘randomized’, ‘arpack’}, default=’randomized’] Selects the algorithm for
finding singular vectors. May be ‘randomized’ or ‘arpack’. If ‘randomized’, uses
randomized_svd, which may be faster for large matrices. If ‘arpack’, uses scipy.
sparse.linalg.svds, which is more accurate, but possibly slower in some cases.

n_svd_vecs [int, default=None] Number of vectors to use in calculating the SVD. Corresponds
to ncv when svd_method=arpack and n_oversamples when svd_method is
‘randomized‘.

mini_batch [bool, default=False] Whether to use mini-batch k-means, which is faster but may
get different results.

init [{‘k-means++’, ‘random’} or ndarray of (n_clusters, n_features), default=’k-means++’]
Method for initialization of k-means algorithm; defaults to ‘k-means++’.

n_init [int, default=10] Number of random initializations that are tried with the k-means algo-
rithm.

If mini-batch k-means is used, the best initialization is chosen and the algorithm runs once.
Otherwise, the algorithm is run for each initialization and the best solution chosen.

n_jobs [int, default=None] The number of jobs to use for the computation. This works by
breaking down the pairwise matrix into n_jobs even slices and computing them in parallel.

None means 1 unless in a joblib.parallel_backend context. -1 means using all
processors. See Glossary for more details.

Deprecated since version 0.23: n_jobswas deprecated in version 0.23 and will be removed
in 0.25.

random_state [int, RandomState instance, default=None] Used for randomizing the singular
value decomposition and the k-means initialization. Use an int to make the randomness
deterministic. See Glossary.

Attributes

rows_ [array-like of shape (n_row_clusters, n_rows)] Results of the clustering. rows[i, r]
is True if cluster i contains row r. Available only after calling fit.

columns_ [array-like of shape (n_column_clusters, n_columns)] Results of the clustering, like
rows.

row_labels_ [array-like of shape (n_rows,)] Row partition labels.

column_labels_ [array-like of shape (n_cols,)] Column partition labels.

1666 Chapter 7. API Reference

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

References

• Kluger, Yuval, et. al., 2003. Spectral biclustering of microarray data: coclustering genes and conditions.

Examples

>>> from sklearn.cluster import SpectralBiclustering
>>> import numpy as np
>>> X = np.array([[1, 1], [2, 1], [1, 0],
... [4, 7], [3, 5], [3, 6]])
>>> clustering = SpectralBiclustering(n_clusters=2, random_state=0).fit(X)
>>> clustering.row_labels_
array([1, 1, 1, 0, 0, 0], dtype=int32)
>>> clustering.column_labels_
array([0, 1], dtype=int32)
>>> clustering
SpectralBiclustering(n_clusters=2, random_state=0)

Methods

fit(X[, y]) Creates a biclustering for X.
get_indices(i) Row and column indices of the i’th bicluster.
get_params([deep]) Get parameters for this estimator.
get_shape(i) Shape of the i’th bicluster.
get_submatrix(i, data) Return the submatrix corresponding to bicluster i.
set_params(**params) Set the parameters of this estimator.

__init__(n_clusters=3, *, method=’bistochastic’, n_components=6, n_best=3,
svd_method=’randomized’, n_svd_vecs=None, mini_batch=False, init=’k-means++’,
n_init=10, n_jobs=’deprecated’, random_state=None)

Initialize self. See help(type(self)) for accurate signature.

property biclusters_
Convenient way to get row and column indicators together.

Returns the rows_ and columns_ members.

fit(X, y=None)
Creates a biclustering for X.

Parameters

X [array-like, shape (n_samples, n_features)]

y [Ignored]

get_indices(i)
Row and column indices of the i’th bicluster.

Only works if rows_ and columns_ attributes exist.

Parameters

i [int] The index of the cluster.

Returns

7.3. sklearn.cluster: Clustering 1667

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.135.1608

scikit-learn user guide, Release 0.23.2

row_ind [ndarray, dtype=np.intp] Indices of rows in the dataset that belong to the bicluster.

col_ind [ndarray, dtype=np.intp] Indices of columns in the dataset that belong to the biclus-
ter.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

get_shape(i)
Shape of the i’th bicluster.

Parameters

i [int] The index of the cluster.

Returns

shape [tuple (int, int)] Number of rows and columns (resp.) in the bicluster.

get_submatrix(i, data)
Return the submatrix corresponding to bicluster i.

Parameters

i [int] The index of the cluster.

data [array-like] The data.

Returns

submatrix [ndarray] The submatrix corresponding to bicluster i.

Notes

Works with sparse matrices. Only works if rows_ and columns_ attributes exist.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.cluster.SpectralBiclustering

• A demo of the Spectral Biclustering algorithm

1668 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

sklearn.cluster.SpectralCoclustering

class sklearn.cluster.SpectralCoclustering(n_clusters=3, *, svd_method=’randomized’,
n_svd_vecs=None, mini_batch=False, init=’k-
means++’, n_init=10, n_jobs=’deprecated’,
random_state=None)

Spectral Co-Clustering algorithm (Dhillon, 2001).

Clusters rows and columns of an array X to solve the relaxed normalized cut of the bipartite graph created from
X as follows: the edge between row vertex i and column vertex j has weight X[i, j].

The resulting bicluster structure is block-diagonal, since each row and each column belongs to exactly one
bicluster.

Supports sparse matrices, as long as they are nonnegative.

Read more in the User Guide.

Parameters

n_clusters [int, default=3] The number of biclusters to find.

svd_method [{‘randomized’, ‘arpack’}, default=’randomized’] Selects the algorithm for find-
ing singular vectors. May be ‘randomized’ or ‘arpack’. If ‘randomized’, use sklearn.
utils.extmath.randomized_svd, which may be faster for large matrices. If
‘arpack’, use scipy.sparse.linalg.svds, which is more accurate, but possibly
slower in some cases.

n_svd_vecs [int, default=None] Number of vectors to use in calculating the SVD. Corresponds
to ncv when svd_method=arpack and n_oversamples when svd_method is
‘randomized‘.

mini_batch [bool, default=False] Whether to use mini-batch k-means, which is faster but may
get different results.

init [{‘k-means++’, ‘random’, or ndarray of shape (n_clusters, n_features), default=’k-
means++’] Method for initialization of k-means algorithm; defaults to ‘k-means++’.

n_init [int, default=10] Number of random initializations that are tried with the k-means algo-
rithm.

If mini-batch k-means is used, the best initialization is chosen and the algorithm runs once.
Otherwise, the algorithm is run for each initialization and the best solution chosen.

n_jobs [int, default=None] The number of jobs to use for the computation. This works by
breaking down the pairwise matrix into n_jobs even slices and computing them in parallel.

None means 1 unless in a joblib.parallel_backend context. -1 means using all
processors. See Glossary for more details.

Deprecated since version 0.23: n_jobswas deprecated in version 0.23 and will be removed
in 0.25.

random_state [int, RandomState instance, default=None] Used for randomizing the singular
value decomposition and the k-means initialization. Use an int to make the randomness
deterministic. See Glossary.

Attributes

rows_ [array-like of shape (n_row_clusters, n_rows)] Results of the clustering. rows[i, r]
is True if cluster i contains row r. Available only after calling fit.

columns_ [array-like of shape (n_column_clusters, n_columns)] Results of the clustering, like
rows.

7.3. sklearn.cluster: Clustering 1669

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.svds.html#scipy.sparse.linalg.svds
https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

row_labels_ [array-like of shape (n_rows,)] The bicluster label of each row.

column_labels_ [array-like of shape (n_cols,)] The bicluster label of each column.

References

• Dhillon, Inderjit S, 2001. Co-clustering documents and words using bipartite spectral graph partitioning.

Examples

>>> from sklearn.cluster import SpectralCoclustering
>>> import numpy as np
>>> X = np.array([[1, 1], [2, 1], [1, 0],
... [4, 7], [3, 5], [3, 6]])
>>> clustering = SpectralCoclustering(n_clusters=2, random_state=0).fit(X)
>>> clustering.row_labels_ #doctest: +SKIP
array([0, 1, 1, 0, 0, 0], dtype=int32)
>>> clustering.column_labels_ #doctest: +SKIP
array([0, 0], dtype=int32)
>>> clustering
SpectralCoclustering(n_clusters=2, random_state=0)

Methods

fit(X[, y]) Creates a biclustering for X.
get_indices(i) Row and column indices of the i’th bicluster.
get_params([deep]) Get parameters for this estimator.
get_shape(i) Shape of the i’th bicluster.
get_submatrix(i, data) Return the submatrix corresponding to bicluster i.
set_params(**params) Set the parameters of this estimator.

__init__(n_clusters=3, *, svd_method=’randomized’, n_svd_vecs=None, mini_batch=False, init=’k-
means++’, n_init=10, n_jobs=’deprecated’, random_state=None)

Initialize self. See help(type(self)) for accurate signature.

property biclusters_
Convenient way to get row and column indicators together.

Returns the rows_ and columns_ members.

fit(X, y=None)
Creates a biclustering for X.

Parameters

X [array-like, shape (n_samples, n_features)]

y [Ignored]

get_indices(i)
Row and column indices of the i’th bicluster.

Only works if rows_ and columns_ attributes exist.

Parameters

1670 Chapter 7. API Reference

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.140.3011

scikit-learn user guide, Release 0.23.2

i [int] The index of the cluster.

Returns

row_ind [ndarray, dtype=np.intp] Indices of rows in the dataset that belong to the bicluster.

col_ind [ndarray, dtype=np.intp] Indices of columns in the dataset that belong to the biclus-
ter.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

get_shape(i)
Shape of the i’th bicluster.

Parameters

i [int] The index of the cluster.

Returns

shape [tuple (int, int)] Number of rows and columns (resp.) in the bicluster.

get_submatrix(i, data)
Return the submatrix corresponding to bicluster i.

Parameters

i [int] The index of the cluster.

data [array-like] The data.

Returns

submatrix [ndarray] The submatrix corresponding to bicluster i.

Notes

Works with sparse matrices. Only works if rows_ and columns_ attributes exist.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

7.3. sklearn.cluster: Clustering 1671

scikit-learn user guide, Release 0.23.2

Examples using sklearn.cluster.SpectralCoclustering

• A demo of the Spectral Co-Clustering algorithm

• Biclustering documents with the Spectral Co-clustering algorithm

7.3.2 Functions

cluster.affinity_propagation(S, *[, . . .]) Perform Affinity Propagation Clustering of data
cluster.cluster_optics_dbscan(*, . . .) Performs DBSCAN extraction for an arbitrary epsilon.
cluster.cluster_optics_xi(*, reachability,
. . .)

Automatically extract clusters according to the Xi-steep
method.

cluster.compute_optics_graph(X, *, . . .) Computes the OPTICS reachability graph.
cluster.dbscan(X[, eps, min_samples, . . .]) Perform DBSCAN clustering from vector array or dis-

tance matrix.
cluster.estimate_bandwidth(X, *[, quantile,
. . .])

Estimate the bandwidth to use with the mean-shift algo-
rithm.

cluster.k_means(X, n_clusters, *[, . . .]) K-means clustering algorithm.
cluster.mean_shift(X, *[, bandwidth, seeds,
. . .])

Perform mean shift clustering of data using a flat kernel.

cluster.spectral_clustering(affinity, *[,
. . .])

Apply clustering to a projection of the normalized
Laplacian.

cluster.ward_tree(X, *[, connectivity, . . .]) Ward clustering based on a Feature matrix.

sklearn.cluster.affinity_propagation

sklearn.cluster.affinity_propagation(S, *, preference=None, convergence_iter=15,
max_iter=200, damping=0.5, copy=True,
verbose=False, return_n_iter=False, ran-
dom_state=’warn’)

Perform Affinity Propagation Clustering of data

Read more in the User Guide.

Parameters

S [array-like, shape (n_samples, n_samples)] Matrix of similarities between points

preference [array-like, shape (n_samples,) or float, optional] Preferences for each point - points
with larger values of preferences are more likely to be chosen as exemplars. The number of
exemplars, i.e. of clusters, is influenced by the input preferences value. If the preferences
are not passed as arguments, they will be set to the median of the input similarities (resulting
in a moderate number of clusters). For a smaller amount of clusters, this can be set to the
minimum value of the similarities.

convergence_iter [int, optional, default: 15] Number of iterations with no change in the number
of estimated clusters that stops the convergence.

max_iter [int, optional, default: 200] Maximum number of iterations

damping [float, optional, default: 0.5] Damping factor between 0.5 and 1.

copy [boolean, optional, default: True] If copy is False, the affinity matrix is modified inplace
by the algorithm, for memory efficiency

verbose [boolean, optional, default: False] The verbosity level

1672 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

return_n_iter [bool, default False] Whether or not to return the number of iterations.

random_state [int or np.random.RandomStateInstance, default: 0] Pseudo-random number
generator to control the starting state. Use an int for reproducible results across function
calls. See the Glossary.

New in version 0.23: this parameter was previously hardcoded as 0.

Returns

cluster_centers_indices [array, shape (n_clusters,)] index of clusters centers

labels [array, shape (n_samples,)] cluster labels for each point

n_iter [int] number of iterations run. Returned only if return_n_iter is set to True.

Notes

For an example, see examples/cluster/plot_affinity_propagation.py.

When the algorithm does not converge, it returns an empty array as cluster_center_indices and -1 as
label for each training sample.

When all training samples have equal similarities and equal preferences, the assignment of cluster centers and
labels depends on the preference. If the preference is smaller than the similarities, a single cluster center and
label 0 for every sample will be returned. Otherwise, every training sample becomes its own cluster center and
is assigned a unique label.

References

Brendan J. Frey and Delbert Dueck, “Clustering by Passing Messages Between Data Points”, Science Feb. 2007

Examples using sklearn.cluster.affinity_propagation

• Visualizing the stock market structure

sklearn.cluster.cluster_optics_dbscan

sklearn.cluster.cluster_optics_dbscan(*, reachability, core_distances, ordering, eps)
Performs DBSCAN extraction for an arbitrary epsilon.

Extracting the clusters runs in linear time. Note that this results in labels_ which are close to a DBSCAN with
similar settings and eps, only if eps is close to max_eps.

Parameters

reachability [array, shape (n_samples,)] Reachability distances calculated by OPTICS
(reachability_)

core_distances [array, shape (n_samples,)] Distances at which points become core
(core_distances_)

ordering [array, shape (n_samples,)] OPTICS ordered point indices (ordering_)

eps [float] DBSCAN eps parameter. Must be set to < max_eps. Results will be close to
DBSCAN algorithm if eps and max_eps are close to one another.

Returns

7.3. sklearn.cluster: Clustering 1673

scikit-learn user guide, Release 0.23.2

labels_ [array, shape (n_samples,)] The estimated labels.

Examples using sklearn.cluster.cluster_optics_dbscan

• Demo of OPTICS clustering algorithm

sklearn.cluster.cluster_optics_xi

sklearn.cluster.cluster_optics_xi(*, reachability, predecessor, ordering, min_samples,
min_cluster_size=None, xi=0.05, predeces-
sor_correction=True)

Automatically extract clusters according to the Xi-steep method.

Parameters

reachability [array, shape (n_samples,)] Reachability distances calculated by OPTICS
(reachability_)

predecessor [array, shape (n_samples,)] Predecessors calculated by OPTICS.

ordering [array, shape (n_samples,)] OPTICS ordered point indices (ordering_)

min_samples [int > 1 or float between 0 and 1] The same as the min_samples given to OPTICS.
Up and down steep regions can’t have more then min_samples consecutive non-steep
points. Expressed as an absolute number or a fraction of the number of samples (rounded to
be at least 2).

min_cluster_size [int > 1 or float between 0 and 1 (default=None)] Minimum number of sam-
ples in an OPTICS cluster, expressed as an absolute number or a fraction of the number of
samples (rounded to be at least 2). If None, the value of min_samples is used instead.

xi [float, between 0 and 1, optional (default=0.05)] Determines the minimum steepness on the
reachability plot that constitutes a cluster boundary. For example, an upwards point in the
reachability plot is defined by the ratio from one point to its successor being at most 1-xi.

predecessor_correction [bool, optional (default=True)] Correct clusters based on the calcu-
lated predecessors.

Returns

labels [array, shape (n_samples)] The labels assigned to samples. Points which are not included
in any cluster are labeled as -1.

clusters [array, shape (n_clusters, 2)] The list of clusters in the form of [start, end]
in each row, with all indices inclusive. The clusters are ordered according to (end,
-start) (ascending) so that larger clusters encompassing smaller clusters come af-
ter such nested smaller clusters. Since labels does not reflect the hierarchy, usually
len(clusters) > np.unique(labels).

sklearn.cluster.compute_optics_graph

sklearn.cluster.compute_optics_graph(X, *, min_samples, max_eps, metric, p, metric_params,
algorithm, leaf_size, n_jobs)

Computes the OPTICS reachability graph.

Read more in the User Guide.

Parameters

1674 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

X [array, shape (n_samples, n_features), or (n_samples, n_samples) if metric=’precomputed’.]
A feature array, or array of distances between samples if metric=’precomputed’

min_samples [int > 1 or float between 0 and 1] The number of samples in a neighborhood for a
point to be considered as a core point. Expressed as an absolute number or a fraction of the
number of samples (rounded to be at least 2).

max_eps [float, optional (default=np.inf)] The maximum distance between two samples for one
to be considered as in the neighborhood of the other. Default value of np.inf will identify
clusters across all scales; reducing max_eps will result in shorter run times.

metric [string or callable, optional (default=’minkowski’)] Metric to use for distance computa-
tion. Any metric from scikit-learn or scipy.spatial.distance can be used.

If metric is a callable function, it is called on each pair of instances (rows) and the resulting
value recorded. The callable should take two arrays as input and return one value indicating
the distance between them. This works for Scipy’s metrics, but is less efficient than passing
the metric name as a string. If metric is “precomputed”, X is assumed to be a distance matrix
and must be square.

Valid values for metric are:

• from scikit-learn: [‘cityblock’, ‘cosine’, ‘euclidean’, ‘l1’, ‘l2’, ‘manhattan’]

• from scipy.spatial.distance: [‘braycurtis’, ‘canberra’, ‘chebyshev’, ‘correlation’, ‘dice’,
‘hamming’, ‘jaccard’, ‘kulsinski’, ‘mahalanobis’, ‘minkowski’, ‘rogerstanimoto’, ‘rus-
sellrao’, ‘seuclidean’, ‘sokalmichener’, ‘sokalsneath’, ‘sqeuclidean’, ‘yule’]

See the documentation for scipy.spatial.distance for details on these metrics.

p [integer, optional (default=2)] Parameter for the Minkowski metric from sklearn.
metrics.pairwise_distances. When p = 1, this is equivalent to using manhat-
tan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance
(l_p) is used.

metric_params [dict, optional (default=None)] Additional keyword arguments for the metric
function.

algorithm [{‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, optional] Algorithm used to compute the
nearest neighbors:

• ‘ball_tree’ will use BallTree

• ‘kd_tree’ will use KDTree

• ‘brute’ will use a brute-force search.

• ‘auto’ will attempt to decide the most appropriate algorithm based on the values passed
to fit method. (default)

Note: fitting on sparse input will override the setting of this parameter, using brute force.

leaf_size [int, optional (default=30)] Leaf size passed to BallTree or KDTree. This can
affect the speed of the construction and query, as well as the memory required to store the
tree. The optimal value depends on the nature of the problem.

n_jobs [int or None, optional (default=None)] The number of parallel jobs to run for neighbors
search. None means 1 unless in a joblib.parallel_backend context. -1 means
using all processors. See Glossary for more details.

Returns

ordering_ [array, shape (n_samples,)] The cluster ordered list of sample indices.

7.3. sklearn.cluster: Clustering 1675

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

core_distances_ [array, shape (n_samples,)] Distance at which each sample becomes a core
point, indexed by object order. Points which will never be core have a distance of inf. Use
clust.core_distances_[clust.ordering_] to access in cluster order.

reachability_ [array, shape (n_samples,)] Reachability distances per sample, indexed by object
order. Use clust.reachability_[clust.ordering_] to access in cluster order.

predecessor_ [array, shape (n_samples,)] Point that a sample was reached from, indexed by
object order. Seed points have a predecessor of -1.

References

[1]

sklearn.cluster.dbscan

sklearn.cluster.dbscan(X, eps=0.5, *, min_samples=5, metric=’minkowski’, metric_params=None,
algorithm=’auto’, leaf_size=30, p=2, sample_weight=None, n_jobs=None)

Perform DBSCAN clustering from vector array or distance matrix.

Read more in the User Guide.

Parameters

X [{array-like, sparse (CSR) matrix} of shape (n_samples, n_features) or (n_samples,
n_samples)] A feature array, or array of distances between samples if
metric='precomputed'.

eps [float, default=0.5] The maximum distance between two samples for one to be considered
as in the neighborhood of the other. This is not a maximum bound on the distances of points
within a cluster. This is the most important DBSCAN parameter to choose appropriately for
your data set and distance function.

min_samples [int, default=5] The number of samples (or total weight) in a neighborhood for a
point to be considered as a core point. This includes the point itself.

metric [string, or callable] The metric to use when calculating distance between instances in
a feature array. If metric is a string or callable, it must be one of the options allowed
by sklearn.metrics.pairwise_distances for its metric parameter. If metric is
“precomputed”, X is assumed to be a distance matrix and must be square during fit. X may
be a sparse graph, in which case only “nonzero” elements may be considered neighbors.

metric_params [dict, default=None] Additional keyword arguments for the metric function.

New in version 0.19.

algorithm [{‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, default=’auto’] The algorithm to be used by
the NearestNeighbors module to compute pointwise distances and find nearest neighbors.
See NearestNeighbors module documentation for details.

leaf_size [int, default=30] Leaf size passed to BallTree or cKDTree. This can affect the speed
of the construction and query, as well as the memory required to store the tree. The optimal
value depends on the nature of the problem.

p [float, default=2] The power of the Minkowski metric to be used to calculate distance between
points.

sample_weight [array-like of shape (n_samples,), default=None] Weight of each sample, such
that a sample with a weight of at least min_samples is by itself a core sample; a sample

1676 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

with negative weight may inhibit its eps-neighbor from being core. Note that weights are
absolute, and default to 1.

n_jobs [int, default=None] The number of parallel jobs to run for neighbors search. None
means 1 unless in a joblib.parallel_backend context. -1 means using all proces-
sors. See Glossary for more details. If precomputed distance are used, parallel execution is
not available and thus n_jobs will have no effect.

Returns

core_samples [ndarray of shape (n_core_samples,)] Indices of core samples.

labels [ndarray of shape (n_samples,)] Cluster labels for each point. Noisy samples are given
the label -1.

See also:

DBSCAN An estimator interface for this clustering algorithm.

OPTICS A similar estimator interface clustering at multiple values of eps. Our implementation is optimized
for memory usage.

Notes

For an example, see examples/cluster/plot_dbscan.py.

This implementation bulk-computes all neighborhood queries, which increases the memory complexity to
O(n.d) where d is the average number of neighbors, while original DBSCAN had memory complexity O(n).
It may attract a higher memory complexity when querying these nearest neighborhoods, depending on the
algorithm.

One way to avoid the query complexity is to pre-compute sparse neighborhoods in chunks
using NearestNeighbors.radius_neighbors_graph with mode='distance', then using
metric='precomputed' here.

Another way to reduce memory and computation time is to remove (near-)duplicate points and use
sample_weight instead.

cluster.optics provides a similar clustering with lower memory usage.

References

Ester, M., H. P. Kriegel, J. Sander, and X. Xu, “A Density-Based Algorithm for Discovering Clusters in Large
Spatial Databases with Noise”. In: Proceedings of the 2nd International Conference on Knowledge Discovery
and Data Mining, Portland, OR, AAAI Press, pp. 226-231. 1996

Schubert, E., Sander, J., Ester, M., Kriegel, H. P., & Xu, X. (2017). DBSCAN revisited, revisited: why and how
you should (still) use DBSCAN. ACM Transactions on Database Systems (TODS), 42(3), 19.

sklearn.cluster.estimate_bandwidth

sklearn.cluster.estimate_bandwidth(X, *, quantile=0.3, n_samples=None, random_state=0,
n_jobs=None)

Estimate the bandwidth to use with the mean-shift algorithm.

That this function takes time at least quadratic in n_samples. For large datasets, it’s wise to set that parameter
to a small value.

Parameters

7.3. sklearn.cluster: Clustering 1677

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

X [array-like of shape (n_samples, n_features)] Input points.

quantile [float, default=0.3] should be between [0, 1] 0.5 means that the median of all pairwise
distances is used.

n_samples [int, default=None] The number of samples to use. If not given, all samples are
used.

random_state [int, RandomState instance, default=None] The generator used to randomly se-
lect the samples from input points for bandwidth estimation. Use an int to make the ran-
domness deterministic. See Glossary.

n_jobs [int, default=None] The number of parallel jobs to run for neighbors search. None
means 1 unless in a joblib.parallel_backend context. -1 means using all proces-
sors. See Glossary for more details.

Returns

bandwidth [float] The bandwidth parameter.

Examples using sklearn.cluster.estimate_bandwidth

• A demo of the mean-shift clustering algorithm

• Comparing different clustering algorithms on toy datasets

sklearn.cluster.k_means

sklearn.cluster.k_means(X, n_clusters, *, sample_weight=None, init=’k-means++’, precom-
pute_distances=’deprecated’, n_init=10, max_iter=300, verbose=False,
tol=0.0001, random_state=None, copy_x=True, n_jobs=’deprecated’, al-
gorithm=’auto’, return_n_iter=False)

K-means clustering algorithm.

Read more in the User Guide.

Parameters

X [{array-like, sparse} matrix of shape (n_samples, n_features)] The observations to cluster.
It must be noted that the data will be converted to C ordering, which will cause a memory
copy if the given data is not C-contiguous.

n_clusters [int] The number of clusters to form as well as the number of centroids to generate.

sample_weight [array-like of shape (n_samples,), default=None] The weights for each obser-
vation in X. If None, all observations are assigned equal weight

init [{‘k-means++’, ‘random’, ndarray, callable}, default=’k-means++’] Method for initializa-
tion:

‘k-means++’ : selects initial cluster centers for k-mean clustering in a smart way to speed
up convergence. See section Notes in k_init for more details.

‘random’: choose n_clusters observations (rows) at random from data for the initial
centroids.

If an ndarray is passed, it should be of shape (n_clusters, n_features) and gives the initial
centers.

If a callable is passed, it should take arguments X, n_clusters and a random state and return
an initialization.

1678 Chapter 7. API Reference

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

precompute_distances [{‘auto’, True, False}] Precompute distances (faster but takes more
memory).

‘auto’ : do not precompute distances if n_samples * n_clusters > 12 million. This corre-
sponds to about 100MB overhead per job using double precision.

True : always precompute distances

False : never precompute distances

Deprecated since version 0.23: ‘precompute_distances’ was deprecated in version 0.23 and
will be removed in 0.25. It has no effect.

n_init [int, default=10] Number of time the k-means algorithm will be run with different cen-
troid seeds. The final results will be the best output of n_init consecutive runs in terms of
inertia.

max_iter [int, default=300] Maximum number of iterations of the k-means algorithm to run.

verbose [bool, default=False] Verbosity mode.

tol [float, default=1e-4] Relative tolerance with regards to Frobenius norm of the difference in
the cluster centers of two consecutive iterations to declare convergence.

random_state [int, RandomState instance, default=None] Determines random number gener-
ation for centroid initialization. Use an int to make the randomness deterministic. See
Glossary.

copy_x [bool, default=True] When pre-computing distances it is more numerically accurate to
center the data first. If copy_x is True (default), then the original data is not modified.
If False, the original data is modified, and put back before the function returns, but small
numerical differences may be introduced by subtracting and then adding the data mean.
Note that if the original data is not C-contiguous, a copy will be made even if copy_x is
False. If the original data is sparse, but not in CSR format, a copy will be made even if
copy_x is False.

n_jobs [int, default=None] The number of OpenMP threads to use for the computation. Par-
allelism is sample-wise on the main cython loop which assigns each sample to its closest
center.

None or -1 means using all processors.

Deprecated since version 0.23: n_jobswas deprecated in version 0.23 and will be removed
in 0.25.

algorithm [{“auto”, “full”, “elkan”}, default=”auto”] K-means algorithm to use. The classical
EM-style algorithm is “full”. The “elkan” variation is more efficient on data with well-
defined clusters, by using the triangle inequality. However it’s more memory intensive due
to the allocation of an extra array of shape (n_samples, n_clusters).

For now “auto” (kept for backward compatibiliy) chooses “elkan” but it might change in the
future for a better heuristic.

return_n_iter [bool, default=False] Whether or not to return the number of iterations.

Returns

centroid [ndarray of shape (n_clusters, n_features)] Centroids found at the last iteration of k-
means.

label [ndarray of shape (n_samples,)] label[i] is the code or index of the centroid the i’th obser-
vation is closest to.

7.3. sklearn.cluster: Clustering 1679

scikit-learn user guide, Release 0.23.2

inertia [float] The final value of the inertia criterion (sum of squared distances to the closest
centroid for all observations in the training set).

best_n_iter [int] Number of iterations corresponding to the best results. Returned only if
return_n_iter is set to True.

sklearn.cluster.mean_shift

sklearn.cluster.mean_shift(X, *, bandwidth=None, seeds=None, bin_seeding=False,
min_bin_freq=1, cluster_all=True, max_iter=300, n_jobs=None)

Perform mean shift clustering of data using a flat kernel.

Read more in the User Guide.

Parameters

X [array-like of shape (n_samples, n_features)] Input data.

bandwidth [float, default=None] Kernel bandwidth.

If bandwidth is not given, it is determined using a heuristic based on the median of
all pairwise distances. This will take quadratic time in the number of samples. The
sklearn.cluster.estimate_bandwidth function can be used to do this more efficiently.

seeds [array-like of shape (n_seeds, n_features) or None] Point used as initial kernel loca-
tions. If None and bin_seeding=False, each data point is used as a seed. If None and
bin_seeding=True, see bin_seeding.

bin_seeding [boolean, default=False] If true, initial kernel locations are not locations of all
points, but rather the location of the discretized version of points, where points are binned
onto a grid whose coarseness corresponds to the bandwidth. Setting this option to True will
speed up the algorithm because fewer seeds will be initialized. Ignored if seeds argument is
not None.

min_bin_freq [int, default=1] To speed up the algorithm, accept only those bins with at least
min_bin_freq points as seeds.

cluster_all [bool, default=True] If true, then all points are clustered, even those orphans that
are not within any kernel. Orphans are assigned to the nearest kernel. If false, then orphans
are given cluster label -1.

max_iter [int, default=300] Maximum number of iterations, per seed point before the clustering
operation terminates (for that seed point), if has not converged yet.

n_jobs [int, default=None] The number of jobs to use for the computation. This works by
computing each of the n_init runs in parallel.

None means 1 unless in a joblib.parallel_backend context. -1 means using all
processors. See Glossary for more details.

New in version 0.17: Parallel Execution using n_jobs.

Returns

cluster_centers [array, shape=[n_clusters, n_features]] Coordinates of cluster centers.

labels [array, shape=[n_samples]] Cluster labels for each point.

Notes

For an example, see examples/cluster/plot_mean_shift.py.

1680 Chapter 7. API Reference

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

sklearn.cluster.spectral_clustering

sklearn.cluster.spectral_clustering(affinity, *, n_clusters=8, n_components=None,
eigen_solver=None, random_state=None, n_init=10,
eigen_tol=0.0, assign_labels=’kmeans’)

Apply clustering to a projection of the normalized Laplacian.

In practice Spectral Clustering is very useful when the structure of the individual clusters is highly non-convex
or more generally when a measure of the center and spread of the cluster is not a suitable description of the
complete cluster. For instance, when clusters are nested circles on the 2D plane.

If affinity is the adjacency matrix of a graph, this method can be used to find normalized graph cuts.

Read more in the User Guide.

Parameters

affinity [array-like or sparse matrix, shape: (n_samples, n_samples)] The affinity matrix de-
scribing the relationship of the samples to embed. Must be symmetric.

Possible examples:

• adjacency matrix of a graph,

• heat kernel of the pairwise distance matrix of the samples,

• symmetric k-nearest neighbours connectivity matrix of the samples.

n_clusters [integer, optional] Number of clusters to extract.

n_components [integer, optional, default is n_clusters] Number of eigen vectors to use for the
spectral embedding

eigen_solver [{None, ‘arpack’, ‘lobpcg’, or ‘amg’}] The eigenvalue decomposition strategy to
use. AMG requires pyamg to be installed. It can be faster on very large, sparse problems,
but may also lead to instabilities

random_state [int, RandomState instance, default=None] A pseudo random number generator
used for the initialization of the lobpcg eigen vectors decomposition when eigen_solver ==
‘amg’ and by the K-Means initialization. Use an int to make the randomness deterministic.
See Glossary.

n_init [int, optional, default: 10] Number of time the k-means algorithm will be run with dif-
ferent centroid seeds. The final results will be the best output of n_init consecutive runs in
terms of inertia.

eigen_tol [float, optional, default: 0.0] Stopping criterion for eigendecomposition of the Lapla-
cian matrix when using arpack eigen_solver.

assign_labels [{‘kmeans’, ‘discretize’}, default: ‘kmeans’] The strategy to use to assign labels
in the embedding space. There are two ways to assign labels after the laplacian embedding.
k-means can be applied and is a popular choice. But it can also be sensitive to initialization.
Discretization is another approach which is less sensitive to random initialization. See the
‘Multiclass spectral clustering’ paper referenced below for more details on the discretization
approach.

Returns

labels [array of integers, shape: n_samples] The labels of the clusters.

7.3. sklearn.cluster: Clustering 1681

scikit-learn user guide, Release 0.23.2

Notes

The graph should contain only one connect component, elsewhere the results make little sense.

This algorithm solves the normalized cut for k=2: it is a normalized spectral clustering.

References

• Normalized cuts and image segmentation, 2000 Jianbo Shi, Jitendra Malik http://citeseer.ist.psu.edu/
viewdoc/summary?doi=10.1.1.160.2324

• A Tutorial on Spectral Clustering, 2007 Ulrike von Luxburg http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.165.9323

• Multiclass spectral clustering, 2003 Stella X. Yu, Jianbo Shi https://www1.icsi.berkeley.edu/~stellayu/
publication/doc/2003kwayICCV.pdf

Examples using sklearn.cluster.spectral_clustering

• Segmenting the picture of greek coins in regions

• Spectral clustering for image segmentation

sklearn.cluster.ward_tree

sklearn.cluster.ward_tree(X, *, connectivity=None, n_clusters=None, return_distance=False)
Ward clustering based on a Feature matrix.

Recursively merges the pair of clusters that minimally increases within-cluster variance.

The inertia matrix uses a Heapq-based representation.

This is the structured version, that takes into account some topological structure between samples.

Read more in the User Guide.

Parameters

X [array, shape (n_samples, n_features)] feature matrix representing n_samples samples to be
clustered

connectivity [sparse matrix (optional).] connectivity matrix. Defines for each sample the neigh-
boring samples following a given structure of the data. The matrix is assumed to be sym-
metric and only the upper triangular half is used. Default is None, i.e, the Ward algorithm is
unstructured.

n_clusters [int (optional)] Stop early the construction of the tree at n_clusters. This is useful
to decrease computation time if the number of clusters is not small compared to the number
of samples. In this case, the complete tree is not computed, thus the ‘children’ output is of
limited use, and the ‘parents’ output should rather be used. This option is valid only when
specifying a connectivity matrix.

return_distance [bool (optional)] If True, return the distance between the clusters.

Returns

children [2D array, shape (n_nodes-1, 2)] The children of each non-leaf node. Values less than
n_samples correspond to leaves of the tree which are the original samples. A node i
greater than or equal to n_samples is a non-leaf node and has children children_[i

1682 Chapter 7. API Reference

http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.2324
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.2324
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.9323
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.9323
https://www1.icsi.berkeley.edu/~stellayu/publication/doc/2003kwayICCV.pdf
https://www1.icsi.berkeley.edu/~stellayu/publication/doc/2003kwayICCV.pdf

scikit-learn user guide, Release 0.23.2

- n_samples]. Alternatively at the i-th iteration, children[i][0] and children[i][1] are
merged to form node n_samples + i

n_connected_components [int] The number of connected components in the graph.

n_leaves [int] The number of leaves in the tree

parents [1D array, shape (n_nodes,) or None] The parent of each node. Only returned when a
connectivity matrix is specified, elsewhere ‘None’ is returned.

distances [1D array, shape (n_nodes-1,)] Only returned if return_distance is set to True (for
compatibility). The distances between the centers of the nodes. distances[i] cor-
responds to a weighted euclidean distance between the nodes children[i, 1] and
children[i, 2]. If the nodes refer to leaves of the tree, then distances[i] is
their unweighted euclidean distance. Distances are updated in the following way (from
scipy.hierarchy.linkage):

The new entry 𝑑(𝑢, 𝑣) is computed as follows,

𝑑(𝑢, 𝑣) =

√︂
|𝑣|+ |𝑠|
𝑇

𝑑(𝑣, 𝑠)2 +
|𝑣|+ |𝑡|
𝑇

𝑑(𝑣, 𝑡)2 − |𝑣|
𝑇
𝑑(𝑠, 𝑡)2

where 𝑢 is the newly joined cluster consisting of clusters 𝑠 and 𝑡, 𝑣 is an unused cluster in
the forest, 𝑇 = |𝑣|+ |𝑠|+ |𝑡|, and | * | is the cardinality of its argument. This is also known
as the incremental algorithm.

7.4 sklearn.compose: Composite Estimators

Meta-estimators for building composite models with transformers

In addition to its current contents, this module will eventually be home to refurbished versions of Pipeline and Fea-
tureUnion.

User guide: See the Pipelines and composite estimators section for further details.

compose.ColumnTransformer(transformers, *[,
. . .])

Applies transformers to columns of an array or pandas
DataFrame.

compose.TransformedTargetRegressor([. . .]) Meta-estimator to regress on a transformed target.

7.4.1 sklearn.compose.ColumnTransformer

class sklearn.compose.ColumnTransformer(transformers, *, remainder=’drop’,
sparse_threshold=0.3, n_jobs=None, trans-
former_weights=None, verbose=False)

Applies transformers to columns of an array or pandas DataFrame.

This estimator allows different columns or column subsets of the input to be transformed separately and the
features generated by each transformer will be concatenated to form a single feature space. This is useful for
heterogeneous or columnar data, to combine several feature extraction mechanisms or transformations into a
single transformer.

Read more in the User Guide.

New in version 0.20.

Parameters

7.4. sklearn.compose: Composite Estimators 1683

scikit-learn user guide, Release 0.23.2

transformers [list of tuples] List of (name, transformer, columns) tuples specifying the trans-
former objects to be applied to subsets of the data.

name [str] Like in Pipeline and FeatureUnion, this allows the transformer and its parame-
ters to be set using set_params and searched in grid search.

transformer [{‘drop’, ‘passthrough’} or estimator] Estimator must support fit and trans-
form. Special-cased strings ‘drop’ and ‘passthrough’ are accepted as well, to indicate to
drop the columns or to pass them through untransformed, respectively.

columns [str, array-like of str, int, array-like of int, array-like of bool, slice or callable]
Indexes the data on its second axis. Integers are interpreted as positional columns, while
strings can reference DataFrame columns by name. A scalar string or int should be
used where transformer expects X to be a 1d array-like (vector), otherwise a 2d
array will be passed to the transformer. A callable is passed the input data X and can
return any of the above. To select multiple columns by name or dtype, you can use
make_column_selector.

remainder [{‘drop’, ‘passthrough’} or estimator, default=’drop’] By default, only the
specified columns in transformers are transformed and combined in the output,
and the non-specified columns are dropped. (default of 'drop'). By specify-
ing remainder='passthrough', all remaining columns that were not specified in
transformers will be automatically passed through. This subset of columns is con-
catenated with the output of the transformers. By setting remainder to be an estimator,
the remaining non-specified columns will use the remainder estimator. The estimator
must support fit and transform. Note that using this feature requires that the DataFrame
columns input at fit and transform have identical order.

sparse_threshold [float, default=0.3] If the output of the different transformers contains sparse
matrices, these will be stacked as a sparse matrix if the overall density is lower than this
value. Use sparse_threshold=0 to always return dense. When the transformed output
consists of all dense data, the stacked result will be dense, and this keyword will be ignored.

n_jobs [int, default=None] Number of jobs to run in parallel. None means 1 unless in a
joblib.parallel_backend context. -1 means using all processors. See Glossary
for more details.

transformer_weights [dict, default=None] Multiplicative weights for features per transformer.
The output of the transformer is multiplied by these weights. Keys are transformer names,
values the weights.

verbose [bool, default=False] If True, the time elapsed while fitting each transformer will be
printed as it is completed.

Attributes

transformers_ [list] The collection of fitted transformers as tuples of (name, fitted_transformer,
column). fitted_transformer can be an estimator, ‘drop’, or ‘passthrough’. In
case there were no columns selected, this will be the unfitted transformer. If there
are remaining columns, the final element is a tuple of the form: (‘remainder’, trans-
former, remaining_columns) corresponding to the remainder parameter. If there are
remaining columns, then len(transformers_)==len(transformers)+1, other-
wise len(transformers_)==len(transformers).

named_transformers_ [Bunch] Access the fitted transformer by name.

sparse_output_ [bool] Boolean flag indicating whether the output of transform is a sparse
matrix or a dense numpy array, which depends on the output of the individual transformers
and the sparse_threshold keyword.

1684 Chapter 7. API Reference

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

See also:

sklearn.compose.make_column_transformer convenience function for combining the outputs of
multiple transformer objects applied to column subsets of the original feature space.

sklearn.compose.make_column_selector convenience function for selecting columns based on
datatype or the columns name with a regex pattern.

Notes

The order of the columns in the transformed feature matrix follows the order of how the columns are specified
in the transformers list. Columns of the original feature matrix that are not specified are dropped from the
resulting transformed feature matrix, unless specified in the passthrough keyword. Those columns specified
with passthrough are added at the right to the output of the transformers.

Examples

>>> import numpy as np
>>> from sklearn.compose import ColumnTransformer
>>> from sklearn.preprocessing import Normalizer
>>> ct = ColumnTransformer(
... [("norm1", Normalizer(norm='l1'), [0, 1]),
... ("norm2", Normalizer(norm='l1'), slice(2, 4))])
>>> X = np.array([[0., 1., 2., 2.],
... [1., 1., 0., 1.]])
>>> # Normalizer scales each row of X to unit norm. A separate scaling
>>> # is applied for the two first and two last elements of each
>>> # row independently.
>>> ct.fit_transform(X)
array([[0. , 1. , 0.5, 0.5],

[0.5, 0.5, 0. , 1.]])

Methods

fit(X[, y]) Fit all transformers using X.
fit_transform(X[, y]) Fit all transformers, transform the data and concate-

nate results.
get_feature_names() Get feature names from all transformers.
get_params([deep]) Get parameters for this estimator.
set_params(**kwargs) Set the parameters of this estimator.
transform(X) Transform X separately by each transformer, con-

catenate results.

__init__(transformers, *, remainder=’drop’, sparse_threshold=0.3, n_jobs=None, trans-
former_weights=None, verbose=False)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Fit all transformers using X.

Parameters

X [{array-like, dataframe} of shape (n_samples, n_features)] Input data, of which specified

7.4. sklearn.compose: Composite Estimators 1685

scikit-learn user guide, Release 0.23.2

subsets are used to fit the transformers.

y [array-like of shape (n_samples,. . .), default=None] Targets for supervised learning.

Returns

self [ColumnTransformer] This estimator

fit_transform(X, y=None)
Fit all transformers, transform the data and concatenate results.

Parameters

X [{array-like, dataframe} of shape (n_samples, n_features)] Input data, of which specified
subsets are used to fit the transformers.

y [array-like of shape (n_samples,), default=None] Targets for supervised learning.

Returns

X_t [{array-like, sparse matrix} of shape (n_samples, sum_n_components)] hstack of re-
sults of transformers. sum_n_components is the sum of n_components (output dimension)
over transformers. If any result is a sparse matrix, everything will be converted to sparse
matrices.

get_feature_names()
Get feature names from all transformers.

Returns

feature_names [list of strings] Names of the features produced by transform.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [dict] Parameter names mapped to their values.

property named_transformers_
Access the fitted transformer by name.

Read-only attribute to access any transformer by given name. Keys are transformer names and values are
the fitted transformer objects.

set_params(**kwargs)
Set the parameters of this estimator.

Valid parameter keys can be listed with get_params().

Returns

self

transform(X)
Transform X separately by each transformer, concatenate results.

Parameters

X [{array-like, dataframe} of shape (n_samples, n_features)] The data to be transformed by
subset.

1686 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Returns

X_t [{array-like, sparse matrix} of shape (n_samples, sum_n_components)] hstack of re-
sults of transformers. sum_n_components is the sum of n_components (output dimension)
over transformers. If any result is a sparse matrix, everything will be converted to sparse
matrices.

Examples using sklearn.compose.ColumnTransformer

• Poisson regression and non-normal loss

• Tweedie regression on insurance claims

• Permutation Importance vs Random Forest Feature Importance (MDI)

• Column Transformer with Mixed Types

• Column Transformer with Heterogeneous Data Sources

7.4.2 sklearn.compose.TransformedTargetRegressor

class sklearn.compose.TransformedTargetRegressor(regressor=None, *, trans-
former=None, func=None,
inverse_func=None,
check_inverse=True)

Meta-estimator to regress on a transformed target.

Useful for applying a non-linear transformation to the target y in regression problems. This transformation can
be given as a Transformer such as the QuantileTransformer or as a function and its inverse such as log and
exp.

The computation during fit is:

regressor.fit(X, func(y))

or:

regressor.fit(X, transformer.transform(y))

The computation during predict is:

inverse_func(regressor.predict(X))

or:

transformer.inverse_transform(regressor.predict(X))

Read more in the User Guide.

New in version 0.20.

Parameters

regressor [object, default=None] Regressor object such as derived from RegressorMixin.
This regressor will automatically be cloned each time prior to fitting. If regressor is None,
LinearRegression() is created and used.

7.4. sklearn.compose: Composite Estimators 1687

scikit-learn user guide, Release 0.23.2

transformer [object, default=None] Estimator object such as derived from
TransformerMixin. Cannot be set at the same time as func and inverse_func. If
transformer is None as well as func and inverse_func, the transformer will be
an identity transformer. Note that the transformer will be cloned during fitting. Also, the
transformer is restricting y to be a numpy array.

func [function, default=None] Function to apply to y before passing to fit. Cannot be set at
the same time as transformer. The function needs to return a 2-dimensional array. If
func is None, the function used will be the identity function.

inverse_func [function, default=None] Function to apply to the prediction of the regressor.
Cannot be set at the same time as transformer as well. The function needs to return
a 2-dimensional array. The inverse function is used to return predictions to the same space
of the original training labels.

check_inverse [bool, default=True] Whether to check that transform followed by
inverse_transform or func followed by inverse_func leads to the original tar-
gets.

Attributes

regressor_ [object] Fitted regressor.

transformer_ [object] Transformer used in fit and predict.

Notes

Internally, the target y is always converted into a 2-dimensional array to be used by scikit-learn transformers.
At the time of prediction, the output will be reshaped to a have the same number of dimensions as y.

See examples/compose/plot_transformed_target.py.

Examples

>>> import numpy as np
>>> from sklearn.linear_model import LinearRegression
>>> from sklearn.compose import TransformedTargetRegressor
>>> tt = TransformedTargetRegressor(regressor=LinearRegression(),
... func=np.log, inverse_func=np.exp)
>>> X = np.arange(4).reshape(-1, 1)
>>> y = np.exp(2 * X).ravel()
>>> tt.fit(X, y)
TransformedTargetRegressor(...)
>>> tt.score(X, y)
1.0
>>> tt.regressor_.coef_
array([2.])

Methods

fit(X, y, **fit_params) Fit the model according to the given training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the base regressor, applying inverse.

Continued on next page

1688 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Table 30 – continued from previous page
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.

__init__(regressor=None, *, transformer=None, func=None, inverse_func=None,
check_inverse=True)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y, **fit_params)
Fit the model according to the given training data.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training vector, where
n_samples is the number of samples and n_features is the number of features.

y [array-like of shape (n_samples,)] Target values.

**fit_params [dict] Parameters passed to the fit method of the underlying regressor.

Returns

self [object]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict using the base regressor, applying inverse.

The regressor is used to predict and the inverse_func or inverse_transform is applied before
returning the prediction.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Samples.

Returns

y_hat [ndarray of shape (n_samples,)] Predicted values.

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

7.4. sklearn.compose: Composite Estimators 1689

scikit-learn user guide, Release 0.23.2

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.compose.TransformedTargetRegressor

• Poisson regression and non-normal loss

• Common pitfalls in interpretation of coefficients of linear models

• Effect of transforming the targets in regression model

compose.make_column_transformer(. . .) Construct a ColumnTransformer from the given trans-
formers.

compose.make_column_selector([pattern,
. . .])

Create a callable to select columns to be used with
ColumnTransformer.

7.4.3 sklearn.compose.make_column_transformer

sklearn.compose.make_column_transformer(*transformers, **kwargs)
Construct a ColumnTransformer from the given transformers.

This is a shorthand for the ColumnTransformer constructor; it does not require, and does not permit, naming
the transformers. Instead, they will be given names automatically based on their types. It also does not allow
weighting with transformer_weights.

Read more in the User Guide.

Parameters

*transformers [tuples] Tuples of the form (transformer, columns) specifying the transformer
objects to be applied to subsets of the data.

1690 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

transformer [{‘drop’, ‘passthrough’} or estimator] Estimator must support fit and trans-
form. Special-cased strings ‘drop’ and ‘passthrough’ are accepted as well, to indicate to
drop the columns or to pass them through untransformed, respectively.

columns [str, array-like of str, int, array-like of int, slice, array-like of bool or callable]
Indexes the data on its second axis. Integers are interpreted as positional columns, while
strings can reference DataFrame columns by name. A scalar string or int should be
used where transformer expects X to be a 1d array-like (vector), otherwise a 2d
array will be passed to the transformer. A callable is passed the input data X and can
return any of the above. To select multiple columns by name or dtype, you can use
make_column_selector.

remainder [{‘drop’, ‘passthrough’} or estimator, default=’drop’] By default, only the
specified columns in transformers are transformed and combined in the output,
and the non-specified columns are dropped. (default of 'drop'). By specify-
ing remainder='passthrough', all remaining columns that were not specified in
transformers will be automatically passed through. This subset of columns is con-
catenated with the output of the transformers. By setting remainder to be an estimator,
the remaining non-specified columns will use the remainder estimator. The estimator
must support fit and transform.

sparse_threshold [float, default=0.3] If the transformed output consists of a mix of sparse and
dense data, it will be stacked as a sparse matrix if the density is lower than this value. Use
sparse_threshold=0 to always return dense. When the transformed output consists
of all sparse or all dense data, the stacked result will be sparse or dense, respectively, and
this keyword will be ignored.

n_jobs [int, default=None] Number of jobs to run in parallel. None means 1 unless in a
joblib.parallel_backend context. -1 means using all processors. See Glossary
for more details.

verbose [bool, default=False] If True, the time elapsed while fitting each transformer will be
printed as it is completed.

Returns

ct [ColumnTransformer]

See also:

sklearn.compose.ColumnTransformer Class that allows combining the outputs of multiple trans-
former objects used on column subsets of the data into a single feature space.

Examples

>>> from sklearn.preprocessing import StandardScaler, OneHotEncoder
>>> from sklearn.compose import make_column_transformer
>>> make_column_transformer(
... (StandardScaler(), ['numerical_column']),
... (OneHotEncoder(), ['categorical_column']))
ColumnTransformer(transformers=[('standardscaler', StandardScaler(...),

['numerical_column']),
('onehotencoder', OneHotEncoder(...),
['categorical_column'])])

7.4. sklearn.compose: Composite Estimators 1691

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

Examples using sklearn.compose.make_column_transformer

• Release Highlights for scikit-learn 0.23

• Combine predictors using stacking

• Common pitfalls in interpretation of coefficients of linear models

7.4.4 sklearn.compose.make_column_selector

sklearn.compose.make_column_selector(pattern=None, *, dtype_include=None,
dtype_exclude=None)

Create a callable to select columns to be used with ColumnTransformer.

make_column_selector can select columns based on datatype or the columns name with a regex. When
using multiple selection criteria, all criteria must match for a column to be selected.

Parameters

pattern [str, default=None] Name of columns containing this regex pattern will be included. If
None, column selection will not be selected based on pattern.

dtype_include [column dtype or list of column dtypes, default=None] A selection of dtypes to
include. For more details, see pandas.DataFrame.select_dtypes.

dtype_exclude [column dtype or list of column dtypes, default=None] A selection of dtypes to
exclude. For more details, see pandas.DataFrame.select_dtypes.

Returns

selector [callable] Callable for column selection to be used by a ColumnTransformer.

See also:

sklearn.compose.ColumnTransformer Class that allows combining the outputs of multiple trans-
former objects used on column subsets of the data into a single feature space.

Examples

>>> from sklearn.preprocessing import StandardScaler, OneHotEncoder
>>> from sklearn.compose import make_column_transformer
>>> from sklearn.compose import make_column_selector
>>> import pandas as pd # doctest: +SKIP
>>> X = pd.DataFrame({'city': ['London', 'London', 'Paris', 'Sallisaw'],
... 'rating': [5, 3, 4, 5]}) # doctest: +SKIP
>>> ct = make_column_transformer(
... (StandardScaler(),
... make_column_selector(dtype_include=np.number)), # rating
... (OneHotEncoder(),
... make_column_selector(dtype_include=object))) # city
>>> ct.fit_transform(X) # doctest: +SKIP
array([[0.90453403, 1. , 0. , 0.],

[-1.50755672, 1. , 0. , 0.],
[-0.30151134, 0. , 1. , 0.],
[0.90453403, 0. , 0. , 1.]])

1692 Chapter 7. API Reference

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.select_dtypes.html#pandas.DataFrame.select_dtypes
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.select_dtypes.html#pandas.DataFrame.select_dtypes

scikit-learn user guide, Release 0.23.2

Examples using sklearn.compose.make_column_selector

• Column Transformer with Mixed Types

7.5 sklearn.covariance: Covariance Estimators

The sklearn.covariance module includes methods and algorithms to robustly estimate the covariance of fea-
tures given a set of points. The precision matrix defined as the inverse of the covariance is also estimated. Covariance
estimation is closely related to the theory of Gaussian Graphical Models.

User guide: See the Covariance estimation section for further details.

covariance.EmpiricalCovariance(*[, . . .]) Maximum likelihood covariance estimator
covariance.EllipticEnvelope(*[, . . .]) An object for detecting outliers in a Gaussian distributed

dataset.
covariance.GraphicalLasso([alpha, mode,
. . .])

Sparse inverse covariance estimation with an l1-
penalized estimator.

covariance.GraphicalLassoCV (*[, alphas,
. . .])

Sparse inverse covariance w/ cross-validated choice of
the l1 penalty.

covariance.LedoitWolf(*[, store_precision,
. . .])

LedoitWolf Estimator

covariance.MinCovDet(*[, store_precision, . . .]) Minimum Covariance Determinant (MCD): robust esti-
mator of covariance.

covariance.OAS(*[, store_precision, . . .]) Oracle Approximating Shrinkage Estimator
covariance.ShrunkCovariance(*[, . . .]) Covariance estimator with shrinkage

7.5.1 sklearn.covariance.EmpiricalCovariance

class sklearn.covariance.EmpiricalCovariance(*, store_precision=True, as-
sume_centered=False)

Maximum likelihood covariance estimator

Read more in the User Guide.

Parameters

store_precision [bool, default=True] Specifies if the estimated precision is stored.

assume_centered [bool, default=False] If True, data are not centered before computation. Use-
ful when working with data whose mean is almost, but not exactly zero. If False (default),
data are centered before computation.

Attributes

location_ [ndarray of shape (n_features,)] Estimated location, i.e. the estimated mean.

covariance_ [ndarray of shape (n_features, n_features)] Estimated covariance matrix

precision_ [ndarray of shape (n_features, n_features)] Estimated pseudo-inverse matrix.
(stored only if store_precision is True)

7.5. sklearn.covariance: Covariance Estimators 1693

scikit-learn user guide, Release 0.23.2

Examples

>>> import numpy as np
>>> from sklearn.covariance import EmpiricalCovariance
>>> from sklearn.datasets import make_gaussian_quantiles
>>> real_cov = np.array([[.8, .3],
... [.3, .4]])
>>> rng = np.random.RandomState(0)
>>> X = rng.multivariate_normal(mean=[0, 0],
... cov=real_cov,
... size=500)
>>> cov = EmpiricalCovariance().fit(X)
>>> cov.covariance_
array([[0.7569..., 0.2818...],

[0.2818..., 0.3928...]])
>>> cov.location_
array([0.0622..., 0.0193...])

Methods

error_norm(comp_cov[, norm, scaling, squared]) Computes the Mean Squared Error between two co-
variance estimators.

fit(X[, y]) Fits the Maximum Likelihood Estimator covariance
model according to the given training data and pa-
rameters.

get_params([deep]) Get parameters for this estimator.
get_precision() Getter for the precision matrix.
mahalanobis(X) Computes the squared Mahalanobis distances of

given observations.
score(X_test[, y]) Computes the log-likelihood of a Gaussian data set

with self.covariance_ as an estimator of its
covariance matrix.

set_params(**params) Set the parameters of this estimator.

__init__(*, store_precision=True, assume_centered=False)
Initialize self. See help(type(self)) for accurate signature.

error_norm(comp_cov, norm=’frobenius’, scaling=True, squared=True)
Computes the Mean Squared Error between two covariance estimators. (In the sense of the Frobenius
norm).

Parameters

comp_cov [array-like of shape (n_features, n_features)] The covariance to compare with.

norm [{“frobenius”, “spectral”}, default=”frobenius”] The type of norm used to com-
pute the error. Available error types: - ‘frobenius’ (default): sqrt(tr(A^t.A)) - ‘spec-
tral’: sqrt(max(eigenvalues(A^t.A)) where A is the error (comp_cov - self.
covariance_).

scaling [bool, default=True] If True (default), the squared error norm is divided by
n_features. If False, the squared error norm is not rescaled.

squared [bool, default=True] Whether to compute the squared error norm or the error norm.
If True (default), the squared error norm is returned. If False, the error norm is returned.

1694 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Returns

result [float] The Mean Squared Error (in the sense of the Frobenius norm) between self
and comp_cov covariance estimators.

fit(X, y=None)
Fits the Maximum Likelihood Estimator covariance model according to the given training data and param-
eters.

Parameters

X [array-like of shape (n_samples, n_features)] Training data, where n_samples is the num-
ber of samples and n_features is the number of features.

y [Ignored] Not used, present for API consistence purpose.

Returns

self [object]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

get_precision()
Getter for the precision matrix.

Returns

precision_ [array-like of shape (n_features, n_features)] The precision matrix associated to
the current covariance object.

mahalanobis(X)
Computes the squared Mahalanobis distances of given observations.

Parameters

X [array-like of shape (n_samples, n_features)] The observations, the Mahalanobis distances
of the which we compute. Observations are assumed to be drawn from the same distribu-
tion than the data used in fit.

Returns

dist [ndarray of shape (n_samples,)] Squared Mahalanobis distances of the observations.

score(X_test, y=None)
Computes the log-likelihood of a Gaussian data set with self.covariance_ as an estimator of its
covariance matrix.

Parameters

X_test [array-like of shape (n_samples, n_features)] Test data of which we compute the
likelihood, where n_samples is the number of samples and n_features is the number of
features. X_test is assumed to be drawn from the same distribution than the data used in
fit (including centering).

y [Ignored] Not used, present for API consistence purpose.

7.5. sklearn.covariance: Covariance Estimators 1695

scikit-learn user guide, Release 0.23.2

Returns

res [float] The likelihood of the data set with self.covariance_ as an estimator of its
covariance matrix.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.covariance.EmpiricalCovariance

• Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood

• Robust covariance estimation and Mahalanobis distances relevance

• Robust vs Empirical covariance estimate

7.5.2 sklearn.covariance.EllipticEnvelope

class sklearn.covariance.EllipticEnvelope(*, store_precision=True, as-
sume_centered=False, support_fraction=None,
contamination=0.1, random_state=None)

An object for detecting outliers in a Gaussian distributed dataset.

Read more in the User Guide.

Parameters

store_precision [bool, default=True] Specify if the estimated precision is stored.

assume_centered [bool, default=False] If True, the support of robust location and covariance
estimates is computed, and a covariance estimate is recomputed from it, without centering
the data. Useful to work with data whose mean is significantly equal to zero but is not
exactly zero. If False, the robust location and covariance are directly computed with the
FastMCD algorithm without additional treatment.

support_fraction [float, default=None] The proportion of points to be included in the support
of the raw MCD estimate. If None, the minimum value of support_fraction will be used
within the algorithm: [n_sample + n_features + 1] / 2. Range is (0, 1).

contamination [float, default=0.1] The amount of contamination of the data set, i.e. the pro-
portion of outliers in the data set. Range is (0, 0.5).

random_state [int or RandomState instance, default=None] Determines the pseudo random
number generator for shuffling the data. Pass an int for reproducible results across multiple
function calls. See :term: Glossary <random_state>.

Attributes

location_ [ndarray of shape (n_features,)] Estimated robust location

1696 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

covariance_ [ndarray of shape (n_features, n_features)] Estimated robust covariance matrix

precision_ [ndarray of shape (n_features, n_features)] Estimated pseudo inverse matrix. (stored
only if store_precision is True)

support_ [ndarray of shape (n_samples,)] A mask of the observations that have been used to
compute the robust estimates of location and shape.

offset_ [float] Offset used to define the decision function from the raw scores. We have the rela-
tion: decision_function = score_samples - offset_. The offset depends
on the contamination parameter and is defined in such a way we obtain the expected number
of outliers (samples with decision function < 0) in training.

New in version 0.20.

raw_location_ [ndarray of shape (n_features,)] The raw robust estimated location before cor-
rection and re-weighting.

raw_covariance_ [ndarray of shape (n_features, n_features)] The raw robust estimated covari-
ance before correction and re-weighting.

raw_support_ [ndarray of shape (n_samples,)] A mask of the observations that have been
used to compute the raw robust estimates of location and shape, before correction and re-
weighting.

dist_ [ndarray of shape (n_samples,)] Mahalanobis distances of the training set (on which fit
is called) observations.

See also:

EmpiricalCovariance, MinCovDet

Notes

Outlier detection from covariance estimation may break or not perform well in high-dimensional settings. In
particular, one will always take care to work with n_samples > n_features ** 2.

References

[1]

Examples

>>> import numpy as np
>>> from sklearn.covariance import EllipticEnvelope
>>> true_cov = np.array([[.8, .3],
... [.3, .4]])
>>> X = np.random.RandomState(0).multivariate_normal(mean=[0, 0],
... cov=true_cov,
... size=500)
>>> cov = EllipticEnvelope(random_state=0).fit(X)
>>> # predict returns 1 for an inlier and -1 for an outlier
>>> cov.predict([[0, 0],
... [3, 3]])
array([1, -1])
>>> cov.covariance_

(continues on next page)

7.5. sklearn.covariance: Covariance Estimators 1697

scikit-learn user guide, Release 0.23.2

(continued from previous page)

array([[0.7411..., 0.2535...],
[0.2535..., 0.3053...]])

>>> cov.location_
array([0.0813... , 0.0427...])

Methods

correct_covariance(data) Apply a correction to raw Minimum Covariance De-
terminant estimates.

decision_function(X) Compute the decision function of the given observa-
tions.

error_norm(comp_cov[, norm, scaling, squared]) Computes the Mean Squared Error between two co-
variance estimators.

fit(X[, y]) Fit the EllipticEnvelope model.
fit_predict(X[, y]) Perform fit on X and returns labels for X.
get_params([deep]) Get parameters for this estimator.
get_precision() Getter for the precision matrix.
mahalanobis(X) Computes the squared Mahalanobis distances of

given observations.
predict(X) Predict the labels (1 inlier, -1 outlier) of X according

to the fitted model.
reweight_covariance(data) Re-weight raw Minimum Covariance Determinant

estimates.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and

labels.
score_samples(X) Compute the negative Mahalanobis distances.
set_params(**params) Set the parameters of this estimator.

__init__(*, store_precision=True, assume_centered=False, support_fraction=None, contamina-
tion=0.1, random_state=None)

Initialize self. See help(type(self)) for accurate signature.

correct_covariance(data)
Apply a correction to raw Minimum Covariance Determinant estimates.

Correction using the empirical correction factor suggested by Rousseeuw and Van Driessen in [RVD].

Parameters

data [array-like of shape (n_samples, n_features)] The data matrix, with p features and n
samples. The data set must be the one which was used to compute the raw estimates.

Returns

covariance_corrected [ndarray of shape (n_features, n_features)] Corrected robust covari-
ance estimate.

References

[RVD]

decision_function(X)
Compute the decision function of the given observations.

1698 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Parameters

X [array-like of shape (n_samples, n_features)] The data matrix.

Returns

decision [ndarray of shape (n_samples,)] Decision function of the samples. It is equal to
the shifted Mahalanobis distances. The threshold for being an outlier is 0, which ensures
a compatibility with other outlier detection algorithms.

error_norm(comp_cov, norm=’frobenius’, scaling=True, squared=True)
Computes the Mean Squared Error between two covariance estimators. (In the sense of the Frobenius
norm).

Parameters

comp_cov [array-like of shape (n_features, n_features)] The covariance to compare with.

norm [{“frobenius”, “spectral”}, default=”frobenius”] The type of norm used to com-
pute the error. Available error types: - ‘frobenius’ (default): sqrt(tr(A^t.A)) - ‘spec-
tral’: sqrt(max(eigenvalues(A^t.A)) where A is the error (comp_cov - self.
covariance_).

scaling [bool, default=True] If True (default), the squared error norm is divided by
n_features. If False, the squared error norm is not rescaled.

squared [bool, default=True] Whether to compute the squared error norm or the error norm.
If True (default), the squared error norm is returned. If False, the error norm is returned.

Returns

result [float] The Mean Squared Error (in the sense of the Frobenius norm) between self
and comp_cov covariance estimators.

fit(X, y=None)
Fit the EllipticEnvelope model.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training data.

y [Ignored] Not used, present for API consistency by convention.

fit_predict(X, y=None)
Perform fit on X and returns labels for X.

Returns -1 for outliers and 1 for inliers.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [Ignored] Not used, present for API consistency by convention.

Returns

y [ndarray of shape (n_samples,)] 1 for inliers, -1 for outliers.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

7.5. sklearn.covariance: Covariance Estimators 1699

scikit-learn user guide, Release 0.23.2

params [mapping of string to any] Parameter names mapped to their values.

get_precision()
Getter for the precision matrix.

Returns

precision_ [array-like of shape (n_features, n_features)] The precision matrix associated to
the current covariance object.

mahalanobis(X)
Computes the squared Mahalanobis distances of given observations.

Parameters

X [array-like of shape (n_samples, n_features)] The observations, the Mahalanobis distances
of the which we compute. Observations are assumed to be drawn from the same distribu-
tion than the data used in fit.

Returns

dist [ndarray of shape (n_samples,)] Squared Mahalanobis distances of the observations.

predict(X)
Predict the labels (1 inlier, -1 outlier) of X according to the fitted model.

Parameters

X [array-like of shape (n_samples, n_features)] The data matrix.

Returns

is_inlier [ndarray of shape (n_samples,)] Returns -1 for anomalies/outliers and +1 for in-
liers.

reweight_covariance(data)
Re-weight raw Minimum Covariance Determinant estimates.

Re-weight observations using Rousseeuw’s method (equivalent to deleting outlying observations from the
data set before computing location and covariance estimates) described in [RVDriessen].

Parameters

data [array-like of shape (n_samples, n_features)] The data matrix, with p features and n
samples. The data set must be the one which was used to compute the raw estimates.

Returns

location_reweighted [ndarray of shape (n_features,)] Re-weighted robust location estimate.

covariance_reweighted [ndarray of shape (n_features, n_features)] Re-weighted robust co-
variance estimate.

support_reweighted [ndarray of shape (n_samples,), dtype=bool] A mask of the observa-
tions that have been used to compute the re-weighted robust location and covariance esti-
mates.

References

[RVDriessen]

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

1700 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) w.r.t. y.

score_samples(X)
Compute the negative Mahalanobis distances.

Parameters

X [array-like of shape (n_samples, n_features)] The data matrix.

Returns

negative_mahal_distances [array-like of shape (n_samples,)] Opposite of the Mahalanobis
distances.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.covariance.EllipticEnvelope

• Outlier detection on a real data set

• Comparing anomaly detection algorithms for outlier detection on toy datasets

7.5.3 sklearn.covariance.GraphicalLasso

class sklearn.covariance.GraphicalLasso(alpha=0.01, *, mode=’cd’, tol=0.0001,
enet_tol=0.0001, max_iter=100, verbose=False,
assume_centered=False)

Sparse inverse covariance estimation with an l1-penalized estimator.

Read more in the User Guide.

Changed in version v0.20: GraphLasso has been renamed to GraphicalLasso

Parameters

alpha [float, default=0.01] The regularization parameter: the higher alpha, the more regulariza-
tion, the sparser the inverse covariance. Range is (0, inf].

7.5. sklearn.covariance: Covariance Estimators 1701

scikit-learn user guide, Release 0.23.2

mode [{‘cd’, ‘lars’}, default=’cd’] The Lasso solver to use: coordinate descent or LARS. Use
LARS for very sparse underlying graphs, where p > n. Elsewhere prefer cd which is more
numerically stable.

tol [float, default=1e-4] The tolerance to declare convergence: if the dual gap goes below this
value, iterations are stopped. Range is (0, inf].

enet_tol [float, default=1e-4] The tolerance for the elastic net solver used to calculate the de-
scent direction. This parameter controls the accuracy of the search direction for a given
column update, not of the overall parameter estimate. Only used for mode=’cd’. Range is
(0, inf].

max_iter [int, default=100] The maximum number of iterations.

verbose [bool, default=False] If verbose is True, the objective function and dual gap are plotted
at each iteration.

assume_centered [bool, default=False] If True, data are not centered before computation. Use-
ful when working with data whose mean is almost, but not exactly zero. If False, data are
centered before computation.

Attributes

location_ [ndarray of shape (n_features,)] Estimated location, i.e. the estimated mean.

covariance_ [ndarray of shape (n_features, n_features)] Estimated covariance matrix

precision_ [ndarray of shape (n_features, n_features)] Estimated pseudo inverse matrix.

n_iter_ [int] Number of iterations run.

See also:

graphical_lasso, GraphicalLassoCV

Examples

>>> import numpy as np
>>> from sklearn.covariance import GraphicalLasso
>>> true_cov = np.array([[0.8, 0.0, 0.2, 0.0],
... [0.0, 0.4, 0.0, 0.0],
... [0.2, 0.0, 0.3, 0.1],
... [0.0, 0.0, 0.1, 0.7]])
>>> np.random.seed(0)
>>> X = np.random.multivariate_normal(mean=[0, 0, 0, 0],
... cov=true_cov,
... size=200)
>>> cov = GraphicalLasso().fit(X)
>>> np.around(cov.covariance_, decimals=3)
array([[0.816, 0.049, 0.218, 0.019],

[0.049, 0.364, 0.017, 0.034],
[0.218, 0.017, 0.322, 0.093],
[0.019, 0.034, 0.093, 0.69]])

>>> np.around(cov.location_, decimals=3)
array([0.073, 0.04 , 0.038, 0.143])

Methods

1702 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

error_norm(comp_cov[, norm, scaling, squared]) Computes the Mean Squared Error between two co-
variance estimators.

fit(X[, y]) Fits the GraphicalLasso model to X.
get_params([deep]) Get parameters for this estimator.
get_precision() Getter for the precision matrix.
mahalanobis(X) Computes the squared Mahalanobis distances of

given observations.
score(X_test[, y]) Computes the log-likelihood of a Gaussian data set

with self.covariance_ as an estimator of its
covariance matrix.

set_params(**params) Set the parameters of this estimator.

__init__(alpha=0.01, *, mode=’cd’, tol=0.0001, enet_tol=0.0001, max_iter=100, verbose=False, as-
sume_centered=False)

Initialize self. See help(type(self)) for accurate signature.

error_norm(comp_cov, norm=’frobenius’, scaling=True, squared=True)
Computes the Mean Squared Error between two covariance estimators. (In the sense of the Frobenius
norm).

Parameters

comp_cov [array-like of shape (n_features, n_features)] The covariance to compare with.

norm [{“frobenius”, “spectral”}, default=”frobenius”] The type of norm used to com-
pute the error. Available error types: - ‘frobenius’ (default): sqrt(tr(A^t.A)) - ‘spec-
tral’: sqrt(max(eigenvalues(A^t.A)) where A is the error (comp_cov - self.
covariance_).

scaling [bool, default=True] If True (default), the squared error norm is divided by
n_features. If False, the squared error norm is not rescaled.

squared [bool, default=True] Whether to compute the squared error norm or the error norm.
If True (default), the squared error norm is returned. If False, the error norm is returned.

Returns

result [float] The Mean Squared Error (in the sense of the Frobenius norm) between self
and comp_cov covariance estimators.

fit(X, y=None)
Fits the GraphicalLasso model to X.

Parameters

X [array-like of shape (n_samples, n_features)] Data from which to compute the covariance
estimate

y [Ignored] Not used, present for API consistence purpose.

Returns

self [object]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

7.5. sklearn.covariance: Covariance Estimators 1703

scikit-learn user guide, Release 0.23.2

Returns

params [mapping of string to any] Parameter names mapped to their values.

get_precision()
Getter for the precision matrix.

Returns

precision_ [array-like of shape (n_features, n_features)] The precision matrix associated to
the current covariance object.

mahalanobis(X)
Computes the squared Mahalanobis distances of given observations.

Parameters

X [array-like of shape (n_samples, n_features)] The observations, the Mahalanobis distances
of the which we compute. Observations are assumed to be drawn from the same distribu-
tion than the data used in fit.

Returns

dist [ndarray of shape (n_samples,)] Squared Mahalanobis distances of the observations.

score(X_test, y=None)
Computes the log-likelihood of a Gaussian data set with self.covariance_ as an estimator of its
covariance matrix.

Parameters

X_test [array-like of shape (n_samples, n_features)] Test data of which we compute the
likelihood, where n_samples is the number of samples and n_features is the number of
features. X_test is assumed to be drawn from the same distribution than the data used in
fit (including centering).

y [Ignored] Not used, present for API consistence purpose.

Returns

res [float] The likelihood of the data set with self.covariance_ as an estimator of its
covariance matrix.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

1704 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

7.5.4 sklearn.covariance.GraphicalLassoCV

class sklearn.covariance.GraphicalLassoCV(*, alphas=4, n_refinements=4, cv=None,
tol=0.0001, enet_tol=0.0001, max_iter=100,
mode=’cd’, n_jobs=None, verbose=False,
assume_centered=False)

Sparse inverse covariance w/ cross-validated choice of the l1 penalty.

See glossary entry for cross-validation estimator.

Read more in the User Guide.

Changed in version v0.20: GraphLassoCV has been renamed to GraphicalLassoCV

Parameters

alphas [int or array-like of shape (n_alphas,), dtype=float, default=4] If an integer is given, it
fixes the number of points on the grids of alpha to be used. If a list is given, it gives the
grid to be used. See the notes in the class docstring for more details. Range is (0, inf] when
floats given.

n_refinements [int, default=4] The number of times the grid is refined. Not used if explicit
values of alphas are passed. Range is [1, inf).

cv [int, cross-validation generator or iterable, default=None] Determines the cross-validation
splitting strategy. Possible inputs for cv are:

• None, to use the default 5-fold cross-validation,

• integer, to specify the number of folds.

• CV splitter,

• An iterable yielding (train, test) splits as arrays of indices.

For integer/None inputs KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

Changed in version 0.20: cv default value if None changed from 3-fold to 5-fold.

tol [float, default=1e-4] The tolerance to declare convergence: if the dual gap goes below this
value, iterations are stopped. Range is (0, inf].

enet_tol [float, default=1e-4] The tolerance for the elastic net solver used to calculate the de-
scent direction. This parameter controls the accuracy of the search direction for a given
column update, not of the overall parameter estimate. Only used for mode=’cd’. Range is
(0, inf].

max_iter [int, default=100] Maximum number of iterations.

mode [{‘cd’, ‘lars’}, default=’cd’] The Lasso solver to use: coordinate descent or LARS. Use
LARS for very sparse underlying graphs, where number of features is greater than number
of samples. Elsewhere prefer cd which is more numerically stable.

n_jobs [int, default=None] number of jobs to run in parallel. None means 1 unless in a
joblib.parallel_backend context. -1 means using all processors. See Glossary
for more details.

Changed in version v0.20: n_jobs default changed from 1 to None

verbose [bool, default=False] If verbose is True, the objective function and duality gap are
printed at each iteration.

7.5. sklearn.covariance: Covariance Estimators 1705

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

assume_centered [bool, default=False] If True, data are not centered before computation. Use-
ful when working with data whose mean is almost, but not exactly zero. If False, data are
centered before computation.

Attributes

location_ [ndarray of shape (n_features,)] Estimated location, i.e. the estimated mean.

covariance_ [ndarray of shape (n_features, n_features)] Estimated covariance matrix.

precision_ [ndarray of shape (n_features, n_features)] Estimated precision matrix (inverse co-
variance).

alpha_ [float] Penalization parameter selected.

cv_alphas_ [list of shape (n_alphas,), dtype=float] All penalization parameters explored.

grid_scores_ [ndarray of shape (n_alphas, n_folds)] Log-likelihood score on left-out data
across folds.

n_iter_ [int] Number of iterations run for the optimal alpha.

See also:

graphical_lasso, GraphicalLasso

Notes

The search for the optimal penalization parameter (alpha) is done on an iteratively refined grid: first the cross-
validated scores on a grid are computed, then a new refined grid is centered around the maximum, and so on.

One of the challenges which is faced here is that the solvers can fail to converge to a well-conditioned estimate.
The corresponding values of alpha then come out as missing values, but the optimum may be close to these
missing values.

Examples

>>> import numpy as np
>>> from sklearn.covariance import GraphicalLassoCV
>>> true_cov = np.array([[0.8, 0.0, 0.2, 0.0],
... [0.0, 0.4, 0.0, 0.0],
... [0.2, 0.0, 0.3, 0.1],
... [0.0, 0.0, 0.1, 0.7]])
>>> np.random.seed(0)
>>> X = np.random.multivariate_normal(mean=[0, 0, 0, 0],
... cov=true_cov,
... size=200)
>>> cov = GraphicalLassoCV().fit(X)
>>> np.around(cov.covariance_, decimals=3)
array([[0.816, 0.051, 0.22 , 0.017],

[0.051, 0.364, 0.018, 0.036],
[0.22 , 0.018, 0.322, 0.094],
[0.017, 0.036, 0.094, 0.69]])

>>> np.around(cov.location_, decimals=3)
array([0.073, 0.04 , 0.038, 0.143])

1706 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Methods

error_norm(comp_cov[, norm, scaling, squared]) Computes the Mean Squared Error between two co-
variance estimators.

fit(X[, y]) Fits the GraphicalLasso covariance model to X.
get_params([deep]) Get parameters for this estimator.
get_precision() Getter for the precision matrix.
mahalanobis(X) Computes the squared Mahalanobis distances of

given observations.
score(X_test[, y]) Computes the log-likelihood of a Gaussian data set

with self.covariance_ as an estimator of its
covariance matrix.

set_params(**params) Set the parameters of this estimator.

__init__(*, alphas=4, n_refinements=4, cv=None, tol=0.0001, enet_tol=0.0001, max_iter=100,
mode=’cd’, n_jobs=None, verbose=False, assume_centered=False)

Initialize self. See help(type(self)) for accurate signature.

error_norm(comp_cov, norm=’frobenius’, scaling=True, squared=True)
Computes the Mean Squared Error between two covariance estimators. (In the sense of the Frobenius
norm).

Parameters

comp_cov [array-like of shape (n_features, n_features)] The covariance to compare with.

norm [{“frobenius”, “spectral”}, default=”frobenius”] The type of norm used to com-
pute the error. Available error types: - ‘frobenius’ (default): sqrt(tr(A^t.A)) - ‘spec-
tral’: sqrt(max(eigenvalues(A^t.A)) where A is the error (comp_cov - self.
covariance_).

scaling [bool, default=True] If True (default), the squared error norm is divided by
n_features. If False, the squared error norm is not rescaled.

squared [bool, default=True] Whether to compute the squared error norm or the error norm.
If True (default), the squared error norm is returned. If False, the error norm is returned.

Returns

result [float] The Mean Squared Error (in the sense of the Frobenius norm) between self
and comp_cov covariance estimators.

fit(X, y=None)
Fits the GraphicalLasso covariance model to X.

Parameters

X [array-like of shape (n_samples, n_features)] Data from which to compute the covariance
estimate

y [Ignored] Not used, present for API consistence purpose.

Returns

self [object]

get_params(deep=True)
Get parameters for this estimator.

Parameters

7.5. sklearn.covariance: Covariance Estimators 1707

scikit-learn user guide, Release 0.23.2

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

get_precision()
Getter for the precision matrix.

Returns

precision_ [array-like of shape (n_features, n_features)] The precision matrix associated to
the current covariance object.

mahalanobis(X)
Computes the squared Mahalanobis distances of given observations.

Parameters

X [array-like of shape (n_samples, n_features)] The observations, the Mahalanobis distances
of the which we compute. Observations are assumed to be drawn from the same distribu-
tion than the data used in fit.

Returns

dist [ndarray of shape (n_samples,)] Squared Mahalanobis distances of the observations.

score(X_test, y=None)
Computes the log-likelihood of a Gaussian data set with self.covariance_ as an estimator of its
covariance matrix.

Parameters

X_test [array-like of shape (n_samples, n_features)] Test data of which we compute the
likelihood, where n_samples is the number of samples and n_features is the number of
features. X_test is assumed to be drawn from the same distribution than the data used in
fit (including centering).

y [Ignored] Not used, present for API consistence purpose.

Returns

res [float] The likelihood of the data set with self.covariance_ as an estimator of its
covariance matrix.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.covariance.GraphicalLassoCV

• Sparse inverse covariance estimation

1708 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

• Visualizing the stock market structure

7.5.5 sklearn.covariance.LedoitWolf

class sklearn.covariance.LedoitWolf(*, store_precision=True, assume_centered=False,
block_size=1000)

LedoitWolf Estimator

Ledoit-Wolf is a particular form of shrinkage, where the shrinkage coefficient is computed using O. Ledoit and
M. Wolf’s formula as described in “A Well-Conditioned Estimator for Large-Dimensional Covariance Matrices”,
Ledoit and Wolf, Journal of Multivariate Analysis, Volume 88, Issue 2, February 2004, pages 365-411.

Read more in the User Guide.

Parameters

store_precision [bool, default=True] Specify if the estimated precision is stored.

assume_centered [bool, default=False] If True, data will not be centered before computation.
Useful when working with data whose mean is almost, but not exactly zero. If False (de-
fault), data will be centered before computation.

block_size [int, default=1000] Size of the blocks into which the covariance matrix will be split
during its Ledoit-Wolf estimation. This is purely a memory optimization and does not affect
results.

Attributes

covariance_ [ndarray of shape (n_features, n_features)] Estimated covariance matrix.

location_ [ndarray of shape (n_features,)] Estimated location, i.e. the estimated mean.

precision_ [ndarray of shape (n_features, n_features)] Estimated pseudo inverse matrix. (stored
only if store_precision is True)

shrinkage_ [float] Coefficient in the convex combination used for the computation of the shrunk
estimate. Range is [0, 1].

Notes

The regularised covariance is:

(1 - shrinkage) * cov + shrinkage * mu * np.identity(n_features)

where mu = trace(cov) / n_features and shrinkage is given by the Ledoit and Wolf formula (see References)

References

“A Well-Conditioned Estimator for Large-Dimensional Covariance Matrices”, Ledoit and Wolf, Journal of Mul-
tivariate Analysis, Volume 88, Issue 2, February 2004, pages 365-411.

Examples

>>> import numpy as np
>>> from sklearn.covariance import LedoitWolf
>>> real_cov = np.array([[.4, .2],
... [.2, .8]])

(continues on next page)

7.5. sklearn.covariance: Covariance Estimators 1709

scikit-learn user guide, Release 0.23.2

(continued from previous page)

>>> np.random.seed(0)
>>> X = np.random.multivariate_normal(mean=[0, 0],
... cov=real_cov,
... size=50)
>>> cov = LedoitWolf().fit(X)
>>> cov.covariance_
array([[0.4406..., 0.1616...],

[0.1616..., 0.8022...]])
>>> cov.location_
array([0.0595... , -0.0075...])

Methods

error_norm(comp_cov[, norm, scaling, squared]) Computes the Mean Squared Error between two co-
variance estimators.

fit(X[, y]) Fit the Ledoit-Wolf shrunk covariance model accord-
ing to the given training data and parameters.

get_params([deep]) Get parameters for this estimator.
get_precision() Getter for the precision matrix.
mahalanobis(X) Computes the squared Mahalanobis distances of

given observations.
score(X_test[, y]) Computes the log-likelihood of a Gaussian data set

with self.covariance_ as an estimator of its
covariance matrix.

set_params(**params) Set the parameters of this estimator.

__init__(*, store_precision=True, assume_centered=False, block_size=1000)
Initialize self. See help(type(self)) for accurate signature.

error_norm(comp_cov, norm=’frobenius’, scaling=True, squared=True)
Computes the Mean Squared Error between two covariance estimators. (In the sense of the Frobenius
norm).

Parameters

comp_cov [array-like of shape (n_features, n_features)] The covariance to compare with.

norm [{“frobenius”, “spectral”}, default=”frobenius”] The type of norm used to com-
pute the error. Available error types: - ‘frobenius’ (default): sqrt(tr(A^t.A)) - ‘spec-
tral’: sqrt(max(eigenvalues(A^t.A)) where A is the error (comp_cov - self.
covariance_).

scaling [bool, default=True] If True (default), the squared error norm is divided by
n_features. If False, the squared error norm is not rescaled.

squared [bool, default=True] Whether to compute the squared error norm or the error norm.
If True (default), the squared error norm is returned. If False, the error norm is returned.

Returns

result [float] The Mean Squared Error (in the sense of the Frobenius norm) between self
and comp_cov covariance estimators.

fit(X, y=None)
Fit the Ledoit-Wolf shrunk covariance model according to the given training data and parameters.

1710 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Parameters

X [array-like of shape (n_samples, n_features)] Training data, where n_samples is the
number of samples and n_features is the number of features.

y [Ignored] not used, present for API consistence purpose.

Returns

self [object]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

get_precision()
Getter for the precision matrix.

Returns

precision_ [array-like of shape (n_features, n_features)] The precision matrix associated to
the current covariance object.

mahalanobis(X)
Computes the squared Mahalanobis distances of given observations.

Parameters

X [array-like of shape (n_samples, n_features)] The observations, the Mahalanobis distances
of the which we compute. Observations are assumed to be drawn from the same distribu-
tion than the data used in fit.

Returns

dist [ndarray of shape (n_samples,)] Squared Mahalanobis distances of the observations.

score(X_test, y=None)
Computes the log-likelihood of a Gaussian data set with self.covariance_ as an estimator of its
covariance matrix.

Parameters

X_test [array-like of shape (n_samples, n_features)] Test data of which we compute the
likelihood, where n_samples is the number of samples and n_features is the number of
features. X_test is assumed to be drawn from the same distribution than the data used in
fit (including centering).

y [Ignored] Not used, present for API consistence purpose.

Returns

res [float] The likelihood of the data set with self.covariance_ as an estimator of its
covariance matrix.

set_params(**params)
Set the parameters of this estimator.

7.5. sklearn.covariance: Covariance Estimators 1711

scikit-learn user guide, Release 0.23.2

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.covariance.LedoitWolf

• Ledoit-Wolf vs OAS estimation

• Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood

• Model selection with Probabilistic PCA and Factor Analysis (FA)

7.5.6 sklearn.covariance.MinCovDet

class sklearn.covariance.MinCovDet(*, store_precision=True, assume_centered=False, sup-
port_fraction=None, random_state=None)

Minimum Covariance Determinant (MCD): robust estimator of covariance.

The Minimum Covariance Determinant covariance estimator is to be applied on Gaussian-distributed data, but
could still be relevant on data drawn from a unimodal, symmetric distribution. It is not meant to be used with
multi-modal data (the algorithm used to fit a MinCovDet object is likely to fail in such a case). One should
consider projection pursuit methods to deal with multi-modal datasets.

Read more in the User Guide.

Parameters

store_precision [bool, default=True] Specify if the estimated precision is stored.

assume_centered [bool, default=False] If True, the support of the robust location and the co-
variance estimates is computed, and a covariance estimate is recomputed from it, without
centering the data. Useful to work with data whose mean is significantly equal to zero but is
not exactly zero. If False, the robust location and covariance are directly computed with the
FastMCD algorithm without additional treatment.

support_fraction [float, default=None] The proportion of points to be included in the support
of the raw MCD estimate. Default is None, which implies that the minimum value of sup-
port_fraction will be used within the algorithm: (n_sample + n_features + 1) /
2. The parameter must be in the range (0, 1).

random_state [int or RandomState instance, default=None] Determines the pseudo random
number generator for shuffling the data. Pass an int for reproducible results across multiple
function calls. See :term: Glossary <random_state>.

Attributes

raw_location_ [ndarray of shape (n_features,)] The raw robust estimated location before cor-
rection and re-weighting.

raw_covariance_ [ndarray of shape (n_features, n_features)] The raw robust estimated covari-
ance before correction and re-weighting.

1712 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

raw_support_ [ndarray of shape (n_samples,)] A mask of the observations that have been
used to compute the raw robust estimates of location and shape, before correction and re-
weighting.

location_ [ndarray of shape (n_features,)] Estimated robust location.

covariance_ [ndarray of shape (n_features, n_features)] Estimated robust covariance matrix.

precision_ [ndarray of shape (n_features, n_features)] Estimated pseudo inverse matrix. (stored
only if store_precision is True)

support_ [ndarray of shape (n_samples,)] A mask of the observations that have been used to
compute the robust estimates of location and shape.

dist_ [ndarray of shape (n_samples,)] Mahalanobis distances of the training set (on which fit
is called) observations.

References

[Rouseeuw1984], [Rousseeuw], [ButlerDavies]

Examples

>>> import numpy as np
>>> from sklearn.covariance import MinCovDet
>>> from sklearn.datasets import make_gaussian_quantiles
>>> real_cov = np.array([[.8, .3],
... [.3, .4]])
>>> rng = np.random.RandomState(0)
>>> X = rng.multivariate_normal(mean=[0, 0],
... cov=real_cov,
... size=500)
>>> cov = MinCovDet(random_state=0).fit(X)
>>> cov.covariance_
array([[0.7411..., 0.2535...],

[0.2535..., 0.3053...]])
>>> cov.location_
array([0.0813... , 0.0427...])

Methods

correct_covariance(data) Apply a correction to raw Minimum Covariance De-
terminant estimates.

error_norm(comp_cov[, norm, scaling, squared]) Computes the Mean Squared Error between two co-
variance estimators.

fit(X[, y]) Fits a Minimum Covariance Determinant with the
FastMCD algorithm.

get_params([deep]) Get parameters for this estimator.
get_precision() Getter for the precision matrix.
mahalanobis(X) Computes the squared Mahalanobis distances of

given observations.
reweight_covariance(data) Re-weight raw Minimum Covariance Determinant

estimates.
Continued on next page

7.5. sklearn.covariance: Covariance Estimators 1713

scikit-learn user guide, Release 0.23.2

Table 38 – continued from previous page
score(X_test[, y]) Computes the log-likelihood of a Gaussian data set

with self.covariance_ as an estimator of its
covariance matrix.

set_params(**params) Set the parameters of this estimator.

__init__(*, store_precision=True, assume_centered=False, support_fraction=None, ran-
dom_state=None)

Initialize self. See help(type(self)) for accurate signature.

correct_covariance(data)
Apply a correction to raw Minimum Covariance Determinant estimates.

Correction using the empirical correction factor suggested by Rousseeuw and Van Driessen in [RVD].

Parameters

data [array-like of shape (n_samples, n_features)] The data matrix, with p features and n
samples. The data set must be the one which was used to compute the raw estimates.

Returns

covariance_corrected [ndarray of shape (n_features, n_features)] Corrected robust covari-
ance estimate.

References

[RVD]

error_norm(comp_cov, norm=’frobenius’, scaling=True, squared=True)
Computes the Mean Squared Error between two covariance estimators. (In the sense of the Frobenius
norm).

Parameters

comp_cov [array-like of shape (n_features, n_features)] The covariance to compare with.

norm [{“frobenius”, “spectral”}, default=”frobenius”] The type of norm used to com-
pute the error. Available error types: - ‘frobenius’ (default): sqrt(tr(A^t.A)) - ‘spec-
tral’: sqrt(max(eigenvalues(A^t.A)) where A is the error (comp_cov - self.
covariance_).

scaling [bool, default=True] If True (default), the squared error norm is divided by
n_features. If False, the squared error norm is not rescaled.

squared [bool, default=True] Whether to compute the squared error norm or the error norm.
If True (default), the squared error norm is returned. If False, the error norm is returned.

Returns

result [float] The Mean Squared Error (in the sense of the Frobenius norm) between self
and comp_cov covariance estimators.

fit(X, y=None)
Fits a Minimum Covariance Determinant with the FastMCD algorithm.

Parameters

X [array-like of shape (n_samples, n_features)] Training data, where n_samples is the
number of samples and n_features is the number of features.

y: Ignored Not used, present for API consistence purpose.

1714 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Returns

self [object]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

get_precision()
Getter for the precision matrix.

Returns

precision_ [array-like of shape (n_features, n_features)] The precision matrix associated to
the current covariance object.

mahalanobis(X)
Computes the squared Mahalanobis distances of given observations.

Parameters

X [array-like of shape (n_samples, n_features)] The observations, the Mahalanobis distances
of the which we compute. Observations are assumed to be drawn from the same distribu-
tion than the data used in fit.

Returns

dist [ndarray of shape (n_samples,)] Squared Mahalanobis distances of the observations.

reweight_covariance(data)
Re-weight raw Minimum Covariance Determinant estimates.

Re-weight observations using Rousseeuw’s method (equivalent to deleting outlying observations from the
data set before computing location and covariance estimates) described in [RVDriessen].

Parameters

data [array-like of shape (n_samples, n_features)] The data matrix, with p features and n
samples. The data set must be the one which was used to compute the raw estimates.

Returns

location_reweighted [ndarray of shape (n_features,)] Re-weighted robust location estimate.

covariance_reweighted [ndarray of shape (n_features, n_features)] Re-weighted robust co-
variance estimate.

support_reweighted [ndarray of shape (n_samples,), dtype=bool] A mask of the observa-
tions that have been used to compute the re-weighted robust location and covariance esti-
mates.

References

[RVDriessen]

7.5. sklearn.covariance: Covariance Estimators 1715

scikit-learn user guide, Release 0.23.2

score(X_test, y=None)
Computes the log-likelihood of a Gaussian data set with self.covariance_ as an estimator of its
covariance matrix.

Parameters

X_test [array-like of shape (n_samples, n_features)] Test data of which we compute the
likelihood, where n_samples is the number of samples and n_features is the number of
features. X_test is assumed to be drawn from the same distribution than the data used in
fit (including centering).

y [Ignored] Not used, present for API consistence purpose.

Returns

res [float] The likelihood of the data set with self.covariance_ as an estimator of its
covariance matrix.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.covariance.MinCovDet

• Robust covariance estimation and Mahalanobis distances relevance

• Robust vs Empirical covariance estimate

7.5.7 sklearn.covariance.OAS

class sklearn.covariance.OAS(*, store_precision=True, assume_centered=False)
Oracle Approximating Shrinkage Estimator

Read more in the User Guide.

OAS is a particular form of shrinkage described in “Shrinkage Algorithms for MMSE Covariance Estimation”
Chen et al., IEEE Trans. on Sign. Proc., Volume 58, Issue 10, October 2010.

The formula used here does not correspond to the one given in the article. In the original article, formula (23)
states that 2/p is multiplied by Trace(cov*cov) in both the numerator and denominator, but this operation is
omitted because for a large p, the value of 2/p is so small that it doesn’t affect the value of the estimator.

Parameters

store_precision [bool, default=True] Specify if the estimated precision is stored.

assume_centered [bool, default=False] If True, data will not be centered before computation.
Useful when working with data whose mean is almost, but not exactly zero. If False (de-
fault), data will be centered before computation.

Attributes

1716 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

covariance_ [ndarray of shape (n_features, n_features)] Estimated covariance matrix.

location_ [ndarray of shape (n_features,)] Estimated location, i.e. the estimated mean.

precision_ [ndarray of shape (n_features, n_features)] Estimated pseudo inverse matrix. (stored
only if store_precision is True)

shrinkage_ [float] coefficient in the convex combination used for the computation of the shrunk
estimate. Range is [0, 1].

Notes

The regularised covariance is:

(1 - shrinkage) * cov + shrinkage * mu * np.identity(n_features)

where mu = trace(cov) / n_features and shrinkage is given by the OAS formula (see References)

References

“Shrinkage Algorithms for MMSE Covariance Estimation” Chen et al., IEEE Trans. on Sign. Proc., Volume 58,
Issue 10, October 2010.

Examples

>>> import numpy as np
>>> from sklearn.covariance import OAS
>>> from sklearn.datasets import make_gaussian_quantiles
>>> real_cov = np.array([[.8, .3],
... [.3, .4]])
>>> rng = np.random.RandomState(0)
>>> X = rng.multivariate_normal(mean=[0, 0],
... cov=real_cov,
... size=500)
>>> oas = OAS().fit(X)
>>> oas.covariance_
array([[0.7533..., 0.2763...],

[0.2763..., 0.3964...]])
>>> oas.precision_
array([[1.7833..., -1.2431...],

[-1.2431..., 3.3889...]])
>>> oas.shrinkage_
0.0195...

Methods

error_norm(comp_cov[, norm, scaling, squared]) Computes the Mean Squared Error between two co-
variance estimators.

fit(X[, y]) Fit the Oracle Approximating Shrinkage covariance
model according to the given training data and pa-
rameters.

get_params([deep]) Get parameters for this estimator.
Continued on next page

7.5. sklearn.covariance: Covariance Estimators 1717

scikit-learn user guide, Release 0.23.2

Table 39 – continued from previous page
get_precision() Getter for the precision matrix.
mahalanobis(X) Computes the squared Mahalanobis distances of

given observations.
score(X_test[, y]) Computes the log-likelihood of a Gaussian data set

with self.covariance_ as an estimator of its
covariance matrix.

set_params(**params) Set the parameters of this estimator.

__init__(*, store_precision=True, assume_centered=False)
Initialize self. See help(type(self)) for accurate signature.

error_norm(comp_cov, norm=’frobenius’, scaling=True, squared=True)
Computes the Mean Squared Error between two covariance estimators. (In the sense of the Frobenius
norm).

Parameters

comp_cov [array-like of shape (n_features, n_features)] The covariance to compare with.

norm [{“frobenius”, “spectral”}, default=”frobenius”] The type of norm used to com-
pute the error. Available error types: - ‘frobenius’ (default): sqrt(tr(A^t.A)) - ‘spec-
tral’: sqrt(max(eigenvalues(A^t.A)) where A is the error (comp_cov - self.
covariance_).

scaling [bool, default=True] If True (default), the squared error norm is divided by
n_features. If False, the squared error norm is not rescaled.

squared [bool, default=True] Whether to compute the squared error norm or the error norm.
If True (default), the squared error norm is returned. If False, the error norm is returned.

Returns

result [float] The Mean Squared Error (in the sense of the Frobenius norm) between self
and comp_cov covariance estimators.

fit(X, y=None)
Fit the Oracle Approximating Shrinkage covariance model according to the given training data and param-
eters.

Parameters

X [array-like of shape (n_samples, n_features)] Training data, where n_samples is the
number of samples and n_features is the number of features.

y [Ignored] not used, present for API consistence purpose.

Returns

self [object]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

1718 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

get_precision()
Getter for the precision matrix.

Returns

precision_ [array-like of shape (n_features, n_features)] The precision matrix associated to
the current covariance object.

mahalanobis(X)
Computes the squared Mahalanobis distances of given observations.

Parameters

X [array-like of shape (n_samples, n_features)] The observations, the Mahalanobis distances
of the which we compute. Observations are assumed to be drawn from the same distribu-
tion than the data used in fit.

Returns

dist [ndarray of shape (n_samples,)] Squared Mahalanobis distances of the observations.

score(X_test, y=None)
Computes the log-likelihood of a Gaussian data set with self.covariance_ as an estimator of its
covariance matrix.

Parameters

X_test [array-like of shape (n_samples, n_features)] Test data of which we compute the
likelihood, where n_samples is the number of samples and n_features is the number of
features. X_test is assumed to be drawn from the same distribution than the data used in
fit (including centering).

y [Ignored] Not used, present for API consistence purpose.

Returns

res [float] The likelihood of the data set with self.covariance_ as an estimator of its
covariance matrix.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.covariance.OAS

• Ledoit-Wolf vs OAS estimation

• Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood

7.5. sklearn.covariance: Covariance Estimators 1719

scikit-learn user guide, Release 0.23.2

7.5.8 sklearn.covariance.ShrunkCovariance

class sklearn.covariance.ShrunkCovariance(*, store_precision=True, as-
sume_centered=False, shrinkage=0.1)

Covariance estimator with shrinkage

Read more in the User Guide.

Parameters

store_precision [bool, default=True] Specify if the estimated precision is stored

assume_centered [bool, default=False] If True, data will not be centered before computation.
Useful when working with data whose mean is almost, but not exactly zero. If False, data
will be centered before computation.

shrinkage [float, default=0.1] Coefficient in the convex combination used for the computation
of the shrunk estimate. Range is [0, 1].

Attributes

covariance_ [ndarray of shape (n_features, n_features)] Estimated covariance matrix

location_ [ndarray of shape (n_features,)] Estimated location, i.e. the estimated mean.

precision_ [ndarray of shape (n_features, n_features)] Estimated pseudo inverse matrix. (stored
only if store_precision is True)

Notes

The regularized covariance is given by:

(1 - shrinkage) * cov + shrinkage * mu * np.identity(n_features)

where mu = trace(cov) / n_features

Examples

>>> import numpy as np
>>> from sklearn.covariance import ShrunkCovariance
>>> from sklearn.datasets import make_gaussian_quantiles
>>> real_cov = np.array([[.8, .3],
... [.3, .4]])
>>> rng = np.random.RandomState(0)
>>> X = rng.multivariate_normal(mean=[0, 0],
... cov=real_cov,
... size=500)
>>> cov = ShrunkCovariance().fit(X)
>>> cov.covariance_
array([[0.7387..., 0.2536...],

[0.2536..., 0.4110...]])
>>> cov.location_
array([0.0622..., 0.0193...])

Methods

1720 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

error_norm(comp_cov[, norm, scaling, squared]) Computes the Mean Squared Error between two co-
variance estimators.

fit(X[, y]) Fit the shrunk covariance model according to the
given training data and parameters.

get_params([deep]) Get parameters for this estimator.
get_precision() Getter for the precision matrix.
mahalanobis(X) Computes the squared Mahalanobis distances of

given observations.
score(X_test[, y]) Computes the log-likelihood of a Gaussian data set

with self.covariance_ as an estimator of its
covariance matrix.

set_params(**params) Set the parameters of this estimator.

__init__(*, store_precision=True, assume_centered=False, shrinkage=0.1)
Initialize self. See help(type(self)) for accurate signature.

error_norm(comp_cov, norm=’frobenius’, scaling=True, squared=True)
Computes the Mean Squared Error between two covariance estimators. (In the sense of the Frobenius
norm).

Parameters

comp_cov [array-like of shape (n_features, n_features)] The covariance to compare with.

norm [{“frobenius”, “spectral”}, default=”frobenius”] The type of norm used to com-
pute the error. Available error types: - ‘frobenius’ (default): sqrt(tr(A^t.A)) - ‘spec-
tral’: sqrt(max(eigenvalues(A^t.A)) where A is the error (comp_cov - self.
covariance_).

scaling [bool, default=True] If True (default), the squared error norm is divided by
n_features. If False, the squared error norm is not rescaled.

squared [bool, default=True] Whether to compute the squared error norm or the error norm.
If True (default), the squared error norm is returned. If False, the error norm is returned.

Returns

result [float] The Mean Squared Error (in the sense of the Frobenius norm) between self
and comp_cov covariance estimators.

fit(X, y=None)
Fit the shrunk covariance model according to the given training data and parameters.

Parameters

X [array-like of shape (n_samples, n_features)] Training data, where n_samples is the num-
ber of samples and n_features is the number of features.

y: Ignored not used, present for API consistence purpose.

Returns

self [object]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

7.5. sklearn.covariance: Covariance Estimators 1721

scikit-learn user guide, Release 0.23.2

Returns

params [mapping of string to any] Parameter names mapped to their values.

get_precision()
Getter for the precision matrix.

Returns

precision_ [array-like of shape (n_features, n_features)] The precision matrix associated to
the current covariance object.

mahalanobis(X)
Computes the squared Mahalanobis distances of given observations.

Parameters

X [array-like of shape (n_samples, n_features)] The observations, the Mahalanobis distances
of the which we compute. Observations are assumed to be drawn from the same distribu-
tion than the data used in fit.

Returns

dist [ndarray of shape (n_samples,)] Squared Mahalanobis distances of the observations.

score(X_test, y=None)
Computes the log-likelihood of a Gaussian data set with self.covariance_ as an estimator of its
covariance matrix.

Parameters

X_test [array-like of shape (n_samples, n_features)] Test data of which we compute the
likelihood, where n_samples is the number of samples and n_features is the number of
features. X_test is assumed to be drawn from the same distribution than the data used in
fit (including centering).

y [Ignored] Not used, present for API consistence purpose.

Returns

res [float] The likelihood of the data set with self.covariance_ as an estimator of its
covariance matrix.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.covariance.ShrunkCovariance

• Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood

• Model selection with Probabilistic PCA and Factor Analysis (FA)

1722 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

covariance.empirical_covariance(X, *[,
. . .])

Computes the Maximum likelihood covariance estima-
tor

covariance.graphical_lasso(emp_cov,
alpha, *)

l1-penalized covariance estimator

covariance.ledoit_wolf(X, *[, . . .]) Estimates the shrunk Ledoit-Wolf covariance matrix.
covariance.oas(X, *[, assume_centered]) Estimate covariance with the Oracle Approximating

Shrinkage algorithm.
covariance.shrunk_covariance(emp_cov[,
. . .])

Calculates a covariance matrix shrunk on the diagonal

7.5.9 sklearn.covariance.empirical_covariance

sklearn.covariance.empirical_covariance(X, *, assume_centered=False)
Computes the Maximum likelihood covariance estimator

Parameters

X [ndarray of shape (n_samples, n_features)] Data from which to compute the covariance esti-
mate

assume_centered [bool, default=False] If True, data will not be centered before computation.
Useful when working with data whose mean is almost, but not exactly zero. If False, data
will be centered before computation.

Returns

covariance [ndarray of shape (n_features, n_features)] Empirical covariance (Maximum Like-
lihood Estimator).

Examples

>>> from sklearn.covariance import empirical_covariance
>>> X = [[1,1,1],[1,1,1],[1,1,1],
... [0,0,0],[0,0,0],[0,0,0]]
>>> empirical_covariance(X)
array([[0.25, 0.25, 0.25],

[0.25, 0.25, 0.25],
[0.25, 0.25, 0.25]])

Examples using sklearn.covariance.empirical_covariance

• Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood

7.5.10 sklearn.covariance.graphical_lasso

sklearn.covariance.graphical_lasso(emp_cov, alpha, *, cov_init=None,
mode=’cd’, tol=0.0001, enet_tol=0.0001,
max_iter=100, verbose=False, return_costs=False,
eps=2.220446049250313e-16, return_n_iter=False)

l1-penalized covariance estimator

Read more in the User Guide.

7.5. sklearn.covariance: Covariance Estimators 1723

scikit-learn user guide, Release 0.23.2

Changed in version v0.20: graph_lasso has been renamed to graphical_lasso

Parameters

emp_cov [ndarray of shape (n_features, n_features)] Empirical covariance from which to com-
pute the covariance estimate.

alpha [float] The regularization parameter: the higher alpha, the more regularization, the
sparser the inverse covariance. Range is (0, inf].

cov_init [array of shape (n_features, n_features), default=None] The initial guess for the co-
variance.

mode [{‘cd’, ‘lars’}, default=’cd’] The Lasso solver to use: coordinate descent or LARS. Use
LARS for very sparse underlying graphs, where p > n. Elsewhere prefer cd which is more
numerically stable.

tol [float, default=1e-4] The tolerance to declare convergence: if the dual gap goes below this
value, iterations are stopped. Range is (0, inf].

enet_tol [float, default=1e-4] The tolerance for the elastic net solver used to calculate the de-
scent direction. This parameter controls the accuracy of the search direction for a given
column update, not of the overall parameter estimate. Only used for mode=’cd’. Range is
(0, inf].

max_iter [int, default=100] The maximum number of iterations.

verbose [bool, default=False] If verbose is True, the objective function and dual gap are printed
at each iteration.

return_costs [bool, default=Flase] If return_costs is True, the objective function and dual gap
at each iteration are returned.

eps [float, default=eps] The machine-precision regularization in the computation of the
Cholesky diagonal factors. Increase this for very ill-conditioned systems. Default is np.
finfo(np.float64).eps.

return_n_iter [bool, default=False] Whether or not to return the number of iterations.

Returns

covariance [ndarray of shape (n_features, n_features)] The estimated covariance matrix.

precision [ndarray of shape (n_features, n_features)] The estimated (sparse) precision matrix.

costs [list of (objective, dual_gap) pairs] The list of values of the objective function and the dual
gap at each iteration. Returned only if return_costs is True.

n_iter [int] Number of iterations. Returned only if return_n_iter is set to True.

See also:

GraphicalLasso, GraphicalLassoCV

Notes

The algorithm employed to solve this problem is the GLasso algorithm, from the Friedman 2008 Biostatistics
paper. It is the same algorithm as in the R glasso package.

One possible difference with the glasso R package is that the diagonal coefficients are not penalized.

1724 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

7.5.11 sklearn.covariance.ledoit_wolf

sklearn.covariance.ledoit_wolf(X, *, assume_centered=False, block_size=1000)
Estimates the shrunk Ledoit-Wolf covariance matrix.

Read more in the User Guide.

Parameters

X [array-like of shape (n_samples, n_features)] Data from which to compute the covariance
estimate

assume_centered [bool, default=False] If True, data will not be centered before computation.
Useful to work with data whose mean is significantly equal to zero but is not exactly zero.
If False, data will be centered before computation.

block_size [int, default=1000] Size of the blocks into which the covariance matrix will be split.
This is purely a memory optimization and does not affect results.

Returns

shrunk_cov [ndarray of shape (n_features, n_features)] Shrunk covariance.

shrinkage [float] Coefficient in the convex combination used for the computation of the shrunk
estimate.

Notes

The regularized (shrunk) covariance is:

(1 - shrinkage) * cov + shrinkage * mu * np.identity(n_features)

where mu = trace(cov) / n_features

Examples using sklearn.covariance.ledoit_wolf

• Sparse inverse covariance estimation

7.5.12 sklearn.covariance.oas

sklearn.covariance.oas(X, *, assume_centered=False)
Estimate covariance with the Oracle Approximating Shrinkage algorithm.

Parameters

X [array-like of shape (n_samples, n_features)] Data from which to compute the covariance
estimate.

assume_centered [bool, default=False] If True, data will not be centered before computation.
Useful to work with data whose mean is significantly equal to zero but is not exactly zero.
If False, data will be centered before computation.

Returns

shrunk_cov [array-like of shape (n_features, n_features)] Shrunk covariance.

shrinkage [float] Coefficient in the convex combination used for the computation of the shrunk
estimate.

7.5. sklearn.covariance: Covariance Estimators 1725

scikit-learn user guide, Release 0.23.2

Notes

The regularised (shrunk) covariance is:

(1 - shrinkage) * cov + shrinkage * mu * np.identity(n_features)

where mu = trace(cov) / n_features

The formula we used to implement the OAS is slightly modified compared to the one given in the article. See
OAS for more details.

7.5.13 sklearn.covariance.shrunk_covariance

sklearn.covariance.shrunk_covariance(emp_cov, shrinkage=0.1)
Calculates a covariance matrix shrunk on the diagonal

Read more in the User Guide.

Parameters

emp_cov [array-like of shape (n_features, n_features)] Covariance matrix to be shrunk

shrinkage [float, default=0.1] Coefficient in the convex combination used for the computation
of the shrunk estimate. Range is [0, 1].

Returns

shrunk_cov [ndarray of shape (n_features, n_features)] Shrunk covariance.

Notes

The regularized (shrunk) covariance is given by:

(1 - shrinkage) * cov + shrinkage * mu * np.identity(n_features)

where mu = trace(cov) / n_features

7.6 sklearn.cross_decomposition: Cross decomposition

User guide: See the Cross decomposition section for further details.

cross_decomposition.CCA([n_components,
. . .])

CCA Canonical Correlation Analysis.

cross_decomposition.PLSCanonical([. . .]) PLSCanonical implements the 2 blocks canonical PLS
of the original Wold algorithm [Tenenhaus 1998] p.204,
referred as PLS-C2A in [Wegelin 2000].

cross_decomposition.
PLSRegression([. . .])

PLS regression

cross_decomposition.
PLSSVD([n_components, . . .])

Partial Least Square SVD

1726 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

7.6.1 sklearn.cross_decomposition.CCA

class sklearn.cross_decomposition.CCA(n_components=2, *, scale=True, max_iter=500,
tol=1e-06, copy=True)

CCA Canonical Correlation Analysis.

CCA inherits from PLS with mode=”B” and deflation_mode=”canonical”.

Read more in the User Guide.

Parameters

n_components [int, (default 2).] number of components to keep.

scale [boolean, (default True)] whether to scale the data?

max_iter [an integer, (default 500)] the maximum number of iterations of the NIPALS inner
loop

tol [non-negative real, default 1e-06.] the tolerance used in the iterative algorithm

copy [boolean] Whether the deflation be done on a copy. Let the default value to True unless
you don’t care about side effects

Attributes

x_weights_ [array, [p, n_components]] X block weights vectors.

y_weights_ [array, [q, n_components]] Y block weights vectors.

x_loadings_ [array, [p, n_components]] X block loadings vectors.

y_loadings_ [array, [q, n_components]] Y block loadings vectors.

x_scores_ [array, [n_samples, n_components]] X scores.

y_scores_ [array, [n_samples, n_components]] Y scores.

x_rotations_ [array, [p, n_components]] X block to latents rotations.

y_rotations_ [array, [q, n_components]] Y block to latents rotations.

coef_ [array of shape (p, q)] The coefficients of the linear model: Y = X coef_ + Err

n_iter_ [array-like] Number of iterations of the NIPALS inner loop for each component.

See also:

PLSCanonical

PLSSVD

Notes

For each component k, find the weights u, v that maximizes max corr(Xk u, Yk v), such that |u| = |v| =
1

Note that it maximizes only the correlations between the scores.

The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score.

The residual matrix of Y (Yk+1) block is obtained by deflation on the current Y score.

7.6. sklearn.cross_decomposition: Cross decomposition 1727

scikit-learn user guide, Release 0.23.2

References

Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case.
Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000.

In french but still a reference: Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions
Technic.

Examples

>>> from sklearn.cross_decomposition import CCA
>>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [3.,5.,4.]]
>>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]]
>>> cca = CCA(n_components=1)
>>> cca.fit(X, Y)
CCA(n_components=1)
>>> X_c, Y_c = cca.transform(X, Y)

Methods

fit(X, Y) Fit model to data.
fit_transform(X[, y]) Learn and apply the dimension reduction on the train

data.
get_params([deep]) Get parameters for this estimator.
inverse_transform(X) Transform data back to its original space.
predict(X[, copy]) Apply the dimension reduction learned on the train

data.
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.
transform(X[, Y, copy]) Apply the dimension reduction learned on the train

data.

__init__(n_components=2, *, scale=True, max_iter=500, tol=1e-06, copy=True)
Initialize self. See help(type(self)) for accurate signature.

fit(X, Y)
Fit model to data.

Parameters

X [array-like of shape (n_samples, n_features)] Training vectors, where n_samples is the
number of samples and n_features is the number of predictors.

Y [array-like of shape (n_samples, n_targets)] Target vectors, where n_samples is the num-
ber of samples and n_targets is the number of response variables.

fit_transform(X, y=None)
Learn and apply the dimension reduction on the train data.

Parameters

X [array-like of shape (n_samples, n_features)] Training vectors, where n_samples is the
number of samples and n_features is the number of predictors.

1728 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

y [array-like of shape (n_samples, n_targets)] Target vectors, where n_samples is the number
of samples and n_targets is the number of response variables.

Returns

x_scores if Y is not given, (x_scores, y_scores) otherwise.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

inverse_transform(X)
Transform data back to its original space.

Parameters

X [array-like of shape (n_samples, n_components)] New data, where n_samples is the num-
ber of samples and n_components is the number of pls components.

Returns

x_reconstructed [array-like of shape (n_samples, n_features)]

Notes

This transformation will only be exact if n_components=n_features

predict(X, copy=True)
Apply the dimension reduction learned on the train data.

Parameters

X [array-like of shape (n_samples, n_features)] Training vectors, where n_samples is the
number of samples and n_features is the number of predictors.

copy [boolean, default True] Whether to copy X and Y, or perform in-place normalization.

Notes

This call requires the estimation of a p x q matrix, which may be an issue in high dimensional space.

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

7.6. sklearn.cross_decomposition: Cross decomposition 1729

scikit-learn user guide, Release 0.23.2

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X, Y=None, copy=True)
Apply the dimension reduction learned on the train data.

Parameters

X [array-like of shape (n_samples, n_features)] Training vectors, where n_samples is the
number of samples and n_features is the number of predictors.

Y [array-like of shape (n_samples, n_targets)] Target vectors, where n_samples is the num-
ber of samples and n_targets is the number of response variables.

copy [boolean, default True] Whether to copy X and Y, or perform in-place normalization.

Returns

x_scores if Y is not given, (x_scores, y_scores) otherwise.

Examples using sklearn.cross_decomposition.CCA

• Compare cross decomposition methods

• Multilabel classification

7.6.2 sklearn.cross_decomposition.PLSCanonical

class sklearn.cross_decomposition.PLSCanonical(n_components=2, *, scale=True, algo-
rithm=’nipals’, max_iter=500, tol=1e-
06, copy=True)

PLSCanonical implements the 2 blocks canonical PLS of the original Wold algorithm [Tenenhaus 1998] p.204,
referred as PLS-C2A in [Wegelin 2000].

1730 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

This class inherits from PLS with mode=”A” and deflation_mode=”canonical”, norm_y_weights=True and al-
gorithm=”nipals”, but svd should provide similar results up to numerical errors.

Read more in the User Guide.

New in version 0.8.

Parameters

n_components [int, (default 2).] Number of components to keep

scale [boolean, (default True)] Option to scale data

algorithm [string, “nipals” or “svd”] The algorithm used to estimate the weights. It will be
called n_components times, i.e. once for each iteration of the outer loop.

max_iter [an integer, (default 500)] the maximum number of iterations of the NIPALS inner
loop (used only if algorithm=”nipals”)

tol [non-negative real, default 1e-06] the tolerance used in the iterative algorithm

copy [boolean, default True] Whether the deflation should be done on a copy. Let the default
value to True unless you don’t care about side effect

Attributes

x_weights_ [array, shape = [p, n_components]] X block weights vectors.

y_weights_ [array, shape = [q, n_components]] Y block weights vectors.

x_loadings_ [array, shape = [p, n_components]] X block loadings vectors.

y_loadings_ [array, shape = [q, n_components]] Y block loadings vectors.

x_scores_ [array, shape = [n_samples, n_components]] X scores.

y_scores_ [array, shape = [n_samples, n_components]] Y scores.

x_rotations_ [array, shape = [p, n_components]] X block to latents rotations.

y_rotations_ [array, shape = [q, n_components]] Y block to latents rotations.

coef_ [array of shape (p, q)] The coefficients of the linear model: Y = X coef_ + Err

n_iter_ [array-like] Number of iterations of the NIPALS inner loop for each component. Not
useful if the algorithm provided is “svd”.

See also:

CCA

PLSSVD

Notes

Matrices:

T: x_scores_
U: y_scores_
W: x_weights_
C: y_weights_
P: x_loadings_
Q: y_loadings__

Are computed such that:

7.6. sklearn.cross_decomposition: Cross decomposition 1731

scikit-learn user guide, Release 0.23.2

X = T P.T + Err and Y = U Q.T + Err
T[:, k] = Xk W[:, k] for k in range(n_components)
U[:, k] = Yk C[:, k] for k in range(n_components)
x_rotations_ = W (P.T W)^(-1)
y_rotations_ = C (Q.T C)^(-1)

where Xk and Yk are residual matrices at iteration k.

Slides explaining PLS

For each component k, find weights u, v that optimize:

max corr(Xk u, Yk v) * std(Xk u) std(Yk u), such that ``|u| = |v| = 1``

Note that it maximizes both the correlations between the scores and the intra-block variances.

The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score.

The residual matrix of Y (Yk+1) block is obtained by deflation on the current Y score. This performs a canonical
symmetric version of the PLS regression. But slightly different than the CCA. This is mostly used for modeling.

This implementation provides the same results that the “plspm” package provided in the R language (R-
project), using the function plsca(X, Y). Results are equal or collinear with the function pls(..., mode
= "canonical") of the “mixOmics” package. The difference relies in the fact that mixOmics implementa-
tion does not exactly implement the Wold algorithm since it does not normalize y_weights to one.

References

Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case.
Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000.

Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic.

Examples

>>> from sklearn.cross_decomposition import PLSCanonical
>>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [2.,5.,4.]]
>>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]]
>>> plsca = PLSCanonical(n_components=2)
>>> plsca.fit(X, Y)
PLSCanonical()
>>> X_c, Y_c = plsca.transform(X, Y)

Methods

fit(X, Y) Fit model to data.
fit_transform(X[, y]) Learn and apply the dimension reduction on the train

data.
get_params([deep]) Get parameters for this estimator.
inverse_transform(X) Transform data back to its original space.
predict(X[, copy]) Apply the dimension reduction learned on the train

data.
Continued on next page

1732 Chapter 7. API Reference

http://www.eigenvector.com/Docs/Wise_pls_properties.pdf

scikit-learn user guide, Release 0.23.2

Table 44 – continued from previous page
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.
transform(X[, Y, copy]) Apply the dimension reduction learned on the train

data.

__init__(n_components=2, *, scale=True, algorithm=’nipals’, max_iter=500, tol=1e-06,
copy=True)

Initialize self. See help(type(self)) for accurate signature.

fit(X, Y)
Fit model to data.

Parameters

X [array-like of shape (n_samples, n_features)] Training vectors, where n_samples is the
number of samples and n_features is the number of predictors.

Y [array-like of shape (n_samples, n_targets)] Target vectors, where n_samples is the num-
ber of samples and n_targets is the number of response variables.

fit_transform(X, y=None)
Learn and apply the dimension reduction on the train data.

Parameters

X [array-like of shape (n_samples, n_features)] Training vectors, where n_samples is the
number of samples and n_features is the number of predictors.

y [array-like of shape (n_samples, n_targets)] Target vectors, where n_samples is the number
of samples and n_targets is the number of response variables.

Returns

x_scores if Y is not given, (x_scores, y_scores) otherwise.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

inverse_transform(X)
Transform data back to its original space.

Parameters

X [array-like of shape (n_samples, n_components)] New data, where n_samples is the num-
ber of samples and n_components is the number of pls components.

Returns

x_reconstructed [array-like of shape (n_samples, n_features)]

7.6. sklearn.cross_decomposition: Cross decomposition 1733

scikit-learn user guide, Release 0.23.2

Notes

This transformation will only be exact if n_components=n_features

predict(X, copy=True)
Apply the dimension reduction learned on the train data.

Parameters

X [array-like of shape (n_samples, n_features)] Training vectors, where n_samples is the
number of samples and n_features is the number of predictors.

copy [boolean, default True] Whether to copy X and Y, or perform in-place normalization.

Notes

This call requires the estimation of a p x q matrix, which may be an issue in high dimensional space.

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

1734 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

transform(X, Y=None, copy=True)
Apply the dimension reduction learned on the train data.

Parameters

X [array-like of shape (n_samples, n_features)] Training vectors, where n_samples is the
number of samples and n_features is the number of predictors.

Y [array-like of shape (n_samples, n_targets)] Target vectors, where n_samples is the num-
ber of samples and n_targets is the number of response variables.

copy [boolean, default True] Whether to copy X and Y, or perform in-place normalization.

Returns

x_scores if Y is not given, (x_scores, y_scores) otherwise.

Examples using sklearn.cross_decomposition.PLSCanonical

• Compare cross decomposition methods

7.6.3 sklearn.cross_decomposition.PLSRegression

class sklearn.cross_decomposition.PLSRegression(n_components=2, *, scale=True,
max_iter=500, tol=1e-06, copy=True)

PLS regression

PLSRegression implements the PLS 2 blocks regression known as PLS2 or PLS1 in case of one dimensional
response. This class inherits from _PLS with mode=”A”, deflation_mode=”regression”, norm_y_weights=False
and algorithm=”nipals”.

Read more in the User Guide.

New in version 0.8.

Parameters

n_components [int, (default 2)] Number of components to keep.

scale [boolean, (default True)] whether to scale the data

max_iter [an integer, (default 500)] the maximum number of iterations of the NIPALS inner
loop (used only if algorithm=”nipals”)

tol [non-negative real] Tolerance used in the iterative algorithm default 1e-06.

copy [boolean, default True] Whether the deflation should be done on a copy. Let the default
value to True unless you don’t care about side effect

Attributes

x_weights_ [array, [p, n_components]] X block weights vectors.

y_weights_ [array, [q, n_components]] Y block weights vectors.

x_loadings_ [array, [p, n_components]] X block loadings vectors.

y_loadings_ [array, [q, n_components]] Y block loadings vectors.

x_scores_ [array, [n_samples, n_components]] X scores.

y_scores_ [array, [n_samples, n_components]] Y scores.

x_rotations_ [array, [p, n_components]] X block to latents rotations.

7.6. sklearn.cross_decomposition: Cross decomposition 1735

scikit-learn user guide, Release 0.23.2

y_rotations_ [array, [q, n_components]] Y block to latents rotations.

coef_ [array, [p, q]] The coefficients of the linear model: Y = X coef_ + Err

n_iter_ [array-like] Number of iterations of the NIPALS inner loop for each component.

Notes

Matrices:

T: x_scores_
U: y_scores_
W: x_weights_
C: y_weights_
P: x_loadings_
Q: y_loadings_

Are computed such that:

X = T P.T + Err and Y = U Q.T + Err
T[:, k] = Xk W[:, k] for k in range(n_components)
U[:, k] = Yk C[:, k] for k in range(n_components)
x_rotations_ = W (P.T W)^(-1)
y_rotations_ = C (Q.T C)^(-1)

where Xk and Yk are residual matrices at iteration k.

Slides explaining PLS

For each component k, find weights u, v that optimizes: max corr(Xk u, Yk v) * std(Xk u)
std(Yk u), such that |u| = 1

Note that it maximizes both the correlations between the scores and the intra-block variances.

The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score.

The residual matrix of Y (Yk+1) block is obtained by deflation on the current X score. This performs the PLS
regression known as PLS2. This mode is prediction oriented.

This implementation provides the same results that 3 PLS packages provided in the R language (R-project):

• “mixOmics” with function pls(X, Y, mode = “regression”)

• “plspm ” with function plsreg2(X, Y)

• “pls” with function oscorespls.fit(X, Y)

References

Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case.
Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000.

In french but still a reference: Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions
Technic.

Examples

1736 Chapter 7. API Reference

http://www.eigenvector.com/Docs/Wise_pls_properties.pdf

scikit-learn user guide, Release 0.23.2

>>> from sklearn.cross_decomposition import PLSRegression
>>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [2.,5.,4.]]
>>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]]
>>> pls2 = PLSRegression(n_components=2)
>>> pls2.fit(X, Y)
PLSRegression()
>>> Y_pred = pls2.predict(X)

Methods

fit(X, Y) Fit model to data.
fit_transform(X[, y]) Learn and apply the dimension reduction on the train

data.
get_params([deep]) Get parameters for this estimator.
inverse_transform(X) Transform data back to its original space.
predict(X[, copy]) Apply the dimension reduction learned on the train

data.
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.
transform(X[, Y, copy]) Apply the dimension reduction learned on the train

data.

__init__(n_components=2, *, scale=True, max_iter=500, tol=1e-06, copy=True)
Initialize self. See help(type(self)) for accurate signature.

fit(X, Y)
Fit model to data.

Parameters

X [array-like of shape (n_samples, n_features)] Training vectors, where n_samples is the
number of samples and n_features is the number of predictors.

Y [array-like of shape (n_samples, n_targets)] Target vectors, where n_samples is the num-
ber of samples and n_targets is the number of response variables.

fit_transform(X, y=None)
Learn and apply the dimension reduction on the train data.

Parameters

X [array-like of shape (n_samples, n_features)] Training vectors, where n_samples is the
number of samples and n_features is the number of predictors.

y [array-like of shape (n_samples, n_targets)] Target vectors, where n_samples is the number
of samples and n_targets is the number of response variables.

Returns

x_scores if Y is not given, (x_scores, y_scores) otherwise.

get_params(deep=True)
Get parameters for this estimator.

Parameters

7.6. sklearn.cross_decomposition: Cross decomposition 1737

scikit-learn user guide, Release 0.23.2

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

inverse_transform(X)
Transform data back to its original space.

Parameters

X [array-like of shape (n_samples, n_components)] New data, where n_samples is the num-
ber of samples and n_components is the number of pls components.

Returns

x_reconstructed [array-like of shape (n_samples, n_features)]

Notes

This transformation will only be exact if n_components=n_features

predict(X, copy=True)
Apply the dimension reduction learned on the train data.

Parameters

X [array-like of shape (n_samples, n_features)] Training vectors, where n_samples is the
number of samples and n_features is the number of predictors.

copy [boolean, default True] Whether to copy X and Y, or perform in-place normalization.

Notes

This call requires the estimation of a p x q matrix, which may be an issue in high dimensional space.

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

1738 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X, Y=None, copy=True)
Apply the dimension reduction learned on the train data.

Parameters

X [array-like of shape (n_samples, n_features)] Training vectors, where n_samples is the
number of samples and n_features is the number of predictors.

Y [array-like of shape (n_samples, n_targets)] Target vectors, where n_samples is the num-
ber of samples and n_targets is the number of response variables.

copy [boolean, default True] Whether to copy X and Y, or perform in-place normalization.

Returns

x_scores if Y is not given, (x_scores, y_scores) otherwise.

Examples using sklearn.cross_decomposition.PLSRegression

• Compare cross decomposition methods

7.6.4 sklearn.cross_decomposition.PLSSVD

class sklearn.cross_decomposition.PLSSVD(n_components=2, *, scale=True, copy=True)
Partial Least Square SVD

Simply perform a svd on the crosscovariance matrix: X’Y There are no iterative deflation here.

Read more in the User Guide.

New in version 0.8.

Parameters

n_components [int, default 2] Number of components to keep.

scale [boolean, default True] Whether to scale X and Y.

copy [boolean, default True] Whether to copy X and Y, or perform in-place computations.

Attributes

7.6. sklearn.cross_decomposition: Cross decomposition 1739

scikit-learn user guide, Release 0.23.2

x_weights_ [array, [p, n_components]] X block weights vectors.

y_weights_ [array, [q, n_components]] Y block weights vectors.

x_scores_ [array, [n_samples, n_components]] X scores.

y_scores_ [array, [n_samples, n_components]] Y scores.

See also:

PLSCanonical

CCA

Examples

>>> import numpy as np
>>> from sklearn.cross_decomposition import PLSSVD
>>> X = np.array([[0., 0., 1.],
... [1.,0.,0.],
... [2.,2.,2.],
... [2.,5.,4.]])
>>> Y = np.array([[0.1, -0.2],
... [0.9, 1.1],
... [6.2, 5.9],
... [11.9, 12.3]])
>>> plsca = PLSSVD(n_components=2)
>>> plsca.fit(X, Y)
PLSSVD()
>>> X_c, Y_c = plsca.transform(X, Y)
>>> X_c.shape, Y_c.shape
((4, 2), (4, 2))

Methods

fit(X, Y) Fit model to data.
fit_transform(X[, y]) Learn and apply the dimension reduction on the train

data.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X[, Y]) Apply the dimension reduction learned on the train

data.

__init__(n_components=2, *, scale=True, copy=True)
Initialize self. See help(type(self)) for accurate signature.

fit(X, Y)
Fit model to data.

Parameters

X [array-like of shape (n_samples, n_features)] Training vectors, where n_samples is the
number of samples and n_features is the number of predictors.

Y [array-like of shape (n_samples, n_targets)] Target vectors, where n_samples is the num-
ber of samples and n_targets is the number of response variables.

1740 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

fit_transform(X, y=None)
Learn and apply the dimension reduction on the train data.

Parameters

X [array-like of shape (n_samples, n_features)] Training vectors, where n_samples is the
number of samples and n_features is the number of predictors.

y [array-like of shape (n_samples, n_targets)] Target vectors, where n_samples is the number
of samples and n_targets is the number of response variables.

Returns

x_scores if Y is not given, (x_scores, y_scores) otherwise.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X, Y=None)
Apply the dimension reduction learned on the train data.

Parameters

X [array-like of shape (n_samples, n_features)] Training vectors, where n_samples is the
number of samples and n_features is the number of predictors.

Y [array-like of shape (n_samples, n_targets)] Target vectors, where n_samples is the num-
ber of samples and n_targets is the number of response variables.

7.7 sklearn.datasets: Datasets

The sklearn.datasets module includes utilities to load datasets, including methods to load and fetch popular
reference datasets. It also features some artificial data generators.

User guide: See the Dataset loading utilities section for further details.

7.7. sklearn.datasets: Datasets 1741

scikit-learn user guide, Release 0.23.2

7.7.1 Loaders

datasets.clear_data_home([data_home]) Delete all the content of the data home cache.
datasets.dump_svmlight_file(X, y, f, *[,
. . .])

Dump the dataset in svmlight / libsvm file format.

datasets.fetch_20newsgroups(*[,
data_home, . . .])

Load the filenames and data from the 20 newsgroups
dataset (classification).

datasets.fetch_20newsgroups_vectorized(*[,
. . .])

Load the 20 newsgroups dataset and vectorize it into to-
ken counts (classification).

datasets.fetch_california_housing(*[,
. . .])

Load the California housing dataset (regression).

datasets.fetch_covtype(*[, data_home, . . .]) Load the covertype dataset (classification).
datasets.fetch_kddcup99(*[, subset, . . .]) Load the kddcup99 dataset (classification).
datasets.fetch_lfw_pairs(*[, subset, . . .]) Load the Labeled Faces in the Wild (LFW) pairs dataset

(classification).
datasets.fetch_lfw_people(*[, data_home,
. . .])

Load the Labeled Faces in the Wild (LFW) people
dataset (classification).

datasets.fetch_olivetti_faces(*[, . . .]) Load the Olivetti faces data-set from AT&T (classifica-
tion).

datasets.fetch_openml([name, version, . . .]) Fetch dataset from openml by name or dataset id.
datasets.fetch_rcv1(*[, data_home, subset,
. . .])

Load the RCV1 multilabel dataset (classification).

datasets.fetch_species_distributions(*[,
. . .])

Loader for species distribution dataset from Phillips et.

datasets.get_data_home([data_home]) Return the path of the scikit-learn data dir.
datasets.load_boston(*[, return_X_y]) Load and return the boston house-prices dataset (regres-

sion).
datasets.load_breast_cancer(*[, re-
turn_X_y, . . .])

Load and return the breast cancer wisconsin dataset
(classification).

datasets.load_diabetes(*[, return_X_y,
as_frame])

Load and return the diabetes dataset (regression).

datasets.load_digits(*[, n_class, . . .]) Load and return the digits dataset (classification).
datasets.load_files(container_path, *[, . . .]) Load text files with categories as subfolder names.
datasets.load_iris(*[, return_X_y, as_frame]) Load and return the iris dataset (classification).
datasets.load_linnerud(*[, return_X_y,
as_frame])

Load and return the physical excercise linnerud dataset.

datasets.load_sample_image(image_name) Load the numpy array of a single sample image
datasets.load_sample_images() Load sample images for image manipulation.
datasets.load_svmlight_file(f, *[, . . .]) Load datasets in the svmlight / libsvm format into sparse

CSR matrix
datasets.load_svmlight_files(files, *[,
. . .])

Load dataset from multiple files in SVMlight format

datasets.load_wine(*[, return_X_y, as_frame]) Load and return the wine dataset (classification).

sklearn.datasets.clear_data_home

sklearn.datasets.clear_data_home(data_home=None)
Delete all the content of the data home cache.

Parameters

data_home [str | None] The path to scikit-learn data dir.

1742 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

sklearn.datasets.dump_svmlight_file

sklearn.datasets.dump_svmlight_file(X, y, f, *, zero_based=True, comment=None,
query_id=None, multilabel=False)

Dump the dataset in svmlight / libsvm file format.

This format is a text-based format, with one sample per line. It does not store zero valued features hence is
suitable for sparse dataset.

The first element of each line can be used to store a target variable to predict.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training vectors, where
n_samples is the number of samples and n_features is the number of features.

y [{array-like, sparse matrix}, shape = [n_samples (, n_labels)]] Target values. Class labels
must be an integer or float, or array-like objects of integer or float for multilabel classifica-
tions.

f [string or file-like in binary mode] If string, specifies the path that will contain the data. If
file-like, data will be written to f. f should be opened in binary mode.

zero_based [boolean, optional] Whether column indices should be written zero-based (True) or
one-based (False).

comment [string, optional] Comment to insert at the top of the file. This should be either a
Unicode string, which will be encoded as UTF-8, or an ASCII byte string. If a comment
is given, then it will be preceded by one that identifies the file as having been dumped by
scikit-learn. Note that not all tools grok comments in SVMlight files.

query_id [array-like of shape (n_samples,)] Array containing pairwise preference constraints
(qid in svmlight format).

multilabel [boolean, optional] Samples may have several labels each (see https://www.csie.ntu.
edu.tw/~cjlin/libsvmtools/datasets/multilabel.html)

New in version 0.17: parameter multilabel to support multilabel datasets.

Examples using sklearn.datasets.dump_svmlight_file

• Libsvm GUI

sklearn.datasets.fetch_20newsgroups

sklearn.datasets.fetch_20newsgroups(*, data_home=None, subset=’train’, categories=None,
shuffle=True, random_state=42, remove=(), down-
load_if_missing=True, return_X_y=False)

Load the filenames and data from the 20 newsgroups dataset (classification).

Download it if necessary.

Classes 20
Samples total 18846
Dimensionality 1
Features text

Read more in the User Guide.

7.7. sklearn.datasets: Datasets 1743

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html

scikit-learn user guide, Release 0.23.2

Parameters

data_home [optional, default: None] Specify a download and cache folder for the datasets. If
None, all scikit-learn data is stored in ‘~/scikit_learn_data’ subfolders.

subset [‘train’ or ‘test’, ‘all’, optional] Select the dataset to load: ‘train’ for the training set,
‘test’ for the test set, ‘all’ for both, with shuffled ordering.

categories [None or collection of string or unicode] If None (default), load all the categories. If
not None, list of category names to load (other categories ignored).

shuffle [bool, optional] Whether or not to shuffle the data: might be important for models that
make the assumption that the samples are independent and identically distributed (i.i.d.),
such as stochastic gradient descent.

random_state [int, RandomState instance, default=None] Determines random number genera-
tion for dataset shuffling. Pass an int for reproducible output across multiple function calls.
See Glossary.

remove [tuple] May contain any subset of (‘headers’, ‘footers’, ‘quotes’). Each of these are
kinds of text that will be detected and removed from the newsgroup posts, preventing clas-
sifiers from overfitting on metadata.

‘headers’ removes newsgroup headers, ‘footers’ removes blocks at the ends of posts that
look like signatures, and ‘quotes’ removes lines that appear to be quoting another post.

‘headers’ follows an exact standard; the other filters are not always correct.

download_if_missing [optional, True by default] If False, raise an IOError if the data is not
locally available instead of trying to download the data from the source site.

return_X_y [bool, default=False.] If True, returns (data.data, data.target) instead
of a Bunch object.

New in version 0.22.

Returns

bunch [Bunch] Dictionary-like object, with the following attributes.

data [list, length [n_samples]] The data list to learn.

target: array, shape [n_samples] The target labels.

filenames: list, length [n_samples] The path to the location of the data.

DESCR: str The full description of the dataset.

target_names: list, length [n_classes] The names of target classes.

(data, target) [tuple if return_X_y=True] New in version 0.22.

Examples using sklearn.datasets.fetch_20newsgroups

• Sample pipeline for text feature extraction and evaluation

1744 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

sklearn.datasets.fetch_20newsgroups_vectorized

sklearn.datasets.fetch_20newsgroups_vectorized(*, subset=’train’, remove=(),
data_home=None, down-
load_if_missing=True, re-
turn_X_y=False, normalize=True)

Load the 20 newsgroups dataset and vectorize it into token counts (classification).

Download it if necessary.

This is a convenience function; the transformation is done using the default settings for sklearn.
feature_extraction.text.CountVectorizer. For more advanced usage (stopword
filtering, n-gram extraction, etc.), combine fetch_20newsgroups with a custom sklearn.
feature_extraction.text.CountVectorizer, sklearn.feature_extraction.text.
HashingVectorizer, sklearn.feature_extraction.text.TfidfTransformer or
sklearn.feature_extraction.text.TfidfVectorizer.

The resulting counts are normalized using sklearn.preprocessing.normalize unless normalize is
set to False.

Classes 20
Samples total 18846
Dimensionality 130107
Features real

Read more in the User Guide.

Parameters

subset [‘train’ or ‘test’, ‘all’, optional] Select the dataset to load: ‘train’ for the training set,
‘test’ for the test set, ‘all’ for both, with shuffled ordering.

remove [tuple] May contain any subset of (‘headers’, ‘footers’, ‘quotes’). Each of these are
kinds of text that will be detected and removed from the newsgroup posts, preventing clas-
sifiers from overfitting on metadata.

‘headers’ removes newsgroup headers, ‘footers’ removes blocks at the ends of posts that
look like signatures, and ‘quotes’ removes lines that appear to be quoting another post.

data_home [optional, default: None] Specify an download and cache folder for the datasets. If
None, all scikit-learn data is stored in ‘~/scikit_learn_data’ subfolders.

download_if_missing [optional, True by default] If False, raise an IOError if the data is not
locally available instead of trying to download the data from the source site.

return_X_y [bool, default=False] If True, returns (data.data, data.target) instead
of a Bunch object.

New in version 0.20.

normalize [bool, default=True] If True, normalizes each document’s feature vector to unit norm
using sklearn.preprocessing.normalize.

New in version 0.22.

Returns

bunch [Bunch] Dictionary-like object, with the following attributes.

data: sparse matrix, shape [n_samples, n_features] The data matrix to learn.

target: array, shape [n_samples] The target labels.

7.7. sklearn.datasets: Datasets 1745

scikit-learn user guide, Release 0.23.2

target_names: list, length [n_classes] The names of target classes.

DESCR: str The full description of the dataset.

(data, target) [tuple if return_X_y is True] New in version 0.20.

Examples using sklearn.datasets.fetch_20newsgroups_vectorized

• Model Complexity Influence

• Multiclass sparse logistic regression on 20newgroups

• The Johnson-Lindenstrauss bound for embedding with random projections

sklearn.datasets.fetch_california_housing

sklearn.datasets.fetch_california_housing(*, data_home=None, down-
load_if_missing=True, return_X_y=False,
as_frame=False)

Load the California housing dataset (regression).

Samples total 20640
Dimensionality 8
Features real
Target real 0.15 - 5.

Read more in the User Guide.

Parameters

data_home [optional, default: None] Specify another download and cache folder for the
datasets. By default all scikit-learn data is stored in ‘~/scikit_learn_data’ subfolders.

download_if_missing [optional, default=True] If False, raise a IOError if the data is not locally
available instead of trying to download the data from the source site.

return_X_y [boolean, default=False.] If True, returns (data.data, data.target) in-
stead of a Bunch object.

New in version 0.20.

as_frame [boolean, default=False] If True, the data is a pandas DataFrame including columns
with appropriate dtypes (numeric, string or categorical). The target is a pandas DataFrame
or Series depending on the number of target_columns.

New in version 0.23.

Returns

dataset [Bunch] Dictionary-like object, with the following attributes.

data [ndarray, shape (20640, 8)] Each row corresponding to the 8 feature values in order.
If as_frame is True, data is a pandas object.

target [numpy array of shape (20640,)] Each value corresponds to the average house value
in units of 100,000. If as_frame is True, target is a pandas object.

feature_names [list of length 8] Array of ordered feature names used in the dataset.

DESCR [string] Description of the California housing dataset.

1746 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

(data, target) [tuple if return_X_y is True] New in version 0.20.

frame [pandas DataFrame] Only present when as_frame=True. DataFrame with data and
target.

New in version 0.23.

Notes

This dataset consists of 20,640 samples and 9 features.

Examples using sklearn.datasets.fetch_california_housing

• Partial Dependence Plots

• Imputing missing values with variants of IterativeImputer

• Imputing missing values before building an estimator

• Compare the effect of different scalers on data with outliers

sklearn.datasets.fetch_covtype

sklearn.datasets.fetch_covtype(*, data_home=None, download_if_missing=True, ran-
dom_state=None, shuffle=False, return_X_y=False)

Load the covertype dataset (classification).

Download it if necessary.

Classes 7
Samples total 581012
Dimensionality 54
Features int

Read more in the User Guide.

Parameters

data_home [string, optional] Specify another download and cache folder for the datasets. By
default all scikit-learn data is stored in ‘~/scikit_learn_data’ subfolders.

download_if_missing [boolean, default=True] If False, raise a IOError if the data is not locally
available instead of trying to download the data from the source site.

random_state [int, RandomState instance, default=None] Determines random number genera-
tion for dataset shuffling. Pass an int for reproducible output across multiple function calls.
See Glossary.

shuffle [bool, default=False] Whether to shuffle dataset.

return_X_y [boolean, default=False.] If True, returns (data.data, data.target) in-
stead of a Bunch object.

New in version 0.20.

Returns

dataset [Bunch] Dictionary-like object, with the following attributes.

7.7. sklearn.datasets: Datasets 1747

scikit-learn user guide, Release 0.23.2

data [numpy array of shape (581012, 54)] Each row corresponds to the 54 features in the
dataset.

target [numpy array of shape (581012,)] Each value corresponds to one of the 7 forest
covertypes with values ranging between 1 to 7.

DESCR [str] Description of the forest covertype dataset.

(data, target) [tuple if return_X_y is True] New in version 0.20.

sklearn.datasets.fetch_kddcup99

sklearn.datasets.fetch_kddcup99(*, subset=None, data_home=None, shuffle=False,
random_state=None, percent10=True, down-
load_if_missing=True, return_X_y=False)

Load the kddcup99 dataset (classification).

Download it if necessary.

Classes 23
Samples total 4898431
Dimensionality 41
Features discrete (int) or continuous (float)

Read more in the User Guide.

New in version 0.18.

Parameters

subset [None, ‘SA’, ‘SF’, ‘http’, ‘smtp’] To return the corresponding classical subsets of kddcup
99. If None, return the entire kddcup 99 dataset.

data_home [string, optional] Specify another download and cache folder for the datasets. By
default all scikit-learn data is stored in ‘~/scikit_learn_data’ subfolders. .. versionadded::
0.19

shuffle [bool, default=False] Whether to shuffle dataset.

random_state [int, RandomState instance, default=None] Determines random number genera-
tion for dataset shuffling and for selection of abnormal samples if subset='SA'. Pass an
int for reproducible output across multiple function calls. See Glossary.

percent10 [bool, default=True] Whether to load only 10 percent of the data.

download_if_missing [bool, default=True] If False, raise a IOError if the data is not locally
available instead of trying to download the data from the source site.

return_X_y [boolean, default=False.] If True, returns (data, target) instead of a Bunch
object. See below for more information about the data and target object.

New in version 0.20.

Returns

data [Bunch] Dictionary-like object, with the following attributes.

data [ndarray of shape (494021, 41)] The data matrix to learn.

target [ndarray of shape (494021,)] The regression target for each sample.

DESCR [str] The full description of the dataset.

1748 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

(data, target) [tuple if return_X_y is True] New in version 0.20.

sklearn.datasets.fetch_lfw_pairs

sklearn.datasets.fetch_lfw_pairs(*, subset=’train’, data_home=None, funneled=True, re-
size=0.5, color=False, slice_=(slice(70, 195, None), slice(78,
172, None)), download_if_missing=True)

Load the Labeled Faces in the Wild (LFW) pairs dataset (classification).

Download it if necessary.

Classes 2
Samples total 13233
Dimensionality 5828
Features real, between 0 and 255

In the official README.txt this task is described as the “Restricted” task. As I am not sure as to implement the
“Unrestricted” variant correctly, I left it as unsupported for now.

The original images are 250 x 250 pixels, but the default slice and resize arguments reduce them to 62 x 47.

Read more in the User Guide.

Parameters

subset [optional, default: ‘train’] Select the dataset to load: ‘train’ for the development training
set, ‘test’ for the development test set, and ‘10_folds’ for the official evaluation set that is
meant to be used with a 10-folds cross validation.

data_home [optional, default: None] Specify another download and cache folder for the
datasets. By default all scikit-learn data is stored in ‘~/scikit_learn_data’ subfolders.

funneled [boolean, optional, default: True] Download and use the funneled variant of the
dataset.

resize [float, optional, default 0.5] Ratio used to resize the each face picture.

color [boolean, optional, default False] Keep the 3 RGB channels instead of averaging them to
a single gray level channel. If color is True the shape of the data has one more dimension
than the shape with color = False.

slice_ [optional] Provide a custom 2D slice (height, width) to extract the ‘interesting’ part of
the jpeg files and avoid use statistical correlation from the background

download_if_missing [optional, True by default] If False, raise a IOError if the data is not
locally available instead of trying to download the data from the source site.

Returns

data [Bunch] Dictionary-like object, with the following attributes.

data [ndarray of shape (2200, 5828). Shape depends on subset.] Each row corresponds
to 2 ravel’d face images of original size 62 x 47 pixels. Changing the slice_, resize
or subset parameters will change the shape of the output.

pairs [ndarray of shape (2200, 2, 62, 47). Shape depends on subset] Each row has 2
face images corresponding to same or different person from the dataset containing 5749
people. Changing the slice_, resize or subset parameters will change the shape
of the output.

7.7. sklearn.datasets: Datasets 1749

http://vis-www.cs.umass.edu/lfw/README.txt

scikit-learn user guide, Release 0.23.2

target [numpy array of shape (2200,). Shape depends on subset.] Labels associated to
each pair of images. The two label values being different persons or the same person.

DESCR [string] Description of the Labeled Faces in the Wild (LFW) dataset.

sklearn.datasets.fetch_lfw_people

sklearn.datasets.fetch_lfw_people(*, data_home=None, funneled=True, resize=0.5,
min_faces_per_person=0, color=False, slice_=(slice(70,
195, None), slice(78, 172, None)), down-
load_if_missing=True, return_X_y=False)

Load the Labeled Faces in the Wild (LFW) people dataset (classification).

Download it if necessary.

Classes 5749
Samples total 13233
Dimensionality 5828
Features real, between 0 and 255

Read more in the User Guide.

Parameters

data_home [optional, default: None] Specify another download and cache folder for the
datasets. By default all scikit-learn data is stored in ‘~/scikit_learn_data’ subfolders.

funneled [boolean, optional, default: True] Download and use the funneled variant of the
dataset.

resize [float, optional, default 0.5] Ratio used to resize the each face picture.

min_faces_per_person [int, optional, default None] The extracted dataset will only retain pic-
tures of people that have at least min_faces_per_person different pictures.

color [boolean, optional, default False] Keep the 3 RGB channels instead of averaging them to
a single gray level channel. If color is True the shape of the data has one more dimension
than the shape with color = False.

slice_ [optional] Provide a custom 2D slice (height, width) to extract the ‘interesting’ part of
the jpeg files and avoid use statistical correlation from the background

download_if_missing [optional, True by default] If False, raise a IOError if the data is not
locally available instead of trying to download the data from the source site.

return_X_y [boolean, default=False.] If True, returns (dataset.data, dataset.
target) instead of a Bunch object. See below for more information about the dataset.
data and dataset.target object.

New in version 0.20.

Returns

dataset [Bunch] Dictionary-like object, with the following attributes.

data [numpy array of shape (13233, 2914)] Each row corresponds to a ravelled face image
of original size 62 x 47 pixels. Changing the slice_ or resize parameters will change
the shape of the output.

1750 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

images [numpy array of shape (13233, 62, 47)] Each row is a face image corresponding to
one of the 5749 people in the dataset. Changing the slice_ or resize parameters will
change the shape of the output.

target [numpy array of shape (13233,)] Labels associated to each face image. Those labels
range from 0-5748 and correspond to the person IDs.

DESCR [string] Description of the Labeled Faces in the Wild (LFW) dataset.

(data, target) [tuple if return_X_y is True] New in version 0.20.

Examples using sklearn.datasets.fetch_lfw_people

• Faces recognition example using eigenfaces and SVMs

sklearn.datasets.fetch_olivetti_faces

sklearn.datasets.fetch_olivetti_faces(*, data_home=None, shuffle=False, random_state=0,
download_if_missing=True, return_X_y=False)

Load the Olivetti faces data-set from AT&T (classification).

Download it if necessary.

Classes 40
Samples total 400
Dimensionality 4096
Features real, between 0 and 1

Read more in the User Guide.

Parameters

data_home [optional, default: None] Specify another download and cache folder for the
datasets. By default all scikit-learn data is stored in ‘~/scikit_learn_data’ subfolders.

shuffle [boolean, optional] If True the order of the dataset is shuffled to avoid having images of
the same person grouped.

random_state [int, RandomState instance or None, default=0] Determines random number
generation for dataset shuffling. Pass an int for reproducible output across multiple function
calls. See Glossary.

download_if_missing [optional, True by default] If False, raise a IOError if the data is not
locally available instead of trying to download the data from the source site.

return_X_y [boolean, default=False.] If True, returns (data, target) instead of a Bunch
object. See below for more information about the data and target object.

New in version 0.22.

Returns

data [Bunch] Dictionary-like object, with the following attributes.

data: ndarray, shape (400, 4096) Each row corresponds to a ravelled face image of origi-
nal size 64 x 64 pixels.

images [ndarray, shape (400, 64, 64)] Each row is a face image corresponding to one of the
40 subjects of the dataset.

7.7. sklearn.datasets: Datasets 1751

scikit-learn user guide, Release 0.23.2

target [ndarray, shape (400,)] Labels associated to each face image. Those labels are rang-
ing from 0-39 and correspond to the Subject IDs.

DESCR [str] Description of the modified Olivetti Faces Dataset.

(data, target) [tuple if return_X_y=True] New in version 0.22.

Examples using sklearn.datasets.fetch_olivetti_faces

• Online learning of a dictionary of parts of faces

• Faces dataset decompositions

• Pixel importances with a parallel forest of trees

• Face completion with a multi-output estimators

sklearn.datasets.fetch_openml

sklearn.datasets.fetch_openml(name=None, *, version=’active’, data_id=None,
data_home=None, target_column=’default-target’, cache=True,
return_X_y=False, as_frame=False)

Fetch dataset from openml by name or dataset id.

Datasets are uniquely identified by either an integer ID or by a combination of name and version (i.e. there
might be multiple versions of the ‘iris’ dataset). Please give either name or data_id (not both). In case a name is
given, a version can also be provided.

Read more in the User Guide.

New in version 0.20.

Note: EXPERIMENTAL

The API is experimental (particularly the return value structure), and might have small backward-incompatible
changes in future releases.

Parameters

name [str or None] String identifier of the dataset. Note that OpenML can have multiple
datasets with the same name.

version [integer or ‘active’, default=’active’] Version of the dataset. Can only be provided if
also name is given. If ‘active’ the oldest version that’s still active is used. Since there
may be more than one active version of a dataset, and those versions may fundamentally be
different from one another, setting an exact version is highly recommended.

data_id [int or None] OpenML ID of the dataset. The most specific way of retrieving a dataset.
If data_id is not given, name (and potential version) are used to obtain a dataset.

data_home [string or None, default None] Specify another download and cache folder for the
data sets. By default all scikit-learn data is stored in ‘~/scikit_learn_data’ subfolders.

target_column [string, list or None, default ‘default-target’] Specify the column name in the
data to use as target. If ‘default-target’, the standard target column a stored on the server is
used. If None, all columns are returned as data and the target is None. If list (of strings), all
columns with these names are returned as multi-target (Note: not all scikit-learn classifiers
can handle all types of multi-output combinations)

1752 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

cache [boolean, default=True] Whether to cache downloaded datasets using joblib.

return_X_y [boolean, default=False.] If True, returns (data, target) instead of a Bunch
object. See below for more information about the data and target objects.

as_frame [boolean, default=False] If True, the data is a pandas DataFrame including columns
with appropriate dtypes (numeric, string or categorical). The target is a pandas DataFrame
or Series depending on the number of target_columns. The Bunch will contain a frame
attribute with the target and the data. If return_X_y is True, then (data, target)
will be pandas DataFrames or Series as describe above.

Returns

data [Bunch] Dictionary-like object, with the following attributes.

data [np.array, scipy.sparse.csr_matrix of floats, or pandas DataFrame] The feature matrix.
Categorical features are encoded as ordinals.

target [np.array, pandas Series or DataFrame] The regression target or classification labels,
if applicable. Dtype is float if numeric, and object if categorical. If as_frame is True,
target is a pandas object.

DESCR [str] The full description of the dataset

feature_names [list] The names of the dataset columns

target_names: list The names of the target columns

New in version 0.22.

categories [dict or None] Maps each categorical feature name to a list of values, such that
the value encoded as i is ith in the list. If as_frame is True, this is None.

details [dict] More metadata from OpenML

frame [pandas DataFrame] Only present when as_frame=True. DataFrame with data
and target.

(data, target) [tuple if return_X_y is True]

Note: EXPERIMENTAL

This interface is experimental and subsequent releases may change attributes without notice
(although there should only be minor changes to data and target).

Missing values in the ‘data’ are represented as NaN’s. Missing values in ‘target’ are repre-
sented as NaN’s (numerical target) or None (categorical target)

Examples using sklearn.datasets.fetch_openml

• Approximate nearest neighbors in TSNE

sklearn.datasets.fetch_rcv1

sklearn.datasets.fetch_rcv1(*, data_home=None, subset=’all’, download_if_missing=True, ran-
dom_state=None, shuffle=False, return_X_y=False)

Load the RCV1 multilabel dataset (classification).

Download it if necessary.

7.7. sklearn.datasets: Datasets 1753

scikit-learn user guide, Release 0.23.2

Version: RCV1-v2, vectors, full sets, topics multilabels.

Classes 103
Samples total 804414
Dimensionality 47236
Features real, between 0 and 1

Read more in the User Guide.

New in version 0.17.

Parameters

data_home [string, optional] Specify another download and cache folder for the datasets. By
default all scikit-learn data is stored in ‘~/scikit_learn_data’ subfolders.

subset [string, ‘train’, ‘test’, or ‘all’, default=’all’] Select the dataset to load: ‘train’ for the
training set (23149 samples), ‘test’ for the test set (781265 samples), ‘all’ for both, with the
training samples first if shuffle is False. This follows the official LYRL2004 chronological
split.

download_if_missing [boolean, default=True] If False, raise a IOError if the data is not locally
available instead of trying to download the data from the source site.

random_state [int, RandomState instance, default=None] Determines random number genera-
tion for dataset shuffling. Pass an int for reproducible output across multiple function calls.
See Glossary.

shuffle [bool, default=False] Whether to shuffle dataset.

return_X_y [boolean, default=False.] If True, returns (dataset.data, dataset.
target) instead of a Bunch object. See below for more information about the dataset.
data and dataset.target object.

New in version 0.20.

Returns

dataset [Bunch] Dictionary-like object, with the following attributes.

data [scipy csr array, dtype np.float64, shape (804414, 47236)] The array has 0.16% of non
zero values.

target [scipy csr array, dtype np.uint8, shape (804414, 103)] Each sample has a value of 1
in its categories, and 0 in others. The array has 3.15% of non zero values.

sample_id [numpy array, dtype np.uint32, shape (804414,)] Identification number of each
sample, as ordered in dataset.data.

target_names [numpy array, dtype object, length (103)] Names of each target (RCV1 top-
ics), as ordered in dataset.target.

DESCR [string] Description of the RCV1 dataset.

(data, target) [tuple if return_X_y is True] New in version 0.20.

sklearn.datasets.fetch_species_distributions

sklearn.datasets.fetch_species_distributions(*, data_home=None, down-
load_if_missing=True)

Loader for species distribution dataset from Phillips et. al. (2006)

1754 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Read more in the User Guide.

Parameters

data_home [optional, default: None] Specify another download and cache folder for the
datasets. By default all scikit-learn data is stored in ‘~/scikit_learn_data’ subfolders.

download_if_missing [optional, True by default] If False, raise a IOError if the data is not
locally available instead of trying to download the data from the source site.

Returns

data [Bunch] Dictionary-like object, with the following attributes.

coverages [array, shape = [14, 1592, 1212]] These represent the 14 features measured at
each point of the map grid. The latitude/longitude values for the grid are discussed below.
Missing data is represented by the value -9999.

train [record array, shape = (1624,)] The training points for the data. Each point has three
fields:

• train[‘species’] is the species name

• train[‘dd long’] is the longitude, in degrees

• train[‘dd lat’] is the latitude, in degrees

test [record array, shape = (620,)] The test points for the data. Same format as the training
data.

Nx, Ny [integers] The number of longitudes (x) and latitudes (y) in the grid

x_left_lower_corner, y_left_lower_corner [floats] The (x,y) position of the lower-left cor-
ner, in degrees

grid_size [float] The spacing between points of the grid, in degrees

Notes

This dataset represents the geographic distribution of species. The dataset is provided by Phillips et. al. (2006).

The two species are:

• “Bradypus variegatus” , the Brown-throated Sloth.

• “Microryzomys minutus” , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia,
Ecuador, Peru, and Venezuela.

• For an example of using this dataset with scikit-learn, see exam-
ples/applications/plot_species_distribution_modeling.py.

References

• “Maximum entropy modeling of species geographic distributions” S. J. Phillips, R. P. Anderson, R. E.
Schapire - Ecological Modelling, 190:231-259, 2006.

Examples using sklearn.datasets.fetch_species_distributions

• Species distribution modeling

• Kernel Density Estimate of Species Distributions

7.7. sklearn.datasets: Datasets 1755

http://www.iucnredlist.org/details/3038/0
http://www.iucnredlist.org/details/13408/0
http://rob.schapire.net/papers/ecolmod.pdf

scikit-learn user guide, Release 0.23.2

sklearn.datasets.get_data_home

sklearn.datasets.get_data_home(data_home=None)
Return the path of the scikit-learn data dir.

This folder is used by some large dataset loaders to avoid downloading the data several times.

By default the data dir is set to a folder named ‘scikit_learn_data’ in the user home folder.

Alternatively, it can be set by the ‘SCIKIT_LEARN_DATA’ environment variable or programmatically by giving
an explicit folder path. The ‘~’ symbol is expanded to the user home folder.

If the folder does not already exist, it is automatically created.

Parameters

data_home [str | None] The path to scikit-learn data dir.

Examples using sklearn.datasets.get_data_home

• Out-of-core classification of text documents

sklearn.datasets.load_boston

sklearn.datasets.load_boston(*, return_X_y=False)
Load and return the boston house-prices dataset (regression).

Samples total 506
Dimensionality 13
Features real, positive
Targets real 5. - 50.

Read more in the User Guide.

Parameters

return_X_y [bool, default=False.] If True, returns (data, target) instead of a Bunch
object. See below for more information about the data and target object.

New in version 0.18.

Returns

data [Bunch] Dictionary-like object, with the following attributes.

data [ndarray of shape (506, 13)] The data matrix.

target [ndarray of shape (506,)] The regression target.

filename [str] The physical location of boston csv dataset.

New in version 0.20.

DESCR [str] The full description of the dataset.

feature_names [ndarray] The names of features

(data, target) [tuple if return_X_y is True] New in version 0.18.

1756 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Notes

Changed in version 0.20: Fixed a wrong data point at [445, 0].

Examples

>>> from sklearn.datasets import load_boston
>>> X, y = load_boston(return_X_y=True)
>>> print(X.shape)
(506, 13)

Examples using sklearn.datasets.load_boston

• Model Complexity Influence

• Effect of transforming the targets in regression model

sklearn.datasets.load_breast_cancer

sklearn.datasets.load_breast_cancer(*, return_X_y=False, as_frame=False)
Load and return the breast cancer wisconsin dataset (classification).

The breast cancer dataset is a classic and very easy binary classification dataset.

Classes 2
Samples per class 212(M),357(B)
Samples total 569
Dimensionality 30
Features real, positive

Read more in the User Guide.

Parameters

return_X_y [bool, default=False] If True, returns (data, target) instead of a Bunch ob-
ject. See below for more information about the data and target object.

New in version 0.18.

as_frame [bool, default=False] If True, the data is a pandas DataFrame including columns with
appropriate dtypes (numeric). The target is a pandas DataFrame or Series depending on the
number of target columns. If return_X_y is True, then (data, target) will be pandas
DataFrames or Series as described below.

New in version 0.23.

Returns

data [Bunch] Dictionary-like object, with the following attributes.

data [{ndarray, dataframe} of shape (569, 30)] The data matrix. If as_frame=True,
data will be a pandas DataFrame.

target: {ndarray, Series} of shape (569,) The classification target. If as_frame=True,
target will be a pandas Series.

7.7. sklearn.datasets: Datasets 1757

scikit-learn user guide, Release 0.23.2

feature_names: list The names of the dataset columns.

target_names: list The names of target classes.

frame: DataFrame of shape (569, 31) Only present when as_frame=True.
DataFrame with data and target.

New in version 0.23.

DESCR: str The full description of the dataset.

filename: str The path to the location of the data.

New in version 0.20.

(data, target) [tuple if return_X_y is True] New in version 0.18.

The copy of UCI ML Breast Cancer Wisconsin (Diagnostic) dataset is

downloaded from:

https://goo.gl/U2Uwz2

Examples

Let’s say you are interested in the samples 10, 50, and 85, and want to know their class name.

>>> from sklearn.datasets import load_breast_cancer
>>> data = load_breast_cancer()
>>> data.target[[10, 50, 85]]
array([0, 1, 0])
>>> list(data.target_names)
['malignant', 'benign']

Examples using sklearn.datasets.load_breast_cancer

• Post pruning decision trees with cost complexity pruning

• Permutation Importance with Multicollinear or Correlated Features

sklearn.datasets.load_diabetes

sklearn.datasets.load_diabetes(*, return_X_y=False, as_frame=False)
Load and return the diabetes dataset (regression).

Samples total 442
Dimensionality 10
Features real, -.2 < x < .2
Targets integer 25 - 346

Read more in the User Guide.

Parameters

return_X_y [bool, default=False.] If True, returns (data, target) instead of a Bunch
object. See below for more information about the data and target object.

New in version 0.18.

1758 Chapter 7. API Reference

https://goo.gl/U2Uwz2

scikit-learn user guide, Release 0.23.2

as_frame [bool, default=False] If True, the data is a pandas DataFrame including columns with
appropriate dtypes (numeric). The target is a pandas DataFrame or Series depending on the
number of target columns. If return_X_y is True, then (data, target) will be pandas
DataFrames or Series as described below.

New in version 0.23.

Returns

data [Bunch] Dictionary-like object, with the following attributes.

data [{ndarray, dataframe} of shape (442, 10)] The data matrix. If as_frame=True,
data will be a pandas DataFrame.

target: {ndarray, Series} of shape (442,) The regression target. If as_frame=True,
target will be a pandas Series.

feature_names: list The names of the dataset columns.

frame: DataFrame of shape (442, 11) Only present when as_frame=True.
DataFrame with data and target.

New in version 0.23.

DESCR: str The full description of the dataset.

data_filename: str The path to the location of the data.

target_filename: str The path to the location of the target.

(data, target) [tuple if return_X_y is True] New in version 0.18.

Examples using sklearn.datasets.load_diabetes

• Plot individual and voting regression predictions

• Gradient Boosting regression

• Feature selection using SelectFromModel and LassoCV

• Lasso path using LARS

• Linear Regression Example

• Sparsity Example: Fitting only features 1 and 2

• Lasso and Elastic Net

• Lasso model selection: Cross-Validation / AIC / BIC

• Advanced Plotting With Partial Dependence

• Imputing missing values before building an estimator

• Plotting Cross-Validated Predictions

• Cross-validation on diabetes Dataset Exercise

sklearn.datasets.load_digits

sklearn.datasets.load_digits(*, n_class=10, return_X_y=False, as_frame=False)
Load and return the digits dataset (classification).

Each datapoint is a 8x8 image of a digit.

7.7. sklearn.datasets: Datasets 1759

scikit-learn user guide, Release 0.23.2

Classes 10
Samples per class ~180
Samples total 1797
Dimensionality 64
Features integers 0-16

Read more in the User Guide.

Parameters

n_class [integer, between 0 and 10, optional (default=10)] The number of classes to return.

return_X_y [bool, default=False.] If True, returns (data, target) instead of a Bunch
object. See below for more information about the data and target object.

New in version 0.18.

as_frame [bool, default=False] If True, the data is a pandas DataFrame including columns with
appropriate dtypes (numeric). The target is a pandas DataFrame or Series depending on the
number of target columns. If return_X_y is True, then (data, target) will be pandas
DataFrames or Series as described below.

New in version 0.23.

Returns

data [Bunch] Dictionary-like object, with the following attributes.

data [{ndarray, dataframe} of shape (1797, 64)] The flattened data matrix. If
as_frame=True, data will be a pandas DataFrame.

target: {ndarray, Series} of shape (1797,) The classification target. If
as_frame=True, target will be a pandas Series.

feature_names: list The names of the dataset columns.

target_names: list The names of target classes.

New in version 0.20.

frame: DataFrame of shape (1797, 65) Only present when as_frame=True.
DataFrame with data and target.

New in version 0.23.

images: {ndarray} of shape (1797, 8, 8) The raw image data.

DESCR: str The full description of the dataset.

(data, target) [tuple if return_X_y is True] New in version 0.18.

This is a copy of the test set of the UCI ML hand-written digits datasets

https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits

Examples

To load the data and visualize the images:

1760 Chapter 7. API Reference

https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits

scikit-learn user guide, Release 0.23.2

>>> from sklearn.datasets import load_digits
>>> digits = load_digits()
>>> print(digits.data.shape)
(1797, 64)
>>> import matplotlib.pyplot as plt
>>> plt.gray()
>>> plt.matshow(digits.images[0])
>>> plt.show()

Examples using sklearn.datasets.load_digits

• Recognizing hand-written digits

• Feature agglomeration

• Various Agglomerative Clustering on a 2D embedding of digits

• A demo of K-Means clustering on the handwritten digits data

• The Digit Dataset

• Early stopping of Gradient Boosting

• Recursive feature elimination

• Comparing various online solvers

• L1 Penalty and Sparsity in Logistic Regression

• Manifold learning on handwritten digits: Locally Linear Embedding, Isomap. . .

• The Johnson-Lindenstrauss bound for embedding with random projections

• Explicit feature map approximation for RBF kernels

• Plotting Validation Curves

• Parameter estimation using grid search with cross-validation

• Comparing randomized search and grid search for hyperparameter estimation

• Balance model complexity and cross-validated score

• Plotting Learning Curves

• Kernel Density Estimation

• Caching nearest neighbors

• Dimensionality Reduction with Neighborhood Components Analysis

• Restricted Boltzmann Machine features for digit classification

• Compare Stochastic learning strategies for MLPClassifier

• Pipelining: chaining a PCA and a logistic regression

• Selecting dimensionality reduction with Pipeline and GridSearchCV

• Label Propagation digits: Demonstrating performance

• Label Propagation digits active learning

• Digits Classification Exercise

• Cross-validation on Digits Dataset Exercise

7.7. sklearn.datasets: Datasets 1761

scikit-learn user guide, Release 0.23.2

sklearn.datasets.load_files

sklearn.datasets.load_files(container_path, *, description=None, categories=None,
load_content=True, shuffle=True, encoding=None, de-
code_error=’strict’, random_state=0)

Load text files with categories as subfolder names.

Individual samples are assumed to be files stored a two levels folder structure such as the following:

container_folder/

category_1_folder/ file_1.txt file_2.txt . . . file_42.txt

category_2_folder/ file_43.txt file_44.txt . . .

The folder names are used as supervised signal label names. The individual file names are not important.

This function does not try to extract features into a numpy array or scipy sparse matrix. In addition, if
load_content is false it does not try to load the files in memory.

To use text files in a scikit-learn classification or clustering algorithm, you will need to use the
:mod‘~sklearn.feature_extraction.text‘ module to build a feature extraction transformer that suits your problem.

If you set load_content=True, you should also specify the encoding of the text using the ‘encoding’ parameter.
For many modern text files, ‘utf-8’ will be the correct encoding. If you leave encoding equal to None, then the
content will be made of bytes instead of Unicode, and you will not be able to use most functions in text.

Similar feature extractors should be built for other kind of unstructured data input such as images, audio, video,
. . .

Read more in the User Guide.

Parameters

container_path [string or unicode] Path to the main folder holding one subfolder per category

description [string or unicode, optional (default=None)] A paragraph describing the character-
istic of the dataset: its source, reference, etc.

categories [A collection of strings or None, optional (default=None)] If None (default), load all
the categories. If not None, list of category names to load (other categories ignored).

load_content [bool, optional (default=True)] Whether to load or not the content of the different
files. If true a ‘data’ attribute containing the text information is present in the data structure
returned. If not, a filenames attribute gives the path to the files.

shuffle [bool, optional (default=True)] Whether or not to shuffle the data: might be important
for models that make the assumption that the samples are independent and identically dis-
tributed (i.i.d.), such as stochastic gradient descent.

encoding [string or None (default is None)] If None, do not try to decode the content of the files
(e.g. for images or other non-text content). If not None, encoding to use to decode text files
to Unicode if load_content is True.

decode_error [{‘strict’, ‘ignore’, ‘replace’}, optional] Instruction on what to do if a byte se-
quence is given to analyze that contains characters not of the given encoding. Passed as
keyword argument ‘errors’ to bytes.decode.

random_state [int, RandomState instance or None, default=0] Determines random number
generation for dataset shuffling. Pass an int for reproducible output across multiple function
calls. See Glossary.

Returns

data [Bunch] Dictionary-like object, with the following attributes.

1762 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

data [list of str] Only present when load_content=True. The raw text data to learn.

target [ndarray] The target labels (integer index).

target_names [list] The names of target classes.

DESCR [str] The full description of the dataset.

filenames: ndarray The filenames holding the dataset.

sklearn.datasets.load_iris

sklearn.datasets.load_iris(*, return_X_y=False, as_frame=False)
Load and return the iris dataset (classification).

The iris dataset is a classic and very easy multi-class classification dataset.

Classes 3
Samples per class 50
Samples total 150
Dimensionality 4
Features real, positive

Read more in the User Guide.

Parameters

return_X_y [bool, default=False.] If True, returns (data, target) instead of a Bunch
object. See below for more information about the data and target object.

New in version 0.18.

as_frame [bool, default=False] If True, the data is a pandas DataFrame including columns with
appropriate dtypes (numeric). The target is a pandas DataFrame or Series depending on the
number of target columns. If return_X_y is True, then (data, target) will be pandas
DataFrames or Series as described below.

New in version 0.23.

Returns

data [Bunch] Dictionary-like object, with the following attributes.

data [{ndarray, dataframe} of shape (150, 4)] The data matrix. If as_frame=True,
data will be a pandas DataFrame.

target: {ndarray, Series} of shape (150,) The classification target. If as_frame=True,
target will be a pandas Series.

feature_names: list The names of the dataset columns.

target_names: list The names of target classes.

frame: DataFrame of shape (150, 5) Only present when as_frame=True. DataFrame
with data and target.

New in version 0.23.

DESCR: str The full description of the dataset.

filename: str The path to the location of the data.

New in version 0.20.

7.7. sklearn.datasets: Datasets 1763

scikit-learn user guide, Release 0.23.2

(data, target) [tuple if return_X_y is True] New in version 0.18.

Notes

Changed in version 0.20: Fixed two wrong data points according to Fisher’s paper. The new version is the same
as in R, but not as in the UCI Machine Learning Repository.

Examples

Let’s say you are interested in the samples 10, 25, and 50, and want to know their class name.

>>> from sklearn.datasets import load_iris
>>> data = load_iris()
>>> data.target[[10, 25, 50]]
array([0, 0, 1])
>>> list(data.target_names)
['setosa', 'versicolor', 'virginica']

Examples using sklearn.datasets.load_iris

• Release Highlights for scikit-learn 0.22

• Plot classification probability

• Plot Hierarchical Clustering Dendrogram

• K-means Clustering

• The Iris Dataset

• Plot the decision surface of a decision tree on the iris dataset

• Understanding the decision tree structure

• PCA example with Iris Data-set

• Incremental PCA

• Comparison of LDA and PCA 2D projection of Iris dataset

• Plot the decision boundaries of a VotingClassifier

• Early stopping of Gradient Boosting

• Plot the decision surfaces of ensembles of trees on the iris dataset

• Test with permutations the significance of a classification score

• Univariate Feature Selection

• GMM covariances

• Gaussian process classification (GPC) on iris dataset

• Regularization path of L1- Logistic Regression

• Logistic Regression 3-class Classifier

• Plot multi-class SGD on the iris dataset

• Confusion matrix

1764 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

• Receiver Operating Characteristic (ROC) with cross validation

• Nested versus non-nested cross-validation

• Receiver Operating Characteristic (ROC)

• Precision-Recall

• Nearest Neighbors Classification

• Nearest Centroid Classification

• Comparing Nearest Neighbors with and without Neighborhood Components Analysis

• Compare Stochastic learning strategies for MLPClassifier

• Concatenating multiple feature extraction methods

• Decision boundary of label propagation versus SVM on the Iris dataset

• SVM with custom kernel

• SVM-Anova: SVM with univariate feature selection

• Plot different SVM classifiers in the iris dataset

• RBF SVM parameters

• SVM Exercise

sklearn.datasets.load_linnerud

sklearn.datasets.load_linnerud(*, return_X_y=False, as_frame=False)
Load and return the physical excercise linnerud dataset.

This dataset is suitable for multi-ouput regression tasks.

Samples total 20
Dimensionality 3 (for both data and target)
Features integer
Targets integer

Read more in the User Guide.

Parameters

return_X_y [bool, default=False.] If True, returns (data, target) instead of a Bunch
object. See below for more information about the data and target object.

New in version 0.18.

as_frame [bool, default=False] If True, the data is a pandas DataFrame including columns with
appropriate dtypes (numeric, string or categorical). The target is a pandas DataFrame or
Series depending on the number of target columns. If return_X_y is True, then (data,
target) will be pandas DataFrames or Series as described below.

New in version 0.23.

Returns

data [Bunch] Dictionary-like object, with the following attributes.

data [{ndarray, dataframe} of shape (20, 3)] The data matrix. If as_frame=True, data
will be a pandas DataFrame.

7.7. sklearn.datasets: Datasets 1765

scikit-learn user guide, Release 0.23.2

target: {ndarray, dataframe} of shape (20, 3) The regression targets. If
as_frame=True, target will be a pandas DataFrame.

feature_names: list The names of the dataset columns.

target_names: list The names of the target columns.

frame: DataFrame of shape (20, 6) Only present when as_frame=True. DataFrame
with data and target.

New in version 0.23.

DESCR: str The full description of the dataset.

data_filename: str The path to the location of the data.

target_filename: str The path to the location of the target.

New in version 0.20.

(data, target) [tuple if return_X_y is True] New in version 0.18.

sklearn.datasets.load_sample_image

sklearn.datasets.load_sample_image(image_name)
Load the numpy array of a single sample image

Read more in the User Guide.

Parameters

image_name [{china.jpg, flower.jpg}] The name of the sample image loaded

Returns

img [3D array] The image as a numpy array: height x width x color

Examples

>>> from sklearn.datasets import load_sample_image
>>> china = load_sample_image('china.jpg') # doctest: +SKIP
>>> china.dtype # doctest: +SKIP
dtype('uint8')
>>> china.shape # doctest: +SKIP
(427, 640, 3)
>>> flower = load_sample_image('flower.jpg') # doctest: +SKIP
>>> flower.dtype # doctest: +SKIP
dtype('uint8')
>>> flower.shape # doctest: +SKIP
(427, 640, 3)

Examples using sklearn.datasets.load_sample_image

• Color Quantization using K-Means

1766 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

sklearn.datasets.load_sample_images

sklearn.datasets.load_sample_images()
Load sample images for image manipulation.

Loads both, china and flower.

Read more in the User Guide.

Returns

data [Bunch] Dictionary-like object, with the following attributes.

images [list of ndarray of shape (427, 640, 3)] The two sample image.

filenames [list] The filenames for the images.

DESCR [str] The full description of the dataset.

Examples

To load the data and visualize the images:

>>> from sklearn.datasets import load_sample_images
>>> dataset = load_sample_images() #doctest: +SKIP
>>> len(dataset.images) #doctest: +SKIP
2
>>> first_img_data = dataset.images[0] #doctest: +SKIP
>>> first_img_data.shape #doctest: +SKIP
(427, 640, 3)
>>> first_img_data.dtype #doctest: +SKIP
dtype('uint8')

sklearn.datasets.load_svmlight_file

sklearn.datasets.load_svmlight_file(f, *, n_features=None, dtype=<class ’numpy.float64’>,
multilabel=False, zero_based=’auto’, query_id=False,
offset=0, length=-1)

Load datasets in the svmlight / libsvm format into sparse CSR matrix

This format is a text-based format, with one sample per line. It does not store zero valued features hence is
suitable for sparse dataset.

The first element of each line can be used to store a target variable to predict.

This format is used as the default format for both svmlight and the libsvm command line programs.

Parsing a text based source can be expensive. When working on repeatedly on the same dataset, it is recom-
mended to wrap this loader with joblib.Memory.cache to store a memmapped backup of the CSR results of the
first call and benefit from the near instantaneous loading of memmapped structures for the subsequent calls.

In case the file contains a pairwise preference constraint (known as “qid” in the svmlight format) these are
ignored unless the query_id parameter is set to True. These pairwise preference constraints can be used to
constraint the combination of samples when using pairwise loss functions (as is the case in some learning to
rank problems) so that only pairs with the same query_id value are considered.

This implementation is written in Cython and is reasonably fast. However, a faster API-compatible loader is
also available at:

https://github.com/mblondel/svmlight-loader

7.7. sklearn.datasets: Datasets 1767

https://github.com/mblondel/svmlight-loader

scikit-learn user guide, Release 0.23.2

Parameters

f [{str, file-like, int}] (Path to) a file to load. If a path ends in “.gz” or “.bz2”, it will be uncom-
pressed on the fly. If an integer is passed, it is assumed to be a file descriptor. A file-like
or file descriptor will not be closed by this function. A file-like object must be opened in
binary mode.

n_features [int or None] The number of features to use. If None, it will be inferred. This
argument is useful to load several files that are subsets of a bigger sliced dataset: each
subset might not have examples of every feature, hence the inferred shape might vary from
one slice to another. n_features is only required if offset or length are passed a non-
default value.

dtype [numpy data type, default np.float64] Data type of dataset to be loaded. This will be the
data type of the output numpy arrays X and y.

multilabel [boolean, optional, default False] Samples may have several labels each (see https:
//www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html)

zero_based [boolean or “auto”, optional, default “auto”] Whether column indices in f are zero-
based (True) or one-based (False). If column indices are one-based, they are transformed
to zero-based to match Python/NumPy conventions. If set to “auto”, a heuristic check is
applied to determine this from the file contents. Both kinds of files occur “in the wild”, but
they are unfortunately not self-identifying. Using “auto” or True should always be safe when
no offset or length is passed. If offset or length are passed, the “auto” mode falls
back to zero_based=True to avoid having the heuristic check yield inconsistent results
on different segments of the file.

query_id [boolean, default False] If True, will return the query_id array for each file.

offset [integer, optional, default 0] Ignore the offset first bytes by seeking forward, then dis-
carding the following bytes up until the next new line character.

length [integer, optional, default -1] If strictly positive, stop reading any new line of data once
the position in the file has reached the (offset + length) bytes threshold.

Returns

X [scipy.sparse matrix of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), or, in the multilabel a list of] tuples of length n_samples.

query_id [array of shape (n_samples,)] query_id for each sample. Only returned when query_id
is set to True.

See also:

load_svmlight_files similar function for loading multiple files in this format, enforcing the same num-
ber of features/columns on all of them.

Examples

To use joblib.Memory to cache the svmlight file:

from joblib import Memory
from .datasets import load_svmlight_file
mem = Memory("./mycache")

@mem.cache
(continues on next page)

1768 Chapter 7. API Reference

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html

scikit-learn user guide, Release 0.23.2

(continued from previous page)

def get_data():
data = load_svmlight_file("mysvmlightfile")
return data[0], data[1]

X, y = get_data()

sklearn.datasets.load_svmlight_files

sklearn.datasets.load_svmlight_files(files, *, n_features=None, dtype=<class
’numpy.float64’>, multilabel=False,
zero_based=’auto’, query_id=False, offset=0, length=-
1)

Load dataset from multiple files in SVMlight format

This function is equivalent to mapping load_svmlight_file over a list of files, except that the results are concate-
nated into a single, flat list and the samples vectors are constrained to all have the same number of features.

In case the file contains a pairwise preference constraint (known as “qid” in the svmlight format) these are
ignored unless the query_id parameter is set to True. These pairwise preference constraints can be used to
constraint the combination of samples when using pairwise loss functions (as is the case in some learning to
rank problems) so that only pairs with the same query_id value are considered.

Parameters

files [iterable over {str, file-like, int}] (Paths of) files to load. If a path ends in “.gz” or “.bz2”, it
will be uncompressed on the fly. If an integer is passed, it is assumed to be a file descriptor.
File-likes and file descriptors will not be closed by this function. File-like objects must be
opened in binary mode.

n_features [int or None] The number of features to use. If None, it will be inferred from the
maximum column index occurring in any of the files.

This can be set to a higher value than the actual number of features in any of the input files,
but setting it to a lower value will cause an exception to be raised.

dtype [numpy data type, default np.float64] Data type of dataset to be loaded. This will be the
data type of the output numpy arrays X and y.

multilabel [boolean, optional] Samples may have several labels each (see https://www.csie.ntu.
edu.tw/~cjlin/libsvmtools/datasets/multilabel.html)

zero_based [boolean or “auto”, optional] Whether column indices in f are zero-based (True) or
one-based (False). If column indices are one-based, they are transformed to zero-based to
match Python/NumPy conventions. If set to “auto”, a heuristic check is applied to determine
this from the file contents. Both kinds of files occur “in the wild”, but they are unfortunately
not self-identifying. Using “auto” or True should always be safe when no offset or length
is passed. If offset or length are passed, the “auto” mode falls back to zero_based=True to
avoid having the heuristic check yield inconsistent results on different segments of the file.

query_id [boolean, defaults to False] If True, will return the query_id array for each file.

offset [integer, optional, default 0] Ignore the offset first bytes by seeking forward, then dis-
carding the following bytes up until the next new line character.

length [integer, optional, default -1] If strictly positive, stop reading any new line of data once
the position in the file has reached the (offset + length) bytes threshold.

Returns

7.7. sklearn.datasets: Datasets 1769

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html

scikit-learn user guide, Release 0.23.2

[X1, y1, . . . , Xn, yn]

where each (Xi, yi) pair is the result from load_svmlight_file(files[i]).

If query_id is set to True, this will return instead [X1, y1, q1,

. . . , Xn, yn, qn] where (Xi, yi, qi) is the result from

load_svmlight_file(files[i])

See also:

load_svmlight_file

Notes

When fitting a model to a matrix X_train and evaluating it against a matrix X_test, it is essential that X_train
and X_test have the same number of features (X_train.shape[1] == X_test.shape[1]). This may not be the case
if you load the files individually with load_svmlight_file.

sklearn.datasets.load_wine

sklearn.datasets.load_wine(*, return_X_y=False, as_frame=False)
Load and return the wine dataset (classification).

New in version 0.18.

The wine dataset is a classic and very easy multi-class classification dataset.

Classes 3
Samples per class [59,71,48]
Samples total 178
Dimensionality 13
Features real, positive

Read more in the User Guide.

Parameters

return_X_y [bool, default=False.] If True, returns (data, target) instead of a Bunch
object. See below for more information about the data and target object.

as_frame [bool, default=False] If True, the data is a pandas DataFrame including columns with
appropriate dtypes (numeric). The target is a pandas DataFrame or Series depending on the
number of target columns. If return_X_y is True, then (data, target) will be pandas
DataFrames or Series as described below.

New in version 0.23.

Returns

data [Bunch] Dictionary-like object, with the following attributes.

data [{ndarray, dataframe} of shape (178, 13)] The data matrix. If as_frame=True,
data will be a pandas DataFrame.

target: {ndarray, Series} of shape (178,) The classification target. If as_frame=True,
target will be a pandas Series.

feature_names: list The names of the dataset columns.

1770 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

target_names: list The names of target classes.

frame: DataFrame of shape (178, 14) Only present when as_frame=True.
DataFrame with data and target.

New in version 0.23.

DESCR: str The full description of the dataset.

(data, target) [tuple if return_X_y is True]

The copy of UCI ML Wine Data Set dataset is downloaded and modified to fit

standard format from:

https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data

Examples

Let’s say you are interested in the samples 10, 80, and 140, and want to know their class name.

>>> from sklearn.datasets import load_wine
>>> data = load_wine()
>>> data.target[[10, 80, 140]]
array([0, 1, 2])
>>> list(data.target_names)
['class_0', 'class_1', 'class_2']

Examples using sklearn.datasets.load_wine

• Outlier detection on a real data set

• ROC Curve with Visualization API

• Importance of Feature Scaling

7.7.2 Samples generator

datasets.make_biclusters(shape, n_clusters,
*)

Generate an array with constant block diagonal structure
for biclustering.

datasets.make_blobs([n_samples, n_features,
. . .])

Generate isotropic Gaussian blobs for clustering.

datasets.make_checkerboard(shape,
n_clusters, *)

Generate an array with block checkerboard structure for
biclustering.

datasets.make_circles([n_samples, shuffle,
. . .])

Make a large circle containing a smaller circle in 2d.

datasets.make_classification([n_samples,
. . .])

Generate a random n-class classification problem.

datasets.make_friedman1([n_samples, . . .]) Generate the “Friedman #1” regression problem
datasets.make_friedman2([n_samples, noise,
. . .])

Generate the “Friedman #2” regression problem

datasets.make_friedman3([n_samples, noise,
. . .])

Generate the “Friedman #3” regression problem

Continued on next page

7.7. sklearn.datasets: Datasets 1771

https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data

scikit-learn user guide, Release 0.23.2

Table 48 – continued from previous page
datasets.make_gaussian_quantiles(*[,
mean, . . .])

Generate isotropic Gaussian and label samples by quan-
tile

datasets.make_hastie_10_2([n_samples, . . .]) Generates data for binary classification used in Hastie et
al.

datasets.make_low_rank_matrix([n_samples,
. . .])

Generate a mostly low rank matrix with bell-shaped sin-
gular values

datasets.make_moons([n_samples, shuffle, . . .]) Make two interleaving half circles
datasets.make_multilabel_classification([. . .])Generate a random multilabel classification problem.
datasets.make_regression([n_samples, . . .]) Generate a random regression problem.
datasets.make_s_curve([n_samples, noise,
. . .])

Generate an S curve dataset.

datasets.make_sparse_coded_signal(n_samples,
. . .)

Generate a signal as a sparse combination of dictionary
elements.

datasets.make_sparse_spd_matrix([dim,
. . .])

Generate a sparse symmetric definite positive matrix.

datasets.make_sparse_uncorrelated([. . .]) Generate a random regression problem with sparse un-
correlated design

datasets.make_spd_matrix(n_dim, *[, . . .]) Generate a random symmetric, positive-definite matrix.
datasets.make_swiss_roll([n_samples, noise,
. . .])

Generate a swiss roll dataset.

sklearn.datasets.make_biclusters

sklearn.datasets.make_biclusters(shape, n_clusters, *, noise=0.0, minval=10, maxval=100,
shuffle=True, random_state=None)

Generate an array with constant block diagonal structure for biclustering.

Read more in the User Guide.

Parameters

shape [iterable (n_rows, n_cols)] The shape of the result.

n_clusters [integer] The number of biclusters.

noise [float, optional (default=0.0)] The standard deviation of the gaussian noise.

minval [int, optional (default=10)] Minimum value of a bicluster.

maxval [int, optional (default=100)] Maximum value of a bicluster.

shuffle [boolean, optional (default=True)] Shuffle the samples.

random_state [int, RandomState instance, default=None] Determines random number genera-
tion for dataset creation. Pass an int for reproducible output across multiple function calls.
See Glossary.

Returns

X [array of shape shape] The generated array.

rows [array of shape (n_clusters, X.shape[0],)] The indicators for cluster membership of each
row.

cols [array of shape (n_clusters, X.shape[1],)] The indicators for cluster membership of each
column.

See also:

make_checkerboard

1772 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

References

[1]

Examples using sklearn.datasets.make_biclusters

• A demo of the Spectral Co-Clustering algorithm

sklearn.datasets.make_blobs

sklearn.datasets.make_blobs(n_samples=100, n_features=2, *, centers=None, cluster_std=1.0,
center_box=(-10.0, 10.0), shuffle=True, random_state=None, re-
turn_centers=False)

Generate isotropic Gaussian blobs for clustering.

Read more in the User Guide.

Parameters

n_samples [int or array-like, optional (default=100)] If int, it is the total number of points
equally divided among clusters. If array-like, each element of the sequence indicates the
number of samples per cluster.

Changed in version v0.20: one can now pass an array-like to the n_samples parameter

n_features [int, optional (default=2)] The number of features for each sample.

centers [int or array of shape [n_centers, n_features], optional] (default=None) The number of
centers to generate, or the fixed center locations. If n_samples is an int and centers is None,
3 centers are generated. If n_samples is array-like, centers must be either None or an array
of length equal to the length of n_samples.

cluster_std [float or sequence of floats, optional (default=1.0)] The standard deviation of the
clusters.

center_box [pair of floats (min, max), optional (default=(-10.0, 10.0))] The bounding box for
each cluster center when centers are generated at random.

shuffle [boolean, optional (default=True)] Shuffle the samples.

random_state [int, RandomState instance, default=None] Determines random number genera-
tion for dataset creation. Pass an int for reproducible output across multiple function calls.
See Glossary.

return_centers [bool, optional (default=False)] If True, then return the centers of each cluster

New in version 0.23.

Returns

X [array of shape [n_samples, n_features]] The generated samples.

y [array of shape [n_samples]] The integer labels for cluster membership of each sample.

centers [array, shape [n_centers, n_features]] The centers of each cluster. Only returned if
return_centers=True.

See also:

make_classification a more intricate variant

7.7. sklearn.datasets: Datasets 1773

scikit-learn user guide, Release 0.23.2

Examples

>>> from sklearn.datasets import make_blobs
>>> X, y = make_blobs(n_samples=10, centers=3, n_features=2,
... random_state=0)
>>> print(X.shape)
(10, 2)
>>> y
array([0, 0, 1, 0, 2, 2, 2, 1, 1, 0])
>>> X, y = make_blobs(n_samples=[3, 3, 4], centers=None, n_features=2,
... random_state=0)
>>> print(X.shape)
(10, 2)
>>> y
array([0, 1, 2, 0, 2, 2, 2, 1, 1, 0])

Examples using sklearn.datasets.make_blobs

• Release Highlights for scikit-learn 0.23

• Probability calibration of classifiers

• Probability Calibration for 3-class classification

• Normal and Shrinkage Linear Discriminant Analysis for classification

• A demo of the mean-shift clustering algorithm

• Demonstration of k-means assumptions

• Demo of affinity propagation clustering algorithm

• Demo of DBSCAN clustering algorithm

• Inductive Clustering

• Compare BIRCH and MiniBatchKMeans

• Comparison of the K-Means and MiniBatchKMeans clustering algorithms

• Comparing different hierarchical linkage methods on toy datasets

• Selecting the number of clusters with silhouette analysis on KMeans clustering

• Comparing different clustering algorithms on toy datasets

• Plot randomly generated classification dataset

• SGD: Maximum margin separating hyperplane

• Plot multinomial and One-vs-Rest Logistic Regression

• Comparing anomaly detection algorithms for outlier detection on toy datasets

• Demonstrating the different strategies of KBinsDiscretizer

• SVM: Maximum margin separating hyperplane

• Plot the support vectors in LinearSVC

• SVM Tie Breaking Example

• SVM: Separating hyperplane for unbalanced classes

1774 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

sklearn.datasets.make_checkerboard

sklearn.datasets.make_checkerboard(shape, n_clusters, *, noise=0.0, minval=10, maxval=100,
shuffle=True, random_state=None)

Generate an array with block checkerboard structure for biclustering.

Read more in the User Guide.

Parameters

shape [iterable (n_rows, n_cols)] The shape of the result.

n_clusters [integer or iterable (n_row_clusters, n_column_clusters)] The number of row and
column clusters.

noise [float, optional (default=0.0)] The standard deviation of the gaussian noise.

minval [int, optional (default=10)] Minimum value of a bicluster.

maxval [int, optional (default=100)] Maximum value of a bicluster.

shuffle [boolean, optional (default=True)] Shuffle the samples.

random_state [int, RandomState instance, default=None] Determines random number genera-
tion for dataset creation. Pass an int for reproducible output across multiple function calls.
See Glossary.

Returns

X [array of shape shape] The generated array.

rows [array of shape (n_clusters, X.shape[0],)] The indicators for cluster membership of each
row.

cols [array of shape (n_clusters, X.shape[1],)] The indicators for cluster membership of each
column.

See also:

make_biclusters

References

[1]

Examples using sklearn.datasets.make_checkerboard

• A demo of the Spectral Biclustering algorithm

sklearn.datasets.make_circles

sklearn.datasets.make_circles(n_samples=100, *, shuffle=True, noise=None, ran-
dom_state=None, factor=0.8)

Make a large circle containing a smaller circle in 2d.

A simple toy dataset to visualize clustering and classification algorithms.

Read more in the User Guide.

Parameters

7.7. sklearn.datasets: Datasets 1775

scikit-learn user guide, Release 0.23.2

n_samples [int or two-element tuple, optional (default=100)] If int, it is the total number of
points generated. For odd numbers, the inner circle will have one point more than the outer
circle. If two-element tuple, number of points in outer circle and inner circle.

shuffle [bool, optional (default=True)] Whether to shuffle the samples.

noise [double or None (default=None)] Standard deviation of Gaussian noise added to the data.

random_state [int, RandomState instance, default=None] Determines random number gener-
ation for dataset shuffling and noise. Pass an int for reproducible output across multiple
function calls. See Glossary.

factor [0 < double < 1 (default=.8)] Scale factor between inner and outer circle.

Returns

X [array of shape [n_samples, 2]] The generated samples.

y [array of shape [n_samples]] The integer labels (0 or 1) for class membership of each sample.

Examples using sklearn.datasets.make_circles

• Classifier comparison

• Comparing different hierarchical linkage methods on toy datasets

• Comparing different clustering algorithms on toy datasets

• Kernel PCA

• Hashing feature transformation using Totally Random Trees

• t-SNE: The effect of various perplexity values on the shape

• Compare Stochastic learning strategies for MLPClassifier

• Varying regularization in Multi-layer Perceptron

• Feature discretization

• Label Propagation learning a complex structure

sklearn.datasets.make_classification

sklearn.datasets.make_classification(n_samples=100, n_features=20, *, n_informative=2,
n_redundant=2, n_repeated=0, n_classes=2,
n_clusters_per_class=2, weights=None, flip_y=0.01,
class_sep=1.0, hypercube=True, shift=0.0, scale=1.0,
shuffle=True, random_state=None)

Generate a random n-class classification problem.

This initially creates clusters of points normally distributed (std=1) about vertices of an n_informative-
dimensional hypercube with sides of length 2*class_sep and assigns an equal number of clusters to each
class. It introduces interdependence between these features and adds various types of further noise to the data.

Without shuffling, X horizontally stacks features in the following order: the primary n_informative fea-
tures, followed by n_redundant linear combinations of the informative features, followed by n_repeated
duplicates, drawn randomly with replacement from the informative and redundant features. The remaining fea-
tures are filled with random noise. Thus, without shuffling, all useful features are contained in the columns
X[:, :n_informative + n_redundant + n_repeated].

Read more in the User Guide.

1776 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Parameters

n_samples [int, optional (default=100)] The number of samples.

n_features [int, optional (default=20)] The total number of fea-
tures. These comprise n_informative informative features,
n_redundant redundant features, n_repeated duplicated features and
n_features-n_informative-n_redundant-n_repeated useless features
drawn at random.

n_informative [int, optional (default=2)] The number of informative features. Each class is
composed of a number of gaussian clusters each located around the vertices of a hypercube
in a subspace of dimension n_informative. For each cluster, informative features are
drawn independently from N(0, 1) and then randomly linearly combined within each cluster
in order to add covariance. The clusters are then placed on the vertices of the hypercube.

n_redundant [int, optional (default=2)] The number of redundant features. These features are
generated as random linear combinations of the informative features.

n_repeated [int, optional (default=0)] The number of duplicated features, drawn randomly
from the informative and the redundant features.

n_classes [int, optional (default=2)] The number of classes (or labels) of the classification prob-
lem.

n_clusters_per_class [int, optional (default=2)] The number of clusters per class.

weights [array-like of shape (n_classes,) or (n_classes - 1,), (default=None)] The proportions
of samples assigned to each class. If None, then classes are balanced. Note that if
len(weights) == n_classes - 1, then the last class weight is automatically in-
ferred. More than n_samples samples may be returned if the sum of weights exceeds
1.

flip_y [float, optional (default=0.01)] The fraction of samples whose class is assigned randomly.
Larger values introduce noise in the labels and make the classification task harder. Note that
the default setting flip_y > 0 might lead to less than n_classes in y in some cases.

class_sep [float, optional (default=1.0)] The factor multiplying the hypercube size. Larger val-
ues spread out the clusters/classes and make the classification task easier.

hypercube [boolean, optional (default=True)] If True, the clusters are put on the vertices of a
hypercube. If False, the clusters are put on the vertices of a random polytope.

shift [float, array of shape [n_features] or None, optional (default=0.0)] Shift features by the
specified value. If None, then features are shifted by a random value drawn in [-class_sep,
class_sep].

scale [float, array of shape [n_features] or None, optional (default=1.0)] Multiply features by
the specified value. If None, then features are scaled by a random value drawn in [1, 100].
Note that scaling happens after shifting.

shuffle [boolean, optional (default=True)] Shuffle the samples and the features.

random_state [int, RandomState instance, default=None] Determines random number genera-
tion for dataset creation. Pass an int for reproducible output across multiple function calls.
See Glossary.

Returns

X [array of shape [n_samples, n_features]] The generated samples.

y [array of shape [n_samples]] The integer labels for class membership of each sample.

7.7. sklearn.datasets: Datasets 1777

scikit-learn user guide, Release 0.23.2

See also:

make_blobs simplified variant

make_multilabel_classification unrelated generator for multilabel tasks

Notes

The algorithm is adapted from Guyon [1] and was designed to generate the “Madelon” dataset.

References

[1]

Examples using sklearn.datasets.make_classification

• Release Highlights for scikit-learn 0.22

• Comparison of Calibration of Classifiers

• Probability Calibration curves

• Classifier comparison

• Plot randomly generated classification dataset

• Feature importances with forests of trees

• OOB Errors for Random Forests

• Feature transformations with ensembles of trees

• Pipeline Anova SVM

• Recursive feature elimination with cross-validation

• Neighborhood Components Analysis Illustration

• Varying regularization in Multi-layer Perceptron

• Feature discretization

• Scaling the regularization parameter for SVCs

sklearn.datasets.make_friedman1

sklearn.datasets.make_friedman1(n_samples=100, n_features=10, *, noise=0.0, ran-
dom_state=None)

Generate the “Friedman #1” regression problem

This dataset is described in Friedman [1] and Breiman [2].

Inputs X are independent features uniformly distributed on the interval [0, 1]. The output y is created according
to the formula:

y(X) = 10 * sin(pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 + 10 * X[:,
→˓3] + 5 * X[:, 4] + noise * N(0, 1).

1778 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Out of the n_features features, only 5 are actually used to compute y. The remaining features are indepen-
dent of y.

The number of features has to be >= 5.

Read more in the User Guide.

Parameters

n_samples [int, optional (default=100)] The number of samples.

n_features [int, optional (default=10)] The number of features. Should be at least 5.

noise [float, optional (default=0.0)] The standard deviation of the gaussian noise applied to the
output.

random_state [int, RandomState instance, default=None] Determines random number genera-
tion for dataset noise. Pass an int for reproducible output across multiple function calls. See
Glossary.

Returns

X [array of shape [n_samples, n_features]] The input samples.

y [array of shape [n_samples]] The output values.

References

[1], [2]

sklearn.datasets.make_friedman2

sklearn.datasets.make_friedman2(n_samples=100, *, noise=0.0, random_state=None)
Generate the “Friedman #2” regression problem

This dataset is described in Friedman [1] and Breiman [2].

Inputs X are 4 independent features uniformly distributed on the intervals:

0 <= X[:, 0] <= 100,
40 * pi <= X[:, 1] <= 560 * pi,
0 <= X[:, 2] <= 1,
1 <= X[:, 3] <= 11.

The output y is created according to the formula:

y(X) = (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.
→˓5 + noise * N(0, 1).

Read more in the User Guide.

Parameters

n_samples [int, optional (default=100)] The number of samples.

noise [float, optional (default=0.0)] The standard deviation of the gaussian noise applied to the
output.

random_state [int, RandomState instance, default=None] Determines random number genera-
tion for dataset noise. Pass an int for reproducible output across multiple function calls. See
Glossary.

7.7. sklearn.datasets: Datasets 1779

scikit-learn user guide, Release 0.23.2

Returns

X [array of shape [n_samples, 4]] The input samples.

y [array of shape [n_samples]] The output values.

References

[1], [2]

sklearn.datasets.make_friedman3

sklearn.datasets.make_friedman3(n_samples=100, *, noise=0.0, random_state=None)
Generate the “Friedman #3” regression problem

This dataset is described in Friedman [1] and Breiman [2].

Inputs X are 4 independent features uniformly distributed on the intervals:

0 <= X[:, 0] <= 100,
40 * pi <= X[:, 1] <= 560 * pi,
0 <= X[:, 2] <= 1,
1 <= X[:, 3] <= 11.

The output y is created according to the formula:

y(X) = arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) / X[:, 0]) + noise *
→˓N(0, 1).

Read more in the User Guide.

Parameters

n_samples [int, optional (default=100)] The number of samples.

noise [float, optional (default=0.0)] The standard deviation of the gaussian noise applied to the
output.

random_state [int, RandomState instance, default=None] Determines random number genera-
tion for dataset noise. Pass an int for reproducible output across multiple function calls. See
Glossary.

Returns

X [array of shape [n_samples, 4]] The input samples.

y [array of shape [n_samples]] The output values.

References

[1], [2]

sklearn.datasets.make_gaussian_quantiles

sklearn.datasets.make_gaussian_quantiles(*, mean=None, cov=1.0, n_samples=100,
n_features=2, n_classes=3, shuffle=True, ran-
dom_state=None)

Generate isotropic Gaussian and label samples by quantile

1780 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

This classification dataset is constructed by taking a multi-dimensional standard normal distribution and defining
classes separated by nested concentric multi-dimensional spheres such that roughly equal numbers of samples
are in each class (quantiles of the 𝜒2 distribution).

Read more in the User Guide.

Parameters

mean [array of shape [n_features], optional (default=None)] The mean of the multi-
dimensional normal distribution. If None then use the origin (0, 0, . . .).

cov [float, optional (default=1.)] The covariance matrix will be this value times the unit matrix.
This dataset only produces symmetric normal distributions.

n_samples [int, optional (default=100)] The total number of points equally divided among
classes.

n_features [int, optional (default=2)] The number of features for each sample.

n_classes [int, optional (default=3)] The number of classes

shuffle [boolean, optional (default=True)] Shuffle the samples.

random_state [int, RandomState instance, default=None] Determines random number genera-
tion for dataset creation. Pass an int for reproducible output across multiple function calls.
See Glossary.

Returns

X [array of shape [n_samples, n_features]] The generated samples.

y [array of shape [n_samples]] The integer labels for quantile membership of each sample.

Notes

The dataset is from Zhu et al [1].

References

[1]

Examples using sklearn.datasets.make_gaussian_quantiles

• Plot randomly generated classification dataset

• Two-class AdaBoost

• Multi-class AdaBoosted Decision Trees

sklearn.datasets.make_hastie_10_2

sklearn.datasets.make_hastie_10_2(n_samples=12000, *, random_state=None)
Generates data for binary classification used in Hastie et al. 2009, Example 10.2.

The ten features are standard independent Gaussian and the target y is defined by:

y[i] = 1 if np.sum(X[i] ** 2) > 9.34 else -1

Read more in the User Guide.

7.7. sklearn.datasets: Datasets 1781

scikit-learn user guide, Release 0.23.2

Parameters

n_samples [int, optional (default=12000)] The number of samples.

random_state [int, RandomState instance, default=None] Determines random number genera-
tion for dataset creation. Pass an int for reproducible output across multiple function calls.
See Glossary.

Returns

X [array of shape [n_samples, 10]] The input samples.

y [array of shape [n_samples]] The output values.

See also:

make_gaussian_quantiles a generalization of this dataset approach

References

[1]

Examples using sklearn.datasets.make_hastie_10_2

• Gradient Boosting regularization

• Discrete versus Real AdaBoost

• Early stopping of Gradient Boosting

• Demonstration of multi-metric evaluation on cross_val_score and GridSearchCV

sklearn.datasets.make_low_rank_matrix

sklearn.datasets.make_low_rank_matrix(n_samples=100, n_features=100, *, ef-
fective_rank=10, tail_strength=0.5, ran-
dom_state=None)

Generate a mostly low rank matrix with bell-shaped singular values

Most of the variance can be explained by a bell-shaped curve of width effective_rank: the low rank part of the
singular values profile is:

(1 - tail_strength) * exp(-1.0 * (i / effective_rank) ** 2)

The remaining singular values’ tail is fat, decreasing as:

tail_strength * exp(-0.1 * i / effective_rank).

The low rank part of the profile can be considered the structured signal part of the data while the tail can be
considered the noisy part of the data that cannot be summarized by a low number of linear components (singular
vectors).

This kind of singular profiles is often seen in practice, for instance:

• gray level pictures of faces

• TF-IDF vectors of text documents crawled from the web

Read more in the User Guide.

1782 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Parameters

n_samples [int, optional (default=100)] The number of samples.

n_features [int, optional (default=100)] The number of features.

effective_rank [int, optional (default=10)] The approximate number of singular vectors re-
quired to explain most of the data by linear combinations.

tail_strength [float between 0.0 and 1.0, optional (default=0.5)] The relative importance of the
fat noisy tail of the singular values profile.

random_state [int, RandomState instance, default=None] Determines random number genera-
tion for dataset creation. Pass an int for reproducible output across multiple function calls.
See Glossary.

Returns

X [array of shape [n_samples, n_features]] The matrix.

sklearn.datasets.make_moons

sklearn.datasets.make_moons(n_samples=100, *, shuffle=True, noise=None, random_state=None)
Make two interleaving half circles

A simple toy dataset to visualize clustering and classification algorithms. Read more in the User Guide.

Parameters

n_samples [int or two-element tuple, optional (default=100)] If int, the total number of points
generated. If two-element tuple, number of points in each of two moons.

shuffle [bool, optional (default=True)] Whether to shuffle the samples.

noise [double or None (default=None)] Standard deviation of Gaussian noise added to the data.

random_state [int, RandomState instance, default=None] Determines random number gener-
ation for dataset shuffling and noise. Pass an int for reproducible output across multiple
function calls. See Glossary.

Returns

X [array of shape [n_samples, 2]] The generated samples.

y [array of shape [n_samples]] The integer labels (0 or 1) for class membership of each sample.

Examples using sklearn.datasets.make_moons

• Classifier comparison

• Comparing different hierarchical linkage methods on toy datasets

• Comparing different clustering algorithms on toy datasets

• Comparing anomaly detection algorithms for outlier detection on toy datasets

• Compare Stochastic learning strategies for MLPClassifier

• Varying regularization in Multi-layer Perceptron

• Feature discretization

7.7. sklearn.datasets: Datasets 1783

scikit-learn user guide, Release 0.23.2

sklearn.datasets.make_multilabel_classification

sklearn.datasets.make_multilabel_classification(n_samples=100, n_features=20, *,
n_classes=5, n_labels=2, length=50,
allow_unlabeled=True, sparse=False,
return_indicator=’dense’, re-
turn_distributions=False, ran-
dom_state=None)

Generate a random multilabel classification problem.

For each sample, the generative process is:

• pick the number of labels: n ~ Poisson(n_labels)

• n times, choose a class c: c ~ Multinomial(theta)

• pick the document length: k ~ Poisson(length)

• k times, choose a word: w ~ Multinomial(theta_c)

In the above process, rejection sampling is used to make sure that n is never zero or more than n_classes,
and that the document length is never zero. Likewise, we reject classes which have already been chosen.

Read more in the User Guide.

Parameters

n_samples [int, optional (default=100)] The number of samples.

n_features [int, optional (default=20)] The total number of features.

n_classes [int, optional (default=5)] The number of classes of the classification problem.

n_labels [int, optional (default=2)] The average number of labels per instance. More precisely,
the number of labels per sample is drawn from a Poisson distribution with n_labels as its
expected value, but samples are bounded (using rejection sampling) by n_classes, and
must be nonzero if allow_unlabeled is False.

length [int, optional (default=50)] The sum of the features (number of words if documents) is
drawn from a Poisson distribution with this expected value.

allow_unlabeled [bool, optional (default=True)] If True, some instances might not belong to
any class.

sparse [bool, optional (default=False)] If True, return a sparse feature matrix

New in version 0.17: parameter to allow sparse output.

return_indicator [‘dense’ (default) | ‘sparse’ | False] If dense return Y in the dense binary
indicator format. If 'sparse' return Y in the sparse binary indicator format. False
returns a list of lists of labels.

return_distributions [bool, optional (default=False)] If True, return the prior class probability
and conditional probabilities of features given classes, from which the data was drawn.

random_state [int, RandomState instance, default=None] Determines random number genera-
tion for dataset creation. Pass an int for reproducible output across multiple function calls.
See Glossary.

Returns

X [array of shape [n_samples, n_features]] The generated samples.

Y [array or sparse CSR matrix of shape [n_samples, n_classes]] The label sets.

1784 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

p_c [array, shape [n_classes]] The probability of each class being drawn. Only returned if
return_distributions=True.

p_w_c [array, shape [n_features, n_classes]] The probability of each feature being drawn given
each class. Only returned if return_distributions=True.

Examples using sklearn.datasets.make_multilabel_classification

• Plot randomly generated multilabel dataset

• Multilabel classification

sklearn.datasets.make_regression

sklearn.datasets.make_regression(n_samples=100, n_features=100, *, n_informative=10,
n_targets=1, bias=0.0, effective_rank=None,
tail_strength=0.5, noise=0.0, shuffle=True, coef=False,
random_state=None)

Generate a random regression problem.

The input set can either be well conditioned (by default) or have a low rank-fat tail singular profile. See
make_low_rank_matrix for more details.

The output is generated by applying a (potentially biased) random linear regression model with
n_informative nonzero regressors to the previously generated input and some gaussian centered noise with
some adjustable scale.

Read more in the User Guide.

Parameters

n_samples [int, optional (default=100)] The number of samples.

n_features [int, optional (default=100)] The number of features.

n_informative [int, optional (default=10)] The number of informative features, i.e., the number
of features used to build the linear model used to generate the output.

n_targets [int, optional (default=1)] The number of regression targets, i.e., the dimension of the
y output vector associated with a sample. By default, the output is a scalar.

bias [float, optional (default=0.0)] The bias term in the underlying linear model.

effective_rank [int or None, optional (default=None)]

if not None: The approximate number of singular vectors required to explain most of the
input data by linear combinations. Using this kind of singular spectrum in the input allows
the generator to reproduce the correlations often observed in practice.

if None: The input set is well conditioned, centered and gaussian with unit variance.

tail_strength [float between 0.0 and 1.0, optional (default=0.5)] The relative importance of the
fat noisy tail of the singular values profile if effective_rank is not None.

noise [float, optional (default=0.0)] The standard deviation of the gaussian noise applied to the
output.

shuffle [boolean, optional (default=True)] Shuffle the samples and the features.

coef [boolean, optional (default=False)] If True, the coefficients of the underlying linear model
are returned.

7.7. sklearn.datasets: Datasets 1785

scikit-learn user guide, Release 0.23.2

random_state [int, RandomState instance, default=None] Determines random number genera-
tion for dataset creation. Pass an int for reproducible output across multiple function calls.
See Glossary.

Returns

X [array of shape [n_samples, n_features]] The input samples.

y [array of shape [n_samples] or [n_samples, n_targets]] The output values.

coef [array of shape [n_features] or [n_features, n_targets], optional] The coefficient of the
underlying linear model. It is returned only if coef is True.

Examples using sklearn.datasets.make_regression

• Release Highlights for scikit-learn 0.23

• Prediction Latency

• Plot Ridge coefficients as a function of the L2 regularization

• Robust linear model estimation using RANSAC

• HuberRegressor vs Ridge on dataset with strong outliers

• Lasso on dense and sparse data

• Effect of transforming the targets in regression model

sklearn.datasets.make_s_curve

sklearn.datasets.make_s_curve(n_samples=100, *, noise=0.0, random_state=None)
Generate an S curve dataset.

Read more in the User Guide.

Parameters

n_samples [int, optional (default=100)] The number of sample points on the S curve.

noise [float, optional (default=0.0)] The standard deviation of the gaussian noise.

random_state [int, RandomState instance, default=None] Determines random number genera-
tion for dataset creation. Pass an int for reproducible output across multiple function calls.
See Glossary.

Returns

X [array of shape [n_samples, 3]] The points.

t [array of shape [n_samples]] The univariate position of the sample according to the main
dimension of the points in the manifold.

Examples using sklearn.datasets.make_s_curve

• Comparison of Manifold Learning methods

• t-SNE: The effect of various perplexity values on the shape

1786 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

sklearn.datasets.make_sparse_coded_signal

sklearn.datasets.make_sparse_coded_signal(n_samples, *, n_components, n_features,
n_nonzero_coefs, random_state=None)

Generate a signal as a sparse combination of dictionary elements.

Returns a matrix Y = DX, such as D is (n_features, n_components), X is (n_components, n_samples) and each
column of X has exactly n_nonzero_coefs non-zero elements.

Read more in the User Guide.

Parameters

n_samples [int] number of samples to generate

n_components [int,] number of components in the dictionary

n_features [int] number of features of the dataset to generate

n_nonzero_coefs [int] number of active (non-zero) coefficients in each sample

random_state [int, RandomState instance, default=None] Determines random number genera-
tion for dataset creation. Pass an int for reproducible output across multiple function calls.
See Glossary.

Returns

data [array of shape [n_features, n_samples]] The encoded signal (Y).

dictionary [array of shape [n_features, n_components]] The dictionary with normalized com-
ponents (D).

code [array of shape [n_components, n_samples]] The sparse code such that each column of
this matrix has exactly n_nonzero_coefs non-zero items (X).

Examples using sklearn.datasets.make_sparse_coded_signal

• Orthogonal Matching Pursuit

sklearn.datasets.make_sparse_spd_matrix

sklearn.datasets.make_sparse_spd_matrix(dim=1, *, alpha=0.95, norm_diag=False,
smallest_coef=0.1, largest_coef=0.9, ran-
dom_state=None)

Generate a sparse symmetric definite positive matrix.

Read more in the User Guide.

Parameters

dim [integer, optional (default=1)] The size of the random matrix to generate.

alpha [float between 0 and 1, optional (default=0.95)] The probability that a coefficient is zero
(see notes). Larger values enforce more sparsity.

norm_diag [boolean, optional (default=False)] Whether to normalize the output matrix to make
the leading diagonal elements all 1

smallest_coef [float between 0 and 1, optional (default=0.1)] The value of the smallest coeffi-
cient.

largest_coef [float between 0 and 1, optional (default=0.9)] The value of the largest coefficient.

7.7. sklearn.datasets: Datasets 1787

scikit-learn user guide, Release 0.23.2

random_state [int, RandomState instance, default=None] Determines random number genera-
tion for dataset creation. Pass an int for reproducible output across multiple function calls.
See Glossary.

Returns

prec [sparse matrix of shape (dim, dim)] The generated matrix.

See also:

make_spd_matrix

Notes

The sparsity is actually imposed on the cholesky factor of the matrix. Thus alpha does not translate directly into
the filling fraction of the matrix itself.

Examples using sklearn.datasets.make_sparse_spd_matrix

• Sparse inverse covariance estimation

sklearn.datasets.make_sparse_uncorrelated

sklearn.datasets.make_sparse_uncorrelated(n_samples=100, n_features=10, *, ran-
dom_state=None)

Generate a random regression problem with sparse uncorrelated design

This dataset is described in Celeux et al [1]. as:

X ~ N(0, 1)
y(X) = X[:, 0] + 2 * X[:, 1] - 2 * X[:, 2] - 1.5 * X[:, 3]

Only the first 4 features are informative. The remaining features are useless.

Read more in the User Guide.

Parameters

n_samples [int, optional (default=100)] The number of samples.

n_features [int, optional (default=10)] The number of features.

random_state [int, RandomState instance, default=None] Determines random number genera-
tion for dataset creation. Pass an int for reproducible output across multiple function calls.
See Glossary.

Returns

X [array of shape [n_samples, n_features]] The input samples.

y [array of shape [n_samples]] The output values.

References

[1]

1788 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

sklearn.datasets.make_spd_matrix

sklearn.datasets.make_spd_matrix(n_dim, *, random_state=None)
Generate a random symmetric, positive-definite matrix.

Read more in the User Guide.

Parameters

n_dim [int] The matrix dimension.

random_state [int, RandomState instance, default=None] Determines random number genera-
tion for dataset creation. Pass an int for reproducible output across multiple function calls.
See Glossary.

Returns

X [array of shape [n_dim, n_dim]] The random symmetric, positive-definite matrix.

See also:

make_sparse_spd_matrix

sklearn.datasets.make_swiss_roll

sklearn.datasets.make_swiss_roll(n_samples=100, *, noise=0.0, random_state=None)
Generate a swiss roll dataset.

Read more in the User Guide.

Parameters

n_samples [int, optional (default=100)] The number of sample points on the S curve.

noise [float, optional (default=0.0)] The standard deviation of the gaussian noise.

random_state [int, RandomState instance, default=None] Determines random number genera-
tion for dataset creation. Pass an int for reproducible output across multiple function calls.
See Glossary.

Returns

X [array of shape [n_samples, 3]] The points.

t [array of shape [n_samples]] The univariate position of the sample according to the main
dimension of the points in the manifold.

Notes

The algorithm is from Marsland [1].

References

[1]

7.7. sklearn.datasets: Datasets 1789

scikit-learn user guide, Release 0.23.2

Examples using sklearn.datasets.make_swiss_roll

• Hierarchical clustering: structured vs unstructured ward

• Swiss Roll reduction with LLE

7.8 sklearn.decomposition: Matrix Decomposition

The sklearn.decomposition module includes matrix decomposition algorithms, including among others PCA,
NMF or ICA. Most of the algorithms of this module can be regarded as dimensionality reduction techniques.

User guide: See the Decomposing signals in components (matrix factorization problems) section for further details.

decomposition.DictionaryLearning([. . .]) Dictionary learning
decomposition.FactorAnalysis([n_components,
. . .])

Factor Analysis (FA)

decomposition.FastICA([n_components, . . .]) FastICA: a fast algorithm for Independent Component
Analysis.

decomposition.IncrementalPCA([n_components,
. . .])

Incremental principal components analysis (IPCA).

decomposition.KernelPCA([n_components,
. . .])

Kernel Principal component analysis (KPCA)

decomposition.LatentDirichletAllocation([. . .])Latent Dirichlet Allocation with online variational
Bayes algorithm

decomposition.MiniBatchDictionaryLearning([. . .])Mini-batch dictionary learning
decomposition.MiniBatchSparsePCA([. . .]) Mini-batch Sparse Principal Components Analysis
decomposition.NMF([n_components, init, . . .]) Non-Negative Matrix Factorization (NMF)
decomposition.PCA([n_components, copy, . . .]) Principal component analysis (PCA).
decomposition.SparsePCA([n_components,
. . .])

Sparse Principal Components Analysis (SparsePCA)

decomposition.SparseCoder(dictionary, *[,
. . .])

Sparse coding

decomposition.TruncatedSVD([n_components,
. . .])

Dimensionality reduction using truncated SVD (aka
LSA).

7.8.1 sklearn.decomposition.DictionaryLearning

class sklearn.decomposition.DictionaryLearning(n_components=None, *, al-
pha=1, max_iter=1000, tol=1e-
08, fit_algorithm=’lars’, trans-
form_algorithm=’omp’, trans-
form_n_nonzero_coefs=None, trans-
form_alpha=None, n_jobs=None,
code_init=None, dict_init=None,
verbose=False, split_sign=False,
random_state=None, posi-
tive_code=False, positive_dict=False,
transform_max_iter=1000)

Dictionary learning

Finds a dictionary (a set of atoms) that can best be used to represent data using a sparse code.

1790 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Solves the optimization problem:

(U^*,V^*) = argmin 0.5 || Y - U V ||_2^2 + alpha * || U ||_1
(U,V)
with || V_k ||_2 = 1 for all 0 <= k < n_components

Read more in the User Guide.

Parameters

n_components [int, default=n_features] number of dictionary elements to extract

alpha [float, default=1.0] sparsity controlling parameter

max_iter [int, default=1000] maximum number of iterations to perform

tol [float, default=1e-8] tolerance for numerical error

fit_algorithm [{‘lars’, ‘cd’}, default=’lars’] lars: uses the least angle regression method to
solve the lasso problem (linear_model.lars_path) cd: uses the coordinate descent method
to compute the Lasso solution (linear_model.Lasso). Lars will be faster if the estimated
components are sparse.

New in version 0.17: cd coordinate descent method to improve speed.

transform_algorithm [{‘lasso_lars’, ‘lasso_cd’, ‘lars’, ‘omp’, ‘threshold’}, default=’omp’]
Algorithm used to transform the data lars: uses the least angle regression method (lin-
ear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses the
coordinate descent method to compute the Lasso solution (linear_model.Lasso). lasso_lars
will be faster if the estimated components are sparse. omp: uses orthogonal matching pur-
suit to estimate the sparse solution threshold: squashes to zero all coefficients less than alpha
from the projection dictionary * X'

New in version 0.17: lasso_cd coordinate descent method to improve speed.

transform_n_nonzero_coefs [int, default=0.1*n_features] Number of nonzero coefficients to
target in each column of the solution. This is only used by algorithm='lars' and
algorithm='omp' and is overridden by alpha in the omp case.

transform_alpha [float, default=1.0] If algorithm='lasso_lars' or
algorithm='lasso_cd', alpha is the penalty applied to the L1 norm. If
algorithm='threshold', alpha is the absolute value of the threshold below
which coefficients will be squashed to zero. If algorithm='omp', alpha is the
tolerance parameter: the value of the reconstruction error targeted. In this case, it overrides
n_nonzero_coefs.

n_jobs [int or None, default=None] Number of parallel jobs to run. None means 1 unless in
a joblib.parallel_backend context. -1 means using all processors. See Glossary
for more details.

code_init [array of shape (n_samples, n_components), default=None] initial value for the code,
for warm restart

dict_init [array of shape (n_components, n_features), default=None] initial values for the dic-
tionary, for warm restart

verbose [bool, default=False] To control the verbosity of the procedure.

split_sign [bool, default=False] Whether to split the sparse feature vector into the concatenation
of its negative part and its positive part. This can improve the performance of downstream
classifiers.

7.8. sklearn.decomposition: Matrix Decomposition 1791

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

random_state [int, RandomState instance or None, optional (default=None)] Used for initial-
izing the dictionary when dict_init is not specified, randomly shuffling the data when
shuffle is set to True, and updating the dictionary. Pass an int for reproducible results
across multiple function calls. See Glossary.

positive_code [bool, default=False] Whether to enforce positivity when finding the code.

New in version 0.20.

positive_dict [bool, default=False] Whether to enforce positivity when finding the dictionary

New in version 0.20.

transform_max_iter [int, default=1000] Maximum number of iterations to perform if
algorithm='lasso_cd' or lasso_lars.

New in version 0.22.

Attributes

components_ [array, [n_components, n_features]] dictionary atoms extracted from the data

error_ [array] vector of errors at each iteration

n_iter_ [int] Number of iterations run.

See also:

SparseCoder

MiniBatchDictionaryLearning

SparsePCA

MiniBatchSparsePCA

Notes

References:

J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009: Online dictionary learning for sparse coding (https://www.di.ens.
fr/sierra/pdfs/icml09.pdf)

Methods

fit(X[, y]) Fit the model from data in X.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Encode the data as a sparse combination of the dic-

tionary atoms.

__init__(n_components=None, *, alpha=1, max_iter=1000, tol=1e-08, fit_algorithm=’lars’,
transform_algorithm=’omp’, transform_n_nonzero_coefs=None, transform_alpha=None,
n_jobs=None, code_init=None, dict_init=None, verbose=False, split_sign=False, ran-
dom_state=None, positive_code=False, positive_dict=False, transform_max_iter=1000)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Fit the model from data in X.

1792 Chapter 7. API Reference

https://www.di.ens.fr/sierra/pdfs/icml09.pdf
https://www.di.ens.fr/sierra/pdfs/icml09.pdf

scikit-learn user guide, Release 0.23.2

Parameters

X [array-like, shape (n_samples, n_features)] Training vector, where n_samples in the num-
ber of samples and n_features is the number of features.

y [Ignored]

Returns

self [object] Returns the object itself

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Encode the data as a sparse combination of the dictionary atoms.

Coding method is determined by the object parameter transform_algorithm.

Parameters

X [array of shape (n_samples, n_features)] Test data to be transformed, must have the same
number of features as the data used to train the model.

Returns

X_new [array, shape (n_samples, n_components)] Transformed data

7.8. sklearn.decomposition: Matrix Decomposition 1793

scikit-learn user guide, Release 0.23.2

7.8.2 sklearn.decomposition.FactorAnalysis

class sklearn.decomposition.FactorAnalysis(n_components=None, *, tol=0.01, copy=True,
max_iter=1000, noise_variance_init=None,
svd_method=’randomized’, iter-
ated_power=3, random_state=0)

Factor Analysis (FA)

A simple linear generative model with Gaussian latent variables.

The observations are assumed to be caused by a linear transformation of lower dimensional latent factors and
added Gaussian noise. Without loss of generality the factors are distributed according to a Gaussian with zero
mean and unit covariance. The noise is also zero mean and has an arbitrary diagonal covariance matrix.

If we would restrict the model further, by assuming that the Gaussian noise is even isotropic (all diagonal entries
are the same) we would obtain PPCA.

FactorAnalysis performs a maximum likelihood estimate of the so-called loading matrix, the transformation
of the latent variables to the observed ones, using SVD based approach.

Read more in the User Guide.

New in version 0.13.

Parameters

n_components [int | None] Dimensionality of latent space, the number of components of X that
are obtained after transform. If None, n_components is set to the number of features.

tol [float] Stopping tolerance for log-likelihood increase.

copy [bool] Whether to make a copy of X. If False, the input X gets overwritten during fitting.

max_iter [int] Maximum number of iterations.

noise_variance_init [None | array, shape=(n_features,)] The initial guess of the noise variance
for each feature. If None, it defaults to np.ones(n_features)

svd_method [{‘lapack’, ‘randomized’}] Which SVD method to use. If ‘lapack’ use standard
SVD from scipy.linalg, if ‘randomized’ use fast randomized_svd function. Defaults to
‘randomized’. For most applications ‘randomized’ will be sufficiently precise while pro-
viding significant speed gains. Accuracy can also be improved by setting higher values for
iterated_power. If this is not sufficient, for maximum precision you should choose
‘lapack’.

iterated_power [int, optional] Number of iterations for the power method. 3 by default. Only
used if svd_method equals ‘randomized’

random_state [int, RandomState instance, default=0] Only used when svd_method equals
‘randomized’. Pass an int for reproducible results across multiple function calls. See Glos-
sary.

Attributes

components_ [array, [n_components, n_features]] Components with maximum variance.

loglike_ [list, [n_iterations]] The log likelihood at each iteration.

noise_variance_ [array, shape=(n_features,)] The estimated noise variance for each feature.

n_iter_ [int] Number of iterations run.

mean_ [array, shape (n_features,)] Per-feature empirical mean, estimated from the training set.

See also:

1794 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

PCA Principal component analysis is also a latent linear variable model which however assumes equal noise
variance for each feature. This extra assumption makes probabilistic PCA faster as it can be computed in
closed form.

FastICA Independent component analysis, a latent variable model with non-Gaussian latent variables.

References

Examples

>>> from sklearn.datasets import load_digits
>>> from sklearn.decomposition import FactorAnalysis
>>> X, _ = load_digits(return_X_y=True)
>>> transformer = FactorAnalysis(n_components=7, random_state=0)
>>> X_transformed = transformer.fit_transform(X)
>>> X_transformed.shape
(1797, 7)

Methods

fit(X[, y]) Fit the FactorAnalysis model to X using SVD based
approach

fit_transform(X[, y]) Fit to data, then transform it.
get_covariance() Compute data covariance with the FactorAnalysis

model.
get_params([deep]) Get parameters for this estimator.
get_precision() Compute data precision matrix with the FactorAnal-

ysis model.
score(X[, y]) Compute the average log-likelihood of the samples
score_samples(X) Compute the log-likelihood of each sample
set_params(**params) Set the parameters of this estimator.
transform(X) Apply dimensionality reduction to X using the

model.

__init__(n_components=None, *, tol=0.01, copy=True, max_iter=1000, noise_variance_init=None,
svd_method=’randomized’, iterated_power=3, random_state=0)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Fit the FactorAnalysis model to X using SVD based approach

Parameters

X [array-like, shape (n_samples, n_features)] Training data.

y [Ignored]

Returns

self

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

7.8. sklearn.decomposition: Matrix Decomposition 1795

scikit-learn user guide, Release 0.23.2

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_covariance()
Compute data covariance with the FactorAnalysis model.

cov = components_.T * components_ + diag(noise_variance)

Returns

cov [array, shape (n_features, n_features)] Estimated covariance of data.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

get_precision()
Compute data precision matrix with the FactorAnalysis model.

Returns

precision [array, shape (n_features, n_features)] Estimated precision of data.

score(X, y=None)
Compute the average log-likelihood of the samples

Parameters

X [array, shape (n_samples, n_features)] The data

y [Ignored]

Returns

ll [float] Average log-likelihood of the samples under the current model

score_samples(X)
Compute the log-likelihood of each sample

Parameters

X [array, shape (n_samples, n_features)] The data

Returns

ll [array, shape (n_samples,)] Log-likelihood of each sample under the current model

set_params(**params)
Set the parameters of this estimator.

1796 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Apply dimensionality reduction to X using the model.

Compute the expected mean of the latent variables. See Barber, 21.2.33 (or Bishop, 12.66).

Parameters

X [array-like, shape (n_samples, n_features)] Training data.

Returns

X_new [array-like, shape (n_samples, n_components)] The latent variables of X.

Examples using sklearn.decomposition.FactorAnalysis

• Model selection with Probabilistic PCA and Factor Analysis (FA)

• Faces dataset decompositions

7.8.3 sklearn.decomposition.FastICA

class sklearn.decomposition.FastICA(n_components=None, *, algorithm=’parallel’,
whiten=True, fun=’logcosh’, fun_args=None,
max_iter=200, tol=0.0001, w_init=None, ran-
dom_state=None)

FastICA: a fast algorithm for Independent Component Analysis.

Read more in the User Guide.

Parameters

n_components [int, optional] Number of components to use. If none is passed, all are used.

algorithm [{‘parallel’, ‘deflation’}] Apply parallel or deflational algorithm for FastICA.

whiten [boolean, optional] If whiten is false, the data is already considered to be whitened, and
no whitening is performed.

fun [string or function, optional. Default: ‘logcosh’] The functional form of the G function used
in the approximation to neg-entropy. Could be either ‘logcosh’, ‘exp’, or ‘cube’. You can
also provide your own function. It should return a tuple containing the value of the function,
and of its derivative, in the point. Example:

def my_g(x): return x ** 3, (3 * x ** 2).mean(axis=-1)

fun_args [dictionary, optional] Arguments to send to the functional form. If empty and if
fun=’logcosh’, fun_args will take value {‘alpha’ : 1.0}.

max_iter [int, optional] Maximum number of iterations during fit.

tol [float, optional] Tolerance on update at each iteration.

7.8. sklearn.decomposition: Matrix Decomposition 1797

scikit-learn user guide, Release 0.23.2

w_init [None of an (n_components, n_components) ndarray] The mixing matrix to be used to
initialize the algorithm.

random_state [int, RandomState instance, default=None] Used to initialize w_init when not
specified, with a normal distribution. Pass an int, for reproducible results across multiple
function calls. See Glossary.

Attributes

components_ [2D array, shape (n_components, n_features)] The linear operator to apply to
the data to get the independent sources. This is equal to the unmixing matrix when
whiten is False, and equal to np.dot(unmixing_matrix, self.whitening_)
when whiten is True.

mixing_ [array, shape (n_features, n_components)] The pseudo-inverse of components_. It
is the linear operator that maps independent sources to the data.

mean_ [array, shape(n_features)] The mean over features. Only set if self.whiten is True.

n_iter_ [int] If the algorithm is “deflation”, n_iter is the maximum number of iterations run
across all components. Else they are just the number of iterations taken to converge.

whitening_ [array, shape (n_components, n_features)] Only set if whiten is ‘True’. This is the
pre-whitening matrix that projects data onto the first n_components principal compo-
nents.

Notes

Implementation based on A. Hyvarinen and E. Oja, Independent Component Analysis: Algorithms and Appli-
cations, Neural Networks, 13(4-5), 2000, pp. 411-430

Examples

>>> from sklearn.datasets import load_digits
>>> from sklearn.decomposition import FastICA
>>> X, _ = load_digits(return_X_y=True)
>>> transformer = FastICA(n_components=7,
... random_state=0)
>>> X_transformed = transformer.fit_transform(X)
>>> X_transformed.shape
(1797, 7)

Methods

fit(X[, y]) Fit the model to X.
fit_transform(X[, y]) Fit the model and recover the sources from X.
get_params([deep]) Get parameters for this estimator.
inverse_transform(X[, copy]) Transform the sources back to the mixed data (apply

mixing matrix).
set_params(**params) Set the parameters of this estimator.
transform(X[, copy]) Recover the sources from X (apply the unmixing ma-

trix).

1798 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

__init__(n_components=None, *, algorithm=’parallel’, whiten=True, fun=’logcosh’,
fun_args=None, max_iter=200, tol=0.0001, w_init=None, random_state=None)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Fit the model to X.

Parameters

X [array-like, shape (n_samples, n_features)] Training data, where n_samples is the number
of samples and n_features is the number of features.

y [Ignored]

Returns

self

fit_transform(X, y=None)
Fit the model and recover the sources from X.

Parameters

X [array-like, shape (n_samples, n_features)] Training data, where n_samples is the number
of samples and n_features is the number of features.

y [Ignored]

Returns

X_new [array-like, shape (n_samples, n_components)]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

inverse_transform(X, copy=True)
Transform the sources back to the mixed data (apply mixing matrix).

Parameters

X [array-like, shape (n_samples, n_components)] Sources, where n_samples is the number
of samples and n_components is the number of components.

copy [bool (optional)] If False, data passed to fit are overwritten. Defaults to True.

Returns

X_new [array-like, shape (n_samples, n_features)]

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

7.8. sklearn.decomposition: Matrix Decomposition 1799

scikit-learn user guide, Release 0.23.2

Returns

self [object] Estimator instance.

transform(X, copy=True)
Recover the sources from X (apply the unmixing matrix).

Parameters

X [array-like, shape (n_samples, n_features)] Data to transform, where n_samples is the
number of samples and n_features is the number of features.

copy [bool (optional)] If False, data passed to fit are overwritten. Defaults to True.

Returns

X_new [array-like, shape (n_samples, n_components)]

Examples using sklearn.decomposition.FastICA

• Blind source separation using FastICA

• FastICA on 2D point clouds

• Faces dataset decompositions

7.8.4 sklearn.decomposition.IncrementalPCA

class sklearn.decomposition.IncrementalPCA(n_components=None, *, whiten=False,
copy=True, batch_size=None)

Incremental principal components analysis (IPCA).

Linear dimensionality reduction using Singular Value Decomposition of the data, keeping only the most signif-
icant singular vectors to project the data to a lower dimensional space. The input data is centered but not scaled
for each feature before applying the SVD.

Depending on the size of the input data, this algorithm can be much more memory efficient than a PCA, and
allows sparse input.

This algorithm has constant memory complexity, on the order of batch_size * n_features, enabling
use of np.memmap files without loading the entire file into memory. For sparse matrices, the input is converted
to dense in batches (in order to be able to subtract the mean) which avoids storing the entire dense matrix at any
one time.

The computational overhead of each SVD is O(batch_size * n_features ** 2), but only 2 *
batch_size samples remain in memory at a time. There will be n_samples / batch_size SVD compu-
tations to get the principal components, versus 1 large SVD of complexity O(n_samples * n_features

** 2) for PCA.

Read more in the User Guide.

New in version 0.16.

Parameters

n_components [int or None, (default=None)] Number of components to keep. If
n_components `` is ``None, then n_components is set to min(n_samples,
n_features).

1800 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

whiten [bool, optional] When True (False by default) the components_ vectors are di-
vided by n_samples times components_ to ensure uncorrelated outputs with unit
component-wise variances.

Whitening will remove some information from the transformed signal (the relative variance
scales of the components) but can sometimes improve the predictive accuracy of the down-
stream estimators by making data respect some hard-wired assumptions.

copy [bool, (default=True)] If False, X will be overwritten. copy=False can be used to save
memory but is unsafe for general use.

batch_size [int or None, (default=None)] The number of samples to use for each batch. Only
used when calling fit. If batch_size is None, then batch_size is inferred from the
data and set to 5 * n_features, to provide a balance between approximation accuracy
and memory consumption.

Attributes

components_ [array, shape (n_components, n_features)] Components with maximum variance.

explained_variance_ [array, shape (n_components,)] Variance explained by each of the se-
lected components.

explained_variance_ratio_ [array, shape (n_components,)] Percentage of variance explained
by each of the selected components. If all components are stored, the sum of explained
variances is equal to 1.0.

singular_values_ [array, shape (n_components,)] The singular values corresponding to each
of the selected components. The singular values are equal to the 2-norms of the
n_components variables in the lower-dimensional space.

mean_ [array, shape (n_features,)] Per-feature empirical mean, aggregate over calls to
partial_fit.

var_ [array, shape (n_features,)] Per-feature empirical variance, aggregate over calls to
partial_fit.

noise_variance_ [float] The estimated noise covariance following the Probabilistic PCA model
from Tipping and Bishop 1999. See “Pattern Recognition and Machine Learning” by C.
Bishop, 12.2.1 p. 574 or http://www.miketipping.com/papers/met-mppca.pdf.

n_components_ [int] The estimated number of components. Relevant when
n_components=None.

n_samples_seen_ [int] The number of samples processed by the estimator. Will be reset on
new calls to fit, but increments across partial_fit calls.

batch_size_ [int] Inferred batch size from batch_size.

See also:

PCA

KernelPCA

SparsePCA

TruncatedSVD

7.8. sklearn.decomposition: Matrix Decomposition 1801

http://www.miketipping.com/papers/met-mppca.pdf

scikit-learn user guide, Release 0.23.2

Notes

Implements the incremental PCA model from: D. Ross, J. Lim, R. Lin, M. Yang, Incremental Learning for
Robust Visual Tracking, International Journal of Computer Vision, Volume 77, Issue 1-3, pp. 125-141, May
2008. See https://www.cs.toronto.edu/~dross/ivt/RossLimLinYang_ijcv.pdf

This model is an extension of the Sequential Karhunen-Loeve Transform from: A. Levy and M. Lindenbaum, Se-
quential Karhunen-Loeve Basis Extraction and its Application to Images, IEEE Transactions on Image Process-
ing, Volume 9, Number 8, pp. 1371-1374, August 2000. See https://www.cs.technion.ac.il/~mic/doc/skl-ip.pdf

We have specifically abstained from an optimization used by authors of both papers, a QR decomposition used
in specific situations to reduce the algorithmic complexity of the SVD. The source for this technique is Matrix
Computations, Third Edition, G. Holub and C. Van Loan, Chapter 5, section 5.4.4, pp 252-253.. This technique
has been omitted because it is advantageous only when decomposing a matrix with n_samples (rows) >=
5/3 * n_features (columns), and hurts the readability of the implemented algorithm. This would be a good
opportunity for future optimization, if it is deemed necessary.

References

D. Ross, J. Lim, R. Lin, M. Yang. Incremental Learning for Robust Visual Tracking, International Journal of
Computer Vision, Volume 77, Issue 1-3, pp. 125-141, May 2008.

G. Golub and C. Van Loan. Matrix Computations, Third Edition, Chapter 5, Section 5.4.4, pp. 252-253.

Examples

>>> from sklearn.datasets import load_digits
>>> from sklearn.decomposition import IncrementalPCA
>>> from scipy import sparse
>>> X, _ = load_digits(return_X_y=True)
>>> transformer = IncrementalPCA(n_components=7, batch_size=200)
>>> # either partially fit on smaller batches of data
>>> transformer.partial_fit(X[:100, :])
IncrementalPCA(batch_size=200, n_components=7)
>>> # or let the fit function itself divide the data into batches
>>> X_sparse = sparse.csr_matrix(X)
>>> X_transformed = transformer.fit_transform(X_sparse)
>>> X_transformed.shape
(1797, 7)

Methods

fit(X[, y]) Fit the model with X, using minibatches of size
batch_size.

fit_transform(X[, y]) Fit to data, then transform it.
get_covariance() Compute data covariance with the generative model.
get_params([deep]) Get parameters for this estimator.
get_precision() Compute data precision matrix with the generative

model.
inverse_transform(X) Transform data back to its original space.
partial_fit(X[, y, check_input]) Incremental fit with X.
set_params(**params) Set the parameters of this estimator.

Continued on next page

1802 Chapter 7. API Reference

https://www.cs.toronto.edu/~dross/ivt/RossLimLinYang_ijcv.pdf
https://www.cs.technion.ac.il/~mic/doc/skl-ip.pdf

scikit-learn user guide, Release 0.23.2

Table 53 – continued from previous page
transform(X) Apply dimensionality reduction to X.

__init__(n_components=None, *, whiten=False, copy=True, batch_size=None)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Fit the model with X, using minibatches of size batch_size.

Parameters

X [array-like or sparse matrix, shape (n_samples, n_features)] Training data, where
n_samples is the number of samples and n_features is the number of features.

y [Ignored]

Returns

self [object] Returns the instance itself.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_covariance()
Compute data covariance with the generative model.

cov = components_.T * S**2 * components_ + sigma2 * eye(n_features)
where S**2 contains the explained variances, and sigma2 contains the noise variances.

Returns

cov [array, shape=(n_features, n_features)] Estimated covariance of data.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

get_precision()
Compute data precision matrix with the generative model.

Equals the inverse of the covariance but computed with the matrix inversion lemma for efficiency.

Returns

precision [array, shape=(n_features, n_features)] Estimated precision of data.

7.8. sklearn.decomposition: Matrix Decomposition 1803

scikit-learn user guide, Release 0.23.2

inverse_transform(X)
Transform data back to its original space.

In other words, return an input X_original whose transform would be X.

Parameters

X [array-like, shape (n_samples, n_components)] New data, where n_samples is the number
of samples and n_components is the number of components.

Returns

X_original array-like, shape (n_samples, n_features)

Notes

If whitening is enabled, inverse_transform will compute the exact inverse operation, which includes re-
versing whitening.

partial_fit(X, y=None, check_input=True)
Incremental fit with X. All of X is processed as a single batch.

Parameters

X [array-like, shape (n_samples, n_features)] Training data, where n_samples is the number
of samples and n_features is the number of features.

check_input [bool] Run check_array on X.

y [Ignored]

Returns

self [object] Returns the instance itself.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Apply dimensionality reduction to X.

X is projected on the first principal components previously extracted from a training set, using minibatches
of size batch_size if X is sparse.

Parameters

X [array-like, shape (n_samples, n_features)] New data, where n_samples is the number of
samples and n_features is the number of features.

Returns

X_new [array-like, shape (n_samples, n_components)]

1804 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Examples

>>> import numpy as np
>>> from sklearn.decomposition import IncrementalPCA
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2],
... [1, 1], [2, 1], [3, 2]])
>>> ipca = IncrementalPCA(n_components=2, batch_size=3)
>>> ipca.fit(X)
IncrementalPCA(batch_size=3, n_components=2)
>>> ipca.transform(X) # doctest: +SKIP

Examples using sklearn.decomposition.IncrementalPCA

• Incremental PCA

7.8.5 sklearn.decomposition.KernelPCA

class sklearn.decomposition.KernelPCA(n_components=None, *, kernel=’linear’,
gamma=None, degree=3, coef0=1,
kernel_params=None, alpha=1.0,
fit_inverse_transform=False, eigen_solver=’auto’,
tol=0, max_iter=None, remove_zero_eig=False,
random_state=None, copy_X=True, n_jobs=None)

Kernel Principal component analysis (KPCA)

Non-linear dimensionality reduction through the use of kernels (see Pairwise metrics, Affinities and Kernels).

Read more in the User Guide.

Parameters

n_components [int, default=None] Number of components. If None, all non-zero components
are kept.

kernel [“linear” | “poly” | “rbf” | “sigmoid” | “cosine” | “precomputed”] Kernel. De-
fault=”linear”.

gamma [float, default=1/n_features] Kernel coefficient for rbf, poly and sigmoid kernels. Ig-
nored by other kernels.

degree [int, default=3] Degree for poly kernels. Ignored by other kernels.

coef0 [float, default=1] Independent term in poly and sigmoid kernels. Ignored by other kernels.

kernel_params [mapping of string to any, default=None] Parameters (keyword arguments) and
values for kernel passed as callable object. Ignored by other kernels.

alpha [int, default=1.0] Hyperparameter of the ridge regression that learns the inverse transform
(when fit_inverse_transform=True).

fit_inverse_transform [bool, default=False] Learn the inverse transform for non-precomputed
kernels. (i.e. learn to find the pre-image of a point)

eigen_solver [string [‘auto’|’dense’|’arpack’], default=’auto’] Select eigensolver to use. If
n_components is much less than the number of training samples, arpack may be more effi-
cient than the dense eigensolver.

tol [float, default=0] Convergence tolerance for arpack. If 0, optimal value will be chosen by
arpack.

7.8. sklearn.decomposition: Matrix Decomposition 1805

scikit-learn user guide, Release 0.23.2

max_iter [int, default=None] Maximum number of iterations for arpack. If None, optimal value
will be chosen by arpack.

remove_zero_eig [boolean, default=False] If True, then all components with zero eigenvalues
are removed, so that the number of components in the output may be < n_components
(and sometimes even zero due to numerical instability). When n_components is None, this
parameter is ignored and components with zero eigenvalues are removed regardless.

random_state [int, RandomState instance, default=None] Used when eigen_solver ==
‘arpack’. Pass an int for reproducible results across multiple function calls. See Glossary.

New in version 0.18.

copy_X [boolean, default=True] If True, input X is copied and stored by the model in the
X_fit_ attribute. If no further changes will be done to X, setting copy_X=False saves
memory by storing a reference.

New in version 0.18.

n_jobs [int or None, optional (default=None)] The number of parallel jobs to run. None means
1 unless in a joblib.parallel_backend context. -1means using all processors. See
Glossary for more details.

New in version 0.18.

Attributes

lambdas_ [array, (n_components,)] Eigenvalues of the centered kernel matrix in decreasing
order. If n_components and remove_zero_eig are not set, then all values are stored.

alphas_ [array, (n_samples, n_components)] Eigenvectors of the centered kernel matrix. If
n_components and remove_zero_eig are not set, then all components are stored.

dual_coef_ [array, (n_samples, n_features)] Inverse transform matrix. Only available when
fit_inverse_transform is True.

X_transformed_fit_ [array, (n_samples, n_components)] Projection of the fitted data on the
kernel principal components. Only available when fit_inverse_transform is True.

X_fit_ [(n_samples, n_features)] The data used to fit the model. If copy_X=False, then
X_fit_ is a reference. This attribute is used for the calls to transform.

References

Kernel PCA was introduced in: Bernhard Schoelkopf, Alexander J. Smola, and Klaus-Robert Mueller. 1999.
Kernel principal component analysis. In Advances in kernel methods, MIT Press, Cambridge, MA, USA
327-352.

Examples

>>> from sklearn.datasets import load_digits
>>> from sklearn.decomposition import KernelPCA
>>> X, _ = load_digits(return_X_y=True)
>>> transformer = KernelPCA(n_components=7, kernel='linear')
>>> X_transformed = transformer.fit_transform(X)
>>> X_transformed.shape
(1797, 7)

1806 Chapter 7. API Reference

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

Methods

fit(X[, y]) Fit the model from data in X.
fit_transform(X[, y]) Fit the model from data in X and transform X.
get_params([deep]) Get parameters for this estimator.
inverse_transform(X) Transform X back to original space.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform X.

__init__(n_components=None, *, kernel=’linear’, gamma=None, degree=3, coef0=1, ker-
nel_params=None, alpha=1.0, fit_inverse_transform=False, eigen_solver=’auto’,
tol=0, max_iter=None, remove_zero_eig=False, random_state=None, copy_X=True,
n_jobs=None)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Fit the model from data in X.

Parameters

X [array-like, shape (n_samples, n_features)] Training vector, where n_samples in the num-
ber of samples and n_features is the number of features.

Returns

self [object] Returns the instance itself.

fit_transform(X, y=None, **params)
Fit the model from data in X and transform X.

Parameters

X [array-like, shape (n_samples, n_features)] Training vector, where n_samples in the num-
ber of samples and n_features is the number of features.

Returns

X_new [array-like, shape (n_samples, n_components)]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

inverse_transform(X)
Transform X back to original space.

Parameters

X [array-like, shape (n_samples, n_components)]

Returns

X_new [array-like, shape (n_samples, n_features)]

7.8. sklearn.decomposition: Matrix Decomposition 1807

scikit-learn user guide, Release 0.23.2

References

“Learning to Find Pre-Images”, G BakIr et al, 2004.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Transform X.

Parameters

X [array-like, shape (n_samples, n_features)]

Returns

X_new [array-like, shape (n_samples, n_components)]

Examples using sklearn.decomposition.KernelPCA

• Kernel PCA

7.8.6 sklearn.decomposition.LatentDirichletAllocation

class sklearn.decomposition.LatentDirichletAllocation(n_components=10, *,
doc_topic_prior=None,
topic_word_prior=None,
learning_method=’batch’,
learning_decay=0.7,
learning_offset=10.0,
max_iter=10,
batch_size=128,
evaluate_every=-1, to-
tal_samples=1000000.0,
perp_tol=0.1,
mean_change_tol=0.001,
max_doc_update_iter=100,
n_jobs=None, verbose=0,
random_state=None)

Latent Dirichlet Allocation with online variational Bayes algorithm

New in version 0.17.

Read more in the User Guide.

Parameters

1808 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

n_components [int, optional (default=10)] Number of topics.

Changed in version 0.19: n_topics `` was renamed to ``n_components

doc_topic_prior [float, optional (default=None)] Prior of document topic distribution theta.
If the value is None, defaults to 1 / n_components. In [1], this is called alpha.

topic_word_prior [float, optional (default=None)] Prior of topic word distribution beta. If
the value is None, defaults to 1 / n_components. In [1], this is called eta.

learning_method [‘batch’ | ‘online’, default=’batch’] Method used to update _component.
Only used in fit method. In general, if the data size is large, the online update will be
much faster than the batch update.

Valid options:

'batch': Batch variational Bayes method. Use all training data in
each EM update.
Old `components_` will be overwritten in each iteration.

'online': Online variational Bayes method. In each EM update, use
mini-batch of training data to update the ``components_``
variable incrementally. The learning rate is controlled by the
``learning_decay`` and the ``learning_offset`` parameters.

Changed in version 0.20: The default learning method is now "batch".

learning_decay [float, optional (default=0.7)] It is a parameter that control learning rate in the
online learning method. The value should be set between (0.5, 1.0] to guarantee asymptotic
convergence. When the value is 0.0 and batch_size is n_samples, the update method is
same as batch learning. In the literature, this is called kappa.

learning_offset [float, optional (default=10.)] A (positive) parameter that downweights early
iterations in online learning. It should be greater than 1.0. In the literature, this is called
tau_0.

max_iter [integer, optional (default=10)] The maximum number of iterations.

batch_size [int, optional (default=128)] Number of documents to use in each EM iteration.
Only used in online learning.

evaluate_every [int, optional (default=0)] How often to evaluate perplexity. Only used in fit
method. set it to 0 or negative number to not evaluate perplexity in training at all. Evaluating
perplexity can help you check convergence in training process, but it will also increase total
training time. Evaluating perplexity in every iteration might increase training time up to
two-fold.

total_samples [int, optional (default=1e6)] Total number of documents. Only used in the
partial_fit method.

perp_tol [float, optional (default=1e-1)] Perplexity tolerance in batch learning. Only used when
evaluate_every is greater than 0.

mean_change_tol [float, optional (default=1e-3)] Stopping tolerance for updating document
topic distribution in E-step.

max_doc_update_iter [int (default=100)] Max number of iterations for updating document
topic distribution in the E-step.

n_jobs [int or None, optional (default=None)] The number of jobs to use in the E-step. None
means 1 unless in a joblib.parallel_backend context. -1 means using all proces-
sors. See Glossary for more details.

verbose [int, optional (default=0)] Verbosity level.

7.8. sklearn.decomposition: Matrix Decomposition 1809

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

random_state [int, RandomState instance, default=None] Pass an int for reproducible results
across multiple function calls. See Glossary.

Attributes

components_ [array, [n_components, n_features]] Variational parameters for topic word dis-
tribution. Since the complete conditional for topic word distribution is a Dirichlet,
components_[i, j] can be viewed as pseudocount that represents the number of times
word j was assigned to topic i. It can also be viewed as distribution over the words
for each topic after normalization: model.components_ / model.components_.
sum(axis=1)[:, np.newaxis].

n_batch_iter_ [int] Number of iterations of the EM step.

n_iter_ [int] Number of passes over the dataset.

bound_ [float] Final perplexity score on training set.

doc_topic_prior_ [float] Prior of document topic distribution theta. If the value is None, it
is 1 / n_components.

topic_word_prior_ [float] Prior of topic word distribution beta. If the value is None, it is 1
/ n_components.

References

[2] “Stochastic Variational Inference”, Matthew D. Hoffman, David M. Blei, Chong Wang, John Paisley,
2013

[3] Matthew D. Hoffman’s onlineldavb code. Link: https://github.com/blei-lab/onlineldavb

[1]

Examples

>>> from sklearn.decomposition import LatentDirichletAllocation
>>> from sklearn.datasets import make_multilabel_classification
>>> # This produces a feature matrix of token counts, similar to what
>>> # CountVectorizer would produce on text.
>>> X, _ = make_multilabel_classification(random_state=0)
>>> lda = LatentDirichletAllocation(n_components=5,
... random_state=0)
>>> lda.fit(X)
LatentDirichletAllocation(...)
>>> # get topics for some given samples:
>>> lda.transform(X[-2:])
array([[0.00360392, 0.25499205, 0.0036211 , 0.64236448, 0.09541846],

[0.15297572, 0.00362644, 0.44412786, 0.39568399, 0.003586]])

Methods

fit(X[, y]) Learn model for the data X with variational Bayes
method.

fit_transform(X[, y]) Fit to data, then transform it.
Continued on next page

1810 Chapter 7. API Reference

https://github.com/blei-lab/onlineldavb

scikit-learn user guide, Release 0.23.2

Table 55 – continued from previous page
get_params([deep]) Get parameters for this estimator.
partial_fit(X[, y]) Online VB with Mini-Batch update.
perplexity(X[, sub_sampling]) Calculate approximate perplexity for data X.
score(X[, y]) Calculate approximate log-likelihood as score.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform data X according to the fitted model.

__init__(n_components=10, *, doc_topic_prior=None, topic_word_prior=None, learn-
ing_method=’batch’, learning_decay=0.7, learning_offset=10.0, max_iter=10,
batch_size=128, evaluate_every=-1, total_samples=1000000.0, perp_tol=0.1,
mean_change_tol=0.001, max_doc_update_iter=100, n_jobs=None, verbose=0, ran-
dom_state=None)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Learn model for the data X with variational Bayes method.

When learning_method is ‘online’, use mini-batch update. Otherwise, use batch update.

Parameters

X [array-like or sparse matrix, shape=(n_samples, n_features)] Document word matrix.

y [Ignored]

Returns

self

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

partial_fit(X, y=None)
Online VB with Mini-Batch update.

Parameters

X [array-like or sparse matrix, shape=(n_samples, n_features)] Document word matrix.

7.8. sklearn.decomposition: Matrix Decomposition 1811

scikit-learn user guide, Release 0.23.2

y [Ignored]

Returns

self

perplexity(X, sub_sampling=False)
Calculate approximate perplexity for data X.

Perplexity is defined as exp(-1. * log-likelihood per word)

Changed in version 0.19: doc_topic_distr argument has been deprecated and is ignored because user no
longer has access to unnormalized distribution

Parameters

X [array-like or sparse matrix, [n_samples, n_features]] Document word matrix.

sub_sampling [bool] Do sub-sampling or not.

Returns

score [float] Perplexity score.

score(X, y=None)
Calculate approximate log-likelihood as score.

Parameters

X [array-like or sparse matrix, shape=(n_samples, n_features)] Document word matrix.

y [Ignored]

Returns

score [float] Use approximate bound as score.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Transform data X according to the fitted model.

Changed in version 0.18: doc_topic_distr is now normalized

Parameters

X [array-like or sparse matrix, shape=(n_samples, n_features)] Document word matrix.

Returns

doc_topic_distr [shape=(n_samples, n_components)] Document topic distribution for X.

1812 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Examples using sklearn.decomposition.LatentDirichletAllocation

• Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet Allocation

7.8.7 sklearn.decomposition.MiniBatchDictionaryLearning

class sklearn.decomposition.MiniBatchDictionaryLearning(n_components=None, *,
alpha=1, n_iter=1000,
fit_algorithm=’lars’,
n_jobs=None,
batch_size=3,
shuffle=True,
dict_init=None, trans-
form_algorithm=’omp’,
trans-
form_n_nonzero_coefs=None,
transform_alpha=None,
verbose=False,
split_sign=False, ran-
dom_state=None, posi-
tive_code=False, posi-
tive_dict=False, trans-
form_max_iter=1000)

Mini-batch dictionary learning

Finds a dictionary (a set of atoms) that can best be used to represent data using a sparse code.

Solves the optimization problem:

(U^*,V^*) = argmin 0.5 || Y - U V ||_2^2 + alpha * || U ||_1
(U,V)
with || V_k ||_2 = 1 for all 0 <= k < n_components

Read more in the User Guide.

Parameters

n_components [int,] number of dictionary elements to extract

alpha [float,] sparsity controlling parameter

n_iter [int,] total number of iterations to perform

fit_algorithm [{‘lars’, ‘cd’}] lars: uses the least angle regression method to solve the lasso
problem (linear_model.lars_path) cd: uses the coordinate descent method to compute the
Lasso solution (linear_model.Lasso). Lars will be faster if the estimated components are
sparse.

n_jobs [int or None, optional (default=None)] Number of parallel jobs to run. None means 1
unless in a joblib.parallel_backend context. -1 means using all processors. See
Glossary for more details.

batch_size [int,] number of samples in each mini-batch

shuffle [bool,] whether to shuffle the samples before forming batches

dict_init [array of shape (n_components, n_features),] initial value of the dictionary for warm
restart scenarios

7.8. sklearn.decomposition: Matrix Decomposition 1813

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

transform_algorithm [{‘lasso_lars’, ‘lasso_cd’, ‘lars’, ‘omp’, ‘threshold’}] Algorithm used to
transform the data. lars: uses the least angle regression method (linear_model.lars_path)
lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses the coordinate descent
method to compute the Lasso solution (linear_model.Lasso). lasso_lars will be faster if
the estimated components are sparse. omp: uses orthogonal matching pursuit to estimate
the sparse solution threshold: squashes to zero all coefficients less than alpha from the
projection dictionary * X’

transform_n_nonzero_coefs [int, 0.1 * n_features by default] Number of nonzero
coefficients to target in each column of the solution. This is only used by
algorithm='lars' and algorithm='omp' and is overridden by alpha in the omp
case.

transform_alpha [float, 1. by default] If algorithm='lasso_lars' or
algorithm='lasso_cd', alpha is the penalty applied to the L1 norm. If
algorithm='threshold', alpha is the absolute value of the threshold below
which coefficients will be squashed to zero. If algorithm='omp', alpha is the
tolerance parameter: the value of the reconstruction error targeted. In this case, it overrides
n_nonzero_coefs.

verbose [bool, optional (default: False)] To control the verbosity of the procedure.

split_sign [bool, False by default] Whether to split the sparse feature vector into the concate-
nation of its negative part and its positive part. This can improve the performance of down-
stream classifiers.

random_state [int, RandomState instance or None, optional (default=None)] Used for initial-
izing the dictionary when dict_init is not specified, randomly shuffling the data when
shuffle is set to True, and updating the dictionary. Pass an int for reproducible results
across multiple function calls. See Glossary.

positive_code [bool] Whether to enforce positivity when finding the code.

New in version 0.20.

positive_dict [bool] Whether to enforce positivity when finding the dictionary.

New in version 0.20.

transform_max_iter [int, optional (default=1000)] Maximum number of iterations to perform
if algorithm='lasso_cd' or lasso_lars.

New in version 0.22.

Attributes

components_ [array, [n_components, n_features]] components extracted from the data

inner_stats_ [tuple of (A, B) ndarrays] Internal sufficient statistics that are kept by the algo-
rithm. Keeping them is useful in online settings, to avoid losing the history of the evolution,
but they shouldn’t have any use for the end user. A (n_components, n_components) is the
dictionary covariance matrix. B (n_features, n_components) is the data approximation ma-
trix

n_iter_ [int] Number of iterations run.

iter_offset_ [int] The number of iteration on data batches that has been performed before.

random_state_ [RandomState] RandomState instance that is generated either from a seed, the
random number generattor or by np.random.

See also:

1814 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

SparseCoder

DictionaryLearning

SparsePCA

MiniBatchSparsePCA

Notes

References:

J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009: Online dictionary learning for sparse coding (https://www.di.ens.
fr/sierra/pdfs/icml09.pdf)

Methods

fit(X[, y]) Fit the model from data in X.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
partial_fit(X[, y, iter_offset]) Updates the model using the data in X as a mini-

batch.
set_params(**params) Set the parameters of this estimator.
transform(X) Encode the data as a sparse combination of the dic-

tionary atoms.

__init__(n_components=None, *, alpha=1, n_iter=1000, fit_algorithm=’lars’, n_jobs=None,
batch_size=3, shuffle=True, dict_init=None, transform_algorithm=’omp’,
transform_n_nonzero_coefs=None, transform_alpha=None, verbose=False,
split_sign=False, random_state=None, positive_code=False, positive_dict=False, trans-
form_max_iter=1000)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Fit the model from data in X.

Parameters

X [array-like, shape (n_samples, n_features)] Training vector, where n_samples in the num-
ber of samples and n_features is the number of features.

y [Ignored]

Returns

self [object] Returns the instance itself.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

7.8. sklearn.decomposition: Matrix Decomposition 1815

https://www.di.ens.fr/sierra/pdfs/icml09.pdf
https://www.di.ens.fr/sierra/pdfs/icml09.pdf

scikit-learn user guide, Release 0.23.2

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

partial_fit(X, y=None, iter_offset=None)
Updates the model using the data in X as a mini-batch.

Parameters

X [array-like, shape (n_samples, n_features)] Training vector, where n_samples in the num-
ber of samples and n_features is the number of features.

y [Ignored]

iter_offset [integer, optional] The number of iteration on data batches that has been per-
formed before this call to partial_fit. This is optional: if no number is passed, the memory
of the object is used.

Returns

self [object] Returns the instance itself.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Encode the data as a sparse combination of the dictionary atoms.

Coding method is determined by the object parameter transform_algorithm.

Parameters

X [array of shape (n_samples, n_features)] Test data to be transformed, must have the same
number of features as the data used to train the model.

Returns

X_new [array, shape (n_samples, n_components)] Transformed data

1816 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Examples using sklearn.decomposition.MiniBatchDictionaryLearning

• Image denoising using dictionary learning

• Faces dataset decompositions

7.8.8 sklearn.decomposition.MiniBatchSparsePCA

class sklearn.decomposition.MiniBatchSparsePCA(n_components=None, *, alpha=1,
ridge_alpha=0.01, n_iter=100,
callback=None, batch_size=3,
verbose=False, shuffle=True,
n_jobs=None, method=’lars’,
random_state=None, normal-
ize_components=’deprecated’)

Mini-batch Sparse Principal Components Analysis

Finds the set of sparse components that can optimally reconstruct the data. The amount of sparseness is control-
lable by the coefficient of the L1 penalty, given by the parameter alpha.

Read more in the User Guide.

Parameters

n_components [int,] number of sparse atoms to extract

alpha [int,] Sparsity controlling parameter. Higher values lead to sparser components.

ridge_alpha [float,] Amount of ridge shrinkage to apply in order to improve conditioning when
calling the transform method.

n_iter [int,] number of iterations to perform for each mini batch

callback [callable or None, optional (default: None)] callable that gets invoked every five iter-
ations

batch_size [int,] the number of features to take in each mini batch

verbose [int] Controls the verbosity; the higher, the more messages. Defaults to 0.

shuffle [boolean,] whether to shuffle the data before splitting it in batches

n_jobs [int or None, optional (default=None)] Number of parallel jobs to run. None means 1
unless in a joblib.parallel_backend context. -1 means using all processors. See
Glossary for more details.

method [{‘lars’, ‘cd’}] lars: uses the least angle regression method to solve the lasso prob-
lem (linear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso
solution (linear_model.Lasso). Lars will be faster if the estimated components are sparse.

random_state [int, RandomState instance, default=None] Used for random shuffling when
shuffle is set to True, during online dictionary learning. Pass an int for reproducible
results across multiple function calls. See Glossary.

normalize_components [‘deprecated’] This parameter does not have any effect. The compo-
nents are always normalized.

New in version 0.20.

Deprecated since version 0.22: normalize_components is deprecated in 0.22 and will
be removed in 0.24.

Attributes

7.8. sklearn.decomposition: Matrix Decomposition 1817

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

components_ [array, [n_components, n_features]] Sparse components extracted from the data.

n_components_ [int] Estimated number of components.

New in version 0.23.

n_iter_ [int] Number of iterations run.

mean_ [array, shape (n_features,)] Per-feature empirical mean, estimated from the training set.
Equal to X.mean(axis=0).

See also:

PCA

SparsePCA

DictionaryLearning

Examples

>>> import numpy as np
>>> from sklearn.datasets import make_friedman1
>>> from sklearn.decomposition import MiniBatchSparsePCA
>>> X, _ = make_friedman1(n_samples=200, n_features=30, random_state=0)
>>> transformer = MiniBatchSparsePCA(n_components=5, batch_size=50,
... random_state=0)
>>> transformer.fit(X)
MiniBatchSparsePCA(...)
>>> X_transformed = transformer.transform(X)
>>> X_transformed.shape
(200, 5)
>>> # most values in the components_ are zero (sparsity)
>>> np.mean(transformer.components_ == 0)
0.94

Methods

fit(X[, y]) Fit the model from data in X.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Least Squares projection of the data onto the sparse

components.

__init__(n_components=None, *, alpha=1, ridge_alpha=0.01, n_iter=100, callback=None,
batch_size=3, verbose=False, shuffle=True, n_jobs=None, method=’lars’, ran-
dom_state=None, normalize_components=’deprecated’)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Fit the model from data in X.

Parameters

X [array-like, shape (n_samples, n_features)] Training vector, where n_samples in the num-
ber of samples and n_features is the number of features.

1818 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

y [Ignored]

Returns

self [object] Returns the instance itself.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Least Squares projection of the data onto the sparse components.

To avoid instability issues in case the system is under-determined, regularization can be applied (Ridge
regression) via the ridge_alpha parameter.

Note that Sparse PCA components orthogonality is not enforced as in PCA hence one cannot use a simple
linear projection.

Parameters

X [array of shape (n_samples, n_features)] Test data to be transformed, must have the same
number of features as the data used to train the model.

Returns

X_new array, shape (n_samples, n_components) Transformed data.

7.8. sklearn.decomposition: Matrix Decomposition 1819

scikit-learn user guide, Release 0.23.2

Examples using sklearn.decomposition.MiniBatchSparsePCA

• Faces dataset decompositions

7.8.9 sklearn.decomposition.NMF

class sklearn.decomposition.NMF(n_components=None, *, init=None, solver=’cd’,
beta_loss=’frobenius’, tol=0.0001, max_iter=200, ran-
dom_state=None, alpha=0.0, l1_ratio=0.0, verbose=0,
shuffle=False)

Non-Negative Matrix Factorization (NMF)

Find two non-negative matrices (W, H) whose product approximates the non- negative matrix X. This factoriza-
tion can be used for example for dimensionality reduction, source separation or topic extraction.

The objective function is:

0.5 * ||X - WH||_Fro^2
+ alpha * l1_ratio * ||vec(W)||_1
+ alpha * l1_ratio * ||vec(H)||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2
+ 0.5 * alpha * (1 - l1_ratio) * ||H||_Fro^2

Where:

||A||_Fro^2 = \sum_{i,j} A_{ij}^2 (Frobenius norm)
||vec(A)||_1 = \sum_{i,j} abs(A_{ij}) (Elementwise L1 norm)

For multiplicative-update (‘mu’) solver, the Frobenius norm (0.5 * ||X - WH||_Fro^2) can be changed into
another beta-divergence loss, by changing the beta_loss parameter.

The objective function is minimized with an alternating minimization of W and H.

Read more in the User Guide.

Parameters

n_components [int or None] Number of components, if n_components is not set all features
are kept.

init [None | ‘random’ | ‘nndsvd’ | ‘nndsvda’ | ‘nndsvdar’ | ‘custom’] Method used to initialize
the procedure. Default: None. Valid options:

• None: ‘nndsvd’ if n_components <= min(n_samples, n_features), otherwise random.

• ‘random’: non-negative random matrices, scaled with: sqrt(X.mean() /
n_components)

• ‘nndsvd’: Nonnegative Double Singular Value Decomposition (NNDSVD)
initialization (better for sparseness)

• ‘nndsvda’: NNDSVD with zeros filled with the average of X (better when sparsity is
not desired)

• ‘nndsvdar’: NNDSVD with zeros filled with small random values (generally faster,
less accurate alternative to NNDSVDa for when sparsity is not desired)

• ‘custom’: use custom matrices W and H

solver [‘cd’ | ‘mu’] Numerical solver to use: ‘cd’ is a Coordinate Descent solver. ‘mu’ is a
Multiplicative Update solver.

1820 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

New in version 0.17: Coordinate Descent solver.

New in version 0.19: Multiplicative Update solver.

beta_loss [float or string, default ‘frobenius’] String must be in {‘frobenius’, ‘kullback-leibler’,
‘itakura-saito’}. Beta divergence to be minimized, measuring the distance between X and
the dot product WH. Note that values different from ‘frobenius’ (or 2) and ‘kullback-leibler’
(or 1) lead to significantly slower fits. Note that for beta_loss <= 0 (or ‘itakura-saito’), the
input matrix X cannot contain zeros. Used only in ‘mu’ solver.

New in version 0.19.

tol [float, default: 1e-4] Tolerance of the stopping condition.

max_iter [integer, default: 200] Maximum number of iterations before timing out.

random_state [int, RandomState instance, default=None] Used for initialisation (when init
== ‘nndsvdar’ or ‘random’), and in Coordinate Descent. Pass an int for reproducible results
across multiple function calls. See Glossary.

alpha [double, default: 0.] Constant that multiplies the regularization terms. Set it to zero to
have no regularization.

New in version 0.17: alpha used in the Coordinate Descent solver.

l1_ratio [double, default: 0.] The regularization mixing parameter, with 0 <= l1_ratio <= 1. For
l1_ratio = 0 the penalty is an elementwise L2 penalty (aka Frobenius Norm). For l1_ratio =
1 it is an elementwise L1 penalty. For 0 < l1_ratio < 1, the penalty is a combination of L1
and L2.

New in version 0.17: Regularization parameter l1_ratio used in the Coordinate Descent
solver.

verbose [bool, default=False] Whether to be verbose.

shuffle [boolean, default: False] If true, randomize the order of coordinates in the CD solver.

New in version 0.17: shuffle parameter used in the Coordinate Descent solver.

Attributes

components_ [array, [n_components, n_features]] Factorization matrix, sometimes called ‘dic-
tionary’.

n_components_ [integer] The number of components. It is same as the n_components pa-
rameter if it was given. Otherwise, it will be same as the number of features.

reconstruction_err_ [number] Frobenius norm of the matrix difference, or beta-divergence,
between the training data X and the reconstructed data WH from the fitted model.

n_iter_ [int] Actual number of iterations.

References

Cichocki, Andrzej, and P. H. A. N. Anh-Huy. “Fast local algorithms for large scale nonnegative matrix and ten-
sor factorizations.” IEICE transactions on fundamentals of electronics, communications and computer sciences
92.3: 708-721, 2009.

Fevotte, C., & Idier, J. (2011). Algorithms for nonnegative matrix factorization with the beta-divergence. Neural
Computation, 23(9).

7.8. sklearn.decomposition: Matrix Decomposition 1821

scikit-learn user guide, Release 0.23.2

Examples

>>> import numpy as np
>>> X = np.array([[1, 1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]])
>>> from sklearn.decomposition import NMF
>>> model = NMF(n_components=2, init='random', random_state=0)
>>> W = model.fit_transform(X)
>>> H = model.components_

Methods

fit(X[, y]) Learn a NMF model for the data X.
fit_transform(X[, y, W, H]) Learn a NMF model for the data X and returns the

transformed data.
get_params([deep]) Get parameters for this estimator.
inverse_transform(W) Transform data back to its original space.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform the data X according to the fitted NMF

model

__init__(n_components=None, *, init=None, solver=’cd’, beta_loss=’frobenius’, tol=0.0001,
max_iter=200, random_state=None, alpha=0.0, l1_ratio=0.0, verbose=0, shuffle=False)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None, **params)
Learn a NMF model for the data X.

Parameters

X [{array-like, sparse matrix}, shape (n_samples, n_features)] Data matrix to be decom-
posed

y [Ignored]

Returns

self

fit_transform(X, y=None, W=None, H=None)
Learn a NMF model for the data X and returns the transformed data.

This is more efficient than calling fit followed by transform.

Parameters

X [{array-like, sparse matrix}, shape (n_samples, n_features)] Data matrix to be decom-
posed

y [Ignored]

W [array-like, shape (n_samples, n_components)] If init=’custom’, it is used as initial guess
for the solution.

H [array-like, shape (n_components, n_features)] If init=’custom’, it is used as initial guess
for the solution.

Returns

W [array, shape (n_samples, n_components)] Transformed data.

1822 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

inverse_transform(W)
Transform data back to its original space.

Parameters

W [{array-like, sparse matrix}, shape (n_samples, n_components)] Transformed data matrix

Returns

X [{array-like, sparse matrix}, shape (n_samples, n_features)] Data matrix of original shape

New in version 0.18: ..

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Transform the data X according to the fitted NMF model

Parameters

X [{array-like, sparse matrix}, shape (n_samples, n_features)] Data matrix to be trans-
formed by the model

Returns

W [array, shape (n_samples, n_components)] Transformed data

Examples using sklearn.decomposition.NMF

• Beta-divergence loss functions

• Faces dataset decompositions

• Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet Allocation

• Selecting dimensionality reduction with Pipeline and GridSearchCV

7.8. sklearn.decomposition: Matrix Decomposition 1823

scikit-learn user guide, Release 0.23.2

7.8.10 sklearn.decomposition.PCA

class sklearn.decomposition.PCA(n_components=None, *, copy=True, whiten=False,
svd_solver=’auto’, tol=0.0, iterated_power=’auto’, ran-
dom_state=None)

Principal component analysis (PCA).

Linear dimensionality reduction using Singular Value Decomposition of the data to project it to a lower dimen-
sional space. The input data is centered but not scaled for each feature before applying the SVD.

It uses the LAPACK implementation of the full SVD or a randomized truncated SVD by the method of Halko
et al. 2009, depending on the shape of the input data and the number of components to extract.

It can also use the scipy.sparse.linalg ARPACK implementation of the truncated SVD.

Notice that this class does not support sparse input. See TruncatedSVD for an alternative with sparse data.

Read more in the User Guide.

Parameters

n_components [int, float, None or str] Number of components to keep. if n_components is not
set all components are kept:

n_components == min(n_samples, n_features)

If n_components == 'mle' and svd_solver == 'full', Minka’s MLE is used
to guess the dimension. Use of n_components == 'mle'will interpret svd_solver
== 'auto' as svd_solver == 'full'.

If 0 < n_components < 1 and svd_solver == 'full', select the number of
components such that the amount of variance that needs to be explained is greater than the
percentage specified by n_components.

If svd_solver == 'arpack', the number of components must be strictly less than the
minimum of n_features and n_samples.

Hence, the None case results in:

n_components == min(n_samples, n_features) - 1

copy [bool, default=True] If False, data passed to fit are overwritten and running
fit(X).transform(X) will not yield the expected results, use fit_transform(X) instead.

whiten [bool, optional (default False)] When True (False by default) the components_ vec-
tors are multiplied by the square root of n_samples and then divided by the singular values
to ensure uncorrelated outputs with unit component-wise variances.

Whitening will remove some information from the transformed signal (the relative variance
scales of the components) but can sometime improve the predictive accuracy of the down-
stream estimators by making their data respect some hard-wired assumptions.

svd_solver [str {‘auto’, ‘full’, ‘arpack’, ‘randomized’}]

If auto : The solver is selected by a default policy based on X.shape and
n_components: if the input data is larger than 500x500 and the number of compo-
nents to extract is lower than 80% of the smallest dimension of the data, then the more
efficient ‘randomized’ method is enabled. Otherwise the exact full SVD is computed and
optionally truncated afterwards.

If full : run exact full SVD calling the standard LAPACK solver via scipy.linalg.
svd and select the components by postprocessing

1824 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

If arpack : run SVD truncated to n_components calling ARPACK solver via scipy.
sparse.linalg.svds. It requires strictly 0 < n_components < min(X.shape)

If randomized : run randomized SVD by the method of Halko et al.

New in version 0.18.0.

tol [float >= 0, optional (default .0)] Tolerance for singular values computed by svd_solver ==
‘arpack’.

New in version 0.18.0.

iterated_power [int >= 0, or ‘auto’, (default ‘auto’)] Number of iterations for the power method
computed by svd_solver == ‘randomized’.

New in version 0.18.0.

random_state [int, RandomState instance, default=None] Used when svd_solver ==
‘arpack’ or ‘randomized’. Pass an int for reproducible results across multiple function calls.
See Glossary.

New in version 0.18.0.

Attributes

components_ [array, shape (n_components, n_features)] Principal axes in feature space, rep-
resenting the directions of maximum variance in the data. The components are sorted by
explained_variance_.

explained_variance_ [array, shape (n_components,)] The amount of variance explained by
each of the selected components.

Equal to n_components largest eigenvalues of the covariance matrix of X.

New in version 0.18.

explained_variance_ratio_ [array, shape (n_components,)] Percentage of variance explained
by each of the selected components.

If n_components is not set then all components are stored and the sum of the ratios is
equal to 1.0.

singular_values_ [array, shape (n_components,)] The singular values corresponding to each
of the selected components. The singular values are equal to the 2-norms of the
n_components variables in the lower-dimensional space.

New in version 0.19.

mean_ [array, shape (n_features,)] Per-feature empirical mean, estimated from the training set.

Equal to X.mean(axis=0).

n_components_ [int] The estimated number of components. When n_components is set to
‘mle’ or a number between 0 and 1 (with svd_solver == ‘full’) this number is estimated
from input data. Otherwise it equals the parameter n_components, or the lesser value of
n_features and n_samples if n_components is None.

n_features_ [int] Number of features in the training data.

n_samples_ [int] Number of samples in the training data.

noise_variance_ [float] The estimated noise covariance following the Probabilistic PCA model
from Tipping and Bishop 1999. See “Pattern Recognition and Machine Learning” by C.
Bishop, 12.2.1 p. 574 or http://www.miketipping.com/papers/met-mppca.pdf. It is required
to compute the estimated data covariance and score samples.

7.8. sklearn.decomposition: Matrix Decomposition 1825

http://www.miketipping.com/papers/met-mppca.pdf

scikit-learn user guide, Release 0.23.2

Equal to the average of (min(n_features, n_samples) - n_components) smallest eigenvalues
of the covariance matrix of X.

See also:

KernelPCA Kernel Principal Component Analysis.

SparsePCA Sparse Principal Component Analysis.

TruncatedSVD Dimensionality reduction using truncated SVD.

IncrementalPCA Incremental Principal Component Analysis.

References

For n_components == ‘mle’, this class uses the method of Minka, T. P. “Automatic choice of dimensionality for
PCA”. In NIPS, pp. 598-604

Implements the probabilistic PCA model from: Tipping, M. E., and Bishop, C. M. (1999). “Probabilistic
principal component analysis”. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
61(3), 611-622. via the score and score_samples methods. See http://www.miketipping.com/papers/met-mppca.
pdf

For svd_solver == ‘arpack’, refer to scipy.sparse.linalg.svds.

For svd_solver == ‘randomized’, see: Halko, N., Martinsson, P. G., and Tropp, J. A. (2011). “Finding structure
with randomness: Probabilistic algorithms for constructing approximate matrix decompositions”. SIAM review,
53(2), 217-288. and also Martinsson, P. G., Rokhlin, V., and Tygert, M. (2011). “A randomized algorithm for
the decomposition of matrices”. Applied and Computational Harmonic Analysis, 30(1), 47-68.

Examples

>>> import numpy as np
>>> from sklearn.decomposition import PCA
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> pca = PCA(n_components=2)
>>> pca.fit(X)
PCA(n_components=2)
>>> print(pca.explained_variance_ratio_)
[0.9924... 0.0075...]
>>> print(pca.singular_values_)
[6.30061... 0.54980...]

>>> pca = PCA(n_components=2, svd_solver='full')
>>> pca.fit(X)
PCA(n_components=2, svd_solver='full')
>>> print(pca.explained_variance_ratio_)
[0.9924... 0.00755...]
>>> print(pca.singular_values_)
[6.30061... 0.54980...]

>>> pca = PCA(n_components=1, svd_solver='arpack')
>>> pca.fit(X)
PCA(n_components=1, svd_solver='arpack')
>>> print(pca.explained_variance_ratio_)
[0.99244...]

(continues on next page)

1826 Chapter 7. API Reference

http://www.miketipping.com/papers/met-mppca.pdf
http://www.miketipping.com/papers/met-mppca.pdf

scikit-learn user guide, Release 0.23.2

(continued from previous page)

>>> print(pca.singular_values_)
[6.30061...]

Methods

fit(X[, y]) Fit the model with X.
fit_transform(X[, y]) Fit the model with X and apply the dimensionality

reduction on X.
get_covariance() Compute data covariance with the generative model.
get_params([deep]) Get parameters for this estimator.
get_precision() Compute data precision matrix with the generative

model.
inverse_transform(X) Transform data back to its original space.
score(X[, y]) Return the average log-likelihood of all samples.
score_samples(X) Return the log-likelihood of each sample.
set_params(**params) Set the parameters of this estimator.
transform(X) Apply dimensionality reduction to X.

__init__(n_components=None, *, copy=True, whiten=False, svd_solver=’auto’, tol=0.0, iter-
ated_power=’auto’, random_state=None)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Fit the model with X.

Parameters

X [array-like, shape (n_samples, n_features)] Training data, where n_samples is the number
of samples and n_features is the number of features.

y [None] Ignored variable.

Returns

self [object] Returns the instance itself.

fit_transform(X, y=None)
Fit the model with X and apply the dimensionality reduction on X.

Parameters

X [array-like, shape (n_samples, n_features)] Training data, where n_samples is the number
of samples and n_features is the number of features.

y [None] Ignored variable.

Returns

X_new [array-like, shape (n_samples, n_components)] Transformed values.

Notes

This method returns a Fortran-ordered array. To convert it to a C-ordered array, use ‘np.ascontiguousarray’.

get_covariance()
Compute data covariance with the generative model.

7.8. sklearn.decomposition: Matrix Decomposition 1827

scikit-learn user guide, Release 0.23.2

cov = components_.T * S**2 * components_ + sigma2 * eye(n_features)
where S**2 contains the explained variances, and sigma2 contains the noise variances.

Returns

cov [array, shape=(n_features, n_features)] Estimated covariance of data.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

get_precision()
Compute data precision matrix with the generative model.

Equals the inverse of the covariance but computed with the matrix inversion lemma for efficiency.

Returns

precision [array, shape=(n_features, n_features)] Estimated precision of data.

inverse_transform(X)
Transform data back to its original space.

In other words, return an input X_original whose transform would be X.

Parameters

X [array-like, shape (n_samples, n_components)] New data, where n_samples is the number
of samples and n_components is the number of components.

Returns

X_original array-like, shape (n_samples, n_features)

Notes

If whitening is enabled, inverse_transform will compute the exact inverse operation, which includes re-
versing whitening.

score(X, y=None)
Return the average log-likelihood of all samples.

See. “Pattern Recognition and Machine Learning” by C. Bishop, 12.2.1 p. 574 or http://www.miketipping.
com/papers/met-mppca.pdf

Parameters

X [array, shape(n_samples, n_features)] The data.

y [None] Ignored variable.

Returns

ll [float] Average log-likelihood of the samples under the current model.

1828 Chapter 7. API Reference

http://www.miketipping.com/papers/met-mppca.pdf
http://www.miketipping.com/papers/met-mppca.pdf

scikit-learn user guide, Release 0.23.2

score_samples(X)
Return the log-likelihood of each sample.

See. “Pattern Recognition and Machine Learning” by C. Bishop, 12.2.1 p. 574 or http://www.miketipping.
com/papers/met-mppca.pdf

Parameters

X [array, shape(n_samples, n_features)] The data.

Returns

ll [array, shape (n_samples,)] Log-likelihood of each sample under the current model.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Apply dimensionality reduction to X.

X is projected on the first principal components previously extracted from a training set.

Parameters

X [array-like, shape (n_samples, n_features)] New data, where n_samples is the number of
samples and n_features is the number of features.

Returns

X_new [array-like, shape (n_samples, n_components)]

Examples

>>> import numpy as np
>>> from sklearn.decomposition import IncrementalPCA
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> ipca = IncrementalPCA(n_components=2, batch_size=3)
>>> ipca.fit(X)
IncrementalPCA(batch_size=3, n_components=2)
>>> ipca.transform(X) # doctest: +SKIP

Examples using sklearn.decomposition.PCA

• A demo of K-Means clustering on the handwritten digits data

• The Iris Dataset

• PCA example with Iris Data-set

• Incremental PCA

7.8. sklearn.decomposition: Matrix Decomposition 1829

http://www.miketipping.com/papers/met-mppca.pdf
http://www.miketipping.com/papers/met-mppca.pdf

scikit-learn user guide, Release 0.23.2

• Comparison of LDA and PCA 2D projection of Iris dataset

• Blind source separation using FastICA

• Principal components analysis (PCA)

• FastICA on 2D point clouds

• Kernel PCA

• Model selection with Probabilistic PCA and Factor Analysis (FA)

• Faces dataset decompositions

• Faces recognition example using eigenfaces and SVMs

• Multi-dimensional scaling

• Multilabel classification

• Explicit feature map approximation for RBF kernels

• Balance model complexity and cross-validated score

• Kernel Density Estimation

• Dimensionality Reduction with Neighborhood Components Analysis

• Concatenating multiple feature extraction methods

• Pipelining: chaining a PCA and a logistic regression

• Selecting dimensionality reduction with Pipeline and GridSearchCV

• Using FunctionTransformer to select columns

• Importance of Feature Scaling

7.8.11 sklearn.decomposition.SparsePCA

class sklearn.decomposition.SparsePCA(n_components=None, *, alpha=1, ridge_alpha=0.01,
max_iter=1000, tol=1e-08, method=’lars’,
n_jobs=None, U_init=None, V_init=None,
verbose=False, random_state=None, normal-
ize_components=’deprecated’)

Sparse Principal Components Analysis (SparsePCA)

Finds the set of sparse components that can optimally reconstruct the data. The amount of sparseness is control-
lable by the coefficient of the L1 penalty, given by the parameter alpha.

Read more in the User Guide.

Parameters

n_components [int,] Number of sparse atoms to extract.

alpha [float,] Sparsity controlling parameter. Higher values lead to sparser components.

ridge_alpha [float,] Amount of ridge shrinkage to apply in order to improve conditioning when
calling the transform method.

max_iter [int,] Maximum number of iterations to perform.

tol [float,] Tolerance for the stopping condition.

1830 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

method [{‘lars’, ‘cd’}] lars: uses the least angle regression method to solve the lasso prob-
lem (linear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso
solution (linear_model.Lasso). Lars will be faster if the estimated components are sparse.

n_jobs [int or None, optional (default=None)] Number of parallel jobs to run. None means 1
unless in a joblib.parallel_backend context. -1 means using all processors. See
Glossary for more details.

U_init [array of shape (n_samples, n_components),] Initial values for the loadings for warm
restart scenarios.

V_init [array of shape (n_components, n_features),] Initial values for the components for warm
restart scenarios.

verbose [int] Controls the verbosity; the higher, the more messages. Defaults to 0.

random_state [int, RandomState instance, default=None] Used during dictionary learning.
Pass an int for reproducible results across multiple function calls. See Glossary.

normalize_components [‘deprecated’] This parameter does not have any effect. The compo-
nents are always normalized.

New in version 0.20.

Deprecated since version 0.22: normalize_components is deprecated in 0.22 and will
be removed in 0.24.

Attributes

components_ [array, [n_components, n_features]] Sparse components extracted from the data.

error_ [array] Vector of errors at each iteration.

n_components_ [int] Estimated number of components.

New in version 0.23.

n_iter_ [int] Number of iterations run.

mean_ [array, shape (n_features,)] Per-feature empirical mean, estimated from the training set.
Equal to X.mean(axis=0).

See also:

PCA

MiniBatchSparsePCA

DictionaryLearning

Examples

>>> import numpy as np
>>> from sklearn.datasets import make_friedman1
>>> from sklearn.decomposition import SparsePCA
>>> X, _ = make_friedman1(n_samples=200, n_features=30, random_state=0)
>>> transformer = SparsePCA(n_components=5, random_state=0)
>>> transformer.fit(X)
SparsePCA(...)
>>> X_transformed = transformer.transform(X)
>>> X_transformed.shape
(200, 5)

(continues on next page)

7.8. sklearn.decomposition: Matrix Decomposition 1831

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

(continued from previous page)

>>> # most values in the components_ are zero (sparsity)
>>> np.mean(transformer.components_ == 0)
0.9666...

Methods

fit(X[, y]) Fit the model from data in X.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Least Squares projection of the data onto the sparse

components.

__init__(n_components=None, *, alpha=1, ridge_alpha=0.01, max_iter=1000, tol=1e-08,
method=’lars’, n_jobs=None, U_init=None, V_init=None, verbose=False, ran-
dom_state=None, normalize_components=’deprecated’)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Fit the model from data in X.

Parameters

X [array-like, shape (n_samples, n_features)] Training vector, where n_samples in the num-
ber of samples and n_features is the number of features.

y [Ignored]

Returns

self [object] Returns the instance itself.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

1832 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Least Squares projection of the data onto the sparse components.

To avoid instability issues in case the system is under-determined, regularization can be applied (Ridge
regression) via the ridge_alpha parameter.

Note that Sparse PCA components orthogonality is not enforced as in PCA hence one cannot use a simple
linear projection.

Parameters

X [array of shape (n_samples, n_features)] Test data to be transformed, must have the same
number of features as the data used to train the model.

Returns

X_new array, shape (n_samples, n_components) Transformed data.

7.8.12 sklearn.decomposition.SparseCoder

class sklearn.decomposition.SparseCoder(dictionary, *, transform_algorithm=’omp’,
transform_n_nonzero_coefs=None, trans-
form_alpha=None, split_sign=False,
n_jobs=None, positive_code=False, trans-
form_max_iter=1000)

Sparse coding

Finds a sparse representation of data against a fixed, precomputed dictionary.

Each row of the result is the solution to a sparse coding problem. The goal is to find a sparse array code such
that:

X ~= code * dictionary

Read more in the User Guide.

Parameters

dictionary [array, [n_components, n_features]] The dictionary atoms used for sparse coding.
Lines are assumed to be normalized to unit norm.

transform_algorithm [{‘lasso_lars’, ‘lasso_cd’, ‘lars’, ‘omp’, ‘threshold’}, default=’omp’]
Algorithm used to transform the data: lars: uses the least angle regression method (lin-
ear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses the
coordinate descent method to compute the Lasso solution (linear_model.Lasso). lasso_lars

7.8. sklearn.decomposition: Matrix Decomposition 1833

scikit-learn user guide, Release 0.23.2

will be faster if the estimated components are sparse. omp: uses orthogonal matching pur-
suit to estimate the sparse solution threshold: squashes to zero all coefficients less than alpha
from the projection dictionary * X'

transform_n_nonzero_coefs [int, default=0.1*n_features] Number of nonzero coefficients to
target in each column of the solution. This is only used by algorithm='lars' and
algorithm='omp' and is overridden by alpha in the omp case.

transform_alpha [float, default=1.] If algorithm='lasso_lars' or
algorithm='lasso_cd', alpha is the penalty applied to the L1 norm. If
algorithm='threshold', alpha is the absolute value of the threshold below
which coefficients will be squashed to zero. If algorithm='omp', alpha is the
tolerance parameter: the value of the reconstruction error targeted. In this case, it overrides
n_nonzero_coefs.

split_sign [bool, default=False] Whether to split the sparse feature vector into the concatenation
of its negative part and its positive part. This can improve the performance of downstream
classifiers.

n_jobs [int or None, default=None] Number of parallel jobs to run. None means 1 unless in
a joblib.parallel_backend context. -1 means using all processors. See Glossary
for more details.

positive_code [bool, default=False] Whether to enforce positivity when finding the code.

New in version 0.20.

transform_max_iter [int, default=1000] Maximum number of iterations to perform if
algorithm='lasso_cd' or lasso_lars.

New in version 0.22.

Attributes

components_ [array, [n_components, n_features]] The unchanged dictionary atoms

See also:

DictionaryLearning

MiniBatchDictionaryLearning

SparsePCA

MiniBatchSparsePCA

sparse_encode

Methods

fit(X[, y]) Do nothing and return the estimator unchanged
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Encode the data as a sparse combination of the dic-

tionary atoms.

1834 Chapter 7. API Reference

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

__init__(dictionary, *, transform_algorithm=’omp’, transform_n_nonzero_coefs=None, trans-
form_alpha=None, split_sign=False, n_jobs=None, positive_code=False, trans-
form_max_iter=1000)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Do nothing and return the estimator unchanged

This method is just there to implement the usual API and hence work in pipelines.

Parameters

X [Ignored]

y [Ignored]

Returns

self [object] Returns the object itself

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Encode the data as a sparse combination of the dictionary atoms.

Coding method is determined by the object parameter transform_algorithm.

7.8. sklearn.decomposition: Matrix Decomposition 1835

scikit-learn user guide, Release 0.23.2

Parameters

X [array of shape (n_samples, n_features)] Test data to be transformed, must have the same
number of features as the data used to train the model.

Returns

X_new [array, shape (n_samples, n_components)] Transformed data

Examples using sklearn.decomposition.SparseCoder

• Sparse coding with a precomputed dictionary

7.8.13 sklearn.decomposition.TruncatedSVD

class sklearn.decomposition.TruncatedSVD(n_components=2, *, algorithm=’randomized’,
n_iter=5, random_state=None, tol=0.0)

Dimensionality reduction using truncated SVD (aka LSA).

This transformer performs linear dimensionality reduction by means of truncated singular value decomposition
(SVD). Contrary to PCA, this estimator does not center the data before computing the singular value decompo-
sition. This means it can work with sparse matrices efficiently.

In particular, truncated SVD works on term count/tf-idf matrices as returned by the vectorizers in sklearn.
feature_extraction.text. In that context, it is known as latent semantic analysis (LSA).

This estimator supports two algorithms: a fast randomized SVD solver, and a “naive” algorithm that uses
ARPACK as an eigensolver on X * X.T or X.T * X, whichever is more efficient.

Read more in the User Guide.

Parameters

n_components [int, default = 2] Desired dimensionality of output data. Must be strictly less
than the number of features. The default value is useful for visualisation. For LSA, a value
of 100 is recommended.

algorithm [string, default = “randomized”] SVD solver to use. Either “arpack” for the
ARPACK wrapper in SciPy (scipy.sparse.linalg.svds), or “randomized” for the randomized
algorithm due to Halko (2009).

n_iter [int, optional (default 5)] Number of iterations for randomized SVD solver. Not used
by ARPACK. The default is larger than the default in randomized_svd to handle sparse
matrices that may have large slowly decaying spectrum.

random_state [int, RandomState instance, default=None] Used during randomized svd. Pass
an int for reproducible results across multiple function calls. See Glossary.

tol [float, optional] Tolerance for ARPACK. 0 means machine precision. Ignored by random-
ized SVD solver.

Attributes

components_ [array, shape (n_components, n_features)]

explained_variance_ [array, shape (n_components,)] The variance of the training samples
transformed by a projection to each component.

explained_variance_ratio_ [array, shape (n_components,)] Percentage of variance explained
by each of the selected components.

1836 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

singular_values_ [array, shape (n_components,)] The singular values corresponding to each
of the selected components. The singular values are equal to the 2-norms of the
n_components variables in the lower-dimensional space.

See also:

PCA

Notes

SVD suffers from a problem called “sign indeterminacy”, which means the sign of the components_ and the
output from transform depend on the algorithm and random state. To work around this, fit instances of this class
to data once, then keep the instance around to do transformations.

References

Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions
Halko, et al., 2009 (arXiv:909) https://arxiv.org/pdf/0909.4061.pdf

Examples

>>> from sklearn.decomposition import TruncatedSVD
>>> from scipy.sparse import random as sparse_random
>>> from sklearn.random_projection import sparse_random_matrix
>>> X = sparse_random(100, 100, density=0.01, format='csr',
... random_state=42)
>>> svd = TruncatedSVD(n_components=5, n_iter=7, random_state=42)
>>> svd.fit(X)
TruncatedSVD(n_components=5, n_iter=7, random_state=42)
>>> print(svd.explained_variance_ratio_)
[0.0646... 0.0633... 0.0639... 0.0535... 0.0406...]
>>> print(svd.explained_variance_ratio_.sum())
0.286...
>>> print(svd.singular_values_)
[1.553... 1.512... 1.510... 1.370... 1.199...]

Methods

fit(X[, y]) Fit LSI model on training data X.
fit_transform(X[, y]) Fit LSI model to X and perform dimensionality re-

duction on X.
get_params([deep]) Get parameters for this estimator.
inverse_transform(X) Transform X back to its original space.
set_params(**params) Set the parameters of this estimator.
transform(X) Perform dimensionality reduction on X.

__init__(n_components=2, *, algorithm=’randomized’, n_iter=5, random_state=None, tol=0.0)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Fit LSI model on training data X.

7.8. sklearn.decomposition: Matrix Decomposition 1837

scikit-learn user guide, Release 0.23.2

Parameters

X [{array-like, sparse matrix}, shape (n_samples, n_features)] Training data.

y [Ignored]

Returns

self [object] Returns the transformer object.

fit_transform(X, y=None)
Fit LSI model to X and perform dimensionality reduction on X.

Parameters

X [{array-like, sparse matrix}, shape (n_samples, n_features)] Training data.

y [Ignored]

Returns

X_new [array, shape (n_samples, n_components)] Reduced version of X. This will always
be a dense array.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

inverse_transform(X)
Transform X back to its original space.

Returns an array X_original whose transform would be X.

Parameters

X [array-like, shape (n_samples, n_components)] New data.

Returns

X_original [array, shape (n_samples, n_features)] Note that this is always a dense array.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Perform dimensionality reduction on X.

Parameters

1838 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

X [{array-like, sparse matrix}, shape (n_samples, n_features)] New data.

Returns

X_new [array, shape (n_samples, n_components)] Reduced version of X. This will always
be a dense array.

Examples using sklearn.decomposition.TruncatedSVD

• Hashing feature transformation using Totally Random Trees

• Manifold learning on handwritten digits: Locally Linear Embedding, Isomap. . .

• Column Transformer with Heterogeneous Data Sources

• Clustering text documents using k-means

decomposition.dict_learning(X,
n_components, . . .)

Solves a dictionary learning matrix factorization prob-
lem.

decomposition.dict_learning_online(X[,
. . .])

Solves a dictionary learning matrix factorization prob-
lem online.

decomposition.fastica(X[, n_components,
. . .])

Perform Fast Independent Component Analysis.

decomposition.non_negative_factorization(X)Compute Non-negative Matrix Factorization (NMF)
decomposition.sparse_encode(X, dictionary,
*)

Sparse coding

7.8.14 sklearn.decomposition.dict_learning

sklearn.decomposition.dict_learning(X, n_components, *, alpha, max_iter=100, tol=1e-
08, method=’lars’, n_jobs=None, dict_init=None,
code_init=None, callback=None, verbose=False,
random_state=None, return_n_iter=False,
positive_dict=False, positive_code=False,
method_max_iter=1000)

Solves a dictionary learning matrix factorization problem.

Finds the best dictionary and the corresponding sparse code for approximating the data matrix X by solving:

(U^*, V^*) = argmin 0.5 || X - U V ||_2^2 + alpha * || U ||_1
(U,V)

with || V_k ||_2 = 1 for all 0 <= k < n_components

where V is the dictionary and U is the sparse code.

Read more in the User Guide.

Parameters

X [array of shape (n_samples, n_features)] Data matrix.

n_components [int,] Number of dictionary atoms to extract.

alpha [int,] Sparsity controlling parameter.

max_iter [int,] Maximum number of iterations to perform.

tol [float,] Tolerance for the stopping condition.

7.8. sklearn.decomposition: Matrix Decomposition 1839

scikit-learn user guide, Release 0.23.2

method [{‘lars’, ‘cd’}] lars: uses the least angle regression method to solve the lasso prob-
lem (linear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso
solution (linear_model.Lasso). Lars will be faster if the estimated components are sparse.

n_jobs [int or None, optional (default=None)] Number of parallel jobs to run. None means 1
unless in a joblib.parallel_backend context. -1 means using all processors. See
Glossary for more details.

dict_init [array of shape (n_components, n_features),] Initial value for the dictionary for warm
restart scenarios.

code_init [array of shape (n_samples, n_components),] Initial value for the sparse code for
warm restart scenarios.

callback [callable or None, optional (default: None)] Callable that gets invoked every five iter-
ations

verbose [bool, optional (default: False)] To control the verbosity of the procedure.

random_state [int, RandomState instance or None, optional (default=None)] Used for ran-
domly initializing the dictionary. Pass an int for reproducible results across multiple func-
tion calls. See Glossary.

return_n_iter [bool] Whether or not to return the number of iterations.

positive_dict [bool] Whether to enforce positivity when finding the dictionary.

New in version 0.20.

positive_code [bool] Whether to enforce positivity when finding the code.

New in version 0.20.

method_max_iter [int, optional (default=1000)] Maximum number of iterations to perform.

New in version 0.22.

Returns

code [array of shape (n_samples, n_components)] The sparse code factor in the matrix factor-
ization.

dictionary [array of shape (n_components, n_features),] The dictionary factor in the matrix
factorization.

errors [array] Vector of errors at each iteration.

n_iter [int] Number of iterations run. Returned only if return_n_iter is set to True.

See also:

dict_learning_online

DictionaryLearning

MiniBatchDictionaryLearning

SparsePCA

MiniBatchSparsePCA

1840 Chapter 7. API Reference

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

7.8.15 sklearn.decomposition.dict_learning_online

sklearn.decomposition.dict_learning_online(X, n_components=2, *, alpha=1, n_iter=100,
return_code=True, dict_init=None,
callback=None, batch_size=3, ver-
bose=False, shuffle=True, n_jobs=None,
method=’lars’, iter_offset=0, ran-
dom_state=None, return_inner_stats=False,
inner_stats=None, return_n_iter=False,
positive_dict=False, positive_code=False,
method_max_iter=1000)

Solves a dictionary learning matrix factorization problem online.

Finds the best dictionary and the corresponding sparse code for approximating the data matrix X by solving:

(U^*, V^*) = argmin 0.5 || X - U V ||_2^2 + alpha * || U ||_1
(U,V)
with || V_k ||_2 = 1 for all 0 <= k < n_components

where V is the dictionary and U is the sparse code. This is accomplished by repeatedly iterating over mini-
batches by slicing the input data.

Read more in the User Guide.

Parameters

X [array of shape (n_samples, n_features)] Data matrix.

n_components [int,] Number of dictionary atoms to extract.

alpha [float,] Sparsity controlling parameter.

n_iter [int,] Number of mini-batch iterations to perform.

return_code [boolean,] Whether to also return the code U or just the dictionary V.

dict_init [array of shape (n_components, n_features),] Initial value for the dictionary for warm
restart scenarios.

callback [callable or None, optional (default: None)] callable that gets invoked every five iter-
ations

batch_size [int,] The number of samples to take in each batch.

verbose [bool, optional (default: False)] To control the verbosity of the procedure.

shuffle [boolean,] Whether to shuffle the data before splitting it in batches.

n_jobs [int or None, optional (default=None)] Number of parallel jobs to run. None means 1
unless in a joblib.parallel_backend context. -1 means using all processors. See
Glossary for more details.

method [{‘lars’, ‘cd’}] lars: uses the least angle regression method to solve the lasso prob-
lem (linear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso
solution (linear_model.Lasso). Lars will be faster if the estimated components are sparse.

iter_offset [int, default 0] Number of previous iterations completed on the dictionary used for
initialization.

random_state [int, RandomState instance or None, optional (default=None)] Used for initial-
izing the dictionary when dict_init is not specified, randomly shuffling the data when
shuffle is set to True, and updating the dictionary. Pass an int for reproducible results
across multiple function calls. See Glossary.

7.8. sklearn.decomposition: Matrix Decomposition 1841

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

return_inner_stats [boolean, optional] Return the inner statistics A (dictionary covariance)
and B (data approximation). Useful to restart the algorithm in an online setting. If re-
turn_inner_stats is True, return_code is ignored

inner_stats [tuple of (A, B) ndarrays] Inner sufficient statistics that are kept by the algorithm.
Passing them at initialization is useful in online settings, to avoid losing the history of
the evolution. A (n_components, n_components) is the dictionary covariance matrix. B
(n_features, n_components) is the data approximation matrix

return_n_iter [bool] Whether or not to return the number of iterations.

positive_dict [bool] Whether to enforce positivity when finding the dictionary.

New in version 0.20.

positive_code [bool] Whether to enforce positivity when finding the code.

New in version 0.20.

method_max_iter [int, optional (default=1000)] Maximum number of iterations to perform
when solving the lasso problem.

New in version 0.22.

Returns

code [array of shape (n_samples, n_components),] the sparse code (only returned if
return_code=True)

dictionary [array of shape (n_components, n_features),] the solutions to the dictionary learning
problem

n_iter [int] Number of iterations run. Returned only if return_n_iter is set to True.

See also:

dict_learning

DictionaryLearning

MiniBatchDictionaryLearning

SparsePCA

MiniBatchSparsePCA

7.8.16 sklearn.decomposition.fastica

sklearn.decomposition.fastica(X, n_components=None, *, algorithm=’parallel’, whiten=True,
fun=’logcosh’, fun_args=None, max_iter=200, tol=0.0001,
w_init=None, random_state=None, return_X_mean=False,
compute_sources=True, return_n_iter=False)

Perform Fast Independent Component Analysis.

Read more in the User Guide.

Parameters

X [array-like, shape (n_samples, n_features)] Training vector, where n_samples is the number
of samples and n_features is the number of features.

n_components [int, optional] Number of components to extract. If None no dimension reduc-
tion is performed.

1842 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

algorithm [{‘parallel’, ‘deflation’}, optional] Apply a parallel or deflational FASTICA algo-
rithm.

whiten [boolean, optional] If True perform an initial whitening of the data. If False, the data
is assumed to have already been preprocessed: it should be centered, normed and white.
Otherwise you will get incorrect results. In this case the parameter n_components will be
ignored.

fun [string or function, optional. Default: ‘logcosh’] The functional form of the G function
used in the approximation to neg-entropy. Could be either ‘logcosh’, ‘exp’, or ‘cube’. You
can also provide your own function. It should return a tuple containing the value of the
function, and of its derivative, in the point. The derivative should be averaged along its last
dimension. Example:

def my_g(x): return x ** 3, np.mean(3 * x ** 2, axis=-1)

fun_args [dictionary, optional] Arguments to send to the functional form. If empty or None
and if fun=’logcosh’, fun_args will take value {‘alpha’ : 1.0}

max_iter [int, optional] Maximum number of iterations to perform.

tol [float, optional] A positive scalar giving the tolerance at which the un-mixing matrix is
considered to have converged.

w_init [(n_components, n_components) array, optional] Initial un-mixing array of dimension
(n.comp,n.comp). If None (default) then an array of normal r.v.’s is used.

random_state [int, RandomState instance, default=None] Used to initialize w_init when not
specified, with a normal distribution. Pass an int, for reproducible results across multiple
function calls. See Glossary.

return_X_mean [bool, optional] If True, X_mean is returned too.

compute_sources [bool, optional] If False, sources are not computed, but only the rotation
matrix. This can save memory when working with big data. Defaults to True.

return_n_iter [bool, optional] Whether or not to return the number of iterations.

Returns

K [array, shape (n_components, n_features) | None.] If whiten is ‘True’, K is the pre-whitening
matrix that projects data onto the first n_components principal components. If whiten is
‘False’, K is ‘None’.

W [array, shape (n_components, n_components)] The square matrix that unmixes the data after
whitening. The mixing matrix is the pseudo-inverse of matrix W K if K is not None, else it
is the inverse of W.

S [array, shape (n_samples, n_components) | None] Estimated source matrix

X_mean [array, shape (n_features,)] The mean over features. Returned only if return_X_mean
is True.

n_iter [int] If the algorithm is “deflation”, n_iter is the maximum number of iterations run
across all components. Else they are just the number of iterations taken to converge. This is
returned only when return_n_iter is set to True.

Notes

The data matrix X is considered to be a linear combination of non-Gaussian (independent) components i.e. X
= AS where columns of S contain the independent components and A is a linear mixing matrix. In short ICA
attempts to un-mix' the data by estimating an un-mixing matrix W where ``S = W

7.8. sklearn.decomposition: Matrix Decomposition 1843

scikit-learn user guide, Release 0.23.2

K X.` While FastICA was proposed to estimate as many sources as features, it is possible to estimate less by
setting n_components < n_features. It this case K is not a square matrix and the estimated A is the pseudo-
inverse of W K.

This implementation was originally made for data of shape [n_features, n_samples]. Now the input is transposed
before the algorithm is applied. This makes it slightly faster for Fortran-ordered input.

Implemented using FastICA: A. Hyvarinen and E. Oja, Independent Component Analysis: Algorithms and
Applications, Neural Networks, 13(4-5), 2000, pp. 411-430

7.8.17 sklearn.decomposition.non_negative_factorization

sklearn.decomposition.non_negative_factorization(X, W=None, H=None,
n_components=None, *, init=None,
update_H=True, solver=’cd’,
beta_loss=’frobenius’, tol=0.0001,
max_iter=200, alpha=0.0,
l1_ratio=0.0, regularization=None,
random_state=None, verbose=0,
shuffle=False)

Compute Non-negative Matrix Factorization (NMF)

Find two non-negative matrices (W, H) whose product approximates the non- negative matrix X. This factoriza-
tion can be used for example for dimensionality reduction, source separation or topic extraction.

The objective function is:

0.5 * ||X - WH||_Fro^2
+ alpha * l1_ratio * ||vec(W)||_1
+ alpha * l1_ratio * ||vec(H)||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2
+ 0.5 * alpha * (1 - l1_ratio) * ||H||_Fro^2

Where:

||A||_Fro^2 = \sum_{i,j} A_{ij}^2 (Frobenius norm)
||vec(A)||_1 = \sum_{i,j} abs(A_{ij}) (Elementwise L1 norm)

For multiplicative-update (‘mu’) solver, the Frobenius norm (0.5 * ||X - WH||_Fro^2) can be changed into
another beta-divergence loss, by changing the beta_loss parameter.

The objective function is minimized with an alternating minimization of W and H. If H is given and up-
date_H=False, it solves for W only.

Parameters

X [array-like, shape (n_samples, n_features)] Constant matrix.

W [array-like, shape (n_samples, n_components)] If init=’custom’, it is used as initial guess for
the solution.

H [array-like, shape (n_components, n_features)] If init=’custom’, it is used as initial guess for
the solution. If update_H=False, it is used as a constant, to solve for W only.

n_components [integer] Number of components, if n_components is not set all features are
kept.

init [None | ‘random’ | ‘nndsvd’ | ‘nndsvda’ | ‘nndsvdar’ | ‘custom’] Method used to initialize
the procedure. Default: None.

1844 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Valid options:

• None: ‘nndsvd’ if n_components < n_features, otherwise ‘random’.

• ‘random’: non-negative random matrices, scaled with: sqrt(X.mean() /
n_components)

• ‘nndsvd’: Nonnegative Double Singular Value Decomposition (NNDSVD)
initialization (better for sparseness)

• ‘nndsvda’: NNDSVD with zeros filled with the average of X (better when sparsity is
not desired)

• ‘nndsvdar’: NNDSVD with zeros filled with small random values (generally faster,
less accurate alternative to NNDSVDa for when sparsity is not desired)

• ‘custom’: use custom matrices W and H

Changed in version 0.23: The default value of init changed from ‘random’ to None in
0.23.

update_H [boolean, default: True] Set to True, both W and H will be estimated from initial
guesses. Set to False, only W will be estimated.

solver [‘cd’ | ‘mu’] Numerical solver to use:

• ‘cd’ is a Coordinate Descent solver that uses Fast Hierarchical Alternating Least
Squares (Fast HALS).

• ‘mu’ is a Multiplicative Update solver.

New in version 0.17: Coordinate Descent solver.

New in version 0.19: Multiplicative Update solver.

beta_loss [float or string, default ‘frobenius’] String must be in {‘frobenius’, ‘kullback-leibler’,
‘itakura-saito’}. Beta divergence to be minimized, measuring the distance between X and
the dot product WH. Note that values different from ‘frobenius’ (or 2) and ‘kullback-leibler’
(or 1) lead to significantly slower fits. Note that for beta_loss <= 0 (or ‘itakura-saito’), the
input matrix X cannot contain zeros. Used only in ‘mu’ solver.

New in version 0.19.

tol [float, default: 1e-4] Tolerance of the stopping condition.

max_iter [integer, default: 200] Maximum number of iterations before timing out.

alpha [double, default: 0.] Constant that multiplies the regularization terms.

l1_ratio [double, default: 0.] The regularization mixing parameter, with 0 <= l1_ratio <= 1. For
l1_ratio = 0 the penalty is an elementwise L2 penalty (aka Frobenius Norm). For l1_ratio =
1 it is an elementwise L1 penalty. For 0 < l1_ratio < 1, the penalty is a combination of L1
and L2.

regularization [‘both’ | ‘components’ | ‘transformation’ | None] Select whether the regulariza-
tion affects the components (H), the transformation (W), both or none of them.

random_state [int, RandomState instance, default=None] Used for NMF initialisation (when
init == ‘nndsvdar’ or ‘random’), and in Coordinate Descent. Pass an int for reproducible
results across multiple function calls. See Glossary.

verbose [integer, default: 0] The verbosity level.

shuffle [boolean, default: False] If true, randomize the order of coordinates in the CD solver.

Returns

7.8. sklearn.decomposition: Matrix Decomposition 1845

scikit-learn user guide, Release 0.23.2

W [array-like, shape (n_samples, n_components)] Solution to the non-negative least squares
problem.

H [array-like, shape (n_components, n_features)] Solution to the non-negative least squares
problem.

n_iter [int] Actual number of iterations.

References

Cichocki, Andrzej, and P. H. A. N. Anh-Huy. “Fast local algorithms for large scale nonnegative matrix and ten-
sor factorizations.” IEICE transactions on fundamentals of electronics, communications and computer sciences
92.3: 708-721, 2009.

Fevotte, C., & Idier, J. (2011). Algorithms for nonnegative matrix factorization with the beta-divergence. Neural
Computation, 23(9).

Examples

>>> import numpy as np
>>> X = np.array([[1,1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]])
>>> from sklearn.decomposition import non_negative_factorization
>>> W, H, n_iter = non_negative_factorization(X, n_components=2,
... init='random', random_state=0)

7.8.18 sklearn.decomposition.sparse_encode

sklearn.decomposition.sparse_encode(X, dictionary, *, gram=None, cov=None, algo-
rithm=’lasso_lars’, n_nonzero_coefs=None, al-
pha=None, copy_cov=True, init=None, max_iter=1000,
n_jobs=None, check_input=True, verbose=0, posi-
tive=False)

Sparse coding

Each row of the result is the solution to a sparse coding problem. The goal is to find a sparse array code such
that:

X ~= code * dictionary

Read more in the User Guide.

Parameters

X [array of shape (n_samples, n_features)] Data matrix

dictionary [array of shape (n_components, n_features)] The dictionary matrix against which to
solve the sparse coding of the data. Some of the algorithms assume normalized rows for
meaningful output.

gram [array, shape=(n_components, n_components)] Precomputed Gram matrix, dictionary *
dictionary’

cov [array, shape=(n_components, n_samples)] Precomputed covariance, dictionary’ * X

1846 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

algorithm [{‘lasso_lars’, ‘lasso_cd’, ‘lars’, ‘omp’, ‘threshold’}] lars: uses the least angle re-
gression method (linear_model.lars_path) lasso_lars: uses Lars to compute the Lasso so-
lution lasso_cd: uses the coordinate descent method to compute the Lasso solution (lin-
ear_model.Lasso). lasso_lars will be faster if the estimated components are sparse. omp:
uses orthogonal matching pursuit to estimate the sparse solution threshold: squashes to zero
all coefficients less than alpha from the projection dictionary * X’

n_nonzero_coefs [int, 0.1 * n_features by default] Number of nonzero coefficients to tar-
get in each column of the solution. This is only used by algorithm='lars' and
algorithm='omp' and is overridden by alpha in the omp case.

alpha [float, 1. by default] If algorithm='lasso_lars' or
algorithm='lasso_cd', alpha is the penalty applied to the L1 norm. If
algorithm='threshold', alpha is the absolute value of the threshold below
which coefficients will be squashed to zero. If algorithm='omp', alpha is the
tolerance parameter: the value of the reconstruction error targeted. In this case, it overrides
n_nonzero_coefs.

copy_cov [boolean, optional] Whether to copy the precomputed covariance matrix; if False, it
may be overwritten.

init [array of shape (n_samples, n_components)] Initialization value of the sparse codes. Only
used if algorithm='lasso_cd'.

max_iter [int, 1000 by default] Maximum number of iterations to perform if
algorithm='lasso_cd' or lasso_lars.

n_jobs [int or None, optional (default=None)] Number of parallel jobs to run. None means 1
unless in a joblib.parallel_backend context. -1 means using all processors. See
Glossary for more details.

check_input [boolean, optional] If False, the input arrays X and dictionary will not be checked.

verbose [int, optional] Controls the verbosity; the higher, the more messages. Defaults to 0.

positive [boolean, optional] Whether to enforce positivity when finding the encoding.

New in version 0.20.

Returns

code [array of shape (n_samples, n_components)] The sparse codes

See also:

sklearn.linear_model.lars_path

sklearn.linear_model.orthogonal_mp

sklearn.linear_model.Lasso

SparseCoder

7.9 sklearn.discriminant_analysis: Discriminant Analysis

Linear Discriminant Analysis and Quadratic Discriminant Analysis

User guide: See the Linear and Quadratic Discriminant Analysis section for further details.

7.9. sklearn.discriminant_analysis: Discriminant Analysis 1847

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

discriminant_analysis.
LinearDiscriminantAnalysis(*)

Linear Discriminant Analysis

discriminant_analysis.
QuadraticDiscriminantAnalysis(*)

Quadratic Discriminant Analysis

7.9.1 sklearn.discriminant_analysis.LinearDiscriminantAnalysis

class sklearn.discriminant_analysis.LinearDiscriminantAnalysis(*, solver=’svd’,
shrink-
age=None,
priors=None,
n_components=None,
store_covariance=False,
tol=0.0001)

Linear Discriminant Analysis

A classifier with a linear decision boundary, generated by fitting class conditional densities to the data and using
Bayes’ rule.

The model fits a Gaussian density to each class, assuming that all classes share the same covariance matrix.

The fitted model can also be used to reduce the dimensionality of the input by projecting it to the most discrim-
inative directions, using the transform method.

New in version 0.17: LinearDiscriminantAnalysis.

Read more in the User Guide.

Parameters

solver [{‘svd’, ‘lsqr’, ‘eigen’}, default=’svd’]

Solver to use, possible values:

• ‘svd’: Singular value decomposition (default). Does not compute the covariance ma-
trix, therefore this solver is recommended for data with a large number of features.

• ‘lsqr’: Least squares solution, can be combined with shrinkage.

• ‘eigen’: Eigenvalue decomposition, can be combined with shrinkage.

shrinkage [‘auto’ or float, default=None]

Shrinkage parameter, possible values:

• None: no shrinkage (default).

• ‘auto’: automatic shrinkage using the Ledoit-Wolf lemma.

• float between 0 and 1: fixed shrinkage parameter.

Note that shrinkage works only with ‘lsqr’ and ‘eigen’ solvers.

priors [array-like of shape (n_classes,), default=None] The class prior probabilities. By default,
the class proportions are inferred from the training data.

n_components [int, default=None] Number of components (<= min(n_classes - 1, n_features))
for dimensionality reduction. If None, will be set to min(n_classes - 1, n_features). This
parameter only affects the transform method.

1848 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

store_covariance [bool, default=False] If True, explicitely compute the weighted within-class
covariance matrix when solver is ‘svd’. The matrix is always computed and stored for the
other solvers.

New in version 0.17.

tol [float, default=1.0e-4] Absolute threshold for a singular value of X to be considered signifi-
cant, used to estimate the rank of X. Dimensions whose singular values are non-significant
are discarded. Only used if solver is ‘svd’.

New in version 0.17.

Attributes

coef_ [ndarray of shape (n_features,) or (n_classes, n_features)] Weight vector(s).

intercept_ [ndarray of shape (n_classes,)] Intercept term.

covariance_ [array-like of shape (n_features, n_features)] Weighted within-class covariance
matrix. It corresponds to sum_k prior_k * C_k where C_k is the covariance matrix
of the samples in class k. The C_k are estimated using the (potentially shrunk) biased
estimator of covariance. If solver is ‘svd’, only exists when store_covariance is True.

explained_variance_ratio_ [ndarray of shape (n_components,)] Percentage of variance ex-
plained by each of the selected components. If n_components is not set then all com-
ponents are stored and the sum of explained variances is equal to 1.0. Only available when
eigen or svd solver is used.

means_ [array-like of shape (n_classes, n_features)] Class-wise means.

priors_ [array-like of shape (n_classes,)] Class priors (sum to 1).

scalings_ [array-like of shape (rank, n_classes - 1)] Scaling of the features in the space spanned
by the class centroids. Only available for ‘svd’ and ‘eigen’ solvers.

xbar_ [array-like of shape (n_features,)] Overall mean. Only present if solver is ‘svd’.

classes_ [array-like of shape (n_classes,)] Unique class labels.

See also:

sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis Quadratic Discrimi-
nant Analysis

Examples

>>> import numpy as np
>>> from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> y = np.array([1, 1, 1, 2, 2, 2])
>>> clf = LinearDiscriminantAnalysis()
>>> clf.fit(X, y)
LinearDiscriminantAnalysis()
>>> print(clf.predict([[-0.8, -1]]))
[1]

Methods

7.9. sklearn.discriminant_analysis: Discriminant Analysis 1849

scikit-learn user guide, Release 0.23.2

decision_function(X) Apply decision function to an array of samples.
fit(X, y) Fit LinearDiscriminantAnalysis model according to

the given
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict class labels for samples in X.
predict_log_proba(X) Estimate log probability.
predict_proba(X) Estimate probability.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.
transform(X) Project data to maximize class separation.

__init__(*, solver=’svd’, shrinkage=None, priors=None, n_components=None,
store_covariance=False, tol=0.0001)

Initialize self. See help(type(self)) for accurate signature.

decision_function(X)
Apply decision function to an array of samples.

The decision function is equal (up to a constant factor) to the log-posterior of the model, i.e. log p(y =
k | x). In a binary classification setting this instead corresponds to the difference log p(y = 1 |
x) - log p(y = 0 | x). See Mathematical formulation of the LDA and QDA classifiers.

Parameters

X [array-like of shape (n_samples, n_features)] Array of samples (test vectors).

Returns

C [ndarray of shape (n_samples,) or (n_samples, n_classes)] Decision function values re-
lated to each class, per sample. In the two-class case, the shape is (n_samples,), giving the
log likelihood ratio of the positive class.

fit(X, y)

Fit LinearDiscriminantAnalysis model according to the given training data and parameters.

Changed in version 0.19: store_covariance has been moved to main constructor.

Changed in version 0.19: tol has been moved to main constructor.

Parameters

X [array-like of shape (n_samples, n_features)] Training data.

y [array-like of shape (n_samples,)] Target values.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

1850 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict class labels for samples in X.

Parameters

X [array_like or sparse matrix, shape (n_samples, n_features)] Samples.

Returns

C [array, shape [n_samples]] Predicted class label per sample.

predict_log_proba(X)
Estimate log probability.

Parameters

X [array-like of shape (n_samples, n_features)] Input data.

Returns

C [ndarray of shape (n_samples, n_classes)] Estimated log probabilities.

predict_proba(X)
Estimate probability.

Parameters

X [array-like of shape (n_samples, n_features)] Input data.

Returns

C [ndarray of shape (n_samples, n_classes)] Estimated probabilities.

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

7.9. sklearn.discriminant_analysis: Discriminant Analysis 1851

scikit-learn user guide, Release 0.23.2

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Project data to maximize class separation.

Parameters

X [array-like of shape (n_samples, n_features)] Input data.

Returns

X_new [ndarray of shape (n_samples, n_components)] Transformed data.

Examples using sklearn.discriminant_analysis.LinearDiscriminantAnalysis

• Normal and Shrinkage Linear Discriminant Analysis for classification

• Linear and Quadratic Discriminant Analysis with covariance ellipsoid

• Comparison of LDA and PCA 2D projection of Iris dataset

• Manifold learning on handwritten digits: Locally Linear Embedding, Isomap. . .

• Dimensionality Reduction with Neighborhood Components Analysis

7.9.2 sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis

class sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis(*, pri-
ors=None,
reg_param=0.0,
store_covariance=False,
tol=0.0001)

Quadratic Discriminant Analysis

A classifier with a quadratic decision boundary, generated by fitting class conditional densities to the data and
using Bayes’ rule.

The model fits a Gaussian density to each class.

New in version 0.17: QuadraticDiscriminantAnalysis

Read more in the User Guide.

Parameters

priors [ndarray of shape (n_classes,), default=None] Class priors. By default, the class propor-
tions are inferred from the training data.

reg_param [float, default=0.0] Regularizes the per-class covariance estimates by
transforming S2 as S2 = (1 - reg_param) * S2 + reg_param * np.
eye(n_features), where S2 corresponds to the scaling_ attribute of a given
class.

1852 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

store_covariance [bool, default=False] If True, the class covariance matrices are explicitely
computed and stored in the self.covariance_ attribute.

New in version 0.17.

tol [float, default=1.0e-4] Absolute threshold for a singular value to be considered significant,
used to estimate the rank of Xk where Xk is the centered matrix of samples in class k. This
parameter does not affect the predictions. It only controls a warning that is raised when
features are considered to be colinear.

New in version 0.17.

Attributes

covariance_ [list of len n_classes of ndarray of shape (n_features, n_features)] For each class,
gives the covariance matrix estimated using the samples of that class. The estimations are
unbiased. Only present if store_covariance is True.

means_ [array-like of shape (n_classes, n_features)] Class-wise means.

priors_ [array-like of shape (n_classes,)] Class priors (sum to 1).

rotations_ [list of len n_classes of ndarray of shape (n_features, n_k)] For each class k
an array of shape (n_features, n_k), where n_k = min(n_features, number of
elements in class k) It is the rotation of the Gaussian distribution, i.e. its principal
axis. It corresponds to V, the matrix of eigenvectors coming from the SVD of Xk = U S
Vt where Xk is the centered matrix of samples from class k.

scalings_ [list of len n_classes of ndarray of shape (n_k,)] For each class, contains the scaling of
the Gaussian distributions along its principal axes, i.e. the variance in the rotated coordinate
system. It corresponds to S^2 / (n_samples - 1), where S is the diagonal matrix of
singular values from the SVD of Xk, where Xk is the centered matrix of samples from class
k.

classes_ [ndarray of shape (n_classes,)] Unique class labels.

See also:

sklearn.discriminant_analysis.LinearDiscriminantAnalysis Linear Discriminant
Analysis

Examples

>>> from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> y = np.array([1, 1, 1, 2, 2, 2])
>>> clf = QuadraticDiscriminantAnalysis()
>>> clf.fit(X, y)
QuadraticDiscriminantAnalysis()
>>> print(clf.predict([[-0.8, -1]]))
[1]

Methods

decision_function(X) Apply decision function to an array of samples.
Continued on next page

7.9. sklearn.discriminant_analysis: Discriminant Analysis 1853

scikit-learn user guide, Release 0.23.2

Table 66 – continued from previous page
fit(X, y) Fit the model according to the given training data and

parameters.
get_params([deep]) Get parameters for this estimator.
predict(X) Perform classification on an array of test vectors X.
predict_log_proba(X) Return log of posterior probabilities of classification.
predict_proba(X) Return posterior probabilities of classification.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(*, priors=None, reg_param=0.0, store_covariance=False, tol=0.0001)
Initialize self. See help(type(self)) for accurate signature.

decision_function(X)
Apply decision function to an array of samples.

The decision function is equal (up to a constant factor) to the log-posterior of the model, i.e. log p(y =
k | x). In a binary classification setting this instead corresponds to the difference log p(y = 1 |
x) - log p(y = 0 | x). See Mathematical formulation of the LDA and QDA classifiers.

Parameters

X [array-like of shape (n_samples, n_features)] Array of samples (test vectors).

Returns

C [ndarray of shape (n_samples,) or (n_samples, n_classes)] Decision function values re-
lated to each class, per sample. In the two-class case, the shape is (n_samples,), giving the
log likelihood ratio of the positive class.

fit(X, y)
Fit the model according to the given training data and parameters.

Changed in version 0.19: store_covariances has been moved to main constructor as
store_covariance

Changed in version 0.19: tol has been moved to main constructor.

Parameters

X [array-like of shape (n_samples, n_features)] Training vector, where n_samples is the
number of samples and n_features is the number of features.

y [array-like of shape (n_samples,)] Target values (integers)

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Perform classification on an array of test vectors X.

The predicted class C for each sample in X is returned.

1854 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Parameters

X [array-like of shape (n_samples, n_features)]

Returns

C [ndarray of shape (n_samples,)]

predict_log_proba(X)
Return log of posterior probabilities of classification.

Parameters

X [array-like of shape (n_samples, n_features)] Array of samples/test vectors.

Returns

C [ndarray of shape (n_samples, n_classes)] Posterior log-probabilities of classification per
class.

predict_proba(X)
Return posterior probabilities of classification.

Parameters

X [array-like of shape (n_samples, n_features)] Array of samples/test vectors.

Returns

C [ndarray of shape (n_samples, n_classes)] Posterior probabilities of classification per
class.

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

7.9. sklearn.discriminant_analysis: Discriminant Analysis 1855

scikit-learn user guide, Release 0.23.2

Examples using sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis

• Classifier comparison

• Linear and Quadratic Discriminant Analysis with covariance ellipsoid

7.10 sklearn.dummy: Dummy estimators

User guide: See the Metrics and scoring: quantifying the quality of predictions section for further details.

dummy.DummyClassifier(*[, strategy, . . .]) DummyClassifier is a classifier that makes predictions
using simple rules.

dummy.DummyRegressor(*[, strategy, . . .]) DummyRegressor is a regressor that makes predictions
using simple rules.

7.10.1 sklearn.dummy.DummyClassifier

class sklearn.dummy.DummyClassifier(*, strategy=’warn’, random_state=None, con-
stant=None)

DummyClassifier is a classifier that makes predictions using simple rules.

This classifier is useful as a simple baseline to compare with other (real) classifiers. Do not use it for real
problems.

Read more in the User Guide.

New in version 0.13.

Parameters

strategy [str, default=”stratified”] Strategy to use to generate predictions.

• “stratified”: generates predictions by respecting the training set’s class distribution.

• “most_frequent”: always predicts the most frequent label in the training set.

• “prior”: always predicts the class that maximizes the class prior (like “most_frequent”)
and predict_proba returns the class prior.

• “uniform”: generates predictions uniformly at random.

• “constant”: always predicts a constant label that is provided by the user. This is useful for
metrics that evaluate a non-majority class

Changed in version 0.22: The default value of strategy will change to “prior” in
version 0.24. Starting from version 0.22, a warning will be raised if strategy is not
explicitly set.

New in version 0.17: Dummy Classifier now supports prior fitting strategy using param-
eter prior.

random_state [int, RandomState instance or None, optional, default=None] Controls
the randomness to generate the predictions when strategy='stratified' or
strategy='uniform'. Pass an int for reproducible output across multiple function
calls. See Glossary.

constant [int or str or array-like of shape (n_outputs,)] The explicit constant as predicted by the
“constant” strategy. This parameter is useful only for the “constant” strategy.

1856 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Attributes

classes_ [array or list of array of shape (n_classes,)] Class labels for each output.

n_classes_ [array or list of array of shape (n_classes,)] Number of label for each output.

class_prior_ [array or list of array of shape (n_classes,)] Probability of each class for each
output.

n_outputs_ [int,] Number of outputs.

sparse_output_ [bool,] True if the array returned from predict is to be in sparse CSC format.
Is automatically set to True if the input y is passed in sparse format.

Examples

>>> import numpy as np
>>> from sklearn.dummy import DummyClassifier
>>> X = np.array([-1, 1, 1, 1])
>>> y = np.array([0, 1, 1, 1])
>>> dummy_clf = DummyClassifier(strategy="most_frequent")
>>> dummy_clf.fit(X, y)
DummyClassifier(strategy='most_frequent')
>>> dummy_clf.predict(X)
array([1, 1, 1, 1])
>>> dummy_clf.score(X, y)
0.75

Methods

fit(X, y[, sample_weight]) Fit the random classifier.
get_params([deep]) Get parameters for this estimator.
predict(X) Perform classification on test vectors X.
predict_log_proba(X) Return log probability estimates for the test vectors

X.
predict_proba(X) Return probability estimates for the test vectors X.
score(X, y[, sample_weight]) Returns the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(*, strategy=’warn’, random_state=None, constant=None)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y, sample_weight=None)
Fit the random classifier.

Parameters

X [{array-like, object with finite length or shape}] Training data, requires length =
n_samples

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] Target values.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

7.10. sklearn.dummy: Dummy estimators 1857

scikit-learn user guide, Release 0.23.2

self [object]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Perform classification on test vectors X.

Parameters

X [{array-like, object with finite length or shape}] Training data, requires length =
n_samples

Returns

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] Predicted target values for X.

predict_log_proba(X)
Return log probability estimates for the test vectors X.

Parameters

X [{array-like, object with finite length or shape}] Training data, requires length =
n_samples

Returns

P [array-like or list of array-like of shape (n_samples, n_classes)] Returns the log probability
of the sample for each class in the model, where classes are ordered arithmetically for each
output.

predict_proba(X)
Return probability estimates for the test vectors X.

Parameters

X [{array-like, object with finite length or shape}] Training data, requires length =
n_samples

Returns

P [array-like or list of array-lke of shape (n_samples, n_classes)] Returns the probability of
the sample for each class in the model, where classes are ordered arithmetically, for each
output.

score(X, y, sample_weight=None)
Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [{array-like, None}] Test samples with shape = (n_samples, n_features) or None. Passing
None as test samples gives the same result as passing real test samples, since DummyClas-
sifier operates independently of the sampled observations.

1858 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

7.10.2 sklearn.dummy.DummyRegressor

class sklearn.dummy.DummyRegressor(*, strategy=’mean’, constant=None, quantile=None)
DummyRegressor is a regressor that makes predictions using simple rules.

This regressor is useful as a simple baseline to compare with other (real) regressors. Do not use it for real
problems.

Read more in the User Guide.

New in version 0.13.

Parameters

strategy [str] Strategy to use to generate predictions.

• “mean”: always predicts the mean of the training set

• “median”: always predicts the median of the training set

• “quantile”: always predicts a specified quantile of the training set, provided with the
quantile parameter.

• “constant”: always predicts a constant value that is provided by the user.

constant [int or float or array-like of shape (n_outputs,)] The explicit constant as predicted by
the “constant” strategy. This parameter is useful only for the “constant” strategy.

quantile [float in [0.0, 1.0]] The quantile to predict using the “quantile” strategy. A quantile of
0.5 corresponds to the median, while 0.0 to the minimum and 1.0 to the maximum.

Attributes

constant_ [array, shape (1, n_outputs)] Mean or median or quantile of the training targets or
constant value given by the user.

n_outputs_ [int,] Number of outputs.

7.10. sklearn.dummy: Dummy estimators 1859

scikit-learn user guide, Release 0.23.2

Examples

>>> import numpy as np
>>> from sklearn.dummy import DummyRegressor
>>> X = np.array([1.0, 2.0, 3.0, 4.0])
>>> y = np.array([2.0, 3.0, 5.0, 10.0])
>>> dummy_regr = DummyRegressor(strategy="mean")
>>> dummy_regr.fit(X, y)
DummyRegressor()
>>> dummy_regr.predict(X)
array([5., 5., 5., 5.])
>>> dummy_regr.score(X, y)
0.0

Methods

fit(X, y[, sample_weight]) Fit the random regressor.
get_params([deep]) Get parameters for this estimator.
predict(X[, return_std]) Perform classification on test vectors X.
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.

__init__(*, strategy=’mean’, constant=None, quantile=None)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y, sample_weight=None)
Fit the random regressor.

Parameters

X [{array-like, object with finite length or shape}] Training data, requires length =
n_samples

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] Target values.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

self [object]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X, return_std=False)
Perform classification on test vectors X.

Parameters

1860 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

X [{array-like, object with finite length or shape}] Training data, requires length =
n_samples

return_std [boolean, optional] Whether to return the standard deviation of posterior predic-
tion. All zeros in this case.

New in version 0.20.

Returns

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] Predicted target values for X.

y_std [array-like of shape (n_samples,) or (n_samples, n_outputs)] Standard deviation of
predictive distribution of query points.

score(X, y, sample_weight=None)
Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [{array-like, None}] Test samples with shape = (n_samples, n_features) or None. For
some estimators this may be a precomputed kernel matrix instead, shape = (n_samples,
n_samples_fitted], where n_samples_fitted is the number of samples used in the fitting
for the estimator. Passing None as test samples gives the same result as passing real test
samples, since DummyRegressor operates independently of the sampled observations.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.dummy.DummyRegressor

• Poisson regression and non-normal loss

7.10. sklearn.dummy: Dummy estimators 1861

scikit-learn user guide, Release 0.23.2

7.11 sklearn.ensemble: Ensemble Methods

The sklearn.ensemble module includes ensemble-based methods for classification, regression and anomaly de-
tection.

User guide: See the Ensemble methods section for further details.

ensemble.AdaBoostClassifier([. . .]) An AdaBoost classifier.
ensemble.AdaBoostRegressor([base_estimator,
. . .])

An AdaBoost regressor.

ensemble.BaggingClassifier([base_estimator,
. . .])

A Bagging classifier.

ensemble.BaggingRegressor([base_estimator,
. . .])

A Bagging regressor.

ensemble.ExtraTreesClassifier([. . .]) An extra-trees classifier.
ensemble.ExtraTreesRegressor([n_estimators,
. . .])

An extra-trees regressor.

ensemble.GradientBoostingClassifier(*[,
. . .])

Gradient Boosting for classification.

ensemble.GradientBoostingRegressor(*[,
. . .])

Gradient Boosting for regression.

ensemble.IsolationForest(*[, n_estimators,
. . .])

Isolation Forest Algorithm.

ensemble.RandomForestClassifier([. . .]) A random forest classifier.
ensemble.RandomForestRegressor([. . .]) A random forest regressor.
ensemble.RandomTreesEmbedding([. . .]) An ensemble of totally random trees.
ensemble.StackingClassifier(estimators[,
. . .])

Stack of estimators with a final classifier.

ensemble.StackingRegressor(estimators[,
. . .])

Stack of estimators with a final regressor.

ensemble.VotingClassifier(estimators, *[,
. . .])

Soft Voting/Majority Rule classifier for unfitted estima-
tors.

ensemble.VotingRegressor(estimators, *[,
. . .])

Prediction voting regressor for unfitted estimators.

ensemble.HistGradientBoostingRegressor([. . .])Histogram-based Gradient Boosting Regression Tree.
ensemble.HistGradientBoostingClassifier([. . .])Histogram-based Gradient Boosting Classification Tree.

7.11.1 sklearn.ensemble.AdaBoostClassifier

class sklearn.ensemble.AdaBoostClassifier(base_estimator=None, *, n_estimators=50,
learning_rate=1.0, algorithm=’SAMME.R’,
random_state=None)

An AdaBoost classifier.

An AdaBoost [1] classifier is a meta-estimator that begins by fitting a classifier on the original dataset and then
fits additional copies of the classifier on the same dataset but where the weights of incorrectly classified instances
are adjusted such that subsequent classifiers focus more on difficult cases.

This class implements the algorithm known as AdaBoost-SAMME [2].

Read more in the User Guide.

New in version 0.14.

Parameters

1862 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

base_estimator [object, default=None] The base estimator from which the boosted en-
semble is built. Support for sample weighting is required, as well as proper
classes_ and n_classes_ attributes. If None, then the base estimator is
DecisionTreeClassifier(max_depth=1).

n_estimators [int, default=50] The maximum number of estimators at which boosting is termi-
nated. In case of perfect fit, the learning procedure is stopped early.

learning_rate [float, default=1.] Learning rate shrinks the contribution of each clas-
sifier by learning_rate. There is a trade-off between learning_rate and
n_estimators.

algorithm [{‘SAMME’, ‘SAMME.R’}, default=’SAMME.R’] If ‘SAMME.R’ then use the
SAMME.R real boosting algorithm. base_estimator must support calculation of
class probabilities. If ‘SAMME’ then use the SAMME discrete boosting algorithm. The
SAMME.R algorithm typically converges faster than SAMME, achieving a lower test error
with fewer boosting iterations.

random_state [int or RandomState, default=None] Controls the random seed given at
each base_estimator at each boosting iteration. Thus, it is only used when
base_estimator exposes a random_state. Pass an int for reproducible output across
multiple function calls. See Glossary.

Attributes

base_estimator_ [estimator] The base estimator from which the ensemble is grown.

estimators_ [list of classifiers] The collection of fitted sub-estimators.

classes_ [ndarray of shape (n_classes,)] The classes labels.

n_classes_ [int] The number of classes.

estimator_weights_ [ndarray of floats] Weights for each estimator in the boosted ensemble.

estimator_errors_ [ndarray of floats] Classification error for each estimator in the boosted en-
semble.

feature_importances_ [ndarray of shape (n_features,)] The impurity-based feature im-
portances.

See also:

AdaBoostRegressor An AdaBoost regressor that begins by fitting a regressor on the original dataset and
then fits additional copies of the regressor on the same dataset but where the weights of instances are
adjusted according to the error of the current prediction.

GradientBoostingClassifier GB builds an additive model in a forward stage-wise fashion. Regres-
sion trees are fit on the negative gradient of the binomial or multinomial deviance loss function. Binary
classification is a special case where only a single regression tree is induced.

sklearn.tree.DecisionTreeClassifier A non-parametric supervised learning method used for
classification. Creates a model that predicts the value of a target variable by learning simple decision
rules inferred from the data features.

References

[1], [2]

7.11. sklearn.ensemble: Ensemble Methods 1863

scikit-learn user guide, Release 0.23.2

Examples

>>> from sklearn.ensemble import AdaBoostClassifier
>>> from sklearn.datasets import make_classification
>>> X, y = make_classification(n_samples=1000, n_features=4,
... n_informative=2, n_redundant=0,
... random_state=0, shuffle=False)
>>> clf = AdaBoostClassifier(n_estimators=100, random_state=0)
>>> clf.fit(X, y)
AdaBoostClassifier(n_estimators=100, random_state=0)
>>> clf.predict([[0, 0, 0, 0]])
array([1])
>>> clf.score(X, y)
0.983...

Methods

decision_function(X) Compute the decision function of X.
fit(X, y[, sample_weight]) Build a boosted classifier from the training set (X, y).
get_params([deep]) Get parameters for this estimator.
predict(X) Predict classes for X.
predict_log_proba(X) Predict class log-probabilities for X.
predict_proba(X) Predict class probabilities for X.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.
staged_decision_function(X) Compute decision function of X for each boosting

iteration.
staged_predict(X) Return staged predictions for X.
staged_predict_proba(X) Predict class probabilities for X.
staged_score(X, y[, sample_weight]) Return staged scores for X, y.

__init__(base_estimator=None, *, n_estimators=50, learning_rate=1.0, algorithm=’SAMME.R’,
random_state=None)

Initialize self. See help(type(self)) for accurate signature.

decision_function(X)
Compute the decision function of X.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The training input samples.
Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted
to CSR.

Returns

score [ndarray of shape of (n_samples, k)] The decision function of the input samples. The
order of outputs is the same of that of the classes_ attribute. Binary classification is a
special cases with k == 1, otherwise k==n_classes. For binary classification, values
closer to -1 or 1 mean more like the first or second class in classes_, respectively.

property feature_importances_
The impurity-based feature importances.

1864 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

The higher, the more important the feature. The importance of a feature is computed as the (normalized)
total reduction of the criterion brought by that feature. It is also known as the Gini importance.

Warning: impurity-based feature importances can be misleading for high cardinality features (many unique
values). See sklearn.inspection.permutation_importance as an alternative.

Returns

feature_importances_ [ndarray of shape (n_features,)] The feature importances.

fit(X, y, sample_weight=None)
Build a boosted classifier from the training set (X, y).

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The training input samples.
Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted
to CSR.

y [array-like of shape (n_samples,)] The target values (class labels).

sample_weight [array-like of shape (n_samples,), default=None] Sample weights. If None,
the sample weights are initialized to 1 / n_samples.

Returns

self [object] Fitted estimator.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict classes for X.

The predicted class of an input sample is computed as the weighted mean prediction of the classifiers in
the ensemble.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The training input samples.
Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted
to CSR.

Returns

y [ndarray of shape (n_samples,)] The predicted classes.

predict_log_proba(X)
Predict class log-probabilities for X.

The predicted class log-probabilities of an input sample is computed as the weighted mean predicted class
log-probabilities of the classifiers in the ensemble.

Parameters

7.11. sklearn.ensemble: Ensemble Methods 1865

scikit-learn user guide, Release 0.23.2

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The training input samples.
Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted
to CSR.

Returns

p [ndarray of shape (n_samples, n_classes)] The class probabilities of the input samples.
The order of outputs is the same of that of the classes_ attribute.

predict_proba(X)
Predict class probabilities for X.

The predicted class probabilities of an input sample is computed as the weighted mean predicted class
probabilities of the classifiers in the ensemble.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The training input samples.
Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted
to CSR.

Returns

p [ndarray of shape (n_samples, n_classes)] The class probabilities of the input samples.
The order of outputs is the same of that of the classes_ attribute.

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

staged_decision_function(X)
Compute decision function of X for each boosting iteration.

This method allows monitoring (i.e. determine error on testing set) after each boosting iteration.

Parameters

1866 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The training input samples.
Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted
to CSR.

Yields

score [generator of ndarray of shape (n_samples, k)] The decision function of the input sam-
ples. The order of outputs is the same of that of the classes_ attribute. Binary classification
is a special cases with k == 1, otherwise k==n_classes. For binary classification,
values closer to -1 or 1 mean more like the first or second class in classes_, respectively.

staged_predict(X)
Return staged predictions for X.

The predicted class of an input sample is computed as the weighted mean prediction of the classifiers in
the ensemble.

This generator method yields the ensemble prediction after each iteration of boosting and therefore allows
monitoring, such as to determine the prediction on a test set after each boost.

Parameters

X [array-like of shape (n_samples, n_features)] The input samples. Sparse matrix can be
CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted to CSR.

Yields

y [generator of ndarray of shape (n_samples,)] The predicted classes.

staged_predict_proba(X)
Predict class probabilities for X.

The predicted class probabilities of an input sample is computed as the weighted mean predicted class
probabilities of the classifiers in the ensemble.

This generator method yields the ensemble predicted class probabilities after each iteration of boosting
and therefore allows monitoring, such as to determine the predicted class probabilities on a test set after
each boost.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The training input samples.
Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted
to CSR.

Yields

p [generator of ndarray of shape (n_samples,)] The class probabilities of the input samples.
The order of outputs is the same of that of the classes_ attribute.

staged_score(X, y, sample_weight=None)
Return staged scores for X, y.

This generator method yields the ensemble score after each iteration of boosting and therefore allows
monitoring, such as to determine the score on a test set after each boost.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The training input samples.
Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted
to CSR.

y [array-like of shape (n_samples,)] Labels for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

7.11. sklearn.ensemble: Ensemble Methods 1867

scikit-learn user guide, Release 0.23.2

Yields

z [float]

Examples using sklearn.ensemble.AdaBoostClassifier

• Classifier comparison

• Two-class AdaBoost

• Multi-class AdaBoosted Decision Trees

• Discrete versus Real AdaBoost

• Plot the decision surfaces of ensembles of trees on the iris dataset

7.11.2 sklearn.ensemble.AdaBoostRegressor

class sklearn.ensemble.AdaBoostRegressor(base_estimator=None, *, n_estimators=50,
learning_rate=1.0, loss=’linear’, ran-
dom_state=None)

An AdaBoost regressor.

An AdaBoost [1] regressor is a meta-estimator that begins by fitting a regressor on the original dataset and
then fits additional copies of the regressor on the same dataset but where the weights of instances are adjusted
according to the error of the current prediction. As such, subsequent regressors focus more on difficult cases.

This class implements the algorithm known as AdaBoost.R2 [2].

Read more in the User Guide.

New in version 0.14.

Parameters

base_estimator [object, default=None] The base estimator from which
the boosted ensemble is built. If None, then the base estimator is
DecisionTreeRegressor(max_depth=3).

n_estimators [int, default=50] The maximum number of estimators at which boosting is termi-
nated. In case of perfect fit, the learning procedure is stopped early.

learning_rate [float, default=1.] Learning rate shrinks the contribution of each regres-
sor by learning_rate. There is a trade-off between learning_rate and
n_estimators.

loss [{‘linear’, ‘square’, ‘exponential’}, default=’linear’] The loss function to use when updat-
ing the weights after each boosting iteration.

random_state [int or RandomState, default=None] Controls the random seed given at
each base_estimator at each boosting iteration. Thus, it is only used when
base_estimator exposes a random_state. In addition, it controls the bootstrap of
the weights used to train the base_estimator at each boosting iteration. Pass an int for
reproducible output across multiple function calls. See Glossary.

Attributes

base_estimator_ [estimator] The base estimator from which the ensemble is grown.

estimators_ [list of classifiers] The collection of fitted sub-estimators.

estimator_weights_ [ndarray of floats] Weights for each estimator in the boosted ensemble.

1868 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

estimator_errors_ [ndarray of floats] Regression error for each estimator in the boosted en-
semble.

feature_importances_ [ndarray of shape (n_features,)] The impurity-based feature im-
portances.

See also:

AdaBoostClassifier, GradientBoostingRegressor

sklearn.tree.DecisionTreeRegressor

References

[1], [2]

Examples

>>> from sklearn.ensemble import AdaBoostRegressor
>>> from sklearn.datasets import make_regression
>>> X, y = make_regression(n_features=4, n_informative=2,
... random_state=0, shuffle=False)
>>> regr = AdaBoostRegressor(random_state=0, n_estimators=100)
>>> regr.fit(X, y)
AdaBoostRegressor(n_estimators=100, random_state=0)
>>> regr.predict([[0, 0, 0, 0]])
array([4.7972...])
>>> regr.score(X, y)
0.9771...

Methods

fit(X, y[, sample_weight]) Build a boosted regressor from the training set (X,
y).

get_params([deep]) Get parameters for this estimator.
predict(X) Predict regression value for X.
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.
staged_predict(X) Return staged predictions for X.
staged_score(X, y[, sample_weight]) Return staged scores for X, y.

__init__(base_estimator=None, *, n_estimators=50, learning_rate=1.0, loss=’linear’, ran-
dom_state=None)

Initialize self. See help(type(self)) for accurate signature.

property feature_importances_
The impurity-based feature importances.

The higher, the more important the feature. The importance of a feature is computed as the (normalized)
total reduction of the criterion brought by that feature. It is also known as the Gini importance.

Warning: impurity-based feature importances can be misleading for high cardinality features (many unique
values). See sklearn.inspection.permutation_importance as an alternative.

7.11. sklearn.ensemble: Ensemble Methods 1869

scikit-learn user guide, Release 0.23.2

Returns

feature_importances_ [ndarray of shape (n_features,)] The feature importances.

fit(X, y, sample_weight=None)
Build a boosted regressor from the training set (X, y).

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The training input samples.
Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted
to CSR.

y [array-like of shape (n_samples,)] The target values (real numbers).

sample_weight [array-like of shape (n_samples,), default=None] Sample weights. If None,
the sample weights are initialized to 1 / n_samples.

Returns

self [object]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict regression value for X.

The predicted regression value of an input sample is computed as the weighted median prediction of the
classifiers in the ensemble.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The training input samples.
Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted
to CSR.

Returns

y [ndarray of shape (n_samples,)] The predicted regression values.

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

1870 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

staged_predict(X)
Return staged predictions for X.

The predicted regression value of an input sample is computed as the weighted median prediction of the
classifiers in the ensemble.

This generator method yields the ensemble prediction after each iteration of boosting and therefore allows
monitoring, such as to determine the prediction on a test set after each boost.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The training input samples.

Yields

y [generator of ndarray of shape (n_samples,)] The predicted regression values.

staged_score(X, y, sample_weight=None)
Return staged scores for X, y.

This generator method yields the ensemble score after each iteration of boosting and therefore allows
monitoring, such as to determine the score on a test set after each boost.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The training input samples.
Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted
to CSR.

y [array-like of shape (n_samples,)] Labels for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Yields

z [float]

7.11. sklearn.ensemble: Ensemble Methods 1871

scikit-learn user guide, Release 0.23.2

Examples using sklearn.ensemble.AdaBoostRegressor

• Decision Tree Regression with AdaBoost

7.11.3 sklearn.ensemble.BaggingClassifier

class sklearn.ensemble.BaggingClassifier(base_estimator=None, n_estimators=10,
*, max_samples=1.0, max_features=1.0,
bootstrap=True, bootstrap_features=False,
oob_score=False, warm_start=False,
n_jobs=None, random_state=None, verbose=0)

A Bagging classifier.

A Bagging classifier is an ensemble meta-estimator that fits base classifiers each on random subsets of the
original dataset and then aggregate their individual predictions (either by voting or by averaging) to form a
final prediction. Such a meta-estimator can typically be used as a way to reduce the variance of a black-box
estimator (e.g., a decision tree), by introducing randomization into its construction procedure and then making
an ensemble out of it.

This algorithm encompasses several works from the literature. When random subsets of the dataset are drawn
as random subsets of the samples, then this algorithm is known as Pasting [1]. If samples are drawn with
replacement, then the method is known as Bagging [2]. When random subsets of the dataset are drawn as random
subsets of the features, then the method is known as Random Subspaces [3]. Finally, when base estimators are
built on subsets of both samples and features, then the method is known as Random Patches [4].

Read more in the User Guide.

New in version 0.15.

Parameters

base_estimator [object, default=None] The base estimator to fit on random subsets of the
dataset. If None, then the base estimator is a decision tree.

n_estimators [int, default=10] The number of base estimators in the ensemble.

max_samples [int or float, default=1.0] The number of samples to draw from X to train each
base estimator (with replacement by default, see bootstrap for more details).

• If int, then draw max_samples samples.

• If float, then draw max_samples * X.shape[0] samples.

max_features [int or float, default=1.0] The number of features to draw from X to train each
base estimator (without replacement by default, see bootstrap_features for more
details).

• If int, then draw max_features features.

• If float, then draw max_features * X.shape[1] features.

bootstrap [bool, default=True] Whether samples are drawn with replacement. If False, sam-
pling without replacement is performed.

bootstrap_features [bool, default=False] Whether features are drawn with replacement.

oob_score [bool, default=False] Whether to use out-of-bag samples to estimate the generaliza-
tion error.

warm_start [bool, default=False] When set to True, reuse the solution of the previous call to
fit and add more estimators to the ensemble, otherwise, just fit a whole new ensemble. See
the Glossary.

1872 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

New in version 0.17: warm_start constructor parameter.

n_jobs [int, default=None] The number of jobs to run in parallel for both fit and predict.
None means 1 unless in a joblib.parallel_backend context. -1 means using all
processors. See Glossary for more details.

random_state [int or RandomState, default=None] Controls the random resampling of the orig-
inal dataset (sample wise and feature wise). If the base estimator accepts a random_state
attribute, a different seed is generated for each instance in the ensemble. Pass an int for re-
producible output across multiple function calls. See Glossary.

verbose [int, default=0] Controls the verbosity when fitting and predicting.

Attributes

base_estimator_ [estimator] The base estimator from which the ensemble is grown.

n_features_ [int] The number of features when fit is performed.

estimators_ [list of estimators] The collection of fitted base estimators.

estimators_samples_ [list of arrays] The subset of drawn samples for each base estima-
tor.

estimators_features_ [list of arrays] The subset of drawn features for each base estimator.

classes_ [ndarray of shape (n_classes,)] The classes labels.

n_classes_ [int or list] The number of classes.

oob_score_ [float] Score of the training dataset obtained using an out-of-bag estimate. This
attribute exists only when oob_score is True.

oob_decision_function_ [ndarray of shape (n_samples, n_classes)] Decision function com-
puted with out-of-bag estimate on the training set. If n_estimators is small it might
be possible that a data point was never left out during the bootstrap. In this case,
oob_decision_function_ might contain NaN. This attribute exists only when
oob_score is True.

References

[1], [2], [3], [4]

Examples

>>> from sklearn.svm import SVC
>>> from sklearn.ensemble import BaggingClassifier
>>> from sklearn.datasets import make_classification
>>> X, y = make_classification(n_samples=100, n_features=4,
... n_informative=2, n_redundant=0,
... random_state=0, shuffle=False)
>>> clf = BaggingClassifier(base_estimator=SVC(),
... n_estimators=10, random_state=0).fit(X, y)
>>> clf.predict([[0, 0, 0, 0]])
array([1])

Methods

7.11. sklearn.ensemble: Ensemble Methods 1873

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

decision_function(X) Average of the decision functions of the base classi-
fiers.

fit(X, y[, sample_weight]) Build a Bagging ensemble of estimators from the
training

get_params([deep]) Get parameters for this estimator.
predict(X) Predict class for X.
predict_log_proba(X) Predict class log-probabilities for X.
predict_proba(X) Predict class probabilities for X.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(base_estimator=None, n_estimators=10, *, max_samples=1.0, max_features=1.0, boot-
strap=True, bootstrap_features=False, oob_score=False, warm_start=False, n_jobs=None,
random_state=None, verbose=0)

Initialize self. See help(type(self)) for accurate signature.

decision_function(X)
Average of the decision functions of the base classifiers.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The training input samples.
Sparse matrices are accepted only if they are supported by the base estimator.

Returns

score [ndarray of shape (n_samples, k)] The decision function of the input samples.
The columns correspond to the classes in sorted order, as they appear in the attribute
classes_. Regression and binary classification are special cases with k == 1, other-
wise k==n_classes.

property estimators_samples_
The subset of drawn samples for each base estimator.

Returns a dynamically generated list of indices identifying the samples used for fitting each member of the
ensemble, i.e., the in-bag samples.

Note: the list is re-created at each call to the property in order to reduce the object memory footprint by
not storing the sampling data. Thus fetching the property may be slower than expected.

fit(X, y, sample_weight=None)

Build a Bagging ensemble of estimators from the training set (X, y).

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The training input samples.
Sparse matrices are accepted only if they are supported by the base estimator.

y [array-like of shape (n_samples,)] The target values (class labels in classification, real
numbers in regression).

sample_weight [array-like of shape (n_samples,), default=None] Sample weights. If None,
then samples are equally weighted. Note that this is supported only if the base estimator
supports sample weighting.

Returns

self [object]

1874 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict class for X.

The predicted class of an input sample is computed as the class with the highest mean predicted probability.
If base estimators do not implement a predict_proba method, then it resorts to voting.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The training input samples.
Sparse matrices are accepted only if they are supported by the base estimator.

Returns

y [ndarray of shape (n_samples,)] The predicted classes.

predict_log_proba(X)
Predict class log-probabilities for X.

The predicted class log-probabilities of an input sample is computed as the log of the mean predicted class
probabilities of the base estimators in the ensemble.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The training input samples.
Sparse matrices are accepted only if they are supported by the base estimator.

Returns

p [ndarray of shape (n_samples, n_classes)] The class log-probabilities of the input samples.
The order of the classes corresponds to that in the attribute classes_.

predict_proba(X)
Predict class probabilities for X.

The predicted class probabilities of an input sample is computed as the mean predicted class probabilities
of the base estimators in the ensemble. If base estimators do not implement a predict_proba method,
then it resorts to voting and the predicted class probabilities of an input sample represents the proportion
of estimators predicting each class.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The training input samples.
Sparse matrices are accepted only if they are supported by the base estimator.

Returns

p [ndarray of shape (n_samples, n_classes)] The class probabilities of the input samples.
The order of the classes corresponds to that in the attribute classes_.

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

7.11. sklearn.ensemble: Ensemble Methods 1875

scikit-learn user guide, Release 0.23.2

Parameters

X [array-like of shape (n_samples, n_features)] Test samples.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

7.11.4 sklearn.ensemble.BaggingRegressor

class sklearn.ensemble.BaggingRegressor(base_estimator=None, n_estimators=10,
*, max_samples=1.0, max_features=1.0,
bootstrap=True, bootstrap_features=False,
oob_score=False, warm_start=False,
n_jobs=None, random_state=None, verbose=0)

A Bagging regressor.

A Bagging regressor is an ensemble meta-estimator that fits base regressors each on random subsets of the
original dataset and then aggregate their individual predictions (either by voting or by averaging) to form a
final prediction. Such a meta-estimator can typically be used as a way to reduce the variance of a black-box
estimator (e.g., a decision tree), by introducing randomization into its construction procedure and then making
an ensemble out of it.

This algorithm encompasses several works from the literature. When random subsets of the dataset are drawn
as random subsets of the samples, then this algorithm is known as Pasting [1]. If samples are drawn with
replacement, then the method is known as Bagging [2]. When random subsets of the dataset are drawn as random
subsets of the features, then the method is known as Random Subspaces [3]. Finally, when base estimators are
built on subsets of both samples and features, then the method is known as Random Patches [4].

Read more in the User Guide.

New in version 0.15.

Parameters

base_estimator [object, default=None] The base estimator to fit on random subsets of the
dataset. If None, then the base estimator is a decision tree.

n_estimators [int, default=10] The number of base estimators in the ensemble.

max_samples [int or float, default=1.0] The number of samples to draw from X to train each
base estimator (with replacement by default, see bootstrap for more details).

• If int, then draw max_samples samples.

1876 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

• If float, then draw max_samples * X.shape[0] samples.

max_features [int or float, default=1.0] The number of features to draw from X to train each
base estimator (without replacement by default, see bootstrap_features for more
details).

• If int, then draw max_features features.

• If float, then draw max_features * X.shape[1] features.

bootstrap [bool, default=True] Whether samples are drawn with replacement. If False, sam-
pling without replacement is performed.

bootstrap_features [bool, default=False] Whether features are drawn with replacement.

oob_score [bool, default=False] Whether to use out-of-bag samples to estimate the generaliza-
tion error.

warm_start [bool, default=False] When set to True, reuse the solution of the previous call to
fit and add more estimators to the ensemble, otherwise, just fit a whole new ensemble. See
the Glossary.

n_jobs [int, default=None] The number of jobs to run in parallel for both fit and predict.
None means 1 unless in a joblib.parallel_backend context. -1 means using all
processors. See Glossary for more details.

random_state [int or RandomState, default=None] Controls the random resampling of the orig-
inal dataset (sample wise and feature wise). If the base estimator accepts a random_state
attribute, a different seed is generated for each instance in the ensemble. Pass an int for re-
producible output across multiple function calls. See Glossary.

verbose [int, default=0] Controls the verbosity when fitting and predicting.

Attributes

base_estimator_ [estimator] The base estimator from which the ensemble is grown.

n_features_ [int] The number of features when fit is performed.

estimators_ [list of estimators] The collection of fitted sub-estimators.

estimators_samples_ [list of arrays] The subset of drawn samples for each base estima-
tor.

estimators_features_ [list of arrays] The subset of drawn features for each base estimator.

oob_score_ [float] Score of the training dataset obtained using an out-of-bag estimate. This
attribute exists only when oob_score is True.

oob_prediction_ [ndarray of shape (n_samples,)] Prediction computed with out-of-bag esti-
mate on the training set. If n_estimators is small it might be possible that a data point was
never left out during the bootstrap. In this case, oob_prediction_ might contain NaN.
This attribute exists only when oob_score is True.

References

[1], [2], [3], [4]

7.11. sklearn.ensemble: Ensemble Methods 1877

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

Examples

>>> from sklearn.svm import SVR
>>> from sklearn.ensemble import BaggingRegressor
>>> from sklearn.datasets import make_regression
>>> X, y = make_regression(n_samples=100, n_features=4,
... n_informative=2, n_targets=1,
... random_state=0, shuffle=False)
>>> regr = BaggingRegressor(base_estimator=SVR(),
... n_estimators=10, random_state=0).fit(X, y)
>>> regr.predict([[0, 0, 0, 0]])
array([-2.8720...])

Methods

fit(X, y[, sample_weight]) Build a Bagging ensemble of estimators from the
training

get_params([deep]) Get parameters for this estimator.
predict(X) Predict regression target for X.
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.

__init__(base_estimator=None, n_estimators=10, *, max_samples=1.0, max_features=1.0, boot-
strap=True, bootstrap_features=False, oob_score=False, warm_start=False, n_jobs=None,
random_state=None, verbose=0)

Initialize self. See help(type(self)) for accurate signature.

property estimators_samples_
The subset of drawn samples for each base estimator.

Returns a dynamically generated list of indices identifying the samples used for fitting each member of the
ensemble, i.e., the in-bag samples.

Note: the list is re-created at each call to the property in order to reduce the object memory footprint by
not storing the sampling data. Thus fetching the property may be slower than expected.

fit(X, y, sample_weight=None)

Build a Bagging ensemble of estimators from the training set (X, y).

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The training input samples.
Sparse matrices are accepted only if they are supported by the base estimator.

y [array-like of shape (n_samples,)] The target values (class labels in classification, real
numbers in regression).

sample_weight [array-like of shape (n_samples,), default=None] Sample weights. If None,
then samples are equally weighted. Note that this is supported only if the base estimator
supports sample weighting.

Returns

self [object]

1878 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict regression target for X.

The predicted regression target of an input sample is computed as the mean predicted regression targets of
the estimators in the ensemble.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The training input samples.
Sparse matrices are accepted only if they are supported by the base estimator.

Returns

y [ndarray of shape (n_samples,)] The predicted values.

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

7.11. sklearn.ensemble: Ensemble Methods 1879

scikit-learn user guide, Release 0.23.2

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.ensemble.BaggingRegressor

• Single estimator versus bagging: bias-variance decomposition

7.11.5 sklearn.ensemble.IsolationForest

class sklearn.ensemble.IsolationForest(*, n_estimators=100, max_samples=’auto’, contam-
ination=’auto’, max_features=1.0, bootstrap=False,
n_jobs=None, behaviour=’deprecated’, ran-
dom_state=None, verbose=0, warm_start=False)

Isolation Forest Algorithm.

Return the anomaly score of each sample using the IsolationForest algorithm

The IsolationForest ‘isolates’ observations by randomly selecting a feature and then randomly selecting a split
value between the maximum and minimum values of the selected feature.

Since recursive partitioning can be represented by a tree structure, the number of splittings required to isolate a
sample is equivalent to the path length from the root node to the terminating node.

This path length, averaged over a forest of such random trees, is a measure of normality and our decision
function.

Random partitioning produces noticeably shorter paths for anomalies. Hence, when a forest of random trees
collectively produce shorter path lengths for particular samples, they are highly likely to be anomalies.

Read more in the User Guide.

New in version 0.18.

Parameters

n_estimators [int, default=100] The number of base estimators in the ensemble.

max_samples [“auto”, int or float, default=”auto”]

The number of samples to draw from X to train each base estimator.

• If int, then draw max_samples samples.

• If float, then draw max_samples * X.shape[0] samples.

• If “auto”, then max_samples=min(256, n_samples).

If max_samples is larger than the number of samples provided, all samples will be used for
all trees (no sampling).

contamination [‘auto’ or float, default=’auto’] The amount of contamination of the data set,
i.e. the proportion of outliers in the data set. Used when fitting to define the threshold on
the scores of the samples.

• If ‘auto’, the threshold is determined as in the original paper.

• If float, the contamination should be in the range [0, 0.5].

Changed in version 0.22: The default value of contamination changed from 0.1 to
'auto'.

1880 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

max_features [int or float, default=1.0] The number of features to draw from X to train each
base estimator.

• If int, then draw max_features features.

• If float, then draw max_features * X.shape[1] features.

bootstrap [bool, default=False] If True, individual trees are fit on random subsets of the training
data sampled with replacement. If False, sampling without replacement is performed.

n_jobs [int, default=None] The number of jobs to run in parallel for both fit and predict.
None means 1 unless in a joblib.parallel_backend context. -1 means using all
processors. See Glossary for more details.

behaviour [str, default=’deprecated’] This parameter has no effect, is deprecated, and will be
removed.

New in version 0.20: behaviour is added in 0.20 for back-compatibility purpose.

Deprecated since version 0.20: behaviour='old' is deprecated in 0.20 and will not be
possible in 0.22.

Deprecated since version 0.22: behaviour parameter is deprecated in 0.22 and removed
in 0.24.

random_state [int or RandomState, default=None] Controls the pseudo-randomness of the se-
lection of the feature and split values for each branching step and each tree in the forest.

Pass an int for reproducible results across multiple function calls. See Glossary.

verbose [int, default=0] Controls the verbosity of the tree building process.

warm_start [bool, default=False] When set to True, reuse the solution of the previous call to
fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. See the
Glossary.

New in version 0.21.

Attributes

estimators_ [list of DecisionTreeClassifier] The collection of fitted sub-estimators.

estimators_samples_ [list of arrays] The subset of drawn samples for each base estima-
tor.

max_samples_ [int] The actual number of samples.

offset_ [float] Offset used to define the decision function from the raw scores. We have the re-
lation: decision_function = score_samples - offset_. offset_ is de-
fined as follows. When the contamination parameter is set to “auto”, the offset is equal to
-0.5 as the scores of inliers are close to 0 and the scores of outliers are close to -1. When
a contamination parameter different than “auto” is provided, the offset is defined in such
a way we obtain the expected number of outliers (samples with decision function < 0) in
training.

New in version 0.20.

estimators_features_ [list of arrays] The subset of drawn features for each base estimator.

See also:

sklearn.covariance.EllipticEnvelope An object for detecting outliers in a Gaussian distributed
dataset.

7.11. sklearn.ensemble: Ensemble Methods 1881

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

sklearn.svm.OneClassSVM Unsupervised Outlier Detection. Estimate the support of a high-
dimensional distribution. The implementation is based on libsvm.

sklearn.neighbors.LocalOutlierFactor Unsupervised Outlier Detection using Local Outlier
Factor (LOF).

Notes

The implementation is based on an ensemble of ExtraTreeRegressor. The maximum depth of each tree is set to
ceil(log_2(n)) where 𝑛 is the number of samples used to build the tree (see (Liu et al., 2008) for more
details).

References

[1], [2]

Examples

>>> from sklearn.ensemble import IsolationForest
>>> X = [[-1.1], [0.3], [0.5], [100]]
>>> clf = IsolationForest(random_state=0).fit(X)
>>> clf.predict([[0.1], [0], [90]])
array([1, 1, -1])

Methods

decision_function(X) Average anomaly score of X of the base classifiers.
fit(X[, y, sample_weight]) Fit estimator.
fit_predict(X[, y]) Perform fit on X and returns labels for X.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict if a particular sample is an outlier or not.
score_samples(X) Opposite of the anomaly score defined in the original

paper.
set_params(**params) Set the parameters of this estimator.

__init__(*, n_estimators=100, max_samples=’auto’, contamination=’auto’, max_features=1.0,
bootstrap=False, n_jobs=None, behaviour=’deprecated’, random_state=None, verbose=0,
warm_start=False)

Initialize self. See help(type(self)) for accurate signature.

decision_function(X)
Average anomaly score of X of the base classifiers.

The anomaly score of an input sample is computed as the mean anomaly score of the trees in the forest.

The measure of normality of an observation given a tree is the depth of the leaf containing this observation,
which is equivalent to the number of splittings required to isolate this point. In case of several observations
n_left in the leaf, the average path length of a n_left samples isolation tree is added.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, it will be converted to dtype=np.float32 and if a sparse matrix is provided to

1882 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

a sparse csr_matrix.

Returns

scores [ndarray of shape (n_samples,)] The anomaly score of the input samples. The lower,
the more abnormal. Negative scores represent outliers, positive scores represent inliers.

property estimators_samples_
The subset of drawn samples for each base estimator.

Returns a dynamically generated list of indices identifying the samples used for fitting each member of the
ensemble, i.e., the in-bag samples.

Note: the list is re-created at each call to the property in order to reduce the object memory footprint by
not storing the sampling data. Thus fetching the property may be slower than expected.

fit(X, y=None, sample_weight=None)
Fit estimator.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Use
dtype=np.float32 for maximum efficiency. Sparse matrices are also supported, use
sparse csc_matrix for maximum efficiency.

y [Ignored] Not used, present for API consistency by convention.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights. If None,
then samples are equally weighted.

Returns

self [object] Fitted estimator.

fit_predict(X, y=None)
Perform fit on X and returns labels for X.

Returns -1 for outliers and 1 for inliers.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [Ignored] Not used, present for API consistency by convention.

Returns

y [ndarray of shape (n_samples,)] 1 for inliers, -1 for outliers.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict if a particular sample is an outlier or not.

Parameters

7.11. sklearn.ensemble: Ensemble Methods 1883

scikit-learn user guide, Release 0.23.2

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, it will be converted to dtype=np.float32 and if a sparse matrix is provided to
a sparse csr_matrix.

Returns

is_inlier [ndarray of shape (n_samples,)] For each observation, tells whether or not (+1 or
-1) it should be considered as an inlier according to the fitted model.

score_samples(X)
Opposite of the anomaly score defined in the original paper.

The anomaly score of an input sample is computed as the mean anomaly score of the trees in the forest.

The measure of normality of an observation given a tree is the depth of the leaf containing this observation,
which is equivalent to the number of splittings required to isolate this point. In case of several observations
n_left in the leaf, the average path length of a n_left samples isolation tree is added.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples.

Returns

scores [ndarray of shape (n_samples,)] The anomaly score of the input samples. The lower,
the more abnormal.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.ensemble.IsolationForest

• IsolationForest example

• Comparing anomaly detection algorithms for outlier detection on toy datasets

7.11.6 sklearn.ensemble.RandomTreesEmbedding

class sklearn.ensemble.RandomTreesEmbedding(n_estimators=100, *, max_depth=5,
min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_leaf_nodes=None,
min_impurity_decrease=0.0,
min_impurity_split=None,
sparse_output=True, n_jobs=None,
random_state=None, verbose=0,
warm_start=False)

An ensemble of totally random trees.

1884 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

An unsupervised transformation of a dataset to a high-dimensional sparse representation. A datapoint is coded
according to which leaf of each tree it is sorted into. Using a one-hot encoding of the leaves, this leads to a
binary coding with as many ones as there are trees in the forest.

The dimensionality of the resulting representation is n_out <= n_estimators * max_leaf_nodes.
If max_leaf_nodes == None, the number of leaf nodes is at most n_estimators * 2 **
max_depth.

Read more in the User Guide.

Parameters

n_estimators [int, default=100] Number of trees in the forest.

Changed in version 0.22: The default value of n_estimators changed from 10 to 100 in
0.22.

max_depth [int, default=5] The maximum depth of each tree. If None, then nodes are expanded
until all leaves are pure or until all leaves contain less than min_samples_split samples.

min_samples_split [int or float, default=2] The minimum number of samples required to split
an internal node:

• If int, then consider min_samples_split as the minimum number.

• If float, then min_samples_split is a fraction and ceil(min_samples_split
* n_samples) is the minimum number of samples for each split.

Changed in version 0.18: Added float values for fractions.

min_samples_leaf [int or float, default=1] The minimum number of samples required to be
at a leaf node. A split point at any depth will only be considered if it leaves at least
min_samples_leaf training samples in each of the left and right branches. This may
have the effect of smoothing the model, especially in regression.

• If int, then consider min_samples_leaf as the minimum number.

• If float, then min_samples_leaf is a fraction and ceil(min_samples_leaf *
n_samples) is the minimum number of samples for each node.

Changed in version 0.18: Added float values for fractions.

min_weight_fraction_leaf [float, default=0.0] The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Samples have equal weight
when sample_weight is not provided.

max_leaf_nodes [int, default=None] Grow trees with max_leaf_nodes in best-first fashion.
Best nodes are defined as relative reduction in impurity. If None then unlimited number of
leaf nodes.

min_impurity_decrease [float, default=0.0] A node will be split if this split induces a decrease
of the impurity greater than or equal to this value.

The weighted impurity decrease equation is the following:

N_t / N * (impurity - N_t_R / N_t * right_impurity
- N_t_L / N_t * left_impurity)

where N is the total number of samples, N_t is the number of samples at the current node,
N_t_L is the number of samples in the left child, and N_t_R is the number of samples in
the right child.

N, N_t, N_t_R and N_t_L all refer to the weighted sum, if sample_weight is passed.

7.11. sklearn.ensemble: Ensemble Methods 1885

scikit-learn user guide, Release 0.23.2

New in version 0.19.

min_impurity_split [float, default=None] Threshold for early stopping in tree growth. A node
will split if its impurity is above the threshold, otherwise it is a leaf.

Deprecated since version 0.19: min_impurity_split has been deprecated in favor of
min_impurity_decrease in 0.19. The default value of min_impurity_split
has changed from 1e-7 to 0 in 0.23 and it will be removed in 0.25. Use
min_impurity_decrease instead.

sparse_output [bool, default=True] Whether or not to return a sparse CSR matrix, as default
behavior, or to return a dense array compatible with dense pipeline operators.

n_jobs [int, default=None] The number of jobs to run in parallel. fit, transform,
decision_path and apply are all parallelized over the trees. None means 1 unless
in a joblib.parallel_backend context. -1 means using all processors. See Glos-
sary for more details.

random_state [int or RandomState, default=None] Controls the generation of the random y
used to fit the trees and the draw of the splits for each feature at the trees’ nodes. See
Glossary for details.

verbose [int, default=0] Controls the verbosity when fitting and predicting.

warm_start [bool, default=False] When set to True, reuse the solution of the previous call to
fit and add more estimators to the ensemble, otherwise, just fit a whole new forest. See the
Glossary.

Attributes

estimators_ [list of DecisionTreeClassifier] The collection of fitted sub-estimators.

References

[1], [2]

Examples

>>> from sklearn.ensemble import RandomTreesEmbedding
>>> X = [[0,0], [1,0], [0,1], [-1,0], [0,-1]]
>>> random_trees = RandomTreesEmbedding(
... n_estimators=5, random_state=0, max_depth=1).fit(X)
>>> X_sparse_embedding = random_trees.transform(X)
>>> X_sparse_embedding.toarray()
array([[0., 1., 1., 0., 1., 0., 0., 1., 1., 0.],

[0., 1., 1., 0., 1., 0., 0., 1., 1., 0.],
[0., 1., 0., 1., 0., 1., 0., 1., 0., 1.],
[1., 0., 1., 0., 1., 0., 1., 0., 1., 0.],
[0., 1., 1., 0., 1., 0., 0., 1., 1., 0.]])

Methods

apply(X) Apply trees in the forest to X, return leaf indices.
decision_path(X) Return the decision path in the forest.
fit(X[, y, sample_weight]) Fit estimator.

Continued on next page

1886 Chapter 7. API Reference

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

Table 77 – continued from previous page
fit_transform(X[, y, sample_weight]) Fit estimator and transform dataset.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform dataset.

__init__(n_estimators=100, *, max_depth=5, min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0, max_leaf_nodes=None, min_impurity_decrease=0.0,
min_impurity_split=None, sparse_output=True, n_jobs=None, random_state=None,
verbose=0, warm_start=False)

Initialize self. See help(type(self)) for accurate signature.

apply(X)
Apply trees in the forest to X, return leaf indices.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, its dtype will be converted to dtype=np.float32. If a sparse matrix is provided,
it will be converted into a sparse csr_matrix.

Returns

X_leaves [ndarray of shape (n_samples, n_estimators)] For each datapoint x in X and for
each tree in the forest, return the index of the leaf x ends up in.

decision_path(X)
Return the decision path in the forest.

New in version 0.18.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, its dtype will be converted to dtype=np.float32. If a sparse matrix is provided,
it will be converted into a sparse csr_matrix.

Returns

indicator [sparse matrix of shape (n_samples, n_nodes)] Return a node indicator matrix
where non zero elements indicates that the samples goes through the nodes. The matrix is
of CSR format.

n_nodes_ptr [ndarray of shape (n_estimators + 1,)] The columns from indica-
tor[n_nodes_ptr[i]:n_nodes_ptr[i+1]] gives the indicator value for the i-th estimator.

property feature_importances_
The impurity-based feature importances.

The higher, the more important the feature. The importance of a feature is computed as the (normalized)
total reduction of the criterion brought by that feature. It is also known as the Gini importance.

Warning: impurity-based feature importances can be misleading for high cardinality features (many unique
values). See sklearn.inspection.permutation_importance as an alternative.

Returns

feature_importances_ [ndarray of shape (n_features,)] The values of this array sum to 1,
unless all trees are single node trees consisting of only the root node, in which case it will
be an array of zeros.

fit(X, y=None, sample_weight=None)
Fit estimator.

7.11. sklearn.ensemble: Ensemble Methods 1887

scikit-learn user guide, Release 0.23.2

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Use
dtype=np.float32 for maximum efficiency. Sparse matrices are also supported, use
sparse csc_matrix for maximum efficiency.

y [Ignored] Not used, present for API consistency by convention.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights. If None,
then samples are equally weighted. Splits that would create child nodes with net zero
or negative weight are ignored while searching for a split in each node. In the case of
classification, splits are also ignored if they would result in any single class carrying a
negative weight in either child node.

Returns

self [object]

fit_transform(X, y=None, sample_weight=None)
Fit estimator and transform dataset.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Input data used to build
forests. Use dtype=np.float32 for maximum efficiency.

y [Ignored] Not used, present for API consistency by convention.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights. If None,
then samples are equally weighted. Splits that would create child nodes with net zero
or negative weight are ignored while searching for a split in each node. In the case of
classification, splits are also ignored if they would result in any single class carrying a
negative weight in either child node.

Returns

X_transformed [sparse matrix of shape (n_samples, n_out)] Transformed dataset.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

1888 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

transform(X)
Transform dataset.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Input data to be trans-
formed. Use dtype=np.float32 for maximum efficiency. Sparse matrices are also
supported, use sparse csr_matrix for maximum efficiency.

Returns

X_transformed [sparse matrix of shape (n_samples, n_out)] Transformed dataset.

Examples using sklearn.ensemble.RandomTreesEmbedding

• Hashing feature transformation using Totally Random Trees

• Feature transformations with ensembles of trees

• Manifold learning on handwritten digits: Locally Linear Embedding, Isomap. . .

7.11.7 sklearn.ensemble.StackingClassifier

class sklearn.ensemble.StackingClassifier(estimators, final_estimator=None, *,
cv=None, stack_method=’auto’, n_jobs=None,
passthrough=False, verbose=0)

Stack of estimators with a final classifier.

Stacked generalization consists in stacking the output of individual estimator and use a classifier to compute the
final prediction. Stacking allows to use the strength of each individual estimator by using their output as input
of a final estimator.

Note that estimators_ are fitted on the full X while final_estimator_ is trained using cross-validated
predictions of the base estimators using cross_val_predict.

New in version 0.22.

Read more in the User Guide.

Parameters

estimators [list of (str, estimator)] Base estimators which will be stacked together. Each ele-
ment of the list is defined as a tuple of string (i.e. name) and an estimator instance. An
estimator can be set to ‘drop’ using set_params.

final_estimator [estimator, default=None] A classifier which will be used to combine the base
estimators. The default classifier is a LogisticRegression.

cv [int, cross-validation generator or an iterable, default=None] Determines the cross-validation
splitting strategy used in cross_val_predict to train final_estimator. Possible
inputs for cv are:

• None, to use the default 5-fold cross validation,

• integer, to specify the number of folds in a (Stratified) KFold,

• An object to be used as a cross-validation generator,

• An iterable yielding train, test splits.

7.11. sklearn.ensemble: Ensemble Methods 1889

scikit-learn user guide, Release 0.23.2

For integer/None inputs, if the estimator is a classifier and y is either binary or multiclass,
StratifiedKFold is used. In all other cases, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

Note: A larger number of split will provide no benefits if the number of training samples
is large enough. Indeed, the training time will increase. cv is not used for model evaluation
but for prediction.

stack_method [{‘auto’, ‘predict_proba’, ‘decision_function’, ‘predict’}, default=’auto’] Meth-
ods called for each base estimator. It can be:

• if ‘auto’, it will try to invoke, for each estimator, 'predict_proba',
'decision_function' or 'predict' in that order.

• otherwise, one of 'predict_proba', 'decision_function' or 'predict'.
If the method is not implemented by the estimator, it will raise an error.

n_jobs [int, default=None] The number of jobs to run in parallel all estimators fit. None
means 1 unless in a joblib.parallel_backend context. -1 means using all proces-
sors. See Glossary for more details.

passthrough [bool, default=False] When False, only the predictions of estimators will be used
as training data for final_estimator. When True, the final_estimator is trained
on the predictions as well as the original training data.

verbose [int, default=0] Verbosity level.

Attributes

classes_ [ndarray of shape (n_classes,)] Class labels.

estimators_ [list of estimators] The elements of the estimators parameter, having been fit-
ted on the training data. If an estimator has been set to 'drop', it will not appear in
estimators_.

named_estimators_ [Bunch] Attribute to access any fitted sub-estimators by name.

final_estimator_ [estimator] The classifier which predicts given the output of estimators_.

stack_method_ [list of str] The method used by each base estimator.

Notes

When predict_proba is used by each estimator (i.e. most of the time for stack_method='auto' or
specifically for stack_method='predict_proba'), The first column predicted by each estimator will be
dropped in the case of a binary classification problem. Indeed, both feature will be perfectly collinear.

References

[1]

Examples

1890 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

>>> from sklearn.datasets import load_iris
>>> from sklearn.ensemble import RandomForestClassifier
>>> from sklearn.svm import LinearSVC
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.preprocessing import StandardScaler
>>> from sklearn.pipeline import make_pipeline
>>> from sklearn.ensemble import StackingClassifier
>>> X, y = load_iris(return_X_y=True)
>>> estimators = [
... ('rf', RandomForestClassifier(n_estimators=10, random_state=42)),
... ('svr', make_pipeline(StandardScaler(),
... LinearSVC(random_state=42)))
...]
>>> clf = StackingClassifier(
... estimators=estimators, final_estimator=LogisticRegression()
...)
>>> from sklearn.model_selection import train_test_split
>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, stratify=y, random_state=42
...)
>>> clf.fit(X_train, y_train).score(X_test, y_test)
0.9...

Methods

decision_function(X) Predict decision function for samples in X using
final_estimator_.decision_function.

fit(X, y[, sample_weight]) Fit the estimators.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get the parameters of an estimator from the ensem-

ble.
predict(X, **predict_params) Predict target for X.
predict_proba(X) Predict class probabilities for X using

final_estimator_.predict_proba.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of an estimator from the ensem-

ble.
transform(X) Return class labels or probabilities for X for each es-

timator.

__init__(estimators, final_estimator=None, *, cv=None, stack_method=’auto’, n_jobs=None,
passthrough=False, verbose=0)

Initialize self. See help(type(self)) for accurate signature.

decision_function(X)
Predict decision function for samples in X using final_estimator_.decision_function.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training vectors, where
n_samples is the number of samples and n_features is the number of features.

Returns

7.11. sklearn.ensemble: Ensemble Methods 1891

scikit-learn user guide, Release 0.23.2

decisions [ndarray of shape (n_samples,), (n_samples, n_classes), or (n_samples, n_classes
* (n_classes-1) / 2)] The decision function computed the final estimator.

fit(X, y, sample_weight=None)
Fit the estimators.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training vectors, where
n_samples is the number of samples and n_features is the number of features.

y [array-like of shape (n_samples,)] Target values.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights. If None,
then samples are equally weighted. Note that this is supported only if all underlying esti-
mators support sample weights.

Returns

self [object]

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get the parameters of an estimator from the ensemble.

Parameters

deep [bool, default=True] Setting it to True gets the various classifiers and the parameters
of the classifiers as well.

property n_features_in_
Number of features seen during fit.

predict(X, **predict_params)
Predict target for X.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training vectors, where
n_samples is the number of samples and n_features is the number of features.

**predict_params [dict of str -> obj] Parameters to the predict called by the
final_estimator. Note that this may be used to return uncertainties from some es-
timators with return_std or return_cov. Be aware that it will only accounts for
uncertainty in the final estimator.

Returns

y_pred [ndarray of shape (n_samples,) or (n_samples, n_output)] Predicted targets.

1892 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

predict_proba(X)
Predict class probabilities for X using final_estimator_.predict_proba.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training vectors, where
n_samples is the number of samples and n_features is the number of features.

Returns

probabilities [ndarray of shape (n_samples, n_classes) or list of ndarray of shape
(n_output,)] The class probabilities of the input samples.

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of an estimator from the ensemble.

Valid parameter keys can be listed with get_params().

Parameters

**params [keyword arguments] Specific parameters using e.g.
set_params(parameter_name=new_value). In addition, to setting the
parameters of the stacking estimator, the individual estimator of the stacking estimators
can also be set, or can be removed by setting them to ‘drop’.

transform(X)
Return class labels or probabilities for X for each estimator.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training vectors, where
n_samples is the number of samples and n_features is the number of features.

Returns

y_preds [ndarray of shape (n_samples, n_estimators) or (n_samples, n_classes *
n_estimators)] Prediction outputs for each estimator.

Examples using sklearn.ensemble.StackingClassifier

• Release Highlights for scikit-learn 0.22

7.11. sklearn.ensemble: Ensemble Methods 1893

scikit-learn user guide, Release 0.23.2

7.11.8 sklearn.ensemble.StackingRegressor

class sklearn.ensemble.StackingRegressor(estimators, final_estimator=None, *, cv=None,
n_jobs=None, passthrough=False, verbose=0)

Stack of estimators with a final regressor.

Stacked generalization consists in stacking the output of individual estimator and use a regressor to compute the
final prediction. Stacking allows to use the strength of each individual estimator by using their output as input
of a final estimator.

Note that estimators_ are fitted on the full X while final_estimator_ is trained using cross-validated
predictions of the base estimators using cross_val_predict.

New in version 0.22.

Read more in the User Guide.

Parameters

estimators [list of (str, estimator)] Base estimators which will be stacked together. Each ele-
ment of the list is defined as a tuple of string (i.e. name) and an estimator instance. An
estimator can be set to ‘drop’ using set_params.

final_estimator [estimator, default=None] A regressor which will be used to combine the base
estimators. The default regressor is a RidgeCV.

cv [int, cross-validation generator or an iterable, default=None] Determines the cross-validation
splitting strategy used in cross_val_predict to train final_estimator. Possible
inputs for cv are:

• None, to use the default 5-fold cross validation,

• integer, to specify the number of folds in a (Stratified) KFold,

• An object to be used as a cross-validation generator,

• An iterable yielding train, test splits.

For integer/None inputs, if the estimator is a classifier and y is either binary or multiclass,
StratifiedKFold is used. In all other cases, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

Note: A larger number of split will provide no benefits if the number of training samples
is large enough. Indeed, the training time will increase. cv is not used for model evaluation
but for prediction.

n_jobs [int, default=None] The number of jobs to run in parallel for fit of all estimators.
None means 1 unless in a joblib.parallel_backend context. -1 means using all
processors. See Glossary for more details.

passthrough [bool, default=False] When False, only the predictions of estimators will be used
as training data for final_estimator. When True, the final_estimator is trained
on the predictions as well as the original training data.

verbose [int, default=0] Verbosity level.

Attributes

estimators_ [list of estimator] The elements of the estimators parameter, having been fit-
ted on the training data. If an estimator has been set to 'drop', it will not appear in
estimators_.

1894 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

named_estimators_ [Bunch] Attribute to access any fitted sub-estimators by name.

final_estimator_ [estimator] The regressor to stacked the base estimators fitted.

References

[1]

Examples

>>> from sklearn.datasets import load_diabetes
>>> from sklearn.linear_model import RidgeCV
>>> from sklearn.svm import LinearSVR
>>> from sklearn.ensemble import RandomForestRegressor
>>> from sklearn.ensemble import StackingRegressor
>>> X, y = load_diabetes(return_X_y=True)
>>> estimators = [
... ('lr', RidgeCV()),
... ('svr', LinearSVR(random_state=42))
...]
>>> reg = StackingRegressor(
... estimators=estimators,
... final_estimator=RandomForestRegressor(n_estimators=10,
... random_state=42)
...)
>>> from sklearn.model_selection import train_test_split
>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, random_state=42
...)
>>> reg.fit(X_train, y_train).score(X_test, y_test)
0.3...

Methods

fit(X, y[, sample_weight]) Fit the estimators.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get the parameters of an estimator from the ensem-

ble.
predict(X, **predict_params) Predict target for X.
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of an estimator from the ensem-

ble.
transform(X) Return the predictions for X for each estimator.

__init__(estimators, final_estimator=None, *, cv=None, n_jobs=None, passthrough=False, ver-
bose=0)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y, sample_weight=None)
Fit the estimators.

Parameters

7.11. sklearn.ensemble: Ensemble Methods 1895

scikit-learn user guide, Release 0.23.2

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training vectors, where
n_samples is the number of samples and n_features is the number of features.

y [array-like of shape (n_samples,)] Target values.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights. If None,
then samples are equally weighted. Note that this is supported only if all underlying esti-
mators support sample weights.

Returns

self [object]

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get the parameters of an estimator from the ensemble.

Parameters

deep [bool, default=True] Setting it to True gets the various classifiers and the parameters
of the classifiers as well.

property n_features_in_
Number of features seen during fit.

predict(X, **predict_params)
Predict target for X.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training vectors, where
n_samples is the number of samples and n_features is the number of features.

**predict_params [dict of str -> obj] Parameters to the predict called by the
final_estimator. Note that this may be used to return uncertainties from some es-
timators with return_std or return_cov. Be aware that it will only accounts for
uncertainty in the final estimator.

Returns

y_pred [ndarray of shape (n_samples,) or (n_samples, n_output)] Predicted targets.

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

1896 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of an estimator from the ensemble.

Valid parameter keys can be listed with get_params().

Parameters

**params [keyword arguments] Specific parameters using e.g.
set_params(parameter_name=new_value). In addition, to setting the
parameters of the stacking estimator, the individual estimator of the stacking estimators
can also be set, or can be removed by setting them to ‘drop’.

transform(X)
Return the predictions for X for each estimator.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training vectors, where
n_samples is the number of samples and n_features is the number of features.

Returns

y_preds [ndarray of shape (n_samples, n_estimators)] Prediction outputs for each estimator.

Examples using sklearn.ensemble.StackingRegressor

• Combine predictors using stacking

7.11.9 sklearn.ensemble.VotingClassifier

class sklearn.ensemble.VotingClassifier(estimators, *, voting=’hard’, weights=None,
n_jobs=None, flatten_transform=True, ver-
bose=False)

Soft Voting/Majority Rule classifier for unfitted estimators.

New in version 0.17.

Read more in the User Guide.

7.11. sklearn.ensemble: Ensemble Methods 1897

scikit-learn user guide, Release 0.23.2

Parameters

estimators [list of (str, estimator) tuples] Invoking the fit method on the
VotingClassifier will fit clones of those original estimators that will be stored
in the class attribute self.estimators_. An estimator can be set to 'drop' using
set_params.

Changed in version 0.21: 'drop' is accepted.

Deprecated since version 0.22: Using None to drop an estimator is deprecated in 0.22 and
support will be dropped in 0.24. Use the string 'drop' instead.

voting [{‘hard’, ‘soft’}, default=’hard’] If ‘hard’, uses predicted class labels for majority rule
voting. Else if ‘soft’, predicts the class label based on the argmax of the sums of the pre-
dicted probabilities, which is recommended for an ensemble of well-calibrated classifiers.

weights [array-like of shape (n_classifiers,), default=None] Sequence of weights (float or
int) to weight the occurrences of predicted class labels (hard voting) or class probabilities
before averaging (soft voting). Uses uniform weights if None.

n_jobs [int, default=None] The number of jobs to run in parallel for fit. None means 1
unless in a joblib.parallel_backend context. -1 means using all processors. See
Glossary for more details.

New in version 0.18.

flatten_transform [bool, default=True] Affects shape of transform output only when vot-
ing=’soft’ If voting=’soft’ and flatten_transform=True, transform method returns matrix
with shape (n_samples, n_classifiers * n_classes). If flatten_transform=False, it returns
(n_classifiers, n_samples, n_classes).

verbose [bool, default=False] If True, the time elapsed while fitting will be printed as it is
completed.

Attributes

estimators_ [list of classifiers] The collection of fitted sub-estimators as defined in
estimators that are not ‘drop’.

named_estimators_ [Bunch] Attribute to access any fitted sub-estimators by name.

New in version 0.20.

classes_ [array-like of shape (n_predictions,)] The classes labels.

See also:

VotingRegressor Prediction voting regressor.

Examples

>>> import numpy as np
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.naive_bayes import GaussianNB
>>> from sklearn.ensemble import RandomForestClassifier, VotingClassifier
>>> clf1 = LogisticRegression(multi_class='multinomial', random_state=1)
>>> clf2 = RandomForestClassifier(n_estimators=50, random_state=1)
>>> clf3 = GaussianNB()
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> y = np.array([1, 1, 1, 2, 2, 2])

(continues on next page)

1898 Chapter 7. API Reference

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

(continued from previous page)

>>> eclf1 = VotingClassifier(estimators=[
... ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard')
>>> eclf1 = eclf1.fit(X, y)
>>> print(eclf1.predict(X))
[1 1 1 2 2 2]
>>> np.array_equal(eclf1.named_estimators_.lr.predict(X),
... eclf1.named_estimators_['lr'].predict(X))
True
>>> eclf2 = VotingClassifier(estimators=[
... ('lr', clf1), ('rf', clf2), ('gnb', clf3)],
... voting='soft')
>>> eclf2 = eclf2.fit(X, y)
>>> print(eclf2.predict(X))
[1 1 1 2 2 2]
>>> eclf3 = VotingClassifier(estimators=[
... ('lr', clf1), ('rf', clf2), ('gnb', clf3)],
... voting='soft', weights=[2,1,1],
... flatten_transform=True)
>>> eclf3 = eclf3.fit(X, y)
>>> print(eclf3.predict(X))
[1 1 1 2 2 2]
>>> print(eclf3.transform(X).shape)
(6, 6)

Methods

fit(X, y[, sample_weight]) Fit the estimators.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get the parameters of an estimator from the ensem-

ble.
predict(X) Predict class labels for X.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of an estimator from the ensem-

ble.
transform(X) Return class labels or probabilities for X for each es-

timator.

__init__(estimators, *, voting=’hard’, weights=None, n_jobs=None, flatten_transform=True, ver-
bose=False)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y, sample_weight=None)
Fit the estimators.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training vectors, where
n_samples is the number of samples and n_features is the number of features.

y [array-like of shape (n_samples,)] Target values.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights. If None,
then samples are equally weighted. Note that this is supported only if all underlying esti-
mators support sample weights.

7.11. sklearn.ensemble: Ensemble Methods 1899

scikit-learn user guide, Release 0.23.2

New in version 0.18.

Returns

self [object]

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get the parameters of an estimator from the ensemble.

Parameters

deep [bool, default=True] Setting it to True gets the various classifiers and the parameters
of the classifiers as well.

predict(X)
Predict class labels for X.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples.

Returns

maj [array-like of shape (n_samples,)] Predicted class labels.

property predict_proba
Compute probabilities of possible outcomes for samples in X.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples.

Returns

avg [array-like of shape (n_samples, n_classes)] Weighted average probability for each class
per sample.

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

1900 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

score [float] Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of an estimator from the ensemble.

Valid parameter keys can be listed with get_params().

Parameters

**params [keyword arguments] Specific parameters using e.g.
set_params(parameter_name=new_value). In addition, to setting the
parameters of the stacking estimator, the individual estimator of the stacking estimators
can also be set, or can be removed by setting them to ‘drop’.

transform(X)
Return class labels or probabilities for X for each estimator.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training vectors, where
n_samples is the number of samples and n_features is the number of features.

Returns

probabilities_or_labels

If voting='soft' and flatten_transform=True: returns ndarray of shape
(n_classifiers, n_samples * n_classes), being class probabilities calculated by each clas-
sifier.

If voting='soft' and `flatten_transform=False: ndarray of shape
(n_classifiers, n_samples, n_classes)

If voting='hard': ndarray of shape (n_samples, n_classifiers), being class labels pre-
dicted by each classifier.

Examples using sklearn.ensemble.VotingClassifier

• Plot the decision boundaries of a VotingClassifier

• Plot class probabilities calculated by the VotingClassifier

7.11.10 sklearn.ensemble.VotingRegressor

class sklearn.ensemble.VotingRegressor(estimators, *, weights=None, n_jobs=None, ver-
bose=False)

Prediction voting regressor for unfitted estimators.

New in version 0.21.

A voting regressor is an ensemble meta-estimator that fits several base regressors, each on the whole dataset.
Then it averages the individual predictions to form a final prediction.

Read more in the User Guide.

Parameters

estimators [list of (str, estimator) tuples] Invoking the fit method on the
VotingRegressor will fit clones of those original estimators that will be stored
in the class attribute self.estimators_. An estimator can be set to 'drop' using
set_params.

7.11. sklearn.ensemble: Ensemble Methods 1901

scikit-learn user guide, Release 0.23.2

Changed in version 0.21: 'drop' is accepted.

Deprecated since version 0.22: Using None to drop an estimator is deprecated in 0.22 and
support will be dropped in 0.24. Use the string 'drop' instead.

weights [array-like of shape (n_regressors,), default=None] Sequence of weights (float or
int) to weight the occurrences of predicted values before averaging. Uses uniform weights
if None.

n_jobs [int, default=None] The number of jobs to run in parallel for fit. None means 1
unless in a joblib.parallel_backend context. -1 means using all processors. See
Glossary for more details.

verbose [bool, default=False] If True, the time elapsed while fitting will be printed as it is
completed.

Attributes

estimators_ [list of regressors] The collection of fitted sub-estimators as defined in
estimators that are not ‘drop’.

named_estimators_ [Bunch] Attribute to access any fitted sub-estimators by name.

New in version 0.20.

See also:

VotingClassifier Soft Voting/Majority Rule classifier.

Examples

>>> import numpy as np
>>> from sklearn.linear_model import LinearRegression
>>> from sklearn.ensemble import RandomForestRegressor
>>> from sklearn.ensemble import VotingRegressor
>>> r1 = LinearRegression()
>>> r2 = RandomForestRegressor(n_estimators=10, random_state=1)
>>> X = np.array([[1, 1], [2, 4], [3, 9], [4, 16], [5, 25], [6, 36]])
>>> y = np.array([2, 6, 12, 20, 30, 42])
>>> er = VotingRegressor([('lr', r1), ('rf', r2)])
>>> print(er.fit(X, y).predict(X))
[3.3 5.7 11.8 19.7 28. 40.3]

Methods

fit(X, y[, sample_weight]) Fit the estimators.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get the parameters of an estimator from the ensem-

ble.
predict(X) Predict regression target for X.
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of an estimator from the ensem-

ble.
transform(X) Return predictions for X for each estimator.

1902 Chapter 7. API Reference

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

__init__(estimators, *, weights=None, n_jobs=None, verbose=False)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y, sample_weight=None)
Fit the estimators.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training vectors, where
n_samples is the number of samples and n_features is the number of features.

y [array-like of shape (n_samples,)] Target values.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights. If None,
then samples are equally weighted. Note that this is supported only if all underlying esti-
mators support sample weights.

Returns

self [object] Fitted estimator.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get the parameters of an estimator from the ensemble.

Parameters

deep [bool, default=True] Setting it to True gets the various classifiers and the parameters
of the classifiers as well.

predict(X)
Predict regression target for X.

The predicted regression target of an input sample is computed as the mean predicted regression targets of
the estimators in the ensemble.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples.

Returns

y [ndarray of shape (n_samples,)] The predicted values.

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

7.11. sklearn.ensemble: Ensemble Methods 1903

scikit-learn user guide, Release 0.23.2

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of an estimator from the ensemble.

Valid parameter keys can be listed with get_params().

Parameters

**params [keyword arguments] Specific parameters using e.g.
set_params(parameter_name=new_value). In addition, to setting the
parameters of the stacking estimator, the individual estimator of the stacking estimators
can also be set, or can be removed by setting them to ‘drop’.

transform(X)
Return predictions for X for each estimator.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples.

Returns

predictions: ndarray of shape (n_samples, n_classifiers) Values predicted by each re-
gressor.

Examples using sklearn.ensemble.VotingRegressor

• Plot individual and voting regression predictions

1904 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

7.11.11 sklearn.ensemble.HistGradientBoostingRegressor

class sklearn.ensemble.HistGradientBoostingRegressor(loss=’least_squares’, *, learn-
ing_rate=0.1, max_iter=100,
max_leaf_nodes=31,
max_depth=None,
min_samples_leaf=20,
l2_regularization=0.0,
max_bins=255, mono-
tonic_cst=None,
warm_start=False,
early_stopping=’auto’,
scoring=’loss’, vali-
dation_fraction=0.1,
n_iter_no_change=10,
tol=1e-07, verbose=0, ran-
dom_state=None)

Histogram-based Gradient Boosting Regression Tree.

This estimator is much faster than GradientBoostingRegressor for big datasets (n_samples >= 10 000).

This estimator has native support for missing values (NaNs). During training, the tree grower learns at each
split point whether samples with missing values should go to the left or right child, based on the potential gain.
When predicting, samples with missing values are assigned to the left or right child consequently. If no missing
values were encountered for a given feature during training, then samples with missing values are mapped to
whichever child has the most samples.

This implementation is inspired by LightGBM.

Note: This estimator is still experimental for now: the predictions and the API might change without any
deprecation cycle. To use it, you need to explicitly import enable_hist_gradient_boosting:

>>> # explicitly require this experimental feature
>>> from sklearn.experimental import enable_hist_gradient_boosting # noqa
>>> # now you can import normally from ensemble
>>> from sklearn.ensemble import HistGradientBoostingClassifier

Read more in the User Guide.

New in version 0.21.

Parameters

loss [{‘least_squares’, ‘least_absolute_deviation’, ‘poisson’}, optional (de-
fault=’least_squares’)] The loss function to use in the boosting process. Note that
the “least squares” and “poisson” losses actually implement “half least squares loss”
and “half poisson deviance” to simplify the computation of the gradient. Furthermore,
“poisson” loss internally uses a log-link and requires y >= 0

learning_rate [float, optional (default=0.1)] The learning rate, also known as shrinkage. This
is used as a multiplicative factor for the leaves values. Use 1 for no shrinkage.

max_iter [int, optional (default=100)] The maximum number of iterations of the boosting pro-
cess, i.e. the maximum number of trees.

max_leaf_nodes [int or None, optional (default=31)] The maximum number of leaves for each
tree. Must be strictly greater than 1. If None, there is no maximum limit.

7.11. sklearn.ensemble: Ensemble Methods 1905

https://github.com/Microsoft/LightGBM

scikit-learn user guide, Release 0.23.2

max_depth [int or None, optional (default=None)] The maximum depth of each tree. The
depth of a tree is the number of edges to go from the root to the deepest leaf. Depth isn’t
constrained by default.

min_samples_leaf [int, optional (default=20)] The minimum number of samples per leaf. For
small datasets with less than a few hundred samples, it is recommended to lower this value
since only very shallow trees would be built.

l2_regularization [float, optional (default=0)] The L2 regularization parameter. Use 0 for no
regularization (default).

max_bins [int, optional (default=255)] The maximum number of bins to use for non-missing
values. Before training, each feature of the input array X is binned into integer-valued bins,
which allows for a much faster training stage. Features with a small number of unique
values may use less than max_bins bins. In addition to the max_bins bins, one more
bin is always reserved for missing values. Must be no larger than 255.

monotonic_cst [array-like of int of shape (n_features), default=None] Indicates the monotonic
constraint to enforce on each feature. -1, 1 and 0 respectively correspond to a positive
constraint, negative constraint and no constraint. Read more in the User Guide.

warm_start [bool, optional (default=False)] When set to True, reuse the solution of the previ-
ous call to fit and add more estimators to the ensemble. For results to be valid, the estimator
should be re-trained on the same data only. See the Glossary.

early_stopping [‘auto’ or bool (default=’auto’)] If ‘auto’, early stopping is enabled if the sam-
ple size is larger than 10000. If True, early stopping is enabled, otherwise early stopping is
disabled.

scoring [str or callable or None, optional (default=’loss’)] Scoring parameter to use for early
stopping. It can be a single string (see The scoring parameter: defining model evaluation
rules) or a callable (see Defining your scoring strategy from metric functions). If None, the
estimator’s default scorer is used. If scoring='loss', early stopping is checked w.r.t
the loss value. Only used if early stopping is performed.

validation_fraction [int or float or None, optional (default=0.1)] Proportion (or absolute size)
of training data to set aside as validation data for early stopping. If None, early stopping is
done on the training data. Only used if early stopping is performed.

n_iter_no_change [int, optional (default=10)] Used to determine when to “early stop”. The
fitting process is stopped when none of the last n_iter_no_change scores are better
than the n_iter_no_change - 1 -th-to-last one, up to some tolerance. Only used if
early stopping is performed.

tol [float or None, optional (default=1e-7)] The absolute tolerance to use when comparing
scores during early stopping. The higher the tolerance, the more likely we are to early
stop: higher tolerance means that it will be harder for subsequent iterations to be considered
an improvement upon the reference score.

verbose: int, optional (default=0) The verbosity level. If not zero, print some information
about the fitting process.

random_state [int, np.random.RandomStateInstance or None, optional (default=None)]
Pseudo-random number generator to control the subsampling in the binning process, and
the train/validation data split if early stopping is enabled. Pass an int for reproducible output
across multiple function calls. See Glossary.

Attributes

n_iter_ [int] The number of iterations as selected by early stopping, depending on the
early_stopping parameter. Otherwise it corresponds to max_iter.

1906 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

n_trees_per_iteration_ [int] The number of tree that are built at each iteration. For regressors,
this is always 1.

train_score_ [ndarray, shape (n_iter_+1,)] The scores at each iteration on the training data.
The first entry is the score of the ensemble before the first iteration. Scores are computed
according to the scoring parameter. If scoring is not ‘loss’, scores are computed on a
subset of at most 10 000 samples. Empty if no early stopping.

validation_score_ [ndarray, shape (n_iter_+1,)] The scores at each iteration on the held-out
validation data. The first entry is the score of the ensemble before the first iteration. Scores
are computed according to the scoring parameter. Empty if no early stopping or if
validation_fraction is None.

Examples

>>> # To use this experimental feature, we need to explicitly ask for it:
>>> from sklearn.experimental import enable_hist_gradient_boosting # noqa
>>> from sklearn.ensemble import HistGradientBoostingRegressor
>>> from sklearn.datasets import load_diabetes
>>> X, y = load_diabetes(return_X_y=True)
>>> est = HistGradientBoostingRegressor().fit(X, y)
>>> est.score(X, y)
0.92...

Methods

fit(X, y[, sample_weight]) Fit the gradient boosting model.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict values for X.
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.

__init__(loss=’least_squares’, *, learning_rate=0.1, max_iter=100, max_leaf_nodes=31,
max_depth=None, min_samples_leaf=20, l2_regularization=0.0, max_bins=255, mono-
tonic_cst=None, warm_start=False, early_stopping=’auto’, scoring=’loss’, valida-
tion_fraction=0.1, n_iter_no_change=10, tol=1e-07, verbose=0, random_state=None)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y, sample_weight=None)
Fit the gradient boosting model.

Parameters

X [array-like of shape (n_samples, n_features)] The input samples.

y [array-like of shape (n_samples,)] Target values.

sample_weight [array-like of shape (n_samples,) default=None] Weights of training data.

Returns

self [object]

get_params(deep=True)
Get parameters for this estimator.

7.11. sklearn.ensemble: Ensemble Methods 1907

scikit-learn user guide, Release 0.23.2

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict values for X.

Parameters

X [array-like, shape (n_samples, n_features)] The input samples.

Returns

y [ndarray, shape (n_samples,)] The predicted values.

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

1908 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Examples using sklearn.ensemble.HistGradientBoostingRegressor

• Release Highlights for scikit-learn 0.23

• Monotonic Constraints

• Gradient Boosting regression

• Combine predictors using stacking

• Poisson regression and non-normal loss

• Partial Dependence Plots

7.11.12 sklearn.ensemble.HistGradientBoostingClassifier

class sklearn.ensemble.HistGradientBoostingClassifier(loss=’auto’, *, learn-
ing_rate=0.1, max_iter=100,
max_leaf_nodes=31,
max_depth=None,
min_samples_leaf=20,
l2_regularization=0.0,
max_bins=255, mono-
tonic_cst=None,
warm_start=False,
early_stopping=’auto’,
scoring=’loss’, vali-
dation_fraction=0.1,
n_iter_no_change=10,
tol=1e-07, verbose=0, ran-
dom_state=None)

Histogram-based Gradient Boosting Classification Tree.

This estimator is much faster than GradientBoostingClassifier for big datasets (n_samples >= 10
000).

This estimator has native support for missing values (NaNs). During training, the tree grower learns at each
split point whether samples with missing values should go to the left or right child, based on the potential gain.
When predicting, samples with missing values are assigned to the left or right child consequently. If no missing
values were encountered for a given feature during training, then samples with missing values are mapped to
whichever child has the most samples.

This implementation is inspired by LightGBM.

Note: This estimator is still experimental for now: the predictions and the API might change without any
deprecation cycle. To use it, you need to explicitly import enable_hist_gradient_boosting:

>>> # explicitly require this experimental feature
>>> from sklearn.experimental import enable_hist_gradient_boosting # noqa
>>> # now you can import normally from ensemble
>>> from sklearn.ensemble import HistGradientBoostingClassifier

Read more in the User Guide.

New in version 0.21.

Parameters

7.11. sklearn.ensemble: Ensemble Methods 1909

https://github.com/Microsoft/LightGBM

scikit-learn user guide, Release 0.23.2

loss [{‘auto’, ‘binary_crossentropy’, ‘categorical_crossentropy’}, optional (default=’auto’)]
The loss function to use in the boosting process. ‘binary_crossentropy’ (also known as
logistic loss) is used for binary classification and generalizes to ‘categorical_crossentropy’
for multiclass classification. ‘auto’ will automatically choose either loss depending on the
nature of the problem.

learning_rate [float, optional (default=0.1)] The learning rate, also known as shrinkage. This
is used as a multiplicative factor for the leaves values. Use 1 for no shrinkage.

max_iter [int, optional (default=100)] The maximum number of iterations of the boosting pro-
cess, i.e. the maximum number of trees for binary classification. For multiclass classifica-
tion, n_classes trees per iteration are built.

max_leaf_nodes [int or None, optional (default=31)] The maximum number of leaves for each
tree. Must be strictly greater than 1. If None, there is no maximum limit.

max_depth [int or None, optional (default=None)] The maximum depth of each tree. The
depth of a tree is the number of edges to go from the root to the deepest leaf. Depth isn’t
constrained by default.

min_samples_leaf [int, optional (default=20)] The minimum number of samples per leaf. For
small datasets with less than a few hundred samples, it is recommended to lower this value
since only very shallow trees would be built.

l2_regularization [float, optional (default=0)] The L2 regularization parameter. Use 0 for no
regularization.

max_bins [int, optional (default=255)] The maximum number of bins to use for non-missing
values. Before training, each feature of the input array X is binned into integer-valued bins,
which allows for a much faster training stage. Features with a small number of unique
values may use less than max_bins bins. In addition to the max_bins bins, one more
bin is always reserved for missing values. Must be no larger than 255.

monotonic_cst [array-like of int of shape (n_features), default=None] Indicates the monotonic
constraint to enforce on each feature. -1, 1 and 0 respectively correspond to a positive
constraint, negative constraint and no constraint. Read more in the User Guide.

warm_start [bool, optional (default=False)] When set to True, reuse the solution of the previ-
ous call to fit and add more estimators to the ensemble. For results to be valid, the estimator
should be re-trained on the same data only. See the Glossary.

early_stopping [‘auto’ or bool (default=’auto’)] If ‘auto’, early stopping is enabled if the sam-
ple size is larger than 10000. If True, early stopping is enabled, otherwise early stopping is
disabled.

scoring [str or callable or None, optional (default=’loss’)] Scoring parameter to use for early
stopping. It can be a single string (see The scoring parameter: defining model evaluation
rules) or a callable (see Defining your scoring strategy from metric functions). If None, the
estimator’s default scorer is used. If scoring='loss', early stopping is checked w.r.t
the loss value. Only used if early stopping is performed.

validation_fraction [int or float or None, optional (default=0.1)] Proportion (or absolute size)
of training data to set aside as validation data for early stopping. If None, early stopping is
done on the training data. Only used if early stopping is performed.

n_iter_no_change [int, optional (default=10)] Used to determine when to “early stop”. The
fitting process is stopped when none of the last n_iter_no_change scores are better
than the n_iter_no_change - 1 -th-to-last one, up to some tolerance. Only used if
early stopping is performed.

1910 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

tol [float or None, optional (default=1e-7)] The absolute tolerance to use when comparing
scores. The higher the tolerance, the more likely we are to early stop: higher tolerance
means that it will be harder for subsequent iterations to be considered an improvement upon
the reference score.

verbose: int, optional (default=0) The verbosity level. If not zero, print some information
about the fitting process.

random_state [int, np.random.RandomStateInstance or None, optional (default=None)]
Pseudo-random number generator to control the subsampling in the binning process, and
the train/validation data split if early stopping is enabled. Pass an int for reproducible output
across multiple function calls. See Glossary.

Attributes

classes_ [array, shape = (n_classes,)] Class labels.

n_iter_ [int] The number of iterations as selected by early stopping, depending on the
early_stopping parameter. Otherwise it corresponds to max_iter.

n_trees_per_iteration_ [int] The number of tree that are built at each iteration. This is equal to
1 for binary classification, and to n_classes for multiclass classification.

train_score_ [ndarray, shape (n_iter_+1,)] The scores at each iteration on the training data.
The first entry is the score of the ensemble before the first iteration. Scores are computed
according to the scoring parameter. If scoring is not ‘loss’, scores are computed on a
subset of at most 10 000 samples. Empty if no early stopping.

validation_score_ [ndarray, shape (n_iter_+1,)] The scores at each iteration on the held-out
validation data. The first entry is the score of the ensemble before the first iteration. Scores
are computed according to the scoring parameter. Empty if no early stopping or if
validation_fraction is None.

Examples

>>> # To use this experimental feature, we need to explicitly ask for it:
>>> from sklearn.experimental import enable_hist_gradient_boosting # noqa
>>> from sklearn.ensemble import HistGradientBoostingClassifier
>>> from sklearn.datasets import load_iris
>>> X, y = load_iris(return_X_y=True)
>>> clf = HistGradientBoostingClassifier().fit(X, y)
>>> clf.score(X, y)
1.0

Methods

decision_function(X) Compute the decision function of X.
fit(X, y[, sample_weight]) Fit the gradient boosting model.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict classes for X.
predict_proba(X) Predict class probabilities for X.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

7.11. sklearn.ensemble: Ensemble Methods 1911

scikit-learn user guide, Release 0.23.2

__init__(loss=’auto’, *, learning_rate=0.1, max_iter=100, max_leaf_nodes=31, max_depth=None,
min_samples_leaf=20, l2_regularization=0.0, max_bins=255, monotonic_cst=None,
warm_start=False, early_stopping=’auto’, scoring=’loss’, validation_fraction=0.1,
n_iter_no_change=10, tol=1e-07, verbose=0, random_state=None)

Initialize self. See help(type(self)) for accurate signature.

decision_function(X)
Compute the decision function of X.

Parameters

X [array-like, shape (n_samples, n_features)] The input samples.

Returns

decision [ndarray, shape (n_samples,) or (n_samples, n_trees_per_iteration)] The raw pre-
dicted values (i.e. the sum of the trees leaves) for each sample. n_trees_per_iteration is
equal to the number of classes in multiclass classification.

fit(X, y, sample_weight=None)
Fit the gradient boosting model.

Parameters

X [array-like of shape (n_samples, n_features)] The input samples.

y [array-like of shape (n_samples,)] Target values.

sample_weight [array-like of shape (n_samples,) default=None] Weights of training data.

Returns

self [object]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict classes for X.

Parameters

X [array-like, shape (n_samples, n_features)] The input samples.

Returns

y [ndarray, shape (n_samples,)] The predicted classes.

predict_proba(X)
Predict class probabilities for X.

Parameters

X [array-like, shape (n_samples, n_features)] The input samples.

Returns

p [ndarray, shape (n_samples, n_classes)] The class probabilities of the input samples.

1912 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.ensemble.HistGradientBoostingClassifier

• Release Highlights for scikit-learn 0.23

• Release Highlights for scikit-learn 0.22

7.12 sklearn.exceptions: Exceptions and warnings

The sklearn.exceptions module includes all custom warnings and error classes used across scikit-learn.

exceptions.ChangedBehaviorWarning Warning class used to notify the user of any change in
the behavior.

exceptions.ConvergenceWarning Custom warning to capture convergence problems
exceptions.DataConversionWarning Warning used to notify implicit data conversions hap-

pening in the code.
exceptions.DataDimensionalityWarning Custom warning to notify potential issues with data di-

mensionality.
exceptions.EfficiencyWarning Warning used to notify the user of inefficient computa-

tion.
exceptions.FitFailedWarning Warning class used if there is an error while fitting the

estimator.
exceptions.NotFittedError Exception class to raise if estimator is used before fit-

ting.
Continued on next page

7.12. sklearn.exceptions: Exceptions and warnings 1913

scikit-learn user guide, Release 0.23.2

Table 85 – continued from previous page
exceptions.NonBLASDotWarning Warning used when the dot operation does not use

BLAS.
exceptions.UndefinedMetricWarning Warning used when the metric is invalid

7.12.1 sklearn.exceptions.ChangedBehaviorWarning

class sklearn.exceptions.ChangedBehaviorWarning
Warning class used to notify the user of any change in the behavior.

Changed in version 0.18: Moved from sklearn.base.

Attributes

args

Methods

with_traceback Exception.with_traceback(tb) – set
self.__traceback__ to tb and return self.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

7.12.2 sklearn.exceptions.ConvergenceWarning

class sklearn.exceptions.ConvergenceWarning
Custom warning to capture convergence problems

Changed in version 0.18: Moved from sklearn.utils.

Attributes

args

Methods

with_traceback Exception.with_traceback(tb) – set
self.__traceback__ to tb and return self.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

Examples using sklearn.exceptions.ConvergenceWarning

• Multiclass sparse logistic regression on 20newgroups

• Early stopping of Stochastic Gradient Descent

• Visualization of MLP weights on MNIST

• Compare Stochastic learning strategies for MLPClassifier

1914 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

• Feature discretization

7.12.3 sklearn.exceptions.DataConversionWarning

class sklearn.exceptions.DataConversionWarning
Warning used to notify implicit data conversions happening in the code.

This warning occurs when some input data needs to be converted or interpreted in a way that may not match the
user’s expectations.

For example, this warning may occur when the user

• passes an integer array to a function which expects float input and will convert the input

• requests a non-copying operation, but a copy is required to meet the implementation’s data-type ex-
pectations;

• passes an input whose shape can be interpreted ambiguously.

Changed in version 0.18: Moved from sklearn.utils.validation.

Attributes

args

Methods

with_traceback Exception.with_traceback(tb) – set
self.__traceback__ to tb and return self.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

7.12.4 sklearn.exceptions.DataDimensionalityWarning

class sklearn.exceptions.DataDimensionalityWarning
Custom warning to notify potential issues with data dimensionality.

For example, in random projection, this warning is raised when the number of components, which quantifies
the dimensionality of the target projection space, is higher than the number of features, which quantifies the
dimensionality of the original source space, to imply that the dimensionality of the problem will not be reduced.

Changed in version 0.18: Moved from sklearn.utils.

Attributes

args

Methods

with_traceback Exception.with_traceback(tb) – set
self.__traceback__ to tb and return self.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

7.12. sklearn.exceptions: Exceptions and warnings 1915

scikit-learn user guide, Release 0.23.2

7.12.5 sklearn.exceptions.EfficiencyWarning

class sklearn.exceptions.EfficiencyWarning
Warning used to notify the user of inefficient computation.

This warning notifies the user that the efficiency may not be optimal due to some reason which may be included
as a part of the warning message. This may be subclassed into a more specific Warning class.

New in version 0.18.

Attributes

args

Methods

with_traceback Exception.with_traceback(tb) – set
self.__traceback__ to tb and return self.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

7.12.6 sklearn.exceptions.FitFailedWarning

class sklearn.exceptions.FitFailedWarning
Warning class used if there is an error while fitting the estimator.

This Warning is used in meta estimators GridSearchCV and RandomizedSearchCV and the cross-validation
helper function cross_val_score to warn when there is an error while fitting the estimator.

Changed in version 0.18: Moved from sklearn.cross_validation.

Attributes

args

Methods

with_traceback Exception.with_traceback(tb) – set
self.__traceback__ to tb and return self.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

7.12.7 sklearn.exceptions.NotFittedError

class sklearn.exceptions.NotFittedError
Exception class to raise if estimator is used before fitting.

This class inherits from both ValueError and AttributeError to help with exception handling and backward
compatibility.

Attributes

1916 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

args

Examples

>>> from sklearn.svm import LinearSVC
>>> from sklearn.exceptions import NotFittedError
>>> try:
... LinearSVC().predict([[1, 2], [2, 3], [3, 4]])
... except NotFittedError as e:
... print(repr(e))
NotFittedError("This LinearSVC instance is not fitted yet. Call 'fit' with
appropriate arguments before using this estimator."...)

Changed in version 0.18: Moved from sklearn.utils.validation.

Methods

with_traceback Exception.with_traceback(tb) – set
self.__traceback__ to tb and return self.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

7.12.8 sklearn.exceptions.NonBLASDotWarning

class sklearn.exceptions.NonBLASDotWarning
Warning used when the dot operation does not use BLAS.

This warning is used to notify the user that BLAS was not used for dot operation and hence the efficiency may
be affected.

Changed in version 0.18: Moved from sklearn.utils.validation, extends EfficiencyWarning.

Attributes

args

Methods

with_traceback Exception.with_traceback(tb) – set
self.__traceback__ to tb and return self.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

7.12.9 sklearn.exceptions.UndefinedMetricWarning

class sklearn.exceptions.UndefinedMetricWarning
Warning used when the metric is invalid

Changed in version 0.18: Moved from sklearn.base.

7.12. sklearn.exceptions: Exceptions and warnings 1917

scikit-learn user guide, Release 0.23.2

Attributes

args

Methods

with_traceback Exception.with_traceback(tb) – set
self.__traceback__ to tb and return self.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

7.13 sklearn.experimental: Experimental

The sklearn.experimental module provides importable modules that enable the use of experimental features
or estimators.

The features and estimators that are experimental aren’t subject to deprecation cycles. Use them at your own risks!

experimental.enable_hist_gradient_boostingEnables histogram-based gradient boosting estimators.
experimental.enable_iterative_imputer Enables IterativeImputer

7.13.1 sklearn.experimental.enable_hist_gradient_boosting

Enables histogram-based gradient boosting estimators.

The API and results of these estimators might change without any deprecation cycle.

Importing this file dynamically sets the sklearn.ensemble.HistGradientBoostingClassifier and
sklearn.ensemble.HistGradientBoostingRegressor as attributes of the ensemble module:

>>> # explicitly require this experimental feature
>>> from sklearn.experimental import enable_hist_gradient_boosting # noqa
>>> # now you can import normally from ensemble
>>> from sklearn.ensemble import HistGradientBoostingClassifier
>>> from sklearn.ensemble import HistGradientBoostingRegressor

The # noqa comment comment can be removed: it just tells linters like flake8 to ignore the import, which appears
as unused.

7.13.2 sklearn.experimental.enable_iterative_imputer

Enables IterativeImputer

The API and results of this estimator might change without any deprecation cycle.

Importing this file dynamically sets sklearn.impute.IterativeImputer as an attribute of the impute mod-
ule:

>>> # explicitly require this experimental feature
>>> from sklearn.experimental import enable_iterative_imputer # noqa

(continues on next page)

1918 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

(continued from previous page)

>>> # now you can import normally from impute
>>> from sklearn.impute import IterativeImputer

7.14 sklearn.feature_extraction: Feature Extraction

The sklearn.feature_extraction module deals with feature extraction from raw data. It currently includes
methods to extract features from text and images.

User guide: See the Feature extraction section for further details.

feature_extraction.DictVectorizer(*[,
. . .])

Transforms lists of feature-value mappings to vectors.

feature_extraction.FeatureHasher([. . .]) Implements feature hashing, aka the hashing trick.

7.14.1 sklearn.feature_extraction.DictVectorizer

class sklearn.feature_extraction.DictVectorizer(*, dtype=<class ’numpy.float64’>,
separator=’=’, sparse=True,
sort=True)

Transforms lists of feature-value mappings to vectors.

This transformer turns lists of mappings (dict-like objects) of feature names to feature values into Numpy arrays
or scipy.sparse matrices for use with scikit-learn estimators.

When feature values are strings, this transformer will do a binary one-hot (aka one-of-K) coding: one boolean-
valued feature is constructed for each of the possible string values that the feature can take on. For instance, a
feature “f” that can take on the values “ham” and “spam” will become two features in the output, one signifying
“f=ham”, the other “f=spam”.

However, note that this transformer will only do a binary one-hot encoding when feature values are of type
string. If categorical features are represented as numeric values such as int, the DictVectorizer can be followed
by sklearn.preprocessing.OneHotEncoder to complete binary one-hot encoding.

Features that do not occur in a sample (mapping) will have a zero value in the resulting array/matrix.

Read more in the User Guide.

Parameters

dtype [dtype, default=np.float64] The type of feature values. Passed to Numpy ar-
ray/scipy.sparse matrix constructors as the dtype argument.

separator [str, default=”=”] Separator string used when constructing new features for one-hot
coding.

sparse [bool, default=True] Whether transform should produce scipy.sparse matrices.

sort [bool, default=True] Whether feature_names_ and vocabulary_ should be sorted
when fitting.

Attributes

vocabulary_ [dict] A dictionary mapping feature names to feature indices.

feature_names_ [list] A list of length n_features containing the feature names (e.g., “f=ham”
and “f=spam”).

7.14. sklearn.feature_extraction: Feature Extraction 1919

scikit-learn user guide, Release 0.23.2

See also:

FeatureHasher performs vectorization using only a hash function.

sklearn.preprocessing.OrdinalEncoder handles nominal/categorical features encoded as
columns of arbitrary data types.

Examples

>>> from sklearn.feature_extraction import DictVectorizer
>>> v = DictVectorizer(sparse=False)
>>> D = [{'foo': 1, 'bar': 2}, {'foo': 3, 'baz': 1}]
>>> X = v.fit_transform(D)
>>> X
array([[2., 0., 1.],

[0., 1., 3.]])
>>> v.inverse_transform(X) == [{'bar': 2.0, 'foo': 1.0}, {'baz': 1.0, 'foo
→˓': 3.0}]
True
>>> v.transform({'foo': 4, 'unseen_feature': 3})
array([[0., 0., 4.]])

Methods

fit(X[, y]) Learn a list of feature name -> indices mappings.
fit_transform(X[, y]) Learn a list of feature name -> indices mappings and

transform X.
get_feature_names() Returns a list of feature names, ordered by their in-

dices.
get_params([deep]) Get parameters for this estimator.
inverse_transform(X[, dict_type]) Transform array or sparse matrix X back to feature

mappings.
restrict(support[, indices]) Restrict the features to those in support using feature

selection.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform feature->value dicts to array or sparse ma-

trix.

__init__(*, dtype=<class ’numpy.float64’>, separator=’=’, sparse=True, sort=True)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Learn a list of feature name -> indices mappings.

Parameters

X [Mapping or iterable over Mappings] Dict(s) or Mapping(s) from feature names (arbitrary
Python objects) to feature values (strings or convertible to dtype).

y [(ignored)]

Returns

self

1920 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

fit_transform(X, y=None)
Learn a list of feature name -> indices mappings and transform X.

Like fit(X) followed by transform(X), but does not require materializing X in memory.

Parameters

X [Mapping or iterable over Mappings] Dict(s) or Mapping(s) from feature names (arbitrary
Python objects) to feature values (strings or convertible to dtype).

y [(ignored)]

Returns

Xa [{array, sparse matrix}] Feature vectors; always 2-d.

get_feature_names()
Returns a list of feature names, ordered by their indices.

If one-of-K coding is applied to categorical features, this will include the constructed feature names but
not the original ones.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

inverse_transform(X, dict_type=<class ’dict’>)
Transform array or sparse matrix X back to feature mappings.

X must have been produced by this DictVectorizer’s transform or fit_transform method; it may only have
passed through transformers that preserve the number of features and their order.

In the case of one-hot/one-of-K coding, the constructed feature names and values are returned rather than
the original ones.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Sample matrix.

dict_type [type, default=dict] Constructor for feature mappings. Must conform to the col-
lections.Mapping API.

Returns

D [list of dict_type objects of shape (n_samples,)] Feature mappings for the samples in X.

restrict(support, indices=False)
Restrict the features to those in support using feature selection.

This function modifies the estimator in-place.

Parameters

support [array-like] Boolean mask or list of indices (as returned by the get_support member
of feature selectors).

indices [bool, default=False] Whether support is a list of indices.

Returns

7.14. sklearn.feature_extraction: Feature Extraction 1921

scikit-learn user guide, Release 0.23.2

self

Examples

>>> from sklearn.feature_extraction import DictVectorizer
>>> from sklearn.feature_selection import SelectKBest, chi2
>>> v = DictVectorizer()
>>> D = [{'foo': 1, 'bar': 2}, {'foo': 3, 'baz': 1}]
>>> X = v.fit_transform(D)
>>> support = SelectKBest(chi2, k=2).fit(X, [0, 1])
>>> v.get_feature_names()
['bar', 'baz', 'foo']
>>> v.restrict(support.get_support())
DictVectorizer()
>>> v.get_feature_names()
['bar', 'foo']

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Transform feature->value dicts to array or sparse matrix.

Named features not encountered during fit or fit_transform will be silently ignored.

Parameters

X [Mapping or iterable over Mappings of shape (n_samples,)] Dict(s) or Mapping(s) from
feature names (arbitrary Python objects) to feature values (strings or convertible to dtype).

Returns

Xa [{array, sparse matrix}] Feature vectors; always 2-d.

Examples using sklearn.feature_extraction.DictVectorizer

• Column Transformer with Heterogeneous Data Sources

• FeatureHasher and DictVectorizer Comparison

7.14.2 sklearn.feature_extraction.FeatureHasher

class sklearn.feature_extraction.FeatureHasher(n_features=1048576, *, in-
put_type=’dict’, dtype=<class
’numpy.float64’>, alter-
nate_sign=True)

Implements feature hashing, aka the hashing trick.

1922 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

This class turns sequences of symbolic feature names (strings) into scipy.sparse matrices, using a hash function
to compute the matrix column corresponding to a name. The hash function employed is the signed 32-bit version
of Murmurhash3.

Feature names of type byte string are used as-is. Unicode strings are converted to UTF-8 first, but no Unicode
normalization is done. Feature values must be (finite) numbers.

This class is a low-memory alternative to DictVectorizer and CountVectorizer, intended for large-scale (online)
learning and situations where memory is tight, e.g. when running prediction code on embedded devices.

Read more in the User Guide.

New in version 0.13.

Parameters

n_features [int, default=2**20] The number of features (columns) in the output matrices. Small
numbers of features are likely to cause hash collisions, but large numbers will cause larger
coefficient dimensions in linear learners.

input_type [{“dict”, “pair”}, default=”dict”] Either “dict” (the default) to accept dictionaries
over (feature_name, value); “pair” to accept pairs of (feature_name, value); or “string” to
accept single strings. feature_name should be a string, while value should be a number.
In the case of “string”, a value of 1 is implied. The feature_name is hashed to find the
appropriate column for the feature. The value’s sign might be flipped in the output (but see
non_negative, below).

dtype [numpy dtype, default=np.float64] The type of feature values. Passed to scipy.sparse ma-
trix constructors as the dtype argument. Do not set this to bool, np.boolean or any unsigned
integer type.

alternate_sign [bool, default=True] When True, an alternating sign is added to the features as
to approximately conserve the inner product in the hashed space even for small n_features.
This approach is similar to sparse random projection.

.. versionchanged:: 0.19 alternate_sign replaces the now deprecated non_negative
parameter.

See also:

DictVectorizer vectorizes string-valued features using a hash table.

sklearn.preprocessing.OneHotEncoder handles nominal/categorical features.

Examples

>>> from sklearn.feature_extraction import FeatureHasher
>>> h = FeatureHasher(n_features=10)
>>> D = [{'dog': 1, 'cat':2, 'elephant':4},{'dog': 2, 'run': 5}]
>>> f = h.transform(D)
>>> f.toarray()
array([[0., 0., -4., -1., 0., 0., 0., 0., 0., 2.],

[0., 0., 0., -2., -5., 0., 0., 0., 0., 0.]])

Methods

7.14. sklearn.feature_extraction: Feature Extraction 1923

scikit-learn user guide, Release 0.23.2

fit([X, y]) No-op.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(raw_X) Transform a sequence of instances to a scipy.sparse

matrix.

__init__(n_features=1048576, *, input_type=’dict’, dtype=<class ’numpy.float64’>, alter-
nate_sign=True)

Initialize self. See help(type(self)) for accurate signature.

fit(X=None, y=None)
No-op.

This method doesn’t do anything. It exists purely for compatibility with the scikit-learn transformer API.

Parameters

X [ndarray]

Returns

self [FeatureHasher]

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

1924 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

self [object] Estimator instance.

transform(raw_X)
Transform a sequence of instances to a scipy.sparse matrix.

Parameters

raw_X [iterable over iterable over raw features, length = n_samples] Samples. Each sample
must be iterable an (e.g., a list or tuple) containing/generating feature names (and option-
ally values, see the input_type constructor argument) which will be hashed. raw_X need
not support the len function, so it can be the result of a generator; n_samples is determined
on the fly.

Returns

X [sparse matrix of shape (n_samples, n_features)] Feature matrix, for use with estimators
or further transformers.

Examples using sklearn.feature_extraction.FeatureHasher

• FeatureHasher and DictVectorizer Comparison

7.14.3 From images

The sklearn.feature_extraction.image submodule gathers utilities to extract features from images.

feature_extraction.image.
extract_patches_2d(. . .)

Reshape a 2D image into a collection of patches

feature_extraction.image.
grid_to_graph(n_x, n_y)

Graph of the pixel-to-pixel connections

feature_extraction.image.
img_to_graph(img, *)

Graph of the pixel-to-pixel gradient connections

feature_extraction.image.
reconstruct_from_patches_2d(. . .)

Reconstruct the image from all of its patches.

feature_extraction.image.
PatchExtractor(*[, . . .])

Extracts patches from a collection of images

sklearn.feature_extraction.image.extract_patches_2d

sklearn.feature_extraction.image.extract_patches_2d(image, patch_size, *,
max_patches=None, ran-
dom_state=None)

Reshape a 2D image into a collection of patches

The resulting patches are allocated in a dedicated array.

Read more in the User Guide.

Parameters

image [ndarray of shape (image_height, image_width) or (image_height, image_width,
n_channels)] The original image data. For color images, the last dimension specifies the
channel: a RGB image would have n_channels=3.

patch_size [tuple of int (patch_height, patch_width)] The dimensions of one patch.

7.14. sklearn.feature_extraction: Feature Extraction 1925

scikit-learn user guide, Release 0.23.2

max_patches [int or float, default=None] The maximum number of patches to extract. If
max_patches is a float between 0 and 1, it is taken to be a proportion of the total number
of patches.

random_state [int, RandomState instance, default=None] Determines the random number gen-
erator used for random sampling when max_patches is not None. Use an int to make the
randomness deterministic. See Glossary.

Returns

patches [array of shape (n_patches, patch_height, patch_width) or (n_patches, patch_height,
patch_width, n_channels)] The collection of patches extracted from the image, where
n_patches is either max_patches or the total number of patches that can be extracted.

Examples

>>> from sklearn.datasets import load_sample_image
>>> from sklearn.feature_extraction import image
>>> # Use the array data from the first image in this dataset:
>>> one_image = load_sample_image("china.jpg")
>>> print('Image shape: {}'.format(one_image.shape))
Image shape: (427, 640, 3)
>>> patches = image.extract_patches_2d(one_image, (2, 2))
>>> print('Patches shape: {}'.format(patches.shape))
Patches shape: (272214, 2, 2, 3)
>>> # Here are just two of these patches:
>>> print(patches[1])
[[[174 201 231]
[174 201 231]]
[[173 200 230]
[173 200 230]]]

>>> print(patches[800])
[[[187 214 243]
[188 215 244]]
[[187 214 243]
[188 215 244]]]

Examples using sklearn.feature_extraction.image.extract_patches_2d

• Online learning of a dictionary of parts of faces

• Image denoising using dictionary learning

sklearn.feature_extraction.image.grid_to_graph

sklearn.feature_extraction.image.grid_to_graph(n_x, n_y, n_z=1, *,
mask=None, return_as=<class
’scipy.sparse.coo.coo_matrix’>,
dtype=<class ’int’>)

Graph of the pixel-to-pixel connections

Edges exist if 2 voxels are connected.

Parameters

n_x [int] Dimension in x axis

1926 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

n_y [int] Dimension in y axis

n_z [int, default=1] Dimension in z axis

mask [ndarray of shape (n_x, n_y, n_z), dtype=bool, default=None] An optional mask of the
image, to consider only part of the pixels.

return_as [np.ndarray or a sparse matrix class, default=sparse.coo_matrix] The class to use to
build the returned adjacency matrix.

dtype [dtype, default=int] The data of the returned sparse matrix. By default it is int

Notes

For scikit-learn versions 0.14.1 and prior, return_as=np.ndarray was handled by returning a dense np.matrix
instance. Going forward, np.ndarray returns an np.ndarray, as expected.

For compatibility, user code relying on this method should wrap its calls in np.asarray to avoid type issues.

sklearn.feature_extraction.image.img_to_graph

sklearn.feature_extraction.image.img_to_graph(img, *, mask=None, return_as=<class
’scipy.sparse.coo.coo_matrix’>,
dtype=None)

Graph of the pixel-to-pixel gradient connections

Edges are weighted with the gradient values.

Read more in the User Guide.

Parameters

img [ndarray of shape (height, width) or (height, width, channel)] 2D or 3D image.

mask [ndarray of shape (height, width) or (height, width, channel), dtype=bool, default=None]
An optional mask of the image, to consider only part of the pixels.

return_as [np.ndarray or a sparse matrix class, default=sparse.coo_matrix] The class to use to
build the returned adjacency matrix.

dtype [dtype, default=None] The data of the returned sparse matrix. By default it is the dtype
of img

Notes

For scikit-learn versions 0.14.1 and prior, return_as=np.ndarray was handled by returning a dense np.matrix
instance. Going forward, np.ndarray returns an np.ndarray, as expected.

For compatibility, user code relying on this method should wrap its calls in np.asarray to avoid type issues.

sklearn.feature_extraction.image.reconstruct_from_patches_2d

sklearn.feature_extraction.image.reconstruct_from_patches_2d(patches, im-
age_size)

Reconstruct the image from all of its patches.

Patches are assumed to overlap and the image is constructed by filling in the patches from left to right, top to
bottom, averaging the overlapping regions.

7.14. sklearn.feature_extraction: Feature Extraction 1927

scikit-learn user guide, Release 0.23.2

Read more in the User Guide.

Parameters

patches [ndarray of shape (n_patches, patch_height, patch_width) or (n_patches, patch_height,
patch_width, n_channels)] The complete set of patches. If the patches contain colour
information, channels are indexed along the last dimension: RGB patches would have
n_channels=3.

image_size [tuple of int (image_height, image_width) or (image_height, image_width,
n_channels)] The size of the image that will be reconstructed.

Returns

image [ndarray of shape image_size] The reconstructed image.

Examples using sklearn.feature_extraction.image.reconstruct_from_patches_2d

• Image denoising using dictionary learning

sklearn.feature_extraction.image.PatchExtractor

class sklearn.feature_extraction.image.PatchExtractor(*, patch_size=None,
max_patches=None, ran-
dom_state=None)

Extracts patches from a collection of images

Read more in the User Guide.

New in version 0.9.

Parameters

patch_size [tuple of int (patch_height, patch_width)] The dimensions of one patch.

max_patches [int or float, default=None] The maximum number of patches per image to ex-
tract. If max_patches is a float in (0, 1), it is taken to mean a proportion of the total number
of patches.

random_state [int, RandomState instance, default=None] Determines the random number gen-
erator used for random sampling when max_patches is not None. Use an int to make the
randomness deterministic. See Glossary.

Examples

>>> from sklearn.datasets import load_sample_images
>>> from sklearn.feature_extraction import image
>>> # Use the array data from the second image in this dataset:
>>> X = load_sample_images().images[1]
>>> print('Image shape: {}'.format(X.shape))
Image shape: (427, 640, 3)
>>> pe = image.PatchExtractor(patch_size=(2, 2))
>>> pe_fit = pe.fit(X)
>>> pe_trans = pe.transform(X)
>>> print('Patches shape: {}'.format(pe_trans.shape))
Patches shape: (545706, 2, 2)

1928 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Methods

fit(X[, y]) Do nothing and return the estimator unchanged.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Transforms the image samples in X into a matrix of

patch data.

__init__(*, patch_size=None, max_patches=None, random_state=None)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Do nothing and return the estimator unchanged.

This method is just there to implement the usual API and hence work in pipelines.

Parameters

X [array-like of shape (n_samples, n_features)] Training data.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Transforms the image samples in X into a matrix of patch data.

Parameters

X [ndarray of shape (n_samples, image_height, image_width) or (n_samples, image_height,
image_width, n_channels)] Array of images from which to extract patches. For
color images, the last dimension specifies the channel: a RGB image would have
n_channels=3.

Returns

patches [array of shape (n_patches, patch_height, patch_width) or (n_patches,
patch_height, patch_width, n_channels)] The collection of patches extracted from
the images, where n_patches is either n_samples * max_patches or the total
number of patches that can be extracted.

7.14. sklearn.feature_extraction: Feature Extraction 1929

scikit-learn user guide, Release 0.23.2

7.14.4 From text

The sklearn.feature_extraction.text submodule gathers utilities to build feature vectors from text doc-
uments.

feature_extraction.text.
CountVectorizer(*[, . . .])

Convert a collection of text documents to a matrix of
token counts

feature_extraction.text.
HashingVectorizer(*)

Convert a collection of text documents to a matrix of
token occurrences

feature_extraction.text.
TfidfTransformer(*)

Transform a count matrix to a normalized tf or tf-idf
representation

feature_extraction.text.
TfidfVectorizer(*[, . . .])

Convert a collection of raw documents to a matrix of
TF-IDF features.

sklearn.feature_extraction.text.CountVectorizer

class sklearn.feature_extraction.text.CountVectorizer(*, input=’content’,
encoding=’utf-8’, de-
code_error=’strict’,
strip_accents=None, low-
ercase=True, preproces-
sor=None, tokenizer=None,
stop_words=None, to-
ken_pattern=’(?u)\b\w\w+\b’,
ngram_range=(1,
1), analyzer=’word’,
max_df=1.0, min_df=1,
max_features=None,
vocabulary=None, bi-
nary=False, dtype=<class
’numpy.int64’>)

Convert a collection of text documents to a matrix of token counts

This implementation produces a sparse representation of the counts using scipy.sparse.csr_matrix.

If you do not provide an a-priori dictionary and you do not use an analyzer that does some kind of feature
selection then the number of features will be equal to the vocabulary size found by analyzing the data.

Read more in the User Guide.

Parameters

input [string {‘filename’, ‘file’, ‘content’}, default=’content’] If ‘filename’, the sequence
passed as an argument to fit is expected to be a list of filenames that need reading to fetch
the raw content to analyze.

If ‘file’, the sequence items must have a ‘read’ method (file-like object) that is called to fetch
the bytes in memory.

Otherwise the input is expected to be a sequence of items that can be of type string or byte.

encoding [string, default=’utf-8’] If bytes or files are given to analyze, this encoding is used to
decode.

decode_error [{‘strict’, ‘ignore’, ‘replace’}, default=’strict’] Instruction on what to do if a byte
sequence is given to analyze that contains characters not of the given encoding. By

1930 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

default, it is ‘strict’, meaning that a UnicodeDecodeError will be raised. Other values are
‘ignore’ and ‘replace’.

strip_accents [{‘ascii’, ‘unicode’}, default=None] Remove accents and perform other charac-
ter normalization during the preprocessing step. ‘ascii’ is a fast method that only works on
characters that have an direct ASCII mapping. ‘unicode’ is a slightly slower method that
works on any characters. None (default) does nothing.

Both ‘ascii’ and ‘unicode’ use NFKD normalization from unicodedata.normalize.

lowercase [bool, default=True] Convert all characters to lowercase before tokenizing.

preprocessor [callable, default=None] Override the preprocessing (string transformation) stage
while preserving the tokenizing and n-grams generation steps. Only applies if analyzer
is not callable.

tokenizer [callable, default=None] Override the string tokenization step while preserving the
preprocessing and n-grams generation steps. Only applies if analyzer == 'word'.

stop_words [string {‘english’}, list, default=None] If ‘english’, a built-in stop word list for
English is used. There are several known issues with ‘english’ and you should consider an
alternative (see Using stop words).

If a list, that list is assumed to contain stop words, all of which will be removed from the
resulting tokens. Only applies if analyzer == 'word'.

If None, no stop words will be used. max_df can be set to a value in the range [0.7, 1.0)
to automatically detect and filter stop words based on intra corpus document frequency of
terms.

token_pattern [string] Regular expression denoting what constitutes a “token”, only used if
analyzer == 'word'. The default regexp select tokens of 2 or more alphanumeric
characters (punctuation is completely ignored and always treated as a token separator).

ngram_range [tuple (min_n, max_n), default=(1, 1)] The lower and upper boundary of the
range of n-values for different word n-grams or char n-grams to be extracted. All values
of n such such that min_n <= n <= max_n will be used. For example an ngram_range
of (1, 1) means only unigrams, (1, 2) means unigrams and bigrams, and (2, 2)
means only bigrams. Only applies if analyzer is not callable.

analyzer [string, {‘word’, ‘char’, ‘char_wb’} or callable, default=’word’] Whether the feature
should be made of word n-gram or character n-grams. Option ‘char_wb’ creates character
n-grams only from text inside word boundaries; n-grams at the edges of words are padded
with space.

If a callable is passed it is used to extract the sequence of features out of the raw, unprocessed
input.

Changed in version 0.21.

Since v0.21, if input is filename or file, the data is first read from the file and then
passed to the given callable analyzer.

max_df [float in range [0.0, 1.0] or int, default=1.0] When building the vocabulary ignore terms
that have a document frequency strictly higher than the given threshold (corpus-specific stop
words). If float, the parameter represents a proportion of documents, integer absolute counts.
This parameter is ignored if vocabulary is not None.

min_df [float in range [0.0, 1.0] or int, default=1] When building the vocabulary ignore terms
that have a document frequency strictly lower than the given threshold. This value is also
called cut-off in the literature. If float, the parameter represents a proportion of documents,
integer absolute counts. This parameter is ignored if vocabulary is not None.

7.14. sklearn.feature_extraction: Feature Extraction 1931

https://docs.python.org/3/library/unicodedata.html#unicodedata.normalize

scikit-learn user guide, Release 0.23.2

max_features [int, default=None] If not None, build a vocabulary that only consider the top
max_features ordered by term frequency across the corpus.

This parameter is ignored if vocabulary is not None.

vocabulary [Mapping or iterable, default=None] Either a Mapping (e.g., a dict) where keys are
terms and values are indices in the feature matrix, or an iterable over terms. If not given, a
vocabulary is determined from the input documents. Indices in the mapping should not be
repeated and should not have any gap between 0 and the largest index.

binary [bool, default=False] If True, all non zero counts are set to 1. This is useful for discrete
probabilistic models that model binary events rather than integer counts.

dtype [type, default=np.int64] Type of the matrix returned by fit_transform() or transform().

Attributes

vocabulary_ [dict] A mapping of terms to feature indices.

fixed_vocabulary_: boolean True if a fixed vocabulary of term to indices mapping is provided
by the user

stop_words_ [set] Terms that were ignored because they either:

• occurred in too many documents (max_df)

• occurred in too few documents (min_df)

• were cut off by feature selection (max_features).

This is only available if no vocabulary was given.

See also:

HashingVectorizer, TfidfVectorizer

Notes

The stop_words_ attribute can get large and increase the model size when pickling. This attribute is provided
only for introspection and can be safely removed using delattr or set to None before pickling.

Examples

>>> from sklearn.feature_extraction.text import CountVectorizer
>>> corpus = [
... 'This is the first document.',
... 'This document is the second document.',
... 'And this is the third one.',
... 'Is this the first document?',
...]
>>> vectorizer = CountVectorizer()
>>> X = vectorizer.fit_transform(corpus)
>>> print(vectorizer.get_feature_names())
['and', 'document', 'first', 'is', 'one', 'second', 'the', 'third', 'this']
>>> print(X.toarray())
[[0 1 1 1 0 0 1 0 1]
[0 2 0 1 0 1 1 0 1]
[1 0 0 1 1 0 1 1 1]
[0 1 1 1 0 0 1 0 1]]

(continues on next page)

1932 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

(continued from previous page)

>>> vectorizer2 = CountVectorizer(analyzer='word', ngram_range=(2, 2))
>>> X2 = vectorizer2.fit_transform(corpus)
>>> print(vectorizer2.get_feature_names())
['and this', 'document is', 'first document', 'is the', 'is this',
'second document', 'the first', 'the second', 'the third', 'third one',
'this document', 'this is', 'this the']
>>> print(X2.toarray())
[[0 0 1 1 0 0 1 0 0 0 0 1 0]
[0 1 0 1 0 1 0 1 0 0 1 0 0]
[1 0 0 1 0 0 0 0 1 1 0 1 0]
[0 0 1 0 1 0 1 0 0 0 0 0 1]]

Methods

build_analyzer() Return a callable that handles preprocessing, tok-
enization and n-grams generation.

build_preprocessor() Return a function to preprocess the text before tok-
enization.

build_tokenizer() Return a function that splits a string into a sequence
of tokens.

decode(doc) Decode the input into a string of unicode symbols.
fit(raw_documents[, y]) Learn a vocabulary dictionary of all tokens in the raw

documents.
fit_transform(raw_documents[, y]) Learn the vocabulary dictionary and return

document-term matrix.
get_feature_names() Array mapping from feature integer indices to fea-

ture name.
get_params([deep]) Get parameters for this estimator.
get_stop_words() Build or fetch the effective stop words list.
inverse_transform(X) Return terms per document with nonzero entries in

X.
set_params(**params) Set the parameters of this estimator.
transform(raw_documents) Transform documents to document-term matrix.

__init__(*, input=’content’, encoding=’utf-8’, decode_error=’strict’, strip_accents=None,
lowercase=True, preprocessor=None, tokenizer=None, stop_words=None, to-
ken_pattern=’(?u)\\b\\w\\w+\\b’, ngram_range=(1, 1), analyzer=’word’, max_df=1.0,
min_df=1, max_features=None, vocabulary=None, binary=False, dtype=<class
’numpy.int64’>)

Initialize self. See help(type(self)) for accurate signature.

build_analyzer()
Return a callable that handles preprocessing, tokenization and n-grams generation.

Returns

analyzer: callable A function to handle preprocessing, tokenization and n-grams genera-
tion.

build_preprocessor()
Return a function to preprocess the text before tokenization.

Returns

7.14. sklearn.feature_extraction: Feature Extraction 1933

scikit-learn user guide, Release 0.23.2

preprocessor: callable A function to preprocess the text before tokenization.

build_tokenizer()
Return a function that splits a string into a sequence of tokens.

Returns

tokenizer: callable A function to split a string into a sequence of tokens.

decode(doc)
Decode the input into a string of unicode symbols.

The decoding strategy depends on the vectorizer parameters.

Parameters

doc [str] The string to decode.

Returns

doc: str A string of unicode symbols.

fit(raw_documents, y=None)
Learn a vocabulary dictionary of all tokens in the raw documents.

Parameters

raw_documents [iterable] An iterable which yields either str, unicode or file objects.

Returns

self

fit_transform(raw_documents, y=None)
Learn the vocabulary dictionary and return document-term matrix.

This is equivalent to fit followed by transform, but more efficiently implemented.

Parameters

raw_documents [iterable] An iterable which yields either str, unicode or file objects.

Returns

X [array of shape (n_samples, n_features)] Document-term matrix.

get_feature_names()
Array mapping from feature integer indices to feature name.

Returns

feature_names [list] A list of feature names.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

get_stop_words()
Build or fetch the effective stop words list.

Returns

1934 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

stop_words: list or None A list of stop words.

inverse_transform(X)
Return terms per document with nonzero entries in X.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Document-term matrix.

Returns

X_inv [list of arrays of shape (n_samples,)] List of arrays of terms.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(raw_documents)
Transform documents to document-term matrix.

Extract token counts out of raw text documents using the vocabulary fitted with fit or the one provided to
the constructor.

Parameters

raw_documents [iterable] An iterable which yields either str, unicode or file objects.

Returns

X [sparse matrix of shape (n_samples, n_features)] Document-term matrix.

Examples using sklearn.feature_extraction.text.CountVectorizer

• Sample pipeline for text feature extraction and evaluation

7.14. sklearn.feature_extraction: Feature Extraction 1935

scikit-learn user guide, Release 0.23.2

sklearn.feature_extraction.text.HashingVectorizer

class sklearn.feature_extraction.text.HashingVectorizer(*, input=’content’,
encoding=’utf-8’, de-
code_error=’strict’,
strip_accents=None,
lowercase=True, pre-
processor=None,
tokenizer=None,
stop_words=None, to-
ken_pattern=’(?u)\b\w\w+\b’,
ngram_range=(1,
1), analyzer=’word’,
n_features=1048576, bi-
nary=False, norm=’l2’,
alternate_sign=True,
dtype=<class
’numpy.float64’>)

Convert a collection of text documents to a matrix of token occurrences

It turns a collection of text documents into a scipy.sparse matrix holding token occurrence counts (or binary
occurrence information), possibly normalized as token frequencies if norm=’l1’ or projected on the euclidean
unit sphere if norm=’l2’.

This text vectorizer implementation uses the hashing trick to find the token string name to feature integer index
mapping.

This strategy has several advantages:

• it is very low memory scalable to large datasets as there is no need to store a vocabulary dictionary in
memory

• it is fast to pickle and un-pickle as it holds no state besides the constructor parameters

• it can be used in a streaming (partial fit) or parallel pipeline as there is no state computed during fit.

There are also a couple of cons (vs using a CountVectorizer with an in-memory vocabulary):

• there is no way to compute the inverse transform (from feature indices to string feature names) which can
be a problem when trying to introspect which features are most important to a model.

• there can be collisions: distinct tokens can be mapped to the same feature index. However in practice this
is rarely an issue if n_features is large enough (e.g. 2 ** 18 for text classification problems).

• no IDF weighting as this would render the transformer stateful.

The hash function employed is the signed 32-bit version of Murmurhash3.

Read more in the User Guide.

Parameters

input [string {‘filename’, ‘file’, ‘content’}, default=’content’] If ‘filename’, the sequence
passed as an argument to fit is expected to be a list of filenames that need reading to fetch
the raw content to analyze.

If ‘file’, the sequence items must have a ‘read’ method (file-like object) that is called to fetch
the bytes in memory.

Otherwise the input is expected to be a sequence of items that can be of type string or byte.

encoding [string, default=’utf-8’] If bytes or files are given to analyze, this encoding is used to
decode.

1936 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

decode_error [{‘strict’, ‘ignore’, ‘replace’}, default=’strict’] Instruction on what to do if a byte
sequence is given to analyze that contains characters not of the given encoding. By
default, it is ‘strict’, meaning that a UnicodeDecodeError will be raised. Other values are
‘ignore’ and ‘replace’.

strip_accents [{‘ascii’, ‘unicode’}, default=None] Remove accents and perform other charac-
ter normalization during the preprocessing step. ‘ascii’ is a fast method that only works on
characters that have an direct ASCII mapping. ‘unicode’ is a slightly slower method that
works on any characters. None (default) does nothing.

Both ‘ascii’ and ‘unicode’ use NFKD normalization from unicodedata.normalize.

lowercase [bool, default=True] Convert all characters to lowercase before tokenizing.

preprocessor [callable, default=None] Override the preprocessing (string transformation) stage
while preserving the tokenizing and n-grams generation steps. Only applies if analyzer
is not callable.

tokenizer [callable, default=None] Override the string tokenization step while preserving the
preprocessing and n-grams generation steps. Only applies if analyzer == 'word'.

stop_words [string {‘english’}, list, default=None] If ‘english’, a built-in stop word list for
English is used. There are several known issues with ‘english’ and you should consider an
alternative (see Using stop words).

If a list, that list is assumed to contain stop words, all of which will be removed from the
resulting tokens. Only applies if analyzer == 'word'.

token_pattern [string] Regular expression denoting what constitutes a “token”, only used if
analyzer == 'word'. The default regexp selects tokens of 2 or more alphanumeric
characters (punctuation is completely ignored and always treated as a token separator).

ngram_range [tuple (min_n, max_n), default=(1, 1)] The lower and upper boundary of the
range of n-values for different n-grams to be extracted. All values of n such that min_n <= n
<= max_n will be used. For example an ngram_range of (1, 1) means only unigrams,
(1, 2) means unigrams and bigrams, and (2, 2) means only bigrams. Only applies if
analyzer is not callable.

analyzer [string, {‘word’, ‘char’, ‘char_wb’} or callable, default=’word’] Whether the feature
should be made of word or character n-grams. Option ‘char_wb’ creates character n-grams
only from text inside word boundaries; n-grams at the edges of words are padded with space.

If a callable is passed it is used to extract the sequence of features out of the raw, unprocessed
input.

Changed in version 0.21.

Since v0.21, if input is filename or file, the data is first read from the file and then
passed to the given callable analyzer.

n_features [int, default=(2 ** 20)] The number of features (columns) in the output matrices.
Small numbers of features are likely to cause hash collisions, but large numbers will cause
larger coefficient dimensions in linear learners.

binary [bool, default=False.] If True, all non zero counts are set to 1. This is useful for discrete
probabilistic models that model binary events rather than integer counts.

norm [{‘l1’, ‘l2’}, default=’l2’] Norm used to normalize term vectors. None for no normaliza-
tion.

7.14. sklearn.feature_extraction: Feature Extraction 1937

https://docs.python.org/3/library/unicodedata.html#unicodedata.normalize

scikit-learn user guide, Release 0.23.2

alternate_sign [bool, default=True] When True, an alternating sign is added to the features as
to approximately conserve the inner product in the hashed space even for small n_features.
This approach is similar to sparse random projection.

New in version 0.19.

dtype [type, default=np.float64] Type of the matrix returned by fit_transform() or transform().

See also:

CountVectorizer, TfidfVectorizer

Examples

>>> from sklearn.feature_extraction.text import HashingVectorizer
>>> corpus = [
... 'This is the first document.',
... 'This document is the second document.',
... 'And this is the third one.',
... 'Is this the first document?',
...]
>>> vectorizer = HashingVectorizer(n_features=2**4)
>>> X = vectorizer.fit_transform(corpus)
>>> print(X.shape)
(4, 16)

Methods

build_analyzer() Return a callable that handles preprocessing, tok-
enization and n-grams generation.

build_preprocessor() Return a function to preprocess the text before tok-
enization.

build_tokenizer() Return a function that splits a string into a sequence
of tokens.

decode(doc) Decode the input into a string of unicode symbols.
fit(X[, y]) Does nothing: this transformer is stateless.
fit_transform(X[, y]) Transform a sequence of documents to a document-

term matrix.
get_params([deep]) Get parameters for this estimator.
get_stop_words() Build or fetch the effective stop words list.
partial_fit(X[, y]) Does nothing: this transformer is stateless.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform a sequence of documents to a document-

term matrix.

__init__(*, input=’content’, encoding=’utf-8’, decode_error=’strict’, strip_accents=None,
lowercase=True, preprocessor=None, tokenizer=None, stop_words=None,
token_pattern=’(?u)\\b\\w\\w+\\b’, ngram_range=(1, 1), analyzer=’word’,
n_features=1048576, binary=False, norm=’l2’, alternate_sign=True, dtype=<class
’numpy.float64’>)

Initialize self. See help(type(self)) for accurate signature.

build_analyzer()

1938 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Return a callable that handles preprocessing, tokenization and n-grams generation.

Returns

analyzer: callable A function to handle preprocessing, tokenization and n-grams genera-
tion.

build_preprocessor()
Return a function to preprocess the text before tokenization.

Returns

preprocessor: callable A function to preprocess the text before tokenization.

build_tokenizer()
Return a function that splits a string into a sequence of tokens.

Returns

tokenizer: callable A function to split a string into a sequence of tokens.

decode(doc)
Decode the input into a string of unicode symbols.

The decoding strategy depends on the vectorizer parameters.

Parameters

doc [str] The string to decode.

Returns

doc: str A string of unicode symbols.

fit(X, y=None)
Does nothing: this transformer is stateless.

Parameters

X [ndarray of shape [n_samples, n_features]] Training data.

fit_transform(X, y=None)
Transform a sequence of documents to a document-term matrix.

Parameters

X [iterable over raw text documents, length = n_samples] Samples. Each sample must be a
text document (either bytes or unicode strings, file name or file object depending on the
constructor argument) which will be tokenized and hashed.

y [any] Ignored. This parameter exists only for compatibility with sklearn.pipeline.Pipeline.

Returns

X [sparse matrix of shape (n_samples, n_features)] Document-term matrix.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

7.14. sklearn.feature_extraction: Feature Extraction 1939

scikit-learn user guide, Release 0.23.2

get_stop_words()
Build or fetch the effective stop words list.

Returns

stop_words: list or None A list of stop words.

partial_fit(X, y=None)
Does nothing: this transformer is stateless.

This method is just there to mark the fact that this transformer can work in a streaming setup.

Parameters

X [ndarray of shape [n_samples, n_features]] Training data.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Transform a sequence of documents to a document-term matrix.

Parameters

X [iterable over raw text documents, length = n_samples] Samples. Each sample must be a
text document (either bytes or unicode strings, file name or file object depending on the
constructor argument) which will be tokenized and hashed.

Returns

X [sparse matrix of shape (n_samples, n_features)] Document-term matrix.

Examples using sklearn.feature_extraction.text.HashingVectorizer

• Out-of-core classification of text documents

• Clustering text documents using k-means

• Classification of text documents using sparse features

sklearn.feature_extraction.text.TfidfTransformer

class sklearn.feature_extraction.text.TfidfTransformer(*, norm=’l2’, use_idf=True,
smooth_idf=True, sublin-
ear_tf=False)

Transform a count matrix to a normalized tf or tf-idf representation

Tf means term-frequency while tf-idf means term-frequency times inverse document-frequency. This is a com-
mon term weighting scheme in information retrieval, that has also found good use in document classification.

1940 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

The goal of using tf-idf instead of the raw frequencies of occurrence of a token in a given document is to scale
down the impact of tokens that occur very frequently in a given corpus and that are hence empirically less
informative than features that occur in a small fraction of the training corpus.

The formula that is used to compute the tf-idf for a term t of a document d in a document set is tf-idf(t, d) = tf(t,
d) * idf(t), and the idf is computed as idf(t) = log [n / df(t)] + 1 (if smooth_idf=False), where n is the total
number of documents in the document set and df(t) is the document frequency of t; the document frequency is
the number of documents in the document set that contain the term t. The effect of adding “1” to the idf in the
equation above is that terms with zero idf, i.e., terms that occur in all documents in a training set, will not be
entirely ignored. (Note that the idf formula above differs from the standard textbook notation that defines the
idf as idf(t) = log [n / (df(t) + 1)]).

If smooth_idf=True (the default), the constant “1” is added to the numerator and denominator of the idf
as if an extra document was seen containing every term in the collection exactly once, which prevents zero
divisions: idf(t) = log [(1 + n) / (1 + df(t))] + 1.

Furthermore, the formulas used to compute tf and idf depend on parameter settings that correspond to the
SMART notation used in IR as follows:

Tf is “n” (natural) by default, “l” (logarithmic) when sublinear_tf=True. Idf is “t” when use_idf is given,
“n” (none) otherwise. Normalization is “c” (cosine) when norm='l2', “n” (none) when norm=None.

Read more in the User Guide.

Parameters

norm [{‘l1’, ‘l2’}, default=’l2’] Each output row will have unit norm, either: * ‘l2’: Sum
of squares of vector elements is 1. The cosine similarity between two vectors is their dot
product when l2 norm has been applied. * ‘l1’: Sum of absolute values of vector elements
is 1. See preprocessing.normalize

use_idf [bool, default=True] Enable inverse-document-frequency reweighting.

smooth_idf [bool, default=True] Smooth idf weights by adding one to document frequencies, as
if an extra document was seen containing every term in the collection exactly once. Prevents
zero divisions.

sublinear_tf [bool, default=False] Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf).

Attributes

idf_ [array of shape (n_features)] The inverse document frequency (IDF) vector; only defined
if use_idf is True.

New in version 0.20.

References

[Yates2011], [MRS2008]

Examples

>>> from sklearn.feature_extraction.text import TfidfTransformer
>>> from sklearn.feature_extraction.text import CountVectorizer
>>> from sklearn.pipeline import Pipeline
>>> import numpy as np
>>> corpus = ['this is the first document',
... 'this document is the second document',

(continues on next page)

7.14. sklearn.feature_extraction: Feature Extraction 1941

scikit-learn user guide, Release 0.23.2

(continued from previous page)

... 'and this is the third one',

... 'is this the first document']
>>> vocabulary = ['this', 'document', 'first', 'is', 'second', 'the',
... 'and', 'one']
>>> pipe = Pipeline([('count', CountVectorizer(vocabulary=vocabulary)),
... ('tfid', TfidfTransformer())]).fit(corpus)
>>> pipe['count'].transform(corpus).toarray()
array([[1, 1, 1, 1, 0, 1, 0, 0],

[1, 2, 0, 1, 1, 1, 0, 0],
[1, 0, 0, 1, 0, 1, 1, 1],
[1, 1, 1, 1, 0, 1, 0, 0]])

>>> pipe['tfid'].idf_
array([1. , 1.22314355, 1.51082562, 1. , 1.91629073,

1. , 1.91629073, 1.91629073])
>>> pipe.transform(corpus).shape
(4, 8)

Methods

fit(X[, y]) Learn the idf vector (global term weights).
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X[, copy]) Transform a count matrix to a tf or tf-idf representa-

tion

__init__(*, norm=’l2’, use_idf=True, smooth_idf=True, sublinear_tf=False)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Learn the idf vector (global term weights).

Parameters

X [sparse matrix of shape n_samples, n_features)] A matrix of term/token counts.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters

1942 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X, copy=True)
Transform a count matrix to a tf or tf-idf representation

Parameters

X [sparse matrix of (n_samples, n_features)] a matrix of term/token counts

copy [bool, default=True] Whether to copy X and operate on the copy or perform in-place
operations.

Returns

vectors [sparse matrix of shape (n_samples, n_features)]

Examples using sklearn.feature_extraction.text.TfidfTransformer

• Sample pipeline for text feature extraction and evaluation

7.14. sklearn.feature_extraction: Feature Extraction 1943

scikit-learn user guide, Release 0.23.2

sklearn.feature_extraction.text.TfidfVectorizer

class sklearn.feature_extraction.text.TfidfVectorizer(*, input=’content’,
encoding=’utf-8’, de-
code_error=’strict’,
strip_accents=None, low-
ercase=True, preproces-
sor=None, tokenizer=None,
analyzer=’word’,
stop_words=None, to-
ken_pattern=’(?u)\b\w\w+\b’,
ngram_range=(1, 1),
max_df=1.0, min_df=1,
max_features=None,
vocabulary=None, bi-
nary=False, dtype=<class
’numpy.float64’>,
norm=’l2’, use_idf=True,
smooth_idf=True, sublin-
ear_tf=False)

Convert a collection of raw documents to a matrix of TF-IDF features.

Equivalent to CountVectorizer followed by TfidfTransformer.

Read more in the User Guide.

Parameters

input [{‘filename’, ‘file’, ‘content’}, default=’content’] If ‘filename’, the sequence passed as
an argument to fit is expected to be a list of filenames that need reading to fetch the raw
content to analyze.

If ‘file’, the sequence items must have a ‘read’ method (file-like object) that is called to fetch
the bytes in memory.

Otherwise the input is expected to be a sequence of items that can be of type string or byte.

encoding [str, default=’utf-8’] If bytes or files are given to analyze, this encoding is used to
decode.

decode_error [{‘strict’, ‘ignore’, ‘replace’}, default=’strict’] Instruction on what to do if a byte
sequence is given to analyze that contains characters not of the given encoding. By
default, it is ‘strict’, meaning that a UnicodeDecodeError will be raised. Other values are
‘ignore’ and ‘replace’.

strip_accents [{‘ascii’, ‘unicode’}, default=None] Remove accents and perform other charac-
ter normalization during the preprocessing step. ‘ascii’ is a fast method that only works on
characters that have an direct ASCII mapping. ‘unicode’ is a slightly slower method that
works on any characters. None (default) does nothing.

Both ‘ascii’ and ‘unicode’ use NFKD normalization from unicodedata.normalize.

lowercase [bool, default=True] Convert all characters to lowercase before tokenizing.

preprocessor [callable, default=None] Override the preprocessing (string transformation) stage
while preserving the tokenizing and n-grams generation steps. Only applies if analyzer
is not callable.

tokenizer [callable, default=None] Override the string tokenization step while preserving the
preprocessing and n-grams generation steps. Only applies if analyzer == 'word'.

1944 Chapter 7. API Reference

https://docs.python.org/3/library/unicodedata.html#unicodedata.normalize

scikit-learn user guide, Release 0.23.2

analyzer [{‘word’, ‘char’, ‘char_wb’} or callable, default=’word’] Whether the feature should
be made of word or character n-grams. Option ‘char_wb’ creates character n-grams only
from text inside word boundaries; n-grams at the edges of words are padded with space.

If a callable is passed it is used to extract the sequence of features out of the raw, unprocessed
input.

Changed in version 0.21.

Since v0.21, if input is filename or file, the data is first read from the file and then
passed to the given callable analyzer.

stop_words [{‘english’}, list, default=None] If a string, it is passed to _check_stop_list and the
appropriate stop list is returned. ‘english’ is currently the only supported string value. There
are several known issues with ‘english’ and you should consider an alternative (see Using
stop words).

If a list, that list is assumed to contain stop words, all of which will be removed from the
resulting tokens. Only applies if analyzer == 'word'.

If None, no stop words will be used. max_df can be set to a value in the range [0.7, 1.0)
to automatically detect and filter stop words based on intra corpus document frequency of
terms.

token_pattern [str] Regular expression denoting what constitutes a “token”, only used if
analyzer == 'word'. The default regexp selects tokens of 2 or more alphanumeric
characters (punctuation is completely ignored and always treated as a token separator).

ngram_range [tuple (min_n, max_n), default=(1, 1)] The lower and upper boundary of the
range of n-values for different n-grams to be extracted. All values of n such that min_n <= n
<= max_n will be used. For example an ngram_range of (1, 1) means only unigrams,
(1, 2) means unigrams and bigrams, and (2, 2) means only bigrams. Only applies if
analyzer is not callable.

max_df [float or int, default=1.0] When building the vocabulary ignore terms that have a docu-
ment frequency strictly higher than the given threshold (corpus-specific stop words). If float
in range [0.0, 1.0], the parameter represents a proportion of documents, integer absolute
counts. This parameter is ignored if vocabulary is not None.

min_df [float or int, default=1] When building the vocabulary ignore terms that have a docu-
ment frequency strictly lower than the given threshold. This value is also called cut-off in the
literature. If float in range of [0.0, 1.0], the parameter represents a proportion of documents,
integer absolute counts. This parameter is ignored if vocabulary is not None.

max_features [int, default=None] If not None, build a vocabulary that only consider the top
max_features ordered by term frequency across the corpus.

This parameter is ignored if vocabulary is not None.

vocabulary [Mapping or iterable, default=None] Either a Mapping (e.g., a dict) where keys are
terms and values are indices in the feature matrix, or an iterable over terms. If not given, a
vocabulary is determined from the input documents.

binary [bool, default=False] If True, all non-zero term counts are set to 1. This does not mean
outputs will have only 0/1 values, only that the tf term in tf-idf is binary. (Set idf and
normalization to False to get 0/1 outputs).

dtype [dtype, default=float64] Type of the matrix returned by fit_transform() or transform().

norm [{‘l1’, ‘l2’}, default=’l2’] Each output row will have unit norm, either: * ‘l2’: Sum
of squares of vector elements is 1. The cosine similarity between two vectors is their dot

7.14. sklearn.feature_extraction: Feature Extraction 1945

scikit-learn user guide, Release 0.23.2

product when l2 norm has been applied. * ‘l1’: Sum of absolute values of vector elements
is 1. See preprocessing.normalize.

use_idf [bool, default=True] Enable inverse-document-frequency reweighting.

smooth_idf [bool, default=True] Smooth idf weights by adding one to document frequencies, as
if an extra document was seen containing every term in the collection exactly once. Prevents
zero divisions.

sublinear_tf [bool, default=False] Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf).

Attributes

vocabulary_ [dict] A mapping of terms to feature indices.

fixed_vocabulary_: bool True if a fixed vocabulary of term to indices mapping is provided by
the user

idf_ [array of shape (n_features,)] The inverse document frequency (IDF) vector; only defined
if use_idf is True.

stop_words_ [set] Terms that were ignored because they either:

• occurred in too many documents (max_df)

• occurred in too few documents (min_df)

• were cut off by feature selection (max_features).

This is only available if no vocabulary was given.

See also:

CountVectorizer Transforms text into a sparse matrix of n-gram counts.

TfidfTransformer Performs the TF-IDF transformation from a provided matrix of counts.

Notes

The stop_words_ attribute can get large and increase the model size when pickling. This attribute is provided
only for introspection and can be safely removed using delattr or set to None before pickling.

Examples

>>> from sklearn.feature_extraction.text import TfidfVectorizer
>>> corpus = [
... 'This is the first document.',
... 'This document is the second document.',
... 'And this is the third one.',
... 'Is this the first document?',
...]
>>> vectorizer = TfidfVectorizer()
>>> X = vectorizer.fit_transform(corpus)
>>> print(vectorizer.get_feature_names())
['and', 'document', 'first', 'is', 'one', 'second', 'the', 'third', 'this']
>>> print(X.shape)
(4, 9)

1946 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Methods

build_analyzer() Return a callable that handles preprocessing, tok-
enization and n-grams generation.

build_preprocessor() Return a function to preprocess the text before tok-
enization.

build_tokenizer() Return a function that splits a string into a sequence
of tokens.

decode(doc) Decode the input into a string of unicode symbols.
fit(raw_documents[, y]) Learn vocabulary and idf from training set.
fit_transform(raw_documents[, y]) Learn vocabulary and idf, return document-term ma-

trix.
get_feature_names() Array mapping from feature integer indices to fea-

ture name.
get_params([deep]) Get parameters for this estimator.
get_stop_words() Build or fetch the effective stop words list.
inverse_transform(X) Return terms per document with nonzero entries in

X.
set_params(**params) Set the parameters of this estimator.
transform(raw_documents[, copy]) Transform documents to document-term matrix.

__init__(*, input=’content’, encoding=’utf-8’, decode_error=’strict’, strip_accents=None, lower-
case=True, preprocessor=None, tokenizer=None, analyzer=’word’, stop_words=None,
token_pattern=’(?u)\\b\\w\\w+\\b’, ngram_range=(1, 1), max_df=1.0, min_df=1,
max_features=None, vocabulary=None, binary=False, dtype=<class ’numpy.float64’>,
norm=’l2’, use_idf=True, smooth_idf=True, sublinear_tf=False)

Initialize self. See help(type(self)) for accurate signature.

build_analyzer()
Return a callable that handles preprocessing, tokenization and n-grams generation.

Returns

analyzer: callable A function to handle preprocessing, tokenization and n-grams genera-
tion.

build_preprocessor()
Return a function to preprocess the text before tokenization.

Returns

preprocessor: callable A function to preprocess the text before tokenization.

build_tokenizer()
Return a function that splits a string into a sequence of tokens.

Returns

tokenizer: callable A function to split a string into a sequence of tokens.

decode(doc)
Decode the input into a string of unicode symbols.

The decoding strategy depends on the vectorizer parameters.

Parameters

doc [str] The string to decode.

Returns

7.14. sklearn.feature_extraction: Feature Extraction 1947

scikit-learn user guide, Release 0.23.2

doc: str A string of unicode symbols.

fit(raw_documents, y=None)
Learn vocabulary and idf from training set.

Parameters

raw_documents [iterable] An iterable which yields either str, unicode or file objects.

y [None] This parameter is not needed to compute tfidf.

Returns

self [object] Fitted vectorizer.

fit_transform(raw_documents, y=None)
Learn vocabulary and idf, return document-term matrix.

This is equivalent to fit followed by transform, but more efficiently implemented.

Parameters

raw_documents [iterable] An iterable which yields either str, unicode or file objects.

y [None] This parameter is ignored.

Returns

X [sparse matrix of (n_samples, n_features)] Tf-idf-weighted document-term matrix.

get_feature_names()
Array mapping from feature integer indices to feature name.

Returns

feature_names [list] A list of feature names.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

get_stop_words()
Build or fetch the effective stop words list.

Returns

stop_words: list or None A list of stop words.

inverse_transform(X)
Return terms per document with nonzero entries in X.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Document-term matrix.

Returns

X_inv [list of arrays of shape (n_samples,)] List of arrays of terms.

1948 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(raw_documents, copy=’deprecated’)
Transform documents to document-term matrix.

Uses the vocabulary and document frequencies (df) learned by fit (or fit_transform).

Parameters

raw_documents [iterable] An iterable which yields either str, unicode or file objects.

copy [bool, default=True] Whether to copy X and operate on the copy or perform in-place
operations.

Deprecated since version 0.22: The copy parameter is unused and was deprecated in
version 0.22 and will be removed in 0.24. This parameter will be ignored.

Returns

X [sparse matrix of (n_samples, n_features)] Tf-idf-weighted document-term matrix.

Examples using sklearn.feature_extraction.text.TfidfVectorizer

• Biclustering documents with the Spectral Co-clustering algorithm

• Topic extraction with Non-negative Matrix Factorization and Latent Dirichlet Allocation

• Column Transformer with Heterogeneous Data Sources

• Clustering text documents using k-means

• Classification of text documents using sparse features

7.15 sklearn.feature_selection: Feature Selection

The sklearn.feature_selection module implements feature selection algorithms. It currently includes uni-
variate filter selection methods and the recursive feature elimination algorithm.

User guide: See the Feature selection section for further details.

feature_selection.
GenericUnivariateSelect([. . .])

Univariate feature selector with configurable strategy.

feature_selection.
SelectPercentile([. . .])

Select features according to a percentile of the highest
scores.

feature_selection.
SelectKBest([score_func, k])

Select features according to the k highest scores.

Continued on next page

7.15. sklearn.feature_selection: Feature Selection 1949

scikit-learn user guide, Release 0.23.2

Table 106 – continued from previous page
feature_selection.SelectFpr([score_func,
alpha])

Filter: Select the pvalues below alpha based on a FPR
test.

feature_selection.SelectFdr([score_func,
alpha])

Filter: Select the p-values for an estimated false discov-
ery rate

feature_selection.
SelectFromModel(estimator, *)

Meta-transformer for selecting features based on impor-
tance weights.

feature_selection.SelectFwe([score_func,
alpha])

Filter: Select the p-values corresponding to Family-wise
error rate

feature_selection.RFE(estimator, *[, . . .]) Feature ranking with recursive feature elimination.
feature_selection.RFECV (estimator, *[, . . .]) Feature ranking with recursive feature elimination and

cross-validated selection of the best number of features.
feature_selection.
VarianceThreshold([threshold])

Feature selector that removes all low-variance features.

7.15.1 sklearn.feature_selection.GenericUnivariateSelect

class sklearn.feature_selection.GenericUnivariateSelect(score_func=<function
f_classif>, *,
mode=’percentile’,
param=1e-05)

Univariate feature selector with configurable strategy.

Read more in the User Guide.

Parameters

score_func [callable] Function taking two arrays X and y, and returning a pair of arrays (scores,
pvalues). For modes ‘percentile’ or ‘kbest’ it can return a single array scores.

mode [{‘percentile’, ‘k_best’, ‘fpr’, ‘fdr’, ‘fwe’}] Feature selection mode.

param [float or int depending on the feature selection mode] Parameter of the corresponding
mode.

Attributes

scores_ [array-like of shape (n_features,)] Scores of features.

pvalues_ [array-like of shape (n_features,)] p-values of feature scores, None if score_func
returned scores only.

See also:

f_classif ANOVA F-value between label/feature for classification tasks.

mutual_info_classif Mutual information for a discrete target.

chi2 Chi-squared stats of non-negative features for classification tasks.

f_regression F-value between label/feature for regression tasks.

mutual_info_regression Mutual information for a continuous target.

SelectPercentile Select features based on percentile of the highest scores.

SelectKBest Select features based on the k highest scores.

SelectFpr Select features based on a false positive rate test.

SelectFdr Select features based on an estimated false discovery rate.

1950 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

SelectFwe Select features based on family-wise error rate.

Examples

>>> from sklearn.datasets import load_breast_cancer
>>> from sklearn.feature_selection import GenericUnivariateSelect, chi2
>>> X, y = load_breast_cancer(return_X_y=True)
>>> X.shape
(569, 30)
>>> transformer = GenericUnivariateSelect(chi2, mode='k_best', param=20)
>>> X_new = transformer.fit_transform(X, y)
>>> X_new.shape
(569, 20)

Methods

fit(X, y) Run score function on (X, y) and get the appropriate
features.

fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
get_support([indices]) Get a mask, or integer index, of the features selected
inverse_transform(X) Reverse the transformation operation
set_params(**params) Set the parameters of this estimator.
transform(X) Reduce X to the selected features.

__init__(score_func=<function f_classif>, *, mode=’percentile’, param=1e-05)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y)
Run score function on (X, y) and get the appropriate features.

Parameters

X [array-like of shape (n_samples, n_features)] The training input samples.

y [array-like of shape (n_samples,)] The target values (class labels in classification, real
numbers in regression).

Returns

self [object]

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

7.15. sklearn.feature_selection: Feature Selection 1951

scikit-learn user guide, Release 0.23.2

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

get_support(indices=False)
Get a mask, or integer index, of the features selected

Parameters

indices [boolean (default False)] If True, the return value will be an array of integers, rather
than a boolean mask.

Returns

support [array] An index that selects the retained features from a feature vector. If
indices is False, this is a boolean array of shape [# input features], in which an ele-
ment is True iff its corresponding feature is selected for retention. If indices is True,
this is an integer array of shape [# output features] whose values are indices into the input
feature vector.

inverse_transform(X)
Reverse the transformation operation

Parameters

X [array of shape [n_samples, n_selected_features]] The input samples.

Returns

X_r [array of shape [n_samples, n_original_features]] X with columns of zeros inserted
where features would have been removed by transform.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Reduce X to the selected features.

Parameters

X [array of shape [n_samples, n_features]] The input samples.

Returns

X_r [array of shape [n_samples, n_selected_features]] The input samples with only the se-
lected features.

1952 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

7.15.2 sklearn.feature_selection.SelectPercentile

class sklearn.feature_selection.SelectPercentile(score_func=<function f_classif>, *,
percentile=10)

Select features according to a percentile of the highest scores.

Read more in the User Guide.

Parameters

score_func [callable] Function taking two arrays X and y, and returning a pair of arrays (scores,
pvalues) or a single array with scores. Default is f_classif (see below “See also”). The
default function only works with classification tasks.

New in version 0.18.

percentile [int, optional, default=10] Percent of features to keep.

Attributes

scores_ [array-like of shape (n_features,)] Scores of features.

pvalues_ [array-like of shape (n_features,)] p-values of feature scores, None if score_func
returned only scores.

See also:

f_classif ANOVA F-value between label/feature for classification tasks.

mutual_info_classif Mutual information for a discrete target.

chi2 Chi-squared stats of non-negative features for classification tasks.

f_regression F-value between label/feature for regression tasks.

mutual_info_regression Mutual information for a continuous target.

SelectKBest Select features based on the k highest scores.

SelectFpr Select features based on a false positive rate test.

SelectFdr Select features based on an estimated false discovery rate.

SelectFwe Select features based on family-wise error rate.

GenericUnivariateSelect Univariate feature selector with configurable mode.

Notes

Ties between features with equal scores will be broken in an unspecified way.

Examples

>>> from sklearn.datasets import load_digits
>>> from sklearn.feature_selection import SelectPercentile, chi2
>>> X, y = load_digits(return_X_y=True)
>>> X.shape
(1797, 64)
>>> X_new = SelectPercentile(chi2, percentile=10).fit_transform(X, y)
>>> X_new.shape
(1797, 7)

7.15. sklearn.feature_selection: Feature Selection 1953

scikit-learn user guide, Release 0.23.2

Methods

fit(X, y) Run score function on (X, y) and get the appropriate
features.

fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
get_support([indices]) Get a mask, or integer index, of the features selected
inverse_transform(X) Reverse the transformation operation
set_params(**params) Set the parameters of this estimator.
transform(X) Reduce X to the selected features.

__init__(score_func=<function f_classif>, *, percentile=10)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y)
Run score function on (X, y) and get the appropriate features.

Parameters

X [array-like of shape (n_samples, n_features)] The training input samples.

y [array-like of shape (n_samples,)] The target values (class labels in classification, real
numbers in regression).

Returns

self [object]

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

get_support(indices=False)
Get a mask, or integer index, of the features selected

Parameters

indices [boolean (default False)] If True, the return value will be an array of integers, rather
than a boolean mask.

1954 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Returns

support [array] An index that selects the retained features from a feature vector. If
indices is False, this is a boolean array of shape [# input features], in which an ele-
ment is True iff its corresponding feature is selected for retention. If indices is True,
this is an integer array of shape [# output features] whose values are indices into the input
feature vector.

inverse_transform(X)
Reverse the transformation operation

Parameters

X [array of shape [n_samples, n_selected_features]] The input samples.

Returns

X_r [array of shape [n_samples, n_original_features]] X with columns of zeros inserted
where features would have been removed by transform.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Reduce X to the selected features.

Parameters

X [array of shape [n_samples, n_features]] The input samples.

Returns

X_r [array of shape [n_samples, n_selected_features]] The input samples with only the se-
lected features.

Examples using sklearn.feature_selection.SelectPercentile

• Feature agglomeration vs. univariate selection

• SVM-Anova: SVM with univariate feature selection

7.15.3 sklearn.feature_selection.SelectKBest

class sklearn.feature_selection.SelectKBest(score_func=<function f_classif>, *, k=10)
Select features according to the k highest scores.

Read more in the User Guide.

Parameters

7.15. sklearn.feature_selection: Feature Selection 1955

scikit-learn user guide, Release 0.23.2

score_func [callable] Function taking two arrays X and y, and returning a pair of arrays (scores,
pvalues) or a single array with scores. Default is f_classif (see below “See also”). The
default function only works with classification tasks.

New in version 0.18.

k [int or “all”, optional, default=10] Number of top features to select. The “all” option bypasses
selection, for use in a parameter search.

Attributes

scores_ [array-like of shape (n_features,)] Scores of features.

pvalues_ [array-like of shape (n_features,)] p-values of feature scores, None if score_func
returned only scores.

See also:

f_classif ANOVA F-value between label/feature for classification tasks.

mutual_info_classif Mutual information for a discrete target.

chi2 Chi-squared stats of non-negative features for classification tasks.

f_regression F-value between label/feature for regression tasks.

mutual_info_regression Mutual information for a continuous target.

SelectPercentile Select features based on percentile of the highest scores.

SelectFpr Select features based on a false positive rate test.

SelectFdr Select features based on an estimated false discovery rate.

SelectFwe Select features based on family-wise error rate.

GenericUnivariateSelect Univariate feature selector with configurable mode.

Notes

Ties between features with equal scores will be broken in an unspecified way.

Examples

>>> from sklearn.datasets import load_digits
>>> from sklearn.feature_selection import SelectKBest, chi2
>>> X, y = load_digits(return_X_y=True)
>>> X.shape
(1797, 64)
>>> X_new = SelectKBest(chi2, k=20).fit_transform(X, y)
>>> X_new.shape
(1797, 20)

Methods

fit(X, y) Run score function on (X, y) and get the appropriate
features.

Continued on next page

1956 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Table 109 – continued from previous page
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
get_support([indices]) Get a mask, or integer index, of the features selected
inverse_transform(X) Reverse the transformation operation
set_params(**params) Set the parameters of this estimator.
transform(X) Reduce X to the selected features.

__init__(score_func=<function f_classif>, *, k=10)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y)
Run score function on (X, y) and get the appropriate features.

Parameters

X [array-like of shape (n_samples, n_features)] The training input samples.

y [array-like of shape (n_samples,)] The target values (class labels in classification, real
numbers in regression).

Returns

self [object]

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

get_support(indices=False)
Get a mask, or integer index, of the features selected

Parameters

indices [boolean (default False)] If True, the return value will be an array of integers, rather
than a boolean mask.

Returns

7.15. sklearn.feature_selection: Feature Selection 1957

scikit-learn user guide, Release 0.23.2

support [array] An index that selects the retained features from a feature vector. If
indices is False, this is a boolean array of shape [# input features], in which an ele-
ment is True iff its corresponding feature is selected for retention. If indices is True,
this is an integer array of shape [# output features] whose values are indices into the input
feature vector.

inverse_transform(X)
Reverse the transformation operation

Parameters

X [array of shape [n_samples, n_selected_features]] The input samples.

Returns

X_r [array of shape [n_samples, n_original_features]] X with columns of zeros inserted
where features would have been removed by transform.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Reduce X to the selected features.

Parameters

X [array of shape [n_samples, n_features]] The input samples.

Returns

X_r [array of shape [n_samples, n_selected_features]] The input samples with only the se-
lected features.

Examples using sklearn.feature_selection.SelectKBest

• Pipeline Anova SVM

• Univariate Feature Selection

• Concatenating multiple feature extraction methods

• Selecting dimensionality reduction with Pipeline and GridSearchCV

• Classification of text documents using sparse features

7.15.4 sklearn.feature_selection.SelectFpr

class sklearn.feature_selection.SelectFpr(score_func=<function f_classif>, *, al-
pha=0.05)

Filter: Select the pvalues below alpha based on a FPR test.

1958 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

FPR test stands for False Positive Rate test. It controls the total amount of false detections.

Read more in the User Guide.

Parameters

score_func [callable] Function taking two arrays X and y, and returning a pair of arrays (scores,
pvalues). Default is f_classif (see below “See also”). The default function only works with
classification tasks.

alpha [float, optional] The highest p-value for features to be kept.

Attributes

scores_ [array-like of shape (n_features,)] Scores of features.

pvalues_ [array-like of shape (n_features,)] p-values of feature scores.

See also:

f_classif ANOVA F-value between label/feature for classification tasks.

chi2 Chi-squared stats of non-negative features for classification tasks.

mutual_info_classif

f_regression F-value between label/feature for regression tasks.

mutual_info_regression Mutual information between features and the target.

SelectPercentile Select features based on percentile of the highest scores.

SelectKBest Select features based on the k highest scores.

SelectFdr Select features based on an estimated false discovery rate.

SelectFwe Select features based on family-wise error rate.

GenericUnivariateSelect Univariate feature selector with configurable mode.

Examples

>>> from sklearn.datasets import load_breast_cancer
>>> from sklearn.feature_selection import SelectFpr, chi2
>>> X, y = load_breast_cancer(return_X_y=True)
>>> X.shape
(569, 30)
>>> X_new = SelectFpr(chi2, alpha=0.01).fit_transform(X, y)
>>> X_new.shape
(569, 16)

Methods

fit(X, y) Run score function on (X, y) and get the appropriate
features.

fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
get_support([indices]) Get a mask, or integer index, of the features selected
inverse_transform(X) Reverse the transformation operation

Continued on next page

7.15. sklearn.feature_selection: Feature Selection 1959

scikit-learn user guide, Release 0.23.2

Table 110 – continued from previous page
set_params(**params) Set the parameters of this estimator.
transform(X) Reduce X to the selected features.

__init__(score_func=<function f_classif>, *, alpha=0.05)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y)
Run score function on (X, y) and get the appropriate features.

Parameters

X [array-like of shape (n_samples, n_features)] The training input samples.

y [array-like of shape (n_samples,)] The target values (class labels in classification, real
numbers in regression).

Returns

self [object]

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

get_support(indices=False)
Get a mask, or integer index, of the features selected

Parameters

indices [boolean (default False)] If True, the return value will be an array of integers, rather
than a boolean mask.

Returns

support [array] An index that selects the retained features from a feature vector. If
indices is False, this is a boolean array of shape [# input features], in which an ele-
ment is True iff its corresponding feature is selected for retention. If indices is True,
this is an integer array of shape [# output features] whose values are indices into the input
feature vector.

1960 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

inverse_transform(X)
Reverse the transformation operation

Parameters

X [array of shape [n_samples, n_selected_features]] The input samples.

Returns

X_r [array of shape [n_samples, n_original_features]] X with columns of zeros inserted
where features would have been removed by transform.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Reduce X to the selected features.

Parameters

X [array of shape [n_samples, n_features]] The input samples.

Returns

X_r [array of shape [n_samples, n_selected_features]] The input samples with only the se-
lected features.

7.15.5 sklearn.feature_selection.SelectFdr

class sklearn.feature_selection.SelectFdr(score_func=<function f_classif>, *, al-
pha=0.05)

Filter: Select the p-values for an estimated false discovery rate

This uses the Benjamini-Hochberg procedure. alpha is an upper bound on the expected false discovery rate.

Read more in the User Guide.

Parameters

score_func [callable] Function taking two arrays X and y, and returning a pair of arrays (scores,
pvalues). Default is f_classif (see below “See also”). The default function only works with
classification tasks.

alpha [float, optional] The highest uncorrected p-value for features to keep.

Attributes

scores_ [array-like of shape (n_features,)] Scores of features.

pvalues_ [array-like of shape (n_features,)] p-values of feature scores.

See also:

7.15. sklearn.feature_selection: Feature Selection 1961

scikit-learn user guide, Release 0.23.2

f_classif ANOVA F-value between label/feature for classification tasks.

mutual_info_classif Mutual information for a discrete target.

chi2 Chi-squared stats of non-negative features for classification tasks.

f_regression F-value between label/feature for regression tasks.

mutual_info_regression Mutual information for a contnuous target.

SelectPercentile Select features based on percentile of the highest scores.

SelectKBest Select features based on the k highest scores.

SelectFpr Select features based on a false positive rate test.

SelectFwe Select features based on family-wise error rate.

GenericUnivariateSelect Univariate feature selector with configurable mode.

References

https://en.wikipedia.org/wiki/False_discovery_rate

Examples

>>> from sklearn.datasets import load_breast_cancer
>>> from sklearn.feature_selection import SelectFdr, chi2
>>> X, y = load_breast_cancer(return_X_y=True)
>>> X.shape
(569, 30)
>>> X_new = SelectFdr(chi2, alpha=0.01).fit_transform(X, y)
>>> X_new.shape
(569, 16)

Methods

fit(X, y) Run score function on (X, y) and get the appropriate
features.

fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
get_support([indices]) Get a mask, or integer index, of the features selected
inverse_transform(X) Reverse the transformation operation
set_params(**params) Set the parameters of this estimator.
transform(X) Reduce X to the selected features.

__init__(score_func=<function f_classif>, *, alpha=0.05)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y)
Run score function on (X, y) and get the appropriate features.

Parameters

X [array-like of shape (n_samples, n_features)] The training input samples.

y [array-like of shape (n_samples,)] The target values (class labels in classification, real

1962 Chapter 7. API Reference

https://en.wikipedia.org/wiki/False_discovery_rate

scikit-learn user guide, Release 0.23.2

numbers in regression).

Returns

self [object]

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

get_support(indices=False)
Get a mask, or integer index, of the features selected

Parameters

indices [boolean (default False)] If True, the return value will be an array of integers, rather
than a boolean mask.

Returns

support [array] An index that selects the retained features from a feature vector. If
indices is False, this is a boolean array of shape [# input features], in which an ele-
ment is True iff its corresponding feature is selected for retention. If indices is True,
this is an integer array of shape [# output features] whose values are indices into the input
feature vector.

inverse_transform(X)
Reverse the transformation operation

Parameters

X [array of shape [n_samples, n_selected_features]] The input samples.

Returns

X_r [array of shape [n_samples, n_original_features]] X with columns of zeros inserted
where features would have been removed by transform.

set_params(**params)
Set the parameters of this estimator.

7.15. sklearn.feature_selection: Feature Selection 1963

scikit-learn user guide, Release 0.23.2

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Reduce X to the selected features.

Parameters

X [array of shape [n_samples, n_features]] The input samples.

Returns

X_r [array of shape [n_samples, n_selected_features]] The input samples with only the se-
lected features.

7.15.6 sklearn.feature_selection.SelectFromModel

class sklearn.feature_selection.SelectFromModel(estimator, *, threshold=None,
prefit=False, norm_order=1,
max_features=None)

Meta-transformer for selecting features based on importance weights.

New in version 0.17.

Parameters

estimator [object] The base estimator from which the transformer is built. This can be both a
fitted (if prefit is set to True) or a non-fitted estimator. The estimator must have either a
feature_importances_ or coef_ attribute after fitting.

threshold [string, float, optional default None] The threshold value to use for feature selection.
Features whose importance is greater or equal are kept while the others are discarded. If
“median” (resp. “mean”), then the threshold value is the median (resp. the mean) of the
feature importances. A scaling factor (e.g., “1.25*mean”) may also be used. If None and
if the estimator has a parameter penalty set to l1, either explicitly or implicitly (e.g, Lasso),
the threshold used is 1e-5. Otherwise, “mean” is used by default.

prefit [bool, default False] Whether a prefit model is expected to be passed into the constructor
directly or not. If True, transform must be called directly and SelectFromModel can-
not be used with cross_val_score, GridSearchCV and similar utilities that clone
the estimator. Otherwise train the model using fit and then transform to do feature
selection.

norm_order [non-zero int, inf, -inf, default 1] Order of the norm used to filter the vectors of
coefficients below threshold in the case where the coef_ attribute of the estimator is
of dimension 2.

max_features [int or None, optional] The maximum number of features to select. To only
select based on max_features, set threshold=-np.inf.

New in version 0.20.

Attributes

1964 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

estimator_ [an estimator] The base estimator from which the transformer is built. This is stored
only when a non-fitted estimator is passed to the SelectFromModel, i.e when prefit is
False.

threshold_ [float] The threshold value used for feature selection.

Notes

Allows NaN/Inf in the input if the underlying estimator does as well.

Examples

>>> from sklearn.feature_selection import SelectFromModel
>>> from sklearn.linear_model import LogisticRegression
>>> X = [[0.87, -1.34, 0.31],
... [-2.79, -0.02, -0.85],
... [-1.34, -0.48, -2.55],
... [1.92, 1.48, 0.65]]
>>> y = [0, 1, 0, 1]
>>> selector = SelectFromModel(estimator=LogisticRegression()).fit(X, y)
>>> selector.estimator_.coef_
array([[-0.3252302 , 0.83462377, 0.49750423]])
>>> selector.threshold_
0.55245...
>>> selector.get_support()
array([False, True, False])
>>> selector.transform(X)
array([[-1.34],

[-0.02],
[-0.48],
[1.48]])

Methods

fit(X[, y]) Fit the SelectFromModel meta-transformer.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
get_support([indices]) Get a mask, or integer index, of the features selected
inverse_transform(X) Reverse the transformation operation
partial_fit(X[, y]) Fit the SelectFromModel meta-transformer only

once.
set_params(**params) Set the parameters of this estimator.
transform(X) Reduce X to the selected features.

__init__(estimator, *, threshold=None, prefit=False, norm_order=1, max_features=None)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None, **fit_params)
Fit the SelectFromModel meta-transformer.

Parameters

X [array-like of shape (n_samples, n_features)] The training input samples.

7.15. sklearn.feature_selection: Feature Selection 1965

scikit-learn user guide, Release 0.23.2

y [array-like, shape (n_samples,)] The target values (integers that correspond to classes in
classification, real numbers in regression).

**fit_params [Other estimator specific parameters]

Returns

self [object]

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

get_support(indices=False)
Get a mask, or integer index, of the features selected

Parameters

indices [boolean (default False)] If True, the return value will be an array of integers, rather
than a boolean mask.

Returns

support [array] An index that selects the retained features from a feature vector. If
indices is False, this is a boolean array of shape [# input features], in which an ele-
ment is True iff its corresponding feature is selected for retention. If indices is True,
this is an integer array of shape [# output features] whose values are indices into the input
feature vector.

inverse_transform(X)
Reverse the transformation operation

Parameters

X [array of shape [n_samples, n_selected_features]] The input samples.

Returns

X_r [array of shape [n_samples, n_original_features]] X with columns of zeros inserted
where features would have been removed by transform.

1966 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

partial_fit(X, y=None, **fit_params)
Fit the SelectFromModel meta-transformer only once.

Parameters

X [array-like of shape (n_samples, n_features)] The training input samples.

y [array-like, shape (n_samples,)] The target values (integers that correspond to classes in
classification, real numbers in regression).

**fit_params [Other estimator specific parameters]

Returns

self [object]

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Reduce X to the selected features.

Parameters

X [array of shape [n_samples, n_features]] The input samples.

Returns

X_r [array of shape [n_samples, n_selected_features]] The input samples with only the se-
lected features.

Examples using sklearn.feature_selection.SelectFromModel

• Feature selection using SelectFromModel and LassoCV

• Classification of text documents using sparse features

7.15.7 sklearn.feature_selection.SelectFwe

class sklearn.feature_selection.SelectFwe(score_func=<function f_classif>, *, al-
pha=0.05)

Filter: Select the p-values corresponding to Family-wise error rate

Read more in the User Guide.

Parameters

score_func [callable] Function taking two arrays X and y, and returning a pair of arrays (scores,
pvalues). Default is f_classif (see below “See also”). The default function only works with
classification tasks.

alpha [float, optional] The highest uncorrected p-value for features to keep.

7.15. sklearn.feature_selection: Feature Selection 1967

scikit-learn user guide, Release 0.23.2

Attributes

scores_ [array-like of shape (n_features,)] Scores of features.

pvalues_ [array-like of shape (n_features,)] p-values of feature scores.

See also:

f_classif ANOVA F-value between label/feature for classification tasks.

chi2 Chi-squared stats of non-negative features for classification tasks.

f_regression F-value between label/feature for regression tasks.

SelectPercentile Select features based on percentile of the highest scores.

SelectKBest Select features based on the k highest scores.

SelectFpr Select features based on a false positive rate test.

SelectFdr Select features based on an estimated false discovery rate.

GenericUnivariateSelect Univariate feature selector with configurable mode.

Examples

>>> from sklearn.datasets import load_breast_cancer
>>> from sklearn.feature_selection import SelectFwe, chi2
>>> X, y = load_breast_cancer(return_X_y=True)
>>> X.shape
(569, 30)
>>> X_new = SelectFwe(chi2, alpha=0.01).fit_transform(X, y)
>>> X_new.shape
(569, 15)

Methods

fit(X, y) Run score function on (X, y) and get the appropriate
features.

fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
get_support([indices]) Get a mask, or integer index, of the features selected
inverse_transform(X) Reverse the transformation operation
set_params(**params) Set the parameters of this estimator.
transform(X) Reduce X to the selected features.

__init__(score_func=<function f_classif>, *, alpha=0.05)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y)
Run score function on (X, y) and get the appropriate features.

Parameters

X [array-like of shape (n_samples, n_features)] The training input samples.

y [array-like of shape (n_samples,)] The target values (class labels in classification, real
numbers in regression).

1968 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Returns

self [object]

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

get_support(indices=False)
Get a mask, or integer index, of the features selected

Parameters

indices [boolean (default False)] If True, the return value will be an array of integers, rather
than a boolean mask.

Returns

support [array] An index that selects the retained features from a feature vector. If
indices is False, this is a boolean array of shape [# input features], in which an ele-
ment is True iff its corresponding feature is selected for retention. If indices is True,
this is an integer array of shape [# output features] whose values are indices into the input
feature vector.

inverse_transform(X)
Reverse the transformation operation

Parameters

X [array of shape [n_samples, n_selected_features]] The input samples.

Returns

X_r [array of shape [n_samples, n_original_features]] X with columns of zeros inserted
where features would have been removed by transform.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

7.15. sklearn.feature_selection: Feature Selection 1969

scikit-learn user guide, Release 0.23.2

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Reduce X to the selected features.

Parameters

X [array of shape [n_samples, n_features]] The input samples.

Returns

X_r [array of shape [n_samples, n_selected_features]] The input samples with only the se-
lected features.

7.15.8 sklearn.feature_selection.RFE

class sklearn.feature_selection.RFE(estimator, *, n_features_to_select=None, step=1, ver-
bose=0)

Feature ranking with recursive feature elimination.

Given an external estimator that assigns weights to features (e.g., the coefficients of a linear model), the goal of
recursive feature elimination (RFE) is to select features by recursively considering smaller and smaller sets of
features. First, the estimator is trained on the initial set of features and the importance of each feature is obtained
either through a coef_ attribute or through a feature_importances_ attribute. Then, the least important
features are pruned from current set of features. That procedure is recursively repeated on the pruned set until
the desired number of features to select is eventually reached.

Read more in the User Guide.

Parameters

estimator [object] A supervised learning estimator with a fit method that provides in-
formation about feature importance either through a coef_ attribute or through a
feature_importances_ attribute.

n_features_to_select [int or None (default=None)] The number of features to select. If None,
half of the features are selected.

step [int or float, optional (default=1)] If greater than or equal to 1, then step corresponds to
the (integer) number of features to remove at each iteration. If within (0.0, 1.0), then step
corresponds to the percentage (rounded down) of features to remove at each iteration.

verbose [int, (default=0)] Controls verbosity of output.

Attributes

n_features_ [int] The number of selected features.

support_ [array of shape [n_features]] The mask of selected features.

ranking_ [array of shape [n_features]] The feature ranking, such that ranking_[i] corre-
sponds to the ranking position of the i-th feature. Selected (i.e., estimated best) features are
assigned rank 1.

estimator_ [object] The external estimator fit on the reduced dataset.

See also:

1970 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

RFECV Recursive feature elimination with built-in cross-validated selection of the best number of features

Notes

Allows NaN/Inf in the input if the underlying estimator does as well.

References

[1]

Examples

The following example shows how to retrieve the 5 most informative features in the Friedman #1 dataset.

>>> from sklearn.datasets import make_friedman1
>>> from sklearn.feature_selection import RFE
>>> from sklearn.svm import SVR
>>> X, y = make_friedman1(n_samples=50, n_features=10, random_state=0)
>>> estimator = SVR(kernel="linear")
>>> selector = RFE(estimator, n_features_to_select=5, step=1)
>>> selector = selector.fit(X, y)
>>> selector.support_
array([True, True, True, True, True, False, False, False, False,

False])
>>> selector.ranking_
array([1, 1, 1, 1, 1, 6, 4, 3, 2, 5])

Methods

decision_function(X) Compute the decision function of X.
fit(X, y) Fit the RFE model and then the underlying estimator

on the selected
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
get_support([indices]) Get a mask, or integer index, of the features selected
inverse_transform(X) Reverse the transformation operation
predict(X) Reduce X to the selected features and then predict

using the
predict_log_proba(X) Predict class log-probabilities for X.
predict_proba(X) Predict class probabilities for X.
score(X, y) Reduce X to the selected features and then return the

score of the
set_params(**params) Set the parameters of this estimator.
transform(X) Reduce X to the selected features.

__init__(estimator, *, n_features_to_select=None, step=1, verbose=0)
Initialize self. See help(type(self)) for accurate signature.

decision_function(X)
Compute the decision function of X.

7.15. sklearn.feature_selection: Feature Selection 1971

scikit-learn user guide, Release 0.23.2

Parameters

X [{array-like or sparse matrix} of shape (n_samples, n_features)] The input samples. In-
ternally, it will be converted to dtype=np.float32 and if a sparse matrix is provided
to a sparse csr_matrix.

Returns

score [array, shape = [n_samples, n_classes] or [n_samples]] The decision function of the
input samples. The order of the classes corresponds to that in the attribute classes_. Re-
gression and binary classification produce an array of shape [n_samples].

fit(X, y)

Fit the RFE model and then the underlying estimator on the selected features.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The training input samples.

y [array-like of shape (n_samples,)] The target values.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

get_support(indices=False)
Get a mask, or integer index, of the features selected

Parameters

indices [boolean (default False)] If True, the return value will be an array of integers, rather
than a boolean mask.

Returns

support [array] An index that selects the retained features from a feature vector. If
indices is False, this is a boolean array of shape [# input features], in which an ele-
ment is True iff its corresponding feature is selected for retention. If indices is True,
this is an integer array of shape [# output features] whose values are indices into the input
feature vector.

1972 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

inverse_transform(X)
Reverse the transformation operation

Parameters

X [array of shape [n_samples, n_selected_features]] The input samples.

Returns

X_r [array of shape [n_samples, n_original_features]] X with columns of zeros inserted
where features would have been removed by transform.

predict(X)

Reduce X to the selected features and then predict using the underlying estimator.

Parameters

X [array of shape [n_samples, n_features]] The input samples.

Returns

y [array of shape [n_samples]] The predicted target values.

predict_log_proba(X)
Predict class log-probabilities for X.

Parameters

X [array of shape [n_samples, n_features]] The input samples.

Returns

p [array of shape (n_samples, n_classes)] The class log-probabilities of the input samples.
The order of the classes corresponds to that in the attribute classes_.

predict_proba(X)
Predict class probabilities for X.

Parameters

X [{array-like or sparse matrix} of shape (n_samples, n_features)] The input samples. In-
ternally, it will be converted to dtype=np.float32 and if a sparse matrix is provided
to a sparse csr_matrix.

Returns

p [array of shape (n_samples, n_classes)] The class probabilities of the input samples. The
order of the classes corresponds to that in the attribute classes_.

score(X, y)

Reduce X to the selected features and then return the score of the underlying estimator.

Parameters

X [array of shape [n_samples, n_features]] The input samples.

y [array of shape [n_samples]] The target values.

set_params(**params)
Set the parameters of this estimator.

7.15. sklearn.feature_selection: Feature Selection 1973

scikit-learn user guide, Release 0.23.2

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Reduce X to the selected features.

Parameters

X [array of shape [n_samples, n_features]] The input samples.

Returns

X_r [array of shape [n_samples, n_selected_features]] The input samples with only the se-
lected features.

Examples using sklearn.feature_selection.RFE

• Recursive feature elimination

7.15.9 sklearn.feature_selection.RFECV

class sklearn.feature_selection.RFECV(estimator, *, step=1, min_features_to_select=1,
cv=None, scoring=None, verbose=0, n_jobs=None)

Feature ranking with recursive feature elimination and cross-validated selection of the best number of features.

See glossary entry for cross-validation estimator.

Read more in the User Guide.

Parameters

estimator [object] A supervised learning estimator with a fit method that provides in-
formation about feature importance either through a coef_ attribute or through a
feature_importances_ attribute.

step [int or float, optional (default=1)] If greater than or equal to 1, then step corresponds
to the (integer) number of features to remove at each iteration. If within (0.0, 1.0), then
step corresponds to the percentage (rounded down) of features to remove at each itera-
tion. Note that the last iteration may remove fewer than step features in order to reach
min_features_to_select.

min_features_to_select [int, (default=1)] The minimum number of features to be selected.
This number of features will always be scored, even if the difference between the origi-
nal feature count and min_features_to_select isn’t divisible by step.

New in version 0.20.

cv [int, cross-validation generator or an iterable, optional] Determines the cross-validation split-
ting strategy. Possible inputs for cv are:

• None, to use the default 5-fold cross-validation,

• integer, to specify the number of folds.

1974 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

• CV splitter,

• An iterable yielding (train, test) splits as arrays of indices.

For integer/None inputs, if y is binary or multiclass, sklearn.model_selection.
StratifiedKFold is used. If the estimator is a classifier or if y is neither binary nor
multiclass, sklearn.model_selection.KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

Changed in version 0.22: cv default value of None changed from 3-fold to 5-fold.

scoring [string, callable or None, optional, (default=None)] A string (see model evaluation doc-
umentation) or a scorer callable object / function with signature scorer(estimator,
X, y).

verbose [int, (default=0)] Controls verbosity of output.

n_jobs [int or None, optional (default=None)] Number of cores to run in parallel while fitting
across folds. None means 1 unless in a joblib.parallel_backend context. -1
means using all processors. See Glossary for more details.

New in version 0.18.

Attributes

n_features_ [int] The number of selected features with cross-validation.

support_ [array of shape [n_features]] The mask of selected features.

ranking_ [array of shape [n_features]] The feature ranking, such that ranking_[i] corre-
sponds to the ranking position of the i-th feature. Selected (i.e., estimated best) features are
assigned rank 1.

grid_scores_ [array of shape [n_subsets_of_features]] The cross-validation scores such that
grid_scores_[i] corresponds to the CV score of the i-th subset of features.

estimator_ [object] The external estimator fit on the reduced dataset.

See also:

RFE Recursive feature elimination

Notes

The size of grid_scores_ is equal to ceil((n_features - min_features_to_select) /
step) + 1, where step is the number of features removed at each iteration.

Allows NaN/Inf in the input if the underlying estimator does as well.

References

[1]

Examples

The following example shows how to retrieve the a-priori not known 5 informative features in the Friedman #1
dataset.

7.15. sklearn.feature_selection: Feature Selection 1975

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

>>> from sklearn.datasets import make_friedman1
>>> from sklearn.feature_selection import RFECV
>>> from sklearn.svm import SVR
>>> X, y = make_friedman1(n_samples=50, n_features=10, random_state=0)
>>> estimator = SVR(kernel="linear")
>>> selector = RFECV(estimator, step=1, cv=5)
>>> selector = selector.fit(X, y)
>>> selector.support_
array([True, True, True, True, True, False, False, False, False,

False])
>>> selector.ranking_
array([1, 1, 1, 1, 1, 6, 4, 3, 2, 5])

Methods

decision_function(X) Compute the decision function of X.
fit(X, y[, groups]) Fit the RFE model and automatically tune the num-

ber of selected
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
get_support([indices]) Get a mask, or integer index, of the features selected
inverse_transform(X) Reverse the transformation operation
predict(X) Reduce X to the selected features and then predict

using the
predict_log_proba(X) Predict class log-probabilities for X.
predict_proba(X) Predict class probabilities for X.
score(X, y) Reduce X to the selected features and then return the

score of the
set_params(**params) Set the parameters of this estimator.
transform(X) Reduce X to the selected features.

__init__(estimator, *, step=1, min_features_to_select=1, cv=None, scoring=None, verbose=0,
n_jobs=None)

Initialize self. See help(type(self)) for accurate signature.

decision_function(X)
Compute the decision function of X.

Parameters

X [{array-like or sparse matrix} of shape (n_samples, n_features)] The input samples. In-
ternally, it will be converted to dtype=np.float32 and if a sparse matrix is provided
to a sparse csr_matrix.

Returns

score [array, shape = [n_samples, n_classes] or [n_samples]] The decision function of the
input samples. The order of the classes corresponds to that in the attribute classes_. Re-
gression and binary classification produce an array of shape [n_samples].

fit(X, y, groups=None)

Fit the RFE model and automatically tune the number of selected features.

Parameters

1976 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training vector, where
n_samples is the number of samples and n_features is the total number of features.

y [array-like of shape (n_samples,)] Target values (integers for classification, real numbers
for regression).

groups [array-like of shape (n_samples,) or None] Group labels for the samples used while
splitting the dataset into train/test set. Only used in conjunction with a “Group” cv instance
(e.g., GroupKFold).

New in version 0.20.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

get_support(indices=False)
Get a mask, or integer index, of the features selected

Parameters

indices [boolean (default False)] If True, the return value will be an array of integers, rather
than a boolean mask.

Returns

support [array] An index that selects the retained features from a feature vector. If
indices is False, this is a boolean array of shape [# input features], in which an ele-
ment is True iff its corresponding feature is selected for retention. If indices is True,
this is an integer array of shape [# output features] whose values are indices into the input
feature vector.

inverse_transform(X)
Reverse the transformation operation

Parameters

X [array of shape [n_samples, n_selected_features]] The input samples.

Returns

7.15. sklearn.feature_selection: Feature Selection 1977

scikit-learn user guide, Release 0.23.2

X_r [array of shape [n_samples, n_original_features]] X with columns of zeros inserted
where features would have been removed by transform.

predict(X)

Reduce X to the selected features and then predict using the underlying estimator.

Parameters

X [array of shape [n_samples, n_features]] The input samples.

Returns

y [array of shape [n_samples]] The predicted target values.

predict_log_proba(X)
Predict class log-probabilities for X.

Parameters

X [array of shape [n_samples, n_features]] The input samples.

Returns

p [array of shape (n_samples, n_classes)] The class log-probabilities of the input samples.
The order of the classes corresponds to that in the attribute classes_.

predict_proba(X)
Predict class probabilities for X.

Parameters

X [{array-like or sparse matrix} of shape (n_samples, n_features)] The input samples. In-
ternally, it will be converted to dtype=np.float32 and if a sparse matrix is provided
to a sparse csr_matrix.

Returns

p [array of shape (n_samples, n_classes)] The class probabilities of the input samples. The
order of the classes corresponds to that in the attribute classes_.

score(X, y)

Reduce X to the selected features and then return the score of the underlying estimator.

Parameters

X [array of shape [n_samples, n_features]] The input samples.

y [array of shape [n_samples]] The target values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

1978 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

transform(X)
Reduce X to the selected features.

Parameters

X [array of shape [n_samples, n_features]] The input samples.

Returns

X_r [array of shape [n_samples, n_selected_features]] The input samples with only the se-
lected features.

Examples using sklearn.feature_selection.RFECV

• Recursive feature elimination with cross-validation

7.15.10 sklearn.feature_selection.VarianceThreshold

class sklearn.feature_selection.VarianceThreshold(threshold=0.0)
Feature selector that removes all low-variance features.

This feature selection algorithm looks only at the features (X), not the desired outputs (y), and can thus be used
for unsupervised learning.

Read more in the User Guide.

Parameters

threshold [float, optional] Features with a training-set variance lower than this threshold will be
removed. The default is to keep all features with non-zero variance, i.e. remove the features
that have the same value in all samples.

Attributes

variances_ [array, shape (n_features,)] Variances of individual features.

Notes

Allows NaN in the input.

Examples

The following dataset has integer features, two of which are the same in every sample. These are removed with
the default setting for threshold:

>>> X = [[0, 2, 0, 3], [0, 1, 4, 3], [0, 1, 1, 3]]
>>> selector = VarianceThreshold()
>>> selector.fit_transform(X)
array([[2, 0],

[1, 4],
[1, 1]])

Methods

7.15. sklearn.feature_selection: Feature Selection 1979

scikit-learn user guide, Release 0.23.2

fit(X[, y]) Learn empirical variances from X.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
get_support([indices]) Get a mask, or integer index, of the features selected
inverse_transform(X) Reverse the transformation operation
set_params(**params) Set the parameters of this estimator.
transform(X) Reduce X to the selected features.

__init__(threshold=0.0)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Learn empirical variances from X.

Parameters

X [{array-like, sparse matrix}, shape (n_samples, n_features)] Sample vectors from which
to compute variances.

y [any] Ignored. This parameter exists only for compatibility with sklearn.pipeline.Pipeline.

Returns

self

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

get_support(indices=False)
Get a mask, or integer index, of the features selected

Parameters

indices [boolean (default False)] If True, the return value will be an array of integers, rather
than a boolean mask.

Returns

1980 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

support [array] An index that selects the retained features from a feature vector. If
indices is False, this is a boolean array of shape [# input features], in which an ele-
ment is True iff its corresponding feature is selected for retention. If indices is True,
this is an integer array of shape [# output features] whose values are indices into the input
feature vector.

inverse_transform(X)
Reverse the transformation operation

Parameters

X [array of shape [n_samples, n_selected_features]] The input samples.

Returns

X_r [array of shape [n_samples, n_original_features]] X with columns of zeros inserted
where features would have been removed by transform.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Reduce X to the selected features.

Parameters

X [array of shape [n_samples, n_features]] The input samples.

Returns

X_r [array of shape [n_samples, n_selected_features]] The input samples with only the se-
lected features.

feature_selection.chi2(X, y) Compute chi-squared stats between each non-negative
feature and class.

feature_selection.f_classif(X, y) Compute the ANOVA F-value for the provided sample.
feature_selection.f_regression(X, y, *[,
center])

Univariate linear regression tests.

feature_selection.
mutual_info_classif(X, y, *)

Estimate mutual information for a discrete target vari-
able.

feature_selection.
mutual_info_regression(X, y, *)

Estimate mutual information for a continuous target
variable.

7.15.11 sklearn.feature_selection.chi2

sklearn.feature_selection.chi2(X, y)
Compute chi-squared stats between each non-negative feature and class.

This score can be used to select the n_features features with the highest values for the test chi-squared statistic

7.15. sklearn.feature_selection: Feature Selection 1981

scikit-learn user guide, Release 0.23.2

from X, which must contain only non-negative features such as booleans or frequencies (e.g., term counts in
document classification), relative to the classes.

Recall that the chi-square test measures dependence between stochastic variables, so using this function “weeds
out” the features that are the most likely to be independent of class and therefore irrelevant for classification.

Read more in the User Guide.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Sample vectors.

y [array-like of shape (n_samples,)] Target vector (class labels).

Returns

chi2 [array, shape = (n_features,)] chi2 statistics of each feature.

pval [array, shape = (n_features,)] p-values of each feature.

See also:

f_classif ANOVA F-value between label/feature for classification tasks.

f_regression F-value between label/feature for regression tasks.

Notes

Complexity of this algorithm is O(n_classes * n_features).

Examples using sklearn.feature_selection.chi2

• Selecting dimensionality reduction with Pipeline and GridSearchCV

• SVM-Anova: SVM with univariate feature selection

• Classification of text documents using sparse features

7.15.12 sklearn.feature_selection.f_classif

sklearn.feature_selection.f_classif(X, y)
Compute the ANOVA F-value for the provided sample.

Read more in the User Guide.

Parameters

X [{array-like, sparse matrix} shape = [n_samples, n_features]] The set of regressors that will
be tested sequentially.

y [array of shape(n_samples)] The data matrix.

Returns

F [array, shape = [n_features,]] The set of F values.

pval [array, shape = [n_features,]] The set of p-values.

See also:

chi2 Chi-squared stats of non-negative features for classification tasks.

1982 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

f_regression F-value between label/feature for regression tasks.

Examples using sklearn.feature_selection.f_classif

• Univariate Feature Selection

7.15.13 sklearn.feature_selection.f_regression

sklearn.feature_selection.f_regression(X, y, *, center=True)
Univariate linear regression tests.

Linear model for testing the individual effect of each of many regressors. This is a scoring function to be used
in a feature selection procedure, not a free standing feature selection procedure.

This is done in 2 steps:

1. The correlation between each regressor and the target is computed, that is, ((X[:, i] - mean(X[:, i])) * (y -
mean_y)) / (std(X[:, i]) * std(y)).

2. It is converted to an F score then to a p-value.

For more on usage see the User Guide.

Parameters

X [{array-like, sparse matrix} shape = (n_samples, n_features)] The set of regressors that will
be tested sequentially.

y [array of shape(n_samples).] The data matrix

center [True, bool,] If true, X and y will be centered.

Returns

F [array, shape=(n_features,)] F values of features.

pval [array, shape=(n_features,)] p-values of F-scores.

See also:

mutual_info_regression Mutual information for a continuous target.

f_classif ANOVA F-value between label/feature for classification tasks.

chi2 Chi-squared stats of non-negative features for classification tasks.

SelectKBest Select features based on the k highest scores.

SelectFpr Select features based on a false positive rate test.

SelectFdr Select features based on an estimated false discovery rate.

SelectFwe Select features based on family-wise error rate.

SelectPercentile Select features based on percentile of the highest scores.

Examples using sklearn.feature_selection.f_regression

• Feature agglomeration vs. univariate selection

• Comparison of F-test and mutual information

• Pipeline Anova SVM

7.15. sklearn.feature_selection: Feature Selection 1983

scikit-learn user guide, Release 0.23.2

7.15.14 sklearn.feature_selection.mutual_info_classif

sklearn.feature_selection.mutual_info_classif(X, y, *, discrete_features=’auto’,
n_neighbors=3, copy=True, ran-
dom_state=None)

Estimate mutual information for a discrete target variable.

Mutual information (MI) [1] between two random variables is a non-negative value, which measures the depen-
dency between the variables. It is equal to zero if and only if two random variables are independent, and higher
values mean higher dependency.

The function relies on nonparametric methods based on entropy estimation from k-nearest neighbors distances
as described in [2] and [3]. Both methods are based on the idea originally proposed in [4].

It can be used for univariate features selection, read more in the User Guide.

Parameters

X [array_like or sparse matrix, shape (n_samples, n_features)] Feature matrix.

y [array_like, shape (n_samples,)] Target vector.

discrete_features [{‘auto’, bool, array_like}, default ‘auto’] If bool, then determines whether
to consider all features discrete or continuous. If array, then it should be either a boolean
mask with shape (n_features,) or array with indices of discrete features. If ‘auto’, it is
assigned to False for dense X and to True for sparse X.

n_neighbors [int, default 3] Number of neighbors to use for MI estimation for continuous vari-
ables, see [2] and [3]. Higher values reduce variance of the estimation, but could introduce
a bias.

copy [bool, default True] Whether to make a copy of the given data. If set to False, the initial
data will be overwritten.

random_state [int, RandomState instance or None, optional, default None] Determines ran-
dom number generation for adding small noise to continuous variables in order to remove
repeated values. Pass an int for reproducible results across multiple function calls. See
Glossary.

Returns

mi [ndarray, shape (n_features,)] Estimated mutual information between each feature and the
target.

Notes

1. The term “discrete features” is used instead of naming them “categorical”, because it describes the essence
more accurately. For example, pixel intensities of an image are discrete features (but hardly categorical)
and you will get better results if mark them as such. Also note, that treating a continuous variable as
discrete and vice versa will usually give incorrect results, so be attentive about that.

2. True mutual information can’t be negative. If its estimate turns out to be negative, it is replaced by zero.

References

[1], [2], [3], [4]

1984 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

7.15.15 sklearn.feature_selection.mutual_info_regression

sklearn.feature_selection.mutual_info_regression(X, y, *, discrete_features=’auto’,
n_neighbors=3, copy=True, ran-
dom_state=None)

Estimate mutual information for a continuous target variable.

Mutual information (MI) [1] between two random variables is a non-negative value, which measures the depen-
dency between the variables. It is equal to zero if and only if two random variables are independent, and higher
values mean higher dependency.

The function relies on nonparametric methods based on entropy estimation from k-nearest neighbors distances
as described in [2] and [3]. Both methods are based on the idea originally proposed in [4].

It can be used for univariate features selection, read more in the User Guide.

Parameters

X [array_like or sparse matrix, shape (n_samples, n_features)] Feature matrix.

y [array_like, shape (n_samples,)] Target vector.

discrete_features [{‘auto’, bool, array_like}, default ‘auto’] If bool, then determines whether
to consider all features discrete or continuous. If array, then it should be either a boolean
mask with shape (n_features,) or array with indices of discrete features. If ‘auto’, it is
assigned to False for dense X and to True for sparse X.

n_neighbors [int, default 3] Number of neighbors to use for MI estimation for continuous vari-
ables, see [2] and [3]. Higher values reduce variance of the estimation, but could introduce
a bias.

copy [bool, default True] Whether to make a copy of the given data. If set to False, the initial
data will be overwritten.

random_state [int, RandomState instance or None, optional, default None] Determines ran-
dom number generation for adding small noise to continuous variables in order to remove
repeated values. Pass an int for reproducible results across multiple function calls. See
Glossary.

Returns

mi [ndarray, shape (n_features,)] Estimated mutual information between each feature and the
target.

Notes

1. The term “discrete features” is used instead of naming them “categorical”, because it describes the essence
more accurately. For example, pixel intensities of an image are discrete features (but hardly categorical)
and you will get better results if mark them as such. Also note, that treating a continuous variable as
discrete and vice versa will usually give incorrect results, so be attentive about that.

2. True mutual information can’t be negative. If its estimate turns out to be negative, it is replaced by zero.

References

[1], [2], [3], [4]

7.15. sklearn.feature_selection: Feature Selection 1985

scikit-learn user guide, Release 0.23.2

Examples using sklearn.feature_selection.mutual_info_regression

• Comparison of F-test and mutual information

7.16 sklearn.gaussian_process: Gaussian Processes

The sklearn.gaussian_process module implements Gaussian Process based regression and classification.

User guide: See the Gaussian Processes section for further details.

gaussian_process.
GaussianProcessClassifier([. . .])

Gaussian process classification (GPC) based on Laplace
approximation.

gaussian_process.
GaussianProcessRegressor([. . .])

Gaussian process regression (GPR).

7.16.1 sklearn.gaussian_process.GaussianProcessClassifier

class sklearn.gaussian_process.GaussianProcessClassifier(kernel=None, *, opti-
mizer=’fmin_l_bfgs_b’,
n_restarts_optimizer=0,
max_iter_predict=100,
warm_start=False,
copy_X_train=True,
random_state=None,
multi_class=’one_vs_rest’,
n_jobs=None)

Gaussian process classification (GPC) based on Laplace approximation.

The implementation is based on Algorithm 3.1, 3.2, and 5.1 of Gaussian Processes for Machine Learning
(GPML) by Rasmussen and Williams.

Internally, the Laplace approximation is used for approximating the non-Gaussian posterior by a Gaussian.

Currently, the implementation is restricted to using the logistic link function. For multi-class classification,
several binary one-versus rest classifiers are fitted. Note that this class thus does not implement a true multi-
class Laplace approximation.

Read more in the User Guide.

Parameters

kernel [kernel instance, default=None] The kernel specifying the covariance function of the
GP. If None is passed, the kernel “1.0 * RBF(1.0)” is used as default. Note that the kernel’s
hyperparameters are optimized during fitting.

optimizer [‘fmin_l_bfgs_b’ or callable, default=’fmin_l_bfgs_b’] Can either be one of the in-
ternally supported optimizers for optimizing the kernel’s parameters, specified by a string,
or an externally defined optimizer passed as a callable. If a callable is passed, it must have
the signature:

def optimizer(obj_func, initial_theta, bounds):
* 'obj_func' is the objective function to be maximized, which
takes the hyperparameters theta as parameter and an
optional flag eval_gradient, which determines if the
gradient is returned additionally to the function value

(continues on next page)

1986 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

(continued from previous page)

* 'initial_theta': the initial value for theta, which can be
used by local optimizers
* 'bounds': the bounds on the values of theta
....
Returned are the best found hyperparameters theta and
the corresponding value of the target function.
return theta_opt, func_min

Per default, the ‘L-BFGS-B’ algorithm from scipy.optimize.minimize is used. If None is
passed, the kernel’s parameters are kept fixed. Available internal optimizers are:

'fmin_l_bfgs_b'

n_restarts_optimizer [int, default=0] The number of restarts of the optimizer for finding the
kernel’s parameters which maximize the log-marginal likelihood. The first run of the op-
timizer is performed from the kernel’s initial parameters, the remaining ones (if any) from
thetas sampled log-uniform randomly from the space of allowed theta-values. If greater
than 0, all bounds must be finite. Note that n_restarts_optimizer=0 implies that one run is
performed.

max_iter_predict [int, default=100] The maximum number of iterations in Newton’s method
for approximating the posterior during predict. Smaller values will reduce computation time
at the cost of worse results.

warm_start [bool, default=False] If warm-starts are enabled, the solution of the last Newton
iteration on the Laplace approximation of the posterior mode is used as initialization for
the next call of _posterior_mode(). This can speed up convergence when _posterior_mode
is called several times on similar problems as in hyperparameter optimization. See the
Glossary.

copy_X_train [bool, default=True] If True, a persistent copy of the training data is stored in
the object. Otherwise, just a reference to the training data is stored, which might cause
predictions to change if the data is modified externally.

random_state [int or RandomState, default=None] Determines random number generation
used to initialize the centers. Pass an int for reproducible results across multiple function
calls. See :term: Glossary <random_state>.

multi_class [{‘one_vs_rest’, ‘one_vs_one’}, default=’one_vs_rest’] Specifies how multi-class
classification problems are handled. Supported are ‘one_vs_rest’ and ‘one_vs_one’. In
‘one_vs_rest’, one binary Gaussian process classifier is fitted for each class, which is trained
to separate this class from the rest. In ‘one_vs_one’, one binary Gaussian process classifier is
fitted for each pair of classes, which is trained to separate these two classes. The predictions
of these binary predictors are combined into multi-class predictions. Note that ‘one_vs_one’
does not support predicting probability estimates.

n_jobs [int, default=None] The number of jobs to use for the computation. None means 1
unless in a joblib.parallel_backend context. -1 means using all processors. See
Glossary for more details.

Attributes

kernel_ [kernel instance] The kernel used for prediction. In case of binary classification, the
structure of the kernel is the same as the one passed as parameter but with optimized hy-
perparameters. In case of multi-class classification, a CompoundKernel is returned which
consists of the different kernels used in the one-versus-rest classifiers.

7.16. sklearn.gaussian_process: Gaussian Processes 1987

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

log_marginal_likelihood_value_ [float] The log-marginal-likelihood of self.kernel_.
theta

classes_ [array-like of shape (n_classes,)] Unique class labels.

n_classes_ [int] The number of classes in the training data

Examples

>>> from sklearn.datasets import load_iris
>>> from sklearn.gaussian_process import GaussianProcessClassifier
>>> from sklearn.gaussian_process.kernels import RBF
>>> X, y = load_iris(return_X_y=True)
>>> kernel = 1.0 * RBF(1.0)
>>> gpc = GaussianProcessClassifier(kernel=kernel,
... random_state=0).fit(X, y)
>>> gpc.score(X, y)
0.9866...
>>> gpc.predict_proba(X[:2,:])
array([[0.83548752, 0.03228706, 0.13222543],

[0.79064206, 0.06525643, 0.14410151]])

New in version 0.18.

Methods

fit(X, y) Fit Gaussian process classification model
get_params([deep]) Get parameters for this estimator.
log_marginal_likelihood([theta, . . .]) Returns log-marginal likelihood of theta for training

data.
predict(X) Perform classification on an array of test vectors X.
predict_proba(X) Return probability estimates for the test vector X.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(kernel=None, *, optimizer=’fmin_l_bfgs_b’, n_restarts_optimizer=0,
max_iter_predict=100, warm_start=False, copy_X_train=True, random_state=None,
multi_class=’one_vs_rest’, n_jobs=None)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y)
Fit Gaussian process classification model

Parameters

X [array-like of shape (n_samples, n_features) or list of object] Feature vectors or other
representations of training data.

y [array-like of shape (n_samples,)] Target values, must be binary

Returns

self [returns an instance of self.]

get_params(deep=True)
Get parameters for this estimator.

1988 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

log_marginal_likelihood(theta=None, eval_gradient=False, clone_kernel=True)
Returns log-marginal likelihood of theta for training data.

In the case of multi-class classification, the mean log-marginal likelihood of the one-versus-rest classifiers
are returned.

Parameters

theta [array-like of shape (n_kernel_params,), default=None] Kernel hyperparameters for
which the log-marginal likelihood is evaluated. In the case of multi-class classification,
theta may be the hyperparameters of the compound kernel or of an individual kernel.
In the latter case, all individual kernel get assigned the same theta values. If None, the
precomputed log_marginal_likelihood of self.kernel_.theta is returned.

eval_gradient [bool, default=False] If True, the gradient of the log-marginal likelihood with
respect to the kernel hyperparameters at position theta is returned additionally. Note that
gradient computation is not supported for non-binary classification. If True, theta must not
be None.

clone_kernel [bool, default=True] If True, the kernel attribute is copied. If False, the kernel
attribute is modified, but may result in a performance improvement.

Returns

log_likelihood [float] Log-marginal likelihood of theta for training data.

log_likelihood_gradient [ndarray of shape (n_kernel_params,), optional] Gradient of the
log-marginal likelihood with respect to the kernel hyperparameters at position theta. Only
returned when eval_gradient is True.

predict(X)
Perform classification on an array of test vectors X.

Parameters

X [array-like of shape (n_samples, n_features) or list of object] Query points where the GP
is evaluated for classification.

Returns

C [ndarray of shape (n_samples,)] Predicted target values for X, values are from classes_

predict_proba(X)
Return probability estimates for the test vector X.

Parameters

X [array-like of shape (n_samples, n_features) or list of object] Query points where the GP
is evaluated for classification.

Returns

C [array-like of shape (n_samples, n_classes)] Returns the probability of the samples for
each class in the model. The columns correspond to the classes in sorted order, as they
appear in the attribute classes_.

7.16. sklearn.gaussian_process: Gaussian Processes 1989

scikit-learn user guide, Release 0.23.2

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.gaussian_process.GaussianProcessClassifier

• Plot classification probability

• Classifier comparison

• Illustration of Gaussian process classification (GPC) on the XOR dataset

• Gaussian process classification (GPC) on iris dataset

• Iso-probability lines for Gaussian Processes classification (GPC)

• Probabilistic predictions with Gaussian process classification (GPC)

• Gaussian processes on discrete data structures

7.16.2 sklearn.gaussian_process.GaussianProcessRegressor

class sklearn.gaussian_process.GaussianProcessRegressor(kernel=None, *,
alpha=1e-10, opti-
mizer=’fmin_l_bfgs_b’,
n_restarts_optimizer=0,
normalize_y=False,
copy_X_train=True,
random_state=None)

Gaussian process regression (GPR).

The implementation is based on Algorithm 2.1 of Gaussian Processes for Machine Learning (GPML) by Ras-
mussen and Williams.

1990 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

In addition to standard scikit-learn estimator API, GaussianProcessRegressor:

• allows prediction without prior fitting (based on the GP prior)

• provides an additional method sample_y(X), which evaluates samples drawn from the GPR (prior or pos-
terior) at given inputs

• exposes a method log_marginal_likelihood(theta), which can be used externally for other ways of selecting
hyperparameters, e.g., via Markov chain Monte Carlo.

Read more in the User Guide.

New in version 0.18.

Parameters

kernel [kernel instance, default=None] The kernel specifying the covariance function of the
GP. If None is passed, the kernel “1.0 * RBF(1.0)” is used as default. Note that the kernel’s
hyperparameters are optimized during fitting.

alpha [float or array-like of shape (n_samples), default=1e-10] Value added to the diagonal of
the kernel matrix during fitting. Larger values correspond to increased noise level in the
observations. This can also prevent a potential numerical issue during fitting, by ensuring
that the calculated values form a positive definite matrix. If an array is passed, it must have
the same number of entries as the data used for fitting and is used as datapoint-dependent
noise level. Note that this is equivalent to adding a WhiteKernel with c=alpha. Allowing to
specify the noise level directly as a parameter is mainly for convenience and for consistency
with Ridge.

optimizer [“fmin_l_bfgs_b” or callable, default=”fmin_l_bfgs_b”] Can either be one of the
internally supported optimizers for optimizing the kernel’s parameters, specified by a string,
or an externally defined optimizer passed as a callable. If a callable is passed, it must have
the signature:

def optimizer(obj_func, initial_theta, bounds):
* 'obj_func' is the objective function to be minimized, which
takes the hyperparameters theta as parameter and an
optional flag eval_gradient, which determines if the
gradient is returned additionally to the function value
* 'initial_theta': the initial value for theta, which can be
used by local optimizers
* 'bounds': the bounds on the values of theta
....
Returned are the best found hyperparameters theta and
the corresponding value of the target function.
return theta_opt, func_min

Per default, the ‘L-BGFS-B’ algorithm from scipy.optimize.minimize is used. If None is
passed, the kernel’s parameters are kept fixed. Available internal optimizers are:

'fmin_l_bfgs_b'

n_restarts_optimizer [int, default=0] The number of restarts of the optimizer for finding the
kernel’s parameters which maximize the log-marginal likelihood. The first run of the op-
timizer is performed from the kernel’s initial parameters, the remaining ones (if any) from
thetas sampled log-uniform randomly from the space of allowed theta-values. If greater
than 0, all bounds must be finite. Note that n_restarts_optimizer == 0 implies that one run
is performed.

7.16. sklearn.gaussian_process: Gaussian Processes 1991

scikit-learn user guide, Release 0.23.2

normalize_y [boolean, optional (default: False)] Whether the target values y are normalized,
the mean and variance of the target values are set equal to 0 and 1 respectively. This is
recommended for cases where zero-mean, unit-variance priors are used. Note that, in this
implementation, the normalisation is reversed before the GP predictions are reported.

Changed in version 0.23.

copy_X_train [bool, default=True] If True, a persistent copy of the training data is stored in
the object. Otherwise, just a reference to the training data is stored, which might cause
predictions to change if the data is modified externally.

random_state [int or RandomState, default=None] Determines random number generation
used to initialize the centers. Pass an int for reproducible results across multiple function
calls. See :term: Glossary <random_state>.

Attributes

X_train_ [array-like of shape (n_samples, n_features) or list of object] Feature vectors or other
representations of training data (also required for prediction).

y_train_ [array-like of shape (n_samples,) or (n_samples, n_targets)] Target values in training
data (also required for prediction)

kernel_ [kernel instance] The kernel used for prediction. The structure of the kernel is the same
as the one passed as parameter but with optimized hyperparameters

L_ [array-like of shape (n_samples, n_samples)] Lower-triangular Cholesky decomposition of
the kernel in X_train_

alpha_ [array-like of shape (n_samples,)] Dual coefficients of training data points in kernel
space

log_marginal_likelihood_value_ [float] The log-marginal-likelihood of self.kernel_.
theta

Examples

>>> from sklearn.datasets import make_friedman2
>>> from sklearn.gaussian_process import GaussianProcessRegressor
>>> from sklearn.gaussian_process.kernels import DotProduct, WhiteKernel
>>> X, y = make_friedman2(n_samples=500, noise=0, random_state=0)
>>> kernel = DotProduct() + WhiteKernel()
>>> gpr = GaussianProcessRegressor(kernel=kernel,
... random_state=0).fit(X, y)
>>> gpr.score(X, y)
0.3680...
>>> gpr.predict(X[:2,:], return_std=True)
(array([653.0..., 592.1...]), array([316.6..., 316.6...]))

Methods

fit(X, y) Fit Gaussian process regression model.
get_params([deep]) Get parameters for this estimator.
log_marginal_likelihood([theta, . . .]) Returns log-marginal likelihood of theta for training

data.
predict(X[, return_std, return_cov]) Predict using the Gaussian process regression model

Continued on next page

1992 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Table 120 – continued from previous page
sample_y(X[, n_samples, random_state]) Draw samples from Gaussian process and evaluate at

X.
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.

__init__(kernel=None, *, alpha=1e-10, optimizer=’fmin_l_bfgs_b’, n_restarts_optimizer=0, normal-
ize_y=False, copy_X_train=True, random_state=None)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y)
Fit Gaussian process regression model.

Parameters

X [array-like of shape (n_samples, n_features) or list of object] Feature vectors or other
representations of training data.

y [array-like of shape (n_samples,) or (n_samples, n_targets)] Target values

Returns

self [returns an instance of self.]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

log_marginal_likelihood(theta=None, eval_gradient=False, clone_kernel=True)
Returns log-marginal likelihood of theta for training data.

Parameters

theta [array-like of shape (n_kernel_params,) default=None] Kernel hyperparameters
for which the log-marginal likelihood is evaluated. If None, the precomputed
log_marginal_likelihood of self.kernel_.theta is returned.

eval_gradient [bool, default=False] If True, the gradient of the log-marginal likelihood with
respect to the kernel hyperparameters at position theta is returned additionally. If True,
theta must not be None.

clone_kernel [bool, default=True] If True, the kernel attribute is copied. If False, the kernel
attribute is modified, but may result in a performance improvement.

Returns

log_likelihood [float] Log-marginal likelihood of theta for training data.

log_likelihood_gradient [ndarray of shape (n_kernel_params,), optional] Gradient of the
log-marginal likelihood with respect to the kernel hyperparameters at position theta. Only
returned when eval_gradient is True.

predict(X, return_std=False, return_cov=False)
Predict using the Gaussian process regression model

7.16. sklearn.gaussian_process: Gaussian Processes 1993

scikit-learn user guide, Release 0.23.2

We can also predict based on an unfitted model by using the GP prior. In addition to the mean of the pre-
dictive distribution, also its standard deviation (return_std=True) or covariance (return_cov=True). Note
that at most one of the two can be requested.

Parameters

X [array-like of shape (n_samples, n_features) or list of object] Query points where the GP
is evaluated.

return_std [bool, default=False] If True, the standard-deviation of the predictive distribu-
tion at the query points is returned along with the mean.

return_cov [bool, default=False] If True, the covariance of the joint predictive distribution
at the query points is returned along with the mean

Returns

y_mean [ndarray of shape (n_samples, [n_output_dims])] Mean of predictive distribution a
query points

y_std [ndarray of shape (n_samples,), optional] Standard deviation of predictive distribution
at query points. Only returned when return_std is True.

y_cov [ndarray of shape (n_samples, n_samples), optional] Covariance of joint predictive
distribution a query points. Only returned when return_cov is True.

sample_y(X, n_samples=1, random_state=0)
Draw samples from Gaussian process and evaluate at X.

Parameters

X [array-like of shape (n_samples, n_features) or list of object] Query points where the GP
is evaluated.

n_samples [int, default=1] The number of samples drawn from the Gaussian process

random_state [int, RandomState, default=0] Determines random number generation to ran-
domly draw samples. Pass an int for reproducible results across multiple function calls.
See :term: Glossary <random_state>.

Returns

y_samples [ndarray of shape (n_samples_X, [n_output_dims], n_samples)] Values of
n_samples samples drawn from Gaussian process and evaluated at query points.

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

1994 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.gaussian_process.GaussianProcessRegressor

• Comparison of kernel ridge and Gaussian process regression

• Illustration of prior and posterior Gaussian process for different kernels

• Gaussian process regression (GPR) with noise-level estimation

• Gaussian Processes regression: basic introductory example

• Gaussian process regression (GPR) on Mauna Loa CO2 data.

• Gaussian processes on discrete data structures

Kernels:

gaussian_process.kernels.
CompoundKernel(kernels)

Kernel which is composed of a set of other kernels.

gaussian_process.kernels.
ConstantKernel([. . .])

Constant kernel.

gaussian_process.kernels.
DotProduct([. . .])

Dot-Product kernel.

gaussian_process.kernels.
ExpSineSquared([. . .])

Exp-Sine-Squared kernel (aka periodic kernel).

gaussian_process.kernels.
Exponentiation(. . .)

The Exponentiation kernel takes one base kernel and a
scalar parameter 𝑝 and combines them via

gaussian_process.kernels.
Hyperparameter

A kernel hyperparameter’s specification in form of a
namedtuple.

gaussian_process.kernels.Kernel Base class for all kernels.
gaussian_process.kernels.Matern([. . .]) Matern kernel.
gaussian_process.kernels.
PairwiseKernel([. . .])

Wrapper for kernels in sklearn.metrics.pairwise.

gaussian_process.kernels.Product(k1,
k2)

The Product kernel takes two kernels 𝑘1 and 𝑘2 and
combines them via

Continued on next page

7.16. sklearn.gaussian_process: Gaussian Processes 1995

scikit-learn user guide, Release 0.23.2

Table 121 – continued from previous page
gaussian_process.kernels.
RBF([length_scale, . . .])

Radial-basis function kernel (aka squared-exponential
kernel).

gaussian_process.kernels.
RationalQuadratic([. . .])

Rational Quadratic kernel.

gaussian_process.kernels.Sum(k1, k2) The Sum kernel takes two kernels 𝑘1 and 𝑘2 and com-
bines them via

gaussian_process.kernels.
WhiteKernel([. . .])

White kernel.

7.16.3 sklearn.gaussian_process.kernels.CompoundKernel

class sklearn.gaussian_process.kernels.CompoundKernel(kernels)
Kernel which is composed of a set of other kernels.

New in version 0.18.

Parameters

kernels [list of Kernels] The other kernels

Attributes

bounds Returns the log-transformed bounds on the theta.

hyperparameters Returns a list of all hyperparameter specifications.

n_dims Returns the number of non-fixed hyperparameters of the kernel.

requires_vector_input Returns whether the kernel is defined on discrete structures.

theta Returns the (flattened, log-transformed) non-fixed hyperparameters.

Methods

__call__(X[, Y, eval_gradient]) Return the kernel k(X, Y) and optionally its gradient.
clone_with_theta(theta) Returns a clone of self with given hyperparameters

theta.
diag(X) Returns the diagonal of the kernel k(X, X).
get_params([deep]) Get parameters of this kernel.
is_stationary() Returns whether the kernel is stationary.
set_params(**params) Set the parameters of this kernel.

__init__(kernels)
Initialize self. See help(type(self)) for accurate signature.

__call__(X, Y=None, eval_gradient=False)
Return the kernel k(X, Y) and optionally its gradient.

Note that this compound kernel returns the results of all simple kernel stacked along an additional axis.

Parameters

X [array-like of shape (n_samples_X, n_features) or list of object, default=None] Left argu-
ment of the returned kernel k(X, Y)

Y [array-like of shape (n_samples_X, n_features) or list of object, default=None] Right ar-
gument of the returned kernel k(X, Y). If None, k(X, X) is evaluated instead.

1996 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

eval_gradient [bool, default=False] Determines whether the gradient with respect to the
kernel hyperparameter is determined.

Returns

K [ndarray of shape (n_samples_X, n_samples_Y, n_kernels)] Kernel k(X, Y)

K_gradient [ndarray of shape (n_samples_X, n_samples_X, n_dims, n_kernels), optional]
The gradient of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only
returned when eval_gradient is True.

property bounds
Returns the log-transformed bounds on the theta.

Returns

bounds [array of shape (n_dims, 2)] The log-transformed bounds on the kernel’s hyperpa-
rameters theta

clone_with_theta(theta)
Returns a clone of self with given hyperparameters theta.

Parameters

theta [ndarray of shape (n_dims,)] The hyperparameters

diag(X)
Returns the diagonal of the kernel k(X, X).

The result of this method is identical to np.diag(self(X)); however, it can be evaluated more effi-
ciently since only the diagonal is evaluated.

Parameters

X [array-like of shape (n_samples_X, n_features) or list of object] Argument to the kernel.

Returns

K_diag [ndarray of shape (n_samples_X, n_kernels)] Diagonal of kernel k(X, X)

get_params(deep=True)
Get parameters of this kernel.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [dict] Parameter names mapped to their values.

property hyperparameters
Returns a list of all hyperparameter specifications.

is_stationary()
Returns whether the kernel is stationary.

property n_dims
Returns the number of non-fixed hyperparameters of the kernel.

property requires_vector_input
Returns whether the kernel is defined on discrete structures.

set_params(**params)
Set the parameters of this kernel.

7.16. sklearn.gaussian_process: Gaussian Processes 1997

scikit-learn user guide, Release 0.23.2

The method works on simple kernels as well as on nested kernels. The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component of a nested object.

Returns

self

property theta
Returns the (flattened, log-transformed) non-fixed hyperparameters.

Note that theta are typically the log-transformed values of the kernel’s hyperparameters as this representa-
tion of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales
naturally live on a log-scale.

Returns

theta [ndarray of shape (n_dims,)] The non-fixed, log-transformed hyperparameters of the
kernel

7.16.4 sklearn.gaussian_process.kernels.ConstantKernel

class sklearn.gaussian_process.kernels.ConstantKernel(constant_value=1.0,
constant_value_bounds=(1e-
05, 100000.0))

Constant kernel.

Can be used as part of a product-kernel where it scales the magnitude of the other factor (kernel) or as part of a
sum-kernel, where it modifies the mean of the Gaussian process.

𝑘(𝑥1, 𝑥2) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡_𝑣𝑎𝑙𝑢𝑒 ∀ 𝑥1, 𝑥2

Adding a constant kernel is equivalent to adding a constant:

kernel = RBF() + ConstantKernel(constant_value=2)

is the same as:

kernel = RBF() + 2

Read more in the User Guide.

New in version 0.18.

Parameters

constant_value [float, default=1.0] The constant value which defines the covariance: k(x_1,
x_2) = constant_value

constant_value_bounds [pair of floats >= 0 or “fixed”, default=(1e-5, 1e5)] The lower and
upper bound on constant_value. If set to “fixed”, constant_value cannot be
changed during hyperparameter tuning.

Attributes

bounds Returns the log-transformed bounds on the theta.

hyperparameter_constant_value

hyperparameters Returns a list of all hyperparameter specifications.

n_dims Returns the number of non-fixed hyperparameters of the kernel.

requires_vector_input Whether the kernel works only on fixed-length feature vectors.

1998 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

theta Returns the (flattened, log-transformed) non-fixed hyperparameters.

Examples

>>> from sklearn.datasets import make_friedman2
>>> from sklearn.gaussian_process import GaussianProcessRegressor
>>> from sklearn.gaussian_process.kernels import RBF, ConstantKernel
>>> X, y = make_friedman2(n_samples=500, noise=0, random_state=0)
>>> kernel = RBF() + ConstantKernel(constant_value=2)
>>> gpr = GaussianProcessRegressor(kernel=kernel, alpha=5,
... random_state=0).fit(X, y)
>>> gpr.score(X, y)
0.3696...
>>> gpr.predict(X[:1,:], return_std=True)
(array([606.1...]), array([0.24...]))

Methods

__call__(X[, Y, eval_gradient]) Return the kernel k(X, Y) and optionally its gradient.
clone_with_theta(theta) Returns a clone of self with given hyperparameters

theta.
diag(X) Returns the diagonal of the kernel k(X, X).
get_params([deep]) Get parameters of this kernel.
is_stationary() Returns whether the kernel is stationary.
set_params(**params) Set the parameters of this kernel.

__init__(constant_value=1.0, constant_value_bounds=(1e-05, 100000.0))
Initialize self. See help(type(self)) for accurate signature.

__call__(X, Y=None, eval_gradient=False)
Return the kernel k(X, Y) and optionally its gradient.

Parameters

X [array-like of shape (n_samples_X, n_features) or list of object] Left argument of the
returned kernel k(X, Y)

Y [array-like of shape (n_samples_X, n_features) or list of object, default=None] Right ar-
gument of the returned kernel k(X, Y). If None, k(X, X) is evaluated instead.

eval_gradient [bool, default=False] Determines whether the gradient with respect to the
kernel hyperparameter is determined. Only supported when Y is None.

Returns

K [ndarray of shape (n_samples_X, n_samples_Y)] Kernel k(X, Y)

K_gradient [ndarray of shape (n_samples_X, n_samples_X, n_dims), optional] The gradi-
ent of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned
when eval_gradient is True.

property bounds
Returns the log-transformed bounds on the theta.

Returns

7.16. sklearn.gaussian_process: Gaussian Processes 1999

scikit-learn user guide, Release 0.23.2

bounds [ndarray of shape (n_dims, 2)] The log-transformed bounds on the kernel’s hyper-
parameters theta

clone_with_theta(theta)
Returns a clone of self with given hyperparameters theta.

Parameters

theta [ndarray of shape (n_dims,)] The hyperparameters

diag(X)
Returns the diagonal of the kernel k(X, X).

The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently
since only the diagonal is evaluated.

Parameters

X [array-like of shape (n_samples_X, n_features) or list of object] Argument to the kernel.

Returns

K_diag [ndarray of shape (n_samples_X,)] Diagonal of kernel k(X, X)

get_params(deep=True)
Get parameters of this kernel.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [dict] Parameter names mapped to their values.

property hyperparameters
Returns a list of all hyperparameter specifications.

is_stationary()
Returns whether the kernel is stationary.

property n_dims
Returns the number of non-fixed hyperparameters of the kernel.

property requires_vector_input
Whether the kernel works only on fixed-length feature vectors.

set_params(**params)
Set the parameters of this kernel.

The method works on simple kernels as well as on nested kernels. The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component of a nested object.

Returns

self

property theta
Returns the (flattened, log-transformed) non-fixed hyperparameters.

Note that theta are typically the log-transformed values of the kernel’s hyperparameters as this representa-
tion of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales
naturally live on a log-scale.

Returns

2000 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

theta [ndarray of shape (n_dims,)] The non-fixed, log-transformed hyperparameters of the
kernel

Examples using sklearn.gaussian_process.kernels.ConstantKernel

• Illustration of prior and posterior Gaussian process for different kernels

• Iso-probability lines for Gaussian Processes classification (GPC)

• Gaussian Processes regression: basic introductory example

7.16.5 sklearn.gaussian_process.kernels.DotProduct

class sklearn.gaussian_process.kernels.DotProduct(sigma_0=1.0,
sigma_0_bounds=(1e-05,
100000.0))

Dot-Product kernel.

The DotProduct kernel is non-stationary and can be obtained from linear regression by putting𝑁(0, 1) priors on
the coefficients of 𝑥𝑑(𝑑 = 1, ..., 𝐷) and a prior of 𝑁(0, 𝜎2

0) on the bias. The DotProduct kernel is invariant to a
rotation of the coordinates about the origin, but not translations. It is parameterized by a parameter sigma_0 𝜎
which controls the inhomogenity of the kernel. For 𝜎2

0 = 0, the kernel is called the homogeneous linear kernel,
otherwise it is inhomogeneous. The kernel is given by

𝑘(𝑥𝑖, 𝑥𝑗) = 𝜎2
0 + 𝑥𝑖 · 𝑥𝑗

The DotProduct kernel is commonly combined with exponentiation.

See [1], Chapter 4, Section 4.2, for further details regarding the DotProduct kernel.

Read more in the User Guide.

New in version 0.18.

Parameters

sigma_0 [float >= 0, default=1.0] Parameter controlling the inhomogenity of the kernel. If
sigma_0=0, the kernel is homogenous.

sigma_0_bounds [pair of floats >= 0 or “fixed”, default=(1e-5, 1e5)] The lower and upper
bound on ‘sigma_0’. If set to “fixed”, ‘sigma_0’ cannot be changed during hyperparameter
tuning.

Attributes

bounds Returns the log-transformed bounds on the theta.

hyperparameter_sigma_0

hyperparameters Returns a list of all hyperparameter specifications.

n_dims Returns the number of non-fixed hyperparameters of the kernel.

requires_vector_input Returns whether the kernel is defined on fixed-length feature
vectors or generic objects.

theta Returns the (flattened, log-transformed) non-fixed hyperparameters.

References

[1]

7.16. sklearn.gaussian_process: Gaussian Processes 2001

scikit-learn user guide, Release 0.23.2

Examples

>>> from sklearn.datasets import make_friedman2
>>> from sklearn.gaussian_process import GaussianProcessRegressor
>>> from sklearn.gaussian_process.kernels import DotProduct, WhiteKernel
>>> X, y = make_friedman2(n_samples=500, noise=0, random_state=0)
>>> kernel = DotProduct() + WhiteKernel()
>>> gpr = GaussianProcessRegressor(kernel=kernel,
... random_state=0).fit(X, y)
>>> gpr.score(X, y)
0.3680...
>>> gpr.predict(X[:2,:], return_std=True)
(array([653.0..., 592.1...]), array([316.6..., 316.6...]))

Methods

__call__(X[, Y, eval_gradient]) Return the kernel k(X, Y) and optionally its gradient.
clone_with_theta(theta) Returns a clone of self with given hyperparameters

theta.
diag(X) Returns the diagonal of the kernel k(X, X).
get_params([deep]) Get parameters of this kernel.
is_stationary() Returns whether the kernel is stationary.
set_params(**params) Set the parameters of this kernel.

__init__(sigma_0=1.0, sigma_0_bounds=(1e-05, 100000.0))
Initialize self. See help(type(self)) for accurate signature.

__call__(X, Y=None, eval_gradient=False)
Return the kernel k(X, Y) and optionally its gradient.

Parameters

X [ndarray of shape (n_samples_X, n_features)] Left argument of the returned kernel k(X,
Y)

Y [ndarray of shape (n_samples_Y, n_features), default=None] Right argument of the re-
turned kernel k(X, Y). If None, k(X, X) if evaluated instead.

eval_gradient [bool, default=False] Determines whether the gradient with respect to the
kernel hyperparameter is determined. Only supported when Y is None.

Returns

K [ndarray of shape (n_samples_X, n_samples_Y)] Kernel k(X, Y)

K_gradient [ndarray of shape (n_samples_X, n_samples_X, n_dims), optional] The gradi-
ent of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned
when eval_gradient is True.

property bounds
Returns the log-transformed bounds on the theta.

Returns

bounds [ndarray of shape (n_dims, 2)] The log-transformed bounds on the kernel’s hyper-
parameters theta

2002 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

clone_with_theta(theta)
Returns a clone of self with given hyperparameters theta.

Parameters

theta [ndarray of shape (n_dims,)] The hyperparameters

diag(X)
Returns the diagonal of the kernel k(X, X).

The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently
since only the diagonal is evaluated.

Parameters

X [ndarray of shape (n_samples_X, n_features)] Left argument of the returned kernel k(X,
Y).

Returns

K_diag [ndarray of shape (n_samples_X,)] Diagonal of kernel k(X, X).

get_params(deep=True)
Get parameters of this kernel.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [dict] Parameter names mapped to their values.

property hyperparameters
Returns a list of all hyperparameter specifications.

is_stationary()
Returns whether the kernel is stationary.

property n_dims
Returns the number of non-fixed hyperparameters of the kernel.

property requires_vector_input
Returns whether the kernel is defined on fixed-length feature vectors or generic objects. Defaults to True
for backward compatibility.

set_params(**params)
Set the parameters of this kernel.

The method works on simple kernels as well as on nested kernels. The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component of a nested object.

Returns

self

property theta
Returns the (flattened, log-transformed) non-fixed hyperparameters.

Note that theta are typically the log-transformed values of the kernel’s hyperparameters as this representa-
tion of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales
naturally live on a log-scale.

Returns

7.16. sklearn.gaussian_process: Gaussian Processes 2003

scikit-learn user guide, Release 0.23.2

theta [ndarray of shape (n_dims,)] The non-fixed, log-transformed hyperparameters of the
kernel

Examples using sklearn.gaussian_process.kernels.DotProduct

• Illustration of Gaussian process classification (GPC) on the XOR dataset

• Illustration of prior and posterior Gaussian process for different kernels

• Iso-probability lines for Gaussian Processes classification (GPC)

7.16.6 sklearn.gaussian_process.kernels.ExpSineSquared

class sklearn.gaussian_process.kernels.ExpSineSquared(length_scale=1.0,
periodicity=1.0,
length_scale_bounds=(1e-
05, 100000.0),
periodicity_bounds=(1e-
05, 100000.0))

Exp-Sine-Squared kernel (aka periodic kernel).

The ExpSineSquared kernel allows one to model functions which repeat themselves exactly. It is parameterized
by a length scale parameter 𝑙 > 0 and a periodicity parameter 𝑝 > 0. Only the isotropic variant where 𝑙 is a
scalar is supported at the moment. The kernel is given by:

𝑘(𝑥𝑖, 𝑥𝑗) = exp
(︂
−2 sin2(𝜋𝑑(𝑥𝑖, 𝑥𝑗)/𝑝)

𝑙2

)︂
where 𝑙 is the length scale of the kernel, 𝑝 the periodicity of the kernel and 𝑑(
𝑐𝑑𝑜𝑡,
𝑐𝑑𝑜𝑡) is the Euclidean distance.

Read more in the User Guide.

New in version 0.18.

Parameters

length_scale [float > 0, default=1.0] The length scale of the kernel.

periodicity [float > 0, default=1.0] The periodicity of the kernel.

length_scale_bounds [pair of floats >= 0 or “fixed”, default=(1e-5, 1e5)] The lower and upper
bound on ‘length_scale’. If set to “fixed”, ‘length_scale’ cannot be changed during hyper-
parameter tuning.

periodicity_bounds [pair of floats >= 0 or “fixed”, default=(1e-5, 1e5)] The lower and upper
bound on ‘periodicity’. If set to “fixed”, ‘periodicity’ cannot be changed during hyperpa-
rameter tuning.

Attributes

bounds Returns the log-transformed bounds on the theta.

hyperparameter_length_scale Returns the length scale

hyperparameter_periodicity

hyperparameters Returns a list of all hyperparameter specifications.

n_dims Returns the number of non-fixed hyperparameters of the kernel.

2004 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

requires_vector_input Returns whether the kernel is defined on fixed-length feature
vectors or generic objects.

theta Returns the (flattened, log-transformed) non-fixed hyperparameters.

Examples

>>> from sklearn.datasets import make_friedman2
>>> from sklearn.gaussian_process import GaussianProcessRegressor
>>> from sklearn.gaussian_process.kernels import ExpSineSquared
>>> X, y = make_friedman2(n_samples=50, noise=0, random_state=0)
>>> kernel = ExpSineSquared(length_scale=1, periodicity=1)
>>> gpr = GaussianProcessRegressor(kernel=kernel, alpha=5,
... random_state=0).fit(X, y)
>>> gpr.score(X, y)
0.0144...
>>> gpr.predict(X[:2,:], return_std=True)
(array([425.6..., 457.5...]), array([0.3894..., 0.3467...]))

Methods

__call__(X[, Y, eval_gradient]) Return the kernel k(X, Y) and optionally its gradient.
clone_with_theta(theta) Returns a clone of self with given hyperparameters

theta.
diag(X) Returns the diagonal of the kernel k(X, X).
get_params([deep]) Get parameters of this kernel.
is_stationary() Returns whether the kernel is stationary.
set_params(**params) Set the parameters of this kernel.

__init__(length_scale=1.0, periodicity=1.0, length_scale_bounds=(1e-05, 100000.0),
periodicity_bounds=(1e-05, 100000.0))

Initialize self. See help(type(self)) for accurate signature.

__call__(X, Y=None, eval_gradient=False)
Return the kernel k(X, Y) and optionally its gradient.

Parameters

X [ndarray of shape (n_samples_X, n_features)] Left argument of the returned kernel k(X,
Y)

Y [ndarray of shape (n_samples_Y, n_features), default=None] Right argument of the re-
turned kernel k(X, Y). If None, k(X, X) if evaluated instead.

eval_gradient [bool, default=False] Determines whether the gradient with respect to the
kernel hyperparameter is determined. Only supported when Y is None.

Returns

K [ndarray of shape (n_samples_X, n_samples_Y)] Kernel k(X, Y)

K_gradient [ndarray of shape (n_samples_X, n_samples_X, n_dims), optional] The gradi-
ent of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned
when eval_gradient is True.

7.16. sklearn.gaussian_process: Gaussian Processes 2005

scikit-learn user guide, Release 0.23.2

property bounds
Returns the log-transformed bounds on the theta.

Returns

bounds [ndarray of shape (n_dims, 2)] The log-transformed bounds on the kernel’s hyper-
parameters theta

clone_with_theta(theta)
Returns a clone of self with given hyperparameters theta.

Parameters

theta [ndarray of shape (n_dims,)] The hyperparameters

diag(X)
Returns the diagonal of the kernel k(X, X).

The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently
since only the diagonal is evaluated.

Parameters

X [ndarray of shape (n_samples_X, n_features)] Left argument of the returned kernel k(X,
Y)

Returns

K_diag [ndarray of shape (n_samples_X,)] Diagonal of kernel k(X, X)

get_params(deep=True)
Get parameters of this kernel.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [dict] Parameter names mapped to their values.

property hyperparameter_length_scale
Returns the length scale

property hyperparameters
Returns a list of all hyperparameter specifications.

is_stationary()
Returns whether the kernel is stationary.

property n_dims
Returns the number of non-fixed hyperparameters of the kernel.

property requires_vector_input
Returns whether the kernel is defined on fixed-length feature vectors or generic objects. Defaults to True
for backward compatibility.

set_params(**params)
Set the parameters of this kernel.

The method works on simple kernels as well as on nested kernels. The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component of a nested object.

Returns

2006 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

self

property theta
Returns the (flattened, log-transformed) non-fixed hyperparameters.

Note that theta are typically the log-transformed values of the kernel’s hyperparameters as this representa-
tion of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales
naturally live on a log-scale.

Returns

theta [ndarray of shape (n_dims,)] The non-fixed, log-transformed hyperparameters of the
kernel

Examples using sklearn.gaussian_process.kernels.ExpSineSquared

• Comparison of kernel ridge and Gaussian process regression

• Illustration of prior and posterior Gaussian process for different kernels

• Gaussian process regression (GPR) on Mauna Loa CO2 data.

7.16.7 sklearn.gaussian_process.kernels.Exponentiation

class sklearn.gaussian_process.kernels.Exponentiation(kernel, exponent)
The Exponentiation kernel takes one base kernel and a scalar parameter 𝑝 and combines them via

𝑘𝑒𝑥𝑝(𝑋,𝑌) = 𝑘(𝑋,𝑌)𝑝

Note that the __pow__ magic method is overridden, so Exponentiation(RBF(), 2) is equivalent to
using the ** operator with RBF() ** 2.

Read more in the User Guide.

New in version 0.18.

Parameters

kernel [Kernel] The base kernel

exponent [float] The exponent for the base kernel

Attributes

bounds Returns the log-transformed bounds on the theta.

hyperparameters Returns a list of all hyperparameter.

n_dims Returns the number of non-fixed hyperparameters of the kernel.

requires_vector_input Returns whether the kernel is defined on discrete structures.

theta Returns the (flattened, log-transformed) non-fixed hyperparameters.

Examples

7.16. sklearn.gaussian_process: Gaussian Processes 2007

scikit-learn user guide, Release 0.23.2

>>> from sklearn.datasets import make_friedman2
>>> from sklearn.gaussian_process import GaussianProcessRegressor
>>> from sklearn.gaussian_process.kernels import (RationalQuadratic,
... Exponentiation)
>>> X, y = make_friedman2(n_samples=500, noise=0, random_state=0)
>>> kernel = Exponentiation(RationalQuadratic(), exponent=2)
>>> gpr = GaussianProcessRegressor(kernel=kernel, alpha=5,
... random_state=0).fit(X, y)
>>> gpr.score(X, y)
0.419...
>>> gpr.predict(X[:1,:], return_std=True)
(array([635.5...]), array([0.559...]))

Methods

__call__(X[, Y, eval_gradient]) Return the kernel k(X, Y) and optionally its gradient.
clone_with_theta(theta) Returns a clone of self with given hyperparameters

theta.
diag(X) Returns the diagonal of the kernel k(X, X).
get_params([deep]) Get parameters of this kernel.
is_stationary() Returns whether the kernel is stationary.
set_params(**params) Set the parameters of this kernel.

__init__(kernel, exponent)
Initialize self. See help(type(self)) for accurate signature.

__call__(X, Y=None, eval_gradient=False)
Return the kernel k(X, Y) and optionally its gradient.

Parameters

X [array-like of shape (n_samples_X, n_features) or list of object] Left argument of the
returned kernel k(X, Y)

Y [array-like of shape (n_samples_Y, n_features) or list of object, default=None] Right ar-
gument of the returned kernel k(X, Y). If None, k(X, X) is evaluated instead.

eval_gradient [bool, default=False] Determines whether the gradient with respect to the
kernel hyperparameter is determined.

Returns

K [ndarray of shape (n_samples_X, n_samples_Y)] Kernel k(X, Y)

K_gradient [ndarray of shape (n_samples_X, n_samples_X, n_dims), optional] The gradi-
ent of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned
when eval_gradient is True.

property bounds
Returns the log-transformed bounds on the theta.

Returns

bounds [ndarray of shape (n_dims, 2)] The log-transformed bounds on the kernel’s hyper-
parameters theta

clone_with_theta(theta)
Returns a clone of self with given hyperparameters theta.

2008 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Parameters

theta [ndarray of shape (n_dims,)] The hyperparameters

diag(X)
Returns the diagonal of the kernel k(X, X).

The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently
since only the diagonal is evaluated.

Parameters

X [array-like of shape (n_samples_X, n_features) or list of object] Argument to the kernel.

Returns

K_diag [ndarray of shape (n_samples_X,)] Diagonal of kernel k(X, X)

get_params(deep=True)
Get parameters of this kernel.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [dict] Parameter names mapped to their values.

property hyperparameters
Returns a list of all hyperparameter.

is_stationary()
Returns whether the kernel is stationary.

property n_dims
Returns the number of non-fixed hyperparameters of the kernel.

property requires_vector_input
Returns whether the kernel is defined on discrete structures.

set_params(**params)
Set the parameters of this kernel.

The method works on simple kernels as well as on nested kernels. The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component of a nested object.

Returns

self

property theta
Returns the (flattened, log-transformed) non-fixed hyperparameters.

Note that theta are typically the log-transformed values of the kernel’s hyperparameters as this representa-
tion of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales
naturally live on a log-scale.

Returns

theta [ndarray of shape (n_dims,)] The non-fixed, log-transformed hyperparameters of the
kernel

7.16. sklearn.gaussian_process: Gaussian Processes 2009

scikit-learn user guide, Release 0.23.2

7.16.8 sklearn.gaussian_process.kernels.Hyperparameter

class sklearn.gaussian_process.kernels.Hyperparameter
A kernel hyperparameter’s specification in form of a namedtuple.

New in version 0.18.

Attributes

name [str] The name of the hyperparameter. Note that a kernel using a hyperparameter with
name “x” must have the attributes self.x and self.x_bounds

value_type [str] The type of the hyperparameter. Currently, only “numeric” hyperparameters
are supported.

bounds [pair of floats >= 0 or “fixed”] The lower and upper bound on the parameter. If
n_elements>1, a pair of 1d array with n_elements each may be given alternatively. If the
string “fixed” is passed as bounds, the hyperparameter’s value cannot be changed.

n_elements [int, default=1] The number of elements of the hyperparameter value. Defaults to
1, which corresponds to a scalar hyperparameter. n_elements > 1 corresponds to a hyperpa-
rameter which is vector-valued, such as, e.g., anisotropic length-scales.

fixed [bool, default=None] Whether the value of this hyperparameter is fixed, i.e., cannot be
changed during hyperparameter tuning. If None is passed, the “fixed” is derived based on
the given bounds.

Methods

count(value, /) Return number of occurrences of value.
index(value[, start, stop]) Return first index of value.

__init__(*args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__call__(*args, **kwargs)
Call self as a function.

bounds
Alias for field number 2

count(value, /)
Return number of occurrences of value.

fixed
Alias for field number 4

index(value, start=0, stop=sys.maxsize, /)
Return first index of value.

Raises ValueError if the value is not present.

n_elements
Alias for field number 3

name
Alias for field number 0

value_type
Alias for field number 1

2010 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Examples using sklearn.gaussian_process.kernels.Hyperparameter

• Gaussian processes on discrete data structures

7.16.9 sklearn.gaussian_process.kernels.Kernel

class sklearn.gaussian_process.kernels.Kernel
Base class for all kernels.

New in version 0.18.

Attributes

bounds Returns the log-transformed bounds on the theta.

hyperparameters Returns a list of all hyperparameter specifications.

n_dims Returns the number of non-fixed hyperparameters of the kernel.

requires_vector_input Returns whether the kernel is defined on fixed-length feature
vectors or generic objects.

theta Returns the (flattened, log-transformed) non-fixed hyperparameters.

Methods

__call__(X[, Y, eval_gradient]) Evaluate the kernel.
clone_with_theta(theta) Returns a clone of self with given hyperparameters

theta.
diag(X) Returns the diagonal of the kernel k(X, X).
get_params([deep]) Get parameters of this kernel.
is_stationary() Returns whether the kernel is stationary.
set_params(**params) Set the parameters of this kernel.

__init__(*args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

abstract __call__(X, Y=None, eval_gradient=False)
Evaluate the kernel.

property bounds
Returns the log-transformed bounds on the theta.

Returns

bounds [ndarray of shape (n_dims, 2)] The log-transformed bounds on the kernel’s hyper-
parameters theta

clone_with_theta(theta)
Returns a clone of self with given hyperparameters theta.

Parameters

theta [ndarray of shape (n_dims,)] The hyperparameters

abstract diag(X)
Returns the diagonal of the kernel k(X, X).

7.16. sklearn.gaussian_process: Gaussian Processes 2011

scikit-learn user guide, Release 0.23.2

The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently
since only the diagonal is evaluated.

Parameters

X [array-like of shape (n_samples,)] Left argument of the returned kernel k(X, Y)

Returns

K_diag [ndarray of shape (n_samples_X,)] Diagonal of kernel k(X, X)

get_params(deep=True)
Get parameters of this kernel.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [dict] Parameter names mapped to their values.

property hyperparameters
Returns a list of all hyperparameter specifications.

abstract is_stationary()
Returns whether the kernel is stationary.

property n_dims
Returns the number of non-fixed hyperparameters of the kernel.

property requires_vector_input
Returns whether the kernel is defined on fixed-length feature vectors or generic objects. Defaults to True
for backward compatibility.

set_params(**params)
Set the parameters of this kernel.

The method works on simple kernels as well as on nested kernels. The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component of a nested object.

Returns

self

property theta
Returns the (flattened, log-transformed) non-fixed hyperparameters.

Note that theta are typically the log-transformed values of the kernel’s hyperparameters as this representa-
tion of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales
naturally live on a log-scale.

Returns

theta [ndarray of shape (n_dims,)] The non-fixed, log-transformed hyperparameters of the
kernel

Examples using sklearn.gaussian_process.kernels.Kernel

• Gaussian processes on discrete data structures

2012 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

7.16.10 sklearn.gaussian_process.kernels.Matern

class sklearn.gaussian_process.kernels.Matern(length_scale=1.0,
length_scale_bounds=(1e-05, 100000.0),
nu=1.5)

Matern kernel.

The class of Matern kernels is a generalization of the RBF. It has an additional parameter 𝜈 which controls the
smoothness of the resulting function. The smaller 𝜈, the less smooth the approximated function is. As 𝜈 →∞,
the kernel becomes equivalent to the RBF kernel. When 𝜈 = 1/2, the Matérn kernel becomes identical to
the absolute exponential kernel. Important intermediate values are 𝜈 = 1.5 (once differentiable functions) and
𝜈 = 2.5 (twice differentiable functions).

The kernel is given by:

𝑘(𝑥𝑖, 𝑥𝑗) =
1

Γ(𝜈)2𝜈−1

(︃√
2𝜈

𝑙
𝑑(𝑥𝑖, 𝑥𝑗)

)︃𝜈

𝐾𝜈

(︃√
2𝜈

𝑙
𝑑(𝑥𝑖, 𝑥𝑗)

)︃

where 𝑑(·, ·) is the Euclidean distance, 𝐾𝜈(·) is a modified Bessel function and Γ(·) is the gamma function. See
[1], Chapter 4, Section 4.2, for details regarding the different variants of the Matern kernel.

Read more in the User Guide.

New in version 0.18.

Parameters

length_scale [float or ndarray of shape (n_features,), default=1.0] The length scale of the ker-
nel. If a float, an isotropic kernel is used. If an array, an anisotropic kernel is used where
each dimension of l defines the length-scale of the respective feature dimension.

length_scale_bounds [pair of floats >= 0 or “fixed”, default=(1e-5, 1e5)] The lower and upper
bound on ‘length_scale’. If set to “fixed”, ‘length_scale’ cannot be changed during hyper-
parameter tuning.

nu [float, default=1.5] The parameter nu controlling the smoothness of the learned function.
The smaller nu, the less smooth the approximated function is. For nu=inf, the kernel be-
comes equivalent to the RBF kernel and for nu=0.5 to the absolute exponential kernel. Im-
portant intermediate values are nu=1.5 (once differentiable functions) and nu=2.5 (twice
differentiable functions). Note that values of nu not in [0.5, 1.5, 2.5, inf] incur a consid-
erably higher computational cost (appr. 10 times higher) since they require to evaluate the
modified Bessel function. Furthermore, in contrast to l, nu is kept fixed to its initial value
and not optimized.

Attributes

anisotropic

bounds Returns the log-transformed bounds on the theta.

hyperparameter_length_scale

hyperparameters Returns a list of all hyperparameter specifications.

n_dims Returns the number of non-fixed hyperparameters of the kernel.

requires_vector_input Returns whether the kernel is defined on fixed-length feature
vectors or generic objects.

theta Returns the (flattened, log-transformed) non-fixed hyperparameters.

7.16. sklearn.gaussian_process: Gaussian Processes 2013

scikit-learn user guide, Release 0.23.2

References

[1]

Examples

>>> from sklearn.datasets import load_iris
>>> from sklearn.gaussian_process import GaussianProcessClassifier
>>> from sklearn.gaussian_process.kernels import Matern
>>> X, y = load_iris(return_X_y=True)
>>> kernel = 1.0 * Matern(length_scale=1.0, nu=1.5)
>>> gpc = GaussianProcessClassifier(kernel=kernel,
... random_state=0).fit(X, y)
>>> gpc.score(X, y)
0.9866...
>>> gpc.predict_proba(X[:2,:])
array([[0.8513..., 0.0368..., 0.1117...],

[0.8086..., 0.0693..., 0.1220...]])

Methods

__call__(X[, Y, eval_gradient]) Return the kernel k(X, Y) and optionally its gradient.
clone_with_theta(theta) Returns a clone of self with given hyperparameters

theta.
diag(X) Returns the diagonal of the kernel k(X, X).
get_params([deep]) Get parameters of this kernel.
is_stationary() Returns whether the kernel is stationary.
set_params(**params) Set the parameters of this kernel.

__init__(length_scale=1.0, length_scale_bounds=(1e-05, 100000.0), nu=1.5)
Initialize self. See help(type(self)) for accurate signature.

__call__(X, Y=None, eval_gradient=False)
Return the kernel k(X, Y) and optionally its gradient.

Parameters

X [ndarray of shape (n_samples_X, n_features)] Left argument of the returned kernel k(X,
Y)

Y [ndarray of shape (n_samples_Y, n_features), default=None] Right argument of the re-
turned kernel k(X, Y). If None, k(X, X) if evaluated instead.

eval_gradient [bool, default=False] Determines whether the gradient with respect to the
kernel hyperparameter is determined. Only supported when Y is None.

Returns

K [ndarray of shape (n_samples_X, n_samples_Y)] Kernel k(X, Y)

K_gradient [ndarray of shape (n_samples_X, n_samples_X, n_dims), optional] The gradi-
ent of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned
when eval_gradient is True.

property bounds
Returns the log-transformed bounds on the theta.

2014 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Returns

bounds [ndarray of shape (n_dims, 2)] The log-transformed bounds on the kernel’s hyper-
parameters theta

clone_with_theta(theta)
Returns a clone of self with given hyperparameters theta.

Parameters

theta [ndarray of shape (n_dims,)] The hyperparameters

diag(X)
Returns the diagonal of the kernel k(X, X).

The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently
since only the diagonal is evaluated.

Parameters

X [ndarray of shape (n_samples_X, n_features)] Left argument of the returned kernel k(X,
Y)

Returns

K_diag [ndarray of shape (n_samples_X,)] Diagonal of kernel k(X, X)

get_params(deep=True)
Get parameters of this kernel.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [dict] Parameter names mapped to their values.

property hyperparameters
Returns a list of all hyperparameter specifications.

is_stationary()
Returns whether the kernel is stationary.

property n_dims
Returns the number of non-fixed hyperparameters of the kernel.

property requires_vector_input
Returns whether the kernel is defined on fixed-length feature vectors or generic objects. Defaults to True
for backward compatibility.

set_params(**params)
Set the parameters of this kernel.

The method works on simple kernels as well as on nested kernels. The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component of a nested object.

Returns

self

property theta
Returns the (flattened, log-transformed) non-fixed hyperparameters.

7.16. sklearn.gaussian_process: Gaussian Processes 2015

scikit-learn user guide, Release 0.23.2

Note that theta are typically the log-transformed values of the kernel’s hyperparameters as this representa-
tion of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales
naturally live on a log-scale.

Returns

theta [ndarray of shape (n_dims,)] The non-fixed, log-transformed hyperparameters of the
kernel

Examples using sklearn.gaussian_process.kernels.Matern

• Illustration of prior and posterior Gaussian process for different kernels

7.16.11 sklearn.gaussian_process.kernels.PairwiseKernel

class sklearn.gaussian_process.kernels.PairwiseKernel(gamma=1.0,
gamma_bounds=(1e-
05, 100000.0), met-
ric=’linear’, pair-
wise_kernels_kwargs=None)

Wrapper for kernels in sklearn.metrics.pairwise.

A thin wrapper around the functionality of the kernels in sklearn.metrics.pairwise.

Note: Evaluation of eval_gradient is not analytic but numeric and all kernels support only isotropic dis-
tances. The parameter gamma is considered to be a hyperparameter and may be optimized. The other
kernel parameters are set directly at initialization and are kept fixed.

New in version 0.18.

Parameters

gamma [float, default=1.0] Parameter gamma of the pairwise kernel specified by metric. It
should be positive.

gamma_bounds [pair of floats >= 0 or “fixed”, default=(1e-5, 1e5)] The lower and upper bound
on ‘gamma’. If set to “fixed”, ‘gamma’ cannot be changed during hyperparameter tuning.

metric [{“linear”, “additive_chi2”, “chi2”, “poly”, “polynomial”, “rbf”, “laplacian”, “sig-
moid”, “cosine”} or callable, default=”linear”] The metric to use when calculating kernel
between instances in a feature array. If metric is a string, it must be one of the metrics in
pairwise.PAIRWISE_KERNEL_FUNCTIONS. If metric is “precomputed”, X is assumed
to be a kernel matrix. Alternatively, if metric is a callable function, it is called on each pair
of instances (rows) and the resulting value recorded. The callable should take two arrays
from X as input and return a value indicating the distance between them.

pairwise_kernels_kwargs [dict, default=None] All entries of this dict (if any) are passed as
keyword arguments to the pairwise kernel function.

Attributes

bounds Returns the log-transformed bounds on the theta.

hyperparameter_gamma

hyperparameters Returns a list of all hyperparameter specifications.

n_dims Returns the number of non-fixed hyperparameters of the kernel.

requires_vector_input Returns whether the kernel is defined on fixed-length feature
vectors or generic objects.

2016 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

theta Returns the (flattened, log-transformed) non-fixed hyperparameters.

Methods

__call__(X[, Y, eval_gradient]) Return the kernel k(X, Y) and optionally its gradient.
clone_with_theta(theta) Returns a clone of self with given hyperparameters

theta.
diag(X) Returns the diagonal of the kernel k(X, X).
get_params([deep]) Get parameters of this kernel.
is_stationary() Returns whether the kernel is stationary.
set_params(**params) Set the parameters of this kernel.

__init__(gamma=1.0, gamma_bounds=(1e-05, 100000.0), metric=’linear’, pair-
wise_kernels_kwargs=None)

Initialize self. See help(type(self)) for accurate signature.

__call__(X, Y=None, eval_gradient=False)
Return the kernel k(X, Y) and optionally its gradient.

Parameters

X [ndarray of shape (n_samples_X, n_features)] Left argument of the returned kernel k(X,
Y)

Y [ndarray of shape (n_samples_Y, n_features), default=None] Right argument of the re-
turned kernel k(X, Y). If None, k(X, X) if evaluated instead.

eval_gradient [bool, default=False] Determines whether the gradient with respect to the
kernel hyperparameter is determined. Only supported when Y is None.

Returns

K [ndarray of shape (n_samples_X, n_samples_Y)] Kernel k(X, Y)

K_gradient [ndarray of shape (n_samples_X, n_samples_X, n_dims), optional] The gradi-
ent of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned
when eval_gradient is True.

property bounds
Returns the log-transformed bounds on the theta.

Returns

bounds [ndarray of shape (n_dims, 2)] The log-transformed bounds on the kernel’s hyper-
parameters theta

clone_with_theta(theta)
Returns a clone of self with given hyperparameters theta.

Parameters

theta [ndarray of shape (n_dims,)] The hyperparameters

diag(X)
Returns the diagonal of the kernel k(X, X).

The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently
since only the diagonal is evaluated.

Parameters

7.16. sklearn.gaussian_process: Gaussian Processes 2017

scikit-learn user guide, Release 0.23.2

X [ndarray of shape (n_samples_X, n_features)] Left argument of the returned kernel k(X,
Y)

Returns

K_diag [ndarray of shape (n_samples_X,)] Diagonal of kernel k(X, X)

get_params(deep=True)
Get parameters of this kernel.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [dict] Parameter names mapped to their values.

property hyperparameters
Returns a list of all hyperparameter specifications.

is_stationary()
Returns whether the kernel is stationary.

property n_dims
Returns the number of non-fixed hyperparameters of the kernel.

property requires_vector_input
Returns whether the kernel is defined on fixed-length feature vectors or generic objects. Defaults to True
for backward compatibility.

set_params(**params)
Set the parameters of this kernel.

The method works on simple kernels as well as on nested kernels. The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component of a nested object.

Returns

self

property theta
Returns the (flattened, log-transformed) non-fixed hyperparameters.

Note that theta are typically the log-transformed values of the kernel’s hyperparameters as this representa-
tion of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales
naturally live on a log-scale.

Returns

theta [ndarray of shape (n_dims,)] The non-fixed, log-transformed hyperparameters of the
kernel

7.16.12 sklearn.gaussian_process.kernels.Product

class sklearn.gaussian_process.kernels.Product(k1, k2)
The Product kernel takes two kernels 𝑘1 and 𝑘2 and combines them via

𝑘𝑝𝑟𝑜𝑑(𝑋,𝑌) = 𝑘1(𝑋,𝑌) * 𝑘2(𝑋,𝑌)

Note that the __mul__ magic method is overridden, so Product(RBF(), RBF()) is equivalent to using
the * operator with RBF() * RBF().

2018 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Read more in the User Guide.

New in version 0.18.

Parameters

k1 [Kernel] The first base-kernel of the product-kernel

k2 [Kernel] The second base-kernel of the product-kernel

Attributes

bounds Returns the log-transformed bounds on the theta.

hyperparameters Returns a list of all hyperparameter.

n_dims Returns the number of non-fixed hyperparameters of the kernel.

requires_vector_input Returns whether the kernel is stationary.

theta Returns the (flattened, log-transformed) non-fixed hyperparameters.

Examples

>>> from sklearn.datasets import make_friedman2
>>> from sklearn.gaussian_process import GaussianProcessRegressor
>>> from sklearn.gaussian_process.kernels import (RBF, Product,
... ConstantKernel)
>>> X, y = make_friedman2(n_samples=500, noise=0, random_state=0)
>>> kernel = Product(ConstantKernel(2), RBF())
>>> gpr = GaussianProcessRegressor(kernel=kernel,
... random_state=0).fit(X, y)
>>> gpr.score(X, y)
1.0
>>> kernel
1.41**2 * RBF(length_scale=1)

Methods

__call__(X[, Y, eval_gradient]) Return the kernel k(X, Y) and optionally its gradient.
clone_with_theta(theta) Returns a clone of self with given hyperparameters

theta.
diag(X) Returns the diagonal of the kernel k(X, X).
get_params([deep]) Get parameters of this kernel.
is_stationary() Returns whether the kernel is stationary.
set_params(**params) Set the parameters of this kernel.

__init__(k1, k2)
Initialize self. See help(type(self)) for accurate signature.

__call__(X, Y=None, eval_gradient=False)
Return the kernel k(X, Y) and optionally its gradient.

Parameters

X [array-like of shape (n_samples_X, n_features) or list of object] Left argument of the
returned kernel k(X, Y)

7.16. sklearn.gaussian_process: Gaussian Processes 2019

scikit-learn user guide, Release 0.23.2

Y [array-like of shape (n_samples_Y, n_features) or list of object, default=None] Right ar-
gument of the returned kernel k(X, Y). If None, k(X, X) is evaluated instead.

eval_gradient [bool, default=False] Determines whether the gradient with respect to the
kernel hyperparameter is determined.

Returns

K [ndarray of shape (n_samples_X, n_samples_Y)] Kernel k(X, Y)

K_gradient [ndarray of shape (n_samples_X, n_samples_X, n_dims), optional] The gradi-
ent of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned
when eval_gradient is True.

property bounds
Returns the log-transformed bounds on the theta.

Returns

bounds [ndarray of shape (n_dims, 2)] The log-transformed bounds on the kernel’s hyper-
parameters theta

clone_with_theta(theta)
Returns a clone of self with given hyperparameters theta.

Parameters

theta [ndarray of shape (n_dims,)] The hyperparameters

diag(X)
Returns the diagonal of the kernel k(X, X).

The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently
since only the diagonal is evaluated.

Parameters

X [array-like of shape (n_samples_X, n_features) or list of object] Argument to the kernel.

Returns

K_diag [ndarray of shape (n_samples_X,)] Diagonal of kernel k(X, X)

get_params(deep=True)
Get parameters of this kernel.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [dict] Parameter names mapped to their values.

property hyperparameters
Returns a list of all hyperparameter.

is_stationary()
Returns whether the kernel is stationary.

property n_dims
Returns the number of non-fixed hyperparameters of the kernel.

property requires_vector_input
Returns whether the kernel is stationary.

2020 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

set_params(**params)
Set the parameters of this kernel.

The method works on simple kernels as well as on nested kernels. The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component of a nested object.

Returns

self

property theta
Returns the (flattened, log-transformed) non-fixed hyperparameters.

Note that theta are typically the log-transformed values of the kernel’s hyperparameters as this representa-
tion of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales
naturally live on a log-scale.

Returns

theta [ndarray of shape (n_dims,)] The non-fixed, log-transformed hyperparameters of the
kernel

7.16.13 sklearn.gaussian_process.kernels.RBF

class sklearn.gaussian_process.kernels.RBF(length_scale=1.0, length_scale_bounds=(1e-
05, 100000.0))

Radial-basis function kernel (aka squared-exponential kernel).

The RBF kernel is a stationary kernel. It is also known as the “squared exponential” kernel. It is parameterized
by a length scale parameter 𝑙 > 0, which can either be a scalar (isotropic variant of the kernel) or a vector with
the same number of dimensions as the inputs X (anisotropic variant of the kernel). The kernel is given by:

𝑘(𝑥𝑖, 𝑥𝑗) = exp

(︂
−𝑑(𝑥𝑖, 𝑥𝑗)

2

2𝑙2

)︂
where 𝑙 is the length scale of the kernel and 𝑑(·, ·) is the Euclidean distance. For advice on how to set the length
scale parameter, see e.g. [1].

This kernel is infinitely differentiable, which implies that GPs with this kernel as covariance function have mean
square derivatives of all orders, and are thus very smooth. See [2], Chapter 4, Section 4.2, for further details of
the RBF kernel.

Read more in the User Guide.

New in version 0.18.

Parameters

length_scale [float or ndarray of shape (n_features,), default=1.0] The length scale of the ker-
nel. If a float, an isotropic kernel is used. If an array, an anisotropic kernel is used where
each dimension of l defines the length-scale of the respective feature dimension.

length_scale_bounds [pair of floats >= 0 or “fixed”, default=(1e-5, 1e5)] The lower and upper
bound on ‘length_scale’. If set to “fixed”, ‘length_scale’ cannot be changed during hyper-
parameter tuning.

Attributes

anisotropic

bounds Returns the log-transformed bounds on the theta.

hyperparameter_length_scale

7.16. sklearn.gaussian_process: Gaussian Processes 2021

scikit-learn user guide, Release 0.23.2

hyperparameters Returns a list of all hyperparameter specifications.

n_dims Returns the number of non-fixed hyperparameters of the kernel.

requires_vector_input Returns whether the kernel is defined on fixed-length feature
vectors or generic objects.

theta Returns the (flattened, log-transformed) non-fixed hyperparameters.

References

[1], [2]

Examples

>>> from sklearn.datasets import load_iris
>>> from sklearn.gaussian_process import GaussianProcessClassifier
>>> from sklearn.gaussian_process.kernels import RBF
>>> X, y = load_iris(return_X_y=True)
>>> kernel = 1.0 * RBF(1.0)
>>> gpc = GaussianProcessClassifier(kernel=kernel,
... random_state=0).fit(X, y)
>>> gpc.score(X, y)
0.9866...
>>> gpc.predict_proba(X[:2,:])
array([[0.8354..., 0.03228..., 0.1322...],

[0.7906..., 0.0652..., 0.1441...]])

Methods

__call__(X[, Y, eval_gradient]) Return the kernel k(X, Y) and optionally its gradient.
clone_with_theta(theta) Returns a clone of self with given hyperparameters

theta.
diag(X) Returns the diagonal of the kernel k(X, X).
get_params([deep]) Get parameters of this kernel.
is_stationary() Returns whether the kernel is stationary.
set_params(**params) Set the parameters of this kernel.

__init__(length_scale=1.0, length_scale_bounds=(1e-05, 100000.0))
Initialize self. See help(type(self)) for accurate signature.

__call__(X, Y=None, eval_gradient=False)
Return the kernel k(X, Y) and optionally its gradient.

Parameters

X [ndarray of shape (n_samples_X, n_features)] Left argument of the returned kernel k(X,
Y)

Y [ndarray of shape (n_samples_Y, n_features), default=None] Right argument of the re-
turned kernel k(X, Y). If None, k(X, X) if evaluated instead.

eval_gradient [bool, default=False] Determines whether the gradient with respect to the
kernel hyperparameter is determined. Only supported when Y is None.

2022 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Returns

K [ndarray of shape (n_samples_X, n_samples_Y)] Kernel k(X, Y)

K_gradient [ndarray of shape (n_samples_X, n_samples_X, n_dims), optional] The gradi-
ent of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned
when eval_gradient is True.

property bounds
Returns the log-transformed bounds on the theta.

Returns

bounds [ndarray of shape (n_dims, 2)] The log-transformed bounds on the kernel’s hyper-
parameters theta

clone_with_theta(theta)
Returns a clone of self with given hyperparameters theta.

Parameters

theta [ndarray of shape (n_dims,)] The hyperparameters

diag(X)
Returns the diagonal of the kernel k(X, X).

The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently
since only the diagonal is evaluated.

Parameters

X [ndarray of shape (n_samples_X, n_features)] Left argument of the returned kernel k(X,
Y)

Returns

K_diag [ndarray of shape (n_samples_X,)] Diagonal of kernel k(X, X)

get_params(deep=True)
Get parameters of this kernel.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [dict] Parameter names mapped to their values.

property hyperparameters
Returns a list of all hyperparameter specifications.

is_stationary()
Returns whether the kernel is stationary.

property n_dims
Returns the number of non-fixed hyperparameters of the kernel.

property requires_vector_input
Returns whether the kernel is defined on fixed-length feature vectors or generic objects. Defaults to True
for backward compatibility.

set_params(**params)
Set the parameters of this kernel.

7.16. sklearn.gaussian_process: Gaussian Processes 2023

scikit-learn user guide, Release 0.23.2

The method works on simple kernels as well as on nested kernels. The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component of a nested object.

Returns

self

property theta
Returns the (flattened, log-transformed) non-fixed hyperparameters.

Note that theta are typically the log-transformed values of the kernel’s hyperparameters as this representa-
tion of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales
naturally live on a log-scale.

Returns

theta [ndarray of shape (n_dims,)] The non-fixed, log-transformed hyperparameters of the
kernel

Examples using sklearn.gaussian_process.kernels.RBF

• Plot classification probability

• Classifier comparison

• Illustration of Gaussian process classification (GPC) on the XOR dataset

• Gaussian process classification (GPC) on iris dataset

• Illustration of prior and posterior Gaussian process for different kernels

• Probabilistic predictions with Gaussian process classification (GPC)

• Gaussian process regression (GPR) with noise-level estimation

• Gaussian Processes regression: basic introductory example

• Gaussian process regression (GPR) on Mauna Loa CO2 data.

7.16.14 sklearn.gaussian_process.kernels.RationalQuadratic

class sklearn.gaussian_process.kernels.RationalQuadratic(length_scale=1.0,
alpha=1.0,
length_scale_bounds=(1e-
05, 100000.0),
alpha_bounds=(1e-05,
100000.0))

Rational Quadratic kernel.

The RationalQuadratic kernel can be seen as a scale mixture (an infinite sum) of RBF kernels with different
characteristic length scales. It is parameterized by a length scale parameter 𝑙 > 0 and a scale mixture parameter
𝛼 > 0. Only the isotropic variant where length_scale 𝑙 is a scalar is supported at the moment. The kernel is
given by:

𝑘(𝑥𝑖, 𝑥𝑗) =

(︂
1 +

𝑑(𝑥𝑖, 𝑥𝑗)
2

2𝛼𝑙2

)︂−𝛼

where 𝛼 is the scale mixture parameter, 𝑙 is the length scale of the kernel and 𝑑(·, ·) is the Euclidean distance.
For advice on how to set the parameters, see e.g. [1].

Read more in the User Guide.

2024 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

New in version 0.18.

Parameters

length_scale [float > 0, default=1.0] The length scale of the kernel.

alpha [float > 0, default=1.0] Scale mixture parameter

length_scale_bounds [pair of floats >= 0 or “fixed”, default=(1e-5, 1e5)] The lower and upper
bound on ‘length_scale’. If set to “fixed”, ‘length_scale’ cannot be changed during hyper-
parameter tuning.

alpha_bounds [pair of floats >= 0 or “fixed”, default=(1e-5, 1e5)] The lower and upper bound
on ‘alpha’. If set to “fixed”, ‘alpha’ cannot be changed during hyperparameter tuning.

Attributes

bounds Returns the log-transformed bounds on the theta.

hyperparameter_alpha

hyperparameter_length_scale

hyperparameters Returns a list of all hyperparameter specifications.

n_dims Returns the number of non-fixed hyperparameters of the kernel.

requires_vector_input Returns whether the kernel is defined on fixed-length feature
vectors or generic objects.

theta Returns the (flattened, log-transformed) non-fixed hyperparameters.

References

[1]

Examples

>>> from sklearn.datasets import load_iris
>>> from sklearn.gaussian_process import GaussianProcessClassifier
>>> from sklearn.gaussian_process.kernels import Matern
>>> X, y = load_iris(return_X_y=True)
>>> kernel = RationalQuadratic(length_scale=1.0, alpha=1.5)
>>> gpc = GaussianProcessClassifier(kernel=kernel,
... random_state=0).fit(X, y)
>>> gpc.score(X, y)
0.9733...
>>> gpc.predict_proba(X[:2,:])
array([[0.8881..., 0.0566..., 0.05518...],

[0.8678..., 0.0707... , 0.0614...]])

Methods

__call__(X[, Y, eval_gradient]) Return the kernel k(X, Y) and optionally its gradient.
clone_with_theta(theta) Returns a clone of self with given hyperparameters

theta.
diag(X) Returns the diagonal of the kernel k(X, X).

Continued on next page

7.16. sklearn.gaussian_process: Gaussian Processes 2025

scikit-learn user guide, Release 0.23.2

Table 133 – continued from previous page
get_params([deep]) Get parameters of this kernel.
is_stationary() Returns whether the kernel is stationary.
set_params(**params) Set the parameters of this kernel.

__init__(length_scale=1.0, alpha=1.0, length_scale_bounds=(1e-05, 100000.0), alpha_bounds=(1e-
05, 100000.0))

Initialize self. See help(type(self)) for accurate signature.

__call__(X, Y=None, eval_gradient=False)
Return the kernel k(X, Y) and optionally its gradient.

Parameters

X [ndarray of shape (n_samples_X, n_features)] Left argument of the returned kernel k(X,
Y)

Y [ndarray of shape (n_samples_Y, n_features), default=None] Right argument of the re-
turned kernel k(X, Y). If None, k(X, X) if evaluated instead.

eval_gradient [bool, default=False] Determines whether the gradient with respect to the
kernel hyperparameter is determined. Only supported when Y is None.

Returns

K [ndarray of shape (n_samples_X, n_samples_Y)] Kernel k(X, Y)

K_gradient [ndarray of shape (n_samples_X, n_samples_X, n_dims)] The gradient of the
kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned when
eval_gradient is True.

property bounds
Returns the log-transformed bounds on the theta.

Returns

bounds [ndarray of shape (n_dims, 2)] The log-transformed bounds on the kernel’s hyper-
parameters theta

clone_with_theta(theta)
Returns a clone of self with given hyperparameters theta.

Parameters

theta [ndarray of shape (n_dims,)] The hyperparameters

diag(X)
Returns the diagonal of the kernel k(X, X).

The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently
since only the diagonal is evaluated.

Parameters

X [ndarray of shape (n_samples_X, n_features)] Left argument of the returned kernel k(X,
Y)

Returns

K_diag [ndarray of shape (n_samples_X,)] Diagonal of kernel k(X, X)

get_params(deep=True)
Get parameters of this kernel.

Parameters

2026 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [dict] Parameter names mapped to their values.

property hyperparameters
Returns a list of all hyperparameter specifications.

is_stationary()
Returns whether the kernel is stationary.

property n_dims
Returns the number of non-fixed hyperparameters of the kernel.

property requires_vector_input
Returns whether the kernel is defined on fixed-length feature vectors or generic objects. Defaults to True
for backward compatibility.

set_params(**params)
Set the parameters of this kernel.

The method works on simple kernels as well as on nested kernels. The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component of a nested object.

Returns

self

property theta
Returns the (flattened, log-transformed) non-fixed hyperparameters.

Note that theta are typically the log-transformed values of the kernel’s hyperparameters as this representa-
tion of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales
naturally live on a log-scale.

Returns

theta [ndarray of shape (n_dims,)] The non-fixed, log-transformed hyperparameters of the
kernel

Examples using sklearn.gaussian_process.kernels.RationalQuadratic

• Illustration of prior and posterior Gaussian process for different kernels

• Gaussian process regression (GPR) on Mauna Loa CO2 data.

7.16.15 sklearn.gaussian_process.kernels.Sum

class sklearn.gaussian_process.kernels.Sum(k1, k2)
The Sum kernel takes two kernels 𝑘1 and 𝑘2 and combines them via

𝑘𝑠𝑢𝑚(𝑋,𝑌) = 𝑘1(𝑋,𝑌) + 𝑘2(𝑋,𝑌)

Note that the __add__ magic method is overridden, so Sum(RBF(), RBF()) is equivalent to using the +
operator with RBF() + RBF().

Read more in the User Guide.

New in version 0.18.

7.16. sklearn.gaussian_process: Gaussian Processes 2027

scikit-learn user guide, Release 0.23.2

Parameters

k1 [Kernel] The first base-kernel of the sum-kernel

k2 [Kernel] The second base-kernel of the sum-kernel

Attributes

bounds Returns the log-transformed bounds on the theta.

hyperparameters Returns a list of all hyperparameter.

n_dims Returns the number of non-fixed hyperparameters of the kernel.

requires_vector_input Returns whether the kernel is stationary.

theta Returns the (flattened, log-transformed) non-fixed hyperparameters.

Examples

>>> from sklearn.datasets import make_friedman2
>>> from sklearn.gaussian_process import GaussianProcessRegressor
>>> from sklearn.gaussian_process.kernels import RBF, Sum, ConstantKernel
>>> X, y = make_friedman2(n_samples=500, noise=0, random_state=0)
>>> kernel = Sum(ConstantKernel(2), RBF())
>>> gpr = GaussianProcessRegressor(kernel=kernel,
... random_state=0).fit(X, y)
>>> gpr.score(X, y)
1.0
>>> kernel
1.41**2 + RBF(length_scale=1)

Methods

__call__(X[, Y, eval_gradient]) Return the kernel k(X, Y) and optionally its gradient.
clone_with_theta(theta) Returns a clone of self with given hyperparameters

theta.
diag(X) Returns the diagonal of the kernel k(X, X).
get_params([deep]) Get parameters of this kernel.
is_stationary() Returns whether the kernel is stationary.
set_params(**params) Set the parameters of this kernel.

__init__(k1, k2)
Initialize self. See help(type(self)) for accurate signature.

__call__(X, Y=None, eval_gradient=False)
Return the kernel k(X, Y) and optionally its gradient.

Parameters

X [array-like of shape (n_samples_X, n_features) or list of object] Left argument of the
returned kernel k(X, Y)

Y [array-like of shape (n_samples_X, n_features) or list of object, default=None] Right ar-
gument of the returned kernel k(X, Y). If None, k(X, X) is evaluated instead.

eval_gradient [bool, default=False] Determines whether the gradient with respect to the
kernel hyperparameter is determined.

2028 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Returns

K [ndarray of shape (n_samples_X, n_samples_Y)] Kernel k(X, Y)

K_gradient [ndarray of shape (n_samples_X, n_samples_X, n_dims), optional] The gradi-
ent of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned
when eval_gradient is True.

property bounds
Returns the log-transformed bounds on the theta.

Returns

bounds [ndarray of shape (n_dims, 2)] The log-transformed bounds on the kernel’s hyper-
parameters theta

clone_with_theta(theta)
Returns a clone of self with given hyperparameters theta.

Parameters

theta [ndarray of shape (n_dims,)] The hyperparameters

diag(X)
Returns the diagonal of the kernel k(X, X).

The result of this method is identical to np.diag(self(X)); however, it can be evaluated more effi-
ciently since only the diagonal is evaluated.

Parameters

X [array-like of shape (n_samples_X, n_features) or list of object] Argument to the kernel.

Returns

K_diag [ndarray of shape (n_samples_X,)] Diagonal of kernel k(X, X)

get_params(deep=True)
Get parameters of this kernel.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [dict] Parameter names mapped to their values.

property hyperparameters
Returns a list of all hyperparameter.

is_stationary()
Returns whether the kernel is stationary.

property n_dims
Returns the number of non-fixed hyperparameters of the kernel.

property requires_vector_input
Returns whether the kernel is stationary.

set_params(**params)
Set the parameters of this kernel.

The method works on simple kernels as well as on nested kernels. The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component of a nested object.

7.16. sklearn.gaussian_process: Gaussian Processes 2029

scikit-learn user guide, Release 0.23.2

Returns

self

property theta
Returns the (flattened, log-transformed) non-fixed hyperparameters.

Note that theta are typically the log-transformed values of the kernel’s hyperparameters as this representa-
tion of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales
naturally live on a log-scale.

Returns

theta [ndarray of shape (n_dims,)] The non-fixed, log-transformed hyperparameters of the
kernel

7.16.16 sklearn.gaussian_process.kernels.WhiteKernel

class sklearn.gaussian_process.kernels.WhiteKernel(noise_level=1.0,
noise_level_bounds=(1e-05,
100000.0))

White kernel.

The main use-case of this kernel is as part of a sum-kernel where it explains the noise of the signal as indepen-
dently and identically normally-distributed. The parameter noise_level equals the variance of this noise.

𝑘(𝑥1, 𝑥2) = 𝑛𝑜𝑖𝑠𝑒_𝑙𝑒𝑣𝑒𝑙 if 𝑥𝑖 == 𝑥𝑗 else 0

Read more in the User Guide.

New in version 0.18.

Parameters

noise_level [float, default=1.0] Parameter controlling the noise level (variance)

noise_level_bounds [pair of floats >= 0 or “fixed”, default=(1e-5, 1e5)] The lower and upper
bound on ‘noise_level’. If set to “fixed”, ‘noise_level’ cannot be changed during hyperpa-
rameter tuning.

Attributes

bounds Returns the log-transformed bounds on the theta.

hyperparameter_noise_level

hyperparameters Returns a list of all hyperparameter specifications.

n_dims Returns the number of non-fixed hyperparameters of the kernel.

requires_vector_input Whether the kernel works only on fixed-length feature vectors.

theta Returns the (flattened, log-transformed) non-fixed hyperparameters.

Examples

>>> from sklearn.datasets import make_friedman2
>>> from sklearn.gaussian_process import GaussianProcessRegressor
>>> from sklearn.gaussian_process.kernels import DotProduct, WhiteKernel
>>> X, y = make_friedman2(n_samples=500, noise=0, random_state=0)
>>> kernel = DotProduct() + WhiteKernel(noise_level=0.5)

(continues on next page)

2030 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

(continued from previous page)

>>> gpr = GaussianProcessRegressor(kernel=kernel,
... random_state=0).fit(X, y)
>>> gpr.score(X, y)
0.3680...
>>> gpr.predict(X[:2,:], return_std=True)
(array([653.0..., 592.1...]), array([316.6..., 316.6...]))

Methods

__call__(X[, Y, eval_gradient]) Return the kernel k(X, Y) and optionally its gradient.
clone_with_theta(theta) Returns a clone of self with given hyperparameters

theta.
diag(X) Returns the diagonal of the kernel k(X, X).
get_params([deep]) Get parameters of this kernel.
is_stationary() Returns whether the kernel is stationary.
set_params(**params) Set the parameters of this kernel.

__init__(noise_level=1.0, noise_level_bounds=(1e-05, 100000.0))
Initialize self. See help(type(self)) for accurate signature.

__call__(X, Y=None, eval_gradient=False)
Return the kernel k(X, Y) and optionally its gradient.

Parameters

X [array-like of shape (n_samples_X, n_features) or list of object] Left argument of the
returned kernel k(X, Y)

Y [array-like of shape (n_samples_X, n_features) or list of object, default=None] Right ar-
gument of the returned kernel k(X, Y). If None, k(X, X) is evaluated instead.

eval_gradient [bool, default=False] Determines whether the gradient with respect to the
kernel hyperparameter is determined. Only supported when Y is None.

Returns

K [ndarray of shape (n_samples_X, n_samples_Y)] Kernel k(X, Y)

K_gradient [ndarray of shape (n_samples_X, n_samples_X, n_dims), optional] The gradi-
ent of the kernel k(X, X) with respect to the hyperparameter of the kernel. Only returned
when eval_gradient is True.

property bounds
Returns the log-transformed bounds on the theta.

Returns

bounds [ndarray of shape (n_dims, 2)] The log-transformed bounds on the kernel’s hyper-
parameters theta

clone_with_theta(theta)
Returns a clone of self with given hyperparameters theta.

Parameters

theta [ndarray of shape (n_dims,)] The hyperparameters

7.16. sklearn.gaussian_process: Gaussian Processes 2031

scikit-learn user guide, Release 0.23.2

diag(X)
Returns the diagonal of the kernel k(X, X).

The result of this method is identical to np.diag(self(X)); however, it can be evaluated more efficiently
since only the diagonal is evaluated.

Parameters

X [array-like of shape (n_samples_X, n_features) or list of object] Argument to the kernel.

Returns

K_diag [ndarray of shape (n_samples_X,)] Diagonal of kernel k(X, X)

get_params(deep=True)
Get parameters of this kernel.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [dict] Parameter names mapped to their values.

property hyperparameters
Returns a list of all hyperparameter specifications.

is_stationary()
Returns whether the kernel is stationary.

property n_dims
Returns the number of non-fixed hyperparameters of the kernel.

property requires_vector_input
Whether the kernel works only on fixed-length feature vectors.

set_params(**params)
Set the parameters of this kernel.

The method works on simple kernels as well as on nested kernels. The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each component of a nested object.

Returns

self

property theta
Returns the (flattened, log-transformed) non-fixed hyperparameters.

Note that theta are typically the log-transformed values of the kernel’s hyperparameters as this representa-
tion of the search space is more amenable for hyperparameter search, as hyperparameters like length-scales
naturally live on a log-scale.

Returns

theta [ndarray of shape (n_dims,)] The non-fixed, log-transformed hyperparameters of the
kernel

Examples using sklearn.gaussian_process.kernels.WhiteKernel

• Comparison of kernel ridge and Gaussian process regression

• Gaussian process regression (GPR) with noise-level estimation

2032 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

• Gaussian process regression (GPR) on Mauna Loa CO2 data.

7.17 sklearn.impute: Impute

Transformers for missing value imputation

User guide: See the Imputation of missing values section for further details.

impute.SimpleImputer(*[, missing_values, . . .]) Imputation transformer for completing missing values.
impute.IterativeImputer([estimator, . . .]) Multivariate imputer that estimates each feature from all

the others.
impute.MissingIndicator(*[, missing_values,
. . .])

Binary indicators for missing values.

impute.KNNImputer(*[, missing_values, . . .]) Imputation for completing missing values using k-
Nearest Neighbors.

7.17.1 sklearn.impute.SimpleImputer

class sklearn.impute.SimpleImputer(*, missing_values=nan, strategy=’mean’,
fill_value=None, verbose=0, copy=True,
add_indicator=False)

Imputation transformer for completing missing values.

Read more in the User Guide.

New in version 0.20: SimpleImputer replaces the previous sklearn.preprocessing.Imputer es-
timator which is now removed.

Parameters

missing_values [number, string, np.nan (default) or None] The placeholder for the missing
values. All occurrences of missing_values will be imputed. For pandas’ dataframes
with nullable integer dtypes with missing values, missing_values should be set to np.
nan, since pd.NA will be converted to np.nan.

strategy [string, default=’mean’] The imputation strategy.

• If “mean”, then replace missing values using the mean along each column. Can only be
used with numeric data.

• If “median”, then replace missing values using the median along each column. Can only
be used with numeric data.

• If “most_frequent”, then replace missing using the most frequent value along each col-
umn. Can be used with strings or numeric data.

• If “constant”, then replace missing values with fill_value. Can be used with strings or
numeric data.

New in version 0.20: strategy=”constant” for fixed value imputation.

fill_value [string or numerical value, default=None] When strategy == “constant”, fill_value is
used to replace all occurrences of missing_values. If left to the default, fill_value will be 0
when imputing numerical data and “missing_value” for strings or object data types.

verbose [integer, default=0] Controls the verbosity of the imputer.

7.17. sklearn.impute: Impute 2033

scikit-learn user guide, Release 0.23.2

copy [boolean, default=True] If True, a copy of X will be created. If False, imputation will be
done in-place whenever possible. Note that, in the following cases, a new copy will always
be made, even if copy=False:

• If X is not an array of floating values;

• If X is encoded as a CSR matrix;

• If add_indicator=True.

add_indicator [boolean, default=False] If True, a MissingIndicator transform will stack
onto output of the imputer’s transform. This allows a predictive estimator to account for
missingness despite imputation. If a feature has no missing values at fit/train time, the fea-
ture won’t appear on the missing indicator even if there are missing values at transform/test
time.

Attributes

statistics_ [array of shape (n_features,)] The imputation fill value for each feature. Computing
statistics can result in np.nan values. During transform, features corresponding to
np.nan statistics will be discarded.

indicator_ [sklearn.impute.MissingIndicator] Indicator used to add binary indi-
cators for missing values. None if add_indicator is False.

See also:

IterativeImputer Multivariate imputation of missing values.

Notes

Columns which only contained missing values at fit are discarded upon transform if strategy is not “con-
stant”.

Examples

>>> import numpy as np
>>> from sklearn.impute import SimpleImputer
>>> imp_mean = SimpleImputer(missing_values=np.nan, strategy='mean')
>>> imp_mean.fit([[7, 2, 3], [4, np.nan, 6], [10, 5, 9]])
SimpleImputer()
>>> X = [[np.nan, 2, 3], [4, np.nan, 6], [10, np.nan, 9]]
>>> print(imp_mean.transform(X))
[[7. 2. 3.]
[4. 3.5 6.]
[10. 3.5 9.]]

Methods

fit(X[, y]) Fit the imputer on X.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Impute all missing values in X.

2034 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

__init__(*, missing_values=nan, strategy=’mean’, fill_value=None, verbose=0, copy=True,
add_indicator=False)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Fit the imputer on X.

Parameters

X [{array-like, sparse matrix}, shape (n_samples, n_features)] Input data, where
n_samples is the number of samples and n_features is the number of features.

Returns

self [SimpleImputer]

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Impute all missing values in X.

Parameters

X [{array-like, sparse matrix}, shape (n_samples, n_features)] The input data to complete.

7.17. sklearn.impute: Impute 2035

scikit-learn user guide, Release 0.23.2

Examples using sklearn.impute.SimpleImputer

• Release Highlights for scikit-learn 0.23

• Combine predictors using stacking

• Permutation Importance vs Random Forest Feature Importance (MDI)

• Imputing missing values with variants of IterativeImputer

• Imputing missing values before building an estimator

• Column Transformer with Mixed Types

7.17.2 sklearn.impute.IterativeImputer

class sklearn.impute.IterativeImputer(estimator=None, *, missing_values=nan, sam-
ple_posterior=False, max_iter=10, tol=0.001,
n_nearest_features=None, initial_strategy=’mean’,
imputation_order=’ascending’, skip_complete=False,
min_value=None, max_value=None, verbose=0, ran-
dom_state=None, add_indicator=False)

Multivariate imputer that estimates each feature from all the others.

A strategy for imputing missing values by modeling each feature with missing values as a function of other
features in a round-robin fashion.

Read more in the User Guide.

New in version 0.21.

Note: This estimator is still experimental for now: the predictions and the API might change without any
deprecation cycle. To use it, you need to explicitly import enable_iterative_imputer:

>>> # explicitly require this experimental feature
>>> from sklearn.experimental import enable_iterative_imputer # noqa
>>> # now you can import normally from sklearn.impute
>>> from sklearn.impute import IterativeImputer

Parameters

estimator [estimator object, default=BayesianRidge()] The estimator to use at each step of
the round-robin imputation. If sample_posterior is True, the estimator must support
return_std in its predict method.

missing_values [int, np.nan, default=np.nan] The placeholder for the missing values. All oc-
currences of missing_values will be imputed. For pandas’ dataframes with nullable
integer dtypes with missing values, missing_values should be set to np.nan, since
pd.NA will be converted to np.nan.

sample_posterior [boolean, default=False] Whether to sample from the (Gaussian) predictive
posterior of the fitted estimator for each imputation. Estimator must support return_std
in its predict method if set to True. Set to True if using IterativeImputer for
multiple imputations.

max_iter [int, default=10] Maximum number of imputation rounds to perform before
returning the imputations computed during the final round. A round is a sin-
gle imputation of each feature with missing values. The stopping criterion is met

2036 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

once abs(max(X_t - X_{t-1}))/abs(max(X[known_vals])) < tol, where
X_t is X at iteration t. Note that early stopping is only applied if
``sample_posterior=False`.

tol [float, default=1e-3] Tolerance of the stopping condition.

n_nearest_features [int, default=None] Number of other features to use to estimate the missing
values of each feature column. Nearness between features is measured using the absolute
correlation coefficient between each feature pair (after initial imputation). To ensure cover-
age of features throughout the imputation process, the neighbor features are not necessarily
nearest, but are drawn with probability proportional to correlation for each imputed target
feature. Can provide significant speed-up when the number of features is huge. If None, all
features will be used.

initial_strategy [str, default=’mean’] Which strategy to use to initialize the missing values.
Same as the strategy parameter in sklearn.impute.SimpleImputer Valid val-
ues: {“mean”, “median”, “most_frequent”, or “constant”}.

imputation_order [str, default=’ascending’] The order in which the features will be imputed.
Possible values:

“ascending” From features with fewest missing values to most.

“descending” From features with most missing values to fewest.

“roman” Left to right.

“arabic” Right to left.

“random” A random order for each round.

skip_complete [boolean, default=False] If True then features with missing values during
transform which did not have any missing values during fit will be imputed with the
initial imputation method only. Set to True if you have many features with no missing
values at both fit and transform time to save compute.

min_value [float or array-like of shape (n_features,), default=None.] Minimum possible im-
puted value. Broadcast to shape (n_features,) if scalar. If array-like, expects shape
(n_features,), one min value for each feature. None (default) is converted to -np.inf.

max_value [float or array-like of shape (n_features,), default=None.] Maximum possible
imputed value. Broadcast to shape (n_features,) if scalar. If array-like, expects shape
(n_features,), one max value for each feature. None (default) is converted to np.inf.

verbose [int, default=0] Verbosity flag, controls the debug messages that are issued as functions
are evaluated. The higher, the more verbose. Can be 0, 1, or 2.

random_state [int, RandomState instance or None, default=None] The seed of the pseudo
random number generator to use. Randomizes selection of estimator features if
n_nearest_features is not None, the imputation_order if random, and the sampling
from posterior if sample_posterior is True. Use an integer for determinism. See the
Glossary.

add_indicator [boolean, default=False] If True, a MissingIndicator transform will stack
onto output of the imputer’s transform. This allows a predictive estimator to account for
missingness despite imputation. If a feature has no missing values at fit/train time, the fea-
ture won’t appear on the missing indicator even if there are missing values at transform/test
time.

Attributes

7.17. sklearn.impute: Impute 2037

scikit-learn user guide, Release 0.23.2

initial_imputer_ [object of type sklearn.impute.SimpleImputer] Imputer used to
initialize the missing values.

imputation_sequence_ [list of tuples] Each tuple has (feat_idx,
neighbor_feat_idx, estimator), where feat_idx is the current feature
to be imputed, neighbor_feat_idx is the array of other features used to impute the
current feature, and estimator is the trained estimator used for the imputation. Length
is self.n_features_with_missing_ * self.n_iter_.

n_iter_ [int] Number of iteration rounds that occurred. Will be less than self.max_iter if
early stopping criterion was reached.

n_features_with_missing_ [int] Number of features with missing values.

indicator_ [sklearn.impute.MissingIndicator] Indicator used to add binary indi-
cators for missing values. None if add_indicator is False.

random_state_ [RandomState instance] RandomState instance that is generated either from a
seed, the random number generator or by np.random.

See also:

SimpleImputer Univariate imputation of missing values.

Notes

To support imputation in inductive mode we store each feature’s estimator during the fit phase, and predict
without refitting (in order) during the transform phase.

Features which contain all missing values at fit are discarded upon transform.

References

[1], [2]

Examples

>>> import numpy as np
>>> from sklearn.experimental import enable_iterative_imputer
>>> from sklearn.impute import IterativeImputer
>>> imp_mean = IterativeImputer(random_state=0)
>>> imp_mean.fit([[7, 2, 3], [4, np.nan, 6], [10, 5, 9]])
IterativeImputer(random_state=0)
>>> X = [[np.nan, 2, 3], [4, np.nan, 6], [10, np.nan, 9]]
>>> imp_mean.transform(X)
array([[6.9584..., 2. , 3.],

[4. , 2.6000..., 6.],
[10. , 4.9999..., 9.]])

Methods

fit(X[, y]) Fits the imputer on X and return self.
Continued on next page

2038 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Table 138 – continued from previous page
fit_transform(X[, y]) Fits the imputer on X and return the transformed X.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Imputes all missing values in X.

__init__(estimator=None, *, missing_values=nan, sample_posterior=False, max_iter=10,
tol=0.001, n_nearest_features=None, initial_strategy=’mean’, imputa-
tion_order=’ascending’, skip_complete=False, min_value=None, max_value=None,
verbose=0, random_state=None, add_indicator=False)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Fits the imputer on X and return self.

Parameters

X [array-like, shape (n_samples, n_features)] Input data, where “n_samples” is the number
of samples and “n_features” is the number of features.

y [ignored]

Returns

self [object] Returns self.

fit_transform(X, y=None)
Fits the imputer on X and return the transformed X.

Parameters

X [array-like, shape (n_samples, n_features)] Input data, where “n_samples” is the number
of samples and “n_features” is the number of features.

y [ignored.]

Returns

Xt [array-like, shape (n_samples, n_features)] The imputed input data.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

7.17. sklearn.impute: Impute 2039

scikit-learn user guide, Release 0.23.2

self [object] Estimator instance.

transform(X)
Imputes all missing values in X.

Note that this is stochastic, and that if random_state is not fixed, repeated calls, or permuted input, will
yield different results.

Parameters

X [array-like of shape (n_samples, n_features)] The input data to complete.

Returns

Xt [array-like, shape (n_samples, n_features)] The imputed input data.

Examples using sklearn.impute.IterativeImputer

• Imputing missing values with variants of IterativeImputer

• Imputing missing values before building an estimator

7.17.3 sklearn.impute.MissingIndicator

class sklearn.impute.MissingIndicator(*, missing_values=nan, features=’missing-only’,
sparse=’auto’, error_on_new=True)

Binary indicators for missing values.

Note that this component typically should not be used in a vanilla Pipeline consisting of transformers and a
classifier, but rather could be added using a FeatureUnion or ColumnTransformer.

Read more in the User Guide.

New in version 0.20.

Parameters

missing_values [number, string, np.nan (default) or None] The placeholder for the missing
values. All occurrences of missing_values will be imputed. For pandas’ dataframes
with nullable integer dtypes with missing values, missing_values should be set to np.
nan, since pd.NA will be converted to np.nan.

features [str, default=None] Whether the imputer mask should represent all or a subset of fea-
tures.

• If “missing-only” (default), the imputer mask will only represent features containing
missing values during fit time.

• If “all”, the imputer mask will represent all features.

sparse [boolean or “auto”, default=None] Whether the imputer mask format should be sparse
or dense.

• If “auto” (default), the imputer mask will be of same type as input.

• If True, the imputer mask will be a sparse matrix.

• If False, the imputer mask will be a numpy array.

error_on_new [boolean, default=None] If True (default), transform will raise an error when
there are features with missing values in transform that have no missing values in fit. This
is applicable only when features="missing-only".

2040 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Attributes

features_ [ndarray, shape (n_missing_features,) or (n_features,)] The features indices which
will be returned when calling transform. They are computed during fit. For
features='all', it is to range(n_features).

Examples

>>> import numpy as np
>>> from sklearn.impute import MissingIndicator
>>> X1 = np.array([[np.nan, 1, 3],
... [4, 0, np.nan],
... [8, 1, 0]])
>>> X2 = np.array([[5, 1, np.nan],
... [np.nan, 2, 3],
... [2, 4, 0]])
>>> indicator = MissingIndicator()
>>> indicator.fit(X1)
MissingIndicator()
>>> X2_tr = indicator.transform(X2)
>>> X2_tr
array([[False, True],

[True, False],
[False, False]])

Methods

fit(X[, y]) Fit the transformer on X.
fit_transform(X[, y]) Generate missing values indicator for X.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Generate missing values indicator for X.

__init__(*, missing_values=nan, features=’missing-only’, sparse=’auto’, error_on_new=True)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Fit the transformer on X.

Parameters

X [{array-like, sparse matrix}, shape (n_samples, n_features)] Input data, where
n_samples is the number of samples and n_features is the number of features.

Returns

self [object] Returns self.

fit_transform(X, y=None)
Generate missing values indicator for X.

Parameters

X [{array-like, sparse matrix}, shape (n_samples, n_features)] The input data to complete.

Returns

7.17. sklearn.impute: Impute 2041

scikit-learn user guide, Release 0.23.2

Xt [{ndarray or sparse matrix}, shape (n_samples, n_features) or (n_samples,
n_features_with_missing)] The missing indicator for input data. The data type of Xt will
be boolean.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Generate missing values indicator for X.

Parameters

X [{array-like, sparse matrix}, shape (n_samples, n_features)] The input data to complete.

Returns

Xt [{ndarray or sparse matrix}, shape (n_samples, n_features) or (n_samples,
n_features_with_missing)] The missing indicator for input data. The data type of Xt will
be boolean.

7.17.4 sklearn.impute.KNNImputer

class sklearn.impute.KNNImputer(*, missing_values=nan, n_neighbors=5, weights=’uniform’,
metric=’nan_euclidean’, copy=True, add_indicator=False)

Imputation for completing missing values using k-Nearest Neighbors.

Each sample’s missing values are imputed using the mean value from n_neighbors nearest neighbors found
in the training set. Two samples are close if the features that neither is missing are close.

Read more in the User Guide.

New in version 0.22.

Parameters

missing_values [number, string, np.nan or None, default=‘np.nan‘] The placeholder for the
missing values. All occurrences of missing_values will be imputed. For pandas’
dataframes with nullable integer dtypes with missing values, missing_values should
be set to np.nan, since pd.NA will be converted to np.nan.

2042 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

n_neighbors [int, default=5] Number of neighboring samples to use for imputation.

weights [{‘uniform’, ‘distance’} or callable, default=’uniform’] Weight function used in pre-
diction. Possible values:

• ‘uniform’ : uniform weights. All points in each neighborhood are weighted equally.

• ‘distance’ : weight points by the inverse of their distance. in this case, closer neighbors
of a query point will have a greater influence than neighbors which are further away.

• callable : a user-defined function which accepts an array of distances, and returns an array
of the same shape containing the weights.

metric [{‘nan_euclidean’} or callable, default=’nan_euclidean’] Distance metric for searching
neighbors. Possible values:

• ‘nan_euclidean’

• callable : a user-defined function which conforms to the definition of
_pairwise_callable(X, Y, metric, **kwds). The function accepts
two arrays, X and Y, and a missing_values keyword in kwds and returns a scalar
distance value.

copy [bool, default=True] If True, a copy of X will be created. If False, imputation will be done
in-place whenever possible.

add_indicator [bool, default=False] If True, a MissingIndicator transform will stack
onto the output of the imputer’s transform. This allows a predictive estimator to account for
missingness despite imputation. If a feature has no missing values at fit/train time, the fea-
ture won’t appear on the missing indicator even if there are missing values at transform/test
time.

Attributes

indicator_ [sklearn.impute.MissingIndicator] Indicator used to add binary indi-
cators for missing values. None if add_indicator is False.

References

• Olga Troyanskaya, Michael Cantor, Gavin Sherlock, Pat Brown, Trevor Hastie, Robert Tibshirani, David
Botstein and Russ B. Altman, Missing value estimation methods for DNA microarrays, BIOINFORMAT-
ICS Vol. 17 no. 6, 2001 Pages 520-525.

Examples

>>> import numpy as np
>>> from sklearn.impute import KNNImputer
>>> X = [[1, 2, np.nan], [3, 4, 3], [np.nan, 6, 5], [8, 8, 7]]
>>> imputer = KNNImputer(n_neighbors=2)
>>> imputer.fit_transform(X)
array([[1. , 2. , 4.],

[3. , 4. , 3.],
[5.5, 6. , 5.],
[8. , 8. , 7.]])

7.17. sklearn.impute: Impute 2043

scikit-learn user guide, Release 0.23.2

Methods

fit(X[, y]) Fit the imputer on X.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Impute all missing values in X.

__init__(*, missing_values=nan, n_neighbors=5, weights=’uniform’, metric=’nan_euclidean’,
copy=True, add_indicator=False)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Fit the imputer on X.

Parameters

X [array-like shape of (n_samples, n_features)] Input data, where n_samples is the num-
ber of samples and n_features is the number of features.

Returns

self [object]

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

2044 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Returns

self [object] Estimator instance.

transform(X)
Impute all missing values in X.

Parameters

X [array-like of shape (n_samples, n_features)] The input data to complete.

Returns

X [array-like of shape (n_samples, n_output_features)] The imputed dataset.
n_output_features is the number of features that is not always missing dur-
ing fit.

Examples using sklearn.impute.KNNImputer

• Release Highlights for scikit-learn 0.22

• Imputing missing values before building an estimator

7.18 sklearn.inspection: inspection

The sklearn.inspection module includes tools for model inspection.

inspection.partial_dependence(estimator,
X, . . .)

Partial dependence of features.

inspection.permutation_importance(estimator,
. . .)

Permutation importance for feature evaluation [BRE].

7.18.1 sklearn.inspection.partial_dependence

sklearn.inspection.partial_dependence(estimator, X, features, *, response_method=’auto’,
percentiles=(0.05, 0.95), grid_resolution=100,
method=’auto’)

Partial dependence of features.

Partial dependence of a feature (or a set of features) corresponds to the average response of an estimator for each
possible value of the feature.

Read more in the User Guide.

Warning: For GradientBoostingClassifier and GradientBoostingRegressor, the
‘recursion’ method (used by default) will not account for the init predictor of the boosting pro-
cess. In practice, this will produce the same values as ‘brute’ up to a constant offset in the
target response, provided that init is a constant estimator (which is the default). However, if
init is not a constant estimator, the partial dependence values are incorrect for ‘recursion’ because
the offset will be sample-dependent. It is preferable to use the ‘brute’ method. Note that this
only applies to GradientBoostingClassifier and GradientBoostingRegressor, not to
HistGradientBoostingClassifier and HistGradientBoostingRegressor.

7.18. sklearn.inspection: inspection 2045

scikit-learn user guide, Release 0.23.2

Parameters

estimator [BaseEstimator] A fitted estimator object implementing predict, predict_proba, or
decision_function. Multioutput-multiclass classifiers are not supported.

X [{array-like or dataframe} of shape (n_samples, n_features)] X is used to generate a grid of
values for the target features (where the partial dependence will be evaluated), and also
to generate values for the complement features when the method is ‘brute’.

features [array-like of {int, str}] The feature (e.g. [0]) or pair of interacting features (e.g.
[(0, 1)]) for which the partial dependency should be computed.

response_method [‘auto’, ‘predict_proba’ or ‘decision_function’, optional (default=’auto’)]
Specifies whether to use predict_proba or decision_function as the target response. For
regressors this parameter is ignored and the response is always the output of predict. By
default, predict_proba is tried first and we revert to decision_function if it doesn’t exist. If
method is ‘recursion’, the response is always the output of decision_function.

percentiles [tuple of float, optional (default=(0.05, 0.95))] The lower and upper percentile used
to create the extreme values for the grid. Must be in [0, 1].

grid_resolution [int, optional (default=100)] The number of equally spaced points on the grid,
for each target feature.

method [str, optional (default=’auto’)] The method used to calculate the averaged predictions:

• ‘recursion’ is only supported for some tree-based es-
timators (namely GradientBoostingClassifier,
GradientBoostingRegressor, HistGradientBoostingClassifier,
HistGradientBoostingRegressor, DecisionTreeRegressor,
RandomForestRegressor,) but is more efficient in terms of speed. With
this method, the target response of a classifier is always the decision function, not the
predicted probabilities.

• ‘brute’ is supported for any estimator, but is more computationally intensive.

• ‘auto’: the ‘recursion’ is used for estimators that support it, and ‘brute’ is used otherwise.

Please see this note for differences between the ‘brute’ and ‘recursion’ method.

Returns

averaged_predictions [ndarray, shape (n_outputs, len(values[0]), len(values[1]), . . .)] The pre-
dictions for all the points in the grid, averaged over all samples in X (or over the training data
if method is ‘recursion’). n_outputs corresponds to the number of classes in a multi-
class setting, or to the number of tasks for multi-output regression. For classical regression
and binary classification n_outputs==1. n_values_feature_j corresponds to the
size values[j].

values [seq of 1d ndarrays] The values with which the grid has been created. The generated grid
is a cartesian product of the arrays in values. len(values) == len(features).
The size of each array values[j] is either grid_resolution, or the number of
unique values in X[:, j], whichever is smaller.

See also:

sklearn.inspection.plot_partial_dependence Plot partial dependence

2046 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Examples

>>> X = [[0, 0, 2], [1, 0, 0]]
>>> y = [0, 1]
>>> from sklearn.ensemble import GradientBoostingClassifier
>>> gb = GradientBoostingClassifier(random_state=0).fit(X, y)
>>> partial_dependence(gb, features=[0], X=X, percentiles=(0, 1),
... grid_resolution=2) # doctest: +SKIP
(array([[-4.52..., 4.52...]]), [array([0., 1.])])

Examples using sklearn.inspection.partial_dependence

• Partial Dependence Plots

7.18.2 sklearn.inspection.permutation_importance

sklearn.inspection.permutation_importance(estimator, X, y, *, scoring=None, n_repeats=5,
n_jobs=None, random_state=None)

Permutation importance for feature evaluation [BRE].

The estimator is required to be a fitted estimator. X can be the data set used to train the estimator or a hold-out
set. The permutation importance of a feature is calculated as follows. First, a baseline metric, defined by scoring,
is evaluated on a (potentially different) dataset defined by the X. Next, a feature column from the validation set is
permuted and the metric is evaluated again. The permutation importance is defined to be the difference between
the baseline metric and metric from permutating the feature column.

Read more in the User Guide.

Parameters

estimator [object] An estimator that has already been fitted and is compatible with scorer.

X [ndarray or DataFrame, shape (n_samples, n_features)] Data on which permutation impor-
tance will be computed.

y [array-like or None, shape (n_samples,) or (n_samples, n_classes)] Targets for supervised or
None for unsupervised.

scoring [string, callable or None, default=None] Scorer to use. It can be a single string (see
The scoring parameter: defining model evaluation rules) or a callable (see Defining your
scoring strategy from metric functions). If None, the estimator’s default scorer is used.

n_repeats [int, default=5] Number of times to permute a feature.

n_jobs [int or None, default=None] The number of jobs to use for the computation. None
means 1 unless in a joblib.parallel_backend context. -1 means using all proces-
sors. See Glossary for more details.

random_state [int, RandomState instance, default=None] Pseudo-random number generator
to control the permutations of each feature. Pass an int to get reproducible results across
function calls. See :term: Glossary <random_state>.

Returns

result [Bunch] Dictionary-like object, with the following attributes.

importances_mean [ndarray, shape (n_features,)] Mean of feature importance over
n_repeats.

7.18. sklearn.inspection: inspection 2047

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

importances_std [ndarray, shape (n_features,)] Standard deviation over n_repeats.

importances [ndarray, shape (n_features, n_repeats)] Raw permutation importance scores.

References

[BRE]

Examples

>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.inspection import permutation_importance
>>> X = [[1, 9, 9],[1, 9, 9],[1, 9, 9],
... [0, 9, 9],[0, 9, 9],[0, 9, 9]]
>>> y = [1, 1, 1, 0, 0, 0]
>>> clf = LogisticRegression().fit(X, y)
>>> result = permutation_importance(clf, X, y, n_repeats=10,
... random_state=0)
>>> result.importances_mean
array([0.4666..., 0. , 0.])
>>> result.importances_std
array([0.2211..., 0. , 0.])

Examples using sklearn.inspection.permutation_importance

• Release Highlights for scikit-learn 0.22

• Feature importances with forests of trees

• Gradient Boosting regression

• Permutation Importance with Multicollinear or Correlated Features

• Permutation Importance vs Random Forest Feature Importance (MDI)

7.18.3 Plotting

inspection.PartialDependenceDisplay(. . .) Partial Dependence Plot (PDP) visualization.

sklearn.inspection.PartialDependenceDisplay

class sklearn.inspection.PartialDependenceDisplay(pd_results, *, features, fea-
ture_names, target_idx, pdp_lim,
deciles)

Partial Dependence Plot (PDP) visualization.

It is recommended to use plot_partial_dependence to create a PartialDependenceDisplay .
All parameters are stored as attributes.

Read more in Advanced Plotting With Partial Dependence and the User Guide.

New in version 0.22.

Parameters

2048 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

pd_results [list of (ndarray, ndarray)] Results of partial_dependence for features.
Each tuple corresponds to a (averaged_predictions, grid).

features [list of (int,) or list of (int, int)] Indices of features for a given plot. A tuple of one
integer will plot a partial dependence curve of one feature. A tuple of two integers will plot
a two-way partial dependence curve as a contour plot.

feature_names [list of str] Feature names corresponding to the indices in features.

target_idx [int]

• In a multiclass setting, specifies the class for which the PDPs should be computed. Note
that for binary classification, the positive class (index 1) is always used.

• In a multioutput setting, specifies the task for which the PDPs should be computed.

Ignored in binary classification or classical regression settings.

pdp_lim [dict] Global min and max average predictions, such that all plots will have the same
scale and y limits. pdp_lim[1] is the global min and max for single partial dependence
curves. pdp_lim[2] is the global min and max for two-way partial dependence curves.

deciles [dict] Deciles for feature indices in features.

Attributes

bounding_ax_ [matplotlib Axes or None] If ax is an axes or None, the bounding_ax_ is
the axes where the grid of partial dependence plots are drawn. If ax is a list of axes or a
numpy array of axes, bounding_ax_ is None.

axes_ [ndarray of matplotlib Axes] If ax is an axes or None, axes_[i, j] is the axes on the
i-th row and j-th column. If ax is a list of axes, axes_[i] is the i-th item in ax. Elements
that are None correspond to a nonexisting axes in that position.

lines_ [ndarray of matplotlib Artists] If ax is an axes or None, lines_[i, j] is the partial
dependence curve on the i-th row and j-th column. If ax is a list of axes, lines_[i] is
the partial dependence curve corresponding to the i-th item in ax. Elements that are None
correspond to a nonexisting axes or an axes that does not include a line plot.

deciles_vlines_ [ndarray of matplotlib LineCollection] If ax is an axes or None, vlines_[i,
j] is the line collection representing the x axis deciles of the i-th row and j-th column. If
ax is a list of axes, vlines_[i] corresponds to the i-th item in ax. Elements that are
None correspond to a nonexisting axes or an axes that does not include a PDP plot. ..
versionadded:: 0.23

deciles_hlines_ [ndarray of matplotlib LineCollection] If ax is an axes or None, vlines_[i,
j] is the line collection representing the y axis deciles of the i-th row and j-th column. If
ax is a list of axes, vlines_[i] corresponds to the i-th item in ax. Elements that are
None correspond to a nonexisting axes or an axes that does not include a 2-way plot. ..
versionadded:: 0.23

contours_ [ndarray of matplotlib Artists] If ax is an axes or None, contours_[i, j]
is the partial dependence plot on the i-th row and j-th column. If ax is a list of axes,
contours_[i] is the partial dependence plot corresponding to the i-th item in ax. El-
ements that are None correspond to a nonexisting axes or an axes that does not include a
contour plot.

figure_ [matplotlib Figure] Figure containing partial dependence plots.

7.18. sklearn.inspection: inspection 2049

scikit-learn user guide, Release 0.23.2

Methods

plot([ax, n_cols, line_kw, contour_kw]) Plot partial dependence plots.

__init__(pd_results, *, features, feature_names, target_idx, pdp_lim, deciles)
Initialize self. See help(type(self)) for accurate signature.

plot(ax=None, n_cols=3, line_kw=None, contour_kw=None)
Plot partial dependence plots.

Parameters

ax [Matplotlib axes or array-like of Matplotlib axes, default=None]

• If a single axis is passed in, it is treated as a bounding axes and a grid of partial de-
pendence plots will be drawn within these bounds. The n_cols parameter controls
the number of columns in the grid.

• If an array-like of axes are passed in, the partial dependence plots will be drawn
directly into these axes.

• If None, a figure and a bounding axes is created and treated as the single axes
case.

n_cols [int, default=3] The maximum number of columns in the grid plot. Only active when
ax is a single axes or None.

line_kw [dict, default=None] Dict with keywords passed to the matplotlib.pyplot.
plot call. For one-way partial dependence plots.

contour_kw [dict, default=None] Dict with keywords passed to the matplotlib.
pyplot.contourf call for two-way partial dependence plots.

Returns

display: PartialDependenceDisplay

Examples using sklearn.inspection.PartialDependenceDisplay

• Advanced Plotting With Partial Dependence

inspection.plot_partial_dependence(. . . [,
. . .])

Partial dependence plots.

sklearn.inspection.plot_partial_dependence

sklearn.inspection.plot_partial_dependence(estimator, X, features, *, fea-
ture_names=None, target=None, re-
sponse_method=’auto’, n_cols=3,
grid_resolution=100, percentiles=(0.05,
0.95), method=’auto’, n_jobs=None, ver-
bose=0, fig=None, line_kw=None, con-
tour_kw=None, ax=None)

Partial dependence plots.

The len(features) plots are arranged in a grid with n_cols columns. Two-way partial dependence plots
are plotted as contour plots. The deciles of the feature values will be shown with tick marks on the x-axes for

2050 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

one-way plots, and on both axes for two-way plots.

Read more in the User Guide.

Note: plot_partial_dependence does not support using the same axes with multiple calls. To plot the
the partial dependence for multiple estimators, please pass the axes created by the first call to the second call:

>>> from sklearn.inspection import plot_partial_dependence
>>> from sklearn.datasets import make_friedman1
>>> from sklearn.linear_model import LinearRegression
>>> X, y = make_friedman1()
>>> est = LinearRegression().fit(X, y)
>>> disp1 = plot_partial_dependence(est, X)
>>> disp2 = plot_partial_dependence(est, X,
... ax=disp1.axes_)

Warning: For GradientBoostingClassifier and GradientBoostingRegressor, the
‘recursion’ method (used by default) will not account for the init predictor of the boosting pro-
cess. In practice, this will produce the same values as ‘brute’ up to a constant offset in the
target response, provided that init is a constant estimator (which is the default). However, if
init is not a constant estimator, the partial dependence values are incorrect for ‘recursion’ because
the offset will be sample-dependent. It is preferable to use the ‘brute’ method. Note that this
only applies to GradientBoostingClassifier and GradientBoostingRegressor, not to
HistGradientBoostingClassifier and HistGradientBoostingRegressor.

Parameters

estimator [BaseEstimator] A fitted estimator object implementing predict, predict_proba, or
decision_function. Multioutput-multiclass classifiers are not supported.

X [{array-like or dataframe} of shape (n_samples, n_features)] X is used to generate a grid of
values for the target features (where the partial dependence will be evaluated), and also
to generate values for the complement features when the method is ‘brute’.

features [list of {int, str, pair of int, pair of str}] The target features for which to create the
PDPs. If features[i] is an int or a string, a one-way PDP is created; if features[i] is a tuple, a
two-way PDP is created. Each tuple must be of size 2. if any entry is a string, then it must
be in feature_names.

feature_names [array-like of shape (n_features,), dtype=str, default=None] Name of each fea-
ture; feature_names[i] holds the name of the feature with index i. By default, the name of
the feature corresponds to their numerical index for NumPy array and their column name
for pandas dataframe.

target [int, optional (default=None)]

• In a multiclass setting, specifies the class for which the PDPs should be computed. Note
that for binary classification, the positive class (index 1) is always used.

• In a multioutput setting, specifies the task for which the PDPs should be computed.

Ignored in binary classification or classical regression settings.

response_method [‘auto’, ‘predict_proba’ or ‘decision_function’, optional (default=’auto’)]
Specifies whether to use predict_proba or decision_function as the target response. For
regressors this parameter is ignored and the response is always the output of predict. By

7.18. sklearn.inspection: inspection 2051

scikit-learn user guide, Release 0.23.2

default, predict_proba is tried first and we revert to decision_function if it doesn’t exist. If
method is ‘recursion’, the response is always the output of decision_function.

n_cols [int, optional (default=3)] The maximum number of columns in the grid plot. Only
active when ax is a single axis or None.

grid_resolution [int, optional (default=100)] The number of equally spaced points on the axes
of the plots, for each target feature.

percentiles [tuple of float, optional (default=(0.05, 0.95))] The lower and upper percentile used
to create the extreme values for the PDP axes. Must be in [0, 1].

method [str, optional (default=’auto’)] The method used to calculate the averaged predictions:

• ‘recursion’ is only supported for some tree-based es-
timators (namely GradientBoostingClassifier,
GradientBoostingRegressor, HistGradientBoostingClassifier,
HistGradientBoostingRegressor, DecisionTreeRegressor,
RandomForestRegressor but is more efficient in terms of speed. With this
method, the target response of a classifier is always the decision function, not the
predicted probabilities.

• ‘brute’ is supported for any estimator, but is more computationally intensive.

• ‘auto’: the ‘recursion’ is used for estimators that support it, and ‘brute’ is used otherwise.

Please see this note for differences between the ‘brute’ and ‘recursion’ method.

n_jobs [int, optional (default=None)] The number of CPUs to use to compute the partial depen-
dences. None means 1 unless in a joblib.parallel_backend context. -1 means
using all processors. See Glossary for more details.

verbose [int, optional (default=0)] Verbose output during PD computations.

fig [Matplotlib figure object, optional (default=None)] A figure object onto which the plots will
be drawn, after the figure has been cleared. By default, a new one is created.

Deprecated since version 0.22: fig will be removed in 0.24.

line_kw [dict, optional] Dict with keywords passed to the matplotlib.pyplot.plot call.
For one-way partial dependence plots.

contour_kw [dict, optional] Dict with keywords passed to the matplotlib.pyplot.
contourf call. For two-way partial dependence plots.

ax [Matplotlib axes or array-like of Matplotlib axes, default=None]

• If a single axis is passed in, it is treated as a bounding axes and a grid of partial de-
pendence plots will be drawn within these bounds. The n_cols parameter controls
the number of columns in the grid.

• If an array-like of axes are passed in, the partial dependence plots will be drawn di-
rectly into these axes.

• If None, a figure and a bounding axes is created and treated as the single axes case.

New in version 0.22.

Returns

display: PartialDependenceDisplay

See also:

2052 Chapter 7. API Reference

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

sklearn.inspection.partial_dependence Return raw partial dependence values

Examples

>>> from sklearn.datasets import make_friedman1
>>> from sklearn.ensemble import GradientBoostingRegressor
>>> X, y = make_friedman1()
>>> clf = GradientBoostingRegressor(n_estimators=10).fit(X, y)
>>> plot_partial_dependence(clf, X, [0, (0, 1)]) #doctest: +SKIP

Examples using sklearn.inspection.plot_partial_dependence

• Release Highlights for scikit-learn 0.23

• Monotonic Constraints

• Partial Dependence Plots

• Advanced Plotting With Partial Dependence

7.19 sklearn.isotonic: Isotonic regression

User guide: See the Isotonic regression section for further details.

isotonic.IsotonicRegression(*[, y_min,
. . .])

Isotonic regression model.

7.19.1 sklearn.isotonic.IsotonicRegression

class sklearn.isotonic.IsotonicRegression(*, y_min=None, y_max=None, increas-
ing=True, out_of_bounds=’nan’)

Isotonic regression model.

Read more in the User Guide.

New in version 0.13.

Parameters

y_min [float, default=None] Lower bound on the lowest predicted value (the minimum value
may still be higher). If not set, defaults to -inf.

y_max [float, default=None] Upper bound on the highest predicted value (the maximum may
still be lower). If not set, defaults to +inf.

increasing [bool or ‘auto’, default=True] Determines whether the predictions should be con-
strained to increase or decrease with X. ‘auto’ will decide based on the Spearman correlation
estimate’s sign.

out_of_bounds [str, default=”nan”] The out_of_bounds parameter handles how X values
outside of the training domain are handled. When set to “nan”, predictions will be NaN.
When set to “clip”, predictions will be set to the value corresponding to the nearest train
interval endpoint. When set to “raise” a ValueError is raised.

7.19. sklearn.isotonic: Isotonic regression 2053

scikit-learn user guide, Release 0.23.2

Attributes

X_min_ [float] Minimum value of input array X_ for left bound.

X_max_ [float] Maximum value of input array X_ for right bound.

f_ [function] The stepwise interpolating function that covers the input domain X.

increasing_ [bool] Inferred value for increasing.

Notes

Ties are broken using the secondary method from Leeuw, 1977.

References

Isotonic Median Regression: A Linear Programming Approach Nilotpal Chakravarti Mathematics of Operations
Research Vol. 14, No. 2 (May, 1989), pp. 303-308

Isotone Optimization in R : Pool-Adjacent-Violators Algorithm (PAVA) and Active Set Methods Leeuw, Hornik,
Mair Journal of Statistical Software 2009

Correctness of Kruskal’s algorithms for monotone regression with ties Leeuw, Psychometrica, 1977

Examples

>>> from sklearn.datasets import make_regression
>>> from sklearn.isotonic import IsotonicRegression
>>> X, y = make_regression(n_samples=10, n_features=1, random_state=41)
>>> iso_reg = IsotonicRegression().fit(X.flatten(), y)
>>> iso_reg.predict([.1, .2])
array([1.8628..., 3.7256...])

Methods

fit(X, y[, sample_weight]) Fit the model using X, y as training data.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
predict(T) Predict new data by linear interpolation.
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.
transform(T) Transform new data by linear interpolation

__init__(*, y_min=None, y_max=None, increasing=True, out_of_bounds=’nan’)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y, sample_weight=None)
Fit the model using X, y as training data.

Parameters

X [array-like of shape (n_samples,)] Training data.

2054 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

y [array-like of shape (n_samples,)] Training target.

sample_weight [array-like of shape (n_samples,), default=None] Weights. If set to None,
all weights will be set to 1 (equal weights).

Returns

self [object] Returns an instance of self.

Notes

X is stored for future use, as transform needs X to interpolate new input data.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(T)
Predict new data by linear interpolation.

Parameters

T [array-like of shape (n_samples,)] Data to transform.

Returns

y_pred [ndarray of shape (n_samples,)] Transformed data.

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

7.19. sklearn.isotonic: Isotonic regression 2055

scikit-learn user guide, Release 0.23.2

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(T)
Transform new data by linear interpolation

Parameters

T [array-like of shape (n_samples,)] Data to transform.

Returns

y_pred [ndarray of shape (n_samples,)] The transformed data

Examples using sklearn.isotonic.IsotonicRegression

• Isotonic Regression

isotonic.check_increasing(x, y) Determine whether y is monotonically correlated with
x.

isotonic.isotonic_regression(y, *[, . . .]) Solve the isotonic regression model.

7.19.2 sklearn.isotonic.check_increasing

sklearn.isotonic.check_increasing(x, y)
Determine whether y is monotonically correlated with x.

y is found increasing or decreasing with respect to x based on a Spearman correlation test.

2056 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Parameters

x [array-like of shape (n_samples,)] Training data.

y [array-like of shape (n_samples,)] Training target.

Returns

increasing_bool [boolean] Whether the relationship is increasing or decreasing.

Notes

The Spearman correlation coefficient is estimated from the data, and the sign of the resulting estimate is used as
the result.

In the event that the 95% confidence interval based on Fisher transform spans zero, a warning is raised.

References

Fisher transformation. Wikipedia. https://en.wikipedia.org/wiki/Fisher_transformation

7.19.3 sklearn.isotonic.isotonic_regression

sklearn.isotonic.isotonic_regression(y, *, sample_weight=None, y_min=None,
y_max=None, increasing=True)

Solve the isotonic regression model.

Read more in the User Guide.

Parameters

y [array-like of shape (n_samples,)] The data.

sample_weight [array-like of shape (n_samples,), default=None] Weights on each point of the
regression. If None, weight is set to 1 (equal weights).

y_min [float, default=None] Lower bound on the lowest predicted value (the minimum value
may still be higher). If not set, defaults to -inf.

y_max [float, default=None] Upper bound on the highest predicted value (the maximum may
still be lower). If not set, defaults to +inf.

increasing [boolean, optional, default: True] Whether to compute y_ is increasing (if set to
True) or decreasing (if set to False)

Returns

y_ [list of floats] Isotonic fit of y.

References

“Active set algorithms for isotonic regression; A unifying framework” by Michael J. Best and Nilotpal
Chakravarti, section 3.

7.19. sklearn.isotonic: Isotonic regression 2057

https://en.wikipedia.org/wiki/Fisher_transformation

scikit-learn user guide, Release 0.23.2

7.20 sklearn.kernel_approximation Kernel Approximation

The sklearn.kernel_approximation module implements several approximate kernel feature maps base on
Fourier transforms.

User guide: See the Kernel Approximation section for further details.

kernel_approximation.
AdditiveChi2Sampler(*)

Approximate feature map for additive chi2 kernel.

kernel_approximation.Nystroem([kernel,
. . .])

Approximate a kernel map using a subset of the training
data.

kernel_approximation.RBFSampler(*[,
gamma, . . .])

Approximates feature map of an RBF kernel by Monte
Carlo approximation of its Fourier transform.

kernel_approximation.
SkewedChi2Sampler(*[, . . .])

Approximates feature map of the “skewed chi-squared”
kernel by Monte Carlo approximation of its Fourier
transform.

7.20.1 sklearn.kernel_approximation.AdditiveChi2Sampler

class sklearn.kernel_approximation.AdditiveChi2Sampler(*, sample_steps=2, sam-
ple_interval=None)

Approximate feature map for additive chi2 kernel.

Uses sampling the fourier transform of the kernel characteristic at regular intervals.

Since the kernel that is to be approximated is additive, the components of the input vectors can be treated
separately. Each entry in the original space is transformed into 2*sample_steps+1 features, where sample_steps
is a parameter of the method. Typical values of sample_steps include 1, 2 and 3.

Optimal choices for the sampling interval for certain data ranges can be computed (see the reference). The
default values should be reasonable.

Read more in the User Guide.

Parameters

sample_steps [int, optional] Gives the number of (complex) sampling points.

sample_interval [float, optional] Sampling interval. Must be specified when sample_steps not
in {1,2,3}.

Attributes

sample_interval_ [float] Stored sampling interval. Specified as a parameter if sample_steps not
in {1,2,3}.

See also:

SkewedChi2Sampler A Fourier-approximation to a non-additive variant of the chi squared kernel.

sklearn.metrics.pairwise.chi2_kernel The exact chi squared kernel.

sklearn.metrics.pairwise.additive_chi2_kernel The exact additive chi squared kernel.

Notes

This estimator approximates a slightly different version of the additive chi squared kernel then metric.
additive_chi2 computes.

2058 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

References

See “Efficient additive kernels via explicit feature maps” A. Vedaldi and A. Zisserman, Pattern Analysis and
Machine Intelligence, 2011

Examples

>>> from sklearn.datasets import load_digits
>>> from sklearn.linear_model import SGDClassifier
>>> from sklearn.kernel_approximation import AdditiveChi2Sampler
>>> X, y = load_digits(return_X_y=True)
>>> chi2sampler = AdditiveChi2Sampler(sample_steps=2)
>>> X_transformed = chi2sampler.fit_transform(X, y)
>>> clf = SGDClassifier(max_iter=5, random_state=0, tol=1e-3)
>>> clf.fit(X_transformed, y)
SGDClassifier(max_iter=5, random_state=0)
>>> clf.score(X_transformed, y)
0.9499...

Methods

fit(X[, y]) Set the parameters
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Apply approximate feature map to X.

__init__(*, sample_steps=2, sample_interval=None)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Set the parameters

Parameters

X [array-like, shape (n_samples, n_features)] Training data, where n_samples in the number
of samples and n_features is the number of features.

Returns

self [object] Returns the transformer.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

7.20. sklearn.kernel_approximation Kernel Approximation 2059

http://www.robots.ox.ac.uk/~vedaldi/assets/pubs/vedaldi11efficient.pdf

scikit-learn user guide, Release 0.23.2

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Apply approximate feature map to X.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)]

Returns

X_new [{array, sparse matrix}, shape = (n_samples, n_features * (2*sample_steps + 1))]
Whether the return value is an array of sparse matrix depends on the type of the input X.

7.20.2 sklearn.kernel_approximation.Nystroem

class sklearn.kernel_approximation.Nystroem(kernel=’rbf’, *, gamma=None, coef0=None,
degree=None, kernel_params=None,
n_components=100, random_state=None)

Approximate a kernel map using a subset of the training data.

Constructs an approximate feature map for an arbitrary kernel using a subset of the data as basis.

Read more in the User Guide.

New in version 0.13.

Parameters

kernel [string or callable, default=”rbf”] Kernel map to be approximated. A callable should
accept two arguments and the keyword arguments passed to this object as kernel_params,
and should return a floating point number.

gamma [float, default=None] Gamma parameter for the RBF, laplacian, polynomial, exponen-
tial chi2 and sigmoid kernels. Interpretation of the default value is left to the kernel; see the
documentation for sklearn.metrics.pairwise. Ignored by other kernels.

coef0 [float, default=None] Zero coefficient for polynomial and sigmoid kernels. Ignored by
other kernels.

2060 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

degree [float, default=None] Degree of the polynomial kernel. Ignored by other kernels.

kernel_params [mapping of string to any, optional] Additional parameters (keyword argu-
ments) for kernel function passed as callable object.

n_components [int] Number of features to construct. How many data points will be used to
construct the mapping.

random_state [int, RandomState instance or None, optional (default=None)] Pseudo-random
number generator to control the uniform sampling without replacement of n_components
of the training data to construct the basis kernel. Pass an int for reproducible output across
multiple function calls. See Glossary.

Attributes

components_ [array, shape (n_components, n_features)] Subset of training points used to con-
struct the feature map.

component_indices_ [array, shape (n_components)] Indices of components_ in the training
set.

normalization_ [array, shape (n_components, n_components)] Normalization matrix needed
for embedding. Square root of the kernel matrix on components_.

See also:

RBFSampler An approximation to the RBF kernel using random Fourier features.

sklearn.metrics.pairwise.kernel_metrics List of built-in kernels.

References

• Williams, C.K.I. and Seeger, M. “Using the Nystroem method to speed up kernel machines”, Advances in
neural information processing systems 2001

• T. Yang, Y. Li, M. Mahdavi, R. Jin and Z. Zhou “Nystroem Method vs Random Fourier Features: A
Theoretical and Empirical Comparison”, Advances in Neural Information Processing Systems 2012

Examples

>>> from sklearn import datasets, svm
>>> from sklearn.kernel_approximation import Nystroem
>>> X, y = datasets.load_digits(n_class=9, return_X_y=True)
>>> data = X / 16.
>>> clf = svm.LinearSVC()
>>> feature_map_nystroem = Nystroem(gamma=.2,
... random_state=1,
... n_components=300)
>>> data_transformed = feature_map_nystroem.fit_transform(data)
>>> clf.fit(data_transformed, y)
LinearSVC()
>>> clf.score(data_transformed, y)
0.9987...

Methods

7.20. sklearn.kernel_approximation Kernel Approximation 2061

scikit-learn user guide, Release 0.23.2

fit(X[, y]) Fit estimator to data.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Apply feature map to X.

__init__(kernel=’rbf’, *, gamma=None, coef0=None, degree=None, kernel_params=None,
n_components=100, random_state=None)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Fit estimator to data.

Samples a subset of training points, computes kernel on these and computes normalization matrix.

Parameters

X [array-like of shape (n_samples, n_features)] Training data.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

2062 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

transform(X)
Apply feature map to X.

Computes an approximate feature map using the kernel between some training points and X.

Parameters

X [array-like of shape (n_samples, n_features)] Data to transform.

Returns

X_transformed [array, shape=(n_samples, n_components)] Transformed data.

Examples using sklearn.kernel_approximation.Nystroem

• Explicit feature map approximation for RBF kernels

7.20.3 sklearn.kernel_approximation.RBFSampler

class sklearn.kernel_approximation.RBFSampler(*, gamma=1.0, n_components=100, ran-
dom_state=None)

Approximates feature map of an RBF kernel by Monte Carlo approximation of its Fourier transform.

It implements a variant of Random Kitchen Sinks.[1]

Read more in the User Guide.

Parameters

gamma [float] Parameter of RBF kernel: exp(-gamma * x^2)

n_components [int] Number of Monte Carlo samples per original feature. Equals the dimen-
sionality of the computed feature space.

random_state [int, RandomState instance or None, optional (default=None)] Pseudo-random
number generator to control the generation of the random weights and random offset when
fitting the training data. Pass an int for reproducible output across multiple function calls.
See Glossary.

Attributes

random_offset_ [ndarray of shape (n_components,), dtype=float64] Random offset used to
compute the projection in the n_components dimensions of the feature space.

random_weights_ [ndarray of shape (n_features, n_components), dtype=float64] Random pro-
jection directions drawn from the Fourier transform of the RBF kernel.

Notes

See “Random Features for Large-Scale Kernel Machines” by A. Rahimi and Benjamin Recht.

[1] “Weighted Sums of Random Kitchen Sinks: Replacing minimization with randomization in learning” by A.
Rahimi and Benjamin Recht. (https://people.eecs.berkeley.edu/~brecht/papers/08.rah.rec.nips.pdf)

Examples

7.20. sklearn.kernel_approximation Kernel Approximation 2063

https://people.eecs.berkeley.edu/~brecht/papers/08.rah.rec.nips.pdf

scikit-learn user guide, Release 0.23.2

>>> from sklearn.kernel_approximation import RBFSampler
>>> from sklearn.linear_model import SGDClassifier
>>> X = [[0, 0], [1, 1], [1, 0], [0, 1]]
>>> y = [0, 0, 1, 1]
>>> rbf_feature = RBFSampler(gamma=1, random_state=1)
>>> X_features = rbf_feature.fit_transform(X)
>>> clf = SGDClassifier(max_iter=5, tol=1e-3)
>>> clf.fit(X_features, y)
SGDClassifier(max_iter=5)
>>> clf.score(X_features, y)
1.0

Methods

fit(X[, y]) Fit the model with X.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Apply the approximate feature map to X.

__init__(*, gamma=1.0, n_components=100, random_state=None)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Fit the model with X.

Samples random projection according to n_features.

Parameters

X [{array-like, sparse matrix}, shape (n_samples, n_features)] Training data, where
n_samples in the number of samples and n_features is the number of features.

Returns

self [object] Returns the transformer.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters

2064 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Apply the approximate feature map to X.

Parameters

X [{array-like, sparse matrix}, shape (n_samples, n_features)] New data, where n_samples
in the number of samples and n_features is the number of features.

Returns

X_new [array-like, shape (n_samples, n_components)]

Examples using sklearn.kernel_approximation.RBFSampler

• Explicit feature map approximation for RBF kernels

7.20.4 sklearn.kernel_approximation.SkewedChi2Sampler

class sklearn.kernel_approximation.SkewedChi2Sampler(*, skewedness=1.0,
n_components=100, ran-
dom_state=None)

Approximates feature map of the “skewed chi-squared” kernel by Monte Carlo approximation of its Fourier
transform.

Read more in the User Guide.

Parameters

skewedness [float] “skewedness” parameter of the kernel. Needs to be cross-validated.

n_components [int] number of Monte Carlo samples per original feature. Equals the dimen-
sionality of the computed feature space.

random_state [int, RandomState instance or None, optional (default=None)] Pseudo-random
number generator to control the generation of the random weights and random offset when
fitting the training data. Pass an int for reproducible output across multiple function calls.
See Glossary.

See also:

7.20. sklearn.kernel_approximation Kernel Approximation 2065

scikit-learn user guide, Release 0.23.2

AdditiveChi2Sampler A different approach for approximating an additive variant of the chi squared ker-
nel.

sklearn.metrics.pairwise.chi2_kernel The exact chi squared kernel.

References

See “Random Fourier Approximations for Skewed Multiplicative Histogram Kernels” by Fuxin Li, Catalin
Ionescu and Cristian Sminchisescu.

Examples

>>> from sklearn.kernel_approximation import SkewedChi2Sampler
>>> from sklearn.linear_model import SGDClassifier
>>> X = [[0, 0], [1, 1], [1, 0], [0, 1]]
>>> y = [0, 0, 1, 1]
>>> chi2_feature = SkewedChi2Sampler(skewedness=.01,
... n_components=10,
... random_state=0)
>>> X_features = chi2_feature.fit_transform(X, y)
>>> clf = SGDClassifier(max_iter=10, tol=1e-3)
>>> clf.fit(X_features, y)
SGDClassifier(max_iter=10)
>>> clf.score(X_features, y)
1.0

Methods

fit(X[, y]) Fit the model with X.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Apply the approximate feature map to X.

__init__(*, skewedness=1.0, n_components=100, random_state=None)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Fit the model with X.

Samples random projection according to n_features.

Parameters

X [array-like, shape (n_samples, n_features)] Training data, where n_samples in the number
of samples and n_features is the number of features.

Returns

self [object] Returns the transformer.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

2066 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Apply the approximate feature map to X.

Parameters

X [array-like, shape (n_samples, n_features)] New data, where n_samples in the number of
samples and n_features is the number of features. All values of X must be strictly greater
than “-skewedness”.

Returns

X_new [array-like, shape (n_samples, n_components)]

7.21 sklearn.kernel_ridge Kernel Ridge Regression

Module sklearn.kernel_ridge implements kernel ridge regression.

User guide: See the Kernel ridge regression section for further details.

kernel_ridge.KernelRidge([alpha, kernel,
. . .])

Kernel ridge regression.

7.21. sklearn.kernel_ridge Kernel Ridge Regression 2067

scikit-learn user guide, Release 0.23.2

7.21.1 sklearn.kernel_ridge.KernelRidge

class sklearn.kernel_ridge.KernelRidge(alpha=1, *, kernel=’linear’, gamma=None, de-
gree=3, coef0=1, kernel_params=None)

Kernel ridge regression.

Kernel ridge regression (KRR) combines ridge regression (linear least squares with l2-norm regularization) with
the kernel trick. It thus learns a linear function in the space induced by the respective kernel and the data. For
non-linear kernels, this corresponds to a non-linear function in the original space.

The form of the model learned by KRR is identical to support vector regression (SVR). However, different loss
functions are used: KRR uses squared error loss while support vector regression uses epsilon-insensitive loss,
both combined with l2 regularization. In contrast to SVR, fitting a KRR model can be done in closed-form and
is typically faster for medium-sized datasets. On the other hand, the learned model is non-sparse and thus slower
than SVR, which learns a sparse model for epsilon > 0, at prediction-time.

This estimator has built-in support for multi-variate regression (i.e., when y is a 2d-array of shape [n_samples,
n_targets]).

Read more in the User Guide.

Parameters

alpha [float or array-like of shape (n_targets,)] Regularization strength; must be a positive float.
Regularization improves the conditioning of the problem and reduces the variance of the es-
timates. Larger values specify stronger regularization. Alpha corresponds to 1 / (2C) in
other linear models such as LogisticRegression or sklearn.svm.LinearSVC.
If an array is passed, penalties are assumed to be specific to the targets. Hence they must
correspond in number. See Ridge regression and classification for formula.

kernel [string or callable, default=”linear”] Kernel mapping used internally. This param-
eter is directly passed to sklearn.metrics.pairwise.pairwise_kernel.
If kernel is a string, it must be one of the metrics in pairwise.
PAIRWISE_KERNEL_FUNCTIONS. If kernel is “precomputed”, X is assumed to
be a kernel matrix. Alternatively, if kernel is a callable function, it is called on each pair
of instances (rows) and the resulting value recorded. The callable should take two rows
from X as input and return the corresponding kernel value as a single number. This means
that callables from sklearn.metrics.pairwise are not allowed, as they operate on
matrices, not single samples. Use the string identifying the kernel instead.

gamma [float, default=None] Gamma parameter for the RBF, laplacian, polynomial, exponen-
tial chi2 and sigmoid kernels. Interpretation of the default value is left to the kernel; see the
documentation for sklearn.metrics.pairwise. Ignored by other kernels.

degree [float, default=3] Degree of the polynomial kernel. Ignored by other kernels.

coef0 [float, default=1] Zero coefficient for polynomial and sigmoid kernels. Ignored by other
kernels.

kernel_params [mapping of string to any, optional] Additional parameters (keyword argu-
ments) for kernel function passed as callable object.

Attributes

dual_coef_ [ndarray of shape (n_samples,) or (n_samples, n_targets)] Representation of weight
vector(s) in kernel space

X_fit_ [{ndarray, sparse matrix} of shape (n_samples, n_features)] Training data, which is also
required for prediction. If kernel == “precomputed” this is instead the precomputed training
matrix, of shape (n_samples, n_samples).

See also:

2068 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

sklearn.linear_model.Ridge Linear ridge regression.

sklearn.svm.SVR Support Vector Regression implemented using libsvm.

References

• Kevin P. Murphy “Machine Learning: A Probabilistic Perspective”, The MIT Press chapter 14.4.3, pp.
492-493

Examples

>>> from sklearn.kernel_ridge import KernelRidge
>>> import numpy as np
>>> n_samples, n_features = 10, 5
>>> rng = np.random.RandomState(0)
>>> y = rng.randn(n_samples)
>>> X = rng.randn(n_samples, n_features)
>>> clf = KernelRidge(alpha=1.0)
>>> clf.fit(X, y)
KernelRidge(alpha=1.0)

Methods

fit(X[, y, sample_weight]) Fit Kernel Ridge regression model
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the kernel ridge model
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.

__init__(alpha=1, *, kernel=’linear’, gamma=None, degree=3, coef0=1, kernel_params=None)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None, sample_weight=None)
Fit Kernel Ridge regression model

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training data. If kernel
== “precomputed” this is instead a precomputed kernel matrix, of shape (n_samples,
n_samples).

y [array-like of shape (n_samples,) or (n_samples, n_targets)] Target values

sample_weight [float or array-like of shape [n_samples]] Individual weights for each sam-
ple, ignored if None is passed.

Returns

self [returns an instance of self.]

get_params(deep=True)
Get parameters for this estimator.

Parameters

7.21. sklearn.kernel_ridge Kernel Ridge Regression 2069

scikit-learn user guide, Release 0.23.2

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict using the kernel ridge model

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Samples. If kernel
== “precomputed” this is instead a precomputed kernel matrix, shape = [n_samples,
n_samples_fitted], where n_samples_fitted is the number of samples used in the fitting
for this estimator.

Returns

C [ndarray of shape (n_samples,) or (n_samples, n_targets)] Returns predicted values.

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

2070 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Examples using sklearn.kernel_ridge.KernelRidge

• Comparison of kernel ridge and Gaussian process regression

• Comparison of kernel ridge regression and SVR

7.22 sklearn.linear_model: Linear Models

The sklearn.linear_model module implements a variety of linear models.

User guide: See the Linear Models section for further details.

The following subsections are only rough guidelines: the same estimator can fall into multiple categories, depending
on its parameters.

7.22.1 Linear classifiers

linear_model.LogisticRegression([penalty,
. . .])

Logistic Regression (aka logit, MaxEnt) classifier.

linear_model.LogisticRegressionCV (*[,
Cs, . . .])

Logistic Regression CV (aka logit, MaxEnt) classifier.

linear_model.PassiveAggressiveClassifier(*)Passive Aggressive Classifier
linear_model.Perceptron(*[, penalty, alpha,
. . .])

Read more in the User Guide.

linear_model.RidgeClassifier([alpha, . . .]) Classifier using Ridge regression.
linear_model.RidgeClassifierCV ([alphas,
. . .])

Ridge classifier with built-in cross-validation.

linear_model.SGDClassifier([loss, penalty,
. . .])

Linear classifiers (SVM, logistic regression, etc.) with
SGD training.

sklearn.linear_model.LogisticRegression

class sklearn.linear_model.LogisticRegression(penalty=’l2’, *, dual=False, tol=0.0001,
C=1.0, fit_intercept=True, inter-
cept_scaling=1, class_weight=None,
random_state=None, solver=’lbfgs’,
max_iter=100, multi_class=’auto’,
verbose=0, warm_start=False,
n_jobs=None, l1_ratio=None)

Logistic Regression (aka logit, MaxEnt) classifier.

In the multiclass case, the training algorithm uses the one-vs-rest (OvR) scheme if the ‘multi_class’ option is
set to ‘ovr’, and uses the cross-entropy loss if the ‘multi_class’ option is set to ‘multinomial’. (Currently the
‘multinomial’ option is supported only by the ‘lbfgs’, ‘sag’, ‘saga’ and ‘newton-cg’ solvers.)

This class implements regularized logistic regression using the ‘liblinear’ library, ‘newton-cg’, ‘sag’, ‘saga’ and
‘lbfgs’ solvers. Note that regularization is applied by default. It can handle both dense and sparse input. Use
C-ordered arrays or CSR matrices containing 64-bit floats for optimal performance; any other input format will
be converted (and copied).

The ‘newton-cg’, ‘sag’, and ‘lbfgs’ solvers support only L2 regularization with primal formulation, or no reg-
ularization. The ‘liblinear’ solver supports both L1 and L2 regularization, with a dual formulation only for the
L2 penalty. The Elastic-Net regularization is only supported by the ‘saga’ solver.

7.22. sklearn.linear_model: Linear Models 2071

scikit-learn user guide, Release 0.23.2

Read more in the User Guide.

Parameters

penalty [{‘l1’, ‘l2’, ‘elasticnet’, ‘none’}, default=’l2’] Used to specify the norm used in the pe-
nalization. The ‘newton-cg’, ‘sag’ and ‘lbfgs’ solvers support only l2 penalties. ‘elasticnet’
is only supported by the ‘saga’ solver. If ‘none’ (not supported by the liblinear solver), no
regularization is applied.

New in version 0.19: l1 penalty with SAGA solver (allowing ‘multinomial’ + L1)

dual [bool, default=False] Dual or primal formulation. Dual formulation is only implemented
for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features.

tol [float, default=1e-4] Tolerance for stopping criteria.

C [float, default=1.0] Inverse of regularization strength; must be a positive float. Like in support
vector machines, smaller values specify stronger regularization.

fit_intercept [bool, default=True] Specifies if a constant (a.k.a. bias or intercept) should be
added to the decision function.

intercept_scaling [float, default=1] Useful only when the solver ‘liblinear’ is used and
self.fit_intercept is set to True. In this case, x becomes [x, self.intercept_scaling],
i.e. a “synthetic” feature with constant value equal to intercept_scaling is ap-
pended to the instance vector. The intercept becomes intercept_scaling *
synthetic_feature_weight.

Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To
lessen the effect of regularization on synthetic feature weight (and therefore on the intercept)
intercept_scaling has to be increased.

class_weight [dict or ‘balanced’, default=None] Weights associated with classes in the form
{class_label: weight}. If not given, all classes are supposed to have weight one.

The “balanced” mode uses the values of y to automatically adjust weights inversely pro-
portional to class frequencies in the input data as n_samples / (n_classes * np.
bincount(y)).

Note that these weights will be multiplied with sample_weight (passed through the fit
method) if sample_weight is specified.

New in version 0.17: class_weight=’balanced’

random_state [int, RandomState instance, default=None] Used when solver == ‘sag’, ‘saga’
or ‘liblinear’ to shuffle the data. See Glossary for details.

solver [{‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’, ‘saga’}, default=’lbfgs’] Algorithm to use in
the optimization problem.

• For small datasets, ‘liblinear’ is a good choice, whereas ‘sag’ and ‘saga’ are faster for
large ones.

• For multiclass problems, only ‘newton-cg’, ‘sag’, ‘saga’ and ‘lbfgs’ handle multinomial
loss; ‘liblinear’ is limited to one-versus-rest schemes.

• ‘newton-cg’, ‘lbfgs’, ‘sag’ and ‘saga’ handle L2 or no penalty

• ‘liblinear’ and ‘saga’ also handle L1 penalty

• ‘saga’ also supports ‘elasticnet’ penalty

• ‘liblinear’ does not support setting penalty='none'

2072 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Note that ‘sag’ and ‘saga’ fast convergence is only guaranteed on features with approxi-
mately the same scale. You can preprocess the data with a scaler from sklearn.preprocessing.

New in version 0.17: Stochastic Average Gradient descent solver.

New in version 0.19: SAGA solver.

Changed in version 0.22: The default solver changed from ‘liblinear’ to ‘lbfgs’ in 0.22.

max_iter [int, default=100] Maximum number of iterations taken for the solvers to converge.

multi_class [{‘auto’, ‘ovr’, ‘multinomial’}, default=’auto’] If the option chosen is ‘ovr’, then a
binary problem is fit for each label. For ‘multinomial’ the loss minimised is the multinomial
loss fit across the entire probability distribution, even when the data is binary. ‘multino-
mial’ is unavailable when solver=’liblinear’. ‘auto’ selects ‘ovr’ if the data is binary, or if
solver=’liblinear’, and otherwise selects ‘multinomial’.

New in version 0.18: Stochastic Average Gradient descent solver for ‘multinomial’ case.

Changed in version 0.22: Default changed from ‘ovr’ to ‘auto’ in 0.22.

verbose [int, default=0] For the liblinear and lbfgs solvers set verbose to any positive number
for verbosity.

warm_start [bool, default=False] When set to True, reuse the solution of the previous call to
fit as initialization, otherwise, just erase the previous solution. Useless for liblinear solver.
See the Glossary.

New in version 0.17: warm_start to support lbfgs, newton-cg, sag, saga solvers.

n_jobs [int, default=None] Number of CPU cores used when parallelizing over classes if
multi_class=’ovr’”. This parameter is ignored when the solver is set to ‘liblinear’ re-
gardless of whether ‘multi_class’ is specified or not. None means 1 unless in a joblib.
parallel_backend context. -1 means using all processors. See Glossary for more
details.

l1_ratio [float, default=None] The Elastic-Net mixing parameter, with 0 <= l1_ratio <=
1. Only used if penalty='elasticnet'. Setting l1_ratio=0 is equivalent to using
penalty='l2', while setting l1_ratio=1 is equivalent to using penalty='l1'.
For 0 < l1_ratio <1, the penalty is a combination of L1 and L2.

Attributes

classes_ [ndarray of shape (n_classes,)] A list of class labels known to the classifier.

coef_ [ndarray of shape (1, n_features) or (n_classes, n_features)] Coefficient of the features in
the decision function.

coef_ is of shape (1, n_features) when the given problem is binary. In particular,
when multi_class='multinomial', coef_ corresponds to outcome 1 (True) and
-coef_ corresponds to outcome 0 (False).

intercept_ [ndarray of shape (1,) or (n_classes,)] Intercept (a.k.a. bias) added to the decision
function.

If fit_intercept is set to False, the intercept is set to zero. intercept_
is of shape (1,) when the given problem is binary. In particular, when
multi_class='multinomial', intercept_ corresponds to outcome 1 (True) and
-intercept_ corresponds to outcome 0 (False).

n_iter_ [ndarray of shape (n_classes,) or (1,)] Actual number of iterations for all classes. If
binary or multinomial, it returns only 1 element. For liblinear solver, only the maximum
number of iteration across all classes is given.

7.22. sklearn.linear_model: Linear Models 2073

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend
https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

Changed in version 0.20: In SciPy <= 1.0.0 the number of lbfgs iterations may exceed
max_iter. n_iter_ will now report at most max_iter.

See also:

SGDClassifier Incrementally trained logistic regression (when given the parameter loss="log").

LogisticRegressionCV Logistic regression with built-in cross validation.

Notes

The underlying C implementation uses a random number generator to select features when fitting the model.
It is thus not uncommon, to have slightly different results for the same input data. If that happens, try with a
smaller tol parameter.

Predict output may not match that of standalone liblinear in certain cases. See differences from liblinear in the
narrative documentation.

References

L-BFGS-B – Software for Large-scale Bound-constrained Optimization Ciyou Zhu, Richard Byrd, Jorge
Nocedal and Jose Luis Morales. http://users.iems.northwestern.edu/~nocedal/lbfgsb.html

LIBLINEAR – A Library for Large Linear Classification https://www.csie.ntu.edu.tw/~cjlin/liblinear/

SAG – Mark Schmidt, Nicolas Le Roux, and Francis Bach Minimizing Finite Sums with the Stochastic Av-
erage Gradient https://hal.inria.fr/hal-00860051/document

SAGA – Defazio, A., Bach F. & Lacoste-Julien S. (2014). SAGA: A Fast Incremental Gradient Method With
Support for Non-Strongly Convex Composite Objectives https://arxiv.org/abs/1407.0202

Hsiang-Fu Yu, Fang-Lan Huang, Chih-Jen Lin (2011). Dual coordinate descent methods for logistic re-
gression and maximum entropy models. Machine Learning 85(1-2):41-75. https://www.csie.ntu.edu.tw/
~cjlin/papers/maxent_dual.pdf

Examples

>>> from sklearn.datasets import load_iris
>>> from sklearn.linear_model import LogisticRegression
>>> X, y = load_iris(return_X_y=True)
>>> clf = LogisticRegression(random_state=0).fit(X, y)
>>> clf.predict(X[:2, :])
array([0, 0])
>>> clf.predict_proba(X[:2, :])
array([[9.8...e-01, 1.8...e-02, 1.4...e-08],

[9.7...e-01, 2.8...e-02, ...e-08]])
>>> clf.score(X, y)
0.97...

Methods

decision_function(X) Predict confidence scores for samples.
densify() Convert coefficient matrix to dense array format.

Continued on next page

2074 Chapter 7. API Reference

http://users.iems.northwestern.edu/~nocedal/lbfgsb.html
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://hal.inria.fr/hal-00860051/document
https://arxiv.org/abs/1407.0202
https://www.csie.ntu.edu.tw/~cjlin/papers/maxent_dual.pdf
https://www.csie.ntu.edu.tw/~cjlin/papers/maxent_dual.pdf

scikit-learn user guide, Release 0.23.2

Table 156 – continued from previous page
fit(X, y[, sample_weight]) Fit the model according to the given training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict class labels for samples in X.
predict_log_proba(X) Predict logarithm of probability estimates.
predict_proba(X) Probability estimates.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.
sparsify() Convert coefficient matrix to sparse format.

__init__(penalty=’l2’, *, dual=False, tol=0.0001, C=1.0, fit_intercept=True, inter-
cept_scaling=1, class_weight=None, random_state=None, solver=’lbfgs’, max_iter=100,
multi_class=’auto’, verbose=0, warm_start=False, n_jobs=None, l1_ratio=None)

Initialize self. See help(type(self)) for accurate signature.

decision_function(X)
Predict confidence scores for samples.

The confidence score for a sample is the signed distance of that sample to the hyperplane.

Parameters

X [array_like or sparse matrix, shape (n_samples, n_features)] Samples.

Returns

array, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes) Confidence
scores per (sample, class) combination. In the binary case, confidence score for
self.classes_[1] where >0 means this class would be predicted.

densify()
Convert coefficient matrix to dense array format.

Converts the coef_ member (back) to a numpy.ndarray. This is the default format of coef_ and is
required for fitting, so calling this method is only required on models that have previously been sparsified;
otherwise, it is a no-op.

Returns

self Fitted estimator.

fit(X, y, sample_weight=None)
Fit the model according to the given training data.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training vector, where
n_samples is the number of samples and n_features is the number of features.

y [array-like of shape (n_samples,)] Target vector relative to X.

sample_weight [array-like of shape (n_samples,) default=None] Array of weights that are
assigned to individual samples. If not provided, then each sample is given unit weight.

New in version 0.17: sample_weight support to LogisticRegression.

Returns

self Fitted estimator.

7.22. sklearn.linear_model: Linear Models 2075

scikit-learn user guide, Release 0.23.2

Notes

The SAGA solver supports both float64 and float32 bit arrays.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict class labels for samples in X.

Parameters

X [array_like or sparse matrix, shape (n_samples, n_features)] Samples.

Returns

C [array, shape [n_samples]] Predicted class label per sample.

predict_log_proba(X)
Predict logarithm of probability estimates.

The returned estimates for all classes are ordered by the label of classes.

Parameters

X [array-like of shape (n_samples, n_features)] Vector to be scored, where n_samples is
the number of samples and n_features is the number of features.

Returns

T [array-like of shape (n_samples, n_classes)] Returns the log-probability of the sample for
each class in the model, where classes are ordered as they are in self.classes_.

predict_proba(X)
Probability estimates.

The returned estimates for all classes are ordered by the label of classes.

For a multi_class problem, if multi_class is set to be “multinomial” the softmax function is used to find
the predicted probability of each class. Else use a one-vs-rest approach, i.e calculate the probability of
each class assuming it to be positive using the logistic function. and normalize these values across all the
classes.

Parameters

X [array-like of shape (n_samples, n_features)] Vector to be scored, where n_samples is
the number of samples and n_features is the number of features.

Returns

T [array-like of shape (n_samples, n_classes)] Returns the probability of the sample for each
class in the model, where classes are ordered as they are in self.classes_.

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

2076 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

sparsify()
Convert coefficient matrix to sparse format.

Converts the coef_ member to a scipy.sparse matrix, which for L1-regularized models can be much more
memory- and storage-efficient than the usual numpy.ndarray representation.

The intercept_ member is not converted.

Returns

self Fitted estimator.

Notes

For non-sparse models, i.e. when there are not many zeros in coef_, this may actually increase memory
usage, so use this method with care. A rule of thumb is that the number of zero elements, which can be
computed with (coef_ == 0).sum(), must be more than 50% for this to provide significant benefits.

After calling this method, further fitting with the partial_fit method (if any) will not work until you call
densify.

Examples using sklearn.linear_model.LogisticRegression

• Release Highlights for scikit-learn 0.23

• Release Highlights for scikit-learn 0.22

• Comparison of Calibration of Classifiers

• Probability Calibration curves

• Plot classification probability

• Plot class probabilities calculated by the VotingClassifier

7.22. sklearn.linear_model: Linear Models 2077

scikit-learn user guide, Release 0.23.2

• Feature transformations with ensembles of trees

• Logistic function

• Regularization path of L1- Logistic Regression

• Logistic Regression 3-class Classifier

• Comparing various online solvers

• MNIST classification using multinomial logistic + L1

• Plot multinomial and One-vs-Rest Logistic Regression

• L1 Penalty and Sparsity in Logistic Regression

• Multiclass sparse logistic regression on 20newgroups

• Compact estimator representations

• Visualizations with Display Objects

• Classifier Chain

• Restricted Boltzmann Machine features for digit classification

• Pipelining: chaining a PCA and a logistic regression

• Column Transformer with Mixed Types

• Feature discretization

• Digits Classification Exercise

sklearn.linear_model.PassiveAggressiveClassifier

class sklearn.linear_model.PassiveAggressiveClassifier(*, C=1.0,
fit_intercept=True,
max_iter=1000, tol=0.001,
early_stopping=False,
validation_fraction=0.1,
n_iter_no_change=5,
shuffle=True, verbose=0,
loss=’hinge’, n_jobs=None,
random_state=None,
warm_start=False,
class_weight=None, av-
erage=False)

Passive Aggressive Classifier

Read more in the User Guide.

Parameters

C [float] Maximum step size (regularization). Defaults to 1.0.

fit_intercept [bool, default=False] Whether the intercept should be estimated or not. If False,
the data is assumed to be already centered.

max_iter [int, optional (default=1000)] The maximum number of passes over the training data
(aka epochs). It only impacts the behavior in the fit method, and not the partial_fit
method.

New in version 0.19.

2078 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

tol [float or None, optional (default=1e-3)] The stopping criterion. If it is not None, the itera-
tions will stop when (loss > previous_loss - tol).

New in version 0.19.

early_stopping [bool, default=False] Whether to use early stopping to terminate training when
validation. score is not improving. If set to True, it will automatically set aside a stratified
fraction of training data as validation and terminate training when validation score is not
improving by at least tol for n_iter_no_change consecutive epochs.

New in version 0.20.

validation_fraction [float, default=0.1] The proportion of training data to set aside as validation
set for early stopping. Must be between 0 and 1. Only used if early_stopping is True.

New in version 0.20.

n_iter_no_change [int, default=5] Number of iterations with no improvement to wait before
early stopping.

New in version 0.20.

shuffle [bool, default=True] Whether or not the training data should be shuffled after each
epoch.

verbose [integer, optional] The verbosity level

loss [string, optional] The loss function to be used: hinge: equivalent to PA-I in the reference
paper. squared_hinge: equivalent to PA-II in the reference paper.

n_jobs [int or None, optional (default=None)] The number of CPUs to use to do the OVA (One
Versus All, for multi-class problems) computation. None means 1 unless in a joblib.
parallel_backend context. -1 means using all processors. See Glossary for more
details.

random_state [int, RandomState instance, default=None] Used to shuffle the training data,
when shuffle is set to True. Pass an int for reproducible output across multiple function
calls. See Glossary.

warm_start [bool, optional] When set to True, reuse the solution of the previous call to fit as
initialization, otherwise, just erase the previous solution. See the Glossary.

Repeatedly calling fit or partial_fit when warm_start is True can result in a different solution
than when calling fit a single time because of the way the data is shuffled.

class_weight [dict, {class_label: weight} or “balanced” or None, optional] Preset for the
class_weight fit parameter.

Weights associated with classes. If not given, all classes are supposed to have weight one.

The “balanced” mode uses the values of y to automatically adjust weights inversely pro-
portional to class frequencies in the input data as n_samples / (n_classes * np.
bincount(y))

New in version 0.17: parameter class_weight to automatically weight samples.

average [bool or int, optional] When set to True, computes the averaged SGD weights and
stores the result in the coef_ attribute. If set to an int greater than 1, averaging will begin
once the total number of samples seen reaches average. So average=10 will begin averaging
after seeing 10 samples.

New in version 0.19: parameter average to use weights averaging in SGD

Attributes

7.22. sklearn.linear_model: Linear Models 2079

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend
https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

coef_ [array, shape = [1, n_features] if n_classes == 2 else [n_classes, n_features]] Weights
assigned to the features.

intercept_ [array, shape = [1] if n_classes == 2 else [n_classes]] Constants in decision function.

n_iter_ [int] The actual number of iterations to reach the stopping criterion. For multiclass fits,
it is the maximum over every binary fit.

classes_ [array of shape (n_classes,)] The unique classes labels.

t_ [int] Number of weight updates performed during training. Same as (n_iter_ *
n_samples).

loss_function_ [callable] Loss function used by the algorithm.

See also:

SGDClassifier

Perceptron

References

Online Passive-Aggressive Algorithms <http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.
pdf> K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer - JMLR (2006)

Examples

>>> from sklearn.linear_model import PassiveAggressiveClassifier
>>> from sklearn.datasets import make_classification

>>> X, y = make_classification(n_features=4, random_state=0)
>>> clf = PassiveAggressiveClassifier(max_iter=1000, random_state=0,
... tol=1e-3)
>>> clf.fit(X, y)
PassiveAggressiveClassifier(random_state=0)
>>> print(clf.coef_)
[[0.26642044 0.45070924 0.67251877 0.64185414]]
>>> print(clf.intercept_)
[1.84127814]
>>> print(clf.predict([[0, 0, 0, 0]]))
[1]

Methods

decision_function(X) Predict confidence scores for samples.
densify() Convert coefficient matrix to dense array format.
fit(X, y[, coef_init, intercept_init]) Fit linear model with Passive Aggressive algorithm.
get_params([deep]) Get parameters for this estimator.
partial_fit(X, y[, classes]) Fit linear model with Passive Aggressive algorithm.
predict(X) Predict class labels for samples in X.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
Continued on next page

2080 Chapter 7. API Reference

http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf
http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf

scikit-learn user guide, Release 0.23.2

Table 157 – continued from previous page
set_params(**kwargs) Set and validate the parameters of estimator.
sparsify() Convert coefficient matrix to sparse format.

__init__(*, C=1.0, fit_intercept=True, max_iter=1000, tol=0.001, early_stopping=False, val-
idation_fraction=0.1, n_iter_no_change=5, shuffle=True, verbose=0, loss=’hinge’,
n_jobs=None, random_state=None, warm_start=False, class_weight=None, aver-
age=False)

Initialize self. See help(type(self)) for accurate signature.

decision_function(X)
Predict confidence scores for samples.

The confidence score for a sample is the signed distance of that sample to the hyperplane.

Parameters

X [array_like or sparse matrix, shape (n_samples, n_features)] Samples.

Returns

array, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes) Confidence
scores per (sample, class) combination. In the binary case, confidence score for
self.classes_[1] where >0 means this class would be predicted.

densify()
Convert coefficient matrix to dense array format.

Converts the coef_ member (back) to a numpy.ndarray. This is the default format of coef_ and is
required for fitting, so calling this method is only required on models that have previously been sparsified;
otherwise, it is a no-op.

Returns

self Fitted estimator.

fit(X, y, coef_init=None, intercept_init=None)
Fit linear model with Passive Aggressive algorithm.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training data

y [numpy array of shape [n_samples]] Target values

coef_init [array, shape = [n_classes,n_features]] The initial coefficients to warm-start the
optimization.

intercept_init [array, shape = [n_classes]] The initial intercept to warm-start the optimiza-
tion.

Returns

self [returns an instance of self.]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

7.22. sklearn.linear_model: Linear Models 2081

scikit-learn user guide, Release 0.23.2

params [mapping of string to any] Parameter names mapped to their values.

partial_fit(X, y, classes=None)
Fit linear model with Passive Aggressive algorithm.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Subset of the training data

y [numpy array of shape [n_samples]] Subset of the target values

classes [array, shape = [n_classes]] Classes across all calls to partial_fit. Can be obtained
by via np.unique(y_all), where y_all is the target vector of the entire dataset. This
argument is required for the first call to partial_fit and can be omitted in the subsequent
calls. Note that y doesn’t need to contain all labels in classes.

Returns

self [returns an instance of self.]

predict(X)
Predict class labels for samples in X.

Parameters

X [array_like or sparse matrix, shape (n_samples, n_features)] Samples.

Returns

C [array, shape [n_samples]] Predicted class label per sample.

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

set_params(**kwargs)
Set and validate the parameters of estimator.

Parameters

**kwargs [dict] Estimator parameters.

Returns

self [object] Estimator instance.

sparsify()
Convert coefficient matrix to sparse format.

Converts the coef_ member to a scipy.sparse matrix, which for L1-regularized models can be much more
memory- and storage-efficient than the usual numpy.ndarray representation.

The intercept_ member is not converted.

2082 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Returns

self Fitted estimator.

Notes

For non-sparse models, i.e. when there are not many zeros in coef_, this may actually increase memory
usage, so use this method with care. A rule of thumb is that the number of zero elements, which can be
computed with (coef_ == 0).sum(), must be more than 50% for this to provide significant benefits.

After calling this method, further fitting with the partial_fit method (if any) will not work until you call
densify.

Examples using sklearn.linear_model.PassiveAggressiveClassifier

• Out-of-core classification of text documents

• Comparing various online solvers

• Classification of text documents using sparse features

sklearn.linear_model.Perceptron

class sklearn.linear_model.Perceptron(*, penalty=None, alpha=0.0001, fit_intercept=True,
max_iter=1000, tol=0.001, shuffle=True, ver-
bose=0, eta0=1.0, n_jobs=None, random_state=0,
early_stopping=False, validation_fraction=0.1,
n_iter_no_change=5, class_weight=None,
warm_start=False)

Read more in the User Guide.

Parameters

penalty [{‘l2’,’l1’,’elasticnet’}, default=None] The penalty (aka regularization term) to be used.

alpha [float, default=0.0001] Constant that multiplies the regularization term if regularization
is used.

fit_intercept [bool, default=True] Whether the intercept should be estimated or not. If False,
the data is assumed to be already centered.

max_iter [int, default=1000] The maximum number of passes over the training data (aka
epochs). It only impacts the behavior in the fit method, and not the partial_fit
method.

New in version 0.19.

tol [float, default=1e-3] The stopping criterion. If it is not None, the iterations will stop when
(loss > previous_loss - tol).

New in version 0.19.

shuffle [bool, default=True] Whether or not the training data should be shuffled after each
epoch.

verbose [int, default=0] The verbosity level

eta0 [double, default=1] Constant by which the updates are multiplied.

7.22. sklearn.linear_model: Linear Models 2083

scikit-learn user guide, Release 0.23.2

n_jobs [int, default=None] The number of CPUs to use to do the OVA (One Versus
All, for multi-class problems) computation. None means 1 unless in a joblib.
parallel_backend context. -1 means using all processors. See Glossary for more
details.

random_state [int, RandomState instance, default=None] Used to shuffle the training data,
when shuffle is set to True. Pass an int for reproducible output across multiple function
calls. See Glossary.

early_stopping [bool, default=False] Whether to use early stopping to terminate training when
validation. score is not improving. If set to True, it will automatically set aside a stratified
fraction of training data as validation and terminate training when validation score is not
improving by at least tol for n_iter_no_change consecutive epochs.

New in version 0.20.

validation_fraction [float, default=0.1] The proportion of training data to set aside as validation
set for early stopping. Must be between 0 and 1. Only used if early_stopping is True.

New in version 0.20.

n_iter_no_change [int, default=5] Number of iterations with no improvement to wait before
early stopping.

New in version 0.20.

class_weight [dict, {class_label: weight} or “balanced”, default=None] Preset for the
class_weight fit parameter.

Weights associated with classes. If not given, all classes are supposed to have weight one.

The “balanced” mode uses the values of y to automatically adjust weights inversely pro-
portional to class frequencies in the input data as n_samples / (n_classes * np.
bincount(y))

warm_start [bool, default=False] When set to True, reuse the solution of the previous call to
fit as initialization, otherwise, just erase the previous solution. See the Glossary.

Attributes

coef_ [ndarray of shape = [1, n_features] if n_classes == 2 else [n_classes, n_features]] Weights
assigned to the features.

intercept_ [ndarray of shape = [1] if n_classes == 2 else [n_classes]] Constants in decision
function.

n_iter_ [int] The actual number of iterations to reach the stopping criterion. For multiclass fits,
it is the maximum over every binary fit.

classes_ [ndarray of shape (n_classes,)] The unique classes labels.

t_ [int] Number of weight updates performed during training. Same as (n_iter_ *
n_samples).

See also:

SGDClassifier

Notes

Perceptron is a classification algorithm which shares the same underlying implementation with
SGDClassifier. In fact, Perceptron() is equivalent to SGDClassifier(loss="perceptron",

2084 Chapter 7. API Reference

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend
https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

eta0=1, learning_rate="constant", penalty=None).

References

https://en.wikipedia.org/wiki/Perceptron and references therein.

Examples

>>> from sklearn.datasets import load_digits
>>> from sklearn.linear_model import Perceptron
>>> X, y = load_digits(return_X_y=True)
>>> clf = Perceptron(tol=1e-3, random_state=0)
>>> clf.fit(X, y)
Perceptron()
>>> clf.score(X, y)
0.939...

Methods

decision_function(X) Predict confidence scores for samples.
densify() Convert coefficient matrix to dense array format.
fit(X, y[, coef_init, intercept_init, . . .]) Fit linear model with Stochastic Gradient Descent.
get_params([deep]) Get parameters for this estimator.
partial_fit(X, y[, classes, sample_weight]) Perform one epoch of stochastic gradient descent on

given samples.
predict(X) Predict class labels for samples in X.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**kwargs) Set and validate the parameters of estimator.
sparsify() Convert coefficient matrix to sparse format.

__init__(*, penalty=None, alpha=0.0001, fit_intercept=True, max_iter=1000, tol=0.001, shuf-
fle=True, verbose=0, eta0=1.0, n_jobs=None, random_state=0, early_stopping=False, val-
idation_fraction=0.1, n_iter_no_change=5, class_weight=None, warm_start=False)

Initialize self. See help(type(self)) for accurate signature.

decision_function(X)
Predict confidence scores for samples.

The confidence score for a sample is the signed distance of that sample to the hyperplane.

Parameters

X [array_like or sparse matrix, shape (n_samples, n_features)] Samples.

Returns

array, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes) Confidence
scores per (sample, class) combination. In the binary case, confidence score for
self.classes_[1] where >0 means this class would be predicted.

densify()
Convert coefficient matrix to dense array format.

7.22. sklearn.linear_model: Linear Models 2085

https://en.wikipedia.org/wiki/Perceptron

scikit-learn user guide, Release 0.23.2

Converts the coef_ member (back) to a numpy.ndarray. This is the default format of coef_ and is
required for fitting, so calling this method is only required on models that have previously been sparsified;
otherwise, it is a no-op.

Returns

self Fitted estimator.

fit(X, y, coef_init=None, intercept_init=None, sample_weight=None)
Fit linear model with Stochastic Gradient Descent.

Parameters

X [{array-like, sparse matrix}, shape (n_samples, n_features)] Training data.

y [ndarray of shape (n_samples,)] Target values.

coef_init [ndarray of shape (n_classes, n_features), default=None] The initial coefficients to
warm-start the optimization.

intercept_init [ndarray of shape (n_classes,), default=None] The initial intercept to warm-
start the optimization.

sample_weight [array-like, shape (n_samples,), default=None] Weights applied to individ-
ual samples. If not provided, uniform weights are assumed. These weights will be multi-
plied with class_weight (passed through the constructor) if class_weight is specified.

Returns

self : Returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

partial_fit(X, y, classes=None, sample_weight=None)
Perform one epoch of stochastic gradient descent on given samples.

Internally, this method uses max_iter = 1. Therefore, it is not guaranteed that a minimum of the cost
function is reached after calling it once. Matters such as objective convergence and early stopping should
be handled by the user.

Parameters

X [{array-like, sparse matrix}, shape (n_samples, n_features)] Subset of the training data.

y [ndarray of shape (n_samples,)] Subset of the target values.

classes [ndarray of shape (n_classes,), default=None] Classes across all calls to partial_fit.
Can be obtained by via np.unique(y_all), where y_all is the target vector of the
entire dataset. This argument is required for the first call to partial_fit and can be omitted
in the subsequent calls. Note that y doesn’t need to contain all labels in classes.

sample_weight [array-like, shape (n_samples,), default=None] Weights applied to individ-
ual samples. If not provided, uniform weights are assumed.

Returns

2086 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

self : Returns an instance of self.

predict(X)
Predict class labels for samples in X.

Parameters

X [array_like or sparse matrix, shape (n_samples, n_features)] Samples.

Returns

C [array, shape [n_samples]] Predicted class label per sample.

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

set_params(**kwargs)
Set and validate the parameters of estimator.

Parameters

**kwargs [dict] Estimator parameters.

Returns

self [object] Estimator instance.

sparsify()
Convert coefficient matrix to sparse format.

Converts the coef_ member to a scipy.sparse matrix, which for L1-regularized models can be much more
memory- and storage-efficient than the usual numpy.ndarray representation.

The intercept_ member is not converted.

Returns

self Fitted estimator.

Notes

For non-sparse models, i.e. when there are not many zeros in coef_, this may actually increase memory
usage, so use this method with care. A rule of thumb is that the number of zero elements, which can be
computed with (coef_ == 0).sum(), must be more than 50% for this to provide significant benefits.

After calling this method, further fitting with the partial_fit method (if any) will not work until you call
densify.

7.22. sklearn.linear_model: Linear Models 2087

scikit-learn user guide, Release 0.23.2

Examples using sklearn.linear_model.Perceptron

• Out-of-core classification of text documents

• Comparing various online solvers

• Classification of text documents using sparse features

sklearn.linear_model.RidgeClassifier

class sklearn.linear_model.RidgeClassifier(alpha=1.0, *, fit_intercept=True, normal-
ize=False, copy_X=True, max_iter=None,
tol=0.001, class_weight=None, solver=’auto’,
random_state=None)

Classifier using Ridge regression.

This classifier first converts the target values into {-1, 1} and then treats the problem as a regression task
(multi-output regression in the multiclass case).

Read more in the User Guide.

Parameters

alpha [float, default=1.0] Regularization strength; must be a positive float. Regularization im-
proves the conditioning of the problem and reduces the variance of the estimates. Larger
values specify stronger regularization. Alpha corresponds to 1 / (2C) in other linear
models such as LogisticRegression or sklearn.svm.LinearSVC.

fit_intercept [bool, default=True] Whether to calculate the intercept for this model. If set to
false, no intercept will be used in calculations (e.g. data is expected to be already centered).

normalize [bool, default=False] This parameter is ignored when fit_intercept is set
to False. If True, the regressors X will be normalized before regression by subtract-
ing the mean and dividing by the l2-norm. If you wish to standardize, please use
sklearn.preprocessing.StandardScaler before calling fit on an estimator
with normalize=False.

copy_X [bool, default=True] If True, X will be copied; else, it may be overwritten.

max_iter [int, default=None] Maximum number of iterations for conjugate gradient solver. The
default value is determined by scipy.sparse.linalg.

tol [float, default=1e-3] Precision of the solution.

class_weight [dict or ‘balanced’, default=None] Weights associated with classes in the form
{class_label: weight}. If not given, all classes are supposed to have weight one.

The “balanced” mode uses the values of y to automatically adjust weights inversely pro-
portional to class frequencies in the input data as n_samples / (n_classes * np.
bincount(y)).

solver [{‘auto’, ‘svd’, ‘cholesky’, ‘lsqr’, ‘sparse_cg’, ‘sag’, ‘saga’}, default=’auto’] Solver to
use in the computational routines:

• ‘auto’ chooses the solver automatically based on the type of data.

• ‘svd’ uses a Singular Value Decomposition of X to compute the Ridge coefficients. More
stable for singular matrices than ‘cholesky’.

• ‘cholesky’ uses the standard scipy.linalg.solve function to obtain a closed-form solution.

2088 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

• ‘sparse_cg’ uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As an
iterative algorithm, this solver is more appropriate than ‘cholesky’ for large-scale data
(possibility to set tol and max_iter).

• ‘lsqr’ uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It is the
fastest and uses an iterative procedure.

• ‘sag’ uses a Stochastic Average Gradient descent, and ‘saga’ uses its unbiased and more
flexible version named SAGA. Both methods use an iterative procedure, and are often
faster than other solvers when both n_samples and n_features are large. Note that ‘sag’
and ‘saga’ fast convergence is only guaranteed on features with approximately the same
scale. You can preprocess the data with a scaler from sklearn.preprocessing.

New in version 0.17: Stochastic Average Gradient descent solver.

New in version 0.19: SAGA solver.

random_state [int, RandomState instance, default=None] Used when solver == ‘sag’ or
‘saga’ to shuffle the data. See Glossary for details.

Attributes

coef_ [ndarray of shape (1, n_features) or (n_classes, n_features)] Coefficient of the features in
the decision function.

coef_ is of shape (1, n_features) when the given problem is binary.

intercept_ [float or ndarray of shape (n_targets,)] Independent term in decision function. Set to
0.0 if fit_intercept = False.

n_iter_ [None or ndarray of shape (n_targets,)] Actual number of iterations for each target.
Available only for sag and lsqr solvers. Other solvers will return None.

classes_ [ndarray of shape (n_classes,)] The classes labels.

See also:

Ridge Ridge regression.

RidgeClassifierCV Ridge classifier with built-in cross validation.

Notes

For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is
implemented by taking advantage of the multi-variate response support in Ridge.

Examples

>>> from sklearn.datasets import load_breast_cancer
>>> from sklearn.linear_model import RidgeClassifier
>>> X, y = load_breast_cancer(return_X_y=True)
>>> clf = RidgeClassifier().fit(X, y)
>>> clf.score(X, y)
0.9595...

Methods

7.22. sklearn.linear_model: Linear Models 2089

scikit-learn user guide, Release 0.23.2

decision_function(X) Predict confidence scores for samples.
fit(X, y[, sample_weight]) Fit Ridge classifier model.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict class labels for samples in X.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(alpha=1.0, *, fit_intercept=True, normalize=False, copy_X=True, max_iter=None,
tol=0.001, class_weight=None, solver=’auto’, random_state=None)

Initialize self. See help(type(self)) for accurate signature.

decision_function(X)
Predict confidence scores for samples.

The confidence score for a sample is the signed distance of that sample to the hyperplane.

Parameters

X [array_like or sparse matrix, shape (n_samples, n_features)] Samples.

Returns

array, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes) Confidence
scores per (sample, class) combination. In the binary case, confidence score for
self.classes_[1] where >0 means this class would be predicted.

fit(X, y, sample_weight=None)
Fit Ridge classifier model.

Parameters

X [{ndarray, sparse matrix} of shape (n_samples, n_features)] Training data.

y [ndarray of shape (n_samples,)] Target values.

sample_weight [float or ndarray of shape (n_samples,), default=None] Individual weights
for each sample. If given a float, every sample will have the same weight.

New in version 0.17: sample_weight support to Classifier.

Returns

self [object] Instance of the estimator.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict class labels for samples in X.

Parameters

X [array_like or sparse matrix, shape (n_samples, n_features)] Samples.

2090 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Returns

C [array, shape [n_samples]] Predicted class label per sample.

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.linear_model.RidgeClassifier

• Classification of text documents using sparse features

sklearn.linear_model.SGDClassifier

class sklearn.linear_model.SGDClassifier(loss=’hinge’, *, penalty=’l2’, al-
pha=0.0001, l1_ratio=0.15, fit_intercept=True,
max_iter=1000, tol=0.001, shuffle=True,
verbose=0, epsilon=0.1, n_jobs=None, ran-
dom_state=None, learning_rate=’optimal’,
eta0=0.0, power_t=0.5, early_stopping=False,
validation_fraction=0.1, n_iter_no_change=5,
class_weight=None, warm_start=False, aver-
age=False)

Linear classifiers (SVM, logistic regression, etc.) with SGD training.

This estimator implements regularized linear models with stochastic gradient descent (SGD) learning: the
gradient of the loss is estimated each sample at a time and the model is updated along the way with a de-
creasing strength schedule (aka learning rate). SGD allows minibatch (online/out-of-core) learning via the
partial_fit method. For best results using the default learning rate schedule, the data should have zero
mean and unit variance.

7.22. sklearn.linear_model: Linear Models 2091

scikit-learn user guide, Release 0.23.2

This implementation works with data represented as dense or sparse arrays of floating point values for the
features. The model it fits can be controlled with the loss parameter; by default, it fits a linear support vector
machine (SVM).

The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector
using either the squared euclidean norm L2 or the absolute norm L1 or a combination of both (Elastic Net). If
the parameter update crosses the 0.0 value because of the regularizer, the update is truncated to 0.0 to allow for
learning sparse models and achieve online feature selection.

Read more in the User Guide.

Parameters

loss [str, default=’hinge’] The loss function to be used. Defaults to ‘hinge’, which gives a linear
SVM.

The possible options are ‘hinge’, ‘log’, ‘modified_huber’, ‘squared_hinge’, ‘per-
ceptron’, or a regression loss: ‘squared_loss’, ‘huber’, ‘epsilon_insensitive’, or
‘squared_epsilon_insensitive’.

The ‘log’ loss gives logistic regression, a probabilistic classifier. ‘modified_huber’ is
another smooth loss that brings tolerance to outliers as well as probability estimates.
‘squared_hinge’ is like hinge but is quadratically penalized. ‘perceptron’ is the linear loss
used by the perceptron algorithm. The other losses are designed for regression but can be
useful in classification as well; see SGDRegressor for a description.

More details about the losses formulas can be found in the User Guide.

penalty [{‘l2’, ‘l1’, ‘elasticnet’}, default=’l2’] The penalty (aka regularization term) to be used.
Defaults to ‘l2’ which is the standard regularizer for linear SVM models. ‘l1’ and ‘elasticnet’
might bring sparsity to the model (feature selection) not achievable with ‘l2’.

alpha [float, default=0.0001] Constant that multiplies the regularization term. The higher the
value, the stronger the regularization. Also used to compute the learning rate when set to
learning_rate is set to ‘optimal’.

l1_ratio [float, default=0.15] The Elastic Net mixing parameter, with 0 <= l1_ratio <= 1.
l1_ratio=0 corresponds to L2 penalty, l1_ratio=1 to L1. Only used if penalty is ‘elas-
ticnet’.

fit_intercept [bool, default=True] Whether the intercept should be estimated or not. If False,
the data is assumed to be already centered.

max_iter [int, default=1000] The maximum number of passes over the training data (aka
epochs). It only impacts the behavior in the fit method, and not the partial_fit
method.

New in version 0.19.

tol [float, default=1e-3] The stopping criterion. If it is not None, training will stop when (loss >
best_loss - tol) for n_iter_no_change consecutive epochs.

New in version 0.19.

shuffle [bool, default=True] Whether or not the training data should be shuffled after each
epoch.

verbose [int, default=0] The verbosity level.

epsilon [float, default=0.1] Epsilon in the epsilon-insensitive loss functions; only if loss is
‘huber’, ‘epsilon_insensitive’, or ‘squared_epsilon_insensitive’. For ‘huber’, determines
the threshold at which it becomes less important to get the prediction exactly right. For

2092 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

epsilon-insensitive, any differences between the current prediction and the correct label are
ignored if they are less than this threshold.

n_jobs [int, default=None] The number of CPUs to use to do the OVA (One Versus
All, for multi-class problems) computation. None means 1 unless in a joblib.
parallel_backend context. -1 means using all processors. See Glossary for more
details.

random_state [int, RandomState instance, default=None] Used for shuffling the data, when
shuffle is set to True. Pass an int for reproducible output across multiple function calls.
See Glossary.

learning_rate [str, default=’optimal’] The learning rate schedule:

• ‘constant’: eta = eta0

• ‘optimal’: eta = 1.0 / (alpha * (t + t0)) where t0 is chosen by a heuristic
proposed by Leon Bottou.

• ‘invscaling’: eta = eta0 / pow(t, power_t)

• ‘adaptive’: eta = eta0, as long as the training keeps decreasing. Each time
n_iter_no_change consecutive epochs fail to decrease the training loss by tol or fail to
increase validation score by tol if early_stopping is True, the current learning rate is di-
vided by 5.

New in version 0.20: Added ‘adaptive’ option

eta0 [double, default=0.0] The initial learning rate for the ‘constant’, ‘invscaling’ or ‘adaptive’
schedules. The default value is 0.0 as eta0 is not used by the default schedule ‘optimal’.

power_t [double, default=0.5] The exponent for inverse scaling learning rate [default 0.5].

early_stopping [bool, default=False] Whether to use early stopping to terminate training when
validation score is not improving. If set to True, it will automatically set aside a stratified
fraction of training data as validation and terminate training when validation score returned
by the score method is not improving by at least tol for n_iter_no_change consecutive
epochs.

New in version 0.20: Added ‘early_stopping’ option

validation_fraction [float, default=0.1] The proportion of training data to set aside as validation
set for early stopping. Must be between 0 and 1. Only used if early_stopping is True.

New in version 0.20: Added ‘validation_fraction’ option

n_iter_no_change [int, default=5] Number of iterations with no improvement to wait before
early stopping.

New in version 0.20: Added ‘n_iter_no_change’ option

class_weight [dict, {class_label: weight} or “balanced”, default=None] Preset for the
class_weight fit parameter.

Weights associated with classes. If not given, all classes are supposed to have weight one.

The “balanced” mode uses the values of y to automatically adjust weights inversely pro-
portional to class frequencies in the input data as n_samples / (n_classes * np.
bincount(y)).

warm_start [bool, default=False] When set to True, reuse the solution of the previous call to
fit as initialization, otherwise, just erase the previous solution. See the Glossary.

7.22. sklearn.linear_model: Linear Models 2093

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend
https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

Repeatedly calling fit or partial_fit when warm_start is True can result in a different solution
than when calling fit a single time because of the way the data is shuffled. If a dynamic
learning rate is used, the learning rate is adapted depending on the number of samples al-
ready seen. Calling fit resets this counter, while partial_fit will result in increasing
the existing counter.

average [bool or int, default=False] When set to True, computes the averaged SGD weights
accross all updates and stores the result in the coef_ attribute. If set to an int greater
than 1, averaging will begin once the total number of samples seen reaches average. So
average=10 will begin averaging after seeing 10 samples.

Attributes

coef_ [ndarray of shape (1, n_features) if n_classes == 2 else (n_classes, n_features)] Weights
assigned to the features.

intercept_ [ndarray of shape (1,) if n_classes == 2 else (n_classes,)] Constants in decision
function.

n_iter_ [int] The actual number of iterations before reaching the stopping criterion. For multi-
class fits, it is the maximum over every binary fit.

loss_function_ [concrete LossFunction]

classes_ [array of shape (n_classes,)]

t_ [int] Number of weight updates performed during training. Same as (n_iter_ *
n_samples).

See also:

sklearn.svm.LinearSVC Linear support vector classification.

LogisticRegression Logistic regression.

Perceptron Inherits from SGDClassifier. Perceptron() is equivalent to
SGDClassifier(loss="perceptron", eta0=1, learning_rate="constant",
penalty=None).

Examples

>>> import numpy as np
>>> from sklearn.linear_model import SGDClassifier
>>> from sklearn.preprocessing import StandardScaler
>>> from sklearn.pipeline import make_pipeline
>>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
>>> Y = np.array([1, 1, 2, 2])
>>> # Always scale the input. The most convenient way is to use a pipeline.
>>> clf = make_pipeline(StandardScaler(),
... SGDClassifier(max_iter=1000, tol=1e-3))
>>> clf.fit(X, Y)
Pipeline(steps=[('standardscaler', StandardScaler()),

('sgdclassifier', SGDClassifier())])
>>> print(clf.predict([[-0.8, -1]]))
[1]

Methods

2094 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

decision_function(X) Predict confidence scores for samples.
densify() Convert coefficient matrix to dense array format.
fit(X, y[, coef_init, intercept_init, . . .]) Fit linear model with Stochastic Gradient Descent.
get_params([deep]) Get parameters for this estimator.
partial_fit(X, y[, classes, sample_weight]) Perform one epoch of stochastic gradient descent on

given samples.
predict(X) Predict class labels for samples in X.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**kwargs) Set and validate the parameters of estimator.
sparsify() Convert coefficient matrix to sparse format.

__init__(loss=’hinge’, *, penalty=’l2’, alpha=0.0001, l1_ratio=0.15, fit_intercept=True,
max_iter=1000, tol=0.001, shuffle=True, verbose=0, epsilon=0.1, n_jobs=None, ran-
dom_state=None, learning_rate=’optimal’, eta0=0.0, power_t=0.5, early_stopping=False,
validation_fraction=0.1, n_iter_no_change=5, class_weight=None, warm_start=False,
average=False)

Initialize self. See help(type(self)) for accurate signature.

decision_function(X)
Predict confidence scores for samples.

The confidence score for a sample is the signed distance of that sample to the hyperplane.

Parameters

X [array_like or sparse matrix, shape (n_samples, n_features)] Samples.

Returns

array, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes) Confidence
scores per (sample, class) combination. In the binary case, confidence score for
self.classes_[1] where >0 means this class would be predicted.

densify()
Convert coefficient matrix to dense array format.

Converts the coef_ member (back) to a numpy.ndarray. This is the default format of coef_ and is
required for fitting, so calling this method is only required on models that have previously been sparsified;
otherwise, it is a no-op.

Returns

self Fitted estimator.

fit(X, y, coef_init=None, intercept_init=None, sample_weight=None)
Fit linear model with Stochastic Gradient Descent.

Parameters

X [{array-like, sparse matrix}, shape (n_samples, n_features)] Training data.

y [ndarray of shape (n_samples,)] Target values.

coef_init [ndarray of shape (n_classes, n_features), default=None] The initial coefficients to
warm-start the optimization.

intercept_init [ndarray of shape (n_classes,), default=None] The initial intercept to warm-
start the optimization.

7.22. sklearn.linear_model: Linear Models 2095

scikit-learn user guide, Release 0.23.2

sample_weight [array-like, shape (n_samples,), default=None] Weights applied to individ-
ual samples. If not provided, uniform weights are assumed. These weights will be multi-
plied with class_weight (passed through the constructor) if class_weight is specified.

Returns

self : Returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

partial_fit(X, y, classes=None, sample_weight=None)
Perform one epoch of stochastic gradient descent on given samples.

Internally, this method uses max_iter = 1. Therefore, it is not guaranteed that a minimum of the cost
function is reached after calling it once. Matters such as objective convergence and early stopping should
be handled by the user.

Parameters

X [{array-like, sparse matrix}, shape (n_samples, n_features)] Subset of the training data.

y [ndarray of shape (n_samples,)] Subset of the target values.

classes [ndarray of shape (n_classes,), default=None] Classes across all calls to partial_fit.
Can be obtained by via np.unique(y_all), where y_all is the target vector of the
entire dataset. This argument is required for the first call to partial_fit and can be omitted
in the subsequent calls. Note that y doesn’t need to contain all labels in classes.

sample_weight [array-like, shape (n_samples,), default=None] Weights applied to individ-
ual samples. If not provided, uniform weights are assumed.

Returns

self : Returns an instance of self.

predict(X)
Predict class labels for samples in X.

Parameters

X [array_like or sparse matrix, shape (n_samples, n_features)] Samples.

Returns

C [array, shape [n_samples]] Predicted class label per sample.

property predict_log_proba
Log of probability estimates.

This method is only available for log loss and modified Huber loss.

When loss=”modified_huber”, probability estimates may be hard zeros and ones, so taking the logarithm
is not possible.

See predict_proba for details.

Parameters

2096 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Input data for prediction.

Returns

T [array-like, shape (n_samples, n_classes)] Returns the log-probability of the sample for
each class in the model, where classes are ordered as they are in self.classes_.

property predict_proba
Probability estimates.

This method is only available for log loss and modified Huber loss.

Multiclass probability estimates are derived from binary (one-vs.-rest) estimates by simple normalization,
as recommended by Zadrozny and Elkan.

Binary probability estimates for loss=”modified_huber” are given by (clip(decision_function(X), -1, 1) +
1) / 2. For other loss functions it is necessary to perform proper probability calibration by wrapping the
classifier with sklearn.calibration.CalibratedClassifierCV instead.

Parameters

X [{array-like, sparse matrix}, shape (n_samples, n_features)] Input data for prediction.

Returns

ndarray of shape (n_samples, n_classes) Returns the probability of the sample for each
class in the model, where classes are ordered as they are in self.classes_.

References

Zadrozny and Elkan, “Transforming classifier scores into multiclass probability estimates”, SIGKDD’02,
http://www.research.ibm.com/people/z/zadrozny/kdd2002-Transf.pdf

The justification for the formula in the loss=”modified_huber” case is in the appendix B in: http://jmlr.
csail.mit.edu/papers/volume2/zhang02c/zhang02c.pdf

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

set_params(**kwargs)
Set and validate the parameters of estimator.

Parameters

**kwargs [dict] Estimator parameters.

Returns

self [object] Estimator instance.

7.22. sklearn.linear_model: Linear Models 2097

http://www.research.ibm.com/people/z/zadrozny/kdd2002-Transf.pdf
http://jmlr.csail.mit.edu/papers/volume2/zhang02c/zhang02c.pdf
http://jmlr.csail.mit.edu/papers/volume2/zhang02c/zhang02c.pdf

scikit-learn user guide, Release 0.23.2

sparsify()
Convert coefficient matrix to sparse format.

Converts the coef_ member to a scipy.sparse matrix, which for L1-regularized models can be much more
memory- and storage-efficient than the usual numpy.ndarray representation.

The intercept_ member is not converted.

Returns

self Fitted estimator.

Notes

For non-sparse models, i.e. when there are not many zeros in coef_, this may actually increase memory
usage, so use this method with care. A rule of thumb is that the number of zero elements, which can be
computed with (coef_ == 0).sum(), must be more than 50% for this to provide significant benefits.

After calling this method, further fitting with the partial_fit method (if any) will not work until you call
densify.

Examples using sklearn.linear_model.SGDClassifier

• Sample pipeline for text feature extraction and evaluation

7.22.2 Classical linear regressors

linear_model.LinearRegression(*[, . . .]) Ordinary least squares Linear Regression.
linear_model.Ridge([alpha, fit_intercept, . . .]) Linear least squares with l2 regularization.
linear_model.RidgeCV ([alphas, . . .]) Ridge regression with built-in cross-validation.
linear_model.SGDRegressor([loss, penalty,
. . .])

Linear model fitted by minimizing a regularized empir-
ical loss with SGD

sklearn.linear_model.LinearRegression

class sklearn.linear_model.LinearRegression(*, fit_intercept=True, normalize=False,
copy_X=True, n_jobs=None)

Ordinary least squares Linear Regression.

LinearRegression fits a linear model with coefficients w = (w1, . . . , wp) to minimize the residual sum of squares
between the observed targets in the dataset, and the targets predicted by the linear approximation.

Parameters

fit_intercept [bool, default=True] Whether to calculate the intercept for this model. If set to
False, no intercept will be used in calculations (i.e. data is expected to be centered).

normalize [bool, default=False] This parameter is ignored when fit_intercept is set
to False. If True, the regressors X will be normalized before regression by subtract-
ing the mean and dividing by the l2-norm. If you wish to standardize, please use
sklearn.preprocessing.StandardScaler before calling fit on an estimator
with normalize=False.

copy_X [bool, default=True] If True, X will be copied; else, it may be overwritten.

2098 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

n_jobs [int, default=None] The number of jobs to use for the computation. This will only
provide speedup for n_targets > 1 and sufficient large problems. None means 1 unless in
a joblib.parallel_backend context. -1 means using all processors. See Glossary
for more details.

Attributes

coef_ [array of shape (n_features,) or (n_targets, n_features)] Estimated coefficients for the
linear regression problem. If multiple targets are passed during the fit (y 2D), this is a 2D
array of shape (n_targets, n_features), while if only one target is passed, this is a 1D array
of length n_features.

rank_ [int] Rank of matrix X. Only available when X is dense.

singular_ [array of shape (min(X, y),)] Singular values of X. Only available when X is dense.

intercept_ [float or array of shape (n_targets,)] Independent term in the linear model. Set to 0.0
if fit_intercept = False.

See also:

sklearn.linear_model.Ridge Ridge regression addresses some of the problems of Ordinary Least
Squares by imposing a penalty on the size of the coefficients with l2 regularization.

sklearn.linear_model.Lasso The Lasso is a linear model that estimates sparse coefficients with l1
regularization.

sklearn.linear_model.ElasticNet Elastic-Net is a linear regression model trained with both l1 and
l2 -norm regularization of the coefficients.

Notes

From the implementation point of view, this is just plain Ordinary Least Squares (scipy.linalg.lstsq) wrapped as
a predictor object.

Examples

>>> import numpy as np
>>> from sklearn.linear_model import LinearRegression
>>> X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
>>> # y = 1 * x_0 + 2 * x_1 + 3
>>> y = np.dot(X, np.array([1, 2])) + 3
>>> reg = LinearRegression().fit(X, y)
>>> reg.score(X, y)
1.0
>>> reg.coef_
array([1., 2.])
>>> reg.intercept_
3.0000...
>>> reg.predict(np.array([[3, 5]]))
array([16.])

Methods

7.22. sklearn.linear_model: Linear Models 2099

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

fit(X, y[, sample_weight]) Fit linear model.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model.
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.

__init__(*, fit_intercept=True, normalize=False, copy_X=True, n_jobs=None)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y, sample_weight=None)
Fit linear model.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training data

y [array-like of shape (n_samples,) or (n_samples, n_targets)] Target values. Will be cast to
X’s dtype if necessary

sample_weight [array-like of shape (n_samples,), default=None] Individual weights for
each sample

New in version 0.17: parameter sample_weight support to LinearRegression.

Returns

self [returns an instance of self.]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict using the linear model.

Parameters

X [array_like or sparse matrix, shape (n_samples, n_features)] Samples.

Returns

C [array, shape (n_samples,)] Returns predicted values.

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

2100 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.linear_model.LinearRegression

• Plot individual and voting regression predictions

• Ordinary Least Squares and Ridge Regression Variance

• Logistic function

• Linear Regression Example

• Robust linear model estimation using RANSAC

• Sparsity Example: Fitting only features 1 and 2

• Theil-Sen Regression

• Robust linear estimator fitting

• Automatic Relevance Determination Regression (ARD)

• Bayesian Ridge Regression

• Isotonic Regression

• Face completion with a multi-output estimators

• Plotting Cross-Validated Predictions

• Underfitting vs. Overfitting

7.22. sklearn.linear_model: Linear Models 2101

scikit-learn user guide, Release 0.23.2

• Using KBinsDiscretizer to discretize continuous features

sklearn.linear_model.Ridge

class sklearn.linear_model.Ridge(alpha=1.0, *, fit_intercept=True, normalize=False,
copy_X=True, max_iter=None, tol=0.001, solver=’auto’,
random_state=None)

Linear least squares with l2 regularization.

Minimizes the objective function:

||y - Xw||^2_2 + alpha * ||w||^2_2

This model solves a regression model where the loss function is the linear least squares function and regulariza-
tion is given by the l2-norm. Also known as Ridge Regression or Tikhonov regularization. This estimator has
built-in support for multi-variate regression (i.e., when y is a 2d-array of shape (n_samples, n_targets)).

Read more in the User Guide.

Parameters

alpha [{float, ndarray of shape (n_targets,)}, default=1.0] Regularization strength; must be a
positive float. Regularization improves the conditioning of the problem and reduces the
variance of the estimates. Larger values specify stronger regularization. Alpha corresponds
to 1 / (2C) in other linear models such as LogisticRegression or sklearn.
svm.LinearSVC. If an array is passed, penalties are assumed to be specific to the targets.
Hence they must correspond in number.

fit_intercept [bool, default=True] Whether to fit the intercept for this model. If set to false, no
intercept will be used in calculations (i.e. X and y are expected to be centered).

normalize [bool, default=False] This parameter is ignored when fit_intercept is set
to False. If True, the regressors X will be normalized before regression by subtract-
ing the mean and dividing by the l2-norm. If you wish to standardize, please use
sklearn.preprocessing.StandardScaler before calling fit on an estimator
with normalize=False.

copy_X [bool, default=True] If True, X will be copied; else, it may be overwritten.

max_iter [int, default=None] Maximum number of iterations for conjugate gradient solver. For
‘sparse_cg’ and ‘lsqr’ solvers, the default value is determined by scipy.sparse.linalg. For
‘sag’ solver, the default value is 1000.

tol [float, default=1e-3] Precision of the solution.

solver [{‘auto’, ‘svd’, ‘cholesky’, ‘lsqr’, ‘sparse_cg’, ‘sag’, ‘saga’}, default=’auto’] Solver to
use in the computational routines:

• ‘auto’ chooses the solver automatically based on the type of data.

• ‘svd’ uses a Singular Value Decomposition of X to compute the Ridge coefficients. More
stable for singular matrices than ‘cholesky’.

• ‘cholesky’ uses the standard scipy.linalg.solve function to obtain a closed-form solution.

• ‘sparse_cg’ uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As an
iterative algorithm, this solver is more appropriate than ‘cholesky’ for large-scale data
(possibility to set tol and max_iter).

• ‘lsqr’ uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It is the
fastest and uses an iterative procedure.

2102 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

• ‘sag’ uses a Stochastic Average Gradient descent, and ‘saga’ uses its improved, unbiased
version named SAGA. Both methods also use an iterative procedure, and are often faster
than other solvers when both n_samples and n_features are large. Note that ‘sag’ and
‘saga’ fast convergence is only guaranteed on features with approximately the same scale.
You can preprocess the data with a scaler from sklearn.preprocessing.

All last five solvers support both dense and sparse data. However, only ‘sag’ and ‘sparse_cg’
supports sparse input when fit_intercept is True.

New in version 0.17: Stochastic Average Gradient descent solver.

New in version 0.19: SAGA solver.

random_state [int, RandomState instance, default=None] Used when solver == ‘sag’ or
‘saga’ to shuffle the data. See Glossary for details.

New in version 0.17: random_state to support Stochastic Average Gradient.

Attributes

coef_ [ndarray of shape (n_features,) or (n_targets, n_features)] Weight vector(s).

intercept_ [float or ndarray of shape (n_targets,)] Independent term in decision function. Set to
0.0 if fit_intercept = False.

n_iter_ [None or ndarray of shape (n_targets,)] Actual number of iterations for each target.
Available only for sag and lsqr solvers. Other solvers will return None.

New in version 0.17.

See also:

RidgeClassifier Ridge classifier

RidgeCV Ridge regression with built-in cross validation

sklearn.kernel_ridge.KernelRidge Kernel ridge regression combines ridge regression with the
kernel trick

Examples

>>> from sklearn.linear_model import Ridge
>>> import numpy as np
>>> n_samples, n_features = 10, 5
>>> rng = np.random.RandomState(0)
>>> y = rng.randn(n_samples)
>>> X = rng.randn(n_samples, n_features)
>>> clf = Ridge(alpha=1.0)
>>> clf.fit(X, y)
Ridge()

Methods

fit(X, y[, sample_weight]) Fit Ridge regression model.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model.

Continued on next page

7.22. sklearn.linear_model: Linear Models 2103

scikit-learn user guide, Release 0.23.2

Table 163 – continued from previous page
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.

__init__(alpha=1.0, *, fit_intercept=True, normalize=False, copy_X=True, max_iter=None,
tol=0.001, solver=’auto’, random_state=None)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y, sample_weight=None)
Fit Ridge regression model.

Parameters

X [{ndarray, sparse matrix} of shape (n_samples, n_features)] Training data

y [ndarray of shape (n_samples,) or (n_samples, n_targets)] Target values

sample_weight [float or ndarray of shape (n_samples,), default=None] Individual weights
for each sample. If given a float, every sample will have the same weight.

Returns

self [returns an instance of self.]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict using the linear model.

Parameters

X [array_like or sparse matrix, shape (n_samples, n_features)] Samples.

Returns

C [array, shape (n_samples,)] Returns predicted values.

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

2104 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.linear_model.Ridge

• Compressive sensing: tomography reconstruction with L1 prior (Lasso)

• Prediction Latency

• Plot Ridge coefficients as a function of the regularization

• Ordinary Least Squares and Ridge Regression Variance

• Plot Ridge coefficients as a function of the L2 regularization

• Polynomial interpolation

• HuberRegressor vs Ridge on dataset with strong outliers

• Poisson regression and non-normal loss

• Common pitfalls in interpretation of coefficients of linear models

sklearn.linear_model.SGDRegressor

class sklearn.linear_model.SGDRegressor(loss=’squared_loss’, *, penalty=’l2’, al-
pha=0.0001, l1_ratio=0.15, fit_intercept=True,
max_iter=1000, tol=0.001, shuffle=True, ver-
bose=0, epsilon=0.1, random_state=None, learn-
ing_rate=’invscaling’, eta0=0.01, power_t=0.25,
early_stopping=False, validation_fraction=0.1,
n_iter_no_change=5, warm_start=False, aver-
age=False)

Linear model fitted by minimizing a regularized empirical loss with SGD

7.22. sklearn.linear_model: Linear Models 2105

scikit-learn user guide, Release 0.23.2

SGD stands for Stochastic Gradient Descent: the gradient of the loss is estimated each sample at a time and the
model is updated along the way with a decreasing strength schedule (aka learning rate).

The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector
using either the squared euclidean norm L2 or the absolute norm L1 or a combination of both (Elastic Net). If
the parameter update crosses the 0.0 value because of the regularizer, the update is truncated to 0.0 to allow for
learning sparse models and achieve online feature selection.

This implementation works with data represented as dense numpy arrays of floating point values for the features.

Read more in the User Guide.

Parameters

loss [str, default=’squared_loss’] The loss function to be used. The possible values are
‘squared_loss’, ‘huber’, ‘epsilon_insensitive’, or ‘squared_epsilon_insensitive’

The ‘squared_loss’ refers to the ordinary least squares fit. ‘huber’ modifies ‘squared_loss’ to
focus less on getting outliers correct by switching from squared to linear loss past a distance
of epsilon. ‘epsilon_insensitive’ ignores errors less than epsilon and is linear past that; this
is the loss function used in SVR. ‘squared_epsilon_insensitive’ is the same but becomes
squared loss past a tolerance of epsilon.

More details about the losses formulas can be found in the User Guide.

penalty [{‘l2’, ‘l1’, ‘elasticnet’}, default=’l2’] The penalty (aka regularization term) to be used.
Defaults to ‘l2’ which is the standard regularizer for linear SVM models. ‘l1’ and ‘elasticnet’
might bring sparsity to the model (feature selection) not achievable with ‘l2’.

alpha [float, default=0.0001] Constant that multiplies the regularization term. The higher the
value, the stronger the regularization. Also used to compute the learning rate when set to
learning_rate is set to ‘optimal’.

l1_ratio [float, default=0.15] The Elastic Net mixing parameter, with 0 <= l1_ratio <= 1.
l1_ratio=0 corresponds to L2 penalty, l1_ratio=1 to L1. Only used if penalty is ‘elas-
ticnet’.

fit_intercept [bool, default=True] Whether the intercept should be estimated or not. If False,
the data is assumed to be already centered.

max_iter [int, default=1000] The maximum number of passes over the training data (aka
epochs). It only impacts the behavior in the fit method, and not the partial_fit
method.

New in version 0.19.

tol [float, default=1e-3] The stopping criterion. If it is not None, training will stop when (loss >
best_loss - tol) for n_iter_no_change consecutive epochs.

New in version 0.19.

shuffle [bool, default=True] Whether or not the training data should be shuffled after each
epoch.

verbose [int, default=0] The verbosity level.

epsilon [float, default=0.1] Epsilon in the epsilon-insensitive loss functions; only if loss is
‘huber’, ‘epsilon_insensitive’, or ‘squared_epsilon_insensitive’. For ‘huber’, determines
the threshold at which it becomes less important to get the prediction exactly right. For
epsilon-insensitive, any differences between the current prediction and the correct label are
ignored if they are less than this threshold.

2106 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

random_state [int, RandomState instance, default=None] Used for shuffling the data, when
shuffle is set to True. Pass an int for reproducible output across multiple function calls.
See Glossary.

learning_rate [string, default=’invscaling’] The learning rate schedule:

• ‘constant’: eta = eta0

• ‘optimal’: eta = 1.0 / (alpha * (t + t0)) where t0 is chosen by a heuristic
proposed by Leon Bottou.

• ‘invscaling’: eta = eta0 / pow(t, power_t)

• ‘adaptive’: eta = eta0, as long as the training keeps decreasing. Each time
n_iter_no_change consecutive epochs fail to decrease the training loss by tol or fail to
increase validation score by tol if early_stopping is True, the current learning rate is di-
vided by 5.

New in version 0.20: Added ‘adaptive’ option

eta0 [double, default=0.01] The initial learning rate for the ‘constant’, ‘invscaling’ or ‘adaptive’
schedules. The default value is 0.01.

power_t [double, default=0.25] The exponent for inverse scaling learning rate.

early_stopping [bool, default=False] Whether to use early stopping to terminate training when
validation score is not improving. If set to True, it will automatically set aside a fraction
of training data as validation and terminate training when validation score returned by the
score method is not improving by at least tol for n_iter_no_change consecutive
epochs.

New in version 0.20: Added ‘early_stopping’ option

validation_fraction [float, default=0.1] The proportion of training data to set aside as validation
set for early stopping. Must be between 0 and 1. Only used if early_stopping is True.

New in version 0.20: Added ‘validation_fraction’ option

n_iter_no_change [int, default=5] Number of iterations with no improvement to wait before
early stopping.

New in version 0.20: Added ‘n_iter_no_change’ option

warm_start [bool, default=False] When set to True, reuse the solution of the previous call to
fit as initialization, otherwise, just erase the previous solution. See the Glossary.

Repeatedly calling fit or partial_fit when warm_start is True can result in a different solution
than when calling fit a single time because of the way the data is shuffled. If a dynamic
learning rate is used, the learning rate is adapted depending on the number of samples al-
ready seen. Calling fit resets this counter, while partial_fit will result in increasing
the existing counter.

average [bool or int, default=False] When set to True, computes the averaged SGD weights
accross all updates and stores the result in the coef_ attribute. If set to an int greater
than 1, averaging will begin once the total number of samples seen reaches average. So
average=10 will begin averaging after seeing 10 samples.

Attributes

coef_ [ndarray of shape (n_features,)] Weights assigned to the features.

intercept_ [ndarray of shape (1,)] The intercept term.

7.22. sklearn.linear_model: Linear Models 2107

scikit-learn user guide, Release 0.23.2

average_coef_ [ndarray of shape (n_features,)] Averaged weights assigned to the features.
Only available if average=True.

Deprecated since version 0.23: Attribute average_coef_ was deprecated in version 0.23
and will be removed in 0.25.

average_intercept_ [ndarray of shape (1,)] The averaged intercept term. Only available if
average=True.

Deprecated since version 0.23: Attribute average_intercept_ was deprecated in ver-
sion 0.23 and will be removed in 0.25.

n_iter_ [int] The actual number of iterations before reaching the stopping criterion.

t_ [int] Number of weight updates performed during training. Same as (n_iter_ *
n_samples).

See also:

Ridge, ElasticNet, Lasso, sklearn.svm.SVR

Examples

>>> import numpy as np
>>> from sklearn.linear_model import SGDRegressor
>>> from sklearn.pipeline import make_pipeline
>>> from sklearn.preprocessing import StandardScaler
>>> n_samples, n_features = 10, 5
>>> rng = np.random.RandomState(0)
>>> y = rng.randn(n_samples)
>>> X = rng.randn(n_samples, n_features)
>>> # Always scale the input. The most convenient way is to use a pipeline.
>>> reg = make_pipeline(StandardScaler(),
... SGDRegressor(max_iter=1000, tol=1e-3))
>>> reg.fit(X, y)
Pipeline(steps=[('standardscaler', StandardScaler()),

('sgdregressor', SGDRegressor())])

Methods

densify() Convert coefficient matrix to dense array format.
fit(X, y[, coef_init, intercept_init, . . .]) Fit linear model with Stochastic Gradient Descent.
get_params([deep]) Get parameters for this estimator.
partial_fit(X, y[, sample_weight]) Perform one epoch of stochastic gradient descent on

given samples.
predict(X) Predict using the linear model
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**kwargs) Set and validate the parameters of estimator.
sparsify() Convert coefficient matrix to sparse format.

2108 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

__init__(loss=’squared_loss’, *, penalty=’l2’, alpha=0.0001, l1_ratio=0.15, fit_intercept=True,
max_iter=1000, tol=0.001, shuffle=True, verbose=0, epsilon=0.1, random_state=None,
learning_rate=’invscaling’, eta0=0.01, power_t=0.25, early_stopping=False, valida-
tion_fraction=0.1, n_iter_no_change=5, warm_start=False, average=False)

Initialize self. See help(type(self)) for accurate signature.

densify()
Convert coefficient matrix to dense array format.

Converts the coef_ member (back) to a numpy.ndarray. This is the default format of coef_ and is
required for fitting, so calling this method is only required on models that have previously been sparsified;
otherwise, it is a no-op.

Returns

self Fitted estimator.

fit(X, y, coef_init=None, intercept_init=None, sample_weight=None)
Fit linear model with Stochastic Gradient Descent.

Parameters

X [{array-like, sparse matrix}, shape (n_samples, n_features)] Training data

y [ndarray of shape (n_samples,)] Target values

coef_init [ndarray of shape (n_features,), default=None] The initial coefficients to warm-
start the optimization.

intercept_init [ndarray of shape (1,), default=None] The initial intercept to warm-start the
optimization.

sample_weight [array-like, shape (n_samples,), default=None] Weights applied to individ-
ual samples (1. for unweighted).

Returns

self [returns an instance of self.]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

partial_fit(X, y, sample_weight=None)
Perform one epoch of stochastic gradient descent on given samples.

Internally, this method uses max_iter = 1. Therefore, it is not guaranteed that a minimum of the cost
function is reached after calling it once. Matters such as objective convergence and early stopping should
be handled by the user.

Parameters

X [{array-like, sparse matrix}, shape (n_samples, n_features)] Subset of training data

y [numpy array of shape (n_samples,)] Subset of target values

sample_weight [array-like, shape (n_samples,), default=None] Weights applied to individ-
ual samples. If not provided, uniform weights are assumed.

7.22. sklearn.linear_model: Linear Models 2109

scikit-learn user guide, Release 0.23.2

Returns

self [returns an instance of self.]

predict(X)
Predict using the linear model

Parameters

X [{array-like, sparse matrix}, shape (n_samples, n_features)]

Returns

ndarray of shape (n_samples,) Predicted target values per element in X.

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**kwargs)
Set and validate the parameters of estimator.

Parameters

**kwargs [dict] Estimator parameters.

Returns

self [object] Estimator instance.

sparsify()
Convert coefficient matrix to sparse format.

Converts the coef_ member to a scipy.sparse matrix, which for L1-regularized models can be much more
memory- and storage-efficient than the usual numpy.ndarray representation.

The intercept_ member is not converted.

Returns

2110 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

self Fitted estimator.

Notes

For non-sparse models, i.e. when there are not many zeros in coef_, this may actually increase memory
usage, so use this method with care. A rule of thumb is that the number of zero elements, which can be
computed with (coef_ == 0).sum(), must be more than 50% for this to provide significant benefits.

After calling this method, further fitting with the partial_fit method (if any) will not work until you call
densify.

Examples using sklearn.linear_model.SGDRegressor

• Prediction Latency

• SGD: Penalties

7.22.3 Regressors with variable selection

The following estimators have built-in variable selection fitting procedures, but any estimator using a L1 or elastic-
net penalty also performs variable selection: typically SGDRegressor or SGDClassifier with an appropriate
penalty.

linear_model.ElasticNet([alpha, l1_ratio,
. . .])

Linear regression with combined L1 and L2 priors as
regularizer.

linear_model.ElasticNetCV (*[, l1_ratio, . . .]) Elastic Net model with iterative fitting along a regular-
ization path.

linear_model.Lars(*[, fit_intercept, . . .]) Least Angle Regression model a.k.a.
linear_model.LarsCV (*[, fit_intercept, . . .]) Cross-validated Least Angle Regression model.
linear_model.Lasso([alpha, fit_intercept, . . .]) Linear Model trained with L1 prior as regularizer (aka

the Lasso)
linear_model.LassoCV (*[, eps, n_alphas, . . .]) Lasso linear model with iterative fitting along a regular-

ization path.
linear_model.LassoLars([alpha, . . .]) Lasso model fit with Least Angle Regression a.k.a.
linear_model.LassoLarsCV (*[, fit_intercept,
. . .])

Cross-validated Lasso, using the LARS algorithm.

linear_model.LassoLarsIC([criterion, . . .]) Lasso model fit with Lars using BIC or AIC for model
selection

linear_model.OrthogonalMatchingPursuit(*[,
. . .])

Orthogonal Matching Pursuit model (OMP)

linear_model.OrthogonalMatchingPursuitCV (*)Cross-validated Orthogonal Matching Pursuit model
(OMP).

sklearn.linear_model.ElasticNet

class sklearn.linear_model.ElasticNet(alpha=1.0, *, l1_ratio=0.5, fit_intercept=True, nor-
malize=False, precompute=False, max_iter=1000,
copy_X=True, tol=0.0001, warm_start=False, posi-
tive=False, random_state=None, selection=’cyclic’)

Linear regression with combined L1 and L2 priors as regularizer.

7.22. sklearn.linear_model: Linear Models 2111

scikit-learn user guide, Release 0.23.2

Minimizes the objective function:

1 / (2 * n_samples) * ||y - Xw||^2_2
+ alpha * l1_ratio * ||w||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2

If you are interested in controlling the L1 and L2 penalty separately, keep in mind that this is equivalent to:

a * L1 + b * L2

where:

alpha = a + b and l1_ratio = a / (a + b)

The parameter l1_ratio corresponds to alpha in the glmnet R package while alpha corresponds to the lambda
parameter in glmnet. Specifically, l1_ratio = 1 is the lasso penalty. Currently, l1_ratio <= 0.01 is not reliable,
unless you supply your own sequence of alpha.

Read more in the User Guide.

Parameters

alpha [float, default=1.0] Constant that multiplies the penalty terms. Defaults to 1.0. See the
notes for the exact mathematical meaning of this parameter. alpha = 0 is equivalent to an
ordinary least square, solved by the LinearRegression object. For numerical reasons,
using alpha = 0 with the Lasso object is not advised. Given this, you should use the
LinearRegression object.

l1_ratio [float, default=0.5] The ElasticNet mixing parameter, with 0 <= l1_ratio <= 1.
For l1_ratio = 0 the penalty is an L2 penalty. For l1_ratio = 1 it is an L1
penalty. For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2.

fit_intercept [bool, default=True] Whether the intercept should be estimated or not. If False,
the data is assumed to be already centered.

normalize [bool, default=False] This parameter is ignored when fit_intercept is set
to False. If True, the regressors X will be normalized before regression by subtract-
ing the mean and dividing by the l2-norm. If you wish to standardize, please use
sklearn.preprocessing.StandardScaler before calling fit on an estimator
with normalize=False.

precompute [bool or array-like of shape (n_features, n_features), default=False] Whether to
use a precomputed Gram matrix to speed up calculations. The Gram matrix can also be
passed as argument. For sparse input this option is always True to preserve sparsity.

max_iter [int, default=1000] The maximum number of iterations

copy_X [bool, default=True] If True, X will be copied; else, it may be overwritten.

tol [float, default=1e-4] The tolerance for the optimization: if the updates are smaller than tol,
the optimization code checks the dual gap for optimality and continues until it is smaller
than tol.

warm_start [bool, default=False] When set to True, reuse the solution of the previous call to
fit as initialization, otherwise, just erase the previous solution. See the Glossary.

positive [bool, default=False] When set to True, forces the coefficients to be positive.

random_state [int, RandomState instance, default=None] The seed of the pseudo random num-
ber generator that selects a random feature to update. Used when selection == ‘random’.
Pass an int for reproducible output across multiple function calls. See Glossary.

2112 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

selection [{‘cyclic’, ‘random’}, default=’cyclic’] If set to ‘random’, a random coefficient is up-
dated every iteration rather than looping over features sequentially by default. This (setting
to ‘random’) often leads to significantly faster convergence especially when tol is higher
than 1e-4.

Attributes

coef_ [ndarray of shape (n_features,) or (n_targets, n_features)] parameter vector (w in the cost
function formula)

sparse_coef_ [sparse matrix of shape (n_features, 1) or (n_targets, n_features)] sparse rep-
resentation of the fitted coef_

intercept_ [float or ndarray of shape (n_targets,)] independent term in decision function.

n_iter_ [list of int] number of iterations run by the coordinate descent solver to reach the spec-
ified tolerance.

See also:

ElasticNetCV Elastic net model with best model selection by cross-validation.

SGDRegressor implements elastic net regression with incremental training.

SGDClassifier implements logistic regression with elastic net penalty
(SGDClassifier(loss="log", penalty="elasticnet")).

Notes

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
Fortran-contiguous numpy array.

Examples

>>> from sklearn.linear_model import ElasticNet
>>> from sklearn.datasets import make_regression

>>> X, y = make_regression(n_features=2, random_state=0)
>>> regr = ElasticNet(random_state=0)
>>> regr.fit(X, y)
ElasticNet(random_state=0)
>>> print(regr.coef_)
[18.83816048 64.55968825]
>>> print(regr.intercept_)
1.451...
>>> print(regr.predict([[0, 0]]))
[1.451...]

Methods

fit(X, y[, sample_weight, check_input]) Fit model with coordinate descent.
get_params([deep]) Get parameters for this estimator.
path(X, y, *[, l1_ratio, eps, n_alphas, . . .]) Compute elastic net path with coordinate descent.
predict(X) Predict using the linear model.

Continued on next page

7.22. sklearn.linear_model: Linear Models 2113

scikit-learn user guide, Release 0.23.2

Table 166 – continued from previous page
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.

__init__(alpha=1.0, *, l1_ratio=0.5, fit_intercept=True, normalize=False, precompute=False,
max_iter=1000, copy_X=True, tol=0.0001, warm_start=False, positive=False, ran-
dom_state=None, selection=’cyclic’)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y, sample_weight=None, check_input=True)
Fit model with coordinate descent.

Parameters

X [{ndarray, sparse matrix} of (n_samples, n_features)] Data

y [{ndarray, sparse matrix} of shape (n_samples,) or (n_samples, n_targets)] Target. Will be
cast to X’s dtype if necessary

sample_weight [float or array-like of shape (n_samples,), default=None] Sample weight.

check_input [bool, default=True] Allow to bypass several input checking. Don’t use this
parameter unless you know what you do.

Notes

Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically
convert the X input as a Fortran-contiguous numpy array if necessary.

To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

static path(X, y, *, l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, precompute=’auto’,
Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, posi-
tive=False, check_input=True, **params)

Compute elastic net path with coordinate descent.

The elastic net optimization function varies for mono and multi-outputs.

For mono-output tasks it is:

1 / (2 * n_samples) * ||y - Xw||^2_2
+ alpha * l1_ratio * ||w||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2

For multi-output tasks it is:

2114 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

(1 / (2 * n_samples)) * ||Y - XW||^Fro_2
+ alpha * l1_ratio * ||W||_21
+ 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training data. Pass directly
as Fortran-contiguous data to avoid unnecessary memory duplication. If y is mono-output
then X can be sparse.

y [{array-like, sparse matrix} of shape (n_samples,) or (n_samples, n_outputs)] Target val-
ues.

l1_ratio [float, default=0.5] Number between 0 and 1 passed to elastic net (scaling between
l1 and l2 penalties). l1_ratio=1 corresponds to the Lasso.

eps [float, default=1e-3] Length of the path. eps=1e-3 means that alpha_min /
alpha_max = 1e-3.

n_alphas [int, default=100] Number of alphas along the regularization path.

alphas [ndarray, default=None] List of alphas where to compute the models. If None alphas
are set automatically.

precompute [‘auto’, bool or array-like of shape (n_features, n_features), default=’auto’]
Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto' let
us decide. The Gram matrix can also be passed as argument.

Xy [array-like of shape (n_features,) or (n_features, n_outputs), default=None] Xy =
np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is pre-
computed.

copy_X [bool, default=True] If True, X will be copied; else, it may be overwritten.

coef_init [ndarray of shape (n_features,), default=None] The initial values of the coeffi-
cients.

verbose [bool or int, default=False] Amount of verbosity.

return_n_iter [bool, default=False] Whether to return the number of iterations or not.

positive [bool, default=False] If set to True, forces coefficients to be positive. (Only allowed
when y.ndim == 1).

check_input [bool, default=True] Skip input validation checks, including the Gram matrix
when provided assuming there are handled by the caller when check_input=False.

**params [kwargs] Keyword arguments passed to the coordinate descent solver.

Returns

alphas [ndarray of shape (n_alphas,)] The alphas along the path where models are com-
puted.

coefs [ndarray of shape (n_features, n_alphas) or (n_outputs, n_features, n_alphas)] Coeffi-
cients along the path.

7.22. sklearn.linear_model: Linear Models 2115

scikit-learn user guide, Release 0.23.2

dual_gaps [ndarray of shape (n_alphas,)] The dual gaps at the end of the optimization for
each alpha.

n_iters [list of int] The number of iterations taken by the coordinate descent optimizer to
reach the specified tolerance for each alpha. (Is returned when return_n_iter is set
to True).

See also:

MultiTaskElasticNet

MultiTaskElasticNetCV

ElasticNet

ElasticNetCV

Notes

For an example, see examples/linear_model/plot_lasso_coordinate_descent_path.py.

predict(X)
Predict using the linear model.

Parameters

X [array_like or sparse matrix, shape (n_samples, n_features)] Samples.

Returns

C [array, shape (n_samples,)] Returns predicted values.

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

2116 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

property sparse_coef_
sparse representation of the fitted coef_

Examples using sklearn.linear_model.ElasticNet

• Release Highlights for scikit-learn 0.23

• Lasso and Elastic Net for Sparse Signals

• Train error vs Test error

sklearn.linear_model.Lars

class sklearn.linear_model.Lars(*, fit_intercept=True, verbose=False, normal-
ize=True, precompute=’auto’, n_nonzero_coefs=500,
eps=2.220446049250313e-16, copy_X=True, fit_path=True,
jitter=None, random_state=None)

Least Angle Regression model a.k.a. LAR

Read more in the User Guide.

Parameters

fit_intercept [bool, default=True] Whether to calculate the intercept for this model. If set to
false, no intercept will be used in calculations (i.e. data is expected to be centered).

verbose [bool or int, default=False] Sets the verbosity amount

normalize [bool, default=True] This parameter is ignored when fit_intercept is set
to False. If True, the regressors X will be normalized before regression by subtract-
ing the mean and dividing by the l2-norm. If you wish to standardize, please use
sklearn.preprocessing.StandardScaler before calling fit on an estimator
with normalize=False.

precompute [bool, ‘auto’ or array-like , default=’auto’] Whether to use a precomputed Gram
matrix to speed up calculations. If set to 'auto' let us decide. The Gram matrix can also
be passed as argument.

n_nonzero_coefs [int, default=500] Target number of non-zero coefficients. Use np.inf for
no limit.

eps [float, optional] The machine-precision regularization in the computation of the Cholesky
diagonal factors. Increase this for very ill-conditioned systems. Unlike the tol parameter in
some iterative optimization-based algorithms, this parameter does not control the tolerance
of the optimization. By default, np.finfo(np.float).eps is used.

7.22. sklearn.linear_model: Linear Models 2117

scikit-learn user guide, Release 0.23.2

copy_X [bool, default=True] If True, X will be copied; else, it may be overwritten.

fit_path [bool, default=True] If True the full path is stored in the coef_path_ attribute. If
you compute the solution for a large problem or many targets, setting fit_path to False
will lead to a speedup, especially with a small alpha.

jitter [float, default=None] Upper bound on a uniform noise parameter to be added to the y
values, to satisfy the model’s assumption of one-at-a-time computations. Might help with
stability.

random_state [int, RandomState instance or None (default)] Determines random number gen-
eration for jittering. Pass an int for reproducible output across multiple function calls. See
Glossary. Ignored if jitter is None.

Attributes

alphas_ [array-like of shape (n_alphas + 1,) | list of n_targets such arrays] Maximum of covari-
ances (in absolute value) at each iteration. n_alphas is either n_nonzero_coefs or
n_features, whichever is smaller.

active_ [list, length = n_alphas | list of n_targets such lists] Indices of active variables at the end
of the path.

coef_path_ [array-like of shape (n_features, n_alphas + 1) | list of n_targets such arrays] The
varying values of the coefficients along the path. It is not present if the fit_path param-
eter is False.

coef_ [array-like of shape (n_features,) or (n_targets, n_features)] Parameter vector (w in the
formulation formula).

intercept_ [float or array-like of shape (n_targets,)] Independent term in decision function.

n_iter_ [array-like or int] The number of iterations taken by lars_path to find the grid of alphas
for each target.

See also:

lars_path, LarsCV

sklearn.decomposition.sparse_encode

Examples

>>> from sklearn import linear_model
>>> reg = linear_model.Lars(n_nonzero_coefs=1)
>>> reg.fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111])
Lars(n_nonzero_coefs=1)
>>> print(reg.coef_)
[0. -1.11...]

Methods

fit(X, y[, Xy]) Fit the model using X, y as training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model.

Continued on next page

2118 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Table 167 – continued from previous page
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.

__init__(*, fit_intercept=True, verbose=False, normalize=True, precompute=’auto’,
n_nonzero_coefs=500, eps=2.220446049250313e-16, copy_X=True, fit_path=True,
jitter=None, random_state=None)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y, Xy=None)
Fit the model using X, y as training data.

Parameters

X [array-like of shape (n_samples, n_features)] Training data.

y [array-like of shape (n_samples,) or (n_samples, n_targets)] Target values.

Xy [array-like of shape (n_samples,) or (n_samples, n_targets), default=None] Xy =
np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is pre-
computed.

Returns

self [object] returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict using the linear model.

Parameters

X [array_like or sparse matrix, shape (n_samples, n_features)] Samples.

Returns

C [array, shape (n_samples,)] Returns predicted values.

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

7.22. sklearn.linear_model: Linear Models 2119

scikit-learn user guide, Release 0.23.2

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

sklearn.linear_model.Lasso

class sklearn.linear_model.Lasso(alpha=1.0, *, fit_intercept=True, normalize=False, pre-
compute=False, copy_X=True, max_iter=1000, tol=0.0001,
warm_start=False, positive=False, random_state=None, se-
lection=’cyclic’)

Linear Model trained with L1 prior as regularizer (aka the Lasso)

The optimization objective for Lasso is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

Technically the Lasso model is optimizing the same objective function as the Elastic Net with l1_ratio=1.0
(no L2 penalty).

Read more in the User Guide.

Parameters

alpha [float, default=1.0] Constant that multiplies the L1 term. Defaults to 1.0. alpha = 0
is equivalent to an ordinary least square, solved by the LinearRegression object. For
numerical reasons, using alpha = 0 with the Lasso object is not advised. Given this,
you should use the LinearRegression object.

fit_intercept [bool, default=True] Whether to calculate the intercept for this model. If set to
False, no intercept will be used in calculations (i.e. data is expected to be centered).

normalize [bool, default=False] This parameter is ignored when fit_intercept is set
to False. If True, the regressors X will be normalized before regression by subtract-
ing the mean and dividing by the l2-norm. If you wish to standardize, please use
sklearn.preprocessing.StandardScaler before calling fit on an estimator
with normalize=False.

2120 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

precompute [‘auto’, bool or array-like of shape (n_features, n_features), default=False]
Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto'
let us decide. The Gram matrix can also be passed as argument. For sparse input this option
is always True to preserve sparsity.

copy_X [bool, default=True] If True, X will be copied; else, it may be overwritten.

max_iter [int, default=1000] The maximum number of iterations

tol [float, default=1e-4] The tolerance for the optimization: if the updates are smaller than tol,
the optimization code checks the dual gap for optimality and continues until it is smaller
than tol.

warm_start [bool, default=False] When set to True, reuse the solution of the previous call to
fit as initialization, otherwise, just erase the previous solution. See the Glossary.

positive [bool, default=False] When set to True, forces the coefficients to be positive.

random_state [int, RandomState instance, default=None] The seed of the pseudo random num-
ber generator that selects a random feature to update. Used when selection == ‘random’.
Pass an int for reproducible output across multiple function calls. See Glossary.

selection [{‘cyclic’, ‘random’}, default=’cyclic’] If set to ‘random’, a random coefficient is up-
dated every iteration rather than looping over features sequentially by default. This (setting
to ‘random’) often leads to significantly faster convergence especially when tol is higher
than 1e-4.

Attributes

coef_ [ndarray of shape (n_features,) or (n_targets, n_features)] parameter vector (w in the cost
function formula)

sparse_coef_ [sparse matrix of shape (n_features, 1) or (n_targets, n_features)] sparse rep-
resentation of the fitted coef_

intercept_ [float or ndarray of shape (n_targets,)] independent term in decision function.

n_iter_ [int or list of int] number of iterations run by the coordinate descent solver to reach the
specified tolerance.

See also:

lars_path

lasso_path

LassoLars

LassoCV

LassoLarsCV

sklearn.decomposition.sparse_encode

Notes

The algorithm used to fit the model is coordinate descent.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
Fortran-contiguous numpy array.

7.22. sklearn.linear_model: Linear Models 2121

scikit-learn user guide, Release 0.23.2

Examples

>>> from sklearn import linear_model
>>> clf = linear_model.Lasso(alpha=0.1)
>>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2])
Lasso(alpha=0.1)
>>> print(clf.coef_)
[0.85 0.]
>>> print(clf.intercept_)
0.15...

Methods

fit(X, y[, sample_weight, check_input]) Fit model with coordinate descent.
get_params([deep]) Get parameters for this estimator.
path(X, y, *[, l1_ratio, eps, n_alphas, . . .]) Compute elastic net path with coordinate descent.
predict(X) Predict using the linear model.
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.

__init__(alpha=1.0, *, fit_intercept=True, normalize=False, precompute=False, copy_X=True,
max_iter=1000, tol=0.0001, warm_start=False, positive=False, random_state=None, se-
lection=’cyclic’)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y, sample_weight=None, check_input=True)
Fit model with coordinate descent.

Parameters

X [{ndarray, sparse matrix} of (n_samples, n_features)] Data

y [{ndarray, sparse matrix} of shape (n_samples,) or (n_samples, n_targets)] Target. Will be
cast to X’s dtype if necessary

sample_weight [float or array-like of shape (n_samples,), default=None] Sample weight.

check_input [bool, default=True] Allow to bypass several input checking. Don’t use this
parameter unless you know what you do.

Notes

Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically
convert the X input as a Fortran-contiguous numpy array if necessary.

To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

2122 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

params [mapping of string to any] Parameter names mapped to their values.

static path(X, y, *, l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, precompute=’auto’,
Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, posi-
tive=False, check_input=True, **params)

Compute elastic net path with coordinate descent.

The elastic net optimization function varies for mono and multi-outputs.

For mono-output tasks it is:

1 / (2 * n_samples) * ||y - Xw||^2_2
+ alpha * l1_ratio * ||w||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2

For multi-output tasks it is:

(1 / (2 * n_samples)) * ||Y - XW||^Fro_2
+ alpha * l1_ratio * ||W||_21
+ 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training data. Pass directly
as Fortran-contiguous data to avoid unnecessary memory duplication. If y is mono-output
then X can be sparse.

y [{array-like, sparse matrix} of shape (n_samples,) or (n_samples, n_outputs)] Target val-
ues.

l1_ratio [float, default=0.5] Number between 0 and 1 passed to elastic net (scaling between
l1 and l2 penalties). l1_ratio=1 corresponds to the Lasso.

eps [float, default=1e-3] Length of the path. eps=1e-3 means that alpha_min /
alpha_max = 1e-3.

n_alphas [int, default=100] Number of alphas along the regularization path.

alphas [ndarray, default=None] List of alphas where to compute the models. If None alphas
are set automatically.

precompute [‘auto’, bool or array-like of shape (n_features, n_features), default=’auto’]
Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto' let
us decide. The Gram matrix can also be passed as argument.

Xy [array-like of shape (n_features,) or (n_features, n_outputs), default=None] Xy =
np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is pre-
computed.

copy_X [bool, default=True] If True, X will be copied; else, it may be overwritten.

coef_init [ndarray of shape (n_features,), default=None] The initial values of the coeffi-
cients.

verbose [bool or int, default=False] Amount of verbosity.

7.22. sklearn.linear_model: Linear Models 2123

scikit-learn user guide, Release 0.23.2

return_n_iter [bool, default=False] Whether to return the number of iterations or not.

positive [bool, default=False] If set to True, forces coefficients to be positive. (Only allowed
when y.ndim == 1).

check_input [bool, default=True] Skip input validation checks, including the Gram matrix
when provided assuming there are handled by the caller when check_input=False.

**params [kwargs] Keyword arguments passed to the coordinate descent solver.

Returns

alphas [ndarray of shape (n_alphas,)] The alphas along the path where models are com-
puted.

coefs [ndarray of shape (n_features, n_alphas) or (n_outputs, n_features, n_alphas)] Coeffi-
cients along the path.

dual_gaps [ndarray of shape (n_alphas,)] The dual gaps at the end of the optimization for
each alpha.

n_iters [list of int] The number of iterations taken by the coordinate descent optimizer to
reach the specified tolerance for each alpha. (Is returned when return_n_iter is set
to True).

See also:

MultiTaskElasticNet

MultiTaskElasticNetCV

ElasticNet

ElasticNetCV

Notes

For an example, see examples/linear_model/plot_lasso_coordinate_descent_path.py.

predict(X)
Predict using the linear model.

Parameters

X [array_like or sparse matrix, shape (n_samples, n_features)] Samples.

Returns

C [array, shape (n_samples,)] Returns predicted values.

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

2124 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

property sparse_coef_
sparse representation of the fitted coef_

Examples using sklearn.linear_model.Lasso

• Release Highlights for scikit-learn 0.23

• Compressive sensing: tomography reconstruction with L1 prior (Lasso)

• Lasso on dense and sparse data

• Joint feature selection with multi-task Lasso

• Lasso and Elastic Net for Sparse Signals

• Cross-validation on diabetes Dataset Exercise

sklearn.linear_model.LassoLars

class sklearn.linear_model.LassoLars(alpha=1.0, *, fit_intercept=True, verbose=False, nor-
malize=True, precompute=’auto’, max_iter=500,
eps=2.220446049250313e-16, copy_X=True,
fit_path=True, positive=False, jitter=None, ran-
dom_state=None)

Lasso model fit with Least Angle Regression a.k.a. Lars

It is a Linear Model trained with an L1 prior as regularizer.

The optimization objective for Lasso is:

7.22. sklearn.linear_model: Linear Models 2125

scikit-learn user guide, Release 0.23.2

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

Read more in the User Guide.

Parameters

alpha [float, default=1.0] Constant that multiplies the penalty term. Defaults to 1.0. alpha =
0 is equivalent to an ordinary least square, solved by LinearRegression. For numerical
reasons, using alpha = 0 with the LassoLars object is not advised and you should prefer
the LinearRegression object.

fit_intercept [bool, default=True] whether to calculate the intercept for this model. If set to
false, no intercept will be used in calculations (i.e. data is expected to be centered).

verbose [bool or int, default=False] Sets the verbosity amount

normalize [bool, default=True] This parameter is ignored when fit_intercept is set
to False. If True, the regressors X will be normalized before regression by subtract-
ing the mean and dividing by the l2-norm. If you wish to standardize, please use
sklearn.preprocessing.StandardScaler before calling fit on an estimator
with normalize=False.

precompute [bool, ‘auto’ or array-like, default=’auto’] Whether to use a precomputed Gram
matrix to speed up calculations. If set to 'auto' let us decide. The Gram matrix can also
be passed as argument.

max_iter [int, default=500] Maximum number of iterations to perform.

eps [float, optional] The machine-precision regularization in the computation of the Cholesky
diagonal factors. Increase this for very ill-conditioned systems. Unlike the tol parameter in
some iterative optimization-based algorithms, this parameter does not control the tolerance
of the optimization. By default, np.finfo(np.float).eps is used.

copy_X [bool, default=True] If True, X will be copied; else, it may be overwritten.

fit_path [bool, default=True] If True the full path is stored in the coef_path_ attribute. If
you compute the solution for a large problem or many targets, setting fit_path to False
will lead to a speedup, especially with a small alpha.

positive [bool, default=False] Restrict coefficients to be >= 0. Be aware that you might want
to remove fit_intercept which is set True by default. Under the positive restriction the
model coefficients will not converge to the ordinary-least-squares solution for small values
of alpha. Only coefficients up to the smallest alpha value (alphas_[alphas_ > 0.].
min() when fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in
congruence with the solution of the coordinate descent Lasso estimator.

jitter [float, default=None] Upper bound on a uniform noise parameter to be added to the y
values, to satisfy the model’s assumption of one-at-a-time computations. Might help with
stability.

random_state [int, RandomState instance or None (default)] Determines random number gen-
eration for jittering. Pass an int for reproducible output across multiple function calls. See
Glossary. Ignored if jitter is None.

Attributes

alphas_ [array-like of shape (n_alphas + 1,) | list of n_targets such arrays] Maximum of
covariances (in absolute value) at each iteration. n_alphas is either max_iter,
n_features, or the number of nodes in the path with correlation greater than alpha,
whichever is smaller.

2126 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

active_ [list, length = n_alphas | list of n_targets such lists] Indices of active variables at the end
of the path.

coef_path_ [array-like of shape (n_features, n_alphas + 1) or list] If a list is passed it’s expected
to be one of n_targets such arrays. The varying values of the coefficients along the path. It
is not present if the fit_path parameter is False.

coef_ [array-like of shape (n_features,) or (n_targets, n_features)] Parameter vector (w in the
formulation formula).

intercept_ [float or array-like of shape (n_targets,)] Independent term in decision function.

n_iter_ [array-like or int.] The number of iterations taken by lars_path to find the grid of alphas
for each target.

See also:

lars_path

lasso_path

Lasso

LassoCV

LassoLarsCV

LassoLarsIC

sklearn.decomposition.sparse_encode

Examples

>>> from sklearn import linear_model
>>> reg = linear_model.LassoLars(alpha=0.01)
>>> reg.fit([[-1, 1], [0, 0], [1, 1]], [-1, 0, -1])
LassoLars(alpha=0.01)
>>> print(reg.coef_)
[0. -0.963257...]

Methods

fit(X, y[, Xy]) Fit the model using X, y as training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model.
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.

__init__(alpha=1.0, *, fit_intercept=True, verbose=False, normalize=True, precompute=’auto’,
max_iter=500, eps=2.220446049250313e-16, copy_X=True, fit_path=True, positive=False,
jitter=None, random_state=None)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y, Xy=None)
Fit the model using X, y as training data.

Parameters

7.22. sklearn.linear_model: Linear Models 2127

scikit-learn user guide, Release 0.23.2

X [array-like of shape (n_samples, n_features)] Training data.

y [array-like of shape (n_samples,) or (n_samples, n_targets)] Target values.

Xy [array-like of shape (n_samples,) or (n_samples, n_targets), default=None] Xy =
np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is pre-
computed.

Returns

self [object] returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict using the linear model.

Parameters

X [array_like or sparse matrix, shape (n_samples, n_features)] Samples.

Returns

C [array, shape (n_samples,)] Returns predicted values.

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

2128 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

sklearn.linear_model.OrthogonalMatchingPursuit

class sklearn.linear_model.OrthogonalMatchingPursuit(*, n_nonzero_coefs=None,
tol=None, fit_intercept=True,
normalize=True, precom-
pute=’auto’)

Orthogonal Matching Pursuit model (OMP)

Read more in the User Guide.

Parameters

n_nonzero_coefs [int, optional] Desired number of non-zero entries in the solution. If None
(by default) this value is set to 10% of n_features.

tol [float, optional] Maximum norm of the residual. If not None, overrides n_nonzero_coefs.

fit_intercept [boolean, optional] whether to calculate the intercept for this model. If set to false,
no intercept will be used in calculations (i.e. data is expected to be centered).

normalize [boolean, optional, default True] This parameter is ignored when fit_intercept
is set to False. If True, the regressors X will be normalized before regression by sub-
tracting the mean and dividing by the l2-norm. If you wish to standardize, please use
sklearn.preprocessing.StandardScaler before calling fit on an estimator
with normalize=False.

precompute [{True, False, ‘auto’}, default ‘auto’] Whether to use a precomputed Gram and
Xy matrix to speed up calculations. Improves performance when n_targets or n_samples is
very large. Note that if you already have such matrices, you can pass them directly to the fit
method.

Attributes

coef_ [array, shape (n_features,) or (n_targets, n_features)] parameter vector (w in the formula)

intercept_ [float or array, shape (n_targets,)] independent term in decision function.

n_iter_ [int or array-like] Number of active features across every target.

See also:

orthogonal_mp

orthogonal_mp_gram

lars_path

Lars

7.22. sklearn.linear_model: Linear Models 2129

scikit-learn user guide, Release 0.23.2

LassoLars

decomposition.sparse_encode

OrthogonalMatchingPursuitCV

Notes

Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang, Matching pursuits with time-frequency
dictionaries, IEEE Transactions on Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415.
(http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf)

This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad, M., Efficient Implementation of
the K-SVD Algorithm using Batch Orthogonal Matching Pursuit Technical Report - CS Technion, April 2008.
https://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf

Examples

>>> from sklearn.linear_model import OrthogonalMatchingPursuit
>>> from sklearn.datasets import make_regression
>>> X, y = make_regression(noise=4, random_state=0)
>>> reg = OrthogonalMatchingPursuit().fit(X, y)
>>> reg.score(X, y)
0.9991...
>>> reg.predict(X[:1,])
array([-78.3854...])

Methods

fit(X, y) Fit the model using X, y as training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model.
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.

__init__(*, n_nonzero_coefs=None, tol=None, fit_intercept=True, normalize=True, precom-
pute=’auto’)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y)
Fit the model using X, y as training data.

Parameters

X [array-like, shape (n_samples, n_features)] Training data.

y [array-like, shape (n_samples,) or (n_samples, n_targets)] Target values. Will be cast to
X’s dtype if necessary

Returns

self [object] returns an instance of self.

get_params(deep=True)
Get parameters for this estimator.

2130 Chapter 7. API Reference

http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf
https://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf

scikit-learn user guide, Release 0.23.2

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict using the linear model.

Parameters

X [array_like or sparse matrix, shape (n_samples, n_features)] Samples.

Returns

C [array, shape (n_samples,)] Returns predicted values.

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

7.22. sklearn.linear_model: Linear Models 2131

scikit-learn user guide, Release 0.23.2

Examples using sklearn.linear_model.OrthogonalMatchingPursuit

• Orthogonal Matching Pursuit

7.22.4 Bayesian regressors

linear_model.ARDRegression(*[, n_iter, tol,
. . .])

Bayesian ARD regression.

linear_model.BayesianRidge(*[, n_iter, tol,
. . .])

Bayesian ridge regression.

sklearn.linear_model.ARDRegression

class sklearn.linear_model.ARDRegression(*, n_iter=300, tol=0.001, alpha_1=1e-
06, alpha_2=1e-06, lambda_1=1e-06,
lambda_2=1e-06, compute_score=False, thresh-
old_lambda=10000.0, fit_intercept=True,
normalize=False, copy_X=True, verbose=False)

Bayesian ARD regression.

Fit the weights of a regression model, using an ARD prior. The weights of the regression model are assumed
to be in Gaussian distributions. Also estimate the parameters lambda (precisions of the distributions of the
weights) and alpha (precision of the distribution of the noise). The estimation is done by an iterative procedures
(Evidence Maximization)

Read more in the User Guide.

Parameters

n_iter [int, default=300] Maximum number of iterations.

tol [float, default=1e-3] Stop the algorithm if w has converged.

alpha_1 [float, default=1e-6] Hyper-parameter : shape parameter for the Gamma distribution
prior over the alpha parameter.

alpha_2 [float, default=1e-6] Hyper-parameter : inverse scale parameter (rate parameter) for
the Gamma distribution prior over the alpha parameter.

lambda_1 [float, default=1e-6] Hyper-parameter : shape parameter for the Gamma distribution
prior over the lambda parameter.

lambda_2 [float, default=1e-6] Hyper-parameter : inverse scale parameter (rate parameter) for
the Gamma distribution prior over the lambda parameter.

compute_score [bool, default=False] If True, compute the objective function at each step of the
model.

threshold_lambda [float, default=10 000] threshold for removing (pruning) weights with high
precision from the computation.

fit_intercept [bool, default=True] whether to calculate the intercept for this model. If set to
false, no intercept will be used in calculations (i.e. data is expected to be centered).

normalize [bool, default=False] This parameter is ignored when fit_intercept is set
to False. If True, the regressors X will be normalized before regression by subtract-
ing the mean and dividing by the l2-norm. If you wish to standardize, please use

2132 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

sklearn.preprocessing.StandardScaler before calling fit on an estimator
with normalize=False.

copy_X [bool, default=True] If True, X will be copied; else, it may be overwritten.

verbose [bool, default=False] Verbose mode when fitting the model.

Attributes

coef_ [array-like of shape (n_features,)] Coefficients of the regression model (mean of distribu-
tion)

alpha_ [float] estimated precision of the noise.

lambda_ [array-like of shape (n_features,)] estimated precisions of the weights.

sigma_ [array-like of shape (n_features, n_features)] estimated variance-covariance matrix of
the weights

scores_ [float] if computed, value of the objective function (to be maximized)

intercept_ [float] Independent term in decision function. Set to 0.0 if fit_intercept =
False.

Notes

For an example, see examples/linear_model/plot_ard.py.

References

D. J. C. MacKay, Bayesian nonlinear modeling for the prediction competition, ASHRAE Transactions, 1994.

R. Salakhutdinov, Lecture notes on Statistical Machine Learning, http://www.utstat.toronto.edu/~rsalakhu/
sta4273/notes/Lecture2.pdf#page=15 Their beta is our self.alpha_ Their alpha is our self.lambda_
ARD is a little different than the slide: only dimensions/features for which self.lambda_ < self.
threshold_lambda are kept and the rest are discarded.

Examples

>>> from sklearn import linear_model
>>> clf = linear_model.ARDRegression()
>>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2])
ARDRegression()
>>> clf.predict([[1, 1]])
array([1.])

Methods

fit(X, y) Fit the ARDRegression model according to the given
training data and parameters.

get_params([deep]) Get parameters for this estimator.
predict(X[, return_std]) Predict using the linear model.
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
Continued on next page

7.22. sklearn.linear_model: Linear Models 2133

http://www.utstat.toronto.edu/~rsalakhu/sta4273/notes/Lecture2.pdf#page=15
http://www.utstat.toronto.edu/~rsalakhu/sta4273/notes/Lecture2.pdf#page=15

scikit-learn user guide, Release 0.23.2

Table 172 – continued from previous page
set_params(**params) Set the parameters of this estimator.

__init__(*, n_iter=300, tol=0.001, alpha_1=1e-06, alpha_2=1e-06, lambda_1=1e-06,
lambda_2=1e-06, compute_score=False, threshold_lambda=10000.0, fit_intercept=True,
normalize=False, copy_X=True, verbose=False)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y)
Fit the ARDRegression model according to the given training data and parameters.

Iterative procedure to maximize the evidence

Parameters

X [array-like of shape (n_samples, n_features)] Training vector, where n_samples in the
number of samples and n_features is the number of features.

y [array-like of shape (n_samples,)] Target values (integers). Will be cast to X’s dtype if
necessary

Returns

self [returns an instance of self.]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X, return_std=False)
Predict using the linear model.

In addition to the mean of the predictive distribution, also its standard deviation can be returned.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Samples.

return_std [bool, default=False] Whether to return the standard deviation of posterior pre-
diction.

Returns

y_mean [array-like of shape (n_samples,)] Mean of predictive distribution of query points.

y_std [array-like of shape (n_samples,)] Standard deviation of predictive distribution of
query points.

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

2134 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.linear_model.ARDRegression

• Automatic Relevance Determination Regression (ARD)

sklearn.linear_model.BayesianRidge

class sklearn.linear_model.BayesianRidge(*, n_iter=300, tol=0.001, alpha_1=1e-
06, alpha_2=1e-06, lambda_1=1e-06,
lambda_2=1e-06, alpha_init=None,
lambda_init=None, compute_score=False,
fit_intercept=True, normalize=False,
copy_X=True, verbose=False)

Bayesian ridge regression.

Fit a Bayesian ridge model. See the Notes section for details on this implementation and the optimization of the
regularization parameters lambda (precision of the weights) and alpha (precision of the noise).

Read more in the User Guide.

Parameters

n_iter [int, default=300] Maximum number of iterations. Should be greater than or equal to 1.

tol [float, default=1e-3] Stop the algorithm if w has converged.

7.22. sklearn.linear_model: Linear Models 2135

scikit-learn user guide, Release 0.23.2

alpha_1 [float, default=1e-6] Hyper-parameter : shape parameter for the Gamma distribution
prior over the alpha parameter.

alpha_2 [float, default=1e-6] Hyper-parameter : inverse scale parameter (rate parameter) for
the Gamma distribution prior over the alpha parameter.

lambda_1 [float, default=1e-6] Hyper-parameter : shape parameter for the Gamma distribution
prior over the lambda parameter.

lambda_2 [float, default=1e-6] Hyper-parameter : inverse scale parameter (rate parameter) for
the Gamma distribution prior over the lambda parameter.

alpha_init [float, default=None] Initial value for alpha (precision of the noise). If not set, al-
pha_init is 1/Var(y).

New in version 0.22.

lambda_init [float, default=None] Initial value for lambda (precision of the weights). If not set,
lambda_init is 1.

New in version 0.22.

compute_score [bool, default=False] If True, compute the log marginal likelihood at each iter-
ation of the optimization.

fit_intercept [bool, default=True] Whether to calculate the intercept for this model. The inter-
cept is not treated as a probabilistic parameter and thus has no associated variance. If set to
False, no intercept will be used in calculations (i.e. data is expected to be centered).

normalize [bool, default=False] This parameter is ignored when fit_intercept is set
to False. If True, the regressors X will be normalized before regression by subtract-
ing the mean and dividing by the l2-norm. If you wish to standardize, please use
sklearn.preprocessing.StandardScaler before calling fit on an estimator
with normalize=False.

copy_X [bool, default=True] If True, X will be copied; else, it may be overwritten.

verbose [bool, default=False] Verbose mode when fitting the model.

Attributes

coef_ [array-like of shape (n_features,)] Coefficients of the regression model (mean of distribu-
tion)

intercept_ [float] Independent term in decision function. Set to 0.0 if fit_intercept =
False.

alpha_ [float] Estimated precision of the noise.

lambda_ [float] Estimated precision of the weights.

sigma_ [array-like of shape (n_features, n_features)] Estimated variance-covariance matrix of
the weights

scores_ [array-like of shape (n_iter_+1,)] If computed_score is True, value of the log marginal
likelihood (to be maximized) at each iteration of the optimization. The array starts with the
value of the log marginal likelihood obtained for the initial values of alpha and lambda and
ends with the value obtained for the estimated alpha and lambda.

n_iter_ [int] The actual number of iterations to reach the stopping criterion.

2136 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Notes

There exist several strategies to perform Bayesian ridge regression. This implementation is based on the algo-
rithm described in Appendix A of (Tipping, 2001) where updates of the regularization parameters are done as
suggested in (MacKay, 1992). Note that according to A New View of Automatic Relevance Determination (Wipf
and Nagarajan, 2008) these update rules do not guarantee that the marginal likelihood is increasing between two
consecutive iterations of the optimization.

References

D. J. C. MacKay, Bayesian Interpolation, Computation and Neural Systems, Vol. 4, No. 3, 1992.

M. E. Tipping, Sparse Bayesian Learning and the Relevance Vector Machine, Journal of Machine Learning
Research, Vol. 1, 2001.

Examples

>>> from sklearn import linear_model
>>> clf = linear_model.BayesianRidge()
>>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2])
BayesianRidge()
>>> clf.predict([[1, 1]])
array([1.])

Methods

fit(X, y[, sample_weight]) Fit the model
get_params([deep]) Get parameters for this estimator.
predict(X[, return_std]) Predict using the linear model.
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.

__init__(*, n_iter=300, tol=0.001, alpha_1=1e-06, alpha_2=1e-06, lambda_1=1e-06,
lambda_2=1e-06, alpha_init=None, lambda_init=None, compute_score=False,
fit_intercept=True, normalize=False, copy_X=True, verbose=False)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y, sample_weight=None)
Fit the model

Parameters

X [ndarray of shape (n_samples, n_features)] Training data

y [ndarray of shape (n_samples,)] Target values. Will be cast to X’s dtype if necessary

sample_weight [ndarray of shape (n_samples,), default=None] Individual weights for each
sample

New in version 0.20: parameter sample_weight support to BayesianRidge.

Returns

self [returns an instance of self.]

7.22. sklearn.linear_model: Linear Models 2137

scikit-learn user guide, Release 0.23.2

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X, return_std=False)
Predict using the linear model.

In addition to the mean of the predictive distribution, also its standard deviation can be returned.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Samples.

return_std [bool, default=False] Whether to return the standard deviation of posterior pre-
diction.

Returns

y_mean [array-like of shape (n_samples,)] Mean of predictive distribution of query points.

y_std [array-like of shape (n_samples,)] Standard deviation of predictive distribution of
query points.

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

2138 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.linear_model.BayesianRidge

• Feature agglomeration vs. univariate selection

• Curve Fitting with Bayesian Ridge Regression

• Bayesian Ridge Regression

• Imputing missing values with variants of IterativeImputer

7.22.5 Multi-task linear regressors with variable selection

These estimators fit multiple regression problems (or tasks) jointly, while inducing sparse coefficients. While the
inferred coefficients may differ between the tasks, they are constrained to agree on the features that are selected (non-
zero coefficients).

linear_model.MultiTaskElasticNet([alpha,
. . .])

Multi-task ElasticNet model trained with L1/L2 mixed-
norm as regularizer

linear_model.MultiTaskElasticNetCV (*[,
. . .])

Multi-task L1/L2 ElasticNet with built-in cross-
validation.

linear_model.MultiTaskLasso([alpha, . . .]) Multi-task Lasso model trained with L1/L2 mixed-norm
as regularizer.

linear_model.MultiTaskLassoCV (*[, eps,
. . .])

Multi-task Lasso model trained with L1/L2 mixed-norm
as regularizer.

sklearn.linear_model.MultiTaskElasticNet

class sklearn.linear_model.MultiTaskElasticNet(alpha=1.0, *, l1_ratio=0.5,
fit_intercept=True, normalize=False,
copy_X=True, max_iter=1000,
tol=0.0001, warm_start=False, ran-
dom_state=None, selection=’cyclic’)

Multi-task ElasticNet model trained with L1/L2 mixed-norm as regularizer

The optimization objective for MultiTaskElasticNet is:

(1 / (2 * n_samples)) * ||Y - XW||_Fro^2
+ alpha * l1_ratio * ||W||_21
+ 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2

Where:

7.22. sklearn.linear_model: Linear Models 2139

scikit-learn user guide, Release 0.23.2

||W||_21 = sum_i sqrt(sum_j W_ij ^ 2)

i.e. the sum of norms of each row.

Read more in the User Guide.

Parameters

alpha [float, default=1.0] Constant that multiplies the L1/L2 term. Defaults to 1.0

l1_ratio [float, default=0.5] The ElasticNet mixing parameter, with 0 < l1_ratio <= 1. For
l1_ratio = 1 the penalty is an L1/L2 penalty. For l1_ratio = 0 it is an L2 penalty. For 0 <
l1_ratio < 1, the penalty is a combination of L1/L2 and L2.

fit_intercept [bool, default=True] whether to calculate the intercept for this model. If set to
false, no intercept will be used in calculations (i.e. data is expected to be centered).

normalize [bool, default=False] This parameter is ignored when fit_intercept is set
to False. If True, the regressors X will be normalized before regression by subtract-
ing the mean and dividing by the l2-norm. If you wish to standardize, please use
sklearn.preprocessing.StandardScaler before calling fit on an estimator
with normalize=False.

copy_X [bool, default=True] If True, X will be copied; else, it may be overwritten.

max_iter [int, default=1000] The maximum number of iterations

tol [float, default=1e-4] The tolerance for the optimization: if the updates are smaller than tol,
the optimization code checks the dual gap for optimality and continues until it is smaller
than tol.

warm_start [bool, default=False] When set to True, reuse the solution of the previous call to
fit as initialization, otherwise, just erase the previous solution. See the Glossary.

random_state [int, RandomState instance, default=None] The seed of the pseudo random num-
ber generator that selects a random feature to update. Used when selection == ‘random’.
Pass an int for reproducible output across multiple function calls. See Glossary.

selection [{‘cyclic’, ‘random’}, default=’cyclic’] If set to ‘random’, a random coefficient is up-
dated every iteration rather than looping over features sequentially by default. This (setting
to ‘random’) often leads to significantly faster convergence especially when tol is higher
than 1e-4.

Attributes

intercept_ [ndarray of shape (n_tasks,)] Independent term in decision function.

coef_ [ndarray of shape (n_tasks, n_features)] Parameter vector (W in the cost function for-
mula). If a 1D y is passed in at fit (non multi-task usage), coef_ is then a 1D array. Note
that coef_ stores the transpose of W, W.T.

n_iter_ [int] number of iterations run by the coordinate descent solver to reach the specified
tolerance.

See also:

MultiTaskElasticNet Multi-task L1/L2 ElasticNet with built-in cross-validation.

ElasticNet

MultiTaskLasso

2140 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Notes

The algorithm used to fit the model is coordinate descent.

To avoid unnecessary memory duplication the X and y arguments of the fit method should be directly passed as
Fortran-contiguous numpy arrays.

Examples

>>> from sklearn import linear_model
>>> clf = linear_model.MultiTaskElasticNet(alpha=0.1)
>>> clf.fit([[0,0], [1, 1], [2, 2]], [[0, 0], [1, 1], [2, 2]])
MultiTaskElasticNet(alpha=0.1)
>>> print(clf.coef_)
[[0.45663524 0.45612256]
[0.45663524 0.45612256]]
>>> print(clf.intercept_)
[0.0872422 0.0872422]

Methods

fit(X, y) Fit MultiTaskElasticNet model with coordinate de-
scent

get_params([deep]) Get parameters for this estimator.
path(X, y, *[, l1_ratio, eps, n_alphas, . . .]) Compute elastic net path with coordinate descent.
predict(X) Predict using the linear model.
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.

__init__(alpha=1.0, *, l1_ratio=0.5, fit_intercept=True, normalize=False, copy_X=True,
max_iter=1000, tol=0.0001, warm_start=False, random_state=None, selection=’cyclic’)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y)
Fit MultiTaskElasticNet model with coordinate descent

Parameters

X [ndarray of shape (n_samples, n_features)] Data

y [ndarray of shape (n_samples, n_tasks)] Target. Will be cast to X’s dtype if necessary

Notes

Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically
convert the X input as a Fortran-contiguous numpy array if necessary.

To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format.

get_params(deep=True)
Get parameters for this estimator.

Parameters

7.22. sklearn.linear_model: Linear Models 2141

scikit-learn user guide, Release 0.23.2

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

static path(X, y, *, l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, precompute=’auto’,
Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, posi-
tive=False, check_input=True, **params)

Compute elastic net path with coordinate descent.

The elastic net optimization function varies for mono and multi-outputs.

For mono-output tasks it is:

1 / (2 * n_samples) * ||y - Xw||^2_2
+ alpha * l1_ratio * ||w||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2

For multi-output tasks it is:

(1 / (2 * n_samples)) * ||Y - XW||^Fro_2
+ alpha * l1_ratio * ||W||_21
+ 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training data. Pass directly
as Fortran-contiguous data to avoid unnecessary memory duplication. If y is mono-output
then X can be sparse.

y [{array-like, sparse matrix} of shape (n_samples,) or (n_samples, n_outputs)] Target val-
ues.

l1_ratio [float, default=0.5] Number between 0 and 1 passed to elastic net (scaling between
l1 and l2 penalties). l1_ratio=1 corresponds to the Lasso.

eps [float, default=1e-3] Length of the path. eps=1e-3 means that alpha_min /
alpha_max = 1e-3.

n_alphas [int, default=100] Number of alphas along the regularization path.

alphas [ndarray, default=None] List of alphas where to compute the models. If None alphas
are set automatically.

precompute [‘auto’, bool or array-like of shape (n_features, n_features), default=’auto’]
Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto' let
us decide. The Gram matrix can also be passed as argument.

Xy [array-like of shape (n_features,) or (n_features, n_outputs), default=None] Xy =
np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is pre-
computed.

copy_X [bool, default=True] If True, X will be copied; else, it may be overwritten.

2142 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

coef_init [ndarray of shape (n_features,), default=None] The initial values of the coeffi-
cients.

verbose [bool or int, default=False] Amount of verbosity.

return_n_iter [bool, default=False] Whether to return the number of iterations or not.

positive [bool, default=False] If set to True, forces coefficients to be positive. (Only allowed
when y.ndim == 1).

check_input [bool, default=True] Skip input validation checks, including the Gram matrix
when provided assuming there are handled by the caller when check_input=False.

**params [kwargs] Keyword arguments passed to the coordinate descent solver.

Returns

alphas [ndarray of shape (n_alphas,)] The alphas along the path where models are com-
puted.

coefs [ndarray of shape (n_features, n_alphas) or (n_outputs, n_features, n_alphas)] Coeffi-
cients along the path.

dual_gaps [ndarray of shape (n_alphas,)] The dual gaps at the end of the optimization for
each alpha.

n_iters [list of int] The number of iterations taken by the coordinate descent optimizer to
reach the specified tolerance for each alpha. (Is returned when return_n_iter is set
to True).

See also:

MultiTaskElasticNet

MultiTaskElasticNetCV

ElasticNet

ElasticNetCV

Notes

For an example, see examples/linear_model/plot_lasso_coordinate_descent_path.py.

predict(X)
Predict using the linear model.

Parameters

X [array_like or sparse matrix, shape (n_samples, n_features)] Samples.

Returns

C [array, shape (n_samples,)] Returns predicted values.

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

7.22. sklearn.linear_model: Linear Models 2143

scikit-learn user guide, Release 0.23.2

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

property sparse_coef_
sparse representation of the fitted coef_

sklearn.linear_model.MultiTaskLasso

class sklearn.linear_model.MultiTaskLasso(alpha=1.0, *, fit_intercept=True, normal-
ize=False, copy_X=True, max_iter=1000,
tol=0.0001, warm_start=False, ran-
dom_state=None, selection=’cyclic’)

Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer.

The optimization objective for Lasso is:

(1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

Parameters

alpha [float, default=1.0] Constant that multiplies the L1/L2 term. Defaults to 1.0

2144 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

fit_intercept [bool, default=True] whether to calculate the intercept for this model. If set to
false, no intercept will be used in calculations (i.e. data is expected to be centered).

normalize [bool, default=False] This parameter is ignored when fit_intercept is set
to False. If True, the regressors X will be normalized before regression by subtract-
ing the mean and dividing by the l2-norm. If you wish to standardize, please use
sklearn.preprocessing.StandardScaler before calling fit on an estimator
with normalize=False.

copy_X [bool, default=True] If True, X will be copied; else, it may be overwritten.

max_iter [int, default=1000] The maximum number of iterations

tol [float, default=1e-4] The tolerance for the optimization: if the updates are smaller than tol,
the optimization code checks the dual gap for optimality and continues until it is smaller
than tol.

warm_start [bool, default=False] When set to True, reuse the solution of the previous call to
fit as initialization, otherwise, just erase the previous solution. See the Glossary.

random_state [int, RandomState instance, default=None] The seed of the pseudo random num-
ber generator that selects a random feature to update. Used when selection == ‘random’.
Pass an int for reproducible output across multiple function calls. See Glossary.

selection [{‘cyclic’, ‘random’}, default=’cyclic’] If set to ‘random’, a random coefficient is up-
dated every iteration rather than looping over features sequentially by default. This (setting
to ‘random’) often leads to significantly faster convergence especially when tol is higher
than 1e-4

Attributes

coef_ [ndarray of shape (n_tasks, n_features)] Parameter vector (W in the cost function for-
mula). Note that coef_ stores the transpose of W, W.T.

intercept_ [ndarray of shape (n_tasks,)] independent term in decision function.

n_iter_ [int] number of iterations run by the coordinate descent solver to reach the specified
tolerance.

See also:

MultiTaskLasso Multi-task L1/L2 Lasso with built-in cross-validation

Lasso

MultiTaskElasticNet

Notes

The algorithm used to fit the model is coordinate descent.

To avoid unnecessary memory duplication the X and y arguments of the fit method should be directly passed as
Fortran-contiguous numpy arrays.

Examples

>>> from sklearn import linear_model
>>> clf = linear_model.MultiTaskLasso(alpha=0.1)
>>> clf.fit([[0, 1], [1, 2], [2, 4]], [[0, 0], [1, 1], [2, 3]])

(continues on next page)

7.22. sklearn.linear_model: Linear Models 2145

scikit-learn user guide, Release 0.23.2

(continued from previous page)

MultiTaskLasso(alpha=0.1)
>>> print(clf.coef_)
[[0. 0.60809415]
[0. 0.94592424]]
>>> print(clf.intercept_)
[-0.41888636 -0.87382323]

Methods

fit(X, y) Fit MultiTaskElasticNet model with coordinate de-
scent

get_params([deep]) Get parameters for this estimator.
path(X, y, *[, l1_ratio, eps, n_alphas, . . .]) Compute elastic net path with coordinate descent.
predict(X) Predict using the linear model.
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.

__init__(alpha=1.0, *, fit_intercept=True, normalize=False, copy_X=True, max_iter=1000,
tol=0.0001, warm_start=False, random_state=None, selection=’cyclic’)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y)
Fit MultiTaskElasticNet model with coordinate descent

Parameters

X [ndarray of shape (n_samples, n_features)] Data

y [ndarray of shape (n_samples, n_tasks)] Target. Will be cast to X’s dtype if necessary

Notes

Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically
convert the X input as a Fortran-contiguous numpy array if necessary.

To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

static path(X, y, *, l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, precompute=’auto’,
Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, posi-
tive=False, check_input=True, **params)

Compute elastic net path with coordinate descent.

The elastic net optimization function varies for mono and multi-outputs.

2146 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

For mono-output tasks it is:

1 / (2 * n_samples) * ||y - Xw||^2_2
+ alpha * l1_ratio * ||w||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2

For multi-output tasks it is:

(1 / (2 * n_samples)) * ||Y - XW||^Fro_2
+ alpha * l1_ratio * ||W||_21
+ 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training data. Pass directly
as Fortran-contiguous data to avoid unnecessary memory duplication. If y is mono-output
then X can be sparse.

y [{array-like, sparse matrix} of shape (n_samples,) or (n_samples, n_outputs)] Target val-
ues.

l1_ratio [float, default=0.5] Number between 0 and 1 passed to elastic net (scaling between
l1 and l2 penalties). l1_ratio=1 corresponds to the Lasso.

eps [float, default=1e-3] Length of the path. eps=1e-3 means that alpha_min /
alpha_max = 1e-3.

n_alphas [int, default=100] Number of alphas along the regularization path.

alphas [ndarray, default=None] List of alphas where to compute the models. If None alphas
are set automatically.

precompute [‘auto’, bool or array-like of shape (n_features, n_features), default=’auto’]
Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto' let
us decide. The Gram matrix can also be passed as argument.

Xy [array-like of shape (n_features,) or (n_features, n_outputs), default=None] Xy =
np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is pre-
computed.

copy_X [bool, default=True] If True, X will be copied; else, it may be overwritten.

coef_init [ndarray of shape (n_features,), default=None] The initial values of the coeffi-
cients.

verbose [bool or int, default=False] Amount of verbosity.

return_n_iter [bool, default=False] Whether to return the number of iterations or not.

positive [bool, default=False] If set to True, forces coefficients to be positive. (Only allowed
when y.ndim == 1).

check_input [bool, default=True] Skip input validation checks, including the Gram matrix
when provided assuming there are handled by the caller when check_input=False.

**params [kwargs] Keyword arguments passed to the coordinate descent solver.

7.22. sklearn.linear_model: Linear Models 2147

scikit-learn user guide, Release 0.23.2

Returns

alphas [ndarray of shape (n_alphas,)] The alphas along the path where models are com-
puted.

coefs [ndarray of shape (n_features, n_alphas) or (n_outputs, n_features, n_alphas)] Coeffi-
cients along the path.

dual_gaps [ndarray of shape (n_alphas,)] The dual gaps at the end of the optimization for
each alpha.

n_iters [list of int] The number of iterations taken by the coordinate descent optimizer to
reach the specified tolerance for each alpha. (Is returned when return_n_iter is set
to True).

See also:

MultiTaskElasticNet

MultiTaskElasticNetCV

ElasticNet

ElasticNetCV

Notes

For an example, see examples/linear_model/plot_lasso_coordinate_descent_path.py.

predict(X)
Predict using the linear model.

Parameters

X [array_like or sparse matrix, shape (n_samples, n_features)] Samples.

Returns

C [array, shape (n_samples,)] Returns predicted values.

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

2148 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

property sparse_coef_
sparse representation of the fitted coef_

Examples using sklearn.linear_model.MultiTaskLasso

• Joint feature selection with multi-task Lasso

7.22.6 Outlier-robust regressors

Any estimator using the Huber loss would also be robust to outliers, e.g. SGDRegressor with loss='huber'.

linear_model.HuberRegressor(*[, epsilon,
. . .])

Linear regression model that is robust to outliers.

linear_model.RANSACRegressor([. . .]) RANSAC (RANdom SAmple Consensus) algorithm.
linear_model.TheilSenRegressor(*[, . . .]) Theil-Sen Estimator: robust multivariate regression

model.

sklearn.linear_model.HuberRegressor

class sklearn.linear_model.HuberRegressor(*, epsilon=1.35, max_iter=100, alpha=0.0001,
warm_start=False, fit_intercept=True, tol=1e-
05)

Linear regression model that is robust to outliers.

The Huber Regressor optimizes the squared loss for the samples where |(y - X'w) / sigma| <
epsilon and the absolute loss for the samples where |(y - X'w) / sigma| > epsilon, where w
and sigma are parameters to be optimized. The parameter sigma makes sure that if y is scaled up or down by a
certain factor, one does not need to rescale epsilon to achieve the same robustness. Note that this does not take
into account the fact that the different features of X may be of different scales.

This makes sure that the loss function is not heavily influenced by the outliers while not completely ignoring
their effect.

Read more in the User Guide

7.22. sklearn.linear_model: Linear Models 2149

scikit-learn user guide, Release 0.23.2

New in version 0.18.

Parameters

epsilon [float, greater than 1.0, default 1.35] The parameter epsilon controls the number of
samples that should be classified as outliers. The smaller the epsilon, the more robust it is
to outliers.

max_iter [int, default 100] Maximum number of iterations that scipy.optimize.
minimize(method="L-BFGS-B") should run for.

alpha [float, default 0.0001] Regularization parameter.

warm_start [bool, default False] This is useful if the stored attributes of a previously used
model has to be reused. If set to False, then the coefficients will be rewritten for every call
to fit. See the Glossary.

fit_intercept [bool, default True] Whether or not to fit the intercept. This can be set to False if
the data is already centered around the origin.

tol [float, default 1e-5] The iteration will stop when max{|proj g_i | i = 1, ...,
n} <= tol where pg_i is the i-th component of the projected gradient.

Attributes

coef_ [array, shape (n_features,)] Features got by optimizing the Huber loss.

intercept_ [float] Bias.

scale_ [float] The value by which |y - X'w - c| is scaled down.

n_iter_ [int] Number of iterations that scipy.optimize.
minimize(method="L-BFGS-B") has run for.

Changed in version 0.20: In SciPy <= 1.0.0 the number of lbfgs iterations may exceed
max_iter. n_iter_ will now report at most max_iter.

outliers_ [array, shape (n_samples,)] A boolean mask which is set to True where the samples
are identified as outliers.

References

[1], [2]

Examples

>>> import numpy as np
>>> from sklearn.linear_model import HuberRegressor, LinearRegression
>>> from sklearn.datasets import make_regression
>>> rng = np.random.RandomState(0)
>>> X, y, coef = make_regression(
... n_samples=200, n_features=2, noise=4.0, coef=True, random_state=0)
>>> X[:4] = rng.uniform(10, 20, (4, 2))
>>> y[:4] = rng.uniform(10, 20, 4)
>>> huber = HuberRegressor().fit(X, y)
>>> huber.score(X, y)
-7.284...
>>> huber.predict(X[:1,])
array([806.7200...])
>>> linear = LinearRegression().fit(X, y)

(continues on next page)

2150 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

(continued from previous page)

>>> print("True coefficients:", coef)
True coefficients: [20.4923... 34.1698...]
>>> print("Huber coefficients:", huber.coef_)
Huber coefficients: [17.7906... 31.0106...]
>>> print("Linear Regression coefficients:", linear.coef_)
Linear Regression coefficients: [-1.9221... 7.0226...]

Methods

fit(X, y[, sample_weight]) Fit the model according to the given training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model.
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.

__init__(*, epsilon=1.35, max_iter=100, alpha=0.0001, warm_start=False, fit_intercept=True,
tol=1e-05)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y, sample_weight=None)
Fit the model according to the given training data.

Parameters

X [array-like, shape (n_samples, n_features)] Training vector, where n_samples in the num-
ber of samples and n_features is the number of features.

y [array-like, shape (n_samples,)] Target vector relative to X.

sample_weight [array-like, shape (n_samples,)] Weight given to each sample.

Returns

self [object]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict using the linear model.

Parameters

X [array_like or sparse matrix, shape (n_samples, n_features)] Samples.

Returns

C [array, shape (n_samples,)] Returns predicted values.

7.22. sklearn.linear_model: Linear Models 2151

scikit-learn user guide, Release 0.23.2

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.linear_model.HuberRegressor

• HuberRegressor vs Ridge on dataset with strong outliers

• Robust linear estimator fitting

2152 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

sklearn.linear_model.RANSACRegressor

class sklearn.linear_model.RANSACRegressor(base_estimator=None, *, min_samples=None,
residual_threshold=None,
is_data_valid=None, is_model_valid=None,
max_trials=100, max_skips=inf,
stop_n_inliers=inf, stop_score=inf,
stop_probability=0.99, loss=’absolute_loss’,
random_state=None)

RANSAC (RANdom SAmple Consensus) algorithm.

RANSAC is an iterative algorithm for the robust estimation of parameters from a subset of inliers from the
complete data set.

Read more in the User Guide.

Parameters

base_estimator [object, optional] Base estimator object which implements the following meth-
ods:

• fit(X, y): Fit model to given training data and target values.

• score(X, y): Returns the mean accuracy on the given test data, which is used for the
stop criterion defined by stop_score. Additionally, the score is used to decide which
of two equally large consensus sets is chosen as the better one.

• predict(X): Returns predicted values using the linear model, which is used to com-
pute residual error using loss function.

If base_estimator is None, then base_estimator=sklearn.linear_model.
LinearRegression() is used for target values of dtype float.

Note that the current implementation only supports regression estimators.

min_samples [int (>= 1) or float ([0, 1]), optional] Minimum number of samples cho-
sen randomly from original data. Treated as an absolute number of samples for
min_samples >= 1, treated as a relative number ceil(min_samples * X.
shape[0]) for min_samples < 1. This is typically chosen as the minimal number
of samples necessary to estimate the given base_estimator. By default a sklearn.
linear_model.LinearRegression() estimator is assumed and min_samples is
chosen as X.shape[1] + 1.

residual_threshold [float, optional] Maximum residual for a data sample to be classified as an
inlier. By default the threshold is chosen as the MAD (median absolute deviation) of the
target values y.

is_data_valid [callable, optional] This function is called with the randomly selected data before
the model is fitted to it: is_data_valid(X, y). If its return value is False the current
randomly chosen sub-sample is skipped.

is_model_valid [callable, optional] This function is called with the estimated model and the
randomly selected data: is_model_valid(model, X, y). If its return value is False
the current randomly chosen sub-sample is skipped. Rejecting samples with this function is
computationally costlier than with is_data_valid. is_model_valid should there-
fore only be used if the estimated model is needed for making the rejection decision.

max_trials [int, optional] Maximum number of iterations for random sample selection.

max_skips [int, optional] Maximum number of iterations that can be skipped due to finding
zero inliers or invalid data defined by is_data_valid or invalid models defined by
is_model_valid.

7.22. sklearn.linear_model: Linear Models 2153

scikit-learn user guide, Release 0.23.2

New in version 0.19.

stop_n_inliers [int, optional] Stop iteration if at least this number of inliers are found.

stop_score [float, optional] Stop iteration if score is greater equal than this threshold.

stop_probability [float in range [0, 1], optional] RANSAC iteration stops if at least one outlier-
free set of the training data is sampled in RANSAC. This requires to generate at least N
samples (iterations):

N >= log(1 - probability) / log(1 - e**m)

where the probability (confidence) is typically set to high value such as 0.99 (the default)
and e is the current fraction of inliers w.r.t. the total number of samples.

loss [string, callable, optional, default “absolute_loss”] String inputs, “absolute_loss” and
“squared_loss” are supported which find the absolute loss and squared loss per sample re-
spectively.

If loss is a callable, then it should be a function that takes two arrays as inputs, the true
and predicted value and returns a 1-D array with the i-th value of the array corresponding to
the loss on X[i].

If the loss on a sample is greater than the residual_threshold, then this sample is
classified as an outlier.

New in version 0.18.

random_state [int, RandomState instance, default=None] The generator used to initialize the
centers. Pass an int for reproducible output across multiple function calls. See Glossary.

Attributes

estimator_ [object] Best fitted model (copy of the base_estimator object).

n_trials_ [int] Number of random selection trials until one of the stop criteria is met. It is
always <= max_trials.

inlier_mask_ [bool array of shape [n_samples]] Boolean mask of inliers classified as True.

n_skips_no_inliers_ [int] Number of iterations skipped due to finding zero inliers.

New in version 0.19.

n_skips_invalid_data_ [int] Number of iterations skipped due to invalid data defined by
is_data_valid.

New in version 0.19.

n_skips_invalid_model_ [int] Number of iterations skipped due to an invalid model defined by
is_model_valid.

New in version 0.19.

References

[1], [2], [3]

2154 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Examples

>>> from sklearn.linear_model import RANSACRegressor
>>> from sklearn.datasets import make_regression
>>> X, y = make_regression(
... n_samples=200, n_features=2, noise=4.0, random_state=0)
>>> reg = RANSACRegressor(random_state=0).fit(X, y)
>>> reg.score(X, y)
0.9885...
>>> reg.predict(X[:1,])
array([-31.9417...])

Methods

fit(X, y[, sample_weight]) Fit estimator using RANSAC algorithm.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the estimated model.
score(X, y) Returns the score of the prediction.
set_params(**params) Set the parameters of this estimator.

__init__(base_estimator=None, *, min_samples=None, residual_threshold=None,
is_data_valid=None, is_model_valid=None, max_trials=100, max_skips=inf,
stop_n_inliers=inf, stop_score=inf, stop_probability=0.99, loss=’absolute_loss’, ran-
dom_state=None)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y, sample_weight=None)
Fit estimator using RANSAC algorithm.

Parameters

X [array-like or sparse matrix, shape [n_samples, n_features]] Training data.

y [array-like of shape (n_samples,) or (n_samples, n_targets)] Target values.

sample_weight [array-like of shape (n_samples,), default=None] Individual weights for
each sample raises error if sample_weight is passed and base_estimator fit method does
not support it.

New in version 0.18.

Raises

ValueError If no valid consensus set could be found. This occurs if is_data_valid and
is_model_valid return False for all max_trials randomly chosen sub-samples.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

7.22. sklearn.linear_model: Linear Models 2155

scikit-learn user guide, Release 0.23.2

predict(X)
Predict using the estimated model.

This is a wrapper for estimator_.predict(X).

Parameters

X [numpy array of shape [n_samples, n_features]]

Returns

y [array, shape = [n_samples] or [n_samples, n_targets]] Returns predicted values.

score(X, y)
Returns the score of the prediction.

This is a wrapper for estimator_.score(X, y).

Parameters

X [numpy array or sparse matrix of shape [n_samples, n_features]] Training data.

y [array, shape = [n_samples] or [n_samples, n_targets]] Target values.

Returns

z [float] Score of the prediction.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.linear_model.RANSACRegressor

• Robust linear model estimation using RANSAC

• Theil-Sen Regression

• Robust linear estimator fitting

sklearn.linear_model.TheilSenRegressor

class sklearn.linear_model.TheilSenRegressor(*, fit_intercept=True, copy_X=True,
max_subpopulation=10000.0,
n_subsamples=None, max_iter=300,
tol=0.001, random_state=None,
n_jobs=None, verbose=False)

Theil-Sen Estimator: robust multivariate regression model.

The algorithm calculates least square solutions on subsets with size n_subsamples of the samples in X. Any value
of n_subsamples between the number of features and samples leads to an estimator with a compromise between
robustness and efficiency. Since the number of least square solutions is “n_samples choose n_subsamples”, it

2156 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

can be extremely large and can therefore be limited with max_subpopulation. If this limit is reached, the subsets
are chosen randomly. In a final step, the spatial median (or L1 median) is calculated of all least square solutions.

Read more in the User Guide.

Parameters

fit_intercept [boolean, optional, default True] Whether to calculate the intercept for this model.
If set to false, no intercept will be used in calculations.

copy_X [boolean, optional, default True] If True, X will be copied; else, it may be overwritten.

max_subpopulation [int, optional, default 1e4] Instead of computing with a set of cardinality
‘n choose k’, where n is the number of samples and k is the number of subsamples (at
least number of features), consider only a stochastic subpopulation of a given maximal size
if ‘n choose k’ is larger than max_subpopulation. For other than small problem sizes this
parameter will determine memory usage and runtime if n_subsamples is not changed.

n_subsamples [int, optional, default None] Number of samples to calculate the parameters.
This is at least the number of features (plus 1 if fit_intercept=True) and the number of sam-
ples as a maximum. A lower number leads to a higher breakdown point and a low efficiency
while a high number leads to a low breakdown point and a high efficiency. If None, take the
minimum number of subsamples leading to maximal robustness. If n_subsamples is set to
n_samples, Theil-Sen is identical to least squares.

max_iter [int, optional, default 300] Maximum number of iterations for the calculation of spa-
tial median.

tol [float, optional, default 1.e-3] Tolerance when calculating spatial median.

random_state [int, RandomState instance, default=None] A random number generator instance
to define the state of the random permutations generator. Pass an int for reproducible output
across multiple function calls. See Glossary

n_jobs [int or None, optional (default=None)] Number of CPUs to use during the cross valida-
tion. None means 1 unless in a joblib.parallel_backend context. -1 means using
all processors. See Glossary for more details.

verbose [boolean, optional, default False] Verbose mode when fitting the model.

Attributes

coef_ [array, shape = (n_features)] Coefficients of the regression model (median of distribution).

intercept_ [float] Estimated intercept of regression model.

breakdown_ [float] Approximated breakdown point.

n_iter_ [int] Number of iterations needed for the spatial median.

n_subpopulation_ [int] Number of combinations taken into account from ‘n choose k’, where
n is the number of samples and k is the number of subsamples.

References

• Theil-Sen Estimators in a Multiple Linear Regression Model, 2009 Xin Dang, Hanxiang Peng, Xueqin
Wang and Heping Zhang http://home.olemiss.edu/~xdang/papers/MTSE.pdf

7.22. sklearn.linear_model: Linear Models 2157

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend
http://home.olemiss.edu/~xdang/papers/MTSE.pdf

scikit-learn user guide, Release 0.23.2

Examples

>>> from sklearn.linear_model import TheilSenRegressor
>>> from sklearn.datasets import make_regression
>>> X, y = make_regression(
... n_samples=200, n_features=2, noise=4.0, random_state=0)
>>> reg = TheilSenRegressor(random_state=0).fit(X, y)
>>> reg.score(X, y)
0.9884...
>>> reg.predict(X[:1,])
array([-31.5871...])

Methods

fit(X, y) Fit linear model.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model.
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.

__init__(*, fit_intercept=True, copy_X=True, max_subpopulation=10000.0, n_subsamples=None,
max_iter=300, tol=0.001, random_state=None, n_jobs=None, verbose=False)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y)
Fit linear model.

Parameters

X [numpy array of shape [n_samples, n_features]] Training data

y [numpy array of shape [n_samples]] Target values

Returns

self [returns an instance of self.]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict using the linear model.

Parameters

X [array_like or sparse matrix, shape (n_samples, n_features)] Samples.

Returns

C [array, shape (n_samples,)] Returns predicted values.

2158 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.linear_model.TheilSenRegressor

• Theil-Sen Regression

• Robust linear estimator fitting

7.22.7 Generalized linear models (GLM) for regression

These models allow for response variables to have error distributions other than a normal distribution:

linear_model.PoissonRegressor(*[, alpha,
. . .])

Generalized Linear Model with a Poisson distribution.

Continued on next page

7.22. sklearn.linear_model: Linear Models 2159

scikit-learn user guide, Release 0.23.2

Table 181 – continued from previous page
linear_model.TweedieRegressor(*[, power,
. . .])

Generalized Linear Model with a Tweedie distribution.

linear_model.GammaRegressor(*[, alpha,
. . .])

Generalized Linear Model with a Gamma distribution.

sklearn.linear_model.PoissonRegressor

class sklearn.linear_model.PoissonRegressor(*, alpha=1.0, fit_intercept=True,
max_iter=100, tol=0.0001,
warm_start=False, verbose=0)

Generalized Linear Model with a Poisson distribution.

Read more in the User Guide.

Parameters

alpha [float, default=1] Constant that multiplies the penalty term and thus determines the reg-
ularization strength. alpha = 0 is equivalent to unpenalized GLMs. In this case, the
design matrix X must have full column rank (no collinearities).

fit_intercept [bool, default=True] Specifies if a constant (a.k.a. bias or intercept) should be
added to the linear predictor (X @ coef + intercept).

max_iter [int, default=100] The maximal number of iterations for the solver.

tol [float, default=1e-4] Stopping criterion. For the lbfgs solver, the iteration will stop when
max{|g_j|, j = 1, ..., d} <= tol where g_j is the j-th component of the
gradient (derivative) of the objective function.

warm_start [bool, default=False] If set to True, reuse the solution of the previous call to fit
as initialization for coef_ and intercept_ .

verbose [int, default=0] For the lbfgs solver set verbose to any positive number for verbosity.

Attributes

coef_ [array of shape (n_features,)] Estimated coefficients for the linear predictor (X @ coef_
+ intercept_) in the GLM.

intercept_ [float] Intercept (a.k.a. bias) added to linear predictor.

n_iter_ [int] Actual number of iterations used in the solver.

Methods

fit(X, y[, sample_weight]) Fit a Generalized Linear Model.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using GLM with feature matrix X.
score(X, y[, sample_weight]) Compute D^2, the percentage of deviance explained.
set_params(**params) Set the parameters of this estimator.

__init__(*, alpha=1.0, fit_intercept=True, max_iter=100, tol=0.0001, warm_start=False, ver-
bose=0)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y, sample_weight=None)
Fit a Generalized Linear Model.

2160 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training data.

y [array-like of shape (n_samples,)] Target values.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

self [returns an instance of self.]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict using GLM with feature matrix X.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Samples.

Returns

y_pred [array of shape (n_samples,)] Returns predicted values.

score(X, y, sample_weight=None)
Compute D^2, the percentage of deviance explained.

D^2 is a generalization of the coefficient of determination R^2. R^2 uses squared error and D^2 deviance.
Note that those two are equal for family='normal'.

D^2 is defined as 𝐷2 = 1 − 𝐷(𝑦𝑡𝑟𝑢𝑒,𝑦𝑝𝑟𝑒𝑑)
𝐷𝑛𝑢𝑙𝑙

, 𝐷𝑛𝑢𝑙𝑙 is the null deviance, i.e. the deviance of a model with
intercept alone, which corresponds to 𝑦𝑝𝑟𝑒𝑑 = 𝑦. The mean 𝑦 is averaged by sample_weight. Best possible
score is 1.0 and it can be negative (because the model can be arbitrarily worse).

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Test samples.

y [array-like of shape (n_samples,)] True values of target.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] D^2 of self.predict(X) w.r.t. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

7.22. sklearn.linear_model: Linear Models 2161

scikit-learn user guide, Release 0.23.2

Returns

self [object] Estimator instance.

Examples using sklearn.linear_model.PoissonRegressor

• Release Highlights for scikit-learn 0.23

• Poisson regression and non-normal loss

• Tweedie regression on insurance claims

sklearn.linear_model.TweedieRegressor

class sklearn.linear_model.TweedieRegressor(*, power=0.0, alpha=1.0, fit_intercept=True,
link=’auto’, max_iter=100, tol=0.0001,
warm_start=False, verbose=0)

Generalized Linear Model with a Tweedie distribution.

This estimator can be used to model different GLMs depending on the power parameter, which determines the
underlying distribution.

Read more in the User Guide.

Parameters

power [float, default=0] The power determines the underlying target distribution according to
the following table:

Power Distribution
0 Normal
1 Poisson
(1,2) Compound Poisson Gamma
2 Gamma
3 Inverse Gaussian

For 0 < power < 1, no distribution exists.

alpha [float, default=1] Constant that multiplies the penalty term and thus determines the reg-
ularization strength. alpha = 0 is equivalent to unpenalized GLMs. In this case, the
design matrix X must have full column rank (no collinearities).

link [{‘auto’, ‘identity’, ‘log’}, default=’auto’] The link function of the GLM, i.e. mapping
from linear predictor X @ coeff + intercept to prediction y_pred. Option ‘auto’
sets the link depending on the chosen family as follows:

• ‘identity’ for Normal distribution

• ‘log’ for Poisson, Gamma and Inverse Gaussian distributions

fit_intercept [bool, default=True] Specifies if a constant (a.k.a. bias or intercept) should be
added to the linear predictor (X @ coef + intercept).

max_iter [int, default=100] The maximal number of iterations for the solver.

tol [float, default=1e-4] Stopping criterion. For the lbfgs solver, the iteration will stop when
max{|g_j|, j = 1, ..., d} <= tol where g_j is the j-th component of the
gradient (derivative) of the objective function.

2162 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

warm_start [bool, default=False] If set to True, reuse the solution of the previous call to fit
as initialization for coef_ and intercept_ .

verbose [int, default=0] For the lbfgs solver set verbose to any positive number for verbosity.

Attributes

coef_ [array of shape (n_features,)] Estimated coefficients for the linear predictor (X @ coef_
+ intercept_) in the GLM.

intercept_ [float] Intercept (a.k.a. bias) added to linear predictor.

n_iter_ [int] Actual number of iterations used in the solver.

Methods

fit(X, y[, sample_weight]) Fit a Generalized Linear Model.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using GLM with feature matrix X.
score(X, y[, sample_weight]) Compute D^2, the percentage of deviance explained.
set_params(**params) Set the parameters of this estimator.

__init__(*, power=0.0, alpha=1.0, fit_intercept=True, link=’auto’, max_iter=100, tol=0.0001,
warm_start=False, verbose=0)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y, sample_weight=None)
Fit a Generalized Linear Model.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training data.

y [array-like of shape (n_samples,)] Target values.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

self [returns an instance of self.]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict using GLM with feature matrix X.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Samples.

Returns

y_pred [array of shape (n_samples,)] Returns predicted values.

7.22. sklearn.linear_model: Linear Models 2163

scikit-learn user guide, Release 0.23.2

score(X, y, sample_weight=None)
Compute D^2, the percentage of deviance explained.

D^2 is a generalization of the coefficient of determination R^2. R^2 uses squared error and D^2 deviance.
Note that those two are equal for family='normal'.

D^2 is defined as 𝐷2 = 1 − 𝐷(𝑦𝑡𝑟𝑢𝑒,𝑦𝑝𝑟𝑒𝑑)
𝐷𝑛𝑢𝑙𝑙

, 𝐷𝑛𝑢𝑙𝑙 is the null deviance, i.e. the deviance of a model with
intercept alone, which corresponds to 𝑦𝑝𝑟𝑒𝑑 = 𝑦. The mean 𝑦 is averaged by sample_weight. Best possible
score is 1.0 and it can be negative (because the model can be arbitrarily worse).

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Test samples.

y [array-like of shape (n_samples,)] True values of target.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] D^2 of self.predict(X) w.r.t. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.linear_model.TweedieRegressor

• Release Highlights for scikit-learn 0.23

• Tweedie regression on insurance claims

sklearn.linear_model.GammaRegressor

class sklearn.linear_model.GammaRegressor(*, alpha=1.0, fit_intercept=True,
max_iter=100, tol=0.0001, warm_start=False,
verbose=0)

Generalized Linear Model with a Gamma distribution.

Read more in the User Guide.

Parameters

alpha [float, default=1] Constant that multiplies the penalty term and thus determines the reg-
ularization strength. alpha = 0 is equivalent to unpenalized GLMs. In this case, the
design matrix X must have full column rank (no collinearities).

fit_intercept [bool, default=True] Specifies if a constant (a.k.a. bias or intercept) should be
added to the linear predictor (X @ coef + intercept).

max_iter [int, default=100] The maximal number of iterations for the solver.

2164 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

tol [float, default=1e-4] Stopping criterion. For the lbfgs solver, the iteration will stop when
max{|g_j|, j = 1, ..., d} <= tol where g_j is the j-th component of the
gradient (derivative) of the objective function.

warm_start [bool, default=False] If set to True, reuse the solution of the previous call to fit
as initialization for coef_ and intercept_ .

verbose [int, default=0] For the lbfgs solver set verbose to any positive number for verbosity.

Attributes

coef_ [array of shape (n_features,)] Estimated coefficients for the linear predictor (X * coef_
+ intercept_) in the GLM.

intercept_ [float] Intercept (a.k.a. bias) added to linear predictor.

n_iter_ [int] Actual number of iterations used in the solver.

Methods

fit(X, y[, sample_weight]) Fit a Generalized Linear Model.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using GLM with feature matrix X.
score(X, y[, sample_weight]) Compute D^2, the percentage of deviance explained.
set_params(**params) Set the parameters of this estimator.

__init__(*, alpha=1.0, fit_intercept=True, max_iter=100, tol=0.0001, warm_start=False, ver-
bose=0)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y, sample_weight=None)
Fit a Generalized Linear Model.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training data.

y [array-like of shape (n_samples,)] Target values.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

self [returns an instance of self.]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict using GLM with feature matrix X.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Samples.

7.22. sklearn.linear_model: Linear Models 2165

scikit-learn user guide, Release 0.23.2

Returns

y_pred [array of shape (n_samples,)] Returns predicted values.

score(X, y, sample_weight=None)
Compute D^2, the percentage of deviance explained.

D^2 is a generalization of the coefficient of determination R^2. R^2 uses squared error and D^2 deviance.
Note that those two are equal for family='normal'.

D^2 is defined as 𝐷2 = 1 − 𝐷(𝑦𝑡𝑟𝑢𝑒,𝑦𝑝𝑟𝑒𝑑)
𝐷𝑛𝑢𝑙𝑙

, 𝐷𝑛𝑢𝑙𝑙 is the null deviance, i.e. the deviance of a model with
intercept alone, which corresponds to 𝑦𝑝𝑟𝑒𝑑 = 𝑦. The mean 𝑦 is averaged by sample_weight. Best possible
score is 1.0 and it can be negative (because the model can be arbitrarily worse).

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Test samples.

y [array-like of shape (n_samples,)] True values of target.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] D^2 of self.predict(X) w.r.t. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.linear_model.GammaRegressor

• Release Highlights for scikit-learn 0.23

• Tweedie regression on insurance claims

7.22.8 Miscellaneous

linear_model.PassiveAggressiveRegressor(*[,
. . .])

Passive Aggressive Regressor

linear_model.enet_path(X, y, *[, l1_ratio,
. . .])

Compute elastic net path with coordinate descent.

linear_model.lars_path(X, y[, Xy, Gram, . . .]) Compute Least Angle Regression or Lasso path using
LARS algorithm [1]

linear_model.lars_path_gram(Xy, Gram, *,
. . .)

lars_path in the sufficient stats mode [1]

linear_model.lasso_path(X, y, *[, eps, . . .]) Compute Lasso path with coordinate descent
Continued on next page

2166 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Table 185 – continued from previous page
linear_model.orthogonal_mp(X, y, *[, . . .]) Orthogonal Matching Pursuit (OMP)
linear_model.orthogonal_mp_gram(Gram,
Xy, *)

Gram Orthogonal Matching Pursuit (OMP)

linear_model.ridge_regression(X, y, alpha,
*)

Solve the ridge equation by the method of normal equa-
tions.

sklearn.linear_model.PassiveAggressiveRegressor

sklearn.linear_model.PassiveAggressiveRegressor(*, C=1.0, fit_intercept=True,
max_iter=1000, tol=0.001,
early_stopping=False,
validation_fraction=0.1,
n_iter_no_change=5, shuffle=True,
verbose=0, loss=’epsilon_insensitive’,
epsilon=0.1, random_state=None,
warm_start=False, average=False)

Passive Aggressive Regressor

Read more in the User Guide.

Parameters

C [float] Maximum step size (regularization). Defaults to 1.0.

fit_intercept [bool] Whether the intercept should be estimated or not. If False, the data is
assumed to be already centered. Defaults to True.

max_iter [int, optional (default=1000)] The maximum number of passes over the training data
(aka epochs). It only impacts the behavior in the fit method, and not the partial_fit
method.

New in version 0.19.

tol [float or None, optional (default=1e-3)] The stopping criterion. If it is not None, the itera-
tions will stop when (loss > previous_loss - tol).

New in version 0.19.

early_stopping [bool, default=False] Whether to use early stopping to terminate training when
validation. score is not improving. If set to True, it will automatically set aside a fraction of
training data as validation and terminate training when validation score is not improving by
at least tol for n_iter_no_change consecutive epochs.

New in version 0.20.

validation_fraction [float, default=0.1] The proportion of training data to set aside as validation
set for early stopping. Must be between 0 and 1. Only used if early_stopping is True.

New in version 0.20.

n_iter_no_change [int, default=5] Number of iterations with no improvement to wait before
early stopping.

New in version 0.20.

shuffle [bool, default=True] Whether or not the training data should be shuffled after each
epoch.

verbose [integer, optional] The verbosity level

7.22. sklearn.linear_model: Linear Models 2167

scikit-learn user guide, Release 0.23.2

loss [string, optional] The loss function to be used: epsilon_insensitive: equivalent to PA-I in
the reference paper. squared_epsilon_insensitive: equivalent to PA-II in the reference paper.

epsilon [float] If the difference between the current prediction and the correct label is below
this threshold, the model is not updated.

random_state [int, RandomState instance, default=None] Used to shuffle the training data,
when shuffle is set to True. Pass an int for reproducible output across multiple function
calls. See Glossary.

warm_start [bool, optional] When set to True, reuse the solution of the previous call to fit as
initialization, otherwise, just erase the previous solution. See the Glossary.

Repeatedly calling fit or partial_fit when warm_start is True can result in a different solution
than when calling fit a single time because of the way the data is shuffled.

average [bool or int, optional] When set to True, computes the averaged SGD weights and
stores the result in the coef_ attribute. If set to an int greater than 1, averaging will begin
once the total number of samples seen reaches average. So average=10 will begin averaging
after seeing 10 samples.

New in version 0.19: parameter average to use weights averaging in SGD

Attributes

coef_ [array, shape = [1, n_features] if n_classes == 2 else [n_classes, n_features]] Weights
assigned to the features.

intercept_ [array, shape = [1] if n_classes == 2 else [n_classes]] Constants in decision function.

n_iter_ [int] The actual number of iterations to reach the stopping criterion.

t_ [int] Number of weight updates performed during training. Same as (n_iter_ *
n_samples).

See also:

SGDRegressor

References

Online Passive-Aggressive Algorithms <http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.
pdf> K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer - JMLR (2006)

Examples

>>> from sklearn.linear_model import PassiveAggressiveRegressor
>>> from sklearn.datasets import make_regression

>>> X, y = make_regression(n_features=4, random_state=0)
>>> regr = PassiveAggressiveRegressor(max_iter=100, random_state=0,
... tol=1e-3)
>>> regr.fit(X, y)
PassiveAggressiveRegressor(max_iter=100, random_state=0)
>>> print(regr.coef_)
[20.48736655 34.18818427 67.59122734 87.94731329]
>>> print(regr.intercept_)
[-0.02306214]

(continues on next page)

2168 Chapter 7. API Reference

http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf
http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf

scikit-learn user guide, Release 0.23.2

(continued from previous page)

>>> print(regr.predict([[0, 0, 0, 0]]))
[-0.02306214]

sklearn.linear_model.enet_path

sklearn.linear_model.enet_path(X, y, *, l1_ratio=0.5, eps=0.001, n_alphas=100, al-
phas=None, precompute=’auto’, Xy=None, copy_X=True,
coef_init=None, verbose=False, return_n_iter=False, posi-
tive=False, check_input=True, **params)

Compute elastic net path with coordinate descent.

The elastic net optimization function varies for mono and multi-outputs.

For mono-output tasks it is:

1 / (2 * n_samples) * ||y - Xw||^2_2
+ alpha * l1_ratio * ||w||_1
+ 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2

For multi-output tasks it is:

(1 / (2 * n_samples)) * ||Y - XW||^Fro_2
+ alpha * l1_ratio * ||W||_21
+ 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training data. Pass directly
as Fortran-contiguous data to avoid unnecessary memory duplication. If y is mono-output
then X can be sparse.

y [{array-like, sparse matrix} of shape (n_samples,) or (n_samples, n_outputs)] Target values.

l1_ratio [float, default=0.5] Number between 0 and 1 passed to elastic net (scaling between l1
and l2 penalties). l1_ratio=1 corresponds to the Lasso.

eps [float, default=1e-3] Length of the path. eps=1e-3 means that alpha_min /
alpha_max = 1e-3.

n_alphas [int, default=100] Number of alphas along the regularization path.

alphas [ndarray, default=None] List of alphas where to compute the models. If None alphas are
set automatically.

precompute [‘auto’, bool or array-like of shape (n_features, n_features), default=’auto’]
Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto'
let us decide. The Gram matrix can also be passed as argument.

Xy [array-like of shape (n_features,) or (n_features, n_outputs), default=None] Xy =
np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is pre-
computed.

7.22. sklearn.linear_model: Linear Models 2169

scikit-learn user guide, Release 0.23.2

copy_X [bool, default=True] If True, X will be copied; else, it may be overwritten.

coef_init [ndarray of shape (n_features,), default=None] The initial values of the coefficients.

verbose [bool or int, default=False] Amount of verbosity.

return_n_iter [bool, default=False] Whether to return the number of iterations or not.

positive [bool, default=False] If set to True, forces coefficients to be positive. (Only allowed
when y.ndim == 1).

check_input [bool, default=True] Skip input validation checks, including the Gram matrix
when provided assuming there are handled by the caller when check_input=False.

**params [kwargs] Keyword arguments passed to the coordinate descent solver.

Returns

alphas [ndarray of shape (n_alphas,)] The alphas along the path where models are computed.

coefs [ndarray of shape (n_features, n_alphas) or (n_outputs, n_features, n_alphas)] Coeffi-
cients along the path.

dual_gaps [ndarray of shape (n_alphas,)] The dual gaps at the end of the optimization for each
alpha.

n_iters [list of int] The number of iterations taken by the coordinate descent optimizer to reach
the specified tolerance for each alpha. (Is returned when return_n_iter is set to True).

See also:

MultiTaskElasticNet

MultiTaskElasticNetCV

ElasticNet

ElasticNetCV

Notes

For an example, see examples/linear_model/plot_lasso_coordinate_descent_path.py.

Examples using sklearn.linear_model.enet_path

• Lasso and Elastic Net

sklearn.linear_model.lars_path

sklearn.linear_model.lars_path(X, y, Xy=None, *, Gram=None, max_iter=500, alpha_min=0,
method=’lar’, copy_X=True, eps=2.220446049250313e-
16, copy_Gram=True, verbose=0, return_path=True, re-
turn_n_iter=False, positive=False)

Compute Least Angle Regression or Lasso path using LARS algorithm [1]

The optimization objective for the case method=’lasso’ is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

2170 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

in the case of method=’lars’, the objective function is only known in the form of an implicit equation (see
discussion in [1])

Read more in the User Guide.

Parameters

X [None or array-like of shape (n_samples, n_features)] Input data. Note that if X is None then
the Gram matrix must be specified, i.e., cannot be None or False.

y [None or array-like of shape (n_samples,)] Input targets.

Xy [array-like of shape (n_samples,) or (n_samples, n_targets), default=None] Xy =
np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is pre-
computed.

Gram [None, ‘auto’, array-like of shape (n_features, n_features), default=None] Precomputed
Gram matrix (X’ * X), if 'auto', the Gram matrix is precomputed from the given X, if
there are more samples than features.

max_iter [int, default=500] Maximum number of iterations to perform, set to infinity for no
limit.

alpha_min [float, default=0] Minimum correlation along the path. It corresponds to the regu-
larization parameter alpha parameter in the Lasso.

method [{‘lar’, ‘lasso’}, default=’lar’] Specifies the returned model. Select 'lar' for Least
Angle Regression, 'lasso' for the Lasso.

copy_X [bool, default=True] If False, X is overwritten.

eps [float, optional] The machine-precision regularization in the computation of the Cholesky
diagonal factors. Increase this for very ill-conditioned systems. By default, np.
finfo(np.float).eps is used.

copy_Gram [bool, default=True] If False, Gram is overwritten.

verbose [int, default=0] Controls output verbosity.

return_path [bool, default=True] If return_path==True returns the entire path, else re-
turns only the last point of the path.

return_n_iter [bool, default=False] Whether to return the number of iterations.

positive [bool, default=False] Restrict coefficients to be >= 0. This option is only allowed
with method ‘lasso’. Note that the model coefficients will not converge to the ordinary-
least-squares solution for small values of alpha. Only coefficients up to the smallest alpha
value (alphas_[alphas_ > 0.].min() when fit_path=True) reached by the step-
wise Lars-Lasso algorithm are typically in congruence with the solution of the coordinate
descent lasso_path function.

Returns

alphas [array-like of shape (n_alphas + 1,)] Maximum of covariances (in absolute value) at
each iteration. n_alphas is either max_iter, n_features or the number of nodes in
the path with alpha >= alpha_min, whichever is smaller.

active [array-like of shape (n_alphas,)] Indices of active variables at the end of the path.

coefs [array-like of shape (n_features, n_alphas + 1)] Coefficients along the path

n_iter [int] Number of iterations run. Returned only if return_n_iter is set to True.

See also:

7.22. sklearn.linear_model: Linear Models 2171

scikit-learn user guide, Release 0.23.2

lars_path_gram

lasso_path

lasso_path_gram

LassoLars

Lars

LassoLarsCV

LarsCV

sklearn.decomposition.sparse_encode

References

[1], [2], [3]

Examples using sklearn.linear_model.lars_path

• Lasso path using LARS

sklearn.linear_model.lars_path_gram

sklearn.linear_model.lars_path_gram(Xy, Gram, *, n_samples, max_iter=500, al-
pha_min=0, method=’lar’, copy_X=True,
eps=2.220446049250313e-16, copy_Gram=True,
verbose=0, return_path=True, return_n_iter=False,
positive=False)

lars_path in the sufficient stats mode [1]

The optimization objective for the case method=’lasso’ is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

in the case of method=’lars’, the objective function is only known in the form of an implicit equation (see
discussion in [1])

Read more in the User Guide.

Parameters

Xy [array-like of shape (n_samples,) or (n_samples, n_targets)] Xy = np.dot(X.T, y).

Gram [array-like of shape (n_features, n_features)] Gram = np.dot(X.T * X).

n_samples [int or float] Equivalent size of sample.

max_iter [int, default=500] Maximum number of iterations to perform, set to infinity for no
limit.

alpha_min [float, default=0] Minimum correlation along the path. It corresponds to the regu-
larization parameter alpha parameter in the Lasso.

method [{‘lar’, ‘lasso’}, default=’lar’] Specifies the returned model. Select 'lar' for Least
Angle Regression, 'lasso' for the Lasso.

copy_X [bool, default=True] If False, X is overwritten.

2172 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

eps [float, optional] The machine-precision regularization in the computation of the Cholesky
diagonal factors. Increase this for very ill-conditioned systems. By default, np.
finfo(np.float).eps is used.

copy_Gram [bool, default=True] If False, Gram is overwritten.

verbose [int, default=0] Controls output verbosity.

return_path [bool, default=True] If return_path==True returns the entire path, else re-
turns only the last point of the path.

return_n_iter [bool, default=False] Whether to return the number of iterations.

positive [bool, default=False] Restrict coefficients to be >= 0. This option is only allowed
with method ‘lasso’. Note that the model coefficients will not converge to the ordinary-
least-squares solution for small values of alpha. Only coefficients up to the smallest alpha
value (alphas_[alphas_ > 0.].min() when fit_path=True) reached by the step-
wise Lars-Lasso algorithm are typically in congruence with the solution of the coordinate
descent lasso_path function.

Returns

alphas [array-like of shape (n_alphas + 1,)] Maximum of covariances (in absolute value) at
each iteration. n_alphas is either max_iter, n_features or the number of nodes in
the path with alpha >= alpha_min, whichever is smaller.

active [array-like of shape (n_alphas,)] Indices of active variables at the end of the path.

coefs [array-like of shape (n_features, n_alphas + 1)] Coefficients along the path

n_iter [int] Number of iterations run. Returned only if return_n_iter is set to True.

See also:

lars_path

lasso_path

lasso_path_gram

LassoLars

Lars

LassoLarsCV

LarsCV

sklearn.decomposition.sparse_encode

References

[1], [2], [3]

sklearn.linear_model.lasso_path

sklearn.linear_model.lasso_path(X, y, *, eps=0.001, n_alphas=100, alphas=None, precom-
pute=’auto’, Xy=None, copy_X=True, coef_init=None, ver-
bose=False, return_n_iter=False, positive=False, **params)

Compute Lasso path with coordinate descent

The Lasso optimization function varies for mono and multi-outputs.

7.22. sklearn.linear_model: Linear Models 2173

scikit-learn user guide, Release 0.23.2

For mono-output tasks it is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

For multi-output tasks it is:

(1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21

Where:

||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2}

i.e. the sum of norm of each row.

Read more in the User Guide.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training data. Pass directly
as Fortran-contiguous data to avoid unnecessary memory duplication. If y is mono-output
then X can be sparse.

y [{array-like, sparse matrix} of shape (n_samples,) or (n_samples, n_outputs)] Target values

eps [float, default=1e-3] Length of the path. eps=1e-3 means that alpha_min /
alpha_max = 1e-3

n_alphas [int, default=100] Number of alphas along the regularization path

alphas [ndarray, default=None] List of alphas where to compute the models. If None alphas
are set automatically

precompute [‘auto’, bool or array-like of shape (n_features, n_features), default=’auto’]
Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto'
let us decide. The Gram matrix can also be passed as argument.

Xy [array-like of shape (n_features,) or (n_features, n_outputs), default=None] Xy =
np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is pre-
computed.

copy_X [bool, default=True] If True, X will be copied; else, it may be overwritten.

coef_init [ndarray of shape (n_features,), default=None] The initial values of the coefficients.

verbose [bool or int, default=False] Amount of verbosity.

return_n_iter [bool, default=False] whether to return the number of iterations or not.

positive [bool, default=False] If set to True, forces coefficients to be positive. (Only allowed
when y.ndim == 1).

**params [kwargs] keyword arguments passed to the coordinate descent solver.

Returns

alphas [ndarray of shape (n_alphas,)] The alphas along the path where models are computed.

coefs [ndarray of shape (n_features, n_alphas) or (n_outputs, n_features, n_alphas)] Coeffi-
cients along the path.

dual_gaps [ndarray of shape (n_alphas,)] The dual gaps at the end of the optimization for each
alpha.

n_iters [list of int] The number of iterations taken by the coordinate descent optimizer to reach
the specified tolerance for each alpha.

2174 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

See also:

lars_path

Lasso

LassoLars

LassoCV

LassoLarsCV

sklearn.decomposition.sparse_encode

Notes

For an example, see examples/linear_model/plot_lasso_coordinate_descent_path.py.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a
Fortran-contiguous numpy array.

Note that in certain cases, the Lars solver may be significantly faster to implement this functionality. In particu-
lar, linear interpolation can be used to retrieve model coefficients between the values output by lars_path

Examples

Comparing lasso_path and lars_path with interpolation:

>>> X = np.array([[1, 2, 3.1], [2.3, 5.4, 4.3]]).T
>>> y = np.array([1, 2, 3.1])
>>> # Use lasso_path to compute a coefficient path
>>> _, coef_path, _ = lasso_path(X, y, alphas=[5., 1., .5])
>>> print(coef_path)
[[0. 0. 0.46874778]
[0.2159048 0.4425765 0.23689075]]

>>> # Now use lars_path and 1D linear interpolation to compute the
>>> # same path
>>> from sklearn.linear_model import lars_path
>>> alphas, active, coef_path_lars = lars_path(X, y, method='lasso')
>>> from scipy import interpolate
>>> coef_path_continuous = interpolate.interp1d(alphas[::-1],
... coef_path_lars[:, ::-1])
>>> print(coef_path_continuous([5., 1., .5]))
[[0. 0. 0.46915237]
[0.2159048 0.4425765 0.23668876]]

Examples using sklearn.linear_model.lasso_path

• Lasso and Elastic Net

7.22. sklearn.linear_model: Linear Models 2175

scikit-learn user guide, Release 0.23.2

sklearn.linear_model.orthogonal_mp

sklearn.linear_model.orthogonal_mp(X, y, *, n_nonzero_coefs=None, tol=None, precom-
pute=False, copy_X=True, return_path=False, re-
turn_n_iter=False)

Orthogonal Matching Pursuit (OMP)

Solves n_targets Orthogonal Matching Pursuit problems. An instance of the problem has the form:

When parametrized by the number of non-zero coefficients using n_nonzero_coefs: argmin ||y -
Xgamma||^2 subject to ||gamma||_0 <= n_{nonzero coefs}

When parametrized by error using the parameter tol: argmin ||gamma||_0 subject to ||y - Xgamma||^2 <= tol

Read more in the User Guide.

Parameters

X [array, shape (n_samples, n_features)] Input data. Columns are assumed to have unit norm.

y [array, shape (n_samples,) or (n_samples, n_targets)] Input targets

n_nonzero_coefs [int] Desired number of non-zero entries in the solution. If None (by default)
this value is set to 10% of n_features.

tol [float] Maximum norm of the residual. If not None, overrides n_nonzero_coefs.

precompute [{True, False, ‘auto’},] Whether to perform precomputations. Improves perfor-
mance when n_targets or n_samples is very large.

copy_X [bool, optional] Whether the design matrix X must be copied by the algorithm. A false
value is only helpful if X is already Fortran-ordered, otherwise a copy is made anyway.

return_path [bool, optional. Default: False] Whether to return every value of the nonzero
coefficients along the forward path. Useful for cross-validation.

return_n_iter [bool, optional default False] Whether or not to return the number of iterations.

Returns

coef [array, shape (n_features,) or (n_features, n_targets)] Coefficients of the OMP solution. If
return_path=True, this contains the whole coefficient path. In this case its shape is
(n_features, n_features) or (n_features, n_targets, n_features) and iterating over the last axis
yields coefficients in increasing order of active features.

n_iters [array-like or int] Number of active features across every target. Returned only if
return_n_iter is set to True.

See also:

OrthogonalMatchingPursuit

orthogonal_mp_gram

lars_path

decomposition.sparse_encode

Notes

Orthogonal matching pursuit was introduced in S. Mallat, Z. Zhang, Matching pursuits with time-frequency
dictionaries, IEEE Transactions on Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415.
(http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf)

2176 Chapter 7. API Reference

http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf

scikit-learn user guide, Release 0.23.2

This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad, M., Efficient Implementation of
the K-SVD Algorithm using Batch Orthogonal Matching Pursuit Technical Report - CS Technion, April 2008.
https://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf

sklearn.linear_model.orthogonal_mp_gram

sklearn.linear_model.orthogonal_mp_gram(Gram, Xy, *, n_nonzero_coefs=None, tol=None,
norms_squared=None, copy_Gram=True,
copy_Xy=True, return_path=False, re-
turn_n_iter=False)

Gram Orthogonal Matching Pursuit (OMP)

Solves n_targets Orthogonal Matching Pursuit problems using only the Gram matrix X.T * X and the product
X.T * y.

Read more in the User Guide.

Parameters

Gram [array, shape (n_features, n_features)] Gram matrix of the input data: X.T * X

Xy [array, shape (n_features,) or (n_features, n_targets)] Input targets multiplied by X: X.T * y

n_nonzero_coefs [int] Desired number of non-zero entries in the solution. If None (by default)
this value is set to 10% of n_features.

tol [float] Maximum norm of the residual. If not None, overrides n_nonzero_coefs.

norms_squared [array-like, shape (n_targets,)] Squared L2 norms of the lines of y. Required
if tol is not None.

copy_Gram [bool, optional] Whether the gram matrix must be copied by the algorithm. A false
value is only helpful if it is already Fortran-ordered, otherwise a copy is made anyway.

copy_Xy [bool, optional] Whether the covariance vector Xy must be copied by the algorithm.
If False, it may be overwritten.

return_path [bool, optional. Default: False] Whether to return every value of the nonzero
coefficients along the forward path. Useful for cross-validation.

return_n_iter [bool, optional default False] Whether or not to return the number of iterations.

Returns

coef [array, shape (n_features,) or (n_features, n_targets)] Coefficients of the OMP solution. If
return_path=True, this contains the whole coefficient path. In this case its shape is
(n_features, n_features) or (n_features, n_targets, n_features) and iterating over the last axis
yields coefficients in increasing order of active features.

n_iters [array-like or int] Number of active features across every target. Returned only if
return_n_iter is set to True.

See also:

OrthogonalMatchingPursuit

orthogonal_mp

lars_path

decomposition.sparse_encode

7.22. sklearn.linear_model: Linear Models 2177

https://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf

scikit-learn user guide, Release 0.23.2

Notes

Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang, Matching pursuits with time-frequency
dictionaries, IEEE Transactions on Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415.
(http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf)

This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad, M., Efficient Implementation of
the K-SVD Algorithm using Batch Orthogonal Matching Pursuit Technical Report - CS Technion, April 2008.
https://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf

sklearn.linear_model.ridge_regression

sklearn.linear_model.ridge_regression(X, y, alpha, *, sample_weight=None, solver=’auto’,
max_iter=None, tol=0.001, verbose=0, ran-
dom_state=None, return_n_iter=False, re-
turn_intercept=False, check_input=True)

Solve the ridge equation by the method of normal equations.

Read more in the User Guide.

Parameters

X [{ndarray, sparse matrix, LinearOperator} of shape (n_samples, n_features)] Training data

y [ndarray of shape (n_samples,) or (n_samples, n_targets)] Target values

alpha [float or array-like of shape (n_targets,)] Regularization strength; must be a positive float.
Regularization improves the conditioning of the problem and reduces the variance of the es-
timates. Larger values specify stronger regularization. Alpha corresponds to 1 / (2C) in
other linear models such as LogisticRegression or sklearn.svm.LinearSVC.
If an array is passed, penalties are assumed to be specific to the targets. Hence they must
correspond in number.

sample_weight [float or array-like of shape (n_samples,), default=None] Individual weights for
each sample. If given a float, every sample will have the same weight. If sample_weight is
not None and solver=’auto’, the solver will be set to ‘cholesky’.

New in version 0.17.

solver [{‘auto’, ‘svd’, ‘cholesky’, ‘lsqr’, ‘sparse_cg’, ‘sag’, ‘saga’}, default=’auto’] Solver to
use in the computational routines:

• ‘auto’ chooses the solver automatically based on the type of data.

• ‘svd’ uses a Singular Value Decomposition of X to compute the Ridge coefficients. More
stable for singular matrices than ‘cholesky’.

• ‘cholesky’ uses the standard scipy.linalg.solve function to obtain a closed-form solution
via a Cholesky decomposition of dot(X.T, X)

• ‘sparse_cg’ uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As an
iterative algorithm, this solver is more appropriate than ‘cholesky’ for large-scale data
(possibility to set tol and max_iter).

• ‘lsqr’ uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It is the
fastest and uses an iterative procedure.

• ‘sag’ uses a Stochastic Average Gradient descent, and ‘saga’ uses its improved, unbiased
version named SAGA. Both methods also use an iterative procedure, and are often faster
than other solvers when both n_samples and n_features are large. Note that ‘sag’ and

2178 Chapter 7. API Reference

http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf
https://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf

scikit-learn user guide, Release 0.23.2

‘saga’ fast convergence is only guaranteed on features with approximately the same scale.
You can preprocess the data with a scaler from sklearn.preprocessing.

All last five solvers support both dense and sparse data. However, only ‘sag’ and ‘sparse_cg’
supports sparse input when fit_intercept is True.

New in version 0.17: Stochastic Average Gradient descent solver.

New in version 0.19: SAGA solver.

max_iter [int, default=None] Maximum number of iterations for conjugate gradient solver. For
the ‘sparse_cg’ and ‘lsqr’ solvers, the default value is determined by scipy.sparse.linalg. For
‘sag’ and saga solver, the default value is 1000.

tol [float, default=1e-3] Precision of the solution.

verbose [int, default=0] Verbosity level. Setting verbose > 0 will display additional information
depending on the solver used.

random_state [int, RandomState instance, default=None] Used when solver == ‘sag’ or
‘saga’ to shuffle the data. See Glossary for details.

return_n_iter [bool, default=False] If True, the method also returns n_iter, the actual num-
ber of iteration performed by the solver.

New in version 0.17.

return_intercept [bool, default=False] If True and if X is sparse, the method also re-
turns the intercept, and the solver is automatically changed to ‘sag’. This is only
a temporary fix for fitting the intercept with sparse data. For dense data, use
sklearn.linear_model._preprocess_data before your regression.

New in version 0.17.

check_input [bool, default=True] If False, the input arrays X and y will not be checked.

New in version 0.21.

Returns

coef [ndarray of shape (n_features,) or (n_targets, n_features)] Weight vector(s).

n_iter [int, optional] The actual number of iteration performed by the solver. Only returned if
return_n_iter is True.

intercept [float or ndarray of shape (n_targets,)] The intercept of the model. Only returned if
return_intercept is True and if X is a scipy sparse array.

Notes

This function won’t compute the intercept.

7.23 sklearn.manifold: Manifold Learning

The sklearn.manifold module implements data embedding techniques.

User guide: See the Manifold learning section for further details.

manifold.Isomap(*[, n_neighbors, . . .]) Isomap Embedding
Continued on next page

7.23. sklearn.manifold: Manifold Learning 2179

scikit-learn user guide, Release 0.23.2

Table 186 – continued from previous page
manifold.LocallyLinearEmbedding(*[, . . .]) Locally Linear Embedding
manifold.MDS([n_components, metric, n_init, . . .]) Multidimensional scaling
manifold.SpectralEmbedding([n_components,
. . .])

Spectral embedding for non-linear dimensionality re-
duction.

manifold.TSNE([n_components, perplexity, . . .]) t-distributed Stochastic Neighbor Embedding.

7.23.1 sklearn.manifold.Isomap

class sklearn.manifold.Isomap(*, n_neighbors=5, n_components=2, eigen_solver=’auto’,
tol=0, max_iter=None, path_method=’auto’, neigh-
bors_algorithm=’auto’, n_jobs=None, metric=’minkowski’,
p=2, metric_params=None)

Isomap Embedding

Non-linear dimensionality reduction through Isometric Mapping

Read more in the User Guide.

Parameters

n_neighbors [integer] number of neighbors to consider for each point.

n_components [integer] number of coordinates for the manifold

eigen_solver [[‘auto’|’arpack’|’dense’]] ‘auto’ : Attempt to choose the most efficient solver for
the given problem.

‘arpack’ : Use Arnoldi decomposition to find the eigenvalues and eigenvectors.

‘dense’ : Use a direct solver (i.e. LAPACK) for the eigenvalue decomposition.

tol [float] Convergence tolerance passed to arpack or lobpcg. not used if eigen_solver ==
‘dense’.

max_iter [integer] Maximum number of iterations for the arpack solver. not used if
eigen_solver == ‘dense’.

path_method [string [‘auto’|’FW’|’D’]] Method to use in finding shortest path.

‘auto’ : attempt to choose the best algorithm automatically.

‘FW’ : Floyd-Warshall algorithm.

‘D’ : Dijkstra’s algorithm.

neighbors_algorithm [string [‘auto’|’brute’|’kd_tree’|’ball_tree’]] Algorithm to use for nearest
neighbors search, passed to neighbors.NearestNeighbors instance.

n_jobs [int or None, default=None] The number of parallel jobs to run. Nonemeans 1 unless in
a joblib.parallel_backend context. -1 means using all processors. See Glossary
for more details.

metric [string, or callable, default=”minkowski”] The metric to use when calculating distance
between instances in a feature array. If metric is a string or callable, it must be one of the
options allowed by sklearn.metrics.pairwise_distances for its metric param-
eter. If metric is “precomputed”, X is assumed to be a distance matrix and must be square.
X may be a Glossary.

New in version 0.22.

2180 Chapter 7. API Reference

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

p [int, default=2] Parameter for the Minkowski metric from
sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is equivalent to us-
ing manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p,
minkowski_distance (l_p) is used.

New in version 0.22.

metric_params [dict, default=None] Additional keyword arguments for the metric function.

New in version 0.22.

Attributes

embedding_ [array-like, shape (n_samples, n_components)] Stores the embedding vectors.

kernel_pca_ [object] KernelPCA object used to implement the embedding.

nbrs_ [sklearn.neighbors.NearestNeighbors instance] Stores nearest neighbors instance, in-
cluding BallTree or KDtree if applicable.

dist_matrix_ [array-like, shape (n_samples, n_samples)] Stores the geodesic distance matrix
of training data.

References

[1]

Examples

>>> from sklearn.datasets import load_digits
>>> from sklearn.manifold import Isomap
>>> X, _ = load_digits(return_X_y=True)
>>> X.shape
(1797, 64)
>>> embedding = Isomap(n_components=2)
>>> X_transformed = embedding.fit_transform(X[:100])
>>> X_transformed.shape
(100, 2)

Methods

fit(X[, y]) Compute the embedding vectors for data X
fit_transform(X[, y]) Fit the model from data in X and transform X.
get_params([deep]) Get parameters for this estimator.
reconstruction_error() Compute the reconstruction error for the embedding.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform X.

__init__(*, n_neighbors=5, n_components=2, eigen_solver=’auto’, tol=0, max_iter=None,
path_method=’auto’, neighbors_algorithm=’auto’, n_jobs=None, metric=’minkowski’,
p=2, metric_params=None)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Compute the embedding vectors for data X

7.23. sklearn.manifold: Manifold Learning 2181

scikit-learn user guide, Release 0.23.2

Parameters

X [{array-like, sparse graph, BallTree, KDTree, NearestNeighbors}] Sample data, shape =
(n_samples, n_features), in the form of a numpy array, sparse graph, precomputed tree, or
NearestNeighbors object.

y [Ignored]

Returns

self [returns an instance of self.]

fit_transform(X, y=None)
Fit the model from data in X and transform X.

Parameters

X [{array-like, sparse graph, BallTree, KDTree}] Training vector, where n_samples in the
number of samples and n_features is the number of features.

y [Ignored]

Returns

X_new [array-like, shape (n_samples, n_components)]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

reconstruction_error()
Compute the reconstruction error for the embedding.

Returns

reconstruction_error [float]

Notes

The cost function of an isomap embedding is

E = frobenius_norm[K(D) - K(D_fit)] / n_samples

Where D is the matrix of distances for the input data X, D_fit is the matrix of distances for the output
embedding X_fit, and K is the isomap kernel:

K(D) = -0.5 * (I - 1/n_samples) * D^2 * (I - 1/n_samples)

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

2182 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Returns

self [object] Estimator instance.

transform(X)
Transform X.

This is implemented by linking the points X into the graph of geodesic distances of the training data.
First the n_neighbors nearest neighbors of X are found in the training data, and from these the shortest
geodesic distances from each point in X to each point in the training data are computed in order to construct
the kernel. The embedding of X is the projection of this kernel onto the embedding vectors of the training
set.

Parameters

X [array-like, shape (n_queries, n_features)] If neighbors_algorithm=’precomputed’, X is
assumed to be a distance matrix or a sparse graph of shape (n_queries, n_samples_fit).

Returns

X_new [array-like, shape (n_queries, n_components)]

Examples using sklearn.manifold.Isomap

• Release Highlights for scikit-learn 0.22

• Comparison of Manifold Learning methods

• Manifold Learning methods on a severed sphere

• Manifold learning on handwritten digits: Locally Linear Embedding, Isomap. . .

7.23.2 sklearn.manifold.LocallyLinearEmbedding

class sklearn.manifold.LocallyLinearEmbedding(*, n_neighbors=5, n_components=2,
reg=0.001, eigen_solver=’auto’, tol=1e-
06, max_iter=100, method=’standard’,
hessian_tol=0.0001, modified_tol=1e-12,
neighbors_algorithm=’auto’, ran-
dom_state=None, n_jobs=None)

Locally Linear Embedding

Read more in the User Guide.

Parameters

n_neighbors [integer] number of neighbors to consider for each point.

n_components [integer] number of coordinates for the manifold

reg [float] regularization constant, multiplies the trace of the local covariance matrix of the
distances.

eigen_solver [string, {‘auto’, ‘arpack’, ‘dense’}] auto : algorithm will attempt to choose the
best method for input data

arpack [use arnoldi iteration in shift-invert mode.] For this method, M may be a dense
matrix, sparse matrix, or general linear operator. Warning: ARPACK can be unstable for
some problems. It is best to try several random seeds in order to check results.

7.23. sklearn.manifold: Manifold Learning 2183

scikit-learn user guide, Release 0.23.2

dense [use standard dense matrix operations for the eigenvalue] decomposition. For this
method, M must be an array or matrix type. This method should be avoided for large
problems.

tol [float, optional] Tolerance for ‘arpack’ method Not used if eigen_solver==’dense’.

max_iter [integer] maximum number of iterations for the arpack solver. Not used if
eigen_solver==’dense’.

method [string (‘standard’, ‘hessian’, ‘modified’ or ‘ltsa’)]

standard [use the standard locally linear embedding algorithm. see] reference [1]

hessian [use the Hessian eigenmap method. This method requires] n_neighbors >
n_components * (1 + (n_components + 1) / 2 see reference [2]

modified [use the modified locally linear embedding algorithm.] see reference [3]

ltsa [use local tangent space alignment algorithm] see reference [4]

hessian_tol [float, optional] Tolerance for Hessian eigenmapping method. Only used if
method == 'hessian'

modified_tol [float, optional] Tolerance for modified LLE method. Only used if method ==
'modified'

neighbors_algorithm [string [‘auto’|’brute’|’kd_tree’|’ball_tree’]] algorithm to use for nearest
neighbors search, passed to neighbors.NearestNeighbors instance

random_state [int, RandomState instance, default=None] Determines the random number gen-
erator when eigen_solver == ‘arpack’. Pass an int for reproducible results across mul-
tiple function calls. See :term: Glossary <random_state>.

n_jobs [int or None, optional (default=None)] The number of parallel jobs to run. None means
1 unless in a joblib.parallel_backend context. -1means using all processors. See
Glossary for more details.

Attributes

embedding_ [array-like, shape [n_samples, n_components]] Stores the embedding vectors

reconstruction_error_ [float] Reconstruction error associated with embedding_

nbrs_ [NearestNeighbors object] Stores nearest neighbors instance, including BallTree or
KDtree if applicable.

References

[1], [2], [3], [4]

Examples

>>> from sklearn.datasets import load_digits
>>> from sklearn.manifold import LocallyLinearEmbedding
>>> X, _ = load_digits(return_X_y=True)
>>> X.shape
(1797, 64)
>>> embedding = LocallyLinearEmbedding(n_components=2)
>>> X_transformed = embedding.fit_transform(X[:100])
>>> X_transformed.shape
(100, 2)

2184 Chapter 7. API Reference

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

Methods

fit(X[, y]) Compute the embedding vectors for data X
fit_transform(X[, y]) Compute the embedding vectors for data X and

transform X.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform new points into embedding space.

__init__(*, n_neighbors=5, n_components=2, reg=0.001, eigen_solver=’auto’, tol=1e-06,
max_iter=100, method=’standard’, hessian_tol=0.0001, modified_tol=1e-12, neigh-
bors_algorithm=’auto’, random_state=None, n_jobs=None)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Compute the embedding vectors for data X

Parameters

X [array-like of shape [n_samples, n_features]] training set.

y [Ignored]

Returns

self [returns an instance of self.]

fit_transform(X, y=None)
Compute the embedding vectors for data X and transform X.

Parameters

X [array-like of shape [n_samples, n_features]] training set.

y [Ignored]

Returns

X_new [array-like, shape (n_samples, n_components)]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

7.23. sklearn.manifold: Manifold Learning 2185

scikit-learn user guide, Release 0.23.2

self [object] Estimator instance.

transform(X)
Transform new points into embedding space.

Parameters

X [array-like of shape (n_samples, n_features)]

Returns

X_new [array, shape = [n_samples, n_components]]

Notes

Because of scaling performed by this method, it is discouraged to use it together with methods that are not
scale-invariant (like SVMs)

Examples using sklearn.manifold.LocallyLinearEmbedding

• Visualizing the stock market structure

• Comparison of Manifold Learning methods

• Manifold Learning methods on a severed sphere

• Manifold learning on handwritten digits: Locally Linear Embedding, Isomap. . .

7.23.3 sklearn.manifold.MDS

class sklearn.manifold.MDS(n_components=2, *, metric=True, n_init=4, max_iter=300, ver-
bose=0, eps=0.001, n_jobs=None, random_state=None, dissimilar-
ity=’euclidean’)

Multidimensional scaling

Read more in the User Guide.

Parameters

n_components [int, optional, default: 2] Number of dimensions in which to immerse the dis-
similarities.

metric [boolean, optional, default: True] If True, perform metric MDS; otherwise, perform
nonmetric MDS.

n_init [int, optional, default: 4] Number of times the SMACOF algorithm will be run with
different initializations. The final results will be the best output of the runs, determined by
the run with the smallest final stress.

max_iter [int, optional, default: 300] Maximum number of iterations of the SMACOF algo-
rithm for a single run.

verbose [int, optional, default: 0] Level of verbosity.

eps [float, optional, default: 1e-3] Relative tolerance with respect to stress at which to declare
convergence.

n_jobs [int or None, optional (default=None)] The number of jobs to use for the computation.
If multiple initializations are used (n_init), each run of the algorithm is computed in
parallel.

2186 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

None means 1 unless in a joblib.parallel_backend context. -1 means using all
processors. See Glossary for more details.

random_state [int, RandomState instance, default=None] Determines the random number gen-
erator used to initialize the centers. Pass an int for reproducible results across multiple
function calls. See :term: Glossary <random_state>.

dissimilarity [‘euclidean’ | ‘precomputed’, optional, default: ‘euclidean’] Dissimilarity mea-
sure to use:

• ‘euclidean’: Pairwise Euclidean distances between points in the dataset.

• ‘precomputed’: Pre-computed dissimilarities are passed directly to fit and
fit_transform.

Attributes

embedding_ [array-like, shape (n_samples, n_components)] Stores the position of the dataset
in the embedding space.

stress_ [float] The final value of the stress (sum of squared distance of the disparities and the
distances for all constrained points).

References

“Modern Multidimensional Scaling - Theory and Applications” Borg, I.; Groenen P. Springer Series in Statistics
(1997)

“Nonmetric multidimensional scaling: a numerical method” Kruskal, J. Psychometrika, 29 (1964)

“Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis” Kruskal, J. Psychometrika,
29, (1964)

Examples

>>> from sklearn.datasets import load_digits
>>> from sklearn.manifold import MDS
>>> X, _ = load_digits(return_X_y=True)
>>> X.shape
(1797, 64)
>>> embedding = MDS(n_components=2)
>>> X_transformed = embedding.fit_transform(X[:100])
>>> X_transformed.shape
(100, 2)

Methods

fit(X[, y, init]) Computes the position of the points in the embedding
space

fit_transform(X[, y, init]) Fit the data from X, and returns the embedded coor-
dinates

get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.

7.23. sklearn.manifold: Manifold Learning 2187

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

__init__(n_components=2, *, metric=True, n_init=4, max_iter=300, verbose=0, eps=0.001,
n_jobs=None, random_state=None, dissimilarity=’euclidean’)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None, init=None)
Computes the position of the points in the embedding space

Parameters

X [array, shape (n_samples, n_features) or (n_samples, n_samples)] Input data. If
dissimilarity=='precomputed', the input should be the dissimilarity matrix.

y [Ignored]

init [ndarray, shape (n_samples,), optional, default: None] Starting configuration of the em-
bedding to initialize the SMACOF algorithm. By default, the algorithm is initialized with
a randomly chosen array.

fit_transform(X, y=None, init=None)
Fit the data from X, and returns the embedded coordinates

Parameters

X [array, shape (n_samples, n_features) or (n_samples, n_samples)] Input data. If
dissimilarity=='precomputed', the input should be the dissimilarity matrix.

y [Ignored]

init [ndarray, shape (n_samples,), optional, default: None] Starting configuration of the em-
bedding to initialize the SMACOF algorithm. By default, the algorithm is initialized with
a randomly chosen array.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.manifold.MDS

• Comparison of Manifold Learning methods

• Multi-dimensional scaling

2188 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

• Manifold Learning methods on a severed sphere

• Manifold learning on handwritten digits: Locally Linear Embedding, Isomap. . .

7.23.4 sklearn.manifold.SpectralEmbedding

class sklearn.manifold.SpectralEmbedding(n_components=2, *, affin-
ity=’nearest_neighbors’, gamma=None,
random_state=None, eigen_solver=None,
n_neighbors=None, n_jobs=None)

Spectral embedding for non-linear dimensionality reduction.

Forms an affinity matrix given by the specified function and applies spectral decomposition to the corresponding
graph laplacian. The resulting transformation is given by the value of the eigenvectors for each data point.

Note : Laplacian Eigenmaps is the actual algorithm implemented here.

Read more in the User Guide.

Parameters

n_components [integer, default: 2] The dimension of the projected subspace.

affinity [string or callable, default]

How to construct the affinity matrix.

• ‘nearest_neighbors’ : construct the affinity matrix by computing a graph of nearest
neighbors.

• ‘rbf’ : construct the affinity matrix by computing a radial basis function (RBF) kernel.

• ‘precomputed’ : interpret X as a precomputed affinity matrix.

• ‘precomputed_nearest_neighbors’ : interpret X as a sparse graph of precomputed near-
est neighbors, and constructs the affinity matrix by selecting the n_neighbors near-
est neighbors.

• callable : use passed in function as affinity the function takes in data matrix (n_samples,
n_features) and return affinity matrix (n_samples, n_samples).

gamma [float, optional, default] Kernel coefficient for rbf kernel.

random_state [int, RandomState instance, default=None] Determines the random number gen-
erator used for the initialization of the lobpcg eigenvectors when solver == ‘amg’. Pass
an int for reproducible results across multiple function calls. See :term: Glossary
<random_state>.

eigen_solver [{None, ‘arpack’, ‘lobpcg’, or ‘amg’}] The eigenvalue decomposition strategy to
use. AMG requires pyamg to be installed. It can be faster on very large, sparse problems.

n_neighbors [int, default] Number of nearest neighbors for nearest_neighbors graph building.

n_jobs [int or None, optional (default=None)] The number of parallel jobs to run. None means
1 unless in a joblib.parallel_backend context. -1means using all processors. See
Glossary for more details.

Attributes

embedding_ [array, shape = (n_samples, n_components)] Spectral embedding of the training
matrix.

affinity_matrix_ [array, shape = (n_samples, n_samples)] Affinity_matrix constructed from
samples or precomputed.

7.23. sklearn.manifold: Manifold Learning 2189

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

n_neighbors_ [int] Number of nearest neighbors effectively used.

References

• A Tutorial on Spectral Clustering, 2007 Ulrike von Luxburg http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.165.9323

• On Spectral Clustering: Analysis and an algorithm, 2001 Andrew Y. Ng, Michael I. Jordan, Yair Weiss
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.8100

• Normalized cuts and image segmentation, 2000 Jianbo Shi, Jitendra Malik http://citeseer.ist.psu.edu/
viewdoc/summary?doi=10.1.1.160.2324

Examples

>>> from sklearn.datasets import load_digits
>>> from sklearn.manifold import SpectralEmbedding
>>> X, _ = load_digits(return_X_y=True)
>>> X.shape
(1797, 64)
>>> embedding = SpectralEmbedding(n_components=2)
>>> X_transformed = embedding.fit_transform(X[:100])
>>> X_transformed.shape
(100, 2)

Methods

fit(X[, y]) Fit the model from data in X.
fit_transform(X[, y]) Fit the model from data in X and transform X.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.

__init__(n_components=2, *, affinity=’nearest_neighbors’, gamma=None, random_state=None,
eigen_solver=None, n_neighbors=None, n_jobs=None)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Fit the model from data in X.

Parameters

X [{array-like, sparse matrix}, shape (n_samples, n_features)] Training vector, where
n_samples is the number of samples and n_features is the number of features.

If affinity is “precomputed” X : {array-like, sparse matrix}, shape (n_samples, n_samples),
Interpret X as precomputed adjacency graph computed from samples.

Returns

self [object] Returns the instance itself.

fit_transform(X, y=None)
Fit the model from data in X and transform X.

Parameters

2190 Chapter 7. API Reference

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.9323
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.9323
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.8100
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.2324
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.2324

scikit-learn user guide, Release 0.23.2

X [{array-like, sparse matrix}, shape (n_samples, n_features)] Training vector, where
n_samples is the number of samples and n_features is the number of features.

If affinity is “precomputed” X : {array-like, sparse matrix}, shape (n_samples, n_samples),
Interpret X as precomputed adjacency graph computed from samples.

Returns

X_new [array-like, shape (n_samples, n_components)]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.manifold.SpectralEmbedding

• Various Agglomerative Clustering on a 2D embedding of digits

• Comparison of Manifold Learning methods

• Manifold Learning methods on a severed sphere

• Manifold learning on handwritten digits: Locally Linear Embedding, Isomap. . .

7.23.5 sklearn.manifold.TSNE

class sklearn.manifold.TSNE(n_components=2, *, perplexity=30.0, early_exaggeration=12.0,
learning_rate=200.0, n_iter=1000, n_iter_without_progress=300,
min_grad_norm=1e-07, metric=’euclidean’, init=’random’, ver-
bose=0, random_state=None, method=’barnes_hut’, angle=0.5,
n_jobs=None)

t-distributed Stochastic Neighbor Embedding.

t-SNE [1] is a tool to visualize high-dimensional data. It converts similarities between data points to joint
probabilities and tries to minimize the Kullback-Leibler divergence between the joint probabilities of the low-
dimensional embedding and the high-dimensional data. t-SNE has a cost function that is not convex, i.e. with
different initializations we can get different results.

7.23. sklearn.manifold: Manifold Learning 2191

scikit-learn user guide, Release 0.23.2

It is highly recommended to use another dimensionality reduction method (e.g. PCA for dense data or Truncat-
edSVD for sparse data) to reduce the number of dimensions to a reasonable amount (e.g. 50) if the number of
features is very high. This will suppress some noise and speed up the computation of pairwise distances between
samples. For more tips see Laurens van der Maaten’s FAQ [2].

Read more in the User Guide.

Parameters

n_components [int, optional (default: 2)] Dimension of the embedded space.

perplexity [float, optional (default: 30)] The perplexity is related to the number of nearest
neighbors that is used in other manifold learning algorithms. Larger datasets usually require
a larger perplexity. Consider selecting a value between 5 and 50. Different values can result
in significanlty different results.

early_exaggeration [float, optional (default: 12.0)] Controls how tight natural clusters in the
original space are in the embedded space and how much space will be between them. For
larger values, the space between natural clusters will be larger in the embedded space.
Again, the choice of this parameter is not very critical. If the cost function increases during
initial optimization, the early exaggeration factor or the learning rate might be too high.

learning_rate [float, optional (default: 200.0)] The learning rate for t-SNE is usually in the
range [10.0, 1000.0]. If the learning rate is too high, the data may look like a ‘ball’ with any
point approximately equidistant from its nearest neighbours. If the learning rate is too low,
most points may look compressed in a dense cloud with few outliers. If the cost function
gets stuck in a bad local minimum increasing the learning rate may help.

n_iter [int, optional (default: 1000)] Maximum number of iterations for the optimization.
Should be at least 250.

n_iter_without_progress [int, optional (default: 300)] Maximum number of iterations without
progress before we abort the optimization, used after 250 initial iterations with early exag-
geration. Note that progress is only checked every 50 iterations so this value is rounded to
the next multiple of 50.

New in version 0.17: parameter n_iter_without_progress to control stopping criteria.

min_grad_norm [float, optional (default: 1e-7)] If the gradient norm is below this threshold,
the optimization will be stopped.

metric [string or callable, optional] The metric to use when calculating distance between
instances in a feature array. If metric is a string, it must be one of the options al-
lowed by scipy.spatial.distance.pdist for its metric parameter, or a metric listed in pair-
wise.PAIRWISE_DISTANCE_FUNCTIONS. If metric is “precomputed”, X is assumed to
be a distance matrix. Alternatively, if metric is a callable function, it is called on each pair
of instances (rows) and the resulting value recorded. The callable should take two arrays
from X as input and return a value indicating the distance between them. The default is
“euclidean” which is interpreted as squared euclidean distance.

init [string or numpy array, optional (default: “random”)] Initialization of embedding. Possible
options are ‘random’, ‘pca’, and a numpy array of shape (n_samples, n_components). PCA
initialization cannot be used with precomputed distances and is usually more globally stable
than random initialization.

verbose [int, optional (default: 0)] Verbosity level.

random_state [int, RandomState instance, default=None] Determines the random number gen-
erator. Pass an int for reproducible results across multiple function calls. Note that differ-
ent initializations might result in different local minima of the cost function. See :term:
Glossary <random_state>.

2192 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

method [string (default: ‘barnes_hut’)] By default the gradient calculation algorithm uses
Barnes-Hut approximation running in O(NlogN) time. method=’exact’ will run on the
slower, but exact, algorithm in O(N^2) time. The exact algorithm should be used when
nearest-neighbor errors need to be better than 3%. However, the exact method cannot scale
to millions of examples.

New in version 0.17: Approximate optimization method via the Barnes-Hut.

angle [float (default: 0.5)] Only used if method=’barnes_hut’ This is the trade-off between
speed and accuracy for Barnes-Hut T-SNE. ‘angle’ is the angular size (referred to as theta
in [3]) of a distant node as measured from a point. If this size is below ‘angle’ then it is used
as a summary node of all points contained within it. This method is not very sensitive to
changes in this parameter in the range of 0.2 - 0.8. Angle less than 0.2 has quickly increasing
computation time and angle greater 0.8 has quickly increasing error.

n_jobs [int or None, optional (default=None)] The number of parallel jobs to run for
neighbors search. This parameter has no impact when metric="precomputed"
or (metric="euclidean" and method="exact"). None means 1 unless in a
joblib.parallel_backend context. -1 means using all processors. See Glossary
for more details.

New in version 0.22.

Attributes

embedding_ [array-like, shape (n_samples, n_components)] Stores the embedding vectors.

kl_divergence_ [float] Kullback-Leibler divergence after optimization.

n_iter_ [int] Number of iterations run.

References

[1] van der Maaten, L.J.P.; Hinton, G.E. Visualizing High-Dimensional Data Using t-SNE. Journal of Ma-
chine Learning Research 9:2579-2605, 2008.

[2] van der Maaten, L.J.P. t-Distributed Stochastic Neighbor Embedding https://lvdmaaten.github.io/tsne/

[3] L.J.P. van der Maaten. Accelerating t-SNE using Tree-Based Algorithms. Journal of Machine Learn-
ing Research 15(Oct):3221-3245, 2014. https://lvdmaaten.github.io/publications/papers/JMLR_2014.pdf

Examples

>>> import numpy as np
>>> from sklearn.manifold import TSNE
>>> X = np.array([[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]])
>>> X_embedded = TSNE(n_components=2).fit_transform(X)
>>> X_embedded.shape
(4, 2)

Methods

fit(X[, y]) Fit X into an embedded space.
fit_transform(X[, y]) Fit X into an embedded space and return that trans-

formed output.
Continued on next page

7.23. sklearn.manifold: Manifold Learning 2193

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend
https://lvdmaaten.github.io/tsne/
https://lvdmaaten.github.io/publications/papers/JMLR_2014.pdf

scikit-learn user guide, Release 0.23.2

Table 191 – continued from previous page
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.

__init__(n_components=2, *, perplexity=30.0, early_exaggeration=12.0, learning_rate=200.0,
n_iter=1000, n_iter_without_progress=300, min_grad_norm=1e-07, metric=’euclidean’,
init=’random’, verbose=0, random_state=None, method=’barnes_hut’, angle=0.5,
n_jobs=None)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Fit X into an embedded space.

Parameters

X [array, shape (n_samples, n_features) or (n_samples, n_samples)] If the metric is ‘pre-
computed’ X must be a square distance matrix. Otherwise it contains a sample per row. If
the method is ‘exact’, X may be a sparse matrix of type ‘csr’, ‘csc’ or ‘coo’. If the method
is ‘barnes_hut’ and the metric is ‘precomputed’, X may be a precomputed sparse graph.

y [Ignored]

fit_transform(X, y=None)
Fit X into an embedded space and return that transformed output.

Parameters

X [array, shape (n_samples, n_features) or (n_samples, n_samples)] If the metric is ‘pre-
computed’ X must be a square distance matrix. Otherwise it contains a sample per row. If
the method is ‘exact’, X may be a sparse matrix of type ‘csr’, ‘csc’ or ‘coo’. If the method
is ‘barnes_hut’ and the metric is ‘precomputed’, X may be a precomputed sparse graph.

y [Ignored]

Returns

X_new [array, shape (n_samples, n_components)] Embedding of the training data in low-
dimensional space.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

2194 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

self [object] Estimator instance.

Examples using sklearn.manifold.TSNE

• Approximate nearest neighbors in TSNE

manifold.locally_linear_embedding(X, *,
. . .)

Perform a Locally Linear Embedding analysis on the
data.

manifold.smacof(dissimilarities, *[, . . .]) Computes multidimensional scaling using the SMA-
COF algorithm.

manifold.spectral_embedding(adjacency, *[,
. . .])

Project the sample on the first eigenvectors of the graph
Laplacian.

manifold.trustworthiness(X, X_embedded,
*[, . . .])

Expresses to what extent the local structure is retained.

7.23.6 sklearn.manifold.locally_linear_embedding

sklearn.manifold.locally_linear_embedding(X, *, n_neighbors, n_components, reg=0.001,
eigen_solver=’auto’, tol=1e-06, max_iter=100,
method=’standard’, hessian_tol=0.0001,
modified_tol=1e-12, random_state=None,
n_jobs=None)

Perform a Locally Linear Embedding analysis on the data.

Read more in the User Guide.

Parameters

X [{array-like, NearestNeighbors}] Sample data, shape = (n_samples, n_features), in the form
of a numpy array or a NearestNeighbors object.

n_neighbors [integer] number of neighbors to consider for each point.

n_components [integer] number of coordinates for the manifold.

reg [float] regularization constant, multiplies the trace of the local covariance matrix of the
distances.

eigen_solver [string, {‘auto’, ‘arpack’, ‘dense’}] auto : algorithm will attempt to choose the
best method for input data

arpack [use arnoldi iteration in shift-invert mode.] For this method, M may be a dense
matrix, sparse matrix, or general linear operator. Warning: ARPACK can be unstable for
some problems. It is best to try several random seeds in order to check results.

dense [use standard dense matrix operations for the eigenvalue] decomposition. For this
method, M must be an array or matrix type. This method should be avoided for large
problems.

tol [float, optional] Tolerance for ‘arpack’ method Not used if eigen_solver==’dense’.

max_iter [integer] maximum number of iterations for the arpack solver.

method [{‘standard’, ‘hessian’, ‘modified’, ‘ltsa’}]

standard [use the standard locally linear embedding algorithm.] see reference [1]

hessian [use the Hessian eigenmap method. This method requires] n_neighbors >
n_components * (1 + (n_components + 1) / 2. see reference [2]

7.23. sklearn.manifold: Manifold Learning 2195

scikit-learn user guide, Release 0.23.2

modified [use the modified locally linear embedding algorithm.] see reference [3]

ltsa [use local tangent space alignment algorithm] see reference [4]

hessian_tol [float, optional] Tolerance for Hessian eigenmapping method. Only used if method
== ‘hessian’

modified_tol [float, optional] Tolerance for modified LLE method. Only used if method ==
‘modified’

random_state [int, RandomState instance, default=None] Determines the random number gen-
erator when solver == ‘arpack’. Pass an int for reproducible results across multiple func-
tion calls. See :term: Glossary <random_state>.

n_jobs [int or None, optional (default=None)] The number of parallel jobs to run for neighbors
search. None means 1 unless in a joblib.parallel_backend context. -1 means
using all processors. See Glossary for more details.

Returns

Y [array-like, shape [n_samples, n_components]] Embedding vectors.

squared_error [float] Reconstruction error for the embedding vectors. Equivalent to norm(Y
- W Y, 'fro')**2, where W are the reconstruction weights.

References

[1], [2], [3], [4]

Examples using sklearn.manifold.locally_linear_embedding

• Swiss Roll reduction with LLE

7.23.7 sklearn.manifold.smacof

sklearn.manifold.smacof(dissimilarities, *, metric=True, n_components=2, init=None, n_init=8,
n_jobs=None, max_iter=300, verbose=0, eps=0.001, random_state=None,
return_n_iter=False)

Computes multidimensional scaling using the SMACOF algorithm.

The SMACOF (Scaling by MAjorizing a COmplicated Function) algorithm is a multidimensional scaling algo-
rithm which minimizes an objective function (the stress) using a majorization technique. Stress majorization,
also known as the Guttman Transform, guarantees a monotone convergence of stress, and is more powerful than
traditional techniques such as gradient descent.

The SMACOF algorithm for metric MDS can summarized by the following steps:

1. Set an initial start configuration, randomly or not.

2. Compute the stress

3. Compute the Guttman Transform

4. Iterate 2 and 3 until convergence.

The nonmetric algorithm adds a monotonic regression step before computing the stress.

Parameters

2196 Chapter 7. API Reference

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

dissimilarities [ndarray, shape (n_samples, n_samples)] Pairwise dissimilarities between the
points. Must be symmetric.

metric [boolean, optional, default: True] Compute metric or nonmetric SMACOF algorithm.

n_components [int, optional, default: 2] Number of dimensions in which to immerse the dis-
similarities. If an init array is provided, this option is overridden and the shape of init
is used to determine the dimensionality of the embedding space.

init [ndarray, shape (n_samples, n_components), optional, default: None] Starting configura-
tion of the embedding to initialize the algorithm. By default, the algorithm is initialized
with a randomly chosen array.

n_init [int, optional, default: 8] Number of times the SMACOF algorithm will be run with
different initializations. The final results will be the best output of the runs, determined by
the run with the smallest final stress. If init is provided, this option is overridden and a
single run is performed.

n_jobs [int or None, optional (default=None)] The number of jobs to use for the computation.
If multiple initializations are used (n_init), each run of the algorithm is computed in
parallel.

None means 1 unless in a joblib.parallel_backend context. -1 means using all
processors. See Glossary for more details.

max_iter [int, optional, default: 300] Maximum number of iterations of the SMACOF algo-
rithm for a single run.

verbose [int, optional, default: 0] Level of verbosity.

eps [float, optional, default: 1e-3] Relative tolerance with respect to stress at which to declare
convergence.

random_state [int, RandomState instance, default=None] Determines the random number gen-
erator used to initialize the centers. Pass an int for reproducible results across multiple
function calls. See :term: Glossary <random_state>.

return_n_iter [bool, optional, default: False] Whether or not to return the number of iterations.

Returns

X [ndarray, shape (n_samples, n_components)] Coordinates of the points in a
n_components-space.

stress [float] The final value of the stress (sum of squared distance of the disparities and the
distances for all constrained points).

n_iter [int] The number of iterations corresponding to the best stress. Returned only if
return_n_iter is set to True.

Notes

“Modern Multidimensional Scaling - Theory and Applications” Borg, I.; Groenen P. Springer Series in Statistics
(1997)

“Nonmetric multidimensional scaling: a numerical method” Kruskal, J. Psychometrika, 29 (1964)

“Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis” Kruskal, J. Psychometrika,
29, (1964)

7.23. sklearn.manifold: Manifold Learning 2197

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

7.23.8 sklearn.manifold.spectral_embedding

sklearn.manifold.spectral_embedding(adjacency, *, n_components=8, eigen_solver=None,
random_state=None, eigen_tol=0.0,
norm_laplacian=True, drop_first=True)

Project the sample on the first eigenvectors of the graph Laplacian.

The adjacency matrix is used to compute a normalized graph Laplacian whose spectrum (especially the eigen-
vectors associated to the smallest eigenvalues) has an interpretation in terms of minimal number of cuts neces-
sary to split the graph into comparably sized components.

This embedding can also ‘work’ even if the adjacency variable is not strictly the adjacency matrix of a graph
but more generally an affinity or similarity matrix between samples (for instance the heat kernel of a euclidean
distance matrix or a k-NN matrix).

However care must taken to always make the affinity matrix symmetric so that the eigenvector decomposition
works as expected.

Note : Laplacian Eigenmaps is the actual algorithm implemented here.

Read more in the User Guide.

Parameters

adjacency [array-like or sparse graph, shape: (n_samples, n_samples)] The adjacency matrix
of the graph to embed.

n_components [integer, optional, default 8] The dimension of the projection subspace.

eigen_solver [{None, ‘arpack’, ‘lobpcg’, or ‘amg’}, default None] The eigenvalue decompo-
sition strategy to use. AMG requires pyamg to be installed. It can be faster on very large,
sparse problems, but may also lead to instabilities.

random_state [int, RandomState instance, default=None] Determines the random number gen-
erator used for the initialization of the lobpcg eigenvectors decomposition when solver
== ‘amg’. Pass an int for reproducible results across multiple function calls. See :term:
Glossary <random_state>.

eigen_tol [float, optional, default=0.0] Stopping criterion for eigendecomposition of the Lapla-
cian matrix when using arpack eigen_solver.

norm_laplacian [bool, optional, default=True] If True, then compute normalized Laplacian.

drop_first [bool, optional, default=True] Whether to drop the first eigenvector. For spectral em-
bedding, this should be True as the first eigenvector should be constant vector for connected
graph, but for spectral clustering, this should be kept as False to retain the first eigenvector.

Returns

embedding [array, shape=(n_samples, n_components)] The reduced samples.

Notes

Spectral Embedding (Laplacian Eigenmaps) is most useful when the graph has one connected component. If
there graph has many components, the first few eigenvectors will simply uncover the connected components of
the graph.

References

• https://en.wikipedia.org/wiki/LOBPCG

2198 Chapter 7. API Reference

https://en.wikipedia.org/wiki/LOBPCG

scikit-learn user guide, Release 0.23.2

• Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gra-
dient Method Andrew V. Knyazev https://doi.org/10.1137%2FS1064827500366124

7.23.9 sklearn.manifold.trustworthiness

sklearn.manifold.trustworthiness(X, X_embedded, *, n_neighbors=5, metric=’euclidean’)
Expresses to what extent the local structure is retained.

The trustworthiness is within [0, 1]. It is defined as

𝑇 (𝑘) = 1− 2

𝑛𝑘(2𝑛− 3𝑘 − 1)

𝑛∑︁
𝑖=1

∑︁
𝑗∈𝒩𝑘

𝑖

max(0, (𝑟(𝑖, 𝑗)− 𝑘))

where for each sample i, 𝒩 𝑘
𝑖 are its k nearest neighbors in the output space, and every sample j is its 𝑟(𝑖, 𝑗)-th

nearest neighbor in the input space. In other words, any unexpected nearest neighbors in the output space are
penalised in proportion to their rank in the input space.

• “Neighborhood Preservation in Nonlinear Projection Methods: An Experimental Study” J. Venna, S. Kaski

• “Learning a Parametric Embedding by Preserving Local Structure” L.J.P. van der Maaten

Parameters

X [array, shape (n_samples, n_features) or (n_samples, n_samples)] If the metric is ‘precom-
puted’ X must be a square distance matrix. Otherwise it contains a sample per row.

X_embedded [array, shape (n_samples, n_components)] Embedding of the training data in
low-dimensional space.

n_neighbors [int, optional (default: 5)] Number of neighbors k that will be considered.

metric [string, or callable, optional, default ‘euclidean’] Which metric to use for computing
pairwise distances between samples from the original input space. If metric is ‘precom-
puted’, X must be a matrix of pairwise distances or squared distances. Otherwise, see the
documentation of argument metric in sklearn.pairwise.pairwise_distances for a list of avail-
able metrics.

New in version 0.20.

Returns

trustworthiness [float] Trustworthiness of the low-dimensional embedding.

7.24 sklearn.metrics: Metrics

See the Metrics and scoring: quantifying the quality of predictions section and the Pairwise metrics, Affinities and
Kernels section of the user guide for further details.

The sklearn.metrics module includes score functions, performance metrics and pairwise metrics and distance
computations.

7.24.1 Model Selection Interface

See the The scoring parameter: defining model evaluation rules section of the user guide for further details.

7.24. sklearn.metrics: Metrics 2199

https://doi.org/10.1137%2FS1064827500366124

scikit-learn user guide, Release 0.23.2

metrics.check_scoring(estimator[, scoring,
. . .])

Determine scorer from user options.

metrics.get_scorer(scoring) Get a scorer from string.
metrics.make_scorer(score_func, *[, . . .]) Make a scorer from a performance metric or loss func-

tion.

sklearn.metrics.check_scoring

sklearn.metrics.check_scoring(estimator, scoring=None, *, allow_none=False)
Determine scorer from user options.

A TypeError will be thrown if the estimator cannot be scored.

Parameters

estimator [estimator object implementing ‘fit’] The object to use to fit the data.

scoring [string, callable or None, optional, default: None] A string (see model evaluation doc-
umentation) or a scorer callable object / function with signature scorer(estimator,
X, y).

allow_none [boolean, optional, default: False] If no scoring is specified and the estimator has
no score function, we can either return None or raise an exception.

Returns

scoring [callable] A scorer callable object / function with signature scorer(estimator,
X, y).

sklearn.metrics.get_scorer

sklearn.metrics.get_scorer(scoring)
Get a scorer from string.

Read more in the User Guide.

Parameters

scoring [str | callable] scoring method as string. If callable it is returned as is.

Returns

scorer [callable] The scorer.

sklearn.metrics.make_scorer

sklearn.metrics.make_scorer(score_func, *, greater_is_better=True, needs_proba=False,
needs_threshold=False, **kwargs)

Make a scorer from a performance metric or loss function.

This factory function wraps scoring functions for use in GridSearchCV and cross_val_score. It takes
a score function, such as accuracy_score, mean_squared_error, adjusted_rand_index or
average_precision and returns a callable that scores an estimator’s output.

Read more in the User Guide.

Parameters

2200 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

score_func [callable,] Score function (or loss function) with signature score_func(y,
y_pred, **kwargs).

greater_is_better [boolean, default=True] Whether score_func is a score function (default),
meaning high is good, or a loss function, meaning low is good. In the latter case, the scorer
object will sign-flip the outcome of the score_func.

needs_proba [boolean, default=False] Whether score_func requires predict_proba to get prob-
ability estimates out of a classifier.

If True, for binary y_true, the score function is supposed to accept a 1D y_pred (i.e.,
probability of the positive class, shape (n_samples,)).

needs_threshold [boolean, default=False] Whether score_func takes a continuous decision cer-
tainty. This only works for binary classification using estimators that have either a deci-
sion_function or predict_proba method.

If True, for binary y_true, the score function is supposed to accept a 1D y_pred (i.e.,
probability of the positive class or the decision function, shape (n_samples,)).

For example average_precision or the area under the roc curve can not be computed
using discrete predictions alone.

**kwargs [additional arguments] Additional parameters to be passed to score_func.

Returns

scorer [callable] Callable object that returns a scalar score; greater is better.

Notes

If needs_proba=False and needs_threshold=False, the score function is supposed to accept the
output of predict. If needs_proba=True, the score function is supposed to accept the output of pre-
dict_proba (For binary y_true, the score function is supposed to accept probability of the positive class).
If needs_threshold=True, the score function is supposed to accept the output of decision_function.

Examples

>>> from sklearn.metrics import fbeta_score, make_scorer
>>> ftwo_scorer = make_scorer(fbeta_score, beta=2)
>>> ftwo_scorer
make_scorer(fbeta_score, beta=2)
>>> from sklearn.model_selection import GridSearchCV
>>> from sklearn.svm import LinearSVC
>>> grid = GridSearchCV(LinearSVC(), param_grid={'C': [1, 10]},
... scoring=ftwo_scorer)

Examples using sklearn.metrics.make_scorer

• Demonstration of multi-metric evaluation on cross_val_score and GridSearchCV

7.24.2 Classification metrics

See the Classification metrics section of the user guide for further details.

7.24. sklearn.metrics: Metrics 2201

scikit-learn user guide, Release 0.23.2

metrics.accuracy_score(y_true, y_pred, *[,
. . .])

Accuracy classification score.

metrics.auc(x, y) Compute Area Under the Curve (AUC) using the trape-
zoidal rule

metrics.average_precision_score(y_true,
. . .)

Compute average precision (AP) from prediction scores

metrics.balanced_accuracy_score(y_true,
. . .)

Compute the balanced accuracy

metrics.brier_score_loss(y_true, y_prob, *) Compute the Brier score.
metrics.classification_report(y_true,
y_pred, *)

Build a text report showing the main classification met-
rics.

metrics.cohen_kappa_score(y1, y2, *[, . . .]) Cohen’s kappa: a statistic that measures inter-annotator
agreement.

metrics.confusion_matrix(y_true, y_pred, *) Compute confusion matrix to evaluate the accuracy of a
classification.

metrics.dcg_score(y_true, y_score, *[, k, . . .]) Compute Discounted Cumulative Gain.
metrics.f1_score(y_true, y_pred, *[, . . .]) Compute the F1 score, also known as balanced F-score

or F-measure
metrics.fbeta_score(y_true, y_pred, *, beta) Compute the F-beta score
metrics.hamming_loss(y_true, y_pred, *[, . . .]) Compute the average Hamming loss.
metrics.hinge_loss(y_true, pred_decision, *) Average hinge loss (non-regularized)
metrics.jaccard_score(y_true, y_pred, *[,
. . .])

Jaccard similarity coefficient score

metrics.log_loss(y_true, y_pred, *[, eps, . . .]) Log loss, aka logistic loss or cross-entropy loss.
metrics.matthews_corrcoef(y_true, y_pred,
*)

Compute the Matthews correlation coefficient (MCC)

metrics.multilabel_confusion_matrix(y_true,
. . .)

Compute a confusion matrix for each class or sample

metrics.ndcg_score(y_true, y_score, *[, k, . . .]) Compute Normalized Discounted Cumulative Gain.
metrics.precision_recall_curve(y_true,
. . .)

Compute precision-recall pairs for different probability
thresholds

metrics.precision_recall_fscore_support(. . .)Compute precision, recall, F-measure and support for
each class

metrics.precision_score(y_true, y_pred, *[,
. . .])

Compute the precision

metrics.recall_score(y_true, y_pred, *[, . . .]) Compute the recall
metrics.roc_auc_score(y_true, y_score, *[,
. . .])

Compute Area Under the Receiver Operating Charac-
teristic Curve (ROC AUC) from prediction scores.

metrics.roc_curve(y_true, y_score, *[, . . .]) Compute Receiver operating characteristic (ROC)
metrics.zero_one_loss(y_true, y_pred, *[,
. . .])

Zero-one classification loss.

sklearn.metrics.accuracy_score

sklearn.metrics.accuracy_score(y_true, y_pred, *, normalize=True, sample_weight=None)
Accuracy classification score.

In multilabel classification, this function computes subset accuracy: the set of labels predicted for a sample must
exactly match the corresponding set of labels in y_true.

Read more in the User Guide.

Parameters

2202 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

y_true [1d array-like, or label indicator array / sparse matrix] Ground truth (correct) labels.

y_pred [1d array-like, or label indicator array / sparse matrix] Predicted labels, as returned by
a classifier.

normalize [bool, optional (default=True)] If False, return the number of correctly classified
samples. Otherwise, return the fraction of correctly classified samples.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] If normalize == True, return the fraction of correctly classified samples
(float), else returns the number of correctly classified samples (int).

The best performance is 1 with normalize == True and the number of samples with
normalize == False.

See also:

jaccard_score, hamming_loss, zero_one_loss

Notes

In binary and multiclass classification, this function is equal to the jaccard_score function.

Examples

>>> from sklearn.metrics import accuracy_score
>>> y_pred = [0, 2, 1, 3]
>>> y_true = [0, 1, 2, 3]
>>> accuracy_score(y_true, y_pred)
0.5
>>> accuracy_score(y_true, y_pred, normalize=False)
2

In the multilabel case with binary label indicators:

>>> import numpy as np
>>> accuracy_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
0.5

Examples using sklearn.metrics.accuracy_score

• Plot classification probability

• Multi-class AdaBoosted Decision Trees

• Probabilistic predictions with Gaussian process classification (GPC)

• Demonstration of multi-metric evaluation on cross_val_score and GridSearchCV

• Importance of Feature Scaling

• Classification of text documents using sparse features

7.24. sklearn.metrics: Metrics 2203

scikit-learn user guide, Release 0.23.2

sklearn.metrics.auc

sklearn.metrics.auc(x, y)
Compute Area Under the Curve (AUC) using the trapezoidal rule

This is a general function, given points on a curve. For computing the area under the ROC-
curve, see roc_auc_score. For an alternative way to summarize a precision-recall curve, see
average_precision_score.

Parameters

x [array, shape = [n]] x coordinates. These must be either monotonic increasing or monotonic
decreasing.

y [array, shape = [n]] y coordinates.

Returns

auc [float]

See also:

roc_auc_score Compute the area under the ROC curve

average_precision_score Compute average precision from prediction scores

precision_recall_curve Compute precision-recall pairs for different probability thresholds

Examples

>>> import numpy as np
>>> from sklearn import metrics
>>> y = np.array([1, 1, 2, 2])
>>> pred = np.array([0.1, 0.4, 0.35, 0.8])
>>> fpr, tpr, thresholds = metrics.roc_curve(y, pred, pos_label=2)
>>> metrics.auc(fpr, tpr)
0.75

Examples using sklearn.metrics.auc

• Species distribution modeling

• Poisson regression and non-normal loss

• Tweedie regression on insurance claims

• Receiver Operating Characteristic (ROC) with cross validation

• Receiver Operating Characteristic (ROC)

• Precision-Recall

sklearn.metrics.average_precision_score

sklearn.metrics.average_precision_score(y_true, y_score, *, average=’macro’, pos_label=1,
sample_weight=None)

Compute average precision (AP) from prediction scores

2204 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

AP summarizes a precision-recall curve as the weighted mean of precisions achieved at each threshold, with the
increase in recall from the previous threshold used as the weight:

AP =
∑︁
𝑛

(𝑅𝑛 −𝑅𝑛−1)𝑃𝑛

where 𝑃𝑛 and 𝑅𝑛 are the precision and recall at the nth threshold [1]. This implementation is not interpolated
and is different from computing the area under the precision-recall curve with the trapezoidal rule, which uses
linear interpolation and can be too optimistic.

Note: this implementation is restricted to the binary classification task or multilabel classification task.

Read more in the User Guide.

Parameters

y_true [array, shape = [n_samples] or [n_samples, n_classes]] True binary labels or binary label
indicators.

y_score [array, shape = [n_samples] or [n_samples, n_classes]] Target scores, can either be
probability estimates of the positive class, confidence values, or non-thresholded measure
of decisions (as returned by “decision_function” on some classifiers).

average [string, [None, ‘micro’, ‘macro’ (default), ‘samples’, ‘weighted’]] If None, the scores
for each class are returned. Otherwise, this determines the type of averaging performed on
the data:

'micro': Calculate metrics globally by considering each element of the label indicator
matrix as a label.

'macro': Calculate metrics for each label, and find their unweighted mean. This does not
take label imbalance into account.

'weighted': Calculate metrics for each label, and find their average, weighted by sup-
port (the number of true instances for each label).

'samples': Calculate metrics for each instance, and find their average.

Will be ignored when y_true is binary.

pos_label [int or str (default=1)] The label of the positive class. Only applied to binary
y_true. For multilabel-indicator y_true, pos_label is fixed to 1.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

average_precision [float]

See also:

roc_auc_score Compute the area under the ROC curve

precision_recall_curve Compute precision-recall pairs for different probability thresholds

Notes

Changed in version 0.19: Instead of linearly interpolating between operating points, precisions are weighted by
the change in recall since the last operating point.

7.24. sklearn.metrics: Metrics 2205

scikit-learn user guide, Release 0.23.2

References

[1]

Examples

>>> import numpy as np
>>> from sklearn.metrics import average_precision_score
>>> y_true = np.array([0, 0, 1, 1])
>>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> average_precision_score(y_true, y_scores)
0.83...

Examples using sklearn.metrics.average_precision_score

• Precision-Recall

sklearn.metrics.balanced_accuracy_score

sklearn.metrics.balanced_accuracy_score(y_true, y_pred, *, sample_weight=None, ad-
justed=False)

Compute the balanced accuracy

The balanced accuracy in binary and multiclass classification problems to deal with imbalanced datasets. It is
defined as the average of recall obtained on each class.

The best value is 1 and the worst value is 0 when adjusted=False.

Read more in the User Guide.

New in version 0.20.

Parameters

y_true [1d array-like] Ground truth (correct) target values.

y_pred [1d array-like] Estimated targets as returned by a classifier.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

adjusted [bool, default=False] When true, the result is adjusted for chance, so that random
performance would score 0, and perfect performance scores 1.

Returns

balanced_accuracy [float]

See also:

recall_score, roc_auc_score

Notes

Some literature promotes alternative definitions of balanced accuracy. Our definition is equivalent to
accuracy_score with class-balanced sample weights, and shares desirable properties with the binary case.
See the User Guide.

2206 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

References

[1], [2]

Examples

>>> from sklearn.metrics import balanced_accuracy_score
>>> y_true = [0, 1, 0, 0, 1, 0]
>>> y_pred = [0, 1, 0, 0, 0, 1]
>>> balanced_accuracy_score(y_true, y_pred)
0.625

sklearn.metrics.brier_score_loss

sklearn.metrics.brier_score_loss(y_true, y_prob, *, sample_weight=None, pos_label=None)
Compute the Brier score.

The smaller the Brier score, the better, hence the naming with “loss”. Across all items in a set N predictions, the
Brier score measures the mean squared difference between (1) the predicted probability assigned to the possible
outcomes for item i, and (2) the actual outcome. Therefore, the lower the Brier score is for a set of predictions,
the better the predictions are calibrated. Note that the Brier score always takes on a value between zero and
one, since this is the largest possible difference between a predicted probability (which must be between zero
and one) and the actual outcome (which can take on values of only 0 and 1). The Brier loss is composed of
refinement loss and calibration loss. The Brier score is appropriate for binary and categorical outcomes that can
be structured as true or false, but is inappropriate for ordinal variables which can take on three or more values
(this is because the Brier score assumes that all possible outcomes are equivalently “distant” from one another).
Which label is considered to be the positive label is controlled via the parameter pos_label, which defaults to 1.
Read more in the User Guide.

Parameters

y_true [array, shape (n_samples,)] True targets.

y_prob [array, shape (n_samples,)] Probabilities of the positive class.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

pos_label [int or str, default=None] Label of the positive class. Defaults to the greater label
unless y_true is all 0 or all -1 in which case pos_label defaults to 1.

Returns

score [float] Brier score

References

[1]

Examples

>>> import numpy as np
>>> from sklearn.metrics import brier_score_loss
>>> y_true = np.array([0, 1, 1, 0])
>>> y_true_categorical = np.array(["spam", "ham", "ham", "spam"])

(continues on next page)

7.24. sklearn.metrics: Metrics 2207

scikit-learn user guide, Release 0.23.2

(continued from previous page)

>>> y_prob = np.array([0.1, 0.9, 0.8, 0.3])
>>> brier_score_loss(y_true, y_prob)
0.037...
>>> brier_score_loss(y_true, 1-y_prob, pos_label=0)
0.037...
>>> brier_score_loss(y_true_categorical, y_prob, pos_label="ham")
0.037...
>>> brier_score_loss(y_true, np.array(y_prob) > 0.5)
0.0

Examples using sklearn.metrics.brier_score_loss

• Probability Calibration curves

• Probability calibration of classifiers

sklearn.metrics.classification_report

sklearn.metrics.classification_report(y_true, y_pred, *, labels=None, target_names=None,
sample_weight=None, digits=2, output_dict=False,
zero_division=’warn’)

Build a text report showing the main classification metrics.

Read more in the User Guide.

Parameters

y_true [1d array-like, or label indicator array / sparse matrix] Ground truth (correct) target
values.

y_pred [1d array-like, or label indicator array / sparse matrix] Estimated targets as returned by
a classifier.

labels [array, shape = [n_labels]] Optional list of label indices to include in the report.

target_names [list of strings] Optional display names matching the labels (same order).

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

digits [int] Number of digits for formatting output floating point values. When output_dict
is True, this will be ignored and the returned values will not be rounded.

output_dict [bool (default = False)] If True, return output as dict

New in version 0.20.

zero_division [“warn”, 0 or 1, default=”warn”] Sets the value to return when there is a zero
division. If set to “warn”, this acts as 0, but warnings are also raised.

Returns

report [string / dict] Text summary of the precision, recall, F1 score for each class. Dictionary
returned if output_dict is True. Dictionary has the following structure:

{'label 1': {'precision':0.5,
'recall':1.0,
'f1-score':0.67,
'support':1},

(continues on next page)

2208 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

(continued from previous page)

'label 2': { ... },
...

}

The reported averages include macro average (averaging the unweighted mean per la-
bel), weighted average (averaging the support-weighted mean per label), and sample
average (only for multilabel classification). Micro average (averaging the total true
positives, false negatives and false positives) is only shown for multi-label or multi-
class with a subset of classes, because it corresponds to accuracy otherwise. See also
precision_recall_fscore_support for more details on averages.

Note that in binary classification, recall of the positive class is also known as “sensitivity”;
recall of the negative class is “specificity”.

See also:

precision_recall_fscore_support, confusion_matrix

multilabel_confusion_matrix

Examples

>>> from sklearn.metrics import classification_report
>>> y_true = [0, 1, 2, 2, 2]
>>> y_pred = [0, 0, 2, 2, 1]
>>> target_names = ['class 0', 'class 1', 'class 2']
>>> print(classification_report(y_true, y_pred, target_names=target_names))

precision recall f1-score support
<BLANKLINE>

class 0 0.50 1.00 0.67 1
class 1 0.00 0.00 0.00 1
class 2 1.00 0.67 0.80 3

<BLANKLINE>
accuracy 0.60 5

macro avg 0.50 0.56 0.49 5
weighted avg 0.70 0.60 0.61 5
<BLANKLINE>
>>> y_pred = [1, 1, 0]
>>> y_true = [1, 1, 1]
>>> print(classification_report(y_true, y_pred, labels=[1, 2, 3]))

precision recall f1-score support
<BLANKLINE>

1 1.00 0.67 0.80 3
2 0.00 0.00 0.00 0
3 0.00 0.00 0.00 0

<BLANKLINE>
micro avg 1.00 0.67 0.80 3
macro avg 0.33 0.22 0.27 3

weighted avg 1.00 0.67 0.80 3
<BLANKLINE>

Examples using sklearn.metrics.classification_report

• Recognizing hand-written digits

7.24. sklearn.metrics: Metrics 2209

scikit-learn user guide, Release 0.23.2

• Faces recognition example using eigenfaces and SVMs

• Pipeline Anova SVM

• Parameter estimation using grid search with cross-validation

• Restricted Boltzmann Machine features for digit classification

• Column Transformer with Heterogeneous Data Sources

• Label Propagation digits: Demonstrating performance

• Label Propagation digits active learning

• Classification of text documents using sparse features

sklearn.metrics.cohen_kappa_score

sklearn.metrics.cohen_kappa_score(y1, y2, *, labels=None, weights=None, sam-
ple_weight=None)

Cohen’s kappa: a statistic that measures inter-annotator agreement.

This function computes Cohen’s kappa [1], a score that expresses the level of agreement between two annotators
on a classification problem. It is defined as

𝜅 = (𝑝𝑜 − 𝑝𝑒)/(1− 𝑝𝑒)

where 𝑝𝑜 is the empirical probability of agreement on the label assigned to any sample (the observed agreement
ratio), and 𝑝𝑒 is the expected agreement when both annotators assign labels randomly. 𝑝𝑒 is estimated using a
per-annotator empirical prior over the class labels [2].

Read more in the User Guide.

Parameters

y1 [array, shape = [n_samples]] Labels assigned by the first annotator.

y2 [array, shape = [n_samples]] Labels assigned by the second annotator. The kappa statistic is
symmetric, so swapping y1 and y2 doesn’t change the value.

labels [array, shape = [n_classes], optional] List of labels to index the matrix. This may be used
to select a subset of labels. If None, all labels that appear at least once in y1 or y2 are used.

weights [str, optional] Weighting type to calculate the score. None means no weighted; “linear”
means linear weighted; “quadratic” means quadratic weighted.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

kappa [float] The kappa statistic, which is a number between -1 and 1. The maximum value
means complete agreement; zero or lower means chance agreement.

References

[1], [2], [3]

2210 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

sklearn.metrics.confusion_matrix

sklearn.metrics.confusion_matrix(y_true, y_pred, *, labels=None, sample_weight=None, nor-
malize=None)

Compute confusion matrix to evaluate the accuracy of a classification.

By definition a confusion matrix 𝐶 is such that 𝐶𝑖,𝑗 is equal to the number of observations known to be in group
𝑖 and predicted to be in group 𝑗.

Thus in binary classification, the count of true negatives is 𝐶0,0, false negatives is 𝐶1,0, true positives is 𝐶1,1

and false positives is 𝐶0,1.

Read more in the User Guide.

Parameters

y_true [array-like of shape (n_samples,)] Ground truth (correct) target values.

y_pred [array-like of shape (n_samples,)] Estimated targets as returned by a classifier.

labels [array-like of shape (n_classes), default=None] List of labels to index the matrix. This
may be used to reorder or select a subset of labels. If None is given, those that appear at
least once in y_true or y_pred are used in sorted order.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

New in version 0.18.

normalize [{‘true’, ‘pred’, ‘all’}, default=None] Normalizes confusion matrix over the true
(rows), predicted (columns) conditions or all the population. If None, confusion matrix will
not be normalized.

Returns

C [ndarray of shape (n_classes, n_classes)] Confusion matrix whose i-th row and j-th column
entry indicates the number of samples with true label being i-th class and prediced label
being j-th class.

References

[1]

Examples

>>> from sklearn.metrics import confusion_matrix
>>> y_true = [2, 0, 2, 2, 0, 1]
>>> y_pred = [0, 0, 2, 2, 0, 2]
>>> confusion_matrix(y_true, y_pred)
array([[2, 0, 0],

[0, 0, 1],
[1, 0, 2]])

>>> y_true = ["cat", "ant", "cat", "cat", "ant", "bird"]
>>> y_pred = ["ant", "ant", "cat", "cat", "ant", "cat"]
>>> confusion_matrix(y_true, y_pred, labels=["ant", "bird", "cat"])
array([[2, 0, 0],

[0, 0, 1],
[1, 0, 2]])

7.24. sklearn.metrics: Metrics 2211

scikit-learn user guide, Release 0.23.2

In the binary case, we can extract true positives, etc as follows:

>>> tn, fp, fn, tp = confusion_matrix([0, 1, 0, 1], [1, 1, 1, 0]).ravel()
>>> (tn, fp, fn, tp)
(0, 2, 1, 1)

Examples using sklearn.metrics.confusion_matrix

• Faces recognition example using eigenfaces and SVMs

• Visualizations with Display Objects

• Label Propagation digits: Demonstrating performance

• Label Propagation digits active learning

• Classification of text documents using sparse features

sklearn.metrics.dcg_score

sklearn.metrics.dcg_score(y_true, y_score, *, k=None, log_base=2, sample_weight=None, ig-
nore_ties=False)

Compute Discounted Cumulative Gain.

Sum the true scores ranked in the order induced by the predicted scores, after applying a logarithmic discount.

This ranking metric yields a high value if true labels are ranked high by y_score.

Usually the Normalized Discounted Cumulative Gain (NDCG, computed by ndcg_score) is preferred.

Parameters

y_true [ndarray, shape (n_samples, n_labels)] True targets of multilabel classification, or true
scores of entities to be ranked.

y_score [ndarray, shape (n_samples, n_labels)] Target scores, can either be probability esti-
mates, confidence values, or non-thresholded measure of decisions (as returned by “deci-
sion_function” on some classifiers).

k [int, optional (default=None)] Only consider the highest k scores in the ranking. If None, use
all outputs.

log_base [float, optional (default=2)] Base of the logarithm used for the discount. A low value
means a sharper discount (top results are more important).

sample_weight [ndarray, shape (n_samples,), optional (default=None)] Sample weights. If
None, all samples are given the same weight.

ignore_ties [bool, optional (default=False)] Assume that there are no ties in y_score (which is
likely to be the case if y_score is continuous) for efficiency gains.

Returns

discounted_cumulative_gain [float] The averaged sample DCG scores.

See also:

ndcg_score The Discounted Cumulative Gain divided by the Ideal Discounted Cumulative Gain (the DCG
obtained for a perfect ranking), in order to have a score between 0 and 1.

2212 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

References

Wikipedia entry for Discounted Cumulative Gain

Jarvelin, K., & Kekalainen, J. (2002). Cumulated gain-based evaluation of IR techniques. ACM Transactions
on Information Systems (TOIS), 20(4), 422-446.

Wang, Y., Wang, L., Li, Y., He, D., Chen, W., & Liu, T. Y. (2013, May). A theoretical analysis of NDCG ranking
measures. In Proceedings of the 26th Annual Conference on Learning Theory (COLT 2013)

McSherry, F., & Najork, M. (2008, March). Computing information retrieval performance measures efficiently
in the presence of tied scores. In European conference on information retrieval (pp. 414-421). Springer, Berlin,
Heidelberg.

Examples

>>> from sklearn.metrics import dcg_score
>>> # we have groud-truth relevance of some answers to a query:
>>> true_relevance = np.asarray([[10, 0, 0, 1, 5]])
>>> # we predict scores for the answers
>>> scores = np.asarray([[.1, .2, .3, 4, 70]])
>>> dcg_score(true_relevance, scores)
9.49...
>>> # we can set k to truncate the sum; only top k answers contribute
>>> dcg_score(true_relevance, scores, k=2)
5.63...
>>> # now we have some ties in our prediction
>>> scores = np.asarray([[1, 0, 0, 0, 1]])
>>> # by default ties are averaged, so here we get the average true
>>> # relevance of our top predictions: (10 + 5) / 2 = 7.5
>>> dcg_score(true_relevance, scores, k=1)
7.5
>>> # we can choose to ignore ties for faster results, but only
>>> # if we know there aren't ties in our scores, otherwise we get
>>> # wrong results:
>>> dcg_score(true_relevance,
... scores, k=1, ignore_ties=True)
5.0

sklearn.metrics.f1_score

sklearn.metrics.f1_score(y_true, y_pred, *, labels=None, pos_label=1, average=’binary’, sam-
ple_weight=None, zero_division=’warn’)

Compute the F1 score, also known as balanced F-score or F-measure

The F1 score can be interpreted as a weighted average of the precision and recall, where an F1 score reaches its
best value at 1 and worst score at 0. The relative contribution of precision and recall to the F1 score are equal.
The formula for the F1 score is:

F1 = 2 * (precision * recall) / (precision + recall)

In the multi-class and multi-label case, this is the average of the F1 score of each class with weighting depending
on the average parameter.

Read more in the User Guide.

Parameters

7.24. sklearn.metrics: Metrics 2213

https://en.wikipedia.org/wiki/Discounted_cumulative_gain

scikit-learn user guide, Release 0.23.2

y_true [1d array-like, or label indicator array / sparse matrix] Ground truth (correct) target
values.

y_pred [1d array-like, or label indicator array / sparse matrix] Estimated targets as returned by
a classifier.

labels [list, optional] The set of labels to include when average != 'binary', and their
order if average is None. Labels present in the data can be excluded, for example to
calculate a multiclass average ignoring a majority negative class, while labels not present in
the data will result in 0 components in a macro average. For multilabel targets, labels are
column indices. By default, all labels in y_true and y_pred are used in sorted order.

Changed in version 0.17: parameter labels improved for multiclass problem.

pos_label [str or int, 1 by default] The class to report if average='binary' and the
data is binary. If the data are multiclass or multilabel, this will be ignored; setting
labels=[pos_label] and average != 'binary' will report scores for that la-
bel only.

average [string, [None, ‘binary’ (default), ‘micro’, ‘macro’, ‘samples’, ‘weighted’]] This pa-
rameter is required for multiclass/multilabel targets. If None, the scores for each class are
returned. Otherwise, this determines the type of averaging performed on the data:

'binary': Only report results for the class specified by pos_label. This is applicable
only if targets (y_{true,pred}) are binary.

'micro': Calculate metrics globally by counting the total true positives, false negatives
and false positives.

'macro': Calculate metrics for each label, and find their unweighted mean. This does not
take label imbalance into account.

'weighted': Calculate metrics for each label, and find their average weighted by support
(the number of true instances for each label). This alters ‘macro’ to account for label
imbalance; it can result in an F-score that is not between precision and recall.

'samples': Calculate metrics for each instance, and find their average (only meaningful
for multilabel classification where this differs from accuracy_score).

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

zero_division [“warn”, 0 or 1, default=”warn”] Sets the value to return when there is a zero
division, i.e. when all predictions and labels are negative. If set to “warn”, this acts as 0, but
warnings are also raised.

Returns

f1_score [float or array of float, shape = [n_unique_labels]] F1 score of the positive class in
binary classification or weighted average of the F1 scores of each class for the multiclass
task.

See also:

fbeta_score, precision_recall_fscore_support, jaccard_score

multilabel_confusion_matrix

Notes

When true positive + false positive == 0, precision is undefined; When true positive
+ false negative == 0, recall is undefined. In such cases, by default the metric will be set to 0,

2214 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

as will f-score, and UndefinedMetricWarning will be raised. This behavior can be modified with
zero_division.

References

[1]

Examples

>>> from sklearn.metrics import f1_score
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> f1_score(y_true, y_pred, average='macro')
0.26...
>>> f1_score(y_true, y_pred, average='micro')
0.33...
>>> f1_score(y_true, y_pred, average='weighted')
0.26...
>>> f1_score(y_true, y_pred, average=None)
array([0.8, 0. , 0.])
>>> y_true = [0, 0, 0, 0, 0, 0]
>>> y_pred = [0, 0, 0, 0, 0, 0]
>>> f1_score(y_true, y_pred, zero_division=1)
1.0...

Examples using sklearn.metrics.f1_score

• Probability Calibration curves

• Precision-Recall

sklearn.metrics.fbeta_score

sklearn.metrics.fbeta_score(y_true, y_pred, *, beta, labels=None, pos_label=1, aver-
age=’binary’, sample_weight=None, zero_division=’warn’)

Compute the F-beta score

The F-beta score is the weighted harmonic mean of precision and recall, reaching its optimal value at 1 and its
worst value at 0.

The beta parameter determines the weight of recall in the combined score. beta < 1 lends more weight
to precision, while beta > 1 favors recall (beta -> 0 considers only precision, beta -> +inf only
recall).

Read more in the User Guide.

Parameters

y_true [1d array-like, or label indicator array / sparse matrix] Ground truth (correct) target
values.

y_pred [1d array-like, or label indicator array / sparse matrix] Estimated targets as returned by
a classifier.

beta [float] Determines the weight of recall in the combined score.

7.24. sklearn.metrics: Metrics 2215

scikit-learn user guide, Release 0.23.2

labels [list, optional] The set of labels to include when average != 'binary', and their
order if average is None. Labels present in the data can be excluded, for example to
calculate a multiclass average ignoring a majority negative class, while labels not present in
the data will result in 0 components in a macro average. For multilabel targets, labels are
column indices. By default, all labels in y_true and y_pred are used in sorted order.

Changed in version 0.17: parameter labels improved for multiclass problem.

pos_label [str or int, 1 by default] The class to report if average='binary' and the
data is binary. If the data are multiclass or multilabel, this will be ignored; setting
labels=[pos_label] and average != 'binary' will report scores for that la-
bel only.

average [string, [None, ‘binary’ (default), ‘micro’, ‘macro’, ‘samples’, ‘weighted’]] This pa-
rameter is required for multiclass/multilabel targets. If None, the scores for each class are
returned. Otherwise, this determines the type of averaging performed on the data:

'binary': Only report results for the class specified by pos_label. This is applicable
only if targets (y_{true,pred}) are binary.

'micro': Calculate metrics globally by counting the total true positives, false negatives
and false positives.

'macro': Calculate metrics for each label, and find their unweighted mean. This does not
take label imbalance into account.

'weighted': Calculate metrics for each label, and find their average weighted by support
(the number of true instances for each label). This alters ‘macro’ to account for label
imbalance; it can result in an F-score that is not between precision and recall.

'samples': Calculate metrics for each instance, and find their average (only meaningful
for multilabel classification where this differs from accuracy_score).

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

zero_division [“warn”, 0 or 1, default=”warn”] Sets the value to return when there is a zero
division, i.e. when all predictions and labels are negative. If set to “warn”, this acts as 0, but
warnings are also raised.

Returns

fbeta_score [float (if average is not None) or array of float, shape = [n_unique_labels]] F-beta
score of the positive class in binary classification or weighted average of the F-beta score of
each class for the multiclass task.

See also:

precision_recall_fscore_support, multilabel_confusion_matrix

Notes

When true positive + false positive == 0 or true positive + false negative
== 0, f-score returns 0 and raises UndefinedMetricWarning. This behavior can be modified with
zero_division.

References

[1], [2]

2216 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Examples

>>> from sklearn.metrics import fbeta_score
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> fbeta_score(y_true, y_pred, average='macro', beta=0.5)
0.23...
>>> fbeta_score(y_true, y_pred, average='micro', beta=0.5)
0.33...
>>> fbeta_score(y_true, y_pred, average='weighted', beta=0.5)
0.23...
>>> fbeta_score(y_true, y_pred, average=None, beta=0.5)
array([0.71..., 0. , 0.])

sklearn.metrics.hamming_loss

sklearn.metrics.hamming_loss(y_true, y_pred, *, sample_weight=None)
Compute the average Hamming loss.

The Hamming loss is the fraction of labels that are incorrectly predicted.

Read more in the User Guide.

Parameters

y_true [1d array-like, or label indicator array / sparse matrix] Ground truth (correct) labels.

y_pred [1d array-like, or label indicator array / sparse matrix] Predicted labels, as returned by
a classifier.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

New in version 0.18.

Returns

loss [float or int,] Return the average Hamming loss between element of y_true and y_pred.

See also:

accuracy_score, jaccard_score, zero_one_loss

Notes

In multiclass classification, the Hamming loss corresponds to the Hamming distance between y_true and
y_pred which is equivalent to the subset zero_one_loss function, when normalize parameter is set to
True.

In multilabel classification, the Hamming loss is different from the subset zero-one loss. The zero-one loss
considers the entire set of labels for a given sample incorrect if it does not entirely match the true set of labels.
Hamming loss is more forgiving in that it penalizes only the individual labels.

The Hamming loss is upperbounded by the subset zero-one loss, when normalize parameter is set to True. It
is always between 0 and 1, lower being better.

References

[1], [2]

7.24. sklearn.metrics: Metrics 2217

scikit-learn user guide, Release 0.23.2

Examples

>>> from sklearn.metrics import hamming_loss
>>> y_pred = [1, 2, 3, 4]
>>> y_true = [2, 2, 3, 4]
>>> hamming_loss(y_true, y_pred)
0.25

In the multilabel case with binary label indicators:

>>> import numpy as np
>>> hamming_loss(np.array([[0, 1], [1, 1]]), np.zeros((2, 2)))
0.75

Examples using sklearn.metrics.hamming_loss

• Model Complexity Influence

sklearn.metrics.hinge_loss

sklearn.metrics.hinge_loss(y_true, pred_decision, *, labels=None, sample_weight=None)
Average hinge loss (non-regularized)

In binary class case, assuming labels in y_true are encoded with +1 and -1, when a prediction mistake is
made, margin = y_true * pred_decision is always negative (since the signs disagree), implying
1 - margin is always greater than 1. The cumulated hinge loss is therefore an upper bound of the number of
mistakes made by the classifier.

In multiclass case, the function expects that either all the labels are included in y_true or an optional labels
argument is provided which contains all the labels. The multilabel margin is calculated according to Crammer-
Singer’s method. As in the binary case, the cumulated hinge loss is an upper bound of the number of mistakes
made by the classifier.

Read more in the User Guide.

Parameters

y_true [array, shape = [n_samples]] True target, consisting of integers of two values. The
positive label must be greater than the negative label.

pred_decision [array, shape = [n_samples] or [n_samples, n_classes]] Predicted decisions, as
output by decision_function (floats).

labels [array, optional, default None] Contains all the labels for the problem. Used in multiclass
hinge loss.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

loss [float]

References

[1], [2], [3]

2218 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Examples

>>> from sklearn import svm
>>> from sklearn.metrics import hinge_loss
>>> X = [[0], [1]]
>>> y = [-1, 1]
>>> est = svm.LinearSVC(random_state=0)
>>> est.fit(X, y)
LinearSVC(random_state=0)
>>> pred_decision = est.decision_function([[-2], [3], [0.5]])
>>> pred_decision
array([-2.18..., 2.36..., 0.09...])
>>> hinge_loss([-1, 1, 1], pred_decision)
0.30...

In the multiclass case:

>>> import numpy as np
>>> X = np.array([[0], [1], [2], [3]])
>>> Y = np.array([0, 1, 2, 3])
>>> labels = np.array([0, 1, 2, 3])
>>> est = svm.LinearSVC()
>>> est.fit(X, Y)
LinearSVC()
>>> pred_decision = est.decision_function([[-1], [2], [3]])
>>> y_true = [0, 2, 3]
>>> hinge_loss(y_true, pred_decision, labels=labels)
0.56...

sklearn.metrics.jaccard_score

sklearn.metrics.jaccard_score(y_true, y_pred, *, labels=None, pos_label=1, average=’binary’,
sample_weight=None)

Jaccard similarity coefficient score

The Jaccard index [1], or Jaccard similarity coefficient, defined as the size of the intersection divided by the size
of the union of two label sets, is used to compare set of predicted labels for a sample to the corresponding set of
labels in y_true.

Read more in the User Guide.

Parameters

y_true [1d array-like, or label indicator array / sparse matrix] Ground truth (correct) labels.

y_pred [1d array-like, or label indicator array / sparse matrix] Predicted labels, as returned by
a classifier.

labels [list, optional] The set of labels to include when average != 'binary', and their
order if average is None. Labels present in the data can be excluded, for example to
calculate a multiclass average ignoring a majority negative class, while labels not present in
the data will result in 0 components in a macro average. For multilabel targets, labels are
column indices. By default, all labels in y_true and y_pred are used in sorted order.

pos_label [str or int, 1 by default] The class to report if average='binary' and the
data is binary. If the data are multiclass or multilabel, this will be ignored; setting
labels=[pos_label] and average != 'binary' will report scores for that la-
bel only.

7.24. sklearn.metrics: Metrics 2219

scikit-learn user guide, Release 0.23.2

average [string, [None, ‘binary’ (default), ‘micro’, ‘macro’, ‘samples’, ‘weighted’]] If None,
the scores for each class are returned. Otherwise, this determines the type of averaging
performed on the data:

'binary': Only report results for the class specified by pos_label. This is applicable
only if targets (y_{true,pred}) are binary.

'micro': Calculate metrics globally by counting the total true positives, false negatives
and false positives.

'macro': Calculate metrics for each label, and find their unweighted mean. This does not
take label imbalance into account.

'weighted': Calculate metrics for each label, and find their average, weighted by sup-
port (the number of true instances for each label). This alters ‘macro’ to account for label
imbalance.

'samples': Calculate metrics for each instance, and find their average (only meaningful
for multilabel classification).

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float (if average is not None) or array of floats, shape = [n_unique_labels]]

See also:

accuracy_score, f_score, multilabel_confusion_matrix

Notes

jaccard_score may be a poor metric if there are no positives for some samples or classes. Jaccard is
undefined if there are no true or predicted labels, and our implementation will return a score of 0 with a warning.

References

[1]

Examples

>>> import numpy as np
>>> from sklearn.metrics import jaccard_score
>>> y_true = np.array([[0, 1, 1],
... [1, 1, 0]])
>>> y_pred = np.array([[1, 1, 1],
... [1, 0, 0]])

In the binary case:

>>> jaccard_score(y_true[0], y_pred[0])
0.6666...

In the multilabel case:

2220 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

>>> jaccard_score(y_true, y_pred, average='samples')
0.5833...
>>> jaccard_score(y_true, y_pred, average='macro')
0.6666...
>>> jaccard_score(y_true, y_pred, average=None)
array([0.5, 0.5, 1.])

In the multiclass case:

>>> y_pred = [0, 2, 1, 2]
>>> y_true = [0, 1, 2, 2]
>>> jaccard_score(y_true, y_pred, average=None)
array([1. , 0. , 0.33...])

Examples using sklearn.metrics.jaccard_score

• Classifier Chain

sklearn.metrics.log_loss

sklearn.metrics.log_loss(y_true, y_pred, *, eps=1e-15, normalize=True, sample_weight=None, la-
bels=None)

Log loss, aka logistic loss or cross-entropy loss.

This is the loss function used in (multinomial) logistic regression and extensions of it such as neural networks,
defined as the negative log-likelihood of a logistic model that returns y_pred probabilities for its training data
y_true. The log loss is only defined for two or more labels. For a single sample with true label yt in {0,1} and
estimated probability yp that yt = 1, the log loss is

-log P(yt|yp) = -(yt log(yp) + (1 - yt) log(1 - yp))

Read more in the User Guide.

Parameters

y_true [array-like or label indicator matrix] Ground truth (correct) labels for n_samples sam-
ples.

y_pred [array-like of float, shape = (n_samples, n_classes) or (n_samples,)] Predicted prob-
abilities, as returned by a classifier’s predict_proba method. If y_pred.shape =
(n_samples,) the probabilities provided are assumed to be that of the positive class. The
labels in y_pred are assumed to be ordered alphabetically, as done by preprocessing.
LabelBinarizer.

eps [float] Log loss is undefined for p=0 or p=1, so probabilities are clipped to max(eps, min(1
- eps, p)).

normalize [bool, optional (default=True)] If true, return the mean loss per sample. Otherwise,
return the sum of the per-sample losses.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

labels [array-like, optional (default=None)] If not provided, labels will be inferred from y_true.
If labels is None and y_pred has shape (n_samples,) the labels are assumed to be
binary and are inferred from y_true.

New in version 0.18.

7.24. sklearn.metrics: Metrics 2221

scikit-learn user guide, Release 0.23.2

Returns

loss [float]

Notes

The logarithm used is the natural logarithm (base-e).

References

C.M. Bishop (2006). Pattern Recognition and Machine Learning. Springer, p. 209.

Examples

>>> from sklearn.metrics import log_loss
>>> log_loss(["spam", "ham", "ham", "spam"],
... [[.1, .9], [.9, .1], [.8, .2], [.35, .65]])
0.21616...

Examples using sklearn.metrics.log_loss

• Probability Calibration for 3-class classification

• Probabilistic predictions with Gaussian process classification (GPC)

sklearn.metrics.matthews_corrcoef

sklearn.metrics.matthews_corrcoef(y_true, y_pred, *, sample_weight=None)
Compute the Matthews correlation coefficient (MCC)

The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and
multiclass classifications. It takes into account true and false positives and negatives and is generally regarded
as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a
correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average
random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source:
Wikipedia]

Binary and multiclass labels are supported. Only in the binary case does this relate to information about true
and false positives and negatives. See references below.

Read more in the User Guide.

Parameters

y_true [array, shape = [n_samples]] Ground truth (correct) target values.

y_pred [array, shape = [n_samples]] Estimated targets as returned by a classifier.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

New in version 0.18.

Returns

mcc [float] The Matthews correlation coefficient (+1 represents a perfect prediction, 0 an aver-
age random prediction and -1 and inverse prediction).

2222 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

References

[1], [2], [3], [4]

Examples

>>> from sklearn.metrics import matthews_corrcoef
>>> y_true = [+1, +1, +1, -1]
>>> y_pred = [+1, -1, +1, +1]
>>> matthews_corrcoef(y_true, y_pred)
-0.33...

sklearn.metrics.multilabel_confusion_matrix

sklearn.metrics.multilabel_confusion_matrix(y_true, y_pred, *, sample_weight=None, la-
bels=None, samplewise=False)

Compute a confusion matrix for each class or sample

New in version 0.21.

Compute class-wise (default) or sample-wise (samplewise=True) multilabel confusion matrix to evaluate the
accuracy of a classification, and output confusion matrices for each class or sample.

In multilabel confusion matrix 𝑀𝐶𝑀 , the count of true negatives is 𝑀𝐶𝑀:,0,0, false negatives is 𝑀𝐶𝑀:,1,0,
true positives is 𝑀𝐶𝑀:,1,1 and false positives is 𝑀𝐶𝑀:,0,1.

Multiclass data will be treated as if binarized under a one-vs-rest transformation. Returned confusion matrices
will be in the order of sorted unique labels in the union of (y_true, y_pred).

Read more in the User Guide.

Parameters

y_true [1d array-like, or label indicator array / sparse matrix] of shape (n_samples, n_outputs)
or (n_samples,) Ground truth (correct) target values.

y_pred [1d array-like, or label indicator array / sparse matrix] of shape (n_samples, n_outputs)
or (n_samples,) Estimated targets as returned by a classifier

sample_weight [array-like of shape (n_samples,), default=None] Sample weights

labels [array-like] A list of classes or column indices to select some (or to force inclusion of
classes absent from the data)

samplewise [bool, default=False] In the multilabel case, this calculates a confusion matrix per
sample

Returns

multi_confusion [array, shape (n_outputs, 2, 2)] A 2x2 confusion matrix corresponding to each
output in the input. When calculating class-wise multi_confusion (default), then n_outputs
= n_labels; when calculating sample-wise multi_confusion (samplewise=True), n_outputs
= n_samples. If labels is defined, the results will be returned in the order specified in
labels, otherwise the results will be returned in sorted order by default.

See also:

confusion_matrix

7.24. sklearn.metrics: Metrics 2223

scikit-learn user guide, Release 0.23.2

Notes

The multilabel_confusion_matrix calculates class-wise or sample-wise multilabel confusion matrices, and in
multiclass tasks, labels are binarized under a one-vs-rest way; while confusion_matrix calculates one confusion
matrix for confusion between every two classes.

Examples

Multilabel-indicator case:

>>> import numpy as np
>>> from sklearn.metrics import multilabel_confusion_matrix
>>> y_true = np.array([[1, 0, 1],
... [0, 1, 0]])
>>> y_pred = np.array([[1, 0, 0],
... [0, 1, 1]])
>>> multilabel_confusion_matrix(y_true, y_pred)
array([[[1, 0],

[0, 1]],
<BLANKLINE>

[[1, 0],
[0, 1]],

<BLANKLINE>
[[0, 1],
[1, 0]]])

Multiclass case:

>>> y_true = ["cat", "ant", "cat", "cat", "ant", "bird"]
>>> y_pred = ["ant", "ant", "cat", "cat", "ant", "cat"]
>>> multilabel_confusion_matrix(y_true, y_pred,
... labels=["ant", "bird", "cat"])
array([[[3, 1],

[0, 2]],
<BLANKLINE>

[[5, 0],
[1, 0]],

<BLANKLINE>
[[2, 1],
[1, 2]]])

sklearn.metrics.ndcg_score

sklearn.metrics.ndcg_score(y_true, y_score, *, k=None, sample_weight=None, ig-
nore_ties=False)

Compute Normalized Discounted Cumulative Gain.

Sum the true scores ranked in the order induced by the predicted scores, after applying a logarithmic discount.
Then divide by the best possible score (Ideal DCG, obtained for a perfect ranking) to obtain a score between 0
and 1.

This ranking metric yields a high value if true labels are ranked high by y_score.

Parameters

y_true [ndarray, shape (n_samples, n_labels)] True targets of multilabel classification, or true
scores of entities to be ranked.

2224 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

y_score [ndarray, shape (n_samples, n_labels)] Target scores, can either be probability esti-
mates, confidence values, or non-thresholded measure of decisions (as returned by “deci-
sion_function” on some classifiers).

k [int, optional (default=None)] Only consider the highest k scores in the ranking. If None, use
all outputs.

sample_weight [ndarray, shape (n_samples,), optional (default=None)] Sample weights. If
None, all samples are given the same weight.

ignore_ties [bool, optional (default=False)] Assume that there are no ties in y_score (which is
likely to be the case if y_score is continuous) for efficiency gains.

Returns

normalized_discounted_cumulative_gain [float in [0., 1.]] The averaged NDCG scores for
all samples.

See also:

dcg_score Discounted Cumulative Gain (not normalized).

References

Wikipedia entry for Discounted Cumulative Gain

Jarvelin, K., & Kekalainen, J. (2002). Cumulated gain-based evaluation of IR techniques. ACM Transactions
on Information Systems (TOIS), 20(4), 422-446.

Wang, Y., Wang, L., Li, Y., He, D., Chen, W., & Liu, T. Y. (2013, May). A theoretical analysis of NDCG ranking
measures. In Proceedings of the 26th Annual Conference on Learning Theory (COLT 2013)

McSherry, F., & Najork, M. (2008, March). Computing information retrieval performance measures efficiently
in the presence of tied scores. In European conference on information retrieval (pp. 414-421). Springer, Berlin,
Heidelberg.

Examples

>>> from sklearn.metrics import ndcg_score
>>> # we have groud-truth relevance of some answers to a query:
>>> true_relevance = np.asarray([[10, 0, 0, 1, 5]])
>>> # we predict some scores (relevance) for the answers
>>> scores = np.asarray([[.1, .2, .3, 4, 70]])
>>> ndcg_score(true_relevance, scores)
0.69...
>>> scores = np.asarray([[.05, 1.1, 1., .5, .0]])
>>> ndcg_score(true_relevance, scores)
0.49...
>>> # we can set k to truncate the sum; only top k answers contribute.
>>> ndcg_score(true_relevance, scores, k=4)
0.35...
>>> # the normalization takes k into account so a perfect answer
>>> # would still get 1.0
>>> ndcg_score(true_relevance, true_relevance, k=4)
1.0
>>> # now we have some ties in our prediction
>>> scores = np.asarray([[1, 0, 0, 0, 1]])
>>> # by default ties are averaged, so here we get the average (normalized)

(continues on next page)

7.24. sklearn.metrics: Metrics 2225

https://en.wikipedia.org/wiki/Discounted_cumulative_gain

scikit-learn user guide, Release 0.23.2

(continued from previous page)

>>> # true relevance of our top predictions: (10 / 10 + 5 / 10) / 2 = .75
>>> ndcg_score(true_relevance, scores, k=1)
0.75
>>> # we can choose to ignore ties for faster results, but only
>>> # if we know there aren't ties in our scores, otherwise we get
>>> # wrong results:
>>> ndcg_score(true_relevance,
... scores, k=1, ignore_ties=True)
0.5

sklearn.metrics.precision_recall_curve

sklearn.metrics.precision_recall_curve(y_true, probas_pred, *, pos_label=None, sam-
ple_weight=None)

Compute precision-recall pairs for different probability thresholds

Note: this implementation is restricted to the binary classification task.

The precision is the ratio tp / (tp + fp) where tp is the number of true positives and fp the number of
false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is
negative.

The recall is the ratio tp / (tp + fn) where tp is the number of true positives and fn the number of false
negatives. The recall is intuitively the ability of the classifier to find all the positive samples.

The last precision and recall values are 1. and 0. respectively and do not have a corresponding threshold. This
ensures that the graph starts on the y axis.

Read more in the User Guide.

Parameters

y_true [array, shape = [n_samples]] True binary labels. If labels are not either {-1, 1} or {0, 1},
then pos_label should be explicitly given.

probas_pred [array, shape = [n_samples]] Estimated probabilities or decision function.

pos_label [int or str, default=None] The label of the positive class. When pos_label=None,
if y_true is in {-1, 1} or {0, 1}, pos_label is set to 1, otherwise an error will be raised.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

precision [array, shape = [n_thresholds + 1]] Precision values such that element i is the preci-
sion of predictions with score >= thresholds[i] and the last element is 1.

recall [array, shape = [n_thresholds + 1]] Decreasing recall values such that element i is the
recall of predictions with score >= thresholds[i] and the last element is 0.

thresholds [array, shape = [n_thresholds <= len(np.unique(probas_pred))]] Increasing thresh-
olds on the decision function used to compute precision and recall.

See also:

average_precision_score Compute average precision from prediction scores

roc_curve Compute Receiver operating characteristic (ROC) curve

2226 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Examples

>>> import numpy as np
>>> from sklearn.metrics import precision_recall_curve
>>> y_true = np.array([0, 0, 1, 1])
>>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> precision, recall, thresholds = precision_recall_curve(
... y_true, y_scores)
>>> precision
array([0.66666667, 0.5 , 1. , 1.])
>>> recall
array([1. , 0.5, 0.5, 0.])
>>> thresholds
array([0.35, 0.4 , 0.8])

Examples using sklearn.metrics.precision_recall_curve

• Visualizations with Display Objects

• Precision-Recall

sklearn.metrics.precision_recall_fscore_support

sklearn.metrics.precision_recall_fscore_support(y_true, y_pred, *, beta=1.0, la-
bels=None, pos_label=1, aver-
age=None, warn_for=(’precision’, ’re-
call’, ’f-score’), sample_weight=None,
zero_division=’warn’)

Compute precision, recall, F-measure and support for each class

The precision is the ratio tp / (tp + fp) where tp is the number of true positives and fp the number of
false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is
negative.

The recall is the ratio tp / (tp + fn) where tp is the number of true positives and fn the number of false
negatives. The recall is intuitively the ability of the classifier to find all the positive samples.

The F-beta score can be interpreted as a weighted harmonic mean of the precision and recall, where an F-beta
score reaches its best value at 1 and worst score at 0.

The F-beta score weights recall more than precision by a factor of beta. beta == 1.0 means recall and
precision are equally important.

The support is the number of occurrences of each class in y_true.

If pos_label is None and in binary classification, this function returns the average precision, recall and
F-measure if average is one of 'micro', 'macro', 'weighted' or 'samples'.

Read more in the User Guide.

Parameters

y_true [1d array-like, or label indicator array / sparse matrix] Ground truth (correct) target
values.

y_pred [1d array-like, or label indicator array / sparse matrix] Estimated targets as returned by
a classifier.

beta [float, 1.0 by default] The strength of recall versus precision in the F-score.

7.24. sklearn.metrics: Metrics 2227

scikit-learn user guide, Release 0.23.2

labels [list, optional] The set of labels to include when average != 'binary', and their
order if average is None. Labels present in the data can be excluded, for example to
calculate a multiclass average ignoring a majority negative class, while labels not present in
the data will result in 0 components in a macro average. For multilabel targets, labels are
column indices. By default, all labels in y_true and y_pred are used in sorted order.

pos_label [str or int, 1 by default] The class to report if average='binary' and the
data is binary. If the data are multiclass or multilabel, this will be ignored; setting
labels=[pos_label] and average != 'binary' will report scores for that la-
bel only.

average [string, [None (default), ‘binary’, ‘micro’, ‘macro’, ‘samples’, ‘weighted’]] If None,
the scores for each class are returned. Otherwise, this determines the type of averaging
performed on the data:

'binary': Only report results for the class specified by pos_label. This is applicable
only if targets (y_{true,pred}) are binary.

'micro': Calculate metrics globally by counting the total true positives, false negatives
and false positives.

'macro': Calculate metrics for each label, and find their unweighted mean. This does not
take label imbalance into account.

'weighted': Calculate metrics for each label, and find their average weighted by support
(the number of true instances for each label). This alters ‘macro’ to account for label
imbalance; it can result in an F-score that is not between precision and recall.

'samples': Calculate metrics for each instance, and find their average (only meaningful
for multilabel classification where this differs from accuracy_score).

warn_for [tuple or set, for internal use] This determines which warnings will be made in the
case that this function is being used to return only one of its metrics.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

zero_division [“warn”, 0 or 1, default=”warn”]

Sets the value to return when there is a zero division:

• recall: when there are no positive labels

• precision: when there are no positive predictions

• f-score: both

If set to “warn”, this acts as 0, but warnings are also raised.

Returns

precision [float (if average is not None) or array of float, shape = [n_unique_labels]]

recall [float (if average is not None) or array of float, , shape = [n_unique_labels]]

fbeta_score [float (if average is not None) or array of float, shape = [n_unique_labels]]

support [None (if average is not None) or array of int, shape = [n_unique_labels]] The number
of occurrences of each label in y_true.

Notes

When true positive + false positive == 0, precision is undefined; When true positive
+ false negative == 0, recall is undefined. In such cases, by default the metric will be set to 0,

2228 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

as will f-score, and UndefinedMetricWarning will be raised. This behavior can be modified with
zero_division.

References

[1], [2], [3]

Examples

>>> import numpy as np
>>> from sklearn.metrics import precision_recall_fscore_support
>>> y_true = np.array(['cat', 'dog', 'pig', 'cat', 'dog', 'pig'])
>>> y_pred = np.array(['cat', 'pig', 'dog', 'cat', 'cat', 'dog'])
>>> precision_recall_fscore_support(y_true, y_pred, average='macro')
(0.22..., 0.33..., 0.26..., None)
>>> precision_recall_fscore_support(y_true, y_pred, average='micro')
(0.33..., 0.33..., 0.33..., None)
>>> precision_recall_fscore_support(y_true, y_pred, average='weighted')
(0.22..., 0.33..., 0.26..., None)

It is possible to compute per-label precisions, recalls, F1-scores and supports instead of averaging:

>>> precision_recall_fscore_support(y_true, y_pred, average=None,
... labels=['pig', 'dog', 'cat'])
(array([0. , 0. , 0.66...]),
array([0., 0., 1.]), array([0. , 0. , 0.8]),
array([2, 2, 2]))

sklearn.metrics.precision_score

sklearn.metrics.precision_score(y_true, y_pred, *, labels=None, pos_label=1, aver-
age=’binary’, sample_weight=None, zero_division=’warn’)

Compute the precision

The precision is the ratio tp / (tp + fp) where tp is the number of true positives and fp the number of
false positives. The precision is intuitively the ability of the classifier not to label as positive a sample that is
negative.

The best value is 1 and the worst value is 0.

Read more in the User Guide.

Parameters

y_true [1d array-like, or label indicator array / sparse matrix] Ground truth (correct) target
values.

y_pred [1d array-like, or label indicator array / sparse matrix] Estimated targets as returned by
a classifier.

labels [list, optional] The set of labels to include when average != 'binary', and their
order if average is None. Labels present in the data can be excluded, for example to
calculate a multiclass average ignoring a majority negative class, while labels not present in
the data will result in 0 components in a macro average. For multilabel targets, labels are
column indices. By default, all labels in y_true and y_pred are used in sorted order.

Changed in version 0.17: parameter labels improved for multiclass problem.

7.24. sklearn.metrics: Metrics 2229

scikit-learn user guide, Release 0.23.2

pos_label [str or int, 1 by default] The class to report if average='binary' and the
data is binary. If the data are multiclass or multilabel, this will be ignored; setting
labels=[pos_label] and average != 'binary' will report scores for that la-
bel only.

average [string, [None, ‘binary’ (default), ‘micro’, ‘macro’, ‘samples’, ‘weighted’]] This pa-
rameter is required for multiclass/multilabel targets. If None, the scores for each class are
returned. Otherwise, this determines the type of averaging performed on the data:

'binary': Only report results for the class specified by pos_label. This is applicable
only if targets (y_{true,pred}) are binary.

'micro': Calculate metrics globally by counting the total true positives, false negatives
and false positives.

'macro': Calculate metrics for each label, and find their unweighted mean. This does not
take label imbalance into account.

'weighted': Calculate metrics for each label, and find their average weighted by support
(the number of true instances for each label). This alters ‘macro’ to account for label
imbalance; it can result in an F-score that is not between precision and recall.

'samples': Calculate metrics for each instance, and find their average (only meaningful
for multilabel classification where this differs from accuracy_score).

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

zero_division [“warn”, 0 or 1, default=”warn”] Sets the value to return when there is a zero
division. If set to “warn”, this acts as 0, but warnings are also raised.

Returns

precision [float (if average is not None) or array of float, shape = [n_unique_labels]] Precision
of the positive class in binary classification or weighted average of the precision of each
class for the multiclass task.

See also:

precision_recall_fscore_support, multilabel_confusion_matrix

Notes

When true positive + false positive == 0, precision returns 0 and raises
UndefinedMetricWarning. This behavior can be modified with zero_division.

Examples

>>> from sklearn.metrics import precision_score
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> precision_score(y_true, y_pred, average='macro')
0.22...
>>> precision_score(y_true, y_pred, average='micro')
0.33...
>>> precision_score(y_true, y_pred, average='weighted')
0.22...
>>> precision_score(y_true, y_pred, average=None)
array([0.66..., 0. , 0.])

(continues on next page)

2230 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

(continued from previous page)

>>> y_pred = [0, 0, 0, 0, 0, 0]
>>> precision_score(y_true, y_pred, average=None)
array([0.33..., 0. , 0.])
>>> precision_score(y_true, y_pred, average=None, zero_division=1)
array([0.33..., 1. , 1.])

Examples using sklearn.metrics.precision_score

• Probability Calibration curves

• Precision-Recall

sklearn.metrics.recall_score

sklearn.metrics.recall_score(y_true, y_pred, *, labels=None, pos_label=1, average=’binary’,
sample_weight=None, zero_division=’warn’)

Compute the recall

The recall is the ratio tp / (tp + fn) where tp is the number of true positives and fn the number of false
negatives. The recall is intuitively the ability of the classifier to find all the positive samples.

The best value is 1 and the worst value is 0.

Read more in the User Guide.

Parameters

y_true [1d array-like, or label indicator array / sparse matrix] Ground truth (correct) target
values.

y_pred [1d array-like, or label indicator array / sparse matrix] Estimated targets as returned by
a classifier.

labels [list, optional] The set of labels to include when average != 'binary', and their
order if average is None. Labels present in the data can be excluded, for example to
calculate a multiclass average ignoring a majority negative class, while labels not present in
the data will result in 0 components in a macro average. For multilabel targets, labels are
column indices. By default, all labels in y_true and y_pred are used in sorted order.

Changed in version 0.17: parameter labels improved for multiclass problem.

pos_label [str or int, 1 by default] The class to report if average='binary' and the
data is binary. If the data are multiclass or multilabel, this will be ignored; setting
labels=[pos_label] and average != 'binary' will report scores for that la-
bel only.

average [string, [None, ‘binary’ (default), ‘micro’, ‘macro’, ‘samples’, ‘weighted’]] This pa-
rameter is required for multiclass/multilabel targets. If None, the scores for each class are
returned. Otherwise, this determines the type of averaging performed on the data:

'binary': Only report results for the class specified by pos_label. This is applicable
only if targets (y_{true,pred}) are binary.

'micro': Calculate metrics globally by counting the total true positives, false negatives
and false positives.

'macro': Calculate metrics for each label, and find their unweighted mean. This does not
take label imbalance into account.

7.24. sklearn.metrics: Metrics 2231

scikit-learn user guide, Release 0.23.2

'weighted': Calculate metrics for each label, and find their average weighted by support
(the number of true instances for each label). This alters ‘macro’ to account for label
imbalance; it can result in an F-score that is not between precision and recall.

'samples': Calculate metrics for each instance, and find their average (only meaningful
for multilabel classification where this differs from accuracy_score).

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

zero_division [“warn”, 0 or 1, default=”warn”] Sets the value to return when there is a zero
division. If set to “warn”, this acts as 0, but warnings are also raised.

Returns

recall [float (if average is not None) or array of float, shape = [n_unique_labels]] Recall of the
positive class in binary classification or weighted average of the recall of each class for the
multiclass task.

See also:

precision_recall_fscore_support, balanced_accuracy_score

multilabel_confusion_matrix

Notes

When true positive + false negative == 0, recall returns 0 and raises
UndefinedMetricWarning. This behavior can be modified with zero_division.

Examples

>>> from sklearn.metrics import recall_score
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> recall_score(y_true, y_pred, average='macro')
0.33...
>>> recall_score(y_true, y_pred, average='micro')
0.33...
>>> recall_score(y_true, y_pred, average='weighted')
0.33...
>>> recall_score(y_true, y_pred, average=None)
array([1., 0., 0.])
>>> y_true = [0, 0, 0, 0, 0, 0]
>>> recall_score(y_true, y_pred, average=None)
array([0.5, 0. , 0.])
>>> recall_score(y_true, y_pred, average=None, zero_division=1)
array([0.5, 1. , 1.])

Examples using sklearn.metrics.recall_score

• Probability Calibration curves

• Precision-Recall

2232 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

sklearn.metrics.roc_auc_score

sklearn.metrics.roc_auc_score(y_true, y_score, *, average=’macro’, sample_weight=None,
max_fpr=None, multi_class=’raise’, labels=None)

Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores.

Note: this implementation can be used with binary, multiclass and multilabel classification, but some restrictions
apply (see Parameters).

Read more in the User Guide.

Parameters

y_true [array-like of shape (n_samples,) or (n_samples, n_classes)] True labels or binary label
indicators. The binary and multiclass cases expect labels with shape (n_samples,) while the
multilabel case expects binary label indicators with shape (n_samples, n_classes).

y_score [array-like of shape (n_samples,) or (n_samples, n_classes)] Target scores. In the bi-
nary and multilabel cases, these can be either probability estimates or non-thresholded deci-
sion values (as returned by decision_function on some classifiers). In the multiclass
case, these must be probability estimates which sum to 1. The binary case expects a shape
(n_samples,), and the scores must be the scores of the class with the greater label. The mul-
ticlass and multilabel cases expect a shape (n_samples, n_classes). In the multiclass case,
the order of the class scores must correspond to the order of labels, if provided, or else
to the numerical or lexicographical order of the labels in y_true.

average [{‘micro’, ‘macro’, ‘samples’, ‘weighted’} or None, default=’macro’] If None, the
scores for each class are returned. Otherwise, this determines the type of averaging per-
formed on the data: Note: multiclass ROC AUC currently only handles the ‘macro’ and
‘weighted’ averages.

'micro': Calculate metrics globally by considering each element of the label indicator
matrix as a label.

'macro': Calculate metrics for each label, and find their unweighted mean. This does not
take label imbalance into account.

'weighted': Calculate metrics for each label, and find their average, weighted by sup-
port (the number of true instances for each label).

'samples': Calculate metrics for each instance, and find their average.

Will be ignored when y_true is binary.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

max_fpr [float > 0 and <= 1, default=None] If not None, the standardized partial AUC [2] over
the range [0, max_fpr] is returned. For the multiclass case, max_fpr, should be either equal
to None or 1.0 as AUC ROC partial computation currently is not supported for multiclass.

multi_class [{‘raise’, ‘ovr’, ‘ovo’}, default=’raise’] Multiclass only. Determines the type of
configuration to use. The default value raises an error, so either 'ovr' or 'ovo' must be
passed explicitly.

'ovr': Computes the AUC of each class against the rest [3] [4]. This treats the multiclass
case in the same way as the multilabel case. Sensitive to class imbalance even when
average == 'macro', because class imbalance affects the composition of each of
the ‘rest’ groupings.

'ovo': Computes the average AUC of all possible pairwise combinations of classes [5].
Insensitive to class imbalance when average == 'macro'.

7.24. sklearn.metrics: Metrics 2233

scikit-learn user guide, Release 0.23.2

labels [array-like of shape (n_classes,), default=None] Multiclass only. List of labels that index
the classes in y_score. If None, the numerical or lexicographical order of the labels in
y_true is used.

Returns

auc [float]

See also:

average_precision_score Area under the precision-recall curve

roc_curve Compute Receiver operating characteristic (ROC) curve

References

[1], [2], [3], [4], [5]

Examples

>>> import numpy as np
>>> from sklearn.metrics import roc_auc_score
>>> y_true = np.array([0, 0, 1, 1])
>>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> roc_auc_score(y_true, y_scores)
0.75

Examples using sklearn.metrics.roc_auc_score

• Release Highlights for scikit-learn 0.22

• Receiver Operating Characteristic (ROC) with cross validation

• Receiver Operating Characteristic (ROC)

sklearn.metrics.roc_curve

sklearn.metrics.roc_curve(y_true, y_score, *, pos_label=None, sample_weight=None,
drop_intermediate=True)

Compute Receiver operating characteristic (ROC)

Note: this implementation is restricted to the binary classification task.

Read more in the User Guide.

Parameters

y_true [array, shape = [n_samples]] True binary labels. If labels are not either {-1, 1} or {0, 1},
then pos_label should be explicitly given.

y_score [array, shape = [n_samples]] Target scores, can either be probability estimates of the
positive class, confidence values, or non-thresholded measure of decisions (as returned by
“decision_function” on some classifiers).

pos_label [int or str, default=None] The label of the positive class. When pos_label=None,
if y_true is in {-1, 1} or {0, 1}, pos_label is set to 1, otherwise an error will be raised.

2234 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

drop_intermediate [boolean, optional (default=True)] Whether to drop some suboptimal
thresholds which would not appear on a plotted ROC curve. This is useful in order to
create lighter ROC curves.

New in version 0.17: parameter drop_intermediate.

Returns

fpr [array, shape = [>2]] Increasing false positive rates such that element i is the false positive
rate of predictions with score >= thresholds[i].

tpr [array, shape = [>2]] Increasing true positive rates such that element i is the true positive
rate of predictions with score >= thresholds[i].

thresholds [array, shape = [n_thresholds]] Decreasing thresholds on the decision function used
to compute fpr and tpr. thresholds[0] represents no instances being predicted and is
arbitrarily set to max(y_score) + 1.

See also:

roc_auc_score Compute the area under the ROC curve

Notes

Since the thresholds are sorted from low to high values, they are reversed upon returning them to ensure they
correspond to both fpr and tpr, which are sorted in reversed order during their calculation.

References

[1], [2]

Examples

>>> import numpy as np
>>> from sklearn import metrics
>>> y = np.array([1, 1, 2, 2])
>>> scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> fpr, tpr, thresholds = metrics.roc_curve(y, scores, pos_label=2)
>>> fpr
array([0. , 0. , 0.5, 0.5, 1.])
>>> tpr
array([0. , 0.5, 0.5, 1. , 1.])
>>> thresholds
array([1.8 , 0.8 , 0.4 , 0.35, 0.1])

Examples using sklearn.metrics.roc_curve

• Feature transformations with ensembles of trees

• Species distribution modeling

• Visualizations with Display Objects

• Receiver Operating Characteristic (ROC)

7.24. sklearn.metrics: Metrics 2235

scikit-learn user guide, Release 0.23.2

sklearn.metrics.zero_one_loss

sklearn.metrics.zero_one_loss(y_true, y_pred, *, normalize=True, sample_weight=None)
Zero-one classification loss.

If normalize is True, return the fraction of misclassifications (float), else it returns the number of misclassifica-
tions (int). The best performance is 0.

Read more in the User Guide.

Parameters

y_true [1d array-like, or label indicator array / sparse matrix] Ground truth (correct) labels.

y_pred [1d array-like, or label indicator array / sparse matrix] Predicted labels, as returned by
a classifier.

normalize [bool, optional (default=True)] If False, return the number of misclassifications.
Otherwise, return the fraction of misclassifications.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

loss [float or int,] If normalize == True, return the fraction of misclassifications (float),
else it returns the number of misclassifications (int).

See also:

accuracy_score, hamming_loss, jaccard_score

Notes

In multilabel classification, the zero_one_loss function corresponds to the subset zero-one loss: for each sample,
the entire set of labels must be correctly predicted, otherwise the loss for that sample is equal to one.

Examples

>>> from sklearn.metrics import zero_one_loss
>>> y_pred = [1, 2, 3, 4]
>>> y_true = [2, 2, 3, 4]
>>> zero_one_loss(y_true, y_pred)
0.25
>>> zero_one_loss(y_true, y_pred, normalize=False)
1

In the multilabel case with binary label indicators:

>>> import numpy as np
>>> zero_one_loss(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
0.5

Examples using sklearn.metrics.zero_one_loss

• Discrete versus Real AdaBoost

2236 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

7.24.3 Regression metrics

See the Regression metrics section of the user guide for further details.

metrics.explained_variance_score(y_true,
. . .)

Explained variance regression score function

metrics.max_error(y_true, y_pred) max_error metric calculates the maximum residual er-
ror.

metrics.mean_absolute_error(y_true,
y_pred, *)

Mean absolute error regression loss

metrics.mean_squared_error(y_true, y_pred,
*)

Mean squared error regression loss

metrics.mean_squared_log_error(y_true,
y_pred, *)

Mean squared logarithmic error regression loss

metrics.median_absolute_error(y_true,
y_pred, *)

Median absolute error regression loss

metrics.r2_score(y_true, y_pred, *[, . . .]) R^2 (coefficient of determination) regression score
function.

metrics.mean_poisson_deviance(y_true,
y_pred, *)

Mean Poisson deviance regression loss.

metrics.mean_gamma_deviance(y_true,
y_pred, *)

Mean Gamma deviance regression loss.

metrics.mean_tweedie_deviance(y_true,
y_pred, *)

Mean Tweedie deviance regression loss.

sklearn.metrics.explained_variance_score

sklearn.metrics.explained_variance_score(y_true, y_pred, *, sample_weight=None, multi-
output=’uniform_average’)

Explained variance regression score function

Best possible score is 1.0, lower values are worse.

Read more in the User Guide.

Parameters

y_true [array-like of shape (n_samples,) or (n_samples, n_outputs)] Ground truth (correct) tar-
get values.

y_pred [array-like of shape (n_samples,) or (n_samples, n_outputs)] Estimated target values.

sample_weight [array-like of shape (n_samples,), optional] Sample weights.

multioutput [string in [‘raw_values’, ‘uniform_average’, ‘variance_weighted’] or array-like of
shape (n_outputs)] Defines aggregating of multiple output scores. Array-like value defines
weights used to average scores.

‘raw_values’ : Returns a full set of scores in case of multioutput input.

‘uniform_average’ : Scores of all outputs are averaged with uniform weight.

‘variance_weighted’ : Scores of all outputs are averaged, weighted by the variances of
each individual output.

Returns

7.24. sklearn.metrics: Metrics 2237

scikit-learn user guide, Release 0.23.2

score [float or ndarray of floats] The explained variance or ndarray if ‘multioutput’ is
‘raw_values’.

Notes

This is not a symmetric function.

Examples

>>> from sklearn.metrics import explained_variance_score
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> explained_variance_score(y_true, y_pred)
0.957...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> explained_variance_score(y_true, y_pred, multioutput='uniform_average')
0.983...

sklearn.metrics.max_error

sklearn.metrics.max_error(y_true, y_pred)
max_error metric calculates the maximum residual error.

Read more in the User Guide.

Parameters

y_true [array-like of shape (n_samples,)] Ground truth (correct) target values.

y_pred [array-like of shape (n_samples,)] Estimated target values.

Returns

max_error [float] A positive floating point value (the best value is 0.0).

Examples

>>> from sklearn.metrics import max_error
>>> y_true = [3, 2, 7, 1]
>>> y_pred = [4, 2, 7, 1]
>>> max_error(y_true, y_pred)
1

sklearn.metrics.mean_absolute_error

sklearn.metrics.mean_absolute_error(y_true, y_pred, *, sample_weight=None, multiout-
put=’uniform_average’)

Mean absolute error regression loss

Read more in the User Guide.

Parameters

2238 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

y_true [array-like of shape (n_samples,) or (n_samples, n_outputs)] Ground truth (correct) tar-
get values.

y_pred [array-like of shape (n_samples,) or (n_samples, n_outputs)] Estimated target values.

sample_weight [array-like of shape (n_samples,), optional] Sample weights.

multioutput [string in [‘raw_values’, ‘uniform_average’] or array-like of shape (n_outputs)]
Defines aggregating of multiple output values. Array-like value defines weights used to
average errors.

‘raw_values’ : Returns a full set of errors in case of multioutput input.

‘uniform_average’ : Errors of all outputs are averaged with uniform weight.

Returns

loss [float or ndarray of floats] If multioutput is ‘raw_values’, then mean absolute error is re-
turned for each output separately. If multioutput is ‘uniform_average’ or an ndarray of
weights, then the weighted average of all output errors is returned.

MAE output is non-negative floating point. The best value is 0.0.

Examples

>>> from sklearn.metrics import mean_absolute_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_absolute_error(y_true, y_pred)
0.5
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> mean_absolute_error(y_true, y_pred)
0.75
>>> mean_absolute_error(y_true, y_pred, multioutput='raw_values')
array([0.5, 1.])
>>> mean_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7])
0.85...

Examples using sklearn.metrics.mean_absolute_error

• Poisson regression and non-normal loss

• Tweedie regression on insurance claims

sklearn.metrics.mean_squared_error

sklearn.metrics.mean_squared_error(y_true, y_pred, *, sample_weight=None, multiout-
put=’uniform_average’, squared=True)

Mean squared error regression loss

Read more in the User Guide.

Parameters

y_true [array-like of shape (n_samples,) or (n_samples, n_outputs)] Ground truth (correct) tar-
get values.

y_pred [array-like of shape (n_samples,) or (n_samples, n_outputs)] Estimated target values.

7.24. sklearn.metrics: Metrics 2239

scikit-learn user guide, Release 0.23.2

sample_weight [array-like of shape (n_samples,), optional] Sample weights.

multioutput [string in [‘raw_values’, ‘uniform_average’] or array-like of shape (n_outputs)]
Defines aggregating of multiple output values. Array-like value defines weights used to
average errors.

‘raw_values’ : Returns a full set of errors in case of multioutput input.

‘uniform_average’ : Errors of all outputs are averaged with uniform weight.

squared [boolean value, optional (default = True)] If True returns MSE value, if False returns
RMSE value.

Returns

loss [float or ndarray of floats] A non-negative floating point value (the best value is 0.0), or an
array of floating point values, one for each individual target.

Examples

>>> from sklearn.metrics import mean_squared_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_squared_error(y_true, y_pred)
0.375
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_squared_error(y_true, y_pred, squared=False)
0.612...
>>> y_true = [[0.5, 1],[-1, 1],[7, -6]]
>>> y_pred = [[0, 2],[-1, 2],[8, -5]]
>>> mean_squared_error(y_true, y_pred)
0.708...
>>> mean_squared_error(y_true, y_pred, squared=False)
0.822...
>>> mean_squared_error(y_true, y_pred, multioutput='raw_values')
array([0.41666667, 1.])
>>> mean_squared_error(y_true, y_pred, multioutput=[0.3, 0.7])
0.825...

Examples using sklearn.metrics.mean_squared_error

• Gradient Boosting regression

• Model Complexity Influence

• Plot Ridge coefficients as a function of the L2 regularization

• Linear Regression Example

• Robust linear estimator fitting

• Poisson regression and non-normal loss

• Tweedie regression on insurance claims

2240 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

sklearn.metrics.mean_squared_log_error

sklearn.metrics.mean_squared_log_error(y_true, y_pred, *, sample_weight=None, multiout-
put=’uniform_average’)

Mean squared logarithmic error regression loss

Read more in the User Guide.

Parameters

y_true [array-like of shape (n_samples,) or (n_samples, n_outputs)] Ground truth (correct) tar-
get values.

y_pred [array-like of shape (n_samples,) or (n_samples, n_outputs)] Estimated target values.

sample_weight [array-like of shape (n_samples,), optional] Sample weights.

multioutput [string in [‘raw_values’, ‘uniform_average’] or array-like of shape (n_outputs)]
Defines aggregating of multiple output values. Array-like value defines weights used to
average errors.

‘raw_values’ : Returns a full set of errors when the input is of multioutput format.

‘uniform_average’ : Errors of all outputs are averaged with uniform weight.

Returns

loss [float or ndarray of floats] A non-negative floating point value (the best value is 0.0), or an
array of floating point values, one for each individual target.

Examples

>>> from sklearn.metrics import mean_squared_log_error
>>> y_true = [3, 5, 2.5, 7]
>>> y_pred = [2.5, 5, 4, 8]
>>> mean_squared_log_error(y_true, y_pred)
0.039...
>>> y_true = [[0.5, 1], [1, 2], [7, 6]]
>>> y_pred = [[0.5, 2], [1, 2.5], [8, 8]]
>>> mean_squared_log_error(y_true, y_pred)
0.044...
>>> mean_squared_log_error(y_true, y_pred, multioutput='raw_values')
array([0.00462428, 0.08377444])
>>> mean_squared_log_error(y_true, y_pred, multioutput=[0.3, 0.7])
0.060...

sklearn.metrics.median_absolute_error

sklearn.metrics.median_absolute_error(y_true, y_pred, *, multioutput=’uniform_average’)
Median absolute error regression loss

Median absolute error output is non-negative floating point. The best value is 0.0. Read more in the User Guide.

Parameters

y_true [array-like of shape = (n_samples) or (n_samples, n_outputs)] Ground truth (correct)
target values.

y_pred [array-like of shape = (n_samples) or (n_samples, n_outputs)] Estimated target values.

7.24. sklearn.metrics: Metrics 2241

scikit-learn user guide, Release 0.23.2

multioutput [{‘raw_values’, ‘uniform_average’} or array-like of shape (n_outputs,)] Defines
aggregating of multiple output values. Array-like value defines weights used to average
errors.

‘raw_values’ : Returns a full set of errors in case of multioutput input.

‘uniform_average’ : Errors of all outputs are averaged with uniform weight.

Returns

loss [float or ndarray of floats] If multioutput is ‘raw_values’, then mean absolute error is re-
turned for each output separately. If multioutput is ‘uniform_average’ or an ndarray of
weights, then the weighted average of all output errors is returned.

Examples

>>> from sklearn.metrics import median_absolute_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> median_absolute_error(y_true, y_pred)
0.5
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> median_absolute_error(y_true, y_pred)
0.75
>>> median_absolute_error(y_true, y_pred, multioutput='raw_values')
array([0.5, 1.])
>>> median_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7])
0.85

Examples using sklearn.metrics.median_absolute_error

• Common pitfalls in interpretation of coefficients of linear models

• Effect of transforming the targets in regression model

sklearn.metrics.r2_score

sklearn.metrics.r2_score(y_true, y_pred, *, sample_weight=None, multiout-
put=’uniform_average’)

R^2 (coefficient of determination) regression score function.

Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model
that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Read more in the User Guide.

Parameters

y_true [array-like of shape (n_samples,) or (n_samples, n_outputs)] Ground truth (correct) tar-
get values.

y_pred [array-like of shape (n_samples,) or (n_samples, n_outputs)] Estimated target values.

sample_weight [array-like of shape (n_samples,), optional] Sample weights.

2242 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

multioutput [string in [‘raw_values’, ‘uniform_average’, ‘variance_weighted’] or None or
array-like of shape (n_outputs)] Defines aggregating of multiple output scores. Array-like
value defines weights used to average scores. Default is “uniform_average”.

‘raw_values’ : Returns a full set of scores in case of multioutput input.

‘uniform_average’ : Scores of all outputs are averaged with uniform weight.

‘variance_weighted’ : Scores of all outputs are averaged, weighted by the variances of
each individual output.

Changed in version 0.19: Default value of multioutput is ‘uniform_average’.

Returns

z [float or ndarray of floats] The R^2 score or ndarray of scores if ‘multioutput’ is ‘raw_values’.

Notes

This is not a symmetric function.

Unlike most other scores, R^2 score may be negative (it need not actually be the square of a quantity R).

This metric is not well-defined for single samples and will return a NaN value if n_samples is less than two.

References

[1]

Examples

>>> from sklearn.metrics import r2_score
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> r2_score(y_true, y_pred)
0.948...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> r2_score(y_true, y_pred,
... multioutput='variance_weighted')
0.938...
>>> y_true = [1, 2, 3]
>>> y_pred = [1, 2, 3]
>>> r2_score(y_true, y_pred)
1.0
>>> y_true = [1, 2, 3]
>>> y_pred = [2, 2, 2]
>>> r2_score(y_true, y_pred)
0.0
>>> y_true = [1, 2, 3]
>>> y_pred = [3, 2, 1]
>>> r2_score(y_true, y_pred)
-3.0

7.24. sklearn.metrics: Metrics 2243

scikit-learn user guide, Release 0.23.2

Examples using sklearn.metrics.r2_score

• Linear Regression Example

• Lasso and Elastic Net for Sparse Signals

• Effect of transforming the targets in regression model

sklearn.metrics.mean_poisson_deviance

sklearn.metrics.mean_poisson_deviance(y_true, y_pred, *, sample_weight=None)
Mean Poisson deviance regression loss.

Poisson deviance is equivalent to the Tweedie deviance with the power parameter power=1.

Read more in the User Guide.

Parameters

y_true [array-like of shape (n_samples,)] Ground truth (correct) target values. Requires y_true
>= 0.

y_pred [array-like of shape (n_samples,)] Estimated target values. Requires y_pred > 0.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

loss [float] A non-negative floating point value (the best value is 0.0).

Examples

>>> from sklearn.metrics import mean_poisson_deviance
>>> y_true = [2, 0, 1, 4]
>>> y_pred = [0.5, 0.5, 2., 2.]
>>> mean_poisson_deviance(y_true, y_pred)
1.4260...

Examples using sklearn.metrics.mean_poisson_deviance

• Poisson regression and non-normal loss

sklearn.metrics.mean_gamma_deviance

sklearn.metrics.mean_gamma_deviance(y_true, y_pred, *, sample_weight=None)
Mean Gamma deviance regression loss.

Gamma deviance is equivalent to the Tweedie deviance with the power parameter power=2. It is invariant to
scaling of the target variable, and measures relative errors.

Read more in the User Guide.

Parameters

y_true [array-like of shape (n_samples,)] Ground truth (correct) target values. Requires y_true
> 0.

y_pred [array-like of shape (n_samples,)] Estimated target values. Requires y_pred > 0.

2244 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

loss [float] A non-negative floating point value (the best value is 0.0).

Examples

>>> from sklearn.metrics import mean_gamma_deviance
>>> y_true = [2, 0.5, 1, 4]
>>> y_pred = [0.5, 0.5, 2., 2.]
>>> mean_gamma_deviance(y_true, y_pred)
1.0568...

sklearn.metrics.mean_tweedie_deviance

sklearn.metrics.mean_tweedie_deviance(y_true, y_pred, *, sample_weight=None, power=0)
Mean Tweedie deviance regression loss.

Read more in the User Guide.

Parameters

y_true [array-like of shape (n_samples,)] Ground truth (correct) target values.

y_pred [array-like of shape (n_samples,)] Estimated target values.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

power [float, default=0] Tweedie power parameter. Either power <= 0 or power >= 1.

The higher p the less weight is given to extreme deviations between true and predicted
targets.

• power < 0: Extreme stable distribution. Requires: y_pred > 0.

• power = 0 : Normal distribution, output corresponds to mean_squared_error. y_true and
y_pred can be any real numbers.

• power = 1 : Poisson distribution. Requires: y_true >= 0 and y_pred > 0.

• 1 < p < 2 : Compound Poisson distribution. Requires: y_true >= 0 and y_pred > 0.

• power = 2 : Gamma distribution. Requires: y_true > 0 and y_pred > 0.

• power = 3 : Inverse Gaussian distribution. Requires: y_true > 0 and y_pred > 0.

• otherwise : Positive stable distribution. Requires: y_true > 0 and y_pred > 0.

Returns

loss [float] A non-negative floating point value (the best value is 0.0).

Examples

>>> from sklearn.metrics import mean_tweedie_deviance
>>> y_true = [2, 0, 1, 4]
>>> y_pred = [0.5, 0.5, 2., 2.]
>>> mean_tweedie_deviance(y_true, y_pred, power=1)
1.4260...

7.24. sklearn.metrics: Metrics 2245

scikit-learn user guide, Release 0.23.2

Examples using sklearn.metrics.mean_tweedie_deviance

• Tweedie regression on insurance claims

7.24.4 Multilabel ranking metrics

See the Multilabel ranking metrics section of the user guide for further details.

metrics.coverage_error(y_true, y_score, *[,
. . .])

Coverage error measure

metrics.label_ranking_average_precision_score(. . .)Compute ranking-based average precision
metrics.label_ranking_loss(y_true,
y_score, *)

Compute Ranking loss measure

sklearn.metrics.coverage_error

sklearn.metrics.coverage_error(y_true, y_score, *, sample_weight=None)
Coverage error measure

Compute how far we need to go through the ranked scores to cover all true labels. The best value is equal to the
average number of labels in y_true per sample.

Ties in y_scores are broken by giving maximal rank that would have been assigned to all tied values.

Note: Our implementation’s score is 1 greater than the one given in Tsoumakas et al., 2010. This extends it to
handle the degenerate case in which an instance has 0 true labels.

Read more in the User Guide.

Parameters

y_true [array, shape = [n_samples, n_labels]] True binary labels in binary indicator format.

y_score [array, shape = [n_samples, n_labels]] Target scores, can either be probability esti-
mates of the positive class, confidence values, or non-thresholded measure of decisions (as
returned by “decision_function” on some classifiers).

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

coverage_error [float]

References

[1]

sklearn.metrics.label_ranking_average_precision_score

sklearn.metrics.label_ranking_average_precision_score(y_true, y_score, *, sam-
ple_weight=None)

Compute ranking-based average precision

Label ranking average precision (LRAP) is the average over each ground truth label assigned to each sample, of
the ratio of true vs. total labels with lower score.

2246 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

This metric is used in multilabel ranking problem, where the goal is to give better rank to the labels associated
to each sample.

The obtained score is always strictly greater than 0 and the best value is 1.

Read more in the User Guide.

Parameters

y_true [array or sparse matrix, shape = [n_samples, n_labels]] True binary labels in binary
indicator format.

y_score [array, shape = [n_samples, n_labels]] Target scores, can either be probability esti-
mates of the positive class, confidence values, or non-thresholded measure of decisions (as
returned by “decision_function” on some classifiers).

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

New in version 0.20.

Returns

score [float]

Examples

>>> import numpy as np
>>> from sklearn.metrics import label_ranking_average_precision_score
>>> y_true = np.array([[1, 0, 0], [0, 0, 1]])
>>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]])
>>> label_ranking_average_precision_score(y_true, y_score)
0.416...

sklearn.metrics.label_ranking_loss

sklearn.metrics.label_ranking_loss(y_true, y_score, *, sample_weight=None)
Compute Ranking loss measure

Compute the average number of label pairs that are incorrectly ordered given y_score weighted by the size of
the label set and the number of labels not in the label set.

This is similar to the error set size, but weighted by the number of relevant and irrelevant labels. The best
performance is achieved with a ranking loss of zero.

Read more in the User Guide.

New in version 0.17: A function label_ranking_loss

Parameters

y_true [array or sparse matrix, shape = [n_samples, n_labels]] True binary labels in binary
indicator format.

y_score [array, shape = [n_samples, n_labels]] Target scores, can either be probability esti-
mates of the positive class, confidence values, or non-thresholded measure of decisions (as
returned by “decision_function” on some classifiers).

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

loss [float]

7.24. sklearn.metrics: Metrics 2247

scikit-learn user guide, Release 0.23.2

References

[1]

7.24.5 Clustering metrics

See the Clustering performance evaluation section of the user guide for further details.

The sklearn.metrics.cluster submodule contains evaluation metrics for cluster analysis results. There are
two forms of evaluation:

• supervised, which uses a ground truth class values for each sample.

• unsupervised, which does not and measures the ‘quality’ of the model itself.

metrics.adjusted_mutual_info_score(. . . [,
. . .])

Adjusted Mutual Information between two clusterings.

metrics.adjusted_rand_score(labels_true,
. . .)

Rand index adjusted for chance.

metrics.calinski_harabasz_score(X,
labels)

Compute the Calinski and Harabasz score.

metrics.davies_bouldin_score(X, labels) Computes the Davies-Bouldin score.
metrics.completeness_score(labels_true,
. . .)

Completeness metric of a cluster labeling given a
ground truth.

metrics.cluster.
contingency_matrix(. . . [, . . .])

Build a contingency matrix describing the relationship
between labels.

metrics.fowlkes_mallows_score(labels_true,
. . .)

Measure the similarity of two clusterings of a set of
points.

metrics.homogeneity_completeness_v_measure(. . .)Compute the homogeneity and completeness and V-
Measure scores at once.

metrics.homogeneity_score(labels_true, . . .) Homogeneity metric of a cluster labeling given a ground
truth.

metrics.mutual_info_score(labels_true, . . .) Mutual Information between two clusterings.
metrics.normalized_mutual_info_score(. . . [,
. . .])

Normalized Mutual Information between two cluster-
ings.

metrics.silhouette_score(X, labels, *[, . . .]) Compute the mean Silhouette Coefficient of all samples.
metrics.silhouette_samples(X, labels, *[,
. . .])

Compute the Silhouette Coefficient for each sample.

metrics.v_measure_score(labels_true, . . . [,
beta])

V-measure cluster labeling given a ground truth.

sklearn.metrics.adjusted_mutual_info_score

sklearn.metrics.adjusted_mutual_info_score(labels_true, labels_pred, *, aver-
age_method=’arithmetic’)

Adjusted Mutual Information between two clusterings.

Adjusted Mutual Information (AMI) is an adjustment of the Mutual Information (MI) score to account for
chance. It accounts for the fact that the MI is generally higher for two clusterings with a larger number of
clusters, regardless of whether there is actually more information shared. For two clusterings 𝑈 and 𝑉 , the AMI
is given as:

AMI(U, V) = [MI(U, V) - E(MI(U, V))] / [avg(H(U), H(V)) - E(MI(U, V))]

2248 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values
won’t change the score value in any way.

This metric is furthermore symmetric: switching label_true with label_pred will return the same score
value. This can be useful to measure the agreement of two independent label assignments strategies on the same
dataset when the real ground truth is not known.

Be mindful that this function is an order of magnitude slower than other metrics, such as the Adjusted Rand
Index.

Read more in the User Guide.

Parameters

labels_true [int array, shape = [n_samples]] A clustering of the data into disjoint subsets.

labels_pred [int array-like of shape (n_samples,)] A clustering of the data into disjoint subsets.

average_method [string, optional (default: ‘arithmetic’)] How to compute the normalizer in
the denominator. Possible options are ‘min’, ‘geometric’, ‘arithmetic’, and ‘max’.

New in version 0.20.

Changed in version 0.22: The default value of average_method changed from ‘max’ to
‘arithmetic’.

Returns

ami: float (upperlimited by 1.0) The AMI returns a value of 1 when the two partitions are
identical (ie perfectly matched). Random partitions (independent labellings) have an ex-
pected AMI around 0 on average hence can be negative.

See also:

adjusted_rand_score Adjusted Rand Index

mutual_info_score Mutual Information (not adjusted for chance)

References

[1], [2]

Examples

Perfect labelings are both homogeneous and complete, hence have score 1.0:

>>> from sklearn.metrics.cluster import adjusted_mutual_info_score
>>> adjusted_mutual_info_score([0, 0, 1, 1], [0, 0, 1, 1])
...
1.0
>>> adjusted_mutual_info_score([0, 0, 1, 1], [1, 1, 0, 0])
...
1.0

If classes members are completely split across different clusters, the assignment is totally in-complete, hence
the AMI is null:

>>> adjusted_mutual_info_score([0, 0, 0, 0], [0, 1, 2, 3])
...
0.0

7.24. sklearn.metrics: Metrics 2249

scikit-learn user guide, Release 0.23.2

Examples using sklearn.metrics.adjusted_mutual_info_score

• Demo of affinity propagation clustering algorithm

• Demo of DBSCAN clustering algorithm

• Adjustment for chance in clustering performance evaluation

• A demo of K-Means clustering on the handwritten digits data

sklearn.metrics.adjusted_rand_score

sklearn.metrics.adjusted_rand_score(labels_true, labels_pred)
Rand index adjusted for chance.

The Rand Index computes a similarity measure between two clusterings by considering all pairs of samples and
counting pairs that are assigned in the same or different clusters in the predicted and true clusterings.

The raw RI score is then “adjusted for chance” into the ARI score using the following scheme:

ARI = (RI - Expected_RI) / (max(RI) - Expected_RI)

The adjusted Rand index is thus ensured to have a value close to 0.0 for random labeling independently of the
number of clusters and samples and exactly 1.0 when the clusterings are identical (up to a permutation).

ARI is a symmetric measure:

adjusted_rand_score(a, b) == adjusted_rand_score(b, a)

Read more in the User Guide.

Parameters

labels_true [int array, shape = [n_samples]] Ground truth class labels to be used as a reference

labels_pred [array-like of shape (n_samples,)] Cluster labels to evaluate

Returns

ari [float] Similarity score between -1.0 and 1.0. Random labelings have an ARI close to 0.0.
1.0 stands for perfect match.

See also:

adjusted_mutual_info_score Adjusted Mutual Information

References

[Hubert1985], [wk]

Examples

Perfectly matching labelings have a score of 1 even

2250 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

>>> from sklearn.metrics.cluster import adjusted_rand_score
>>> adjusted_rand_score([0, 0, 1, 1], [0, 0, 1, 1])
1.0
>>> adjusted_rand_score([0, 0, 1, 1], [1, 1, 0, 0])
1.0

Labelings that assign all classes members to the same clusters are complete be not always pure, hence penalized:

>>> adjusted_rand_score([0, 0, 1, 2], [0, 0, 1, 1])
0.57...

ARI is symmetric, so labelings that have pure clusters with members coming from the same classes but unnec-
essary splits are penalized:

>>> adjusted_rand_score([0, 0, 1, 1], [0, 0, 1, 2])
0.57...

If classes members are completely split across different clusters, the assignment is totally incomplete, hence the
ARI is very low:

>>> adjusted_rand_score([0, 0, 0, 0], [0, 1, 2, 3])
0.0

Examples using sklearn.metrics.adjusted_rand_score

• Demo of affinity propagation clustering algorithm

• Demo of DBSCAN clustering algorithm

• Adjustment for chance in clustering performance evaluation

• A demo of K-Means clustering on the handwritten digits data

• Clustering text documents using k-means

sklearn.metrics.calinski_harabasz_score

sklearn.metrics.calinski_harabasz_score(X, labels)
Compute the Calinski and Harabasz score.

It is also known as the Variance Ratio Criterion.

The score is defined as ratio between the within-cluster dispersion and the between-cluster dispersion.

Read more in the User Guide.

Parameters

X [array-like, shape (n_samples, n_features)] List of n_features-dimensional data
points. Each row corresponds to a single data point.

labels [array-like, shape (n_samples,)] Predicted labels for each sample.

Returns

score [float] The resulting Calinski-Harabasz score.

7.24. sklearn.metrics: Metrics 2251

scikit-learn user guide, Release 0.23.2

References

[1]

sklearn.metrics.davies_bouldin_score

sklearn.metrics.davies_bouldin_score(X, labels)
Computes the Davies-Bouldin score.

The score is defined as the average similarity measure of each cluster with its most similar cluster, where
similarity is the ratio of within-cluster distances to between-cluster distances. Thus, clusters which are farther
apart and less dispersed will result in a better score.

The minimum score is zero, with lower values indicating better clustering.

Read more in the User Guide.

New in version 0.20.

Parameters

X [array-like, shape (n_samples, n_features)] List of n_features-dimensional data
points. Each row corresponds to a single data point.

labels [array-like, shape (n_samples,)] Predicted labels for each sample.

Returns

score: float The resulting Davies-Bouldin score.

References

[1]

sklearn.metrics.completeness_score

sklearn.metrics.completeness_score(labels_true, labels_pred)
Completeness metric of a cluster labeling given a ground truth.

A clustering result satisfies completeness if all the data points that are members of a given class are elements of
the same cluster.

This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values
won’t change the score value in any way.

This metric is not symmetric: switching label_true with label_pred will return the
homogeneity_score which will be different in general.

Read more in the User Guide.

Parameters

labels_true [int array, shape = [n_samples]] ground truth class labels to be used as a reference

labels_pred [array-like of shape (n_samples,)] cluster labels to evaluate

Returns

completeness [float] score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling

See also:

2252 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

homogeneity_score

v_measure_score

References

[1]

Examples

Perfect labelings are complete:

>>> from sklearn.metrics.cluster import completeness_score
>>> completeness_score([0, 0, 1, 1], [1, 1, 0, 0])
1.0

Non-perfect labelings that assign all classes members to the same clusters are still complete:

>>> print(completeness_score([0, 0, 1, 1], [0, 0, 0, 0]))
1.0
>>> print(completeness_score([0, 1, 2, 3], [0, 0, 1, 1]))
0.999...

If classes members are split across different clusters, the assignment cannot be complete:

>>> print(completeness_score([0, 0, 1, 1], [0, 1, 0, 1]))
0.0
>>> print(completeness_score([0, 0, 0, 0], [0, 1, 2, 3]))
0.0

Examples using sklearn.metrics.completeness_score

• Release Highlights for scikit-learn 0.23

• Demo of affinity propagation clustering algorithm

• Demo of DBSCAN clustering algorithm

• A demo of K-Means clustering on the handwritten digits data

• Clustering text documents using k-means

sklearn.metrics.cluster.contingency_matrix

sklearn.metrics.cluster.contingency_matrix(labels_true, labels_pred, *, eps=None,
sparse=False)

Build a contingency matrix describing the relationship between labels.

Parameters

labels_true [int array, shape = [n_samples]] Ground truth class labels to be used as a reference

labels_pred [array-like of shape (n_samples,)] Cluster labels to evaluate

eps [None or float, optional.] If a float, that value is added to all values in the contingency
matrix. This helps to stop NaN propagation. If None, nothing is adjusted.

7.24. sklearn.metrics: Metrics 2253

scikit-learn user guide, Release 0.23.2

sparse [boolean, optional.] If True, return a sparse CSR continency matrix. If eps is not
None, and sparse is True, will throw ValueError.

New in version 0.18.

Returns

contingency [{array-like, sparse}, shape=[n_classes_true, n_classes_pred]] Matrix 𝐶 such that
𝐶𝑖,𝑗 is the number of samples in true class 𝑖 and in predicted class 𝑗. If eps is None,
the dtype of this array will be integer. If eps is given, the dtype will be float. Will be a
scipy.sparse.csr_matrix if sparse=True.

sklearn.metrics.fowlkes_mallows_score

sklearn.metrics.fowlkes_mallows_score(labels_true, labels_pred, *, sparse=False)
Measure the similarity of two clusterings of a set of points.

New in version 0.18.

The Fowlkes-Mallows index (FMI) is defined as the geometric mean between of the precision and recall:

FMI = TP / sqrt((TP + FP) * (TP + FN))

Where TP is the number of True Positive (i.e. the number of pair of points that belongs in the same clusters
in both labels_true and labels_pred), FP is the number of False Positive (i.e. the number of pair of
points that belongs in the same clusters in labels_true and not in labels_pred) and FN is the number
of False Negative (i.e the number of pair of points that belongs in the same clusters in labels_pred and not
in labels_True).

The score ranges from 0 to 1. A high value indicates a good similarity between two clusters.

Read more in the User Guide.

Parameters

labels_true [int array, shape = (n_samples,)] A clustering of the data into disjoint subsets.

labels_pred [array, shape = (n_samples,)] A clustering of the data into disjoint subsets.

sparse [bool] Compute contingency matrix internally with sparse matrix.

Returns

score [float] The resulting Fowlkes-Mallows score.

References

[1], [2]

Examples

Perfect labelings are both homogeneous and complete, hence have score 1.0:

>>> from sklearn.metrics.cluster import fowlkes_mallows_score
>>> fowlkes_mallows_score([0, 0, 1, 1], [0, 0, 1, 1])
1.0
>>> fowlkes_mallows_score([0, 0, 1, 1], [1, 1, 0, 0])
1.0

2254 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

If classes members are completely split across different clusters, the assignment is totally random, hence the
FMI is null:

>>> fowlkes_mallows_score([0, 0, 0, 0], [0, 1, 2, 3])
0.0

sklearn.metrics.homogeneity_completeness_v_measure

sklearn.metrics.homogeneity_completeness_v_measure(labels_true, labels_pred, *,
beta=1.0)

Compute the homogeneity and completeness and V-Measure scores at once.

Those metrics are based on normalized conditional entropy measures of the clustering labeling to evaluate given
the knowledge of a Ground Truth class labels of the same samples.

A clustering result satisfies homogeneity if all of its clusters contain only data points which are members of a
single class.

A clustering result satisfies completeness if all the data points that are members of a given class are elements of
the same cluster.

Both scores have positive values between 0.0 and 1.0, larger values being desirable.

Those 3 metrics are independent of the absolute values of the labels: a permutation of the class or cluster label
values won’t change the score values in any way.

V-Measure is furthermore symmetric: swapping labels_true and label_pred will give the
same score. This does not hold for homogeneity and completeness. V-Measure is identical to
normalized_mutual_info_score with the arithmetic averaging method.

Read more in the User Guide.

Parameters

labels_true [int array, shape = [n_samples]] ground truth class labels to be used as a reference

labels_pred [array-like of shape (n_samples,)] cluster labels to evaluate

beta [float] Ratio of weight attributed to homogeneity vs completeness. If beta is
greater than 1, completeness is weighted more strongly in the calculation. If beta is
less than 1, homogeneity is weighted more strongly.

Returns

homogeneity [float] score between 0.0 and 1.0. 1.0 stands for perfectly homogeneous labeling

completeness [float] score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling

v_measure [float] harmonic mean of the first two

See also:

homogeneity_score

completeness_score

v_measure_score

7.24. sklearn.metrics: Metrics 2255

scikit-learn user guide, Release 0.23.2

sklearn.metrics.homogeneity_score

sklearn.metrics.homogeneity_score(labels_true, labels_pred)
Homogeneity metric of a cluster labeling given a ground truth.

A clustering result satisfies homogeneity if all of its clusters contain only data points which are members of a
single class.

This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values
won’t change the score value in any way.

This metric is not symmetric: switching label_true with label_pred will return the
completeness_score which will be different in general.

Read more in the User Guide.

Parameters

labels_true [int array, shape = [n_samples]] ground truth class labels to be used as a reference

labels_pred [array-like of shape (n_samples,)] cluster labels to evaluate

Returns

homogeneity [float] score between 0.0 and 1.0. 1.0 stands for perfectly homogeneous labeling

See also:

completeness_score

v_measure_score

References

[1]

Examples

Perfect labelings are homogeneous:

>>> from sklearn.metrics.cluster import homogeneity_score
>>> homogeneity_score([0, 0, 1, 1], [1, 1, 0, 0])
1.0

Non-perfect labelings that further split classes into more clusters can be perfectly homogeneous:

>>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 0, 1, 2]))
1.000000
>>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 1, 2, 3]))
1.000000

Clusters that include samples from different classes do not make for an homogeneous labeling:

>>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 1, 0, 1]))
0.0...
>>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 0, 0, 0]))
0.0...

2256 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Examples using sklearn.metrics.homogeneity_score

• Demo of affinity propagation clustering algorithm

• Demo of DBSCAN clustering algorithm

• A demo of K-Means clustering on the handwritten digits data

• Clustering text documents using k-means

sklearn.metrics.mutual_info_score

sklearn.metrics.mutual_info_score(labels_true, labels_pred, *, contingency=None)
Mutual Information between two clusterings.

The Mutual Information is a measure of the similarity between two labels of the same data. Where |𝑈𝑖| is the
number of the samples in cluster 𝑈𝑖 and |𝑉𝑗 | is the number of the samples in cluster 𝑉𝑗 , the Mutual Information
between clusterings 𝑈 and 𝑉 is given as:

𝑀𝐼(𝑈, 𝑉) =

|𝑈 |∑︁
𝑖=1

|𝑉 |∑︁
𝑗=1

|𝑈𝑖 ∩ 𝑉𝑗 |
𝑁

log
𝑁 |𝑈𝑖 ∩ 𝑉𝑗 |
|𝑈𝑖||𝑉𝑗 |

This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values
won’t change the score value in any way.

This metric is furthermore symmetric: switching label_true with label_pred will return the same score
value. This can be useful to measure the agreement of two independent label assignments strategies on the same
dataset when the real ground truth is not known.

Read more in the User Guide.

Parameters

labels_true [int array, shape = [n_samples]] A clustering of the data into disjoint subsets.

labels_pred [int array-like of shape (n_samples,)] A clustering of the data into disjoint subsets.

contingency [{None, array, sparse matrix}, shape = [n_classes_true, n_classes_pred]] A con-
tingency matrix given by the contingency_matrix function. If value is None, it will
be computed, otherwise the given value is used, with labels_true and labels_pred
ignored.

Returns

mi [float] Mutual information, a non-negative value

See also:

adjusted_mutual_info_score Adjusted against chance Mutual Information

normalized_mutual_info_score Normalized Mutual Information

Notes

The logarithm used is the natural logarithm (base-e).

7.24. sklearn.metrics: Metrics 2257

scikit-learn user guide, Release 0.23.2

Examples using sklearn.metrics.mutual_info_score

• Adjustment for chance in clustering performance evaluation

sklearn.metrics.normalized_mutual_info_score

sklearn.metrics.normalized_mutual_info_score(labels_true, labels_pred, *, aver-
age_method=’arithmetic’)

Normalized Mutual Information between two clusterings.

Normalized Mutual Information (NMI) is a normalization of the Mutual Information (MI) score to scale the
results between 0 (no mutual information) and 1 (perfect correlation). In this function, mutual information
is normalized by some generalized mean of H(labels_true) and H(labels_pred)), defined by the
average_method.

This measure is not adjusted for chance. Therefore adjusted_mutual_info_score might be preferred.

This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values
won’t change the score value in any way.

This metric is furthermore symmetric: switching label_true with label_pred will return the same score
value. This can be useful to measure the agreement of two independent label assignments strategies on the same
dataset when the real ground truth is not known.

Read more in the User Guide.

Parameters

labels_true [int array, shape = [n_samples]] A clustering of the data into disjoint subsets.

labels_pred [int array-like of shape (n_samples,)] A clustering of the data into disjoint subsets.

average_method [string, optional (default: ‘arithmetic’)] How to compute the normalizer in
the denominator. Possible options are ‘min’, ‘geometric’, ‘arithmetic’, and ‘max’.

New in version 0.20.

Changed in version 0.22: The default value of average_method changed from ‘geomet-
ric’ to ‘arithmetic’.

Returns

nmi [float] score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling

See also:

v_measure_score V-Measure (NMI with arithmetic mean option.)

adjusted_rand_score Adjusted Rand Index

adjusted_mutual_info_score Adjusted Mutual Information (adjusted against chance)

Examples

Perfect labelings are both homogeneous and complete, hence have score 1.0:

>>> from sklearn.metrics.cluster import normalized_mutual_info_score
>>> normalized_mutual_info_score([0, 0, 1, 1], [0, 0, 1, 1])
...
1.0

(continues on next page)

2258 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

(continued from previous page)

>>> normalized_mutual_info_score([0, 0, 1, 1], [1, 1, 0, 0])
...
1.0

If classes members are completely split across different clusters, the assignment is totally in-complete, hence
the NMI is null:

>>> normalized_mutual_info_score([0, 0, 0, 0], [0, 1, 2, 3])
...
0.0

sklearn.metrics.silhouette_score

sklearn.metrics.silhouette_score(X, labels, *, metric=’euclidean’, sample_size=None, ran-
dom_state=None, **kwds)

Compute the mean Silhouette Coefficient of all samples.

The Silhouette Coefficient is calculated using the mean intra-cluster distance (a) and the mean nearest-cluster
distance (b) for each sample. The Silhouette Coefficient for a sample is (b - a) / max(a, b). To clarify,
b is the distance between a sample and the nearest cluster that the sample is not a part of. Note that Silhouette
Coefficient is only defined if number of labels is 2 <= n_labels <= n_samples - 1.

This function returns the mean Silhouette Coefficient over all samples. To obtain the values for each sample,
use silhouette_samples.

The best value is 1 and the worst value is -1. Values near 0 indicate overlapping clusters. Negative values
generally indicate that a sample has been assigned to the wrong cluster, as a different cluster is more similar.

Read more in the User Guide.

Parameters

X [array [n_samples_a, n_samples_a] if metric == “precomputed”, or, [n_samples_a,
n_features] otherwise] Array of pairwise distances between samples, or a feature array.

labels [array, shape = [n_samples]] Predicted labels for each sample.

metric [string, or callable] The metric to use when calculating distance between instances
in a feature array. If metric is a string, it must be one of the options allowed by
metrics.pairwise.pairwise_distances. If X is the distance array itself, use
metric="precomputed".

sample_size [int or None] The size of the sample to use when computing the Silhouette Co-
efficient on a random subset of the data. If sample_size is None, no sampling is
used.

random_state [int, RandomState instance or None, optional (default=None)] Determines ran-
dom number generation for selecting a subset of samples. Used when sample_size is
not None. Pass an int for reproducible results across multiple function calls. See Glos-
sary.

**kwds [optional keyword parameters] Any further parameters are passed directly to the dis-
tance function. If using a scipy.spatial.distance metric, the parameters are still metric de-
pendent. See the scipy docs for usage examples.

Returns

silhouette [float] Mean Silhouette Coefficient for all samples.

7.24. sklearn.metrics: Metrics 2259

scikit-learn user guide, Release 0.23.2

References

[1], [2]

Examples using sklearn.metrics.silhouette_score

• Demo of affinity propagation clustering algorithm

• Demo of DBSCAN clustering algorithm

• A demo of K-Means clustering on the handwritten digits data

• Selecting the number of clusters with silhouette analysis on KMeans clustering

• Clustering text documents using k-means

sklearn.metrics.silhouette_samples

sklearn.metrics.silhouette_samples(X, labels, *, metric=’euclidean’, **kwds)
Compute the Silhouette Coefficient for each sample.

The Silhouette Coefficient is a measure of how well samples are clustered with samples that are similar to
themselves. Clustering models with a high Silhouette Coefficient are said to be dense, where samples in the
same cluster are similar to each other, and well separated, where samples in different clusters are not very
similar to each other.

The Silhouette Coefficient is calculated using the mean intra-cluster distance (a) and the mean nearest-cluster
distance (b) for each sample. The Silhouette Coefficient for a sample is (b - a) / max(a, b). Note that
Silhouette Coefficient is only defined if number of labels is 2 <= n_labels <= n_samples - 1.

This function returns the Silhouette Coefficient for each sample.

The best value is 1 and the worst value is -1. Values near 0 indicate overlapping clusters.

Read more in the User Guide.

Parameters

X [array [n_samples_a, n_samples_a] if metric == “precomputed”, or, [n_samples_a,
n_features] otherwise] Array of pairwise distances between samples, or a feature array.

labels [array, shape = [n_samples]] label values for each sample

metric [string, or callable] The metric to use when calculating distance between instances in
a feature array. If metric is a string, it must be one of the options allowed by sklearn.
metrics.pairwise.pairwise_distances. If X is the distance array itself, use
“precomputed” as the metric. Precomputed distance matrices must have 0 along the diago-
nal.

‘**kwds‘ [optional keyword parameters] Any further parameters are passed directly to the dis-
tance function. If using a scipy.spatial.distance metric, the parameters are still
metric dependent. See the scipy docs for usage examples.

Returns

silhouette [array, shape = [n_samples]] Silhouette Coefficient for each samples.

References

[1], [2]

2260 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Examples using sklearn.metrics.silhouette_samples

• Selecting the number of clusters with silhouette analysis on KMeans clustering

sklearn.metrics.v_measure_score

sklearn.metrics.v_measure_score(labels_true, labels_pred, *, beta=1.0)
V-measure cluster labeling given a ground truth.

This score is identical to normalized_mutual_info_score with the 'arithmetic' option for aver-
aging.

The V-measure is the harmonic mean between homogeneity and completeness:

v = (1 + beta) * homogeneity * completeness
/ (beta * homogeneity + completeness)

This metric is independent of the absolute values of the labels: a permutation of the class or cluster label values
won’t change the score value in any way.

This metric is furthermore symmetric: switching label_true with label_pred will return the same score
value. This can be useful to measure the agreement of two independent label assignments strategies on the same
dataset when the real ground truth is not known.

Read more in the User Guide.

Parameters

labels_true [int array, shape = [n_samples]] ground truth class labels to be used as a reference

labels_pred [array-like of shape (n_samples,)] cluster labels to evaluate

beta [float] Ratio of weight attributed to homogeneity vs completeness. If beta is
greater than 1, completeness is weighted more strongly in the calculation. If beta is
less than 1, homogeneity is weighted more strongly.

Returns

v_measure [float] score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling

See also:

homogeneity_score

completeness_score

normalized_mutual_info_score

References

[1]

Examples

Perfect labelings are both homogeneous and complete, hence have score 1.0:

7.24. sklearn.metrics: Metrics 2261

scikit-learn user guide, Release 0.23.2

>>> from sklearn.metrics.cluster import v_measure_score
>>> v_measure_score([0, 0, 1, 1], [0, 0, 1, 1])
1.0
>>> v_measure_score([0, 0, 1, 1], [1, 1, 0, 0])
1.0

Labelings that assign all classes members to the same clusters are complete be not homogeneous, hence penal-
ized:

>>> print("%.6f" % v_measure_score([0, 0, 1, 2], [0, 0, 1, 1]))
0.8...
>>> print("%.6f" % v_measure_score([0, 1, 2, 3], [0, 0, 1, 1]))
0.66...

Labelings that have pure clusters with members coming from the same classes are homogeneous but un-
necessary splits harms completeness and thus penalize V-measure as well:

>>> print("%.6f" % v_measure_score([0, 0, 1, 1], [0, 0, 1, 2]))
0.8...
>>> print("%.6f" % v_measure_score([0, 0, 1, 1], [0, 1, 2, 3]))
0.66...

If classes members are completely split across different clusters, the assignment is totally incomplete, hence the
V-Measure is null:

>>> print("%.6f" % v_measure_score([0, 0, 0, 0], [0, 1, 2, 3]))
0.0...

Clusters that include samples from totally different classes totally destroy the homogeneity of the labeling,
hence:

>>> print("%.6f" % v_measure_score([0, 0, 1, 1], [0, 0, 0, 0]))
0.0...

Examples using sklearn.metrics.v_measure_score

• Biclustering documents with the Spectral Co-clustering algorithm

• Demo of affinity propagation clustering algorithm

• Demo of DBSCAN clustering algorithm

• Adjustment for chance in clustering performance evaluation

• A demo of K-Means clustering on the handwritten digits data

• Clustering text documents using k-means

7.24.6 Biclustering metrics

See the Biclustering evaluation section of the user guide for further details.

metrics.consensus_score(a, b, *[, similarity]) The similarity of two sets of biclusters.

2262 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

sklearn.metrics.consensus_score

sklearn.metrics.consensus_score(a, b, *, similarity=’jaccard’)
The similarity of two sets of biclusters.

Similarity between individual biclusters is computed. Then the best matching between sets is found using the
Hungarian algorithm. The final score is the sum of similarities divided by the size of the larger set.

Read more in the User Guide.

Parameters

a [(rows, columns)] Tuple of row and column indicators for a set of biclusters.

b [(rows, columns)] Another set of biclusters like a.

similarity [string or function, optional, default: “jaccard”] May be the string “jaccard” to use
the Jaccard coefficient, or any function that takes four arguments, each of which is a 1d
indicator vector: (a_rows, a_columns, b_rows, b_columns).

References

• Hochreiter, Bodenhofer, et. al., 2010. FABIA: factor analysis for bicluster acquisition.

Examples using sklearn.metrics.consensus_score

• A demo of the Spectral Co-Clustering algorithm

• A demo of the Spectral Biclustering algorithm

7.24.7 Pairwise metrics

See the Pairwise metrics, Affinities and Kernels section of the user guide for further details.

metrics.pairwise.
additive_chi2_kernel(X[, Y])

Computes the additive chi-squared kernel between ob-
servations in X and Y

metrics.pairwise.chi2_kernel(X[, Y,
gamma])

Computes the exponential chi-squared kernel X and Y.

metrics.pairwise.cosine_similarity(X[,
Y, . . .])

Compute cosine similarity between samples in X and Y.

metrics.pairwise.cosine_distances(X[,
Y])

Compute cosine distance between samples in X and Y.

metrics.pairwise.distance_metrics() Valid metrics for pairwise_distances.
metrics.pairwise.
euclidean_distances(X[, Y, . . .])

Considering the rows of X (and Y=X) as vectors, com-
pute the distance matrix between each pair of vectors.

metrics.pairwise.
haversine_distances(X[, Y])

Compute the Haversine distance between samples in X
and Y

metrics.pairwise.kernel_metrics() Valid metrics for pairwise_kernels
metrics.pairwise.laplacian_kernel(X[,
Y, gamma])

Compute the laplacian kernel between X and Y.

metrics.pairwise.linear_kernel(X[, Y,
. . .])

Compute the linear kernel between X and Y.

Continued on next page

7.24. sklearn.metrics: Metrics 2263

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2881408/

scikit-learn user guide, Release 0.23.2

Table 199 – continued from previous page
metrics.pairwise.
manhattan_distances(X[, Y, . . .])

Compute the L1 distances between the vectors in X and
Y.

metrics.pairwise.
nan_euclidean_distances(X)

Calculate the euclidean distances in the presence of
missing values.

metrics.pairwise.pairwise_kernels(X[,
Y, . . .])

Compute the kernel between arrays X and optional array
Y.

metrics.pairwise.polynomial_kernel(X[,
Y, . . .])

Compute the polynomial kernel between X and Y.

metrics.pairwise.rbf_kernel(X[, Y,
gamma])

Compute the rbf (gaussian) kernel between X and Y.

metrics.pairwise.sigmoid_kernel(X[, Y,
. . .])

Compute the sigmoid kernel between X and Y.

metrics.pairwise.
paired_euclidean_distances(X, Y)

Computes the paired euclidean distances between X and
Y

metrics.pairwise.
paired_manhattan_distances(X, Y)

Compute the L1 distances between the vectors in X and
Y.

metrics.pairwise.
paired_cosine_distances(X, Y)

Computes the paired cosine distances between X and Y

metrics.pairwise.paired_distances(X, Y,
*[, . . .])

Computes the paired distances between X and Y.

metrics.pairwise_distances(X[, Y, metric,
. . .])

Compute the distance matrix from a vector array X and
optional Y.

metrics.pairwise_distances_argmin(X, Y,
*[, . . .])

Compute minimum distances between one point and a
set of points.

metrics.pairwise_distances_argmin_min(X,
Y, *)

Compute minimum distances between one point and a
set of points.

metrics.pairwise_distances_chunked(X[,
Y, . . .])

Generate a distance matrix chunk by chunk with op-
tional reduction

sklearn.metrics.pairwise.additive_chi2_kernel

sklearn.metrics.pairwise.additive_chi2_kernel(X, Y=None)
Computes the additive chi-squared kernel between observations in X and Y

The chi-squared kernel is computed between each pair of rows in X and Y. X and Y have to be non-negative.
This kernel is most commonly applied to histograms.

The chi-squared kernel is given by:

k(x, y) = -Sum [(x - y)^2 / (x + y)]

It can be interpreted as a weighted difference per entry.

Read more in the User Guide.

Parameters

X [array-like of shape (n_samples_X, n_features)]

Y [array of shape (n_samples_Y, n_features)]

Returns

kernel_matrix [array of shape (n_samples_X, n_samples_Y)]

See also:

2264 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

chi2_kernel The exponentiated version of the kernel, which is usually preferable.

sklearn.kernel_approximation.AdditiveChi2Sampler A Fourier approximation to this ker-
nel.

Notes

As the negative of a distance, this kernel is only conditionally positive definite.

References

• Zhang, J. and Marszalek, M. and Lazebnik, S. and Schmid, C. Local features and kernels for classification
of texture and object categories: A comprehensive study International Journal of Computer Vision 2007
https://research.microsoft.com/en-us/um/people/manik/projects/trade-off/papers/ZhangIJCV06.pdf

sklearn.metrics.pairwise.chi2_kernel

sklearn.metrics.pairwise.chi2_kernel(X, Y=None, gamma=1.0)
Computes the exponential chi-squared kernel X and Y.

The chi-squared kernel is computed between each pair of rows in X and Y. X and Y have to be non-negative.
This kernel is most commonly applied to histograms.

The chi-squared kernel is given by:

k(x, y) = exp(-gamma Sum [(x - y)^2 / (x + y)])

It can be interpreted as a weighted difference per entry.

Read more in the User Guide.

Parameters

X [array-like of shape (n_samples_X, n_features)]

Y [array of shape (n_samples_Y, n_features)]

gamma [float, default=1.] Scaling parameter of the chi2 kernel.

Returns

kernel_matrix [array of shape (n_samples_X, n_samples_Y)]

See also:

additive_chi2_kernel The additive version of this kernel

sklearn.kernel_approximation.AdditiveChi2Sampler A Fourier approximation to the addi-
tive version of this kernel.

References

• Zhang, J. and Marszalek, M. and Lazebnik, S. and Schmid, C. Local features and kernels for classification
of texture and object categories: A comprehensive study International Journal of Computer Vision 2007
https://research.microsoft.com/en-us/um/people/manik/projects/trade-off/papers/ZhangIJCV06.pdf

7.24. sklearn.metrics: Metrics 2265

https://research.microsoft.com/en-us/um/people/manik/projects/trade-off/papers/ZhangIJCV06.pdf
https://research.microsoft.com/en-us/um/people/manik/projects/trade-off/papers/ZhangIJCV06.pdf

scikit-learn user guide, Release 0.23.2

sklearn.metrics.pairwise.cosine_similarity

sklearn.metrics.pairwise.cosine_similarity(X, Y=None, dense_output=True)
Compute cosine similarity between samples in X and Y.

Cosine similarity, or the cosine kernel, computes similarity as the normalized dot product of X and Y:

K(X, Y) = <X, Y> / (||X||*||Y||)

On L2-normalized data, this function is equivalent to linear_kernel.

Read more in the User Guide.

Parameters

X [ndarray or sparse array, shape: (n_samples_X, n_features)] Input data.

Y [ndarray or sparse array, shape: (n_samples_Y, n_features)] Input data. If None, the output
will be the pairwise similarities between all samples in X.

dense_output [boolean (optional), default True] Whether to return dense output even when the
input is sparse. If False, the output is sparse if both input arrays are sparse.

New in version 0.17: parameter dense_output for dense output.

Returns

kernel matrix [array] An array with shape (n_samples_X, n_samples_Y).

sklearn.metrics.pairwise.cosine_distances

sklearn.metrics.pairwise.cosine_distances(X, Y=None)
Compute cosine distance between samples in X and Y.

Cosine distance is defined as 1.0 minus the cosine similarity.

Read more in the User Guide.

Parameters

X [array_like, sparse matrix] with shape (n_samples_X, n_features).

Y [array_like, sparse matrix (optional)] with shape (n_samples_Y, n_features).

Returns

distance matrix [array] An array with shape (n_samples_X, n_samples_Y).

See also:

sklearn.metrics.pairwise.cosine_similarity

scipy.spatial.distance.cosine dense matrices only

sklearn.metrics.pairwise.distance_metrics

sklearn.metrics.pairwise.distance_metrics()
Valid metrics for pairwise_distances.

This function simply returns the valid pairwise distance metrics. It exists to allow for a description of the
mapping for each of the valid strings.

The valid distance metrics, and the function they map to, are:

2266 Chapter 7. API Reference

https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cosine.html#scipy.spatial.distance.cosine

scikit-learn user guide, Release 0.23.2

metric Function
‘cityblock’ metrics.pairwise.manhattan_distances
‘cosine’ metrics.pairwise.cosine_distances
‘euclidean’ metrics.pairwise.euclidean_distances
‘haversine’ metrics.pairwise.haversine_distances
‘l1’ metrics.pairwise.manhattan_distances
‘l2’ metrics.pairwise.euclidean_distances
‘manhattan’ metrics.pairwise.manhattan_distances
‘nan_euclidean’ metrics.pairwise.nan_euclidean_distances

Read more in the User Guide.

sklearn.metrics.pairwise.euclidean_distances

sklearn.metrics.pairwise.euclidean_distances(X, Y=None, *, Y_norm_squared=None,
squared=False, X_norm_squared=None)

Considering the rows of X (and Y=X) as vectors, compute the distance matrix between each pair of vectors.

For efficiency reasons, the euclidean distance between a pair of row vector x and y is computed as:

dist(x, y) = sqrt(dot(x, x) - 2 * dot(x, y) + dot(y, y))

This formulation has two advantages over other ways of computing distances. First, it is computationally ef-
ficient when dealing with sparse data. Second, if one argument varies but the other remains unchanged, then
dot(x, x) and/or dot(y, y) can be pre-computed.

However, this is not the most precise way of doing this computation, and the distance matrix returned by this
function may not be exactly symmetric as required by, e.g., scipy.spatial.distance functions.

Read more in the User Guide.

Parameters

X [{array-like, sparse matrix}, shape (n_samples_1, n_features)]

Y [{array-like, sparse matrix}, shape (n_samples_2, n_features)]

Y_norm_squared [array-like, shape (n_samples_2,), optional] Pre-computed dot-products of
vectors in Y (e.g., (Y**2).sum(axis=1)) May be ignored in some cases, see the note
below.

squared [boolean, optional] Return squared Euclidean distances.

X_norm_squared [array-like of shape (n_samples,), optional] Pre-computed dot-products of
vectors in X (e.g., (X**2).sum(axis=1)) May be ignored in some cases, see the note
below.

Returns

distances [array, shape (n_samples_1, n_samples_2)]

See also:

paired_distances distances betweens pairs of elements of X and Y.

7.24. sklearn.metrics: Metrics 2267

scikit-learn user guide, Release 0.23.2

Notes

To achieve better accuracy, X_norm_squared and Y_norm_squared may be unused if they are passed as
float32.

Examples

>>> from sklearn.metrics.pairwise import euclidean_distances
>>> X = [[0, 1], [1, 1]]
>>> # distance between rows of X
>>> euclidean_distances(X, X)
array([[0., 1.],

[1., 0.]])
>>> # get distance to origin
>>> euclidean_distances(X, [[0, 0]])
array([[1.],

[1.41421356]])

sklearn.metrics.pairwise.haversine_distances

sklearn.metrics.pairwise.haversine_distances(X, Y=None)
Compute the Haversine distance between samples in X and Y

The Haversine (or great circle) distance is the angular distance between two points on the surface of a sphere.
The first distance of each point is assumed to be the latitude, the second is the longitude, given in radians. The
dimension of the data must be 2.

𝐷(𝑥, 𝑦) = 2 arcsin[

√︁
sin2((𝑥1− 𝑦1)/2) + cos(𝑥1) cos(𝑦1) sin2((𝑥2− 𝑦2)/2)]

Parameters

X [array_like, shape (n_samples_1, 2)]

Y [array_like, shape (n_samples_2, 2), optional]

Returns

distance [{array}, shape (n_samples_1, n_samples_2)]

Notes

As the Earth is nearly spherical, the haversine formula provides a good approximation of the distance between
two points of the Earth surface, with a less than 1% error on average.

Examples

We want to calculate the distance between the Ezeiza Airport (Buenos Aires, Argentina) and the Charles de
Gaulle Airport (Paris, France)

>>> from sklearn.metrics.pairwise import haversine_distances
>>> from math import radians
>>> bsas = [-34.83333, -58.5166646]
>>> paris = [49.0083899664, 2.53844117956]

(continues on next page)

2268 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

(continued from previous page)

>>> bsas_in_radians = [radians(_) for _ in bsas]
>>> paris_in_radians = [radians(_) for _ in paris]
>>> result = haversine_distances([bsas_in_radians, paris_in_radians])
>>> result * 6371000/1000 # multiply by Earth radius to get kilometers
array([[0. , 11099.54035582],

[11099.54035582, 0.]])

sklearn.metrics.pairwise.kernel_metrics

sklearn.metrics.pairwise.kernel_metrics()
Valid metrics for pairwise_kernels

This function simply returns the valid pairwise distance metrics. It exists, however, to allow for a verbose
description of the mapping for each of the valid strings.

The valid distance metrics, and the function they map to, are:

metric Function
‘additive_chi2’ sklearn.pairwise.additive_chi2_kernel
‘chi2’ sklearn.pairwise.chi2_kernel
‘linear’ sklearn.pairwise.linear_kernel
‘poly’ sklearn.pairwise.polynomial_kernel
‘polynomial’ sklearn.pairwise.polynomial_kernel
‘rbf’ sklearn.pairwise.rbf_kernel
‘laplacian’ sklearn.pairwise.laplacian_kernel
‘sigmoid’ sklearn.pairwise.sigmoid_kernel
‘cosine’ sklearn.pairwise.cosine_similarity

Read more in the User Guide.

sklearn.metrics.pairwise.laplacian_kernel

sklearn.metrics.pairwise.laplacian_kernel(X, Y=None, gamma=None)
Compute the laplacian kernel between X and Y.

The laplacian kernel is defined as:

K(x, y) = exp(-gamma ||x-y||_1)

for each pair of rows x in X and y in Y. Read more in the User Guide.

New in version 0.17.

Parameters

X [array of shape (n_samples_X, n_features)]

Y [array of shape (n_samples_Y, n_features)]

gamma [float, default None] If None, defaults to 1.0 / n_features

Returns

kernel_matrix [array of shape (n_samples_X, n_samples_Y)]

7.24. sklearn.metrics: Metrics 2269

scikit-learn user guide, Release 0.23.2

sklearn.metrics.pairwise.linear_kernel

sklearn.metrics.pairwise.linear_kernel(X, Y=None, dense_output=True)
Compute the linear kernel between X and Y.

Read more in the User Guide.

Parameters

X [array of shape (n_samples_1, n_features)]

Y [array of shape (n_samples_2, n_features)]

dense_output [boolean (optional), default True] Whether to return dense output even when the
input is sparse. If False, the output is sparse if both input arrays are sparse.

New in version 0.20.

Returns

Gram matrix [array of shape (n_samples_1, n_samples_2)]

sklearn.metrics.pairwise.manhattan_distances

sklearn.metrics.pairwise.manhattan_distances(X, Y=None, *, sum_over_features=True)
Compute the L1 distances between the vectors in X and Y.

With sum_over_features equal to False it returns the componentwise distances.

Read more in the User Guide.

Parameters

X [array_like] An array with shape (n_samples_X, n_features).

Y [array_like, optional] An array with shape (n_samples_Y, n_features).

sum_over_features [bool, default=True] If True the function returns the pairwise distance ma-
trix else it returns the componentwise L1 pairwise-distances. Not supported for sparse ma-
trix inputs.

Returns

D [array] If sum_over_features is False shape is (n_samples_X * n_samples_Y, n_features) and
D contains the componentwise L1 pairwise-distances (ie. absolute difference), else shape is
(n_samples_X, n_samples_Y) and D contains the pairwise L1 distances.

Notes

When X and/or Y are CSR sparse matrices and they are not already in canonical format, this function modifies
them in-place to make them canonical.

Examples

>>> from sklearn.metrics.pairwise import manhattan_distances
>>> manhattan_distances([[3]], [[3]])
array([[0.]])
>>> manhattan_distances([[3]], [[2]])
array([[1.]])

(continues on next page)

2270 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

(continued from previous page)

>>> manhattan_distances([[2]], [[3]])
array([[1.]])
>>> manhattan_distances([[1, 2], [3, 4]], [[1, 2], [0, 3]])
array([[0., 2.],

[4., 4.]])
>>> import numpy as np
>>> X = np.ones((1, 2))
>>> y = np.full((2, 2), 2.)
>>> manhattan_distances(X, y, sum_over_features=False)
array([[1., 1.],

[1., 1.]])

sklearn.metrics.pairwise.nan_euclidean_distances

sklearn.metrics.pairwise.nan_euclidean_distances(X, Y=None, *, squared=False, miss-
ing_values=nan, copy=True)

Calculate the euclidean distances in the presence of missing values.

Compute the euclidean distance between each pair of samples in X and Y, where Y=X is assumed if Y=None.
When calculating the distance between a pair of samples, this formulation ignores feature coordinates with a
missing value in either sample and scales up the weight of the remaining coordinates:

dist(x,y) = sqrt(weight * sq. distance from present coordinates) where, weight = Total # of coordi-
nates / # of present coordinates

For example, the distance between [3, na, na, 6] and [1, na, 4, 5] is:

√︂
4

2
((3− 1)2 + (6− 5)2)

If all the coordinates are missing or if there are no common present coordinates then NaN is returned for that
pair.

Read more in the User Guide.

New in version 0.22.

Parameters

X [array-like, shape=(n_samples_1, n_features)]

Y [array-like, shape=(n_samples_2, n_features)]

squared [bool, default=False] Return squared Euclidean distances.

missing_values [np.nan or int, default=np.nan] Representation of missing value

copy [boolean, default=True] Make and use a deep copy of X and Y (if Y exists)

Returns

distances [array, shape (n_samples_1, n_samples_2)]

See also:

paired_distances distances between pairs of elements of X and Y.

7.24. sklearn.metrics: Metrics 2271

scikit-learn user guide, Release 0.23.2

References

• John K. Dixon, “Pattern Recognition with Partly Missing Data”, IEEE Transactions on Systems, Man, and
Cybernetics, Volume: 9, Issue: 10, pp. 617 - 621, Oct. 1979. http://ieeexplore.ieee.org/abstract/document/
4310090/

Examples

>>> from sklearn.metrics.pairwise import nan_euclidean_distances
>>> nan = float("NaN")
>>> X = [[0, 1], [1, nan]]
>>> nan_euclidean_distances(X, X) # distance between rows of X
array([[0. , 1.41421356],

[1.41421356, 0.]])

>>> # get distance to origin
>>> nan_euclidean_distances(X, [[0, 0]])
array([[1.],

[1.41421356]])

sklearn.metrics.pairwise.pairwise_kernels

sklearn.metrics.pairwise.pairwise_kernels(X, Y=None, metric=’linear’, *, fil-
ter_params=False, n_jobs=None, **kwds)

Compute the kernel between arrays X and optional array Y.

This method takes either a vector array or a kernel matrix, and returns a kernel matrix. If the input is a vector
array, the kernels are computed. If the input is a kernel matrix, it is returned instead.

This method provides a safe way to take a kernel matrix as input, while preserving compatibility with many
other algorithms that take a vector array.

If Y is given (default is None), then the returned matrix is the pairwise kernel between the arrays from both X
and Y.

Valid values for metric are: [‘additive_chi2’, ‘chi2’, ‘linear’, ‘poly’, ‘polynomial’, ‘rbf’, ‘laplacian’, ‘sig-
moid’, ‘cosine’]

Read more in the User Guide.

Parameters

X [array [n_samples_a, n_samples_a] if metric == “precomputed”, or, [n_samples_a,
n_features] otherwise] Array of pairwise kernels between samples, or a feature array.

Y [array [n_samples_b, n_features]] A second feature array only if X has shape [n_samples_a,
n_features].

metric [string, or callable] The metric to use when calculating kernel between instances
in a feature array. If metric is a string, it must be one of the metrics in pair-
wise.PAIRWISE_KERNEL_FUNCTIONS. If metric is “precomputed”, X is assumed to
be a kernel matrix. Alternatively, if metric is a callable function, it is called on each pair
of instances (rows) and the resulting value recorded. The callable should take two rows
from X as input and return the corresponding kernel value as a single number. This means
that callables from sklearn.metrics.pairwise are not allowed, as they operate on
matrices, not single samples. Use the string identifying the kernel instead.

2272 Chapter 7. API Reference

http://ieeexplore.ieee.org/abstract/document/4310090/
http://ieeexplore.ieee.org/abstract/document/4310090/

scikit-learn user guide, Release 0.23.2

filter_params [boolean] Whether to filter invalid parameters or not.

n_jobs [int or None, optional (default=None)] The number of jobs to use for the computation.
This works by breaking down the pairwise matrix into n_jobs even slices and computing
them in parallel.

None means 1 unless in a joblib.parallel_backend context. -1 means using all
processors. See Glossary for more details.

**kwds [optional keyword parameters] Any further parameters are passed directly to the kernel
function.

Returns

K [array [n_samples_a, n_samples_a] or [n_samples_a, n_samples_b]] A kernel matrix K such
that K_{i, j} is the kernel between the ith and jth vectors of the given matrix X, if Y is None.
If Y is not None, then K_{i, j} is the kernel between the ith array from X and the jth array
from Y.

Notes

If metric is ‘precomputed’, Y is ignored and X is returned.

sklearn.metrics.pairwise.polynomial_kernel

sklearn.metrics.pairwise.polynomial_kernel(X, Y=None, degree=3, gamma=None,
coef0=1)

Compute the polynomial kernel between X and Y:

K(X, Y) = (gamma <X, Y> + coef0)^degree

Read more in the User Guide.

Parameters

X [ndarray of shape (n_samples_1, n_features)]

Y [ndarray of shape (n_samples_2, n_features)]

degree [int, default 3]

gamma [float, default None] if None, defaults to 1.0 / n_features

coef0 [float, default 1]

Returns

Gram matrix [array of shape (n_samples_1, n_samples_2)]

sklearn.metrics.pairwise.rbf_kernel

sklearn.metrics.pairwise.rbf_kernel(X, Y=None, gamma=None)
Compute the rbf (gaussian) kernel between X and Y:

K(x, y) = exp(-gamma ||x-y||^2)

for each pair of rows x in X and y in Y.

Read more in the User Guide.

7.24. sklearn.metrics: Metrics 2273

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

Parameters

X [array of shape (n_samples_X, n_features)]

Y [array of shape (n_samples_Y, n_features)]

gamma [float, default None] If None, defaults to 1.0 / n_features

Returns

kernel_matrix [array of shape (n_samples_X, n_samples_Y)]

sklearn.metrics.pairwise.sigmoid_kernel

sklearn.metrics.pairwise.sigmoid_kernel(X, Y=None, gamma=None, coef0=1)
Compute the sigmoid kernel between X and Y:

K(X, Y) = tanh(gamma <X, Y> + coef0)

Read more in the User Guide.

Parameters

X [ndarray of shape (n_samples_1, n_features)]

Y [ndarray of shape (n_samples_2, n_features)]

gamma [float, default None] If None, defaults to 1.0 / n_features

coef0 [float, default 1]

Returns

Gram matrix [array of shape (n_samples_1, n_samples_2)]

sklearn.metrics.pairwise.paired_euclidean_distances

sklearn.metrics.pairwise.paired_euclidean_distances(X, Y)
Computes the paired euclidean distances between X and Y

Read more in the User Guide.

Parameters

X [array-like, shape (n_samples, n_features)]

Y [array-like, shape (n_samples, n_features)]

Returns

distances [ndarray (n_samples,)]

sklearn.metrics.pairwise.paired_manhattan_distances

sklearn.metrics.pairwise.paired_manhattan_distances(X, Y)
Compute the L1 distances between the vectors in X and Y.

Read more in the User Guide.

Parameters

X [array-like, shape (n_samples, n_features)]

2274 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Y [array-like, shape (n_samples, n_features)]

Returns

distances [ndarray (n_samples,)]

sklearn.metrics.pairwise.paired_cosine_distances

sklearn.metrics.pairwise.paired_cosine_distances(X, Y)
Computes the paired cosine distances between X and Y

Read more in the User Guide.

Parameters

X [array-like, shape (n_samples, n_features)]

Y [array-like, shape (n_samples, n_features)]

Returns

distances [ndarray, shape (n_samples,)]

Notes

The cosine distance is equivalent to the half the squared euclidean distance if each sample is normalized to unit
norm

sklearn.metrics.pairwise.paired_distances

sklearn.metrics.pairwise.paired_distances(X, Y, *, metric=’euclidean’, **kwds)
Computes the paired distances between X and Y.

Computes the distances between (X[0], Y[0]), (X[1], Y[1]), etc. . .

Read more in the User Guide.

Parameters

X [ndarray (n_samples, n_features)] Array 1 for distance computation.

Y [ndarray (n_samples, n_features)] Array 2 for distance computation.

metric [string or callable] The metric to use when calculating distance between instances
in a feature array. If metric is a string, it must be one of the options specified in
PAIRED_DISTANCES, including “euclidean”, “manhattan”, or “cosine”. Alternatively, if
metric is a callable function, it is called on each pair of instances (rows) and the resulting
value recorded. The callable should take two arrays from X as input and return a value
indicating the distance between them.

Returns

distances [ndarray (n_samples,)]

See also:

pairwise_distances Computes the distance between every pair of samples

7.24. sklearn.metrics: Metrics 2275

scikit-learn user guide, Release 0.23.2

Examples

>>> from sklearn.metrics.pairwise import paired_distances
>>> X = [[0, 1], [1, 1]]
>>> Y = [[0, 1], [2, 1]]
>>> paired_distances(X, Y)
array([0., 1.])

sklearn.metrics.pairwise_distances

sklearn.metrics.pairwise_distances(X, Y=None, metric=’euclidean’, *, n_jobs=None,
force_all_finite=True, **kwds)

Compute the distance matrix from a vector array X and optional Y.

This method takes either a vector array or a distance matrix, and returns a distance matrix. If the input is a vector
array, the distances are computed. If the input is a distances matrix, it is returned instead.

This method provides a safe way to take a distance matrix as input, while preserving compatibility with many
other algorithms that take a vector array.

If Y is given (default is None), then the returned matrix is the pairwise distance between the arrays from both X
and Y.

Valid values for metric are:

• From scikit-learn: [‘cityblock’, ‘cosine’, ‘euclidean’, ‘l1’, ‘l2’, ‘manhattan’]. These metrics support sparse
matrix inputs. [‘nan_euclidean’] but it does not yet support sparse matrices.

• From scipy.spatial.distance: [‘braycurtis’, ‘canberra’, ‘chebyshev’, ‘correlation’, ‘dice’, ‘hamming’, ‘jac-
card’, ‘kulsinski’, ‘mahalanobis’, ‘minkowski’, ‘rogerstanimoto’, ‘russellrao’, ‘seuclidean’, ‘sokalmich-
ener’, ‘sokalsneath’, ‘sqeuclidean’, ‘yule’] See the documentation for scipy.spatial.distance for details on
these metrics. These metrics do not support sparse matrix inputs.

Note that in the case of ‘cityblock’, ‘cosine’ and ‘euclidean’ (which are valid scipy.spatial.distance met-
rics), the scikit-learn implementation will be used, which is faster and has support for sparse matrices (ex-
cept for ‘cityblock’). For a verbose description of the metrics from scikit-learn, see the __doc__ of the
sklearn.pairwise.distance_metrics function.

Read more in the User Guide.

Parameters

X [array [n_samples_a, n_samples_a] if metric == “precomputed”, or, [n_samples_a,
n_features] otherwise] Array of pairwise distances between samples, or a feature array.

Y [array [n_samples_b, n_features], optional] An optional second feature array. Only allowed
if metric != “precomputed”.

metric [string, or callable] The metric to use when calculating distance between in-
stances in a feature array. If metric is a string, it must be one of the options al-
lowed by scipy.spatial.distance.pdist for its metric parameter, or a metric listed in pair-
wise.PAIRWISE_DISTANCE_FUNCTIONS. If metric is “precomputed”, X is assumed to
be a distance matrix. Alternatively, if metric is a callable function, it is called on each pair
of instances (rows) and the resulting value recorded. The callable should take two arrays
from X as input and return a value indicating the distance between them.

n_jobs [int or None, optional (default=None)] The number of jobs to use for the computation.
This works by breaking down the pairwise matrix into n_jobs even slices and computing
them in parallel.

2276 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

None means 1 unless in a joblib.parallel_backend context. -1 means using all
processors. See Glossary for more details.

force_all_finite [boolean or ‘allow-nan’, (default=True)] Whether to raise an error on np.inf,
np.nan, pd.NA in array. The possibilities are:

• True: Force all values of array to be finite.

• False: accepts np.inf, np.nan, pd.NA in array.

• ‘allow-nan’: accepts only np.nan and pd.NA values in array. Values cannot be infinite.

New in version 0.22: force_all_finite accepts the string 'allow-nan'.

Changed in version 0.23: Accepts pd.NA and converts it into np.nan

**kwds [optional keyword parameters] Any further parameters are passed directly to the dis-
tance function. If using a scipy.spatial.distance metric, the parameters are still metric de-
pendent. See the scipy docs for usage examples.

Returns

D [array [n_samples_a, n_samples_a] or [n_samples_a, n_samples_b]] A distance matrix D
such that D_{i, j} is the distance between the ith and jth vectors of the given matrix X, if Y
is None. If Y is not None, then D_{i, j} is the distance between the ith array from X and the
jth array from Y.

See also:

pairwise_distances_chunked performs the same calculation as this function, but returns a generator
of chunks of the distance matrix, in order to limit memory usage.

paired_distances Computes the distances between corresponding elements of two arrays

Examples using sklearn.metrics.pairwise_distances

• Agglomerative clustering with different metrics

sklearn.metrics.pairwise_distances_argmin

sklearn.metrics.pairwise_distances_argmin(X, Y, *, axis=1, metric=’euclidean’, met-
ric_kwargs=None)

Compute minimum distances between one point and a set of points.

This function computes for each row in X, the index of the row of Y which is closest (according to the specified
distance).

This is mostly equivalent to calling:

pairwise_distances(X, Y=Y, metric=metric).argmin(axis=axis)

but uses much less memory, and is faster for large arrays.

This function works with dense 2D arrays only.

Parameters

X [array-like] Arrays containing points. Respective shapes (n_samples1, n_features) and
(n_samples2, n_features)

Y [array-like] Arrays containing points. Respective shapes (n_samples1, n_features) and
(n_samples2, n_features)

7.24. sklearn.metrics: Metrics 2277

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

axis [int, optional, default 1] Axis along which the argmin and distances are to be computed.

metric [string or callable] metric to use for distance computation. Any metric from scikit-learn
or scipy.spatial.distance can be used.

If metric is a callable function, it is called on each pair of instances (rows) and the resulting
value recorded. The callable should take two arrays as input and return one value indicating
the distance between them. This works for Scipy’s metrics, but is less efficient than passing
the metric name as a string.

Distance matrices are not supported.

Valid values for metric are:

• from scikit-learn: [‘cityblock’, ‘cosine’, ‘euclidean’, ‘l1’, ‘l2’, ‘manhattan’]

• from scipy.spatial.distance: [‘braycurtis’, ‘canberra’, ‘chebyshev’, ‘correlation’, ‘dice’,
‘hamming’, ‘jaccard’, ‘kulsinski’, ‘mahalanobis’, ‘minkowski’, ‘rogerstanimoto’, ‘rus-
sellrao’, ‘seuclidean’, ‘sokalmichener’, ‘sokalsneath’, ‘sqeuclidean’, ‘yule’]

See the documentation for scipy.spatial.distance for details on these metrics.

metric_kwargs [dict] keyword arguments to pass to specified metric function.

Returns

argmin [numpy.ndarray] Y[argmin[i], :] is the row in Y that is closest to X[i, :].

See also:

sklearn.metrics.pairwise_distances

sklearn.metrics.pairwise_distances_argmin_min

Examples using sklearn.metrics.pairwise_distances_argmin

• Color Quantization using K-Means

• Comparison of the K-Means and MiniBatchKMeans clustering algorithms

sklearn.metrics.pairwise_distances_argmin_min

sklearn.metrics.pairwise_distances_argmin_min(X, Y, *, axis=1, metric=’euclidean’, met-
ric_kwargs=None)

Compute minimum distances between one point and a set of points.

This function computes for each row in X, the index of the row of Y which is closest (according to the specified
distance). The minimal distances are also returned.

This is mostly equivalent to calling:

(pairwise_distances(X, Y=Y, metric=metric).argmin(axis=axis), pairwise_distances(X, Y=Y,
metric=metric).min(axis=axis))

but uses much less memory, and is faster for large arrays.

Parameters

X [{array-like, sparse matrix}, shape (n_samples1, n_features)] Array containing points.

Y [{array-like, sparse matrix}, shape (n_samples2, n_features)] Arrays containing points.

axis [int, optional, default 1] Axis along which the argmin and distances are to be computed.

2278 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

metric [string or callable, default ‘euclidean’] metric to use for distance computation. Any
metric from scikit-learn or scipy.spatial.distance can be used.

If metric is a callable function, it is called on each pair of instances (rows) and the resulting
value recorded. The callable should take two arrays as input and return one value indicating
the distance between them. This works for Scipy’s metrics, but is less efficient than passing
the metric name as a string.

Distance matrices are not supported.

Valid values for metric are:

• from scikit-learn: [‘cityblock’, ‘cosine’, ‘euclidean’, ‘l1’, ‘l2’, ‘manhattan’]

• from scipy.spatial.distance: [‘braycurtis’, ‘canberra’, ‘chebyshev’, ‘correlation’, ‘dice’,
‘hamming’, ‘jaccard’, ‘kulsinski’, ‘mahalanobis’, ‘minkowski’, ‘rogerstanimoto’, ‘rus-
sellrao’, ‘seuclidean’, ‘sokalmichener’, ‘sokalsneath’, ‘sqeuclidean’, ‘yule’]

See the documentation for scipy.spatial.distance for details on these metrics.

metric_kwargs [dict, optional] Keyword arguments to pass to specified metric function.

Returns

argmin [numpy.ndarray] Y[argmin[i], :] is the row in Y that is closest to X[i, :].

distances [numpy.ndarray] distances[i] is the distance between the i-th row in X and the
argmin[i]-th row in Y.

See also:

sklearn.metrics.pairwise_distances

sklearn.metrics.pairwise_distances_argmin

sklearn.metrics.pairwise_distances_chunked

sklearn.metrics.pairwise_distances_chunked(X, Y=None, *, reduce_func=None, met-
ric=’euclidean’, n_jobs=None, work-
ing_memory=None, **kwds)

Generate a distance matrix chunk by chunk with optional reduction

In cases where not all of a pairwise distance matrix needs to be stored at once, this is used to calculate pairwise
distances in working_memory-sized chunks. If reduce_func is given, it is run on each chunk and its
return values are concatenated into lists, arrays or sparse matrices.

Parameters

X [array [n_samples_a, n_samples_a] if metric == “precomputed”, or,] [n_samples_a,
n_features] otherwise Array of pairwise distances between samples, or a feature array.

Y [array [n_samples_b, n_features], optional] An optional second feature array. Only allowed
if metric != “precomputed”.

reduce_func [callable, optional] The function which is applied on each chunk of the distance
matrix, reducing it to needed values. reduce_func(D_chunk, start) is called re-
peatedly, where D_chunk is a contiguous vertical slice of the pairwise distance matrix,
starting at row start. It should return one of: None; an array, a list, or a sparse matrix
of length D_chunk.shape[0]; or a tuple of such objects. Returning None is useful for
in-place operations, rather than reductions.

7.24. sklearn.metrics: Metrics 2279

scikit-learn user guide, Release 0.23.2

If None, pairwise_distances_chunked returns a generator of vertical chunks of the distance
matrix.

metric [string, or callable] The metric to use when calculating distance between in-
stances in a feature array. If metric is a string, it must be one of the options al-
lowed by scipy.spatial.distance.pdist for its metric parameter, or a metric listed in pair-
wise.PAIRWISE_DISTANCE_FUNCTIONS. If metric is “precomputed”, X is assumed to
be a distance matrix. Alternatively, if metric is a callable function, it is called on each pair
of instances (rows) and the resulting value recorded. The callable should take two arrays
from X as input and return a value indicating the distance between them.

n_jobs [int or None, optional (default=None)] The number of jobs to use for the computation.
This works by breaking down the pairwise matrix into n_jobs even slices and computing
them in parallel.

None means 1 unless in a joblib.parallel_backend context. -1 means using all
processors. See Glossary for more details.

working_memory [int, optional] The sought maximum memory for temporary
distance matrix chunks. When None (default), the value of sklearn.
get_config()['working_memory'] is used.

‘**kwds‘ [optional keyword parameters] Any further parameters are passed directly to the dis-
tance function. If using a scipy.spatial.distance metric, the parameters are still metric de-
pendent. See the scipy docs for usage examples.

Yields

D_chunk [array or sparse matrix] A contiguous slice of distance matrix, optionally processed
by reduce_func.

Examples

Without reduce_func:

>>> import numpy as np
>>> from sklearn.metrics import pairwise_distances_chunked
>>> X = np.random.RandomState(0).rand(5, 3)
>>> D_chunk = next(pairwise_distances_chunked(X))
>>> D_chunk
array([[0. ..., 0.29..., 0.41..., 0.19..., 0.57...],

[0.29..., 0. ..., 0.57..., 0.41..., 0.76...],
[0.41..., 0.57..., 0. ..., 0.44..., 0.90...],
[0.19..., 0.41..., 0.44..., 0. ..., 0.51...],
[0.57..., 0.76..., 0.90..., 0.51..., 0. ...]])

Retrieve all neighbors and average distance within radius r:

>>> r = .2
>>> def reduce_func(D_chunk, start):
... neigh = [np.flatnonzero(d < r) for d in D_chunk]
... avg_dist = (D_chunk * (D_chunk < r)).mean(axis=1)
... return neigh, avg_dist
>>> gen = pairwise_distances_chunked(X, reduce_func=reduce_func)
>>> neigh, avg_dist = next(gen)
>>> neigh
[array([0, 3]), array([1]), array([2]), array([0, 3]), array([4])]

(continues on next page)

2280 Chapter 7. API Reference

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

(continued from previous page)

>>> avg_dist
array([0.039..., 0. , 0. , 0.039..., 0.])

Where r is defined per sample, we need to make use of start:

>>> r = [.2, .4, .4, .3, .1]
>>> def reduce_func(D_chunk, start):
... neigh = [np.flatnonzero(d < r[i])
... for i, d in enumerate(D_chunk, start)]
... return neigh
>>> neigh = next(pairwise_distances_chunked(X, reduce_func=reduce_func))
>>> neigh
[array([0, 3]), array([0, 1]), array([2]), array([0, 3]), array([4])]

Force row-by-row generation by reducing working_memory:

>>> gen = pairwise_distances_chunked(X, reduce_func=reduce_func,
... working_memory=0)
>>> next(gen)
[array([0, 3])]
>>> next(gen)
[array([0, 1])]

7.24.8 Plotting

See the Visualizations section of the user guide for further details.

metrics.plot_confusion_matrix(estimator,
X, . . .)

Plot Confusion Matrix.

metrics.plot_precision_recall_curve(. . . [,
. . .])

Plot Precision Recall Curve for binary classifiers.

metrics.plot_roc_curve(estimator, X, y, *[,
. . .])

Plot Receiver operating characteristic (ROC) curve.

sklearn.metrics.plot_confusion_matrix

sklearn.metrics.plot_confusion_matrix(estimator, X, y_true, *, labels=None, sam-
ple_weight=None, normalize=None, dis-
play_labels=None, include_values=True,
xticks_rotation=’horizontal’, values_format=None,
cmap=’viridis’, ax=None)

Plot Confusion Matrix.

Read more in the User Guide.

Parameters

estimator [estimator instance] Fitted classifier or a fitted Pipeline in which the last estimator
is a classifier.

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Input values.

y [array-like of shape (n_samples,)] Target values.

7.24. sklearn.metrics: Metrics 2281

scikit-learn user guide, Release 0.23.2

labels [array-like of shape (n_classes,), default=None] List of labels to index the matrix. This
may be used to reorder or select a subset of labels. If None is given, those that appear at
least once in y_true or y_pred are used in sorted order.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

normalize [{‘true’, ‘pred’, ‘all’}, default=None] Normalizes confusion matrix over the true
(rows), predicted (columns) conditions or all the population. If None, confusion matrix will
not be normalized.

display_labels [array-like of shape (n_classes,), default=None] Target names used for plotting.
By default, labels will be used if it is defined, otherwise the unique labels of y_true
and y_pred will be used.

include_values [bool, default=True] Includes values in confusion matrix.

xticks_rotation [{‘vertical’, ‘horizontal’} or float, default=’horizontal’] Rotation of xtick la-
bels.

values_format [str, default=None] Format specification for values in confusion matrix. If
None, the format specification is ‘d’ or ‘.2g’ whichever is shorter.

cmap [str or matplotlib Colormap, default=’viridis’] Colormap recognized by matplotlib.

ax [matplotlib Axes, default=None] Axes object to plot on. If None, a new figure and axes is
created.

Returns

display [ConfusionMatrixDisplay]

Examples

>>> import matplotlib.pyplot as plt # doctest: +SKIP
>>> from sklearn.datasets import make_classification
>>> from sklearn.metrics import plot_confusion_matrix
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.svm import SVC
>>> X, y = make_classification(random_state=0)
>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, random_state=0)
>>> clf = SVC(random_state=0)
>>> clf.fit(X_train, y_train)
SVC(random_state=0)
>>> plot_confusion_matrix(clf, X_test, y_test) # doctest: +SKIP
>>> plt.show() # doctest: +SKIP

Examples using sklearn.metrics.plot_confusion_matrix

• Recognizing hand-written digits

• Confusion matrix

2282 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

sklearn.metrics.plot_precision_recall_curve

sklearn.metrics.plot_precision_recall_curve(estimator, X, y, *, sample_weight=None,
response_method=’auto’, name=None,
ax=None, **kwargs)

Plot Precision Recall Curve for binary classifiers.

Extra keyword arguments will be passed to matplotlib’s plot.

Read more in the User Guide.

Parameters

estimator [estimator instance] Fitted classifier or a fitted Pipeline in which the last estimator
is a classifier.

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Input values.

y [array-like of shape (n_samples,)] Binary target values.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

response_method [{‘predict_proba’, ‘decision_function’, ‘auto’}, default=’auto’] Specifies
whether to use predict_proba or decision_function as the target response. If set to ‘auto’,
predict_proba is tried first and if it does not exist decision_function is tried next.

name [str, default=None] Name for labeling curve. If None, the name of the estimator is used.

ax [matplotlib axes, default=None] Axes object to plot on. If None, a new figure and axes is
created.

**kwargs [dict] Keyword arguments to be passed to matplotlib’s plot.

Returns

display [PrecisionRecallDisplay] Object that stores computed values.

Examples using sklearn.metrics.plot_precision_recall_curve

• Precision-Recall

sklearn.metrics.plot_roc_curve

sklearn.metrics.plot_roc_curve(estimator, X, y, *, sample_weight=None,
drop_intermediate=True, response_method=’auto’,
name=None, ax=None, **kwargs)

Plot Receiver operating characteristic (ROC) curve.

Extra keyword arguments will be passed to matplotlib’s plot.

Read more in the User Guide.

Parameters

estimator [estimator instance] Fitted classifier or a fitted Pipeline in which the last estimator
is a classifier.

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Input values.

y [array-like of shape (n_samples,)] Target values.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

7.24. sklearn.metrics: Metrics 2283

scikit-learn user guide, Release 0.23.2

drop_intermediate [boolean, default=True] Whether to drop some suboptimal thresholds
which would not appear on a plotted ROC curve. This is useful in order to create lighter
ROC curves.

response_method [{‘predict_proba’, ‘decision_function’, ‘auto’} default=’auto’] Specifies
whether to use predict_proba or decision_function as the target response. If set to ‘auto’,
predict_proba is tried first and if it does not exist decision_function is tried next.

name [str, default=None] Name of ROC Curve for labeling. If None, use the name of the
estimator.

ax [matplotlib axes, default=None] Axes object to plot on. If None, a new figure and axes is
created.

Returns

display [RocCurveDisplay] Object that stores computed values.

Examples

>>> import matplotlib.pyplot as plt # doctest: +SKIP
>>> from sklearn import datasets, metrics, model_selection, svm
>>> X, y = datasets.make_classification(random_state=0)
>>> X_train, X_test, y_train, y_test = model_selection.train_test_split(
→˓ X, y, random_state=0)
>>> clf = svm.SVC(random_state=0)
>>> clf.fit(X_train, y_train)
SVC(random_state=0)
>>> metrics.plot_roc_curve(clf, X_test, y_test) # doctest: +SKIP
>>> plt.show() # doctest: +SKIP

Examples using sklearn.metrics.plot_roc_curve

• Release Highlights for scikit-learn 0.22

• ROC Curve with Visualization API

• Receiver Operating Characteristic (ROC) with cross validation

metrics.ConfusionMatrixDisplay(. . . [,
. . .])

Confusion Matrix visualization.

metrics.PrecisionRecallDisplay(precision,
. . .)

Precision Recall visualization.

metrics.RocCurveDisplay(*, fpr, tpr[, . . .]) ROC Curve visualization.

sklearn.metrics.ConfusionMatrixDisplay

class sklearn.metrics.ConfusionMatrixDisplay(confusion_matrix, *, dis-
play_labels=None)

Confusion Matrix visualization.

It is recommend to use plot_confusion_matrix to create a ConfusionMatrixDisplay . All param-
eters are stored as attributes.

Read more in the User Guide.

2284 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Parameters

confusion_matrix [ndarray of shape (n_classes, n_classes)] Confusion matrix.

display_labels [ndarray of shape (n_classes,), default=None] Display labels for plot. If None,
display labels are set from 0 to n_classes - 1.

Attributes

im_ [matplotlib AxesImage] Image representing the confusion matrix.

text_ [ndarray of shape (n_classes, n_classes), dtype=matplotlib Text, or None] Array of mat-
plotlib axes. None if include_values is false.

ax_ [matplotlib Axes] Axes with confusion matrix.

figure_ [matplotlib Figure] Figure containing the confusion matrix.

Methods

plot(*[, include_values, cmap, . . .]) Plot visualization.

__init__(confusion_matrix, *, display_labels=None)
Initialize self. See help(type(self)) for accurate signature.

plot(*, include_values=True, cmap=’viridis’, xticks_rotation=’horizontal’, values_format=None,
ax=None)

Plot visualization.

Parameters

include_values [bool, default=True] Includes values in confusion matrix.

cmap [str or matplotlib Colormap, default=’viridis’] Colormap recognized by matplotlib.

xticks_rotation [{‘vertical’, ‘horizontal’} or float, default=’horizontal’] Rotation of xtick
labels.

values_format [str, default=None] Format specification for values in confusion matrix. If
None, the format specification is ‘d’ or ‘.2g’ whichever is shorter.

ax [matplotlib axes, default=None] Axes object to plot on. If None, a new figure and axes
is created.

Returns

display [ConfusionMatrixDisplay]

Examples using sklearn.metrics.ConfusionMatrixDisplay

• Visualizations with Display Objects

sklearn.metrics.PrecisionRecallDisplay

class sklearn.metrics.PrecisionRecallDisplay(precision, recall, *, aver-
age_precision=None, estima-
tor_name=None)

Precision Recall visualization.

7.24. sklearn.metrics: Metrics 2285

scikit-learn user guide, Release 0.23.2

It is recommend to use plot_precision_recall_curve to create a visualizer. All parameters are stored
as attributes.

Read more in the User Guide.

Parameters

precision [ndarray] Precision values.

recall [ndarray] Recall values.

average_precision [float, default=None] Average precision. If None, the average precision is
not shown.

estimator_name [str, default=None] Name of estimator. If None, then the estimator name is
not shown.

Attributes

line_ [matplotlib Artist] Precision recall curve.

ax_ [matplotlib Axes] Axes with precision recall curve.

figure_ [matplotlib Figure] Figure containing the curve.

Methods

plot([ax, name]) Plot visualization.

__init__(precision, recall, *, average_precision=None, estimator_name=None)
Initialize self. See help(type(self)) for accurate signature.

plot(ax=None, *, name=None, **kwargs)
Plot visualization.

Extra keyword arguments will be passed to matplotlib’s plot.

Parameters

ax [Matplotlib Axes, default=None] Axes object to plot on. If None, a new figure and axes
is created.

name [str, default=None] Name of precision recall curve for labeling. If None, use the
name of the estimator.

**kwargs [dict] Keyword arguments to be passed to matplotlib’s plot.

Returns

display [PrecisionRecallDisplay] Object that stores computed values.

Examples using sklearn.metrics.PrecisionRecallDisplay

• Visualizations with Display Objects

sklearn.metrics.RocCurveDisplay

class sklearn.metrics.RocCurveDisplay(*, fpr, tpr, roc_auc=None, estimator_name=None)
ROC Curve visualization.

2286 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

It is recommend to use plot_roc_curve to create a visualizer. All parameters are stored as attributes.

Read more in the User Guide.

Parameters

fpr [ndarray] False positive rate.

tpr [ndarray] True positive rate.

roc_auc [float, default=None] Area under ROC curve. If None, the roc_auc score is not shown.

estimator_name [str, default=None] Name of estimator. If None, the estimator name is not
shown.

Attributes

line_ [matplotlib Artist] ROC Curve.

ax_ [matplotlib Axes] Axes with ROC Curve.

figure_ [matplotlib Figure] Figure containing the curve.

Examples

>>> import matplotlib.pyplot as plt # doctest: +SKIP
>>> import numpy as np
>>> from sklearn import metrics
>>> y = np.array([0, 0, 1, 1])
>>> pred = np.array([0.1, 0.4, 0.35, 0.8])
>>> fpr, tpr, thresholds = metrics.roc_curve(y, pred)
>>> roc_auc = metrics.auc(fpr, tpr)
>>> display = metrics.RocCurveDisplay(fpr=fpr, tpr=tpr, roc_auc=roc_auc,
→˓ estimator_name='example estimator')
>>> display.plot() # doctest: +SKIP
>>> plt.show() # doctest: +SKIP

Methods

plot([ax, name]) Plot visualization

__init__(*, fpr, tpr, roc_auc=None, estimator_name=None)
Initialize self. See help(type(self)) for accurate signature.

plot(ax=None, *, name=None, **kwargs)
Plot visualization

Extra keyword arguments will be passed to matplotlib’s plot.

Parameters

ax [matplotlib axes, default=None] Axes object to plot on. If None, a new figure and axes
is created.

name [str, default=None] Name of ROC Curve for labeling. If None, use the name of the
estimator.

Returns

display [RocCurveDisplay] Object that stores computed values.

7.24. sklearn.metrics: Metrics 2287

scikit-learn user guide, Release 0.23.2

Examples using sklearn.metrics.RocCurveDisplay

• Visualizations with Display Objects

7.25 sklearn.mixture: Gaussian Mixture Models

The sklearn.mixture module implements mixture modeling algorithms.

User guide: See the Gaussian mixture models section for further details.

mixture.BayesianGaussianMixture(*[, . . .]) Variational Bayesian estimation of a Gaussian mixture.
mixture.GaussianMixture([n_components,
. . .])

Gaussian Mixture.

7.25.1 sklearn.mixture.BayesianGaussianMixture

class sklearn.mixture.BayesianGaussianMixture(*, n_components=1, covari-
ance_type=’full’, tol=0.001,
reg_covar=1e-06, max_iter=100,
n_init=1, init_params=’kmeans’,
weight_concentration_prior_type=’dirichlet_process’,
weight_concentration_prior=None,
mean_precision_prior=None,
mean_prior=None, de-
grees_of_freedom_prior=None, covari-
ance_prior=None, random_state=None,
warm_start=False, verbose=0, ver-
bose_interval=10)

Variational Bayesian estimation of a Gaussian mixture.

This class allows to infer an approximate posterior distribution over the parameters of a Gaussian mixture
distribution. The effective number of components can be inferred from the data.

This class implements two types of prior for the weights distribution: a finite mixture model with Dirichlet
distribution and an infinite mixture model with the Dirichlet Process. In practice Dirichlet Process inference
algorithm is approximated and uses a truncated distribution with a fixed maximum number of components
(called the Stick-breaking representation). The number of components actually used almost always depends on
the data.

New in version 0.18.

Read more in the User Guide.

Parameters

n_components [int, defaults to 1.] The number of mixture components. Depending on the data
and the value of the weight_concentration_prior the model can decide to not use
all the components by setting some component weights_ to values very close to zero.
The number of effective components is therefore smaller than n_components.

covariance_type [{‘full’, ‘tied’, ‘diag’, ‘spherical’}, defaults to ‘full’] String describing the
type of covariance parameters to use. Must be one of:

2288 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

'full' (each component has its own general covariance matrix),
'tied' (all components share the same general covariance matrix),
'diag' (each component has its own diagonal covariance matrix),
'spherical' (each component has its own single variance).

tol [float, defaults to 1e-3.] The convergence threshold. EM iterations will stop when the lower
bound average gain on the likelihood (of the training data with respect to the model) is below
this threshold.

reg_covar [float, defaults to 1e-6.] Non-negative regularization added to the diagonal of co-
variance. Allows to assure that the covariance matrices are all positive.

max_iter [int, defaults to 100.] The number of EM iterations to perform.

n_init [int, defaults to 1.] The number of initializations to perform. The result with the highest
lower bound value on the likelihood is kept.

init_params [{‘kmeans’, ‘random’}, defaults to ‘kmeans’.] The method used to initialize the
weights, the means and the covariances. Must be one of:

'kmeans' : responsibilities are initialized using kmeans.
'random' : responsibilities are initialized randomly.

weight_concentration_prior_type [str, defaults to ‘dirichlet_process’.] String describing the
type of the weight concentration prior. Must be one of:

'dirichlet_process' (using the Stick-breaking representation),
'dirichlet_distribution' (can favor more uniform weights).

weight_concentration_prior [float | None, optional.] The dirichlet concentration of each com-
ponent on the weight distribution (Dirichlet). This is commonly called gamma in the litera-
ture. The higher concentration puts more mass in the center and will lead to more compo-
nents being active, while a lower concentration parameter will lead to more mass at the edge
of the mixture weights simplex. The value of the parameter must be greater than 0. If it is
None, it’s set to 1. / n_components.

mean_precision_prior [float | None, optional.] The precision prior on the mean distribution
(Gaussian). Controls the extent of where means can be placed. Larger values concentrate
the cluster means around mean_prior. The value of the parameter must be greater than
0. If it is None, it is set to 1.

mean_prior [array-like, shape (n_features,), optional] The prior on the mean distribution
(Gaussian). If it is None, it is set to the mean of X.

degrees_of_freedom_prior [float | None, optional.] The prior of the number of degrees of
freedom on the covariance distributions (Wishart). If it is None, it’s set to n_features.

covariance_prior [float or array-like, optional] The prior on the covariance distribution
(Wishart). If it is None, the emiprical covariance prior is initialized using the covariance
of X. The shape depends on covariance_type:

(n_features, n_features) if 'full',
(n_features, n_features) if 'tied',
(n_features) if 'diag',
float if 'spherical'

random_state [int, RandomState instance or None, optional (default=None)] Controls the ran-
dom seed given to the method chosen to initialize the parameters (see init_params). In
addition, it controls the generation of random samples from the fitted distribution (see the

7.25. sklearn.mixture: Gaussian Mixture Models 2289

scikit-learn user guide, Release 0.23.2

method sample). Pass an int for reproducible output across multiple function calls. See
Glossary.

warm_start [bool, default to False.] If ‘warm_start’ is True, the solution of the last fitting is
used as initialization for the next call of fit(). This can speed up convergence when fit is
called several times on similar problems. See the Glossary.

verbose [int, default to 0.] Enable verbose output. If 1 then it prints the current initialization
and each iteration step. If greater than 1 then it prints also the log probability and the time
needed for each step.

verbose_interval [int, default to 10.] Number of iteration done before the next print.

Attributes

weights_ [array-like, shape (n_components,)] The weights of each mixture components.

means_ [array-like, shape (n_components, n_features)] The mean of each mixture component.

covariances_ [array-like] The covariance of each mixture component. The shape depends on
covariance_type:

(n_components,) if 'spherical',
(n_features, n_features) if 'tied',
(n_components, n_features) if 'diag',
(n_components, n_features, n_features) if 'full'

precisions_ [array-like] The precision matrices for each component in the mixture. A preci-
sion matrix is the inverse of a covariance matrix. A covariance matrix is symmetric posi-
tive definite so the mixture of Gaussian can be equivalently parameterized by the precision
matrices. Storing the precision matrices instead of the covariance matrices makes it more
efficient to compute the log-likelihood of new samples at test time. The shape depends on
covariance_type:

(n_components,) if 'spherical',
(n_features, n_features) if 'tied',
(n_components, n_features) if 'diag',
(n_components, n_features, n_features) if 'full'

precisions_cholesky_ [array-like] The cholesky decomposition of the precision matrices of
each mixture component. A precision matrix is the inverse of a covariance matrix. A covari-
ance matrix is symmetric positive definite so the mixture of Gaussian can be equivalently
parameterized by the precision matrices. Storing the precision matrices instead of the co-
variance matrices makes it more efficient to compute the log-likelihood of new samples at
test time. The shape depends on covariance_type:

(n_components,) if 'spherical',
(n_features, n_features) if 'tied',
(n_components, n_features) if 'diag',
(n_components, n_features, n_features) if 'full'

converged_ [bool] True when convergence was reached in fit(), False otherwise.

n_iter_ [int] Number of step used by the best fit of inference to reach the convergence.

lower_bound_ [float] Lower bound value on the likelihood (of the training data with respect to
the model) of the best fit of inference.

weight_concentration_prior_ [tuple or float] The dirichlet concentration of each
component on the weight distribution (Dirichlet). The type depends on
weight_concentration_prior_type:

2290 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

(float, float) if 'dirichlet_process' (Beta parameters),
float if 'dirichlet_distribution' (Dirichlet parameters).

The higher concentration puts more mass in the center and will lead to more components
being active, while a lower concentration parameter will lead to more mass at the edge of
the simplex.

weight_concentration_ [array-like, shape (n_components,)] The dirichlet concentration of
each component on the weight distribution (Dirichlet).

mean_precision_prior_ [float] The precision prior on the mean distribution (Gaussian).
Controls the extent of where means can be placed. Larger values concentrate
the cluster means around mean_prior. If mean_precision_prior is set to None,
mean_precision_prior_ is set to 1.

mean_precision_ [array-like, shape (n_components,)] The precision of each components on
the mean distribution (Gaussian).

mean_prior_ [array-like, shape (n_features,)] The prior on the mean distribution (Gaussian).

degrees_of_freedom_prior_ [float] The prior of the number of degrees of freedom on the co-
variance distributions (Wishart).

degrees_of_freedom_ [array-like, shape (n_components,)] The number of degrees of freedom
of each components in the model.

covariance_prior_ [float or array-like] The prior on the covariance distribution (Wishart). The
shape depends on covariance_type:

(n_features, n_features) if 'full',
(n_features, n_features) if 'tied',
(n_features) if 'diag',
float if 'spherical'

See also:

GaussianMixture Finite Gaussian mixture fit with EM.

References

[1], [2], [3]

Methods

fit(X[, y]) Estimate model parameters with the EM algorithm.
fit_predict(X[, y]) Estimate model parameters using X and predict the

labels for X.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict the labels for the data samples in X using

trained model.
predict_proba(X) Predict posterior probability of each component

given the data.
sample([n_samples]) Generate random samples from the fitted Gaussian

distribution.
Continued on next page

7.25. sklearn.mixture: Gaussian Mixture Models 2291

scikit-learn user guide, Release 0.23.2

Table 206 – continued from previous page
score(X[, y]) Compute the per-sample average log-likelihood of

the given data X.
score_samples(X) Compute the weighted log probabilities for each

sample.
set_params(**params) Set the parameters of this estimator.

__init__(*, n_components=1, covariance_type=’full’, tol=0.001, reg_covar=1e-06, max_iter=100,
n_init=1, init_params=’kmeans’, weight_concentration_prior_type=’dirichlet_process’,
weight_concentration_prior=None, mean_precision_prior=None, mean_prior=None,
degrees_of_freedom_prior=None, covariance_prior=None, random_state=None,
warm_start=False, verbose=0, verbose_interval=10)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Estimate model parameters with the EM algorithm.

The method fits the model n_init times and sets the parameters with which the model has the
largest likelihood or lower bound. Within each trial, the method iterates between E-step and M-step
for max_iter times until the change of likelihood or lower bound is less than tol, otherwise, a
ConvergenceWarning is raised. If warm_start is True, then n_init is ignored and a single
initialization is performed upon the first call. Upon consecutive calls, training starts where it left off.

Parameters

X [array-like, shape (n_samples, n_features)] List of n_features-dimensional data points.
Each row corresponds to a single data point.

Returns

self

fit_predict(X, y=None)
Estimate model parameters using X and predict the labels for X.

The method fits the model n_init times and sets the parameters with which the model has the largest
likelihood or lower bound. Within each trial, the method iterates between E-step and M-step for
max_iter times until the change of likelihood or lower bound is less than tol, otherwise, a
ConvergenceWarning is raised. After fitting, it predicts the most probable label for the input data
points.

New in version 0.20.

Parameters

X [array-like, shape (n_samples, n_features)] List of n_features-dimensional data points.
Each row corresponds to a single data point.

Returns

labels [array, shape (n_samples,)] Component labels.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

2292 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

predict(X)
Predict the labels for the data samples in X using trained model.

Parameters

X [array-like, shape (n_samples, n_features)] List of n_features-dimensional data points.
Each row corresponds to a single data point.

Returns

labels [array, shape (n_samples,)] Component labels.

predict_proba(X)
Predict posterior probability of each component given the data.

Parameters

X [array-like, shape (n_samples, n_features)] List of n_features-dimensional data points.
Each row corresponds to a single data point.

Returns

resp [array, shape (n_samples, n_components)] Returns the probability each Gaussian
(state) in the model given each sample.

sample(n_samples=1)
Generate random samples from the fitted Gaussian distribution.

Parameters

n_samples [int, optional] Number of samples to generate. Defaults to 1.

Returns

X [array, shape (n_samples, n_features)] Randomly generated sample

y [array, shape (nsamples,)] Component labels

score(X, y=None)
Compute the per-sample average log-likelihood of the given data X.

Parameters

X [array-like, shape (n_samples, n_dimensions)] List of n_features-dimensional data points.
Each row corresponds to a single data point.

Returns

log_likelihood [float] Log likelihood of the Gaussian mixture given X.

score_samples(X)
Compute the weighted log probabilities for each sample.

Parameters

X [array-like, shape (n_samples, n_features)] List of n_features-dimensional data points.
Each row corresponds to a single data point.

Returns

log_prob [array, shape (n_samples,)] Log probabilities of each data point in X.

set_params(**params)
Set the parameters of this estimator.

7.25. sklearn.mixture: Gaussian Mixture Models 2293

scikit-learn user guide, Release 0.23.2

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.mixture.BayesianGaussianMixture

• Gaussian Mixture Model Ellipsoids

• Gaussian Mixture Model Sine Curve

• Concentration Prior Type Analysis of Variation Bayesian Gaussian Mixture

7.25.2 sklearn.mixture.GaussianMixture

class sklearn.mixture.GaussianMixture(n_components=1, *, covariance_type=’full’,
tol=0.001, reg_covar=1e-06, max_iter=100,
n_init=1, init_params=’kmeans’, weights_init=None,
means_init=None, precisions_init=None, ran-
dom_state=None, warm_start=False, verbose=0,
verbose_interval=10)

Gaussian Mixture.

Representation of a Gaussian mixture model probability distribution. This class allows to estimate the parame-
ters of a Gaussian mixture distribution.

Read more in the User Guide.

New in version 0.18.

Parameters

n_components [int, defaults to 1.] The number of mixture components.

covariance_type [{‘full’ (default), ‘tied’, ‘diag’, ‘spherical’}] String describing the type of
covariance parameters to use. Must be one of:

‘full’ each component has its own general covariance matrix

‘tied’ all components share the same general covariance matrix

‘diag’ each component has its own diagonal covariance matrix

‘spherical’ each component has its own single variance

tol [float, defaults to 1e-3.] The convergence threshold. EM iterations will stop when the lower
bound average gain is below this threshold.

reg_covar [float, defaults to 1e-6.] Non-negative regularization added to the diagonal of co-
variance. Allows to assure that the covariance matrices are all positive.

max_iter [int, defaults to 100.] The number of EM iterations to perform.

n_init [int, defaults to 1.] The number of initializations to perform. The best results are kept.

2294 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

init_params [{‘kmeans’, ‘random’}, defaults to ‘kmeans’.] The method used to initialize the
weights, the means and the precisions. Must be one of:

'kmeans' : responsibilities are initialized using kmeans.
'random' : responsibilities are initialized randomly.

weights_init [array-like, shape (n_components,), optional] The user-provided initial weights,
defaults to None. If it None, weights are initialized using the init_params method.

means_init [array-like, shape (n_components, n_features), optional] The user-provided initial
means, defaults to None, If it None, means are initialized using the init_paramsmethod.

precisions_init [array-like, optional.] The user-provided initial precisions (inverse of the co-
variance matrices), defaults to None. If it None, precisions are initialized using the
‘init_params’ method. The shape depends on ‘covariance_type’:

(n_components,) if 'spherical',
(n_features, n_features) if 'tied',
(n_components, n_features) if 'diag',
(n_components, n_features, n_features) if 'full'

random_state [int, RandomState instance or None, optional (default=None)] Controls the ran-
dom seed given to the method chosen to initialize the parameters (see init_params). In
addition, it controls the generation of random samples from the fitted distribution (see the
method sample). Pass an int for reproducible output across multiple function calls. See
Glossary.

warm_start [bool, default to False.] If ‘warm_start’ is True, the solution of the last fitting is
used as initialization for the next call of fit(). This can speed up convergence when fit is
called several times on similar problems. In that case, ‘n_init’ is ignored and only a single
initialization occurs upon the first call. See the Glossary.

verbose [int, default to 0.] Enable verbose output. If 1 then it prints the current initialization
and each iteration step. If greater than 1 then it prints also the log probability and the time
needed for each step.

verbose_interval [int, default to 10.] Number of iteration done before the next print.

Attributes

weights_ [array-like, shape (n_components,)] The weights of each mixture components.

means_ [array-like, shape (n_components, n_features)] The mean of each mixture component.

covariances_ [array-like] The covariance of each mixture component. The shape depends on
covariance_type:

(n_components,) if 'spherical',
(n_features, n_features) if 'tied',
(n_components, n_features) if 'diag',
(n_components, n_features, n_features) if 'full'

precisions_ [array-like] The precision matrices for each component in the mixture. A preci-
sion matrix is the inverse of a covariance matrix. A covariance matrix is symmetric posi-
tive definite so the mixture of Gaussian can be equivalently parameterized by the precision
matrices. Storing the precision matrices instead of the covariance matrices makes it more
efficient to compute the log-likelihood of new samples at test time. The shape depends on
covariance_type:

7.25. sklearn.mixture: Gaussian Mixture Models 2295

scikit-learn user guide, Release 0.23.2

(n_components,) if 'spherical',
(n_features, n_features) if 'tied',
(n_components, n_features) if 'diag',
(n_components, n_features, n_features) if 'full'

precisions_cholesky_ [array-like] The cholesky decomposition of the precision matrices of
each mixture component. A precision matrix is the inverse of a covariance matrix. A covari-
ance matrix is symmetric positive definite so the mixture of Gaussian can be equivalently
parameterized by the precision matrices. Storing the precision matrices instead of the co-
variance matrices makes it more efficient to compute the log-likelihood of new samples at
test time. The shape depends on covariance_type:

(n_components,) if 'spherical',
(n_features, n_features) if 'tied',
(n_components, n_features) if 'diag',
(n_components, n_features, n_features) if 'full'

converged_ [bool] True when convergence was reached in fit(), False otherwise.

n_iter_ [int] Number of step used by the best fit of EM to reach the convergence.

lower_bound_ [float] Lower bound value on the log-likelihood (of the training data with re-
spect to the model) of the best fit of EM.

See also:

BayesianGaussianMixture Gaussian mixture model fit with a variational inference.

Methods

aic(X) Akaike information criterion for the current model
on the input X.

bic(X) Bayesian information criterion for the current model
on the input X.

fit(X[, y]) Estimate model parameters with the EM algorithm.
fit_predict(X[, y]) Estimate model parameters using X and predict the

labels for X.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict the labels for the data samples in X using

trained model.
predict_proba(X) Predict posterior probability of each component

given the data.
sample([n_samples]) Generate random samples from the fitted Gaussian

distribution.
score(X[, y]) Compute the per-sample average log-likelihood of

the given data X.
score_samples(X) Compute the weighted log probabilities for each

sample.
set_params(**params) Set the parameters of this estimator.

2296 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

__init__(n_components=1, *, covariance_type=’full’, tol=0.001, reg_covar=1e-06, max_iter=100,
n_init=1, init_params=’kmeans’, weights_init=None, means_init=None, pre-
cisions_init=None, random_state=None, warm_start=False, verbose=0, ver-
bose_interval=10)

Initialize self. See help(type(self)) for accurate signature.

aic(X)
Akaike information criterion for the current model on the input X.

Parameters

X [array of shape (n_samples, n_dimensions)]

Returns

aic [float] The lower the better.

bic(X)
Bayesian information criterion for the current model on the input X.

Parameters

X [array of shape (n_samples, n_dimensions)]

Returns

bic [float] The lower the better.

fit(X, y=None)
Estimate model parameters with the EM algorithm.

The method fits the model n_init times and sets the parameters with which the model has the
largest likelihood or lower bound. Within each trial, the method iterates between E-step and M-step
for max_iter times until the change of likelihood or lower bound is less than tol, otherwise, a
ConvergenceWarning is raised. If warm_start is True, then n_init is ignored and a single
initialization is performed upon the first call. Upon consecutive calls, training starts where it left off.

Parameters

X [array-like, shape (n_samples, n_features)] List of n_features-dimensional data points.
Each row corresponds to a single data point.

Returns

self

fit_predict(X, y=None)
Estimate model parameters using X and predict the labels for X.

The method fits the model n_init times and sets the parameters with which the model has the largest
likelihood or lower bound. Within each trial, the method iterates between E-step and M-step for
max_iter times until the change of likelihood or lower bound is less than tol, otherwise, a
ConvergenceWarning is raised. After fitting, it predicts the most probable label for the input data
points.

New in version 0.20.

Parameters

X [array-like, shape (n_samples, n_features)] List of n_features-dimensional data points.
Each row corresponds to a single data point.

Returns

labels [array, shape (n_samples,)] Component labels.

7.25. sklearn.mixture: Gaussian Mixture Models 2297

scikit-learn user guide, Release 0.23.2

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict the labels for the data samples in X using trained model.

Parameters

X [array-like, shape (n_samples, n_features)] List of n_features-dimensional data points.
Each row corresponds to a single data point.

Returns

labels [array, shape (n_samples,)] Component labels.

predict_proba(X)
Predict posterior probability of each component given the data.

Parameters

X [array-like, shape (n_samples, n_features)] List of n_features-dimensional data points.
Each row corresponds to a single data point.

Returns

resp [array, shape (n_samples, n_components)] Returns the probability each Gaussian
(state) in the model given each sample.

sample(n_samples=1)
Generate random samples from the fitted Gaussian distribution.

Parameters

n_samples [int, optional] Number of samples to generate. Defaults to 1.

Returns

X [array, shape (n_samples, n_features)] Randomly generated sample

y [array, shape (nsamples,)] Component labels

score(X, y=None)
Compute the per-sample average log-likelihood of the given data X.

Parameters

X [array-like, shape (n_samples, n_dimensions)] List of n_features-dimensional data points.
Each row corresponds to a single data point.

Returns

log_likelihood [float] Log likelihood of the Gaussian mixture given X.

score_samples(X)
Compute the weighted log probabilities for each sample.

Parameters

2298 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

X [array-like, shape (n_samples, n_features)] List of n_features-dimensional data points.
Each row corresponds to a single data point.

Returns

log_prob [array, shape (n_samples,)] Log probabilities of each data point in X.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.mixture.GaussianMixture

• Comparing different clustering algorithms on toy datasets

• Density Estimation for a Gaussian mixture

• Gaussian Mixture Model Ellipsoids

• Gaussian Mixture Model Selection

• GMM covariances

• Gaussian Mixture Model Sine Curve

7.26 sklearn.model_selection: Model Selection

User guide: See the Cross-validation: evaluating estimator performance, Tuning the hyper-parameters of an estima-
tor and Learning curve sections for further details.

7.26.1 Splitter Classes

model_selection.GroupKFold([n_splits]) K-fold iterator variant with non-overlapping groups.
model_selection.
GroupShuffleSplit([. . .])

Shuffle-Group(s)-Out cross-validation iterator

model_selection.KFold([n_splits, shuffle, . . .]) K-Folds cross-validator
model_selection.LeaveOneGroupOut Leave One Group Out cross-validator
model_selection.
LeavePGroupsOut(n_groups)

Leave P Group(s) Out cross-validator

model_selection.LeaveOneOut Leave-One-Out cross-validator
model_selection.LeavePOut(p) Leave-P-Out cross-validator
model_selection.
PredefinedSplit(test_fold)

Predefined split cross-validator

Continued on next page

7.26. sklearn.model_selection: Model Selection 2299

scikit-learn user guide, Release 0.23.2

Table 208 – continued from previous page
model_selection.RepeatedKFold(*[,
n_splits, . . .])

Repeated K-Fold cross validator.

model_selection.
RepeatedStratifiedKFold(*[, . . .])

Repeated Stratified K-Fold cross validator.

model_selection.ShuffleSplit([n_splits,
. . .])

Random permutation cross-validator

model_selection.
StratifiedKFold([n_splits, . . .])

Stratified K-Folds cross-validator

model_selection.
StratifiedShuffleSplit([. . .])

Stratified ShuffleSplit cross-validator

model_selection.
TimeSeriesSplit([n_splits, . . .])

Time Series cross-validator

sklearn.model_selection.GroupKFold

class sklearn.model_selection.GroupKFold(n_splits=5)
K-fold iterator variant with non-overlapping groups.

The same group will not appear in two different folds (the number of distinct groups has to be at least equal to
the number of folds).

The folds are approximately balanced in the sense that the number of distinct groups is approximately the same
in each fold.

Parameters

n_splits [int, default=5] Number of folds. Must be at least 2.

Changed in version 0.22: n_splits default value changed from 3 to 5.

See also:

LeaveOneGroupOut For splitting the data according to explicit domain-specific stratification of the dataset.

Examples

>>> import numpy as np
>>> from sklearn.model_selection import GroupKFold
>>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
>>> y = np.array([1, 2, 3, 4])
>>> groups = np.array([0, 0, 2, 2])
>>> group_kfold = GroupKFold(n_splits=2)
>>> group_kfold.get_n_splits(X, y, groups)
2
>>> print(group_kfold)
GroupKFold(n_splits=2)
>>> for train_index, test_index in group_kfold.split(X, y, groups):
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
... print(X_train, X_test, y_train, y_test)
...
TRAIN: [0 1] TEST: [2 3]
[[1 2]
[3 4]] [[5 6]

(continues on next page)

2300 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

(continued from previous page)

[7 8]] [1 2] [3 4]
TRAIN: [2 3] TEST: [0 1]
[[5 6]
[7 8]] [[1 2]
[3 4]] [3 4] [1 2]

Methods

get_n_splits([X, y, groups]) Returns the number of splitting iterations in the
cross-validator

split(X[, y, groups]) Generate indices to split data into training and test
set.

__init__(n_splits=5)
Initialize self. See help(type(self)) for accurate signature.

get_n_splits(X=None, y=None, groups=None)
Returns the number of splitting iterations in the cross-validator

Parameters

X [object] Always ignored, exists for compatibility.

y [object] Always ignored, exists for compatibility.

groups [object] Always ignored, exists for compatibility.

Returns

n_splits [int] Returns the number of splitting iterations in the cross-validator.

split(X, y=None, groups=None)
Generate indices to split data into training and test set.

Parameters

X [array-like of shape (n_samples, n_features)] Training data, where n_samples is the num-
ber of samples and n_features is the number of features.

y [array-like of shape (n_samples,), default=None] The target variable for supervised learn-
ing problems.

groups [array-like of shape (n_samples,)] Group labels for the samples used while splitting
the dataset into train/test set.

Yields

train [ndarray] The training set indices for that split.

test [ndarray] The testing set indices for that split.

Examples using sklearn.model_selection.GroupKFold

• Visualizing cross-validation behavior in scikit-learn

7.26. sklearn.model_selection: Model Selection 2301

scikit-learn user guide, Release 0.23.2

sklearn.model_selection.GroupShuffleSplit

class sklearn.model_selection.GroupShuffleSplit(n_splits=5, *, test_size=None,
train_size=None, ran-
dom_state=None)

Shuffle-Group(s)-Out cross-validation iterator

Provides randomized train/test indices to split data according to a third-party provided group. This group infor-
mation can be used to encode arbitrary domain specific stratifications of the samples as integers.

For instance the groups could be the year of collection of the samples and thus allow for cross-validation against
time-based splits.

The difference between LeavePGroupsOut and GroupShuffleSplit is that the former generates splits using all
subsets of size p unique groups, whereas GroupShuffleSplit generates a user-determined number of random test
splits, each with a user-determined fraction of unique groups.

For example, a less computationally intensive alternative to LeavePGroupsOut(p=10) would be
GroupShuffleSplit(test_size=10, n_splits=100).

Note: The parameters test_size and train_size refer to groups, and not to samples, as in ShuffleSplit.

Parameters

n_splits [int, default=5] Number of re-shuffling & splitting iterations.

test_size [float, int, default=0.2] If float, should be between 0.0 and 1.0 and represent the pro-
portion of groups to include in the test split (rounded up). If int, represents the absolute
number of test groups. If None, the value is set to the complement of the train size. The
default will change in version 0.21. It will remain 0.2 only if train_size is unspecified,
otherwise it will complement the specified train_size.

train_size [float or int, default=None] If float, should be between 0.0 and 1.0 and represent the
proportion of the groups to include in the train split. If int, represents the absolute number
of train groups. If None, the value is automatically set to the complement of the test size.

random_state [int or RandomState instance, default=None] Controls the randomness of the
training and testing indices produced. Pass an int for reproducible output across multiple
function calls. See Glossary.

Examples

>>> import numpy as np
>>> from sklearn.model_selection import GroupShuffleSplit
>>> X = np.ones(shape=(8, 2))
>>> y = np.ones(shape=(8, 1))
>>> groups = np.array([1, 1, 2, 2, 2, 3, 3, 3])
>>> print(groups.shape)
(8,)
>>> gss = GroupShuffleSplit(n_splits=2, train_size=.7, random_state=42)
>>> gss.get_n_splits()
2
>>> for train_idx, test_idx in gss.split(X, y, groups):
... print("TRAIN:", train_idx, "TEST:", test_idx)
TRAIN: [2 3 4 5 6 7] TEST: [0 1]
TRAIN: [0 1 5 6 7] TEST: [2 3 4]

2302 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Methods

get_n_splits([X, y, groups]) Returns the number of splitting iterations in the
cross-validator

split(X[, y, groups]) Generate indices to split data into training and test
set.

__init__(n_splits=5, *, test_size=None, train_size=None, random_state=None)
Initialize self. See help(type(self)) for accurate signature.

get_n_splits(X=None, y=None, groups=None)
Returns the number of splitting iterations in the cross-validator

Parameters

X [object] Always ignored, exists for compatibility.

y [object] Always ignored, exists for compatibility.

groups [object] Always ignored, exists for compatibility.

Returns

n_splits [int] Returns the number of splitting iterations in the cross-validator.

split(X, y=None, groups=None)
Generate indices to split data into training and test set.

Parameters

X [array-like of shape (n_samples, n_features)] Training data, where n_samples is the num-
ber of samples and n_features is the number of features.

y [array-like of shape (n_samples,), default=None] The target variable for supervised learn-
ing problems.

groups [array-like of shape (n_samples,)] Group labels for the samples used while splitting
the dataset into train/test set.

Yields

train [ndarray] The training set indices for that split.

test [ndarray] The testing set indices for that split.

Notes

Randomized CV splitters may return different results for each call of split. You can make the results
identical by setting random_state to an integer.

Examples using sklearn.model_selection.GroupShuffleSplit

• Visualizing cross-validation behavior in scikit-learn

7.26. sklearn.model_selection: Model Selection 2303

scikit-learn user guide, Release 0.23.2

sklearn.model_selection.KFold

class sklearn.model_selection.KFold(n_splits=5, *, shuffle=False, random_state=None)
K-Folds cross-validator

Provides train/test indices to split data in train/test sets. Split dataset into k consecutive folds (without shuffling
by default).

Each fold is then used once as a validation while the k - 1 remaining folds form the training set.

Read more in the User Guide.

Parameters

n_splits [int, default=5] Number of folds. Must be at least 2.

Changed in version 0.22: n_splits default value changed from 3 to 5.

shuffle [bool, default=False] Whether to shuffle the data before splitting into batches. Note that
the samples within each split will not be shuffled.

random_state [int or RandomState instance, default=None] When shuffle is True,
random_state affects the ordering of the indices, which controls the randomness of
each fold. Otherwise, this parameter has no effect. Pass an int for reproducible output
across multiple function calls. See Glossary.

See also:

StratifiedKFold Takes group information into account to avoid building folds with imbalanced class
distributions (for binary or multiclass classification tasks).

GroupKFold K-fold iterator variant with non-overlapping groups.

RepeatedKFold Repeats K-Fold n times.

Notes

The first n_samples % n_splits folds have size n_samples // n_splits + 1, other folds have
size n_samples // n_splits, where n_samples is the number of samples.

Randomized CV splitters may return different results for each call of split. You can make the results identical
by setting random_state to an integer.

Examples

>>> import numpy as np
>>> from sklearn.model_selection import KFold
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([1, 2, 3, 4])
>>> kf = KFold(n_splits=2)
>>> kf.get_n_splits(X)
2
>>> print(kf)
KFold(n_splits=2, random_state=None, shuffle=False)
>>> for train_index, test_index in kf.split(X):
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]

(continues on next page)

2304 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

(continued from previous page)

TRAIN: [2 3] TEST: [0 1]
TRAIN: [0 1] TEST: [2 3]

Methods

get_n_splits([X, y, groups]) Returns the number of splitting iterations in the
cross-validator

split(X[, y, groups]) Generate indices to split data into training and test
set.

__init__(n_splits=5, *, shuffle=False, random_state=None)
Initialize self. See help(type(self)) for accurate signature.

get_n_splits(X=None, y=None, groups=None)
Returns the number of splitting iterations in the cross-validator

Parameters

X [object] Always ignored, exists for compatibility.

y [object] Always ignored, exists for compatibility.

groups [object] Always ignored, exists for compatibility.

Returns

n_splits [int] Returns the number of splitting iterations in the cross-validator.

split(X, y=None, groups=None)
Generate indices to split data into training and test set.

Parameters

X [array-like of shape (n_samples, n_features)] Training data, where n_samples is the num-
ber of samples and n_features is the number of features.

y [array-like of shape (n_samples,), default=None] The target variable for supervised learn-
ing problems.

groups [array-like of shape (n_samples,), default=None] Group labels for the samples used
while splitting the dataset into train/test set.

Yields

train [ndarray] The training set indices for that split.

test [ndarray] The testing set indices for that split.

Examples using sklearn.model_selection.KFold

• Feature agglomeration vs. univariate selection

• Gradient Boosting Out-of-Bag estimates

• Nested versus non-nested cross-validation

• Visualizing cross-validation behavior in scikit-learn

• Cross-validation on diabetes Dataset Exercise

7.26. sklearn.model_selection: Model Selection 2305

scikit-learn user guide, Release 0.23.2

sklearn.model_selection.LeaveOneGroupOut

class sklearn.model_selection.LeaveOneGroupOut
Leave One Group Out cross-validator

Provides train/test indices to split data according to a third-party provided group. This group information can be
used to encode arbitrary domain specific stratifications of the samples as integers.

For instance the groups could be the year of collection of the samples and thus allow for cross-validation against
time-based splits.

Read more in the User Guide.

Examples

>>> import numpy as np
>>> from sklearn.model_selection import LeaveOneGroupOut
>>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
>>> y = np.array([1, 2, 1, 2])
>>> groups = np.array([1, 1, 2, 2])
>>> logo = LeaveOneGroupOut()
>>> logo.get_n_splits(X, y, groups)
2
>>> logo.get_n_splits(groups=groups) # 'groups' is always required
2
>>> print(logo)
LeaveOneGroupOut()
>>> for train_index, test_index in logo.split(X, y, groups):
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
... print(X_train, X_test, y_train, y_test)
TRAIN: [2 3] TEST: [0 1]
[[5 6]
[7 8]] [[1 2]
[3 4]] [1 2] [1 2]

TRAIN: [0 1] TEST: [2 3]
[[1 2]
[3 4]] [[5 6]
[7 8]] [1 2] [1 2]

Methods

get_n_splits([X, y, groups]) Returns the number of splitting iterations in the
cross-validator

split(X[, y, groups]) Generate indices to split data into training and test
set.

__init__(*args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

get_n_splits(X=None, y=None, groups=None)
Returns the number of splitting iterations in the cross-validator

Parameters

2306 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

X [object] Always ignored, exists for compatibility.

y [object] Always ignored, exists for compatibility.

groups [array-like of shape (n_samples,)] Group labels for the samples used while splitting
the dataset into train/test set. This ‘groups’ parameter must always be specified to calculate
the number of splits, though the other parameters can be omitted.

Returns

n_splits [int] Returns the number of splitting iterations in the cross-validator.

split(X, y=None, groups=None)
Generate indices to split data into training and test set.

Parameters

X [array-like of shape (n_samples, n_features)] Training data, where n_samples is the num-
ber of samples and n_features is the number of features.

y [array-like of shape (n_samples,), default=None] The target variable for supervised learn-
ing problems.

groups [array-like of shape (n_samples,)] Group labels for the samples used while splitting
the dataset into train/test set.

Yields

train [ndarray] The training set indices for that split.

test [ndarray] The testing set indices for that split.

sklearn.model_selection.LeavePGroupsOut

class sklearn.model_selection.LeavePGroupsOut(n_groups)
Leave P Group(s) Out cross-validator

Provides train/test indices to split data according to a third-party provided group. This group information can be
used to encode arbitrary domain specific stratifications of the samples as integers.

For instance the groups could be the year of collection of the samples and thus allow for cross-validation against
time-based splits.

The difference between LeavePGroupsOut and LeaveOneGroupOut is that the former builds the test sets with
all the samples assigned to p different values of the groups while the latter uses samples all assigned the same
groups.

Read more in the User Guide.

Parameters

n_groups [int] Number of groups (p) to leave out in the test split.

See also:

GroupKFold K-fold iterator variant with non-overlapping groups.

Examples

7.26. sklearn.model_selection: Model Selection 2307

scikit-learn user guide, Release 0.23.2

>>> import numpy as np
>>> from sklearn.model_selection import LeavePGroupsOut
>>> X = np.array([[1, 2], [3, 4], [5, 6]])
>>> y = np.array([1, 2, 1])
>>> groups = np.array([1, 2, 3])
>>> lpgo = LeavePGroupsOut(n_groups=2)
>>> lpgo.get_n_splits(X, y, groups)
3
>>> lpgo.get_n_splits(groups=groups) # 'groups' is always required
3
>>> print(lpgo)
LeavePGroupsOut(n_groups=2)
>>> for train_index, test_index in lpgo.split(X, y, groups):
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
... print(X_train, X_test, y_train, y_test)
TRAIN: [2] TEST: [0 1]
[[5 6]] [[1 2]
[3 4]] [1] [1 2]

TRAIN: [1] TEST: [0 2]
[[3 4]] [[1 2]
[5 6]] [2] [1 1]

TRAIN: [0] TEST: [1 2]
[[1 2]] [[3 4]
[5 6]] [1] [2 1]

Methods

get_n_splits([X, y, groups]) Returns the number of splitting iterations in the
cross-validator

split(X[, y, groups]) Generate indices to split data into training and test
set.

__init__(n_groups)
Initialize self. See help(type(self)) for accurate signature.

get_n_splits(X=None, y=None, groups=None)
Returns the number of splitting iterations in the cross-validator

Parameters

X [object] Always ignored, exists for compatibility.

y [object] Always ignored, exists for compatibility.

groups [array-like of shape (n_samples,)] Group labels for the samples used while splitting
the dataset into train/test set. This ‘groups’ parameter must always be specified to calculate
the number of splits, though the other parameters can be omitted.

Returns

n_splits [int] Returns the number of splitting iterations in the cross-validator.

split(X, y=None, groups=None)
Generate indices to split data into training and test set.

Parameters

2308 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

X [array-like of shape (n_samples, n_features)] Training data, where n_samples is the num-
ber of samples and n_features is the number of features.

y [array-like of shape (n_samples,), default=None] The target variable for supervised learn-
ing problems.

groups [array-like of shape (n_samples,)] Group labels for the samples used while splitting
the dataset into train/test set.

Yields

train [ndarray] The training set indices for that split.

test [ndarray] The testing set indices for that split.

sklearn.model_selection.LeaveOneOut

class sklearn.model_selection.LeaveOneOut
Leave-One-Out cross-validator

Provides train/test indices to split data in train/test sets. Each sample is used once as a test set (singleton) while
the remaining samples form the training set.

Note: LeaveOneOut() is equivalent to KFold(n_splits=n) and LeavePOut(p=1) where n is the
number of samples.

Due to the high number of test sets (which is the same as the number of samples) this cross-validation method
can be very costly. For large datasets one should favor KFold, ShuffleSplit or StratifiedKFold.

Read more in the User Guide.

See also:

LeaveOneGroupOut For splitting the data according to explicit, domain-specific stratification of the dataset.

GroupKFold K-fold iterator variant with non-overlapping groups.

Examples

>>> import numpy as np
>>> from sklearn.model_selection import LeaveOneOut
>>> X = np.array([[1, 2], [3, 4]])
>>> y = np.array([1, 2])
>>> loo = LeaveOneOut()
>>> loo.get_n_splits(X)
2
>>> print(loo)
LeaveOneOut()
>>> for train_index, test_index in loo.split(X):
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
... print(X_train, X_test, y_train, y_test)
TRAIN: [1] TEST: [0]
[[3 4]] [[1 2]] [2] [1]
TRAIN: [0] TEST: [1]
[[1 2]] [[3 4]] [1] [2]

7.26. sklearn.model_selection: Model Selection 2309

scikit-learn user guide, Release 0.23.2

Methods

get_n_splits(X[, y, groups]) Returns the number of splitting iterations in the
cross-validator

split(X[, y, groups]) Generate indices to split data into training and test
set.

__init__(*args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

get_n_splits(X, y=None, groups=None)
Returns the number of splitting iterations in the cross-validator

Parameters

X [array-like of shape (n_samples, n_features)] Training data, where n_samples is the num-
ber of samples and n_features is the number of features.

y [object] Always ignored, exists for compatibility.

groups [object] Always ignored, exists for compatibility.

Returns

n_splits [int] Returns the number of splitting iterations in the cross-validator.

split(X, y=None, groups=None)
Generate indices to split data into training and test set.

Parameters

X [array-like of shape (n_samples, n_features)] Training data, where n_samples is the num-
ber of samples and n_features is the number of features.

y [array-like of shape (n_samples,)] The target variable for supervised learning problems.

groups [array-like of shape (n_samples,), default=None] Group labels for the samples used
while splitting the dataset into train/test set.

Yields

train [ndarray] The training set indices for that split.

test [ndarray] The testing set indices for that split.

sklearn.model_selection.LeavePOut

class sklearn.model_selection.LeavePOut(p)
Leave-P-Out cross-validator

Provides train/test indices to split data in train/test sets. This results in testing on all distinct samples of size p,
while the remaining n - p samples form the training set in each iteration.

Note: LeavePOut(p) is NOT equivalent to KFold(n_splits=n_samples // p) which creates non-
overlapping test sets.

Due to the high number of iterations which grows combinatorically with the number of samples this cross-
validation method can be very costly. For large datasets one should favor KFold, StratifiedKFold or
ShuffleSplit.

Read more in the User Guide.

2310 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Parameters

p [int] Size of the test sets. Must be strictly less than the number of samples.

Examples

>>> import numpy as np
>>> from sklearn.model_selection import LeavePOut
>>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
>>> y = np.array([1, 2, 3, 4])
>>> lpo = LeavePOut(2)
>>> lpo.get_n_splits(X)
6
>>> print(lpo)
LeavePOut(p=2)
>>> for train_index, test_index in lpo.split(X):
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
TRAIN: [2 3] TEST: [0 1]
TRAIN: [1 3] TEST: [0 2]
TRAIN: [1 2] TEST: [0 3]
TRAIN: [0 3] TEST: [1 2]
TRAIN: [0 2] TEST: [1 3]
TRAIN: [0 1] TEST: [2 3]

Methods

get_n_splits(X[, y, groups]) Returns the number of splitting iterations in the
cross-validator

split(X[, y, groups]) Generate indices to split data into training and test
set.

__init__(p)
Initialize self. See help(type(self)) for accurate signature.

get_n_splits(X, y=None, groups=None)
Returns the number of splitting iterations in the cross-validator

Parameters

X [array-like of shape (n_samples, n_features)] Training data, where n_samples is the num-
ber of samples and n_features is the number of features.

y [object] Always ignored, exists for compatibility.

groups [object] Always ignored, exists for compatibility.

split(X, y=None, groups=None)
Generate indices to split data into training and test set.

Parameters

X [array-like of shape (n_samples, n_features)] Training data, where n_samples is the num-
ber of samples and n_features is the number of features.

y [array-like of shape (n_samples,)] The target variable for supervised learning problems.

7.26. sklearn.model_selection: Model Selection 2311

scikit-learn user guide, Release 0.23.2

groups [array-like of shape (n_samples,), default=None] Group labels for the samples used
while splitting the dataset into train/test set.

Yields

train [ndarray] The training set indices for that split.

test [ndarray] The testing set indices for that split.

sklearn.model_selection.PredefinedSplit

class sklearn.model_selection.PredefinedSplit(test_fold)
Predefined split cross-validator

Provides train/test indices to split data into train/test sets using a predefined scheme specified by the user with
the test_fold parameter.

Read more in the User Guide.

New in version 0.16.

Parameters

test_fold [array-like of shape (n_samples,)] The entry test_fold[i] represents the index
of the test set that sample i belongs to. It is possible to exclude sample i from any test set
(i.e. include sample i in every training set) by setting test_fold[i] equal to -1.

Examples

>>> import numpy as np
>>> from sklearn.model_selection import PredefinedSplit
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([0, 0, 1, 1])
>>> test_fold = [0, 1, -1, 1]
>>> ps = PredefinedSplit(test_fold)
>>> ps.get_n_splits()
2
>>> print(ps)
PredefinedSplit(test_fold=array([0, 1, -1, 1]))
>>> for train_index, test_index in ps.split():
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
TRAIN: [1 2 3] TEST: [0]
TRAIN: [0 2] TEST: [1 3]

Methods

get_n_splits([X, y, groups]) Returns the number of splitting iterations in the
cross-validator

split([X, y, groups]) Generate indices to split data into training and test
set.

__init__(test_fold)
Initialize self. See help(type(self)) for accurate signature.

2312 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

get_n_splits(X=None, y=None, groups=None)
Returns the number of splitting iterations in the cross-validator

Parameters

X [object] Always ignored, exists for compatibility.

y [object] Always ignored, exists for compatibility.

groups [object] Always ignored, exists for compatibility.

Returns

n_splits [int] Returns the number of splitting iterations in the cross-validator.

split(X=None, y=None, groups=None)
Generate indices to split data into training and test set.

Parameters

X [object] Always ignored, exists for compatibility.

y [object] Always ignored, exists for compatibility.

groups [object] Always ignored, exists for compatibility.

Yields

train [ndarray] The training set indices for that split.

test [ndarray] The testing set indices for that split.

sklearn.model_selection.RepeatedKFold

class sklearn.model_selection.RepeatedKFold(*, n_splits=5, n_repeats=10, ran-
dom_state=None)

Repeated K-Fold cross validator.

Repeats K-Fold n times with different randomization in each repetition.

Read more in the User Guide.

Parameters

n_splits [int, default=5] Number of folds. Must be at least 2.

n_repeats [int, default=10] Number of times cross-validator needs to be repeated.

random_state [int or RandomState instance, default=None] Controls the randomness of each
repeated cross-validation instance. Pass an int for reproducible output across multiple func-
tion calls. See Glossary.

See also:

RepeatedStratifiedKFold Repeats Stratified K-Fold n times.

Notes

Randomized CV splitters may return different results for each call of split. You can make the results identical
by setting random_state to an integer.

7.26. sklearn.model_selection: Model Selection 2313

scikit-learn user guide, Release 0.23.2

Examples

>>> import numpy as np
>>> from sklearn.model_selection import RepeatedKFold
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([0, 0, 1, 1])
>>> rkf = RepeatedKFold(n_splits=2, n_repeats=2, random_state=2652124)
>>> for train_index, test_index in rkf.split(X):
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
...
TRAIN: [0 1] TEST: [2 3]
TRAIN: [2 3] TEST: [0 1]
TRAIN: [1 2] TEST: [0 3]
TRAIN: [0 3] TEST: [1 2]

Methods

get_n_splits([X, y, groups]) Returns the number of splitting iterations in the
cross-validator

split(X[, y, groups]) Generates indices to split data into training and test
set.

__init__(*, n_splits=5, n_repeats=10, random_state=None)
Initialize self. See help(type(self)) for accurate signature.

get_n_splits(X=None, y=None, groups=None)
Returns the number of splitting iterations in the cross-validator

Parameters

X [object] Always ignored, exists for compatibility. np.zeros(n_samples) may be
used as a placeholder.

y [object] Always ignored, exists for compatibility. np.zeros(n_samples) may be
used as a placeholder.

groups [array-like of shape (n_samples,), default=None] Group labels for the samples used
while splitting the dataset into train/test set.

Returns

n_splits [int] Returns the number of splitting iterations in the cross-validator.

split(X, y=None, groups=None)
Generates indices to split data into training and test set.

Parameters

X [array-like, shape (n_samples, n_features)] Training data, where n_samples is the number
of samples and n_features is the number of features.

y [array-like of length n_samples] The target variable for supervised learning problems.

groups [array-like of shape (n_samples,), default=None] Group labels for the samples used
while splitting the dataset into train/test set.

Yields

2314 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

train [ndarray] The training set indices for that split.

test [ndarray] The testing set indices for that split.

Examples using sklearn.model_selection.RepeatedKFold

• Common pitfalls in interpretation of coefficients of linear models

sklearn.model_selection.RepeatedStratifiedKFold

class sklearn.model_selection.RepeatedStratifiedKFold(*, n_splits=5, n_repeats=10,
random_state=None)

Repeated Stratified K-Fold cross validator.

Repeats Stratified K-Fold n times with different randomization in each repetition.

Read more in the User Guide.

Parameters

n_splits [int, default=5] Number of folds. Must be at least 2.

n_repeats [int, default=10] Number of times cross-validator needs to be repeated.

random_state [int or RandomState instance, default=None] Controls the generation of the ran-
dom states for each repetition. Pass an int for reproducible output across multiple function
calls. See Glossary.

See also:

RepeatedKFold Repeats K-Fold n times.

Notes

Randomized CV splitters may return different results for each call of split. You can make the results identical
by setting random_state to an integer.

Examples

>>> import numpy as np
>>> from sklearn.model_selection import RepeatedStratifiedKFold
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([0, 0, 1, 1])
>>> rskf = RepeatedStratifiedKFold(n_splits=2, n_repeats=2,
... random_state=36851234)
>>> for train_index, test_index in rskf.split(X, y):
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
...
TRAIN: [1 2] TEST: [0 3]
TRAIN: [0 3] TEST: [1 2]
TRAIN: [1 3] TEST: [0 2]
TRAIN: [0 2] TEST: [1 3]

7.26. sklearn.model_selection: Model Selection 2315

scikit-learn user guide, Release 0.23.2

Methods

get_n_splits([X, y, groups]) Returns the number of splitting iterations in the
cross-validator

split(X[, y, groups]) Generates indices to split data into training and test
set.

__init__(*, n_splits=5, n_repeats=10, random_state=None)
Initialize self. See help(type(self)) for accurate signature.

get_n_splits(X=None, y=None, groups=None)
Returns the number of splitting iterations in the cross-validator

Parameters

X [object] Always ignored, exists for compatibility. np.zeros(n_samples) may be
used as a placeholder.

y [object] Always ignored, exists for compatibility. np.zeros(n_samples) may be
used as a placeholder.

groups [array-like of shape (n_samples,), default=None] Group labels for the samples used
while splitting the dataset into train/test set.

Returns

n_splits [int] Returns the number of splitting iterations in the cross-validator.

split(X, y=None, groups=None)
Generates indices to split data into training and test set.

Parameters

X [array-like, shape (n_samples, n_features)] Training data, where n_samples is the number
of samples and n_features is the number of features.

y [array-like of length n_samples] The target variable for supervised learning problems.

groups [array-like of shape (n_samples,), default=None] Group labels for the samples used
while splitting the dataset into train/test set.

Yields

train [ndarray] The training set indices for that split.

test [ndarray] The testing set indices for that split.

sklearn.model_selection.ShuffleSplit

class sklearn.model_selection.ShuffleSplit(n_splits=10, *, test_size=None,
train_size=None, random_state=None)

Random permutation cross-validator

Yields indices to split data into training and test sets.

Note: contrary to other cross-validation strategies, random splits do not guarantee that all folds will be different,
although this is still very likely for sizeable datasets.

Read more in the User Guide.

Parameters

2316 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

n_splits [int, default=10] Number of re-shuffling & splitting iterations.

test_size [float or int, default=None] If float, should be between 0.0 and 1.0 and represent the
proportion of the dataset to include in the test split. If int, represents the absolute number of
test samples. If None, the value is set to the complement of the train size. If train_size
is also None, it will be set to 0.1.

train_size [float or int, default=None] If float, should be between 0.0 and 1.0 and represent the
proportion of the dataset to include in the train split. If int, represents the absolute number
of train samples. If None, the value is automatically set to the complement of the test size.

random_state [int or RandomState instance, default=None] Controls the randomness of the
training and testing indices produced. Pass an int for reproducible output across multiple
function calls. See Glossary.

Examples

>>> import numpy as np
>>> from sklearn.model_selection import ShuffleSplit
>>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8], [3, 4], [5, 6]])
>>> y = np.array([1, 2, 1, 2, 1, 2])
>>> rs = ShuffleSplit(n_splits=5, test_size=.25, random_state=0)
>>> rs.get_n_splits(X)
5
>>> print(rs)
ShuffleSplit(n_splits=5, random_state=0, test_size=0.25, train_size=None)
>>> for train_index, test_index in rs.split(X):
... print("TRAIN:", train_index, "TEST:", test_index)
TRAIN: [1 3 0 4] TEST: [5 2]
TRAIN: [4 0 2 5] TEST: [1 3]
TRAIN: [1 2 4 0] TEST: [3 5]
TRAIN: [3 4 1 0] TEST: [5 2]
TRAIN: [3 5 1 0] TEST: [2 4]
>>> rs = ShuffleSplit(n_splits=5, train_size=0.5, test_size=.25,
... random_state=0)
>>> for train_index, test_index in rs.split(X):
... print("TRAIN:", train_index, "TEST:", test_index)
TRAIN: [1 3 0] TEST: [5 2]
TRAIN: [4 0 2] TEST: [1 3]
TRAIN: [1 2 4] TEST: [3 5]
TRAIN: [3 4 1] TEST: [5 2]
TRAIN: [3 5 1] TEST: [2 4]

Methods

get_n_splits([X, y, groups]) Returns the number of splitting iterations in the
cross-validator

split(X[, y, groups]) Generate indices to split data into training and test
set.

__init__(n_splits=10, *, test_size=None, train_size=None, random_state=None)
Initialize self. See help(type(self)) for accurate signature.

get_n_splits(X=None, y=None, groups=None)
Returns the number of splitting iterations in the cross-validator

7.26. sklearn.model_selection: Model Selection 2317

scikit-learn user guide, Release 0.23.2

Parameters

X [object] Always ignored, exists for compatibility.

y [object] Always ignored, exists for compatibility.

groups [object] Always ignored, exists for compatibility.

Returns

n_splits [int] Returns the number of splitting iterations in the cross-validator.

split(X, y=None, groups=None)
Generate indices to split data into training and test set.

Parameters

X [array-like of shape (n_samples, n_features)] Training data, where n_samples is the num-
ber of samples and n_features is the number of features.

y [array-like of shape (n_samples,)] The target variable for supervised learning problems.

groups [array-like of shape (n_samples,), default=None] Group labels for the samples used
while splitting the dataset into train/test set.

Yields

train [ndarray] The training set indices for that split.

test [ndarray] The testing set indices for that split.

Notes

Randomized CV splitters may return different results for each call of split. You can make the results
identical by setting random_state to an integer.

Examples using sklearn.model_selection.ShuffleSplit

• Visualizing cross-validation behavior in scikit-learn

• Plotting Learning Curves

• Scaling the regularization parameter for SVCs

sklearn.model_selection.StratifiedKFold

class sklearn.model_selection.StratifiedKFold(n_splits=5, *, shuffle=False, ran-
dom_state=None)

Stratified K-Folds cross-validator

Provides train/test indices to split data in train/test sets.

This cross-validation object is a variation of KFold that returns stratified folds. The folds are made by preserving
the percentage of samples for each class.

Read more in the User Guide.

Parameters

n_splits [int, default=5] Number of folds. Must be at least 2.

Changed in version 0.22: n_splits default value changed from 3 to 5.

2318 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

shuffle [bool, default=False] Whether to shuffle each class’s samples before splitting into
batches. Note that the samples within each split will not be shuffled.

random_state [int or RandomState instance, default=None] When shuffle is True,
random_state affects the ordering of the indices, which controls the randomness of
each fold for each class. Otherwise, leave random_state as None. Pass an int for repro-
ducible output across multiple function calls. See Glossary.

See also:

RepeatedStratifiedKFold Repeats Stratified K-Fold n times.

Notes

The implementation is designed to:

• Generate test sets such that all contain the same distribution of classes, or as close as possible.

• Be invariant to class label: relabelling y = ["Happy", "Sad"] to y = [1, 0] should not change
the indices generated.

• Preserve order dependencies in the dataset ordering, when shuffle=False: all samples from class k in
some test set were contiguous in y, or separated in y by samples from classes other than k.

• Generate test sets where the smallest and largest differ by at most one sample.

Changed in version 0.22: The previous implementation did not follow the last constraint.

Examples

>>> import numpy as np
>>> from sklearn.model_selection import StratifiedKFold
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([0, 0, 1, 1])
>>> skf = StratifiedKFold(n_splits=2)
>>> skf.get_n_splits(X, y)
2
>>> print(skf)
StratifiedKFold(n_splits=2, random_state=None, shuffle=False)
>>> for train_index, test_index in skf.split(X, y):
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
TRAIN: [1 3] TEST: [0 2]
TRAIN: [0 2] TEST: [1 3]

Methods

get_n_splits([X, y, groups]) Returns the number of splitting iterations in the
cross-validator

split(X, y[, groups]) Generate indices to split data into training and test
set.

__init__(n_splits=5, *, shuffle=False, random_state=None)
Initialize self. See help(type(self)) for accurate signature.

7.26. sklearn.model_selection: Model Selection 2319

scikit-learn user guide, Release 0.23.2

get_n_splits(X=None, y=None, groups=None)
Returns the number of splitting iterations in the cross-validator

Parameters

X [object] Always ignored, exists for compatibility.

y [object] Always ignored, exists for compatibility.

groups [object] Always ignored, exists for compatibility.

Returns

n_splits [int] Returns the number of splitting iterations in the cross-validator.

split(X, y, groups=None)
Generate indices to split data into training and test set.

Parameters

X [array-like of shape (n_samples, n_features)] Training data, where n_samples is the num-
ber of samples and n_features is the number of features.

Note that providing y is sufficient to generate the splits and hence np.
zeros(n_samples) may be used as a placeholder for X instead of actual training data.

y [array-like of shape (n_samples,)] The target variable for supervised learning problems.
Stratification is done based on the y labels.

groups [object] Always ignored, exists for compatibility.

Yields

train [ndarray] The training set indices for that split.

test [ndarray] The testing set indices for that split.

Notes

Randomized CV splitters may return different results for each call of split. You can make the results
identical by setting random_state to an integer.

Examples using sklearn.model_selection.StratifiedKFold

• Recursive feature elimination with cross-validation

• Test with permutations the significance of a classification score

• GMM covariances

• Receiver Operating Characteristic (ROC) with cross validation

• Visualizing cross-validation behavior in scikit-learn

sklearn.model_selection.StratifiedShuffleSplit

class sklearn.model_selection.StratifiedShuffleSplit(n_splits=10, *, test_size=None,
train_size=None, ran-
dom_state=None)

Stratified ShuffleSplit cross-validator

Provides train/test indices to split data in train/test sets.

2320 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

This cross-validation object is a merge of StratifiedKFold and ShuffleSplit, which returns stratified randomized
folds. The folds are made by preserving the percentage of samples for each class.

Note: like the ShuffleSplit strategy, stratified random splits do not guarantee that all folds will be different,
although this is still very likely for sizeable datasets.

Read more in the User Guide.

Parameters

n_splits [int, default=10] Number of re-shuffling & splitting iterations.

test_size [float or int, default=None] If float, should be between 0.0 and 1.0 and represent the
proportion of the dataset to include in the test split. If int, represents the absolute number of
test samples. If None, the value is set to the complement of the train size. If train_size
is also None, it will be set to 0.1.

train_size [float or int, default=None] If float, should be between 0.0 and 1.0 and represent the
proportion of the dataset to include in the train split. If int, represents the absolute number
of train samples. If None, the value is automatically set to the complement of the test size.

random_state [int or RandomState instance, default=None] Controls the randomness of the
training and testing indices produced. Pass an int for reproducible output across multiple
function calls. See Glossary.

Examples

>>> import numpy as np
>>> from sklearn.model_selection import StratifiedShuffleSplit
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([0, 0, 0, 1, 1, 1])
>>> sss = StratifiedShuffleSplit(n_splits=5, test_size=0.5, random_state=0)
>>> sss.get_n_splits(X, y)
5
>>> print(sss)
StratifiedShuffleSplit(n_splits=5, random_state=0, ...)
>>> for train_index, test_index in sss.split(X, y):
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
TRAIN: [5 2 3] TEST: [4 1 0]
TRAIN: [5 1 4] TEST: [0 2 3]
TRAIN: [5 0 2] TEST: [4 3 1]
TRAIN: [4 1 0] TEST: [2 3 5]
TRAIN: [0 5 1] TEST: [3 4 2]

Methods

get_n_splits([X, y, groups]) Returns the number of splitting iterations in the
cross-validator

split(X, y[, groups]) Generate indices to split data into training and test
set.

__init__(n_splits=10, *, test_size=None, train_size=None, random_state=None)
Initialize self. See help(type(self)) for accurate signature.

7.26. sklearn.model_selection: Model Selection 2321

scikit-learn user guide, Release 0.23.2

get_n_splits(X=None, y=None, groups=None)
Returns the number of splitting iterations in the cross-validator

Parameters

X [object] Always ignored, exists for compatibility.

y [object] Always ignored, exists for compatibility.

groups [object] Always ignored, exists for compatibility.

Returns

n_splits [int] Returns the number of splitting iterations in the cross-validator.

split(X, y, groups=None)
Generate indices to split data into training and test set.

Parameters

X [array-like of shape (n_samples, n_features)] Training data, where n_samples is the num-
ber of samples and n_features is the number of features.

Note that providing y is sufficient to generate the splits and hence np.
zeros(n_samples) may be used as a placeholder for X instead of actual training data.

y [array-like of shape (n_samples,) or (n_samples, n_labels)] The target variable for super-
vised learning problems. Stratification is done based on the y labels.

groups [object] Always ignored, exists for compatibility.

Yields

train [ndarray] The training set indices for that split.

test [ndarray] The testing set indices for that split.

Notes

Randomized CV splitters may return different results for each call of split. You can make the results
identical by setting random_state to an integer.

Examples using sklearn.model_selection.StratifiedShuffleSplit

• Visualizing cross-validation behavior in scikit-learn

• RBF SVM parameters

sklearn.model_selection.TimeSeriesSplit

class sklearn.model_selection.TimeSeriesSplit(n_splits=5, *, max_train_size=None)
Time Series cross-validator

New in version 0.18.

Provides train/test indices to split time series data samples that are observed at fixed time intervals, in train/test
sets. In each split, test indices must be higher than before, and thus shuffling in cross validator is inappropriate.

This cross-validation object is a variation of KFold. In the kth split, it returns first k folds as train set and the
(k+1)th fold as test set.

2322 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Note that unlike standard cross-validation methods, successive training sets are supersets of those that come
before them.

Read more in the User Guide.

Parameters

n_splits [int, default=5] Number of splits. Must be at least 2.

Changed in version 0.22: n_splits default value changed from 3 to 5.

max_train_size [int, default=None] Maximum size for a single training set.

Notes

The training set has size i * n_samples // (n_splits + 1) + n_samples % (n_splits
+ 1) in the i``th split, with a test set of size ``n_samples//(n_splits + 1),
where n_samples is the number of samples.

Examples

>>> import numpy as np
>>> from sklearn.model_selection import TimeSeriesSplit
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([1, 2, 3, 4, 5, 6])
>>> tscv = TimeSeriesSplit()
>>> print(tscv)
TimeSeriesSplit(max_train_size=None, n_splits=5)
>>> for train_index, test_index in tscv.split(X):
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
TRAIN: [0] TEST: [1]
TRAIN: [0 1] TEST: [2]
TRAIN: [0 1 2] TEST: [3]
TRAIN: [0 1 2 3] TEST: [4]
TRAIN: [0 1 2 3 4] TEST: [5]

Methods

get_n_splits([X, y, groups]) Returns the number of splitting iterations in the
cross-validator

split(X[, y, groups]) Generate indices to split data into training and test
set.

__init__(n_splits=5, *, max_train_size=None)
Initialize self. See help(type(self)) for accurate signature.

get_n_splits(X=None, y=None, groups=None)
Returns the number of splitting iterations in the cross-validator

Parameters

X [object] Always ignored, exists for compatibility.

y [object] Always ignored, exists for compatibility.

7.26. sklearn.model_selection: Model Selection 2323

scikit-learn user guide, Release 0.23.2

groups [object] Always ignored, exists for compatibility.

Returns

n_splits [int] Returns the number of splitting iterations in the cross-validator.

split(X, y=None, groups=None)
Generate indices to split data into training and test set.

Parameters

X [array-like of shape (n_samples, n_features)] Training data, where n_samples is the num-
ber of samples and n_features is the number of features.

y [array-like of shape (n_samples,)] Always ignored, exists for compatibility.

groups [array-like of shape (n_samples,)] Always ignored, exists for compatibility.

Yields

train [ndarray] The training set indices for that split.

test [ndarray] The testing set indices for that split.

Examples using sklearn.model_selection.TimeSeriesSplit

• Visualizing cross-validation behavior in scikit-learn

7.26.2 Splitter Functions

model_selection.check_cv([cv, y, classifier]) Input checker utility for building a cross-validator
model_selection.
train_test_split(*arrays, . . .)

Split arrays or matrices into random train and test sub-
sets

sklearn.model_selection.check_cv

sklearn.model_selection.check_cv(cv=5, y=None, *, classifier=False)
Input checker utility for building a cross-validator

Parameters

cv [int, cross-validation generator or an iterable, default=None] Determines the cross-validation
splitting strategy. Possible inputs for cv are: - None, to use the default 5-fold cross valida-
tion, - integer, to specify the number of folds. - CV splitter, - An iterable yielding (train,
test) splits as arrays of indices.

For integer/None inputs, if classifier is True and y is either binary or multiclass,
StratifiedKFold is used. In all other cases, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

Changed in version 0.22: cv default value changed from 3-fold to 5-fold.

y [array-like, default=None] The target variable for supervised learning problems.

classifier [bool, default=False] Whether the task is a classification task, in which case stratified
KFold will be used.

Returns

2324 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

checked_cv [a cross-validator instance.] The return value is a cross-validator which generates
the train/test splits via the split method.

sklearn.model_selection.train_test_split

sklearn.model_selection.train_test_split(*arrays, **options)
Split arrays or matrices into random train and test subsets

Quick utility that wraps input validation and next(ShuffleSplit().split(X, y)) and application to
input data into a single call for splitting (and optionally subsampling) data in a oneliner.

Read more in the User Guide.

Parameters

*arrays [sequence of indexables with same length / shape[0]] Allowed inputs are lists, numpy
arrays, scipy-sparse matrices or pandas dataframes.

test_size [float or int, default=None] If float, should be between 0.0 and 1.0 and represent the
proportion of the dataset to include in the test split. If int, represents the absolute number of
test samples. If None, the value is set to the complement of the train size. If train_size
is also None, it will be set to 0.25.

train_size [float or int, default=None] If float, should be between 0.0 and 1.0 and represent the
proportion of the dataset to include in the train split. If int, represents the absolute number
of train samples. If None, the value is automatically set to the complement of the test size.

random_state [int or RandomState instance, default=None] Controls the shuffling applied to
the data before applying the split. Pass an int for reproducible output across multiple func-
tion calls. See Glossary.

shuffle [bool, default=True] Whether or not to shuffle the data before splitting. If shuffle=False
then stratify must be None.

stratify [array-like, default=None] If not None, data is split in a stratified fashion, using this as
the class labels.

Returns

splitting [list, length=2 * len(arrays)] List containing train-test split of inputs.

New in version 0.16: If the input is sparse, the output will be a scipy.sparse.
csr_matrix. Else, output type is the same as the input type.

Examples

>>> import numpy as np
>>> from sklearn.model_selection import train_test_split
>>> X, y = np.arange(10).reshape((5, 2)), range(5)
>>> X
array([[0, 1],

[2, 3],
[4, 5],
[6, 7],
[8, 9]])

>>> list(y)
[0, 1, 2, 3, 4]

7.26. sklearn.model_selection: Model Selection 2325

scikit-learn user guide, Release 0.23.2

>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, test_size=0.33, random_state=42)
...
>>> X_train
array([[4, 5],

[0, 1],
[6, 7]])

>>> y_train
[2, 0, 3]
>>> X_test
array([[2, 3],

[8, 9]])
>>> y_test
[1, 4]

>>> train_test_split(y, shuffle=False)
[[0, 1, 2], [3, 4]]

Examples using sklearn.model_selection.train_test_split

• Release Highlights for scikit-learn 0.23

• Release Highlights for scikit-learn 0.22

• Probability Calibration curves

• Probability calibration of classifiers

• Recognizing hand-written digits

• Classifier comparison

• Post pruning decision trees with cost complexity pruning

• Understanding the decision tree structure

• Comparing random forests and the multi-output meta estimator

• Gradient Boosting regression

• Early stopping of Gradient Boosting

• Feature transformations with ensembles of trees

• Gradient Boosting Out-of-Bag estimates

• Faces recognition example using eigenfaces and SVMs

• Prediction Latency

• Pipeline Anova SVM

• Univariate Feature Selection

• Comparing various online solvers

• MNIST classification using multinomial logistic + L1

• Multiclass sparse logistic regression on 20newgroups

• Early stopping of Stochastic Gradient Descent

• Poisson regression and non-normal loss

2326 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

• Tweedie regression on insurance claims

• Permutation Importance with Multicollinear or Correlated Features

• Permutation Importance vs Random Forest Feature Importance (MDI)

• Partial Dependence Plots

• Common pitfalls in interpretation of coefficients of linear models

• ROC Curve with Visualization API

• Visualizations with Display Objects

• Confusion matrix

• Parameter estimation using grid search with cross-validation

• Receiver Operating Characteristic (ROC)

• Precision-Recall

• Classifier Chain

• Comparing Nearest Neighbors with and without Neighborhood Components Analysis

• Dimensionality Reduction with Neighborhood Components Analysis

• Restricted Boltzmann Machine features for digit classification

• Varying regularization in Multi-layer Perceptron

• Column Transformer with Mixed Types

• Effect of transforming the targets in regression model

• Using FunctionTransformer to select columns

• Importance of Feature Scaling

• Map data to a normal distribution

• Feature discretization

7.26.3 Hyper-parameter optimizers

model_selection.GridSearchCV (estimator,
. . .)

Exhaustive search over specified parameter values for
an estimator.

model_selection.
ParameterGrid(param_grid)

Grid of parameters with a discrete number of values for
each.

model_selection.ParameterSampler(. . . [,
. . .])

Generator on parameters sampled from given distribu-
tions.

model_selection.
RandomizedSearchCV (. . . [, . . .])

Randomized search on hyper parameters.

sklearn.model_selection.GridSearchCV

class sklearn.model_selection.GridSearchCV(estimator, param_grid, *, scoring=None,
n_jobs=None, iid=’deprecated’, re-
fit=True, cv=None, verbose=0,
pre_dispatch=’2*n_jobs’, error_score=nan,
return_train_score=False)

Exhaustive search over specified parameter values for an estimator.

7.26. sklearn.model_selection: Model Selection 2327

scikit-learn user guide, Release 0.23.2

Important members are fit, predict.

GridSearchCV implements a “fit” and a “score” method. It also implements “predict”, “predict_proba”, “deci-
sion_function”, “transform” and “inverse_transform” if they are implemented in the estimator used.

The parameters of the estimator used to apply these methods are optimized by cross-validated grid-search over
a parameter grid.

Read more in the User Guide.

Parameters

estimator [estimator object.] This is assumed to implement the scikit-learn estimator interface.
Either estimator needs to provide a score function, or scoring must be passed.

param_grid [dict or list of dictionaries] Dictionary with parameters names (str) as keys and
lists of parameter settings to try as values, or a list of such dictionaries, in which case the
grids spanned by each dictionary in the list are explored. This enables searching over any
sequence of parameter settings.

scoring [str, callable, list/tuple or dict, default=None] A single str (see The scoring parame-
ter: defining model evaluation rules) or a callable (see Defining your scoring strategy from
metric functions) to evaluate the predictions on the test set.

For evaluating multiple metrics, either give a list of (unique) strings or a dict with names as
keys and callables as values.

NOTE that when using custom scorers, each scorer should return a single value. Metric
functions returning a list/array of values can be wrapped into multiple scorers that return
one value each.

See Specifying multiple metrics for evaluation for an example.

If None, the estimator’s score method is used.

n_jobs [int, default=None] Number of jobs to run in parallel. None means 1 unless in a
joblib.parallel_backend context. -1 means using all processors. See Glossary
for more details.

Changed in version v0.20: n_jobs default changed from 1 to None

pre_dispatch [int, or str, default=n_jobs] Controls the number of jobs that get dispatched during
parallel execution. Reducing this number can be useful to avoid an explosion of memory
consumption when more jobs get dispatched than CPUs can process. This parameter can
be:

• None, in which case all the jobs are immediately created and spawned. Use this for
lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs

• An int, giving the exact number of total jobs that are spawned

• A str, giving an expression as a function of n_jobs, as in ‘2*n_jobs’

iid [bool, default=False] If True, return the average score across folds, weighted by the number
of samples in each test set. In this case, the data is assumed to be identically distributed
across the folds, and the loss minimized is the total loss per sample, and not the mean loss
across the folds.

Deprecated since version 0.22: Parameter iid is deprecated in 0.22 and will be removed in
0.24

cv [int, cross-validation generator or an iterable, default=None] Determines the cross-validation
splitting strategy. Possible inputs for cv are:

2328 Chapter 7. API Reference

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

• None, to use the default 5-fold cross validation,

• integer, to specify the number of folds in a (Stratified)KFold,

• CV splitter,

• An iterable yielding (train, test) splits as arrays of indices.

For integer/None inputs, if the estimator is a classifier and y is either binary or multiclass,
StratifiedKFold is used. In all other cases, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

Changed in version 0.22: cv default value if None changed from 3-fold to 5-fold.

refit [bool, str, or callable, default=True] Refit an estimator using the best found parameters on
the whole dataset.

For multiple metric evaluation, this needs to be a str denoting the scorer that would be
used to find the best parameters for refitting the estimator at the end.

Where there are considerations other than maximum score in choosing a best estima-
tor, refit can be set to a function which returns the selected best_index_ given
cv_results_. In that case, the best_estimator_ and best_params_ will be set
according to the returned best_index_ while the best_score_ attribute will not be
available.

The refitted estimator is made available at the best_estimator_ attribute and permits
using predict directly on this GridSearchCV instance.

Also for multiple metric evaluation, the attributes best_index_, best_score_ and
best_params_ will only be available if refit is set and all of them will be determined
w.r.t this specific scorer.

See scoring parameter to know more about multiple metric evaluation.

Changed in version 0.20: Support for callable added.

verbose [integer] Controls the verbosity: the higher, the more messages.

error_score [‘raise’ or numeric, default=np.nan] Value to assign to the score if an error occurs
in estimator fitting. If set to ‘raise’, the error is raised. If a numeric value is given, FitFailed-
Warning is raised. This parameter does not affect the refit step, which will always raise the
error.

return_train_score [bool, default=False] If False, the cv_results_ attribute will not in-
clude training scores. Computing training scores is used to get insights on how different pa-
rameter settings impact the overfitting/underfitting trade-off. However computing the scores
on the training set can be computationally expensive and is not strictly required to select the
parameters that yield the best generalization performance.

New in version 0.19.

Changed in version 0.21: Default value was changed from True to False

Attributes

cv_results_ [dict of numpy (masked) ndarrays] A dict with keys as column headers and values
as columns, that can be imported into a pandas DataFrame.

For instance the below given table

7.26. sklearn.model_selection: Model Selection 2329

scikit-learn user guide, Release 0.23.2

param_kernel param_gamma param_degree split0_test_score . . . rank_t. . .
‘poly’ – 2 0.80 . . . 2
‘poly’ – 3 0.70 . . . 4
‘rbf’ 0.1 – 0.80 . . . 3
‘rbf’ 0.2 – 0.93 . . . 1

will be represented by a cv_results_ dict of:

{
'param_kernel': masked_array(data = ['poly', 'poly', 'rbf', 'rbf'],

mask = [False False False False]...)
'param_gamma': masked_array(data = [-- -- 0.1 0.2],

mask = [True True False False]...),
'param_degree': masked_array(data = [2.0 3.0 -- --],

mask = [False False True True]...),
'split0_test_score' : [0.80, 0.70, 0.80, 0.93],
'split1_test_score' : [0.82, 0.50, 0.70, 0.78],
'mean_test_score' : [0.81, 0.60, 0.75, 0.85],
'std_test_score' : [0.01, 0.10, 0.05, 0.08],
'rank_test_score' : [2, 4, 3, 1],
'split0_train_score' : [0.80, 0.92, 0.70, 0.93],
'split1_train_score' : [0.82, 0.55, 0.70, 0.87],
'mean_train_score' : [0.81, 0.74, 0.70, 0.90],
'std_train_score' : [0.01, 0.19, 0.00, 0.03],
'mean_fit_time' : [0.73, 0.63, 0.43, 0.49],
'std_fit_time' : [0.01, 0.02, 0.01, 0.01],
'mean_score_time' : [0.01, 0.06, 0.04, 0.04],
'std_score_time' : [0.00, 0.00, 0.00, 0.01],
'params' : [{'kernel': 'poly', 'degree': 2}, ...],
}

NOTE

The key 'params' is used to store a list of parameter settings dicts for all the parameter
candidates.

The mean_fit_time, std_fit_time, mean_score_time and
std_score_time are all in seconds.

For multi-metric evaluation, the scores for all the scorers are available in the
cv_results_ dict at the keys ending with that scorer’s name ('_<scorer_name>')
instead of '_score' shown above. (‘split0_test_precision’, ‘mean_train_precision’ etc.)

best_estimator_ [estimator] Estimator that was chosen by the search, i.e. estimator which
gave highest score (or smallest loss if specified) on the left out data. Not available if
refit=False.

See refit parameter for more information on allowed values.

best_score_ [float] Mean cross-validated score of the best_estimator

For multi-metric evaluation, this is present only if refit is specified.

This attribute is not available if refit is a function.

best_params_ [dict] Parameter setting that gave the best results on the hold out data.

For multi-metric evaluation, this is present only if refit is specified.

2330 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

best_index_ [int] The index (of the cv_results_ arrays) which corresponds to the best can-
didate parameter setting.

The dict at search.cv_results_['params'][search.best_index_] gives
the parameter setting for the best model, that gives the highest mean score (search.
best_score_).

For multi-metric evaluation, this is present only if refit is specified.

scorer_ [function or a dict] Scorer function used on the held out data to choose the best param-
eters for the model.

For multi-metric evaluation, this attribute holds the validated scoring dict which maps
the scorer key to the scorer callable.

n_splits_ [int] The number of cross-validation splits (folds/iterations).

refit_time_ [float] Seconds used for refitting the best model on the whole dataset.

This is present only if refit is not False.

New in version 0.20.

See also:

ParameterGrid generates all the combinations of a hyperparameter grid.

sklearn.model_selection.train_test_split utility function to split the data into a development
set usable for fitting a GridSearchCV instance and an evaluation set for its final evaluation.

sklearn.metrics.make_scorer Make a scorer from a performance metric or loss function.

Notes

The parameters selected are those that maximize the score of the left out data, unless an explicit score is passed
in which case it is used instead.

If n_jobs was set to a value higher than one, the data is copied for each point in the grid (and not n_jobs
times). This is done for efficiency reasons if individual jobs take very little time, but may raise errors if the
dataset is large and not enough memory is available. A workaround in this case is to set pre_dispatch.
Then, the memory is copied only pre_dispatch many times. A reasonable value for pre_dispatch is 2
* n_jobs.

Examples

>>> from sklearn import svm, datasets
>>> from sklearn.model_selection import GridSearchCV
>>> iris = datasets.load_iris()
>>> parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]}
>>> svc = svm.SVC()
>>> clf = GridSearchCV(svc, parameters)
>>> clf.fit(iris.data, iris.target)
GridSearchCV(estimator=SVC(),

param_grid={'C': [1, 10], 'kernel': ('linear', 'rbf')})
>>> sorted(clf.cv_results_.keys())
['mean_fit_time', 'mean_score_time', 'mean_test_score',...
'param_C', 'param_kernel', 'params',...
'rank_test_score', 'split0_test_score',...

(continues on next page)

7.26. sklearn.model_selection: Model Selection 2331

scikit-learn user guide, Release 0.23.2

(continued from previous page)

'split2_test_score', ...
'std_fit_time', 'std_score_time', 'std_test_score']

Methods

decision_function(X) Call decision_function on the estimator with the best
found parameters.

fit(X[, y, groups]) Run fit with all sets of parameters.
get_params([deep]) Get parameters for this estimator.
inverse_transform(Xt) Call inverse_transform on the estimator with the best

found params.
predict(X) Call predict on the estimator with the best found pa-

rameters.
predict_log_proba(X) Call predict_log_proba on the estimator with the best

found parameters.
predict_proba(X) Call predict_proba on the estimator with the best

found parameters.
score(X[, y]) Returns the score on the given data, if the estimator

has been refit.
set_params(**params) Set the parameters of this estimator.
transform(X) Call transform on the estimator with the best found

parameters.

__init__(estimator, param_grid, *, scoring=None, n_jobs=None, iid=’deprecated’, re-
fit=True, cv=None, verbose=0, pre_dispatch=’2*n_jobs’, error_score=nan, re-
turn_train_score=False)

Initialize self. See help(type(self)) for accurate signature.

decision_function(X)
Call decision_function on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports decision_function.

Parameters

X [indexable, length n_samples] Must fulfill the input assumptions of the underlying esti-
mator.

fit(X, y=None, *, groups=None, **fit_params)
Run fit with all sets of parameters.

Parameters

X [array-like of shape (n_samples, n_features)] Training vector, where n_samples is the
number of samples and n_features is the number of features.

y [array-like of shape (n_samples, n_output) or (n_samples,), default=None] Target relative
to X for classification or regression; None for unsupervised learning.

groups [array-like of shape (n_samples,), default=None] Group labels for the samples used
while splitting the dataset into train/test set. Only used in conjunction with a “Group” cv
instance (e.g., GroupKFold).

**fit_params [dict of str -> object] Parameters passed to the fit method of the estimator

2332 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

inverse_transform(Xt)
Call inverse_transform on the estimator with the best found params.

Only available if the underlying estimator implements inverse_transform and refit=True.

Parameters

Xt [indexable, length n_samples] Must fulfill the input assumptions of the underlying esti-
mator.

predict(X)
Call predict on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports predict.

Parameters

X [indexable, length n_samples] Must fulfill the input assumptions of the underlying esti-
mator.

predict_log_proba(X)
Call predict_log_proba on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports predict_log_proba.

Parameters

X [indexable, length n_samples] Must fulfill the input assumptions of the underlying esti-
mator.

predict_proba(X)
Call predict_proba on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports predict_proba.

Parameters

X [indexable, length n_samples] Must fulfill the input assumptions of the underlying esti-
mator.

score(X, y=None)
Returns the score on the given data, if the estimator has been refit.

This uses the score defined by scoring where provided, and the best_estimator_.score method
otherwise.

Parameters

X [array-like of shape (n_samples, n_features)] Input data, where n_samples is the number
of samples and n_features is the number of features.

y [array-like of shape (n_samples, n_output) or (n_samples,), default=None] Target relative
to X for classification or regression; None for unsupervised learning.

Returns

7.26. sklearn.model_selection: Model Selection 2333

scikit-learn user guide, Release 0.23.2

score [float]

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Call transform on the estimator with the best found parameters.

Only available if the underlying estimator supports transform and refit=True.

Parameters

X [indexable, length n_samples] Must fulfill the input assumptions of the underlying esti-
mator.

Examples using sklearn.model_selection.GridSearchCV

• Sample pipeline for text feature extraction and evaluation

sklearn.model_selection.ParameterGrid

class sklearn.model_selection.ParameterGrid(param_grid)
Grid of parameters with a discrete number of values for each.

Can be used to iterate over parameter value combinations with the Python built-in function iter.

Read more in the User Guide.

Parameters

param_grid [dict of str to sequence, or sequence of such] The parameter grid to explore, as a
dictionary mapping estimator parameters to sequences of allowed values.

An empty dict signifies default parameters.

A sequence of dicts signifies a sequence of grids to search, and is useful to avoid exploring
parameter combinations that make no sense or have no effect. See the examples below.

See also:

GridSearchCV Uses ParameterGrid to perform a full parallelized parameter search.

Examples

2334 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

>>> from sklearn.model_selection import ParameterGrid
>>> param_grid = {'a': [1, 2], 'b': [True, False]}
>>> list(ParameterGrid(param_grid)) == (
... [{'a': 1, 'b': True}, {'a': 1, 'b': False},
... {'a': 2, 'b': True}, {'a': 2, 'b': False}])
True

>>> grid = [{'kernel': ['linear']}, {'kernel': ['rbf'], 'gamma': [1, 10]}]
>>> list(ParameterGrid(grid)) == [{'kernel': 'linear'},
... {'kernel': 'rbf', 'gamma': 1},
... {'kernel': 'rbf', 'gamma': 10}]
True
>>> ParameterGrid(grid)[1] == {'kernel': 'rbf', 'gamma': 1}
True

__init__(param_grid)
Initialize self. See help(type(self)) for accurate signature.

sklearn.model_selection.ParameterSampler

class sklearn.model_selection.ParameterSampler(param_distributions, n_iter, *, ran-
dom_state=None)

Generator on parameters sampled from given distributions.

Non-deterministic iterable over random candidate combinations for hyper- parameter search. If all parameters
are presented as a list, sampling without replacement is performed. If at least one parameter is given as a
distribution, sampling with replacement is used. It is highly recommended to use continuous distributions for
continuous parameters.

Read more in the User Guide.

Parameters

param_distributions [dict] Dictionary with parameters names (str) as keys and distributions
or lists of parameters to try. Distributions must provide a rvs method for sampling (such
as those from scipy.stats.distributions). If a list is given, it is sampled uniformly. If a list of
dicts is given, first a dict is sampled uniformly, and then a parameter is sampled using that
dict as above.

n_iter [integer] Number of parameter settings that are produced.

random_state [int or RandomState instance, default=None] Pseudo random number generator
state used for random uniform sampling from lists of possible values instead of scipy.stats
distributions. Pass an int for reproducible output across multiple function calls. See Glos-
sary.

Returns

params [dict of str to any] Yields dictionaries mapping each estimator parameter to as sampled
value.

Examples

>>> from sklearn.model_selection import ParameterSampler
>>> from scipy.stats.distributions import expon
>>> import numpy as np

(continues on next page)

7.26. sklearn.model_selection: Model Selection 2335

scikit-learn user guide, Release 0.23.2

(continued from previous page)

>>> rng = np.random.RandomState(0)
>>> param_grid = {'a':[1, 2], 'b': expon()}
>>> param_list = list(ParameterSampler(param_grid, n_iter=4,
... random_state=rng))
>>> rounded_list = [dict((k, round(v, 6)) for (k, v) in d.items())
... for d in param_list]
>>> rounded_list == [{'b': 0.89856, 'a': 1},
... {'b': 0.923223, 'a': 1},
... {'b': 1.878964, 'a': 2},
... {'b': 1.038159, 'a': 2}]
True

__init__(param_distributions, n_iter, *, random_state=None)
Initialize self. See help(type(self)) for accurate signature.

sklearn.model_selection.RandomizedSearchCV

class sklearn.model_selection.RandomizedSearchCV(estimator, param_distributions,
*, n_iter=10, scoring=None,
n_jobs=None, iid=’deprecated’,
refit=True, cv=None, verbose=0,
pre_dispatch=’2*n_jobs’, ran-
dom_state=None, error_score=nan,
return_train_score=False)

Randomized search on hyper parameters.

RandomizedSearchCV implements a “fit” and a “score” method. It also implements “predict”, “predict_proba”,
“decision_function”, “transform” and “inverse_transform” if they are implemented in the estimator used.

The parameters of the estimator used to apply these methods are optimized by cross-validated search over
parameter settings.

In contrast to GridSearchCV, not all parameter values are tried out, but rather a fixed number of parameter
settings is sampled from the specified distributions. The number of parameter settings that are tried is given by
n_iter.

If all parameters are presented as a list, sampling without replacement is performed. If at least one parameter
is given as a distribution, sampling with replacement is used. It is highly recommended to use continuous
distributions for continuous parameters.

Read more in the User Guide.

New in version 0.14.

Parameters

estimator [estimator object.] A object of that type is instantiated for each grid point. This is
assumed to implement the scikit-learn estimator interface. Either estimator needs to provide
a score function, or scoring must be passed.

param_distributions [dict or list of dicts] Dictionary with parameters names (str) as keys
and distributions or lists of parameters to try. Distributions must provide a rvs method
for sampling (such as those from scipy.stats.distributions). If a list is given, it is sampled
uniformly. If a list of dicts is given, first a dict is sampled uniformly, and then a parameter
is sampled using that dict as above.

n_iter [int, default=10] Number of parameter settings that are sampled. n_iter trades off runtime
vs quality of the solution.

2336 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

scoring [str, callable, list/tuple or dict, default=None] A single str (see The scoring parame-
ter: defining model evaluation rules) or a callable (see Defining your scoring strategy from
metric functions) to evaluate the predictions on the test set.

For evaluating multiple metrics, either give a list of (unique) strings or a dict with names as
keys and callables as values.

NOTE that when using custom scorers, each scorer should return a single value. Metric
functions returning a list/array of values can be wrapped into multiple scorers that return
one value each.

See Specifying multiple metrics for evaluation for an example.

If None, the estimator’s score method is used.

n_jobs [int, default=None] Number of jobs to run in parallel. None means 1 unless in a
joblib.parallel_backend context. -1 means using all processors. See Glossary
for more details.

Changed in version v0.20: n_jobs default changed from 1 to None

pre_dispatch [int, or str, default=None] Controls the number of jobs that get dispatched during
parallel execution. Reducing this number can be useful to avoid an explosion of memory
consumption when more jobs get dispatched than CPUs can process. This parameter can
be:

• None, in which case all the jobs are immediately created and spawned. Use this for
lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs

• An int, giving the exact number of total jobs that are spawned

• A str, giving an expression as a function of n_jobs, as in ‘2*n_jobs’

iid [bool, default=False] If True, return the average score across folds, weighted by the number
of samples in each test set. In this case, the data is assumed to be identically distributed
across the folds, and the loss minimized is the total loss per sample, and not the mean loss
across the folds.

Deprecated since version 0.22: Parameter iid is deprecated in 0.22 and will be removed in
0.24

cv [int, cross-validation generator or an iterable, default=None] Determines the cross-validation
splitting strategy. Possible inputs for cv are:

• None, to use the default 5-fold cross validation,

• integer, to specify the number of folds in a (Stratified)KFold,

• CV splitter,

• An iterable yielding (train, test) splits as arrays of indices.

For integer/None inputs, if the estimator is a classifier and y is either binary or multiclass,
StratifiedKFold is used. In all other cases, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

Changed in version 0.22: cv default value if None changed from 3-fold to 5-fold.

refit [bool, str, or callable, default=True] Refit an estimator using the best found parameters on
the whole dataset.

For multiple metric evaluation, this needs to be a str denoting the scorer that would be
used to find the best parameters for refitting the estimator at the end.

7.26. sklearn.model_selection: Model Selection 2337

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

Where there are considerations other than maximum score in choosing a best estimator,
refit can be set to a function which returns the selected best_index_ given the
cv_results. In that case, the best_estimator_ and best_params_ will be set
according to the returned best_index_ while the best_score_ attribute will not be
available.

The refitted estimator is made available at the best_estimator_ attribute and permits
using predict directly on this RandomizedSearchCV instance.

Also for multiple metric evaluation, the attributes best_index_, best_score_ and
best_params_ will only be available if refit is set and all of them will be determined
w.r.t this specific scorer.

See scoring parameter to know more about multiple metric evaluation.

Changed in version 0.20: Support for callable added.

verbose [integer] Controls the verbosity: the higher, the more messages.

random_state [int or RandomState instance, default=None] Pseudo random number generator
state used for random uniform sampling from lists of possible values instead of scipy.stats
distributions. Pass an int for reproducible output across multiple function calls. See Glos-
sary.

error_score [‘raise’ or numeric, default=np.nan] Value to assign to the score if an error occurs
in estimator fitting. If set to ‘raise’, the error is raised. If a numeric value is given, FitFailed-
Warning is raised. This parameter does not affect the refit step, which will always raise the
error.

return_train_score [bool, default=False] If False, the cv_results_ attribute will not in-
clude training scores. Computing training scores is used to get insights on how different pa-
rameter settings impact the overfitting/underfitting trade-off. However computing the scores
on the training set can be computationally expensive and is not strictly required to select the
parameters that yield the best generalization performance.

New in version 0.19.

Changed in version 0.21: Default value was changed from True to False

Attributes

cv_results_ [dict of numpy (masked) ndarrays] A dict with keys as column headers and values
as columns, that can be imported into a pandas DataFrame.

For instance the below given table

param_kernel param_gamma split0_test_score . . . rank_test_score
‘rbf’ 0.1 0.80 . . . 2
‘rbf’ 0.2 0.90 . . . 1
‘rbf’ 0.3 0.70 . . . 1

will be represented by a cv_results_ dict of:

{
'param_kernel' : masked_array(data = ['rbf', 'rbf', 'rbf'],

mask = False),
'param_gamma' : masked_array(data = [0.1 0.2 0.3], mask = False),
'split0_test_score' : [0.80, 0.90, 0.70],
'split1_test_score' : [0.82, 0.50, 0.70],
'mean_test_score' : [0.81, 0.70, 0.70],

(continues on next page)

2338 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

(continued from previous page)

'std_test_score' : [0.01, 0.20, 0.00],
'rank_test_score' : [3, 1, 1],
'split0_train_score' : [0.80, 0.92, 0.70],
'split1_train_score' : [0.82, 0.55, 0.70],
'mean_train_score' : [0.81, 0.74, 0.70],
'std_train_score' : [0.01, 0.19, 0.00],
'mean_fit_time' : [0.73, 0.63, 0.43],
'std_fit_time' : [0.01, 0.02, 0.01],
'mean_score_time' : [0.01, 0.06, 0.04],
'std_score_time' : [0.00, 0.00, 0.00],
'params' : [{'kernel' : 'rbf', 'gamma' : 0.1}, ...],
}

NOTE

The key 'params' is used to store a list of parameter settings dicts for all the parameter
candidates.

The mean_fit_time, std_fit_time, mean_score_time and
std_score_time are all in seconds.

For multi-metric evaluation, the scores for all the scorers are available in the
cv_results_ dict at the keys ending with that scorer’s name ('_<scorer_name>')
instead of '_score' shown above. (‘split0_test_precision’, ‘mean_train_precision’ etc.)

best_estimator_ [estimator] Estimator that was chosen by the search, i.e. estimator which
gave highest score (or smallest loss if specified) on the left out data. Not available if
refit=False.

For multi-metric evaluation, this attribute is present only if refit is specified.

See refit parameter for more information on allowed values.

best_score_ [float] Mean cross-validated score of the best_estimator.

For multi-metric evaluation, this is not available if refit is False. See refit parameter
for more information.

This attribute is not available if refit is a function.

best_params_ [dict] Parameter setting that gave the best results on the hold out data.

For multi-metric evaluation, this is not available if refit is False. See refit parameter
for more information.

best_index_ [int] The index (of the cv_results_ arrays) which corresponds to the best can-
didate parameter setting.

The dict at search.cv_results_['params'][search.best_index_] gives
the parameter setting for the best model, that gives the highest mean score (search.
best_score_).

For multi-metric evaluation, this is not available if refit is False. See refit parameter
for more information.

scorer_ [function or a dict] Scorer function used on the held out data to choose the best param-
eters for the model.

For multi-metric evaluation, this attribute holds the validated scoring dict which maps
the scorer key to the scorer callable.

n_splits_ [int] The number of cross-validation splits (folds/iterations).

7.26. sklearn.model_selection: Model Selection 2339

scikit-learn user guide, Release 0.23.2

refit_time_ [float] Seconds used for refitting the best model on the whole dataset.

This is present only if refit is not False.

New in version 0.20.

See also:

GridSearchCV Does exhaustive search over a grid of parameters.

ParameterSampler A generator over parameter settings, constructed from param_distributions.

Notes

The parameters selected are those that maximize the score of the held-out data, according to the scoring param-
eter.

If n_jobs was set to a value higher than one, the data is copied for each parameter setting(and not n_jobs
times). This is done for efficiency reasons if individual jobs take very little time, but may raise errors if the
dataset is large and not enough memory is available. A workaround in this case is to set pre_dispatch.
Then, the memory is copied only pre_dispatch many times. A reasonable value for pre_dispatch is 2
* n_jobs.

Examples

>>> from sklearn.datasets import load_iris
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.model_selection import RandomizedSearchCV
>>> from scipy.stats import uniform
>>> iris = load_iris()
>>> logistic = LogisticRegression(solver='saga', tol=1e-2, max_iter=200,
... random_state=0)
>>> distributions = dict(C=uniform(loc=0, scale=4),
... penalty=['l2', 'l1'])
>>> clf = RandomizedSearchCV(logistic, distributions, random_state=0)
>>> search = clf.fit(iris.data, iris.target)
>>> search.best_params_
{'C': 2..., 'penalty': 'l1'}

Methods

decision_function(X) Call decision_function on the estimator with the best
found parameters.

fit(X[, y, groups]) Run fit with all sets of parameters.
get_params([deep]) Get parameters for this estimator.
inverse_transform(Xt) Call inverse_transform on the estimator with the best

found params.
predict(X) Call predict on the estimator with the best found pa-

rameters.
predict_log_proba(X) Call predict_log_proba on the estimator with the best

found parameters.
predict_proba(X) Call predict_proba on the estimator with the best

found parameters.
Continued on next page

2340 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Table 226 – continued from previous page
score(X[, y]) Returns the score on the given data, if the estimator

has been refit.
set_params(**params) Set the parameters of this estimator.
transform(X) Call transform on the estimator with the best found

parameters.

__init__(estimator, param_distributions, *, n_iter=10, scoring=None, n_jobs=None,
iid=’deprecated’, refit=True, cv=None, verbose=0, pre_dispatch=’2*n_jobs’, ran-
dom_state=None, error_score=nan, return_train_score=False)

Initialize self. See help(type(self)) for accurate signature.

decision_function(X)
Call decision_function on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports decision_function.

Parameters

X [indexable, length n_samples] Must fulfill the input assumptions of the underlying esti-
mator.

fit(X, y=None, *, groups=None, **fit_params)
Run fit with all sets of parameters.

Parameters

X [array-like of shape (n_samples, n_features)] Training vector, where n_samples is the
number of samples and n_features is the number of features.

y [array-like of shape (n_samples, n_output) or (n_samples,), default=None] Target relative
to X for classification or regression; None for unsupervised learning.

groups [array-like of shape (n_samples,), default=None] Group labels for the samples used
while splitting the dataset into train/test set. Only used in conjunction with a “Group” cv
instance (e.g., GroupKFold).

**fit_params [dict of str -> object] Parameters passed to the fit method of the estimator

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

inverse_transform(Xt)
Call inverse_transform on the estimator with the best found params.

Only available if the underlying estimator implements inverse_transform and refit=True.

Parameters

Xt [indexable, length n_samples] Must fulfill the input assumptions of the underlying esti-
mator.

predict(X)
Call predict on the estimator with the best found parameters.

7.26. sklearn.model_selection: Model Selection 2341

scikit-learn user guide, Release 0.23.2

Only available if refit=True and the underlying estimator supports predict.

Parameters

X [indexable, length n_samples] Must fulfill the input assumptions of the underlying esti-
mator.

predict_log_proba(X)
Call predict_log_proba on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports predict_log_proba.

Parameters

X [indexable, length n_samples] Must fulfill the input assumptions of the underlying esti-
mator.

predict_proba(X)
Call predict_proba on the estimator with the best found parameters.

Only available if refit=True and the underlying estimator supports predict_proba.

Parameters

X [indexable, length n_samples] Must fulfill the input assumptions of the underlying esti-
mator.

score(X, y=None)
Returns the score on the given data, if the estimator has been refit.

This uses the score defined by scoring where provided, and the best_estimator_.score method
otherwise.

Parameters

X [array-like of shape (n_samples, n_features)] Input data, where n_samples is the number
of samples and n_features is the number of features.

y [array-like of shape (n_samples, n_output) or (n_samples,), default=None] Target relative
to X for classification or regression; None for unsupervised learning.

Returns

score [float]

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Call transform on the estimator with the best found parameters.

Only available if the underlying estimator supports transform and refit=True.

Parameters

2342 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

X [indexable, length n_samples] Must fulfill the input assumptions of the underlying esti-
mator.

Examples using sklearn.model_selection.RandomizedSearchCV

• Comparing randomized search and grid search for hyperparameter estimation

7.26.4 Model validation

model_selection.
cross_validate(estimator, X)

Evaluate metric(s) by cross-validation and also record
fit/score times.

model_selection.
cross_val_predict(estimator, X)

Generate cross-validated estimates for each input data
point

model_selection.
cross_val_score(estimator, X)

Evaluate a score by cross-validation

model_selection.
learning_curve(estimator, X, . . .)

Learning curve.

model_selection.
permutation_test_score(. . .)

Evaluate the significance of a cross-validated score with
permutations

model_selection.
validation_curve(estimator, . . .)

Validation curve.

sklearn.model_selection.cross_validate

sklearn.model_selection.cross_validate(estimator, X, y=None, *, groups=None, scor-
ing=None, cv=None, n_jobs=None, verbose=0,
fit_params=None, pre_dispatch=’2*n_jobs’, re-
turn_train_score=False, return_estimator=False,
error_score=nan)

Evaluate metric(s) by cross-validation and also record fit/score times.

Read more in the User Guide.

Parameters

estimator [estimator object implementing ‘fit’] The object to use to fit the data.

X [array-like of shape (n_samples, n_features)] The data to fit. Can be for example a list, or an
array.

y [array-like of shape (n_samples,) or (n_samples, n_outputs), default=None] The target vari-
able to try to predict in the case of supervised learning.

groups [array-like of shape (n_samples,), default=None] Group labels for the samples used
while splitting the dataset into train/test set. Only used in conjunction with a “Group” cv
instance (e.g., GroupKFold).

scoring [str, callable, list/tuple, or dict, default=None] A single str (see The scoring parame-
ter: defining model evaluation rules) or a callable (see Defining your scoring strategy from
metric functions) to evaluate the predictions on the test set.

For evaluating multiple metrics, either give a list of (unique) strings or a dict with names as
keys and callables as values.

NOTE that when using custom scorers, each scorer should return a single value. Metric

7.26. sklearn.model_selection: Model Selection 2343

scikit-learn user guide, Release 0.23.2

functions returning a list/array of values can be wrapped into multiple scorers that return
one value each.

See Specifying multiple metrics for evaluation for an example.

If None, the estimator’s score method is used.

cv [int, cross-validation generator or an iterable, default=None] Determines the cross-validation
splitting strategy. Possible inputs for cv are:

• None, to use the default 5-fold cross validation,

• int, to specify the number of folds in a (Stratified)KFold,

• CV splitter,

• An iterable yielding (train, test) splits as arrays of indices.

For int/None inputs, if the estimator is a classifier and y is either binary or multiclass,
StratifiedKFold is used. In all other cases, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

Changed in version 0.22: cv default value if None changed from 3-fold to 5-fold.

n_jobs [int, default=None] The number of CPUs to use to do the computation. None means 1
unless in a joblib.parallel_backend context. -1 means using all processors. See
Glossary for more details.

verbose [int, default=0] The verbosity level.

fit_params [dict, default=None] Parameters to pass to the fit method of the estimator.

pre_dispatch [int or str, default=’2*n_jobs’] Controls the number of jobs that get dispatched
during parallel execution. Reducing this number can be useful to avoid an explosion of
memory consumption when more jobs get dispatched than CPUs can process. This param-
eter can be:

• None, in which case all the jobs are immediately created and spawned. Use this for
lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs

• An int, giving the exact number of total jobs that are spawned

• A str, giving an expression as a function of n_jobs, as in ‘2*n_jobs’

return_train_score [bool, default=False] Whether to include train scores. Computing train-
ing scores is used to get insights on how different parameter settings impact the overfit-
ting/underfitting trade-off. However computing the scores on the training set can be com-
putationally expensive and is not strictly required to select the parameters that yield the best
generalization performance.

New in version 0.19.

Changed in version 0.21: Default value was changed from True to False

return_estimator [bool, default=False] Whether to return the estimators fitted on each split.

New in version 0.20.

error_score [‘raise’ or numeric] Value to assign to the score if an error occurs in estimator
fitting. If set to ‘raise’, the error is raised. If a numeric value is given, FitFailedWarning is
raised. This parameter does not affect the refit step, which will always raise the error.

New in version 0.20.

Returns

2344 Chapter 7. API Reference

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

scores [dict of float arrays of shape (n_splits,)] Array of scores of the estimator for each run of
the cross validation.

A dict of arrays containing the score/time arrays for each scorer is returned. The possible
keys for this dict are:

test_score The score array for test scores on each cv split. Suffix _score in
test_score changes to a specific metric like test_r2 or test_auc if there
are multiple scoring metrics in the scoring parameter.

train_score The score array for train scores on each cv split. Suffix _score in
train_score changes to a specific metric like train_r2 or train_auc if
there are multiple scoring metrics in the scoring parameter. This is available only if
return_train_score parameter is True.

fit_time The time for fitting the estimator on the train set for each cv split.

score_time The time for scoring the estimator on the test set for each cv
split. (Note time for scoring on the train set is not included even if
return_train_score is set to True

estimator The estimator objects for each cv split. This is available only if
return_estimator parameter is set to True.

See also:

sklearn.model_selection.cross_val_score Run cross-validation for single metric evaluation.

sklearn.model_selection.cross_val_predict Get predictions from each split of cross-
validation for diagnostic purposes.

sklearn.metrics.make_scorer Make a scorer from a performance metric or loss function.

Examples

>>> from sklearn import datasets, linear_model
>>> from sklearn.model_selection import cross_validate
>>> from sklearn.metrics import make_scorer
>>> from sklearn.metrics import confusion_matrix
>>> from sklearn.svm import LinearSVC
>>> diabetes = datasets.load_diabetes()
>>> X = diabetes.data[:150]
>>> y = diabetes.target[:150]
>>> lasso = linear_model.Lasso()

Single metric evaluation using cross_validate

>>> cv_results = cross_validate(lasso, X, y, cv=3)
>>> sorted(cv_results.keys())
['fit_time', 'score_time', 'test_score']
>>> cv_results['test_score']
array([0.33150734, 0.08022311, 0.03531764])

Multiple metric evaluation using cross_validate (please refer the scoring parameter doc for more in-
formation)

>>> scores = cross_validate(lasso, X, y, cv=3,
... scoring=('r2', 'neg_mean_squared_error'),

(continues on next page)

7.26. sklearn.model_selection: Model Selection 2345

scikit-learn user guide, Release 0.23.2

(continued from previous page)

... return_train_score=True)
>>> print(scores['test_neg_mean_squared_error'])
[-3635.5... -3573.3... -6114.7...]
>>> print(scores['train_r2'])
[0.28010158 0.39088426 0.22784852]

Examples using sklearn.model_selection.cross_validate

• Combine predictors using stacking

• Common pitfalls in interpretation of coefficients of linear models

sklearn.model_selection.cross_val_predict

sklearn.model_selection.cross_val_predict(estimator, X, y=None, *, groups=None,
cv=None, n_jobs=None, verbose=0,
fit_params=None, pre_dispatch=’2*n_jobs’,
method=’predict’)

Generate cross-validated estimates for each input data point

The data is split according to the cv parameter. Each sample belongs to exactly one test set, and its prediction is
computed with an estimator fitted on the corresponding training set.

Passing these predictions into an evaluation metric may not be a valid way to measure generalization perfor-
mance. Results can differ from cross_validate and cross_val_score unless all tests sets have equal
size and the metric decomposes over samples.

Read more in the User Guide.

Parameters

estimator [estimator object implementing ‘fit’ and ‘predict’] The object to use to fit the data.

X [array-like of shape (n_samples, n_features)] The data to fit. Can be, for example a list, or an
array at least 2d.

y [array-like of shape (n_samples,) or (n_samples, n_outputs), default=None] The target vari-
able to try to predict in the case of supervised learning.

groups [array-like of shape (n_samples,), default=None] Group labels for the samples used
while splitting the dataset into train/test set. Only used in conjunction with a “Group” cv
instance (e.g., GroupKFold).

cv [int, cross-validation generator or an iterable, default=None] Determines the cross-validation
splitting strategy. Possible inputs for cv are:

• None, to use the default 5-fold cross validation,

• int, to specify the number of folds in a (Stratified)KFold,

• CV splitter,

• An iterable yielding (train, test) splits as arrays of indices.

For int/None inputs, if the estimator is a classifier and y is either binary or multiclass,
StratifiedKFold is used. In all other cases, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

Changed in version 0.22: cv default value if None changed from 3-fold to 5-fold.

2346 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

n_jobs [int, default=None] The number of CPUs to use to do the computation. None means 1
unless in a joblib.parallel_backend context. -1 means using all processors. See
Glossary for more details.

verbose [int, default=0] The verbosity level.

fit_params [dict, defualt=None] Parameters to pass to the fit method of the estimator.

pre_dispatch [int or str, default=’2*n_jobs’] Controls the number of jobs that get dispatched
during parallel execution. Reducing this number can be useful to avoid an explosion of
memory consumption when more jobs get dispatched than CPUs can process. This param-
eter can be:

• None, in which case all the jobs are immediately created and spawned. Use this for
lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs

• An int, giving the exact number of total jobs that are spawned

• A str, giving an expression as a function of n_jobs, as in ‘2*n_jobs’

method [str, default=’predict’] Invokes the passed method name of the passed estimator. For
method=’predict_proba’, the columns correspond to the classes in sorted order.

Returns

predictions [ndarray] This is the result of calling method

See also:

cross_val_score calculate score for each CV split

cross_validate calculate one or more scores and timings for each CV split

Notes

In the case that one or more classes are absent in a training portion, a default score needs to be assigned to
all instances for that class if method produces columns per class, as in {‘decision_function’, ‘predict_proba’,
‘predict_log_proba’}. For predict_proba this value is 0. In order to ensure finite output, we approximate
negative infinity by the minimum finite float value for the dtype in other cases.

Examples

>>> from sklearn import datasets, linear_model
>>> from sklearn.model_selection import cross_val_predict
>>> diabetes = datasets.load_diabetes()
>>> X = diabetes.data[:150]
>>> y = diabetes.target[:150]
>>> lasso = linear_model.Lasso()
>>> y_pred = cross_val_predict(lasso, X, y, cv=3)

Examples using sklearn.model_selection.cross_val_predict

• Combine predictors using stacking

• Plotting Cross-Validated Predictions

7.26. sklearn.model_selection: Model Selection 2347

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

sklearn.model_selection.cross_val_score

sklearn.model_selection.cross_val_score(estimator, X, y=None, *, groups=None, scor-
ing=None, cv=None, n_jobs=None, verbose=0,
fit_params=None, pre_dispatch=’2*n_jobs’, er-
ror_score=nan)

Evaluate a score by cross-validation

Read more in the User Guide.

Parameters

estimator [estimator object implementing ‘fit’] The object to use to fit the data.

X [array-like of shape (n_samples, n_features)] The data to fit. Can be for example a list, or an
array.

y [array-like of shape (n_samples,) or (n_samples, n_outputs), default=None] The target vari-
able to try to predict in the case of supervised learning.

groups [array-like of shape (n_samples,), default=None] Group labels for the samples used
while splitting the dataset into train/test set. Only used in conjunction with a “Group” cv
instance (e.g., GroupKFold).

scoring [str or callable, default=None] A str (see model evaluation documentation) or a scorer
callable object / function with signature scorer(estimator, X, y) which should
return only a single value.

Similar to cross_validate but only a single metric is permitted.

If None, the estimator’s default scorer (if available) is used.

cv [int, cross-validation generator or an iterable, default=None] Determines the cross-validation
splitting strategy. Possible inputs for cv are:

• None, to use the default 5-fold cross validation,

• int, to specify the number of folds in a (Stratified)KFold,

• CV splitter,

• An iterable yielding (train, test) splits as arrays of indices.

For int/None inputs, if the estimator is a classifier and y is either binary or multiclass,
StratifiedKFold is used. In all other cases, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

Changed in version 0.22: cv default value if None changed from 3-fold to 5-fold.

n_jobs [int, default=None] The number of CPUs to use to do the computation. None means 1
unless in a joblib.parallel_backend context. -1 means using all processors. See
Glossary for more details.

verbose [int, default=0] The verbosity level.

fit_params [dict, default=None] Parameters to pass to the fit method of the estimator.

pre_dispatch [int or str, default=’2*n_jobs’] Controls the number of jobs that get dispatched
during parallel execution. Reducing this number can be useful to avoid an explosion of
memory consumption when more jobs get dispatched than CPUs can process. This param-
eter can be:

• None, in which case all the jobs are immediately created and spawned. Use this for
lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs

2348 Chapter 7. API Reference

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

• An int, giving the exact number of total jobs that are spawned

• A str, giving an expression as a function of n_jobs, as in ‘2*n_jobs’

error_score [‘raise’ or numeric, default=np.nan] Value to assign to the score if an error occurs
in estimator fitting. If set to ‘raise’, the error is raised. If a numeric value is given, FitFailed-
Warning is raised. This parameter does not affect the refit step, which will always raise the
error.

New in version 0.20.

Returns

scores [array of float, shape=(len(list(cv)),)] Array of scores of the estimator for each run of the
cross validation.

See also:

sklearn.model_selection.cross_validate To run cross-validation on multiple metrics and also
to return train scores, fit times and score times.

sklearn.model_selection.cross_val_predict Get predictions from each split of cross-
validation for diagnostic purposes.

sklearn.metrics.make_scorer Make a scorer from a performance metric or loss function.

Examples

>>> from sklearn import datasets, linear_model
>>> from sklearn.model_selection import cross_val_score
>>> diabetes = datasets.load_diabetes()
>>> X = diabetes.data[:150]
>>> y = diabetes.target[:150]
>>> lasso = linear_model.Lasso()
>>> print(cross_val_score(lasso, X, y, cv=3))
[0.33150734 0.08022311 0.03531764]

Examples using sklearn.model_selection.cross_val_score

• Model selection with Probabilistic PCA and Factor Analysis (FA)

• Imputing missing values with variants of IterativeImputer

• Imputing missing values before building an estimator

• Underfitting vs. Overfitting

• Receiver Operating Characteristic (ROC) with cross validation

• Nested versus non-nested cross-validation

• SVM-Anova: SVM with univariate feature selection

• Cross-validation on Digits Dataset Exercise

7.26. sklearn.model_selection: Model Selection 2349

scikit-learn user guide, Release 0.23.2

sklearn.model_selection.learning_curve

sklearn.model_selection.learning_curve(estimator, X, y, *, groups=None,
train_sizes=array([0.1, 0.33, 0.55, 0.78,
1.]), cv=None, scoring=None, ex-
ploit_incremental_learning=False, n_jobs=None,
pre_dispatch=’all’, verbose=0, shuffle=False,
random_state=None, error_score=nan, re-
turn_times=False)

Learning curve.

Determines cross-validated training and test scores for different training set sizes.

A cross-validation generator splits the whole dataset k times in training and test data. Subsets of the training set
with varying sizes will be used to train the estimator and a score for each training subset size and the test set
will be computed. Afterwards, the scores will be averaged over all k runs for each training subset size.

Read more in the User Guide.

Parameters

estimator [object type that implements the “fit” and “predict” methods] An object of that type
which is cloned for each validation.

X [array-like of shape (n_samples, n_features)] Training vector, where n_samples is the number
of samples and n_features is the number of features.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] Target relative to X for classifi-
cation or regression; None for unsupervised learning.

groups [array-like of shape (n_samples,), default=None] Group labels for the samples used
while splitting the dataset into train/test set. Only used in conjunction with a “Group” cv
instance (e.g., GroupKFold).

train_sizes [array-like of shape (n_ticks,), default=np.linspace(0.1, 1.0, 5)] Relative or absolute
numbers of training examples that will be used to generate the learning curve. If the dtype is
float, it is regarded as a fraction of the maximum size of the training set (that is determined
by the selected validation method), i.e. it has to be within (0, 1]. Otherwise it is interpreted
as absolute sizes of the training sets. Note that for classification the number of samples
usually have to be big enough to contain at least one sample from each class.

cv [int, cross-validation generator or an iterable, default=None] Determines the cross-validation
splitting strategy. Possible inputs for cv are:

• None, to use the default 5-fold cross validation,

• int, to specify the number of folds in a (Stratified)KFold,

• CV splitter,

• An iterable yielding (train, test) splits as arrays of indices.

For int/None inputs, if the estimator is a classifier and y is either binary or multiclass,
StratifiedKFold is used. In all other cases, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

Changed in version 0.22: cv default value if None changed from 3-fold to 5-fold.

scoring [str or callable, default=None] A str (see model evaluation documentation) or a scorer
callable object / function with signature scorer(estimator, X, y).

exploit_incremental_learning [bool, default=False] If the estimator supports incremental
learning, this will be used to speed up fitting for different training set sizes.

2350 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

n_jobs [int, default=None] Number of jobs to run in parallel. None means 1 unless in a
joblib.parallel_backend context. -1 means using all processors. See Glossary
for more details.

pre_dispatch [int or str, default=’all’] Number of predispatched jobs for parallel execution (de-
fault is all). The option can reduce the allocated memory. The str can be an expression like
‘2*n_jobs’.

verbose [int, default=0] Controls the verbosity: the higher, the more messages.

shuffle [bool, default=False] Whether to shuffle training data before taking prefixes of it based
on‘‘train_sizes‘‘.

random_state [int or RandomState instance, default=None] Used when shuffle is True.
Pass an int for reproducible output across multiple function calls. See Glossary.

error_score [‘raise’ or numeric, default=np.nan] Value to assign to the score if an error occurs
in estimator fitting. If set to ‘raise’, the error is raised. If a numeric value is given, FitFailed-
Warning is raised. This parameter does not affect the refit step, which will always raise the
error.

New in version 0.20.

return_times [bool, default=False] Whether to return the fit and score times.

Returns

train_sizes_abs [array of shape (n_unique_ticks,)] Numbers of training examples that has been
used to generate the learning curve. Note that the number of ticks might be less than n_ticks
because duplicate entries will be removed.

train_scores [array of shape (n_ticks, n_cv_folds)] Scores on training sets.

test_scores [array of shape (n_ticks, n_cv_folds)] Scores on test set.

fit_times [array of shape (n_ticks, n_cv_folds)] Times spent for fitting in seconds. Only present
if return_times is True.

score_times [array of shape (n_ticks, n_cv_folds)] Times spent for scoring in seconds. Only
present if return_times is True.

Notes

See examples/model_selection/plot_learning_curve.py

Examples using sklearn.model_selection.learning_curve

• Comparison of kernel ridge regression and SVR

• Plotting Learning Curves

sklearn.model_selection.permutation_test_score

sklearn.model_selection.permutation_test_score(estimator, X, y, *, groups=None,
cv=None, n_permutations=100,
n_jobs=None, random_state=0, ver-
bose=0, scoring=None)

Evaluate the significance of a cross-validated score with permutations

7.26. sklearn.model_selection: Model Selection 2351

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

Read more in the User Guide.

Parameters

estimator [estimator object implementing ‘fit’] The object to use to fit the data.

X [array-like of shape at least 2D] The data to fit.

y [array-like of shape (n_samples,) or (n_samples, n_outputs) or None] The target variable to
try to predict in the case of supervised learning.

groups [array-like of shape (n_samples,), default=None] Labels to constrain permutation within
groups, i.e. y values are permuted among samples with the same group identifier. When not
specified, y values are permuted among all samples.

When a grouped cross-validator is used, the group labels are also passed on to the split
method of the cross-validator. The cross-validator uses them for grouping the samples while
splitting the dataset into train/test set.

scoring [str or callable, default=None] A single str (see The scoring parameter: defining model
evaluation rules) or a callable (see Defining your scoring strategy from metric functions) to
evaluate the predictions on the test set.

If None the estimator’s score method is used.

cv [int, cross-validation generator or an iterable, default=None] Determines the cross-validation
splitting strategy. Possible inputs for cv are:

• None, to use the default 5-fold cross validation,

• int, to specify the number of folds in a (Stratified)KFold,

• CV splitter,

• An iterable yielding (train, test) splits as arrays of indices.

For int/None inputs, if the estimator is a classifier and y is either binary or multiclass,
StratifiedKFold is used. In all other cases, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

Changed in version 0.22: cv default value if None changed from 3-fold to 5-fold.

n_permutations [int, default=100] Number of times to permute y.

n_jobs [int, default=None] The number of CPUs to use to do the computation. None means 1
unless in a joblib.parallel_backend context. -1 means using all processors. See
Glossary for more details.

random_state [int, RandomState instance or None, default=0] Pass an int for reproducible out-
put for permutation of y values among samples. See Glossary.

verbose [int, default=0] The verbosity level.

Returns

score [float] The true score without permuting targets.

permutation_scores [array of shape (n_permutations,)] The scores obtained for each permuta-
tions.

pvalue [float] The p-value, which approximates the probability that the score would be obtained
by chance. This is calculated as:

(C + 1) / (n_permutations + 1)

Where C is the number of permutations whose score >= the true score.

2352 Chapter 7. API Reference

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

The best possible p-value is 1/(n_permutations + 1), the worst is 1.0.

Notes

This function implements Test 1 in:

Ojala and Garriga. Permutation Tests for Studying Classifier Performance. The Journal of Machine
Learning Research (2010) vol. 11 [pdf].

Examples using sklearn.model_selection.permutation_test_score

• Test with permutations the significance of a classification score

sklearn.model_selection.validation_curve

sklearn.model_selection.validation_curve(estimator, X, y, *, param_name, param_range,
groups=None, cv=None, scoring=None,
n_jobs=None, pre_dispatch=’all’, verbose=0,
error_score=nan)

Validation curve.

Determine training and test scores for varying parameter values.

Compute scores for an estimator with different values of a specified parameter. This is similar to grid search
with one parameter. However, this will also compute training scores and is merely a utility for plotting the
results.

Read more in the User Guide.

Parameters

estimator [object type that implements the “fit” and “predict” methods] An object of that type
which is cloned for each validation.

X [array-like of shape (n_samples, n_features)] Training vector, where n_samples is the number
of samples and n_features is the number of features.

y [array-like of shape (n_samples,) or (n_samples, n_outputs) or None] Target relative to X for
classification or regression; None for unsupervised learning.

param_name [str] Name of the parameter that will be varied.

param_range [array-like of shape (n_values,)] The values of the parameter that will be evalu-
ated.

groups [array-like of shape (n_samples,), default=None] Group labels for the samples used
while splitting the dataset into train/test set. Only used in conjunction with a “Group” cv
instance (e.g., GroupKFold).

cv [int, cross-validation generator or an iterable, default=None] Determines the cross-validation
splitting strategy. Possible inputs for cv are:

• None, to use the default 5-fold cross validation,

• int, to specify the number of folds in a (Stratified)KFold,

• CV splitter,

• An iterable yielding (train, test) splits as arrays of indices.

7.26. sklearn.model_selection: Model Selection 2353

http://www.jmlr.org/papers/volume11/ojala10a/ojala10a.pdf

scikit-learn user guide, Release 0.23.2

For int/None inputs, if the estimator is a classifier and y is either binary or multiclass,
StratifiedKFold is used. In all other cases, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

Changed in version 0.22: cv default value if None changed from 3-fold to 5-fold.

scoring [str or callable, default=None] A str (see model evaluation documentation) or a scorer
callable object / function with signature scorer(estimator, X, y).

n_jobs [int, default=None] Number of jobs to run in parallel. None means 1 unless in a
joblib.parallel_backend context. -1 means using all processors. See Glossary
for more details.

pre_dispatch [int or str, default=’all’] Number of predispatched jobs for parallel execution (de-
fault is all). The option can reduce the allocated memory. The str can be an expression like
‘2*n_jobs’.

verbose [int, default=0] Controls the verbosity: the higher, the more messages.

error_score [‘raise’ or numeric, default=np.nan] Value to assign to the score if an error occurs
in estimator fitting. If set to ‘raise’, the error is raised. If a numeric value is given, FitFailed-
Warning is raised. This parameter does not affect the refit step, which will always raise the
error.

New in version 0.20.

Returns

train_scores [array of shape (n_ticks, n_cv_folds)] Scores on training sets.

test_scores [array of shape (n_ticks, n_cv_folds)] Scores on test set.

Notes

See Plotting Validation Curves

Examples using sklearn.model_selection.validation_curve

• Plotting Validation Curves

7.27 sklearn.multiclass: Multiclass and multilabel classification

7.27.1 Multiclass and multilabel classification strategies

This module implements multiclass learning algorithms:

• one-vs-the-rest / one-vs-all

• one-vs-one

• error correcting output codes

The estimators provided in this module are meta-estimators: they require a base estimator to be provided in their
constructor. For example, it is possible to use these estimators to turn a binary classifier or a regressor into a multiclass
classifier. It is also possible to use these estimators with multiclass estimators in the hope that their accuracy or runtime
performance improves.

2354 Chapter 7. API Reference

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

All classifiers in scikit-learn implement multiclass classification; you only need to use this module if you want to
experiment with custom multiclass strategies.

The one-vs-the-rest meta-classifier also implements a predict_proba method, so long as such a method is im-
plemented by the base classifier. This method returns probabilities of class membership in both the single label and
multilabel case. Note that in the multilabel case, probabilities are the marginal probability that a given sample falls
in the given class. As such, in the multilabel case the sum of these probabilities over all possible labels for a given
sample will not sum to unity, as they do in the single label case.

User guide: See the Multiclass and multilabel algorithms section for further details.

multiclass.OneVsRestClassifier(estimator,
*)

One-vs-the-rest (OvR) multiclass/multilabel strategy

multiclass.OneVsOneClassifier(estimator,
*)

One-vs-one multiclass strategy

multiclass.OutputCodeClassifier(estimator,
*)

(Error-Correcting) Output-Code multiclass strategy

7.27.2 sklearn.multiclass.OneVsRestClassifier

class sklearn.multiclass.OneVsRestClassifier(estimator, *, n_jobs=None)
One-vs-the-rest (OvR) multiclass/multilabel strategy

Also known as one-vs-all, this strategy consists in fitting one classifier per class. For each classifier, the class is
fitted against all the other classes. In addition to its computational efficiency (only n_classes classifiers are
needed), one advantage of this approach is its interpretability. Since each class is represented by one and one
classifier only, it is possible to gain knowledge about the class by inspecting its corresponding classifier. This is
the most commonly used strategy for multiclass classification and is a fair default choice.

This strategy can also be used for multilabel learning, where a classifier is used to predict multiple labels for
instance, by fitting on a 2-d matrix in which cell [i, j] is 1 if sample i has label j and 0 otherwise.

In the multilabel learning literature, OvR is also known as the binary relevance method.

Read more in the User Guide.

Parameters

estimator [estimator object] An estimator object implementing fit and one of decision_function
or predict_proba.

n_jobs [int or None, optional (default=None)] The number of jobs to use for the computation.
None means 1 unless in a joblib.parallel_backend context. -1 means using all
processors. See Glossary for more details.

Changed in version v0.20: n_jobs default changed from 1 to None

Attributes

estimators_ [list of n_classes estimators] Estimators used for predictions.

classes_ [array, shape = [n_classes]] Class labels.

n_classes_ [int] Number of classes.

label_binarizer_ [LabelBinarizer object] Object used to transform multiclass labels to binary
labels and vice-versa.

multilabel_ [boolean] Whether this is a multilabel classifier

7.27. sklearn.multiclass: Multiclass and multilabel classification 2355

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

Examples

>>> import numpy as np
>>> from sklearn.multiclass import OneVsRestClassifier
>>> from sklearn.svm import SVC
>>> X = np.array([
... [10, 10],
... [8, 10],
... [-5, 5.5],
... [-5.4, 5.5],
... [-20, -20],
... [-15, -20]
...])
>>> y = np.array([0, 0, 1, 1, 2, 2])
>>> clf = OneVsRestClassifier(SVC()).fit(X, y)
>>> clf.predict([[-19, -20], [9, 9], [-5, 5]])
array([2, 0, 1])

Methods

decision_function(X) Returns the distance of each sample from the deci-
sion boundary for each class.

fit(X, y) Fit underlying estimators.
get_params([deep]) Get parameters for this estimator.
partial_fit(X, y[, classes]) Partially fit underlying estimators
predict(X) Predict multi-class targets using underlying estima-

tors.
predict_proba(X) Probability estimates.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(estimator, *, n_jobs=None)
Initialize self. See help(type(self)) for accurate signature.

decision_function(X)
Returns the distance of each sample from the decision boundary for each class. This can only be used with
estimators which implement the decision_function method.

Parameters

X [array-like of shape (n_samples, n_features)]

Returns

T [array-like of shape (n_samples, n_classes)] Changed in version 0.19: output shape
changed to (n_samples,) to conform to scikit-learn conventions for binary classifi-
cation.

fit(X, y)
Fit underlying estimators.

Parameters

X [(sparse) array-like of shape (n_samples, n_features)] Data.

2356 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

y [(sparse) array-like of shape (n_samples,) or (n_samples, n_classes)] Multi-class targets.
An indicator matrix turns on multilabel classification.

Returns

self

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

property multilabel_
Whether this is a multilabel classifier

partial_fit(X, y, classes=None)
Partially fit underlying estimators

Should be used when memory is inefficient to train all data. Chunks of data can be passed in several
iteration.

Parameters

X [(sparse) array-like of shape (n_samples, n_features)] Data.

y [(sparse) array-like of shape (n_samples,) or (n_samples, n_classes)] Multi-class targets.
An indicator matrix turns on multilabel classification.

classes [array, shape (n_classes,)] Classes across all calls to partial_fit. Can be obtained
via np.unique(y_all), where y_all is the target vector of the entire dataset. This
argument is only required in the first call of partial_fit and can be omitted in the subsequent
calls.

Returns

self

predict(X)
Predict multi-class targets using underlying estimators.

Parameters

X [(sparse) array-like of shape (n_samples, n_features)] Data.

Returns

y [(sparse) array-like of shape (n_samples,) or (n_samples, n_classes)] Predicted multi-class
targets.

predict_proba(X)
Probability estimates.

The returned estimates for all classes are ordered by label of classes.

Note that in the multilabel case, each sample can have any number of labels. This returns the marginal
probability that the given sample has the label in question. For example, it is entirely consistent that two
labels both have a 90% probability of applying to a given sample.

In the single label multiclass case, the rows of the returned matrix sum to 1.

7.27. sklearn.multiclass: Multiclass and multilabel classification 2357

scikit-learn user guide, Release 0.23.2

Parameters

X [array-like of shape (n_samples, n_features)]

Returns

T [(sparse) array-like of shape (n_samples, n_classes)] Returns the probability of the sample
for each class in the model, where classes are ordered as they are in self.classes_.

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.multiclass.OneVsRestClassifier

• Multilabel classification

• Receiver Operating Characteristic (ROC)

• Precision-Recall

• Classifier Chain

7.27.3 sklearn.multiclass.OneVsOneClassifier

class sklearn.multiclass.OneVsOneClassifier(estimator, *, n_jobs=None)
One-vs-one multiclass strategy

This strategy consists in fitting one classifier per class pair. At prediction time, the class which received the
most votes is selected. Since it requires to fit n_classes * (n_classes - 1) / 2 classifiers, this
method is usually slower than one-vs-the-rest, due to its O(n_classes^2) complexity. However, this method may
be advantageous for algorithms such as kernel algorithms which don’t scale well with n_samples. This is
because each individual learning problem only involves a small subset of the data whereas, with one-vs-the-rest,
the complete dataset is used n_classes times.

2358 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Read more in the User Guide.

Parameters

estimator [estimator object] An estimator object implementing fit and one of decision_function
or predict_proba.

n_jobs [int or None, optional (default=None)] The number of jobs to use for the computation.
None means 1 unless in a joblib.parallel_backend context. -1 means using all
processors. See Glossary for more details.

Attributes

estimators_ [list of n_classes * (n_classes - 1) / 2 estimators] Estimators used
for predictions.

classes_ [numpy array of shape [n_classes]] Array containing labels.

n_classes_ [int] Number of classes

pairwise_indices_ [list, length = len(estimators_), or None] Indices of samples used
when training the estimators. None when estimator does not have _pairwise at-
tribute.

Examples

>>> from sklearn.datasets import load_iris
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.multiclass import OneVsOneClassifier
>>> from sklearn.svm import LinearSVC
>>> X, y = load_iris(return_X_y=True)
>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, test_size=0.33, shuffle=True, random_state=0)
>>> clf = OneVsOneClassifier(
... LinearSVC(random_state=0)).fit(X_train, y_train)
>>> clf.predict(X_test[:10])
array([2, 1, 0, 2, 0, 2, 0, 1, 1, 1])

Methods

decision_function(X) Decision function for the OneVsOneClassifier.
fit(X, y) Fit underlying estimators.
get_params([deep]) Get parameters for this estimator.
partial_fit(X, y[, classes]) Partially fit underlying estimators
predict(X) Estimate the best class label for each sample in X.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(estimator, *, n_jobs=None)
Initialize self. See help(type(self)) for accurate signature.

decision_function(X)
Decision function for the OneVsOneClassifier.

The decision values for the samples are computed by adding the normalized sum of pair-wise classification

7.27. sklearn.multiclass: Multiclass and multilabel classification 2359

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

confidence levels to the votes in order to disambiguate between the decision values when the votes for all
the classes are equal leading to a tie.

Parameters

X [array-like of shape (n_samples, n_features)]

Returns

Y [array-like of shape (n_samples, n_classes)] Changed in version 0.19: output shape
changed to (n_samples,) to conform to scikit-learn conventions for binary classifi-
cation.

fit(X, y)
Fit underlying estimators.

Parameters

X [(sparse) array-like of shape (n_samples, n_features)] Data.

y [array-like of shape (n_samples,)] Multi-class targets.

Returns

self

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

partial_fit(X, y, classes=None)
Partially fit underlying estimators

Should be used when memory is inefficient to train all data. Chunks of data can be passed in several
iteration, where the first call should have an array of all target variables.

Parameters

X [(sparse) array-like of shape (n_samples, n_features)] Data.

y [array-like of shape (n_samples,)] Multi-class targets.

classes [array, shape (n_classes,)] Classes across all calls to partial_fit. Can be obtained
via np.unique(y_all), where y_all is the target vector of the entire dataset. This
argument is only required in the first call of partial_fit and can be omitted in the subsequent
calls.

Returns

self

predict(X)
Estimate the best class label for each sample in X.

This is implemented as argmax(decision_function(X), axis=1) which will return the label
of the class with most votes by estimators predicting the outcome of a decision for each possible class pair.

Parameters

2360 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

X [(sparse) array-like of shape (n_samples, n_features)] Data.

Returns

y [numpy array of shape [n_samples]] Predicted multi-class targets.

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

7.27.4 sklearn.multiclass.OutputCodeClassifier

class sklearn.multiclass.OutputCodeClassifier(estimator, *, code_size=1.5, ran-
dom_state=None, n_jobs=None)

(Error-Correcting) Output-Code multiclass strategy

Output-code based strategies consist in representing each class with a binary code (an array of 0s and 1s). At
fitting time, one binary classifier per bit in the code book is fitted. At prediction time, the classifiers are used to
project new points in the class space and the class closest to the points is chosen. The main advantage of these
strategies is that the number of classifiers used can be controlled by the user, either for compressing the model
(0 < code_size < 1) or for making the model more robust to errors (code_size > 1). See the documentation for
more details.

Read more in the User Guide.

Parameters

estimator [estimator object] An estimator object implementing fit and one of decision_function
or predict_proba.

code_size [float] Percentage of the number of classes to be used to create the code book. A num-
ber between 0 and 1 will require fewer classifiers than one-vs-the-rest. A number greater
than 1 will require more classifiers than one-vs-the-rest.

7.27. sklearn.multiclass: Multiclass and multilabel classification 2361

scikit-learn user guide, Release 0.23.2

random_state [int, RandomState instance or None, optional, default: None] The generator
used to initialize the codebook. Pass an int for reproducible output across multiple function
calls. See Glossary.

n_jobs [int or None, optional (default=None)] The number of jobs to use for the computation.
None means 1 unless in a joblib.parallel_backend context. -1 means using all
processors. See Glossary for more details.

Attributes

estimators_ [list of int(n_classes * code_size) estimators] Estimators used for pre-
dictions.

classes_ [numpy array of shape [n_classes]] Array containing labels.

code_book_ [numpy array of shape [n_classes, code_size]] Binary array containing the code of
each class.

References

[1], [2], [3]

Examples

>>> from sklearn.multiclass import OutputCodeClassifier
>>> from sklearn.ensemble import RandomForestClassifier
>>> from sklearn.datasets import make_classification
>>> X, y = make_classification(n_samples=100, n_features=4,
... n_informative=2, n_redundant=0,
... random_state=0, shuffle=False)
>>> clf = OutputCodeClassifier(
... estimator=RandomForestClassifier(random_state=0),
... random_state=0).fit(X, y)
>>> clf.predict([[0, 0, 0, 0]])
array([1])

Methods

fit(X, y) Fit underlying estimators.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict multi-class targets using underlying estima-

tors.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(estimator, *, code_size=1.5, random_state=None, n_jobs=None)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y)
Fit underlying estimators.

Parameters

X [(sparse) array-like of shape (n_samples, n_features)] Data.

2362 Chapter 7. API Reference

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

y [numpy array of shape [n_samples]] Multi-class targets.

Returns

self

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict multi-class targets using underlying estimators.

Parameters

X [(sparse) array-like of shape (n_samples, n_features)] Data.

Returns

y [numpy array of shape [n_samples]] Predicted multi-class targets.

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

7.27. sklearn.multiclass: Multiclass and multilabel classification 2363

scikit-learn user guide, Release 0.23.2

7.28 sklearn.multioutput: Multioutput regression and classifica-
tion

This module implements multioutput regression and classification.

The estimators provided in this module are meta-estimators: they require a base estimator to be provided in their
constructor. The meta-estimator extends single output estimators to multioutput estimators.

User guide: See the Multiclass and multilabel algorithms section for further details.

multioutput.ClassifierChain(base_estimator,
*)

A multi-label model that arranges binary classifiers into
a chain.

multioutput.MultiOutputRegressor(estimator,
*)

Multi target regression

multioutput.MultiOutputClassifier(estimator,
*)

Multi target classification

multioutput.RegressorChain(base_estimator,
*)

A multi-label model that arranges regressions into a
chain.

7.28.1 sklearn.multioutput.ClassifierChain

class sklearn.multioutput.ClassifierChain(base_estimator, *, order=None, cv=None, ran-
dom_state=None)

A multi-label model that arranges binary classifiers into a chain.

Each model makes a prediction in the order specified by the chain using all of the available features provided to
the model plus the predictions of models that are earlier in the chain.

Read more in the User Guide.

New in version 0.19.

Parameters

base_estimator [estimator] The base estimator from which the classifier chain is built.

order [array-like of shape (n_outputs,) or ‘random’, optional] By default the order will be de-
termined by the order of columns in the label matrix Y.:

order = [0, 1, 2, ..., Y.shape[1] - 1]

The order of the chain can be explicitly set by providing a list of integers. For example, for
a chain of length 5.:

order = [1, 3, 2, 4, 0]

means that the first model in the chain will make predictions for column 1 in the Y matrix,
the second model will make predictions for column 3, etc.

If order is ‘random’ a random ordering will be used.

cv [int, cross-validation generator or an iterable, optional (default=None)] Determines whether
to use cross validated predictions or true labels for the results of previous estimators in the
chain. If cv is None the true labels are used when fitting. Otherwise possible inputs for cv
are:

• integer, to specify the number of folds in a (Stratified)KFold,

2364 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

• CV splitter,

• An iterable yielding (train, test) splits as arrays of indices.

random_state [int, RandomState instance or None, optional (default=None)] If
order='random', determines random number generation for the chain order. In
addition, it controls the random seed given at each base_estimator at each chaining
iteration. Thus, it is only used when base_estimator exposes a random_state.
Pass an int for reproducible output across multiple function calls. See Glossary.

Attributes

classes_ [list] A list of arrays of length len(estimators_) containing the class labels for
each estimator in the chain.

estimators_ [list] A list of clones of base_estimator.

order_ [list] The order of labels in the classifier chain.

See also:

RegressorChain Equivalent for regression

MultioutputClassifier Classifies each output independently rather than chaining.

References

Jesse Read, Bernhard Pfahringer, Geoff Holmes, Eibe Frank, “Classifier Chains for Multi-label Classification”,
2009.

Methods

decision_function(X) Evaluate the decision_function of the models in the
chain.

fit(X, Y) Fit the model to data matrix X and targets Y.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict on the data matrix X using the Classifier-

Chain model.
predict_proba(X) Predict probability estimates.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(base_estimator, *, order=None, cv=None, random_state=None)
Initialize self. See help(type(self)) for accurate signature.

decision_function(X)
Evaluate the decision_function of the models in the chain.

Parameters

X [array-like, shape (n_samples, n_features)]

Returns

Y_decision [array-like, shape (n_samples, n_classes)] Returns the decision function of the
sample for each model in the chain.

7.28. sklearn.multioutput: Multioutput regression and classification 2365

scikit-learn user guide, Release 0.23.2

fit(X, Y)
Fit the model to data matrix X and targets Y.

Parameters

X [{array-like, sparse matrix}, shape (n_samples, n_features)] The input data.

Y [array-like, shape (n_samples, n_classes)] The target values.

Returns

self [object]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict on the data matrix X using the ClassifierChain model.

Parameters

X [{array-like, sparse matrix}, shape (n_samples, n_features)] The input data.

Returns

Y_pred [array-like, shape (n_samples, n_classes)] The predicted values.

predict_proba(X)
Predict probability estimates.

Parameters

X [{array-like, sparse matrix}, shape (n_samples, n_features)]

Returns

Y_prob [array-like, shape (n_samples, n_classes)]

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

2366 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.multioutput.ClassifierChain

• Classifier Chain

7.28.2 sklearn.multioutput.MultiOutputRegressor

class sklearn.multioutput.MultiOutputRegressor(estimator, *, n_jobs=None)
Multi target regression

This strategy consists of fitting one regressor per target. This is a simple strategy for extending regressors that
do not natively support multi-target regression.

New in version 0.18.

Parameters

estimator [estimator object] An estimator object implementing fit and predict.

n_jobs [int or None, optional (default=None)] The number of jobs to run in parallel for fit.
None means 1 unless in a joblib.parallel_backend context. -1 means using all
processors. See Glossary for more details.

When individual estimators are fast to train or predict using n_jobs>1 can result in slower
performance due to the overhead of spawning processes.

Changed in version v0.20: n_jobs default changed from 1 to None

Attributes

estimators_ [list of n_output estimators] Estimators used for predictions.

Examples

>>> import numpy as np
>>> from sklearn.datasets import load_linnerud
>>> from sklearn.multioutput import MultiOutputRegressor
>>> from sklearn.linear_model import Ridge
>>> X, y = load_linnerud(return_X_y=True)
>>> clf = MultiOutputRegressor(Ridge(random_state=123)).fit(X, y)
>>> clf.predict(X[[0]])
array([[176..., 35..., 57...]])

Methods

7.28. sklearn.multioutput: Multioutput regression and classification 2367

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

fit(X, y[, sample_weight]) Fit the model to data.
get_params([deep]) Get parameters for this estimator.
partial_fit(X, y[, sample_weight]) Incrementally fit the model to data.
predict(X) Predict multi-output variable using a model
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.

__init__(estimator, *, n_jobs=None)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y, sample_weight=None, **fit_params)
Fit the model to data. Fit a separate model for each output variable.

Parameters

X [(sparse) array-like, shape (n_samples, n_features)] Data.

y [(sparse) array-like, shape (n_samples, n_outputs)] Multi-output targets. An indicator ma-
trix turns on multilabel estimation.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights. If None,
then samples are equally weighted. Only supported if the underlying regressor supports
sample weights.

**fit_params [dict of string -> object] Parameters passed to the estimator.fit method
of each step.

Returns

self [object]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

partial_fit(X, y, sample_weight=None)
Incrementally fit the model to data. Fit a separate model for each output variable.

Parameters

X [(sparse) array-like, shape (n_samples, n_features)] Data.

y [(sparse) array-like, shape (n_samples, n_outputs)] Multi-output targets.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights. If None,
then samples are equally weighted. Only supported if the underlying regressor supports
sample weights.

Returns

self [object]

predict(X)

Predict multi-output variable using a model trained for each target variable.

2368 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Parameters

X [(sparse) array-like, shape (n_samples, n_features)] Data.

Returns

y [(sparse) array-like, shape (n_samples, n_outputs)] Multi-output targets predicted across
multiple predictors. Note: Separate models are generated for each predictor.

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.multioutput.MultiOutputRegressor

• Comparing random forests and the multi-output meta estimator

7.28. sklearn.multioutput: Multioutput regression and classification 2369

scikit-learn user guide, Release 0.23.2

7.28.3 sklearn.multioutput.MultiOutputClassifier

class sklearn.multioutput.MultiOutputClassifier(estimator, *, n_jobs=None)
Multi target classification

This strategy consists of fitting one classifier per target. This is a simple strategy for extending classifiers that
do not natively support multi-target classification

Parameters

estimator [estimator object] An estimator object implementing fit, score and predict_proba.

n_jobs [int or None, optional (default=None)] The number of jobs to use for the computa-
tion. It does each target variable in y in parallel. None means 1 unless in a joblib.
parallel_backend context. -1 means using all processors. See Glossary for more
details.

Changed in version v0.20: n_jobs default changed from 1 to None

Attributes

classes_ [array, shape = (n_classes,)] Class labels.

estimators_ [list of n_output estimators] Estimators used for predictions.

Examples

>>> import numpy as np
>>> from sklearn.datasets import make_multilabel_classification
>>> from sklearn.multioutput import MultiOutputClassifier
>>> from sklearn.neighbors import KNeighborsClassifier

>>> X, y = make_multilabel_classification(n_classes=3, random_state=0)
>>> clf = MultiOutputClassifier(KNeighborsClassifier()).fit(X, y)
>>> clf.predict(X[-2:])
array([[1, 1, 0], [1, 1, 1]])

Methods

fit(X, Y[, sample_weight]) Fit the model to data matrix X and targets Y.
get_params([deep]) Get parameters for this estimator.
partial_fit(X, y[, classes, sample_weight]) Incrementally fit the model to data.
predict(X) Predict multi-output variable using a model
score(X, y) Returns the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(estimator, *, n_jobs=None)
Initialize self. See help(type(self)) for accurate signature.

fit(X, Y, sample_weight=None, **fit_params)
Fit the model to data matrix X and targets Y.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input data.

2370 Chapter 7. API Reference

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend
https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

Y [array-like of shape (n_samples, n_classes)] The target values.

sample_weight [array-like of shape (n_samples,) or None] Sample weights. If None, then
samples are equally weighted. Only supported if the underlying classifier supports sample
weights.

**fit_params [dict of string -> object] Parameters passed to the estimator.fit method
of each step.

Returns

self [object]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

partial_fit(X, y, classes=None, sample_weight=None)
Incrementally fit the model to data. Fit a separate model for each output variable.

Parameters

X [(sparse) array-like, shape (n_samples, n_features)] Data.

y [(sparse) array-like, shape (n_samples, n_outputs)] Multi-output targets.

classes [list of numpy arrays, shape (n_outputs)] Each array is unique classes for one output
in str/int Can be obtained by via [np.unique(y[:, i]) for i in range(y.
shape[1])], where y is the target matrix of the entire dataset. This argument is required
for the first call to partial_fit and can be omitted in the subsequent calls. Note that y doesn’t
need to contain all labels in classes.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights. If None,
then samples are equally weighted. Only supported if the underlying regressor supports
sample weights.

Returns

self [object]

predict(X)

Predict multi-output variable using a model trained for each target variable.

Parameters

X [(sparse) array-like, shape (n_samples, n_features)] Data.

Returns

y [(sparse) array-like, shape (n_samples, n_outputs)] Multi-output targets predicted across
multiple predictors. Note: Separate models are generated for each predictor.

property predict_proba
Probability estimates. Returns prediction probabilities for each class of each output.

This method will raise a ValueError if any of the estimators do not have predict_proba.

7.28. sklearn.multioutput: Multioutput regression and classification 2371

scikit-learn user guide, Release 0.23.2

Parameters

X [array-like, shape (n_samples, n_features)] Data

Returns

p [array of shape (n_samples, n_classes), or a list of n_outputs such arrays if n_outputs > 1.]
The class probabilities of the input samples. The order of the classes corresponds to that
in the attribute classes_.

Changed in version 0.19: This function now returns a list of arrays where the length of
the list is n_outputs, and each array is (n_samples, n_classes) for that particular
output.

score(X, y)
Returns the mean accuracy on the given test data and labels.

Parameters

X [array-like, shape [n_samples, n_features]] Test samples

y [array-like, shape [n_samples, n_outputs]] True values for X

Returns

scores [float] accuracy_score of self.predict(X) versus y

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

7.28.4 sklearn.multioutput.RegressorChain

class sklearn.multioutput.RegressorChain(base_estimator, *, order=None, cv=None, ran-
dom_state=None)

A multi-label model that arranges regressions into a chain.

Each model makes a prediction in the order specified by the chain using all of the available features provided to
the model plus the predictions of models that are earlier in the chain.

Read more in the User Guide.

New in version 0.20.

Parameters

base_estimator [estimator] The base estimator from which the classifier chain is built.

order [array-like of shape (n_outputs,) or ‘random’, optional] By default the order will be de-
termined by the order of columns in the label matrix Y.:

order = [0, 1, 2, ..., Y.shape[1] - 1]

2372 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

The order of the chain can be explicitly set by providing a list of integers. For example, for
a chain of length 5.:

order = [1, 3, 2, 4, 0]

means that the first model in the chain will make predictions for column 1 in the Y matrix,
the second model will make predictions for column 3, etc.

If order is ‘random’ a random ordering will be used.

cv [int, cross-validation generator or an iterable, optional (default=None)] Determines whether
to use cross validated predictions or true labels for the results of previous estimators in the
chain. If cv is None the true labels are used when fitting. Otherwise possible inputs for cv
are:

• integer, to specify the number of folds in a (Stratified)KFold,

• CV splitter,

• An iterable yielding (train, test) splits as arrays of indices.

random_state [int, RandomState instance or None, optional (default=None)] If
order='random', determines random number generation for the chain order. In
addition, it controls the random seed given at each base_estimator at each chaining
iteration. Thus, it is only used when base_estimator exposes a random_state.
Pass an int for reproducible output across multiple function calls. See Glossary.

Attributes

estimators_ [list] A list of clones of base_estimator.

order_ [list] The order of labels in the classifier chain.

See also:

ClassifierChain Equivalent for classification

MultioutputRegressor Learns each output independently rather than chaining.

Methods

fit(X, Y, **fit_params) Fit the model to data matrix X and targets Y.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict on the data matrix X using the Classifier-

Chain model.
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.

__init__(base_estimator, *, order=None, cv=None, random_state=None)
Initialize self. See help(type(self)) for accurate signature.

fit(X, Y, **fit_params)
Fit the model to data matrix X and targets Y.

Parameters

X [{array-like, sparse matrix}, shape (n_samples, n_features)] The input data.

Y [array-like, shape (n_samples, n_classes)] The target values.

7.28. sklearn.multioutput: Multioutput regression and classification 2373

scikit-learn user guide, Release 0.23.2

**fit_params [dict of string -> object] Parameters passed to the fit method at each step of
the regressor chain.

Returns

self [object]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict on the data matrix X using the ClassifierChain model.

Parameters

X [{array-like, sparse matrix}, shape (n_samples, n_features)] The input data.

Returns

Y_pred [array-like, shape (n_samples, n_classes)] The predicted values.

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

2374 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

7.29 sklearn.naive_bayes: Naive Bayes

The sklearn.naive_bayes module implements Naive Bayes algorithms. These are supervised learning methods
based on applying Bayes’ theorem with strong (naive) feature independence assumptions.

User guide: See the Naive Bayes section for further details.

naive_bayes.BernoulliNB(*[, alpha, . . .]) Naive Bayes classifier for multivariate Bernoulli mod-
els.

naive_bayes.CategoricalNB(*[, alpha, . . .]) Naive Bayes classifier for categorical features
naive_bayes.ComplementNB(*[, alpha, . . .]) The Complement Naive Bayes classifier described in

Rennie et al.
naive_bayes.GaussianNB(*[, priors, . . .]) Gaussian Naive Bayes (GaussianNB)
naive_bayes.MultinomialNB(*[, alpha, . . .]) Naive Bayes classifier for multinomial models

7.29.1 sklearn.naive_bayes.BernoulliNB

class sklearn.naive_bayes.BernoulliNB(*, alpha=1.0, binarize=0.0, fit_prior=True,
class_prior=None)

Naive Bayes classifier for multivariate Bernoulli models.

Like MultinomialNB, this classifier is suitable for discrete data. The difference is that while MultinomialNB
works with occurrence counts, BernoulliNB is designed for binary/boolean features.

Read more in the User Guide.

Parameters

alpha [float, default=1.0] Additive (Laplace/Lidstone) smoothing parameter (0 for no smooth-
ing).

binarize [float or None, default=0.0] Threshold for binarizing (mapping to booleans) of sample
features. If None, input is presumed to already consist of binary vectors.

fit_prior [bool, default=True] Whether to learn class prior probabilities or not. If false, a uni-
form prior will be used.

class_prior [array-like of shape (n_classes,), default=None] Prior probabilities of the classes.
If specified the priors are not adjusted according to the data.

Attributes

class_count_ [ndarray of shape (n_classes)] Number of samples encountered for each class
during fitting. This value is weighted by the sample weight when provided.

class_log_prior_ [ndarray of shape (n_classes)] Log probability of each class (smoothed).

7.29. sklearn.naive_bayes: Naive Bayes 2375

scikit-learn user guide, Release 0.23.2

classes_ [ndarray of shape (n_classes,)] Class labels known to the classifier

feature_count_ [ndarray of shape (n_classes, n_features)] Number of samples encountered for
each (class, feature) during fitting. This value is weighted by the sample weight when
provided.

feature_log_prob_ [ndarray of shape (n_classes, n_features)] Empirical log probability of fea-
tures given a class, P(x_i|y).

n_features_ [int] Number of features of each sample.

References

C.D. Manning, P. Raghavan and H. Schuetze (2008). Introduction to Information Retrieval. Cambridge Univer-
sity Press, pp. 234-265. https://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html

A. McCallum and K. Nigam (1998). A comparison of event models for naive Bayes text classification. Proc.
AAAI/ICML-98 Workshop on Learning for Text Categorization, pp. 41-48.

V. Metsis, I. Androutsopoulos and G. Paliouras (2006). Spam filtering with naive Bayes – Which naive Bayes?
3rd Conf. on Email and Anti-Spam (CEAS).

Examples

>>> import numpy as np
>>> rng = np.random.RandomState(1)
>>> X = rng.randint(5, size=(6, 100))
>>> Y = np.array([1, 2, 3, 4, 4, 5])
>>> from sklearn.naive_bayes import BernoulliNB
>>> clf = BernoulliNB()
>>> clf.fit(X, Y)
BernoulliNB()
>>> print(clf.predict(X[2:3]))
[3]

Methods

fit(X, y[, sample_weight]) Fit Naive Bayes classifier according to X, y
get_params([deep]) Get parameters for this estimator.
partial_fit(X, y[, classes, sample_weight]) Incremental fit on a batch of samples.
predict(X) Perform classification on an array of test vectors X.
predict_log_proba(X) Return log-probability estimates for the test vector

X.
predict_proba(X) Return probability estimates for the test vector X.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(*, alpha=1.0, binarize=0.0, fit_prior=True, class_prior=None)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y, sample_weight=None)
Fit Naive Bayes classifier according to X, y

2376 Chapter 7. API Reference

https://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html

scikit-learn user guide, Release 0.23.2

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training vectors, where
n_samples is the number of samples and n_features is the number of features.

y [array-like of shape (n_samples,)] Target values.

sample_weight [array-like of shape (n_samples,), default=None] Weights applied to indi-
vidual samples (1. for unweighted).

Returns

self [object]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

partial_fit(X, y, classes=None, sample_weight=None)
Incremental fit on a batch of samples.

This method is expected to be called several times consecutively on different chunks of a dataset so as to
implement out-of-core or online learning.

This is especially useful when the whole dataset is too big to fit in memory at once.

This method has some performance overhead hence it is better to call partial_fit on chunks of data that are
as large as possible (as long as fitting in the memory budget) to hide the overhead.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training vectors, where
n_samples is the number of samples and n_features is the number of features.

y [array-like of shape (n_samples,)] Target values.

classes [array-like of shape (n_classes), default=None] List of all the classes that can possi-
bly appear in the y vector.

Must be provided at the first call to partial_fit, can be omitted in subsequent calls.

sample_weight [array-like of shape (n_samples,), default=None] Weights applied to indi-
vidual samples (1. for unweighted).

Returns

self [object]

predict(X)
Perform classification on an array of test vectors X.

Parameters

X [array-like of shape (n_samples, n_features)]

Returns

C [ndarray of shape (n_samples,)] Predicted target values for X

7.29. sklearn.naive_bayes: Naive Bayes 2377

scikit-learn user guide, Release 0.23.2

predict_log_proba(X)
Return log-probability estimates for the test vector X.

Parameters

X [array-like of shape (n_samples, n_features)]

Returns

C [array-like of shape (n_samples, n_classes)] Returns the log-probability of the samples
for each class in the model. The columns correspond to the classes in sorted order, as they
appear in the attribute classes_.

predict_proba(X)
Return probability estimates for the test vector X.

Parameters

X [array-like of shape (n_samples, n_features)]

Returns

C [array-like of shape (n_samples, n_classes)] Returns the probability of the samples for
each class in the model. The columns correspond to the classes in sorted order, as they
appear in the attribute classes_.

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.naive_bayes.BernoulliNB

• Hashing feature transformation using Totally Random Trees

• Classification of text documents using sparse features

2378 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

7.29.2 sklearn.naive_bayes.CategoricalNB

class sklearn.naive_bayes.CategoricalNB(*, alpha=1.0, fit_prior=True, class_prior=None)
Naive Bayes classifier for categorical features

The categorical Naive Bayes classifier is suitable for classification with discrete features that are categorically
distributed. The categories of each feature are drawn from a categorical distribution.

Read more in the User Guide.

Parameters

alpha [float, default=1.0] Additive (Laplace/Lidstone) smoothing parameter (0 for no smooth-
ing).

fit_prior [bool, default=True] Whether to learn class prior probabilities or not. If false, a uni-
form prior will be used.

class_prior [array-like of shape (n_classes,), default=None] Prior probabilities of the classes.
If specified the priors are not adjusted according to the data.

Attributes

category_count_ [list of arrays of shape (n_features,)] Holds arrays of shape (n_classes,
n_categories of respective feature) for each feature. Each array provides the number of
samples encountered for each class and category of the specific feature.

class_count_ [ndarray of shape (n_classes,)] Number of samples encountered for each class
during fitting. This value is weighted by the sample weight when provided.

class_log_prior_ [ndarray of shape (n_classes,)] Smoothed empirical log probability for each
class.

classes_ [ndarray of shape (n_classes,)] Class labels known to the classifier

feature_log_prob_ [list of arrays of shape (n_features,)] Holds arrays of shape (n_classes,
n_categories of respective feature) for each feature. Each array provides the empirical log
probability of categories given the respective feature and class, P(x_i|y).

n_features_ [int] Number of features of each sample.

Examples

>>> import numpy as np
>>> rng = np.random.RandomState(1)
>>> X = rng.randint(5, size=(6, 100))
>>> y = np.array([1, 2, 3, 4, 5, 6])
>>> from sklearn.naive_bayes import CategoricalNB
>>> clf = CategoricalNB()
>>> clf.fit(X, y)
CategoricalNB()
>>> print(clf.predict(X[2:3]))
[3]

Methods

fit(X, y[, sample_weight]) Fit Naive Bayes classifier according to X, y
Continued on next page

7.29. sklearn.naive_bayes: Naive Bayes 2379

scikit-learn user guide, Release 0.23.2

Table 239 – continued from previous page
get_params([deep]) Get parameters for this estimator.
partial_fit(X, y[, classes, sample_weight]) Incremental fit on a batch of samples.
predict(X) Perform classification on an array of test vectors X.
predict_log_proba(X) Return log-probability estimates for the test vector

X.
predict_proba(X) Return probability estimates for the test vector X.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(*, alpha=1.0, fit_prior=True, class_prior=None)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y, sample_weight=None)
Fit Naive Bayes classifier according to X, y

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training vectors, where
n_samples is the number of samples and n_features is the number of features. Here, each
feature of X is assumed to be from a different categorical distribution. It is further assumed
that all categories of each feature are represented by the numbers 0, . . . , n - 1, where n
refers to the total number of categories for the given feature. This can, for instance, be
achieved with the help of OrdinalEncoder.

y [array-like of shape (n_samples,)] Target values.

sample_weight [array-like of shape (n_samples), default=None] Weights applied to indi-
vidual samples (1. for unweighted).

Returns

self [object]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

partial_fit(X, y, classes=None, sample_weight=None)
Incremental fit on a batch of samples.

This method is expected to be called several times consecutively on different chunks of a dataset so as to
implement out-of-core or online learning.

This is especially useful when the whole dataset is too big to fit in memory at once.

This method has some performance overhead hence it is better to call partial_fit on chunks of data that are
as large as possible (as long as fitting in the memory budget) to hide the overhead.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training vectors, where
n_samples is the number of samples and n_features is the number of features. Here, each

2380 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

feature of X is assumed to be from a different categorical distribution. It is further assumed
that all categories of each feature are represented by the numbers 0, . . . , n - 1, where n
refers to the total number of categories for the given feature. This can, for instance, be
achieved with the help of OrdinalEncoder.

y [array-like of shape (n_samples)] Target values.

classes [array-like of shape (n_classes), default=None] List of all the classes that can possi-
bly appear in the y vector.

Must be provided at the first call to partial_fit, can be omitted in subsequent calls.

sample_weight [array-like of shape (n_samples), default=None] Weights applied to indi-
vidual samples (1. for unweighted).

Returns

self [object]

predict(X)
Perform classification on an array of test vectors X.

Parameters

X [array-like of shape (n_samples, n_features)]

Returns

C [ndarray of shape (n_samples,)] Predicted target values for X

predict_log_proba(X)
Return log-probability estimates for the test vector X.

Parameters

X [array-like of shape (n_samples, n_features)]

Returns

C [array-like of shape (n_samples, n_classes)] Returns the log-probability of the samples
for each class in the model. The columns correspond to the classes in sorted order, as they
appear in the attribute classes_.

predict_proba(X)
Return probability estimates for the test vector X.

Parameters

X [array-like of shape (n_samples, n_features)]

Returns

C [array-like of shape (n_samples, n_classes)] Returns the probability of the samples for
each class in the model. The columns correspond to the classes in sorted order, as they
appear in the attribute classes_.

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

7.29. sklearn.naive_bayes: Naive Bayes 2381

scikit-learn user guide, Release 0.23.2

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

7.29.3 sklearn.naive_bayes.ComplementNB

class sklearn.naive_bayes.ComplementNB(*, alpha=1.0, fit_prior=True, class_prior=None,
norm=False)

The Complement Naive Bayes classifier described in Rennie et al. (2003).

The Complement Naive Bayes classifier was designed to correct the “severe assumptions” made by the standard
Multinomial Naive Bayes classifier. It is particularly suited for imbalanced data sets.

Read more in the User Guide.

New in version 0.20.

Parameters

alpha [float, default=1.0] Additive (Laplace/Lidstone) smoothing parameter (0 for no smooth-
ing).

fit_prior [bool, default=True] Only used in edge case with a single class in the training set.

class_prior [array-like of shape (n_classes,), default=None] Prior probabilities of the classes.
Not used.

norm [bool, default=False] Whether or not a second normalization of the weights is performed.
The default behavior mirrors the implementations found in Mahout and Weka, which do not
follow the full algorithm described in Table 9 of the paper.

Attributes

class_count_ [ndarray of shape (n_classes,)] Number of samples encountered for each class
during fitting. This value is weighted by the sample weight when provided.

class_log_prior_ [ndarray of shape (n_classes,)] Smoothed empirical log probability for each
class. Only used in edge case with a single class in the training set.

classes_ [ndarray of shape (n_classes,)] Class labels known to the classifier

feature_all_ [ndarray of shape (n_features,)] Number of samples encountered for each feature
during fitting. This value is weighted by the sample weight when provided.

feature_count_ [ndarray of shape (n_classes, n_features)] Number of samples encountered for
each (class, feature) during fitting. This value is weighted by the sample weight when
provided.

2382 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

feature_log_prob_ [ndarray of shape (n_classes, n_features)] Empirical weights for class com-
plements.

n_features_ [int] Number of features of each sample.

References

Rennie, J. D., Shih, L., Teevan, J., & Karger, D. R. (2003). Tackling the poor assumptions of naive bayes text
classifiers. In ICML (Vol. 3, pp. 616-623). https://people.csail.mit.edu/jrennie/papers/icml03-nb.pdf

Examples

>>> import numpy as np
>>> rng = np.random.RandomState(1)
>>> X = rng.randint(5, size=(6, 100))
>>> y = np.array([1, 2, 3, 4, 5, 6])
>>> from sklearn.naive_bayes import ComplementNB
>>> clf = ComplementNB()
>>> clf.fit(X, y)
ComplementNB()
>>> print(clf.predict(X[2:3]))
[3]

Methods

fit(X, y[, sample_weight]) Fit Naive Bayes classifier according to X, y
get_params([deep]) Get parameters for this estimator.
partial_fit(X, y[, classes, sample_weight]) Incremental fit on a batch of samples.
predict(X) Perform classification on an array of test vectors X.
predict_log_proba(X) Return log-probability estimates for the test vector

X.
predict_proba(X) Return probability estimates for the test vector X.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(*, alpha=1.0, fit_prior=True, class_prior=None, norm=False)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y, sample_weight=None)
Fit Naive Bayes classifier according to X, y

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training vectors, where
n_samples is the number of samples and n_features is the number of features.

y [array-like of shape (n_samples,)] Target values.

sample_weight [array-like of shape (n_samples,), default=None] Weights applied to indi-
vidual samples (1. for unweighted).

Returns

7.29. sklearn.naive_bayes: Naive Bayes 2383

https://people.csail.mit.edu/jrennie/papers/icml03-nb.pdf

scikit-learn user guide, Release 0.23.2

self [object]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

partial_fit(X, y, classes=None, sample_weight=None)
Incremental fit on a batch of samples.

This method is expected to be called several times consecutively on different chunks of a dataset so as to
implement out-of-core or online learning.

This is especially useful when the whole dataset is too big to fit in memory at once.

This method has some performance overhead hence it is better to call partial_fit on chunks of data that are
as large as possible (as long as fitting in the memory budget) to hide the overhead.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training vectors, where
n_samples is the number of samples and n_features is the number of features.

y [array-like of shape (n_samples,)] Target values.

classes [array-like of shape (n_classes), default=None] List of all the classes that can possi-
bly appear in the y vector.

Must be provided at the first call to partial_fit, can be omitted in subsequent calls.

sample_weight [array-like of shape (n_samples,), default=None] Weights applied to indi-
vidual samples (1. for unweighted).

Returns

self [object]

predict(X)
Perform classification on an array of test vectors X.

Parameters

X [array-like of shape (n_samples, n_features)]

Returns

C [ndarray of shape (n_samples,)] Predicted target values for X

predict_log_proba(X)
Return log-probability estimates for the test vector X.

Parameters

X [array-like of shape (n_samples, n_features)]

Returns

C [array-like of shape (n_samples, n_classes)] Returns the log-probability of the samples
for each class in the model. The columns correspond to the classes in sorted order, as they
appear in the attribute classes_.

2384 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

predict_proba(X)
Return probability estimates for the test vector X.

Parameters

X [array-like of shape (n_samples, n_features)]

Returns

C [array-like of shape (n_samples, n_classes)] Returns the probability of the samples for
each class in the model. The columns correspond to the classes in sorted order, as they
appear in the attribute classes_.

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.naive_bayes.ComplementNB

• Classification of text documents using sparse features

7.29.4 sklearn.naive_bayes.GaussianNB

class sklearn.naive_bayes.GaussianNB(*, priors=None, var_smoothing=1e-09)
Gaussian Naive Bayes (GaussianNB)

Can perform online updates to model parameters via partial_fit. For details on algorithm used to update
feature means and variance online, see Stanford CS tech report STAN-CS-79-773 by Chan, Golub, and LeVeque:

http://i.stanford.edu/pub/cstr/reports/cs/tr/79/773/CS-TR-79-773.pdf

Read more in the User Guide.

Parameters

7.29. sklearn.naive_bayes: Naive Bayes 2385

http://i.stanford.edu/pub/cstr/reports/cs/tr/79/773/CS-TR-79-773.pdf

scikit-learn user guide, Release 0.23.2

priors [array-like of shape (n_classes,)] Prior probabilities of the classes. If specified the priors
are not adjusted according to the data.

var_smoothing [float, default=1e-9] Portion of the largest variance of all features that is added
to variances for calculation stability.

New in version 0.20.

Attributes

class_count_ [ndarray of shape (n_classes,)] number of training samples observed in each class.

class_prior_ [ndarray of shape (n_classes,)] probability of each class.

classes_ [ndarray of shape (n_classes,)] class labels known to the classifier

epsilon_ [float] absolute additive value to variances

sigma_ [ndarray of shape (n_classes, n_features)] variance of each feature per class

theta_ [ndarray of shape (n_classes, n_features)] mean of each feature per class

Examples

>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> Y = np.array([1, 1, 1, 2, 2, 2])
>>> from sklearn.naive_bayes import GaussianNB
>>> clf = GaussianNB()
>>> clf.fit(X, Y)
GaussianNB()
>>> print(clf.predict([[-0.8, -1]]))
[1]
>>> clf_pf = GaussianNB()
>>> clf_pf.partial_fit(X, Y, np.unique(Y))
GaussianNB()
>>> print(clf_pf.predict([[-0.8, -1]]))
[1]

Methods

fit(X, y[, sample_weight]) Fit Gaussian Naive Bayes according to X, y
get_params([deep]) Get parameters for this estimator.
partial_fit(X, y[, classes, sample_weight]) Incremental fit on a batch of samples.
predict(X) Perform classification on an array of test vectors X.
predict_log_proba(X) Return log-probability estimates for the test vector

X.
predict_proba(X) Return probability estimates for the test vector X.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(*, priors=None, var_smoothing=1e-09)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y, sample_weight=None)

2386 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Fit Gaussian Naive Bayes according to X, y

Parameters

X [array-like of shape (n_samples, n_features)] Training vectors, where n_samples is the
number of samples and n_features is the number of features.

y [array-like of shape (n_samples,)] Target values.

sample_weight [array-like of shape (n_samples,), default=None] Weights applied to indi-
vidual samples (1. for unweighted).

New in version 0.17: Gaussian Naive Bayes supports fitting with sample_weight.

Returns

self [object]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

partial_fit(X, y, classes=None, sample_weight=None)
Incremental fit on a batch of samples.

This method is expected to be called several times consecutively on different chunks of a dataset so as to
implement out-of-core or online learning.

This is especially useful when the whole dataset is too big to fit in memory at once.

This method has some performance and numerical stability overhead, hence it is better to call partial_fit on
chunks of data that are as large as possible (as long as fitting in the memory budget) to hide the overhead.

Parameters

X [array-like of shape (n_samples, n_features)] Training vectors, where n_samples is the
number of samples and n_features is the number of features.

y [array-like of shape (n_samples,)] Target values.

classes [array-like of shape (n_classes,), default=None] List of all the classes that can pos-
sibly appear in the y vector.

Must be provided at the first call to partial_fit, can be omitted in subsequent calls.

sample_weight [array-like of shape (n_samples,), default=None] Weights applied to indi-
vidual samples (1. for unweighted).

New in version 0.17.

Returns

self [object]

predict(X)
Perform classification on an array of test vectors X.

Parameters

X [array-like of shape (n_samples, n_features)]

7.29. sklearn.naive_bayes: Naive Bayes 2387

scikit-learn user guide, Release 0.23.2

Returns

C [ndarray of shape (n_samples,)] Predicted target values for X

predict_log_proba(X)
Return log-probability estimates for the test vector X.

Parameters

X [array-like of shape (n_samples, n_features)]

Returns

C [array-like of shape (n_samples, n_classes)] Returns the log-probability of the samples
for each class in the model. The columns correspond to the classes in sorted order, as they
appear in the attribute classes_.

predict_proba(X)
Return probability estimates for the test vector X.

Parameters

X [array-like of shape (n_samples, n_features)]

Returns

C [array-like of shape (n_samples, n_classes)] Returns the probability of the samples for
each class in the model. The columns correspond to the classes in sorted order, as they
appear in the attribute classes_.

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

2388 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Examples using sklearn.naive_bayes.GaussianNB

• Comparison of Calibration of Classifiers

• Probability Calibration curves

• Probability calibration of classifiers

• Classifier comparison

• Plot class probabilities calculated by the VotingClassifier

• Plotting Learning Curves

• Importance of Feature Scaling

7.29.5 sklearn.naive_bayes.MultinomialNB

class sklearn.naive_bayes.MultinomialNB(*, alpha=1.0, fit_prior=True, class_prior=None)
Naive Bayes classifier for multinomial models

The multinomial Naive Bayes classifier is suitable for classification with discrete features (e.g., word counts for
text classification). The multinomial distribution normally requires integer feature counts. However, in practice,
fractional counts such as tf-idf may also work.

Read more in the User Guide.

Parameters

alpha [float, default=1.0] Additive (Laplace/Lidstone) smoothing parameter (0 for no smooth-
ing).

fit_prior [bool, default=True] Whether to learn class prior probabilities or not. If false, a uni-
form prior will be used.

class_prior [array-like of shape (n_classes,), default=None] Prior probabilities of the classes.
If specified the priors are not adjusted according to the data.

Attributes

class_count_ [ndarray of shape (n_classes,)] Number of samples encountered for each class
during fitting. This value is weighted by the sample weight when provided.

class_log_prior_ [ndarray of shape (n_classes,)] Smoothed empirical log probability for each
class.

classes_ [ndarray of shape (n_classes,)] Class labels known to the classifier

coef_ [ndarray of shape (n_classes, n_features)] Mirrors feature_log_prob_ for interpret-
ing MultinomialNB as a linear model.

feature_count_ [ndarray of shape (n_classes, n_features)] Number of samples encountered for
each (class, feature) during fitting. This value is weighted by the sample weight when
provided.

feature_log_prob_ [ndarray of shape (n_classes, n_features)] Empirical log probability of fea-
tures given a class, P(x_i|y).

intercept_ [ndarray of shape (n_classes,)] Mirrors class_log_prior_ for interpreting
MultinomialNB as a linear model.

n_features_ [int] Number of features of each sample.

7.29. sklearn.naive_bayes: Naive Bayes 2389

scikit-learn user guide, Release 0.23.2

Notes

For the rationale behind the names coef_ and intercept_, i.e. naive Bayes as a linear classifier, see J.
Rennie et al. (2003), Tackling the poor assumptions of naive Bayes text classifiers, ICML.

References

C.D. Manning, P. Raghavan and H. Schuetze (2008). Introduction to Information Retrieval. Cambridge Univer-
sity Press, pp. 234-265. https://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.
html

Examples

>>> import numpy as np
>>> rng = np.random.RandomState(1)
>>> X = rng.randint(5, size=(6, 100))
>>> y = np.array([1, 2, 3, 4, 5, 6])
>>> from sklearn.naive_bayes import MultinomialNB
>>> clf = MultinomialNB()
>>> clf.fit(X, y)
MultinomialNB()
>>> print(clf.predict(X[2:3]))
[3]

Methods

fit(X, y[, sample_weight]) Fit Naive Bayes classifier according to X, y
get_params([deep]) Get parameters for this estimator.
partial_fit(X, y[, classes, sample_weight]) Incremental fit on a batch of samples.
predict(X) Perform classification on an array of test vectors X.
predict_log_proba(X) Return log-probability estimates for the test vector

X.
predict_proba(X) Return probability estimates for the test vector X.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(*, alpha=1.0, fit_prior=True, class_prior=None)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y, sample_weight=None)
Fit Naive Bayes classifier according to X, y

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training vectors, where
n_samples is the number of samples and n_features is the number of features.

y [array-like of shape (n_samples,)] Target values.

sample_weight [array-like of shape (n_samples,), default=None] Weights applied to indi-
vidual samples (1. for unweighted).

Returns

2390 Chapter 7. API Reference

https://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html

scikit-learn user guide, Release 0.23.2

self [object]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

partial_fit(X, y, classes=None, sample_weight=None)
Incremental fit on a batch of samples.

This method is expected to be called several times consecutively on different chunks of a dataset so as to
implement out-of-core or online learning.

This is especially useful when the whole dataset is too big to fit in memory at once.

This method has some performance overhead hence it is better to call partial_fit on chunks of data that are
as large as possible (as long as fitting in the memory budget) to hide the overhead.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training vectors, where
n_samples is the number of samples and n_features is the number of features.

y [array-like of shape (n_samples,)] Target values.

classes [array-like of shape (n_classes), default=None] List of all the classes that can possi-
bly appear in the y vector.

Must be provided at the first call to partial_fit, can be omitted in subsequent calls.

sample_weight [array-like of shape (n_samples,), default=None] Weights applied to indi-
vidual samples (1. for unweighted).

Returns

self [object]

predict(X)
Perform classification on an array of test vectors X.

Parameters

X [array-like of shape (n_samples, n_features)]

Returns

C [ndarray of shape (n_samples,)] Predicted target values for X

predict_log_proba(X)
Return log-probability estimates for the test vector X.

Parameters

X [array-like of shape (n_samples, n_features)]

Returns

C [array-like of shape (n_samples, n_classes)] Returns the log-probability of the samples
for each class in the model. The columns correspond to the classes in sorted order, as they
appear in the attribute classes_.

7.29. sklearn.naive_bayes: Naive Bayes 2391

scikit-learn user guide, Release 0.23.2

predict_proba(X)
Return probability estimates for the test vector X.

Parameters

X [array-like of shape (n_samples, n_features)]

Returns

C [array-like of shape (n_samples, n_classes)] Returns the probability of the samples for
each class in the model. The columns correspond to the classes in sorted order, as they
appear in the attribute classes_.

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.naive_bayes.MultinomialNB

• Out-of-core classification of text documents

• Classification of text documents using sparse features

7.30 sklearn.neighbors: Nearest Neighbors

The sklearn.neighbors module implements the k-nearest neighbors algorithm.

User guide: See the Nearest Neighbors section for further details.

neighbors.BallTree(X[, leaf_size, metric]) BallTree for fast generalized N-point problems
neighbors.DistanceMetric DistanceMetric class

Continued on next page

2392 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Table 243 – continued from previous page
neighbors.KDTree(X[, leaf_size, metric]) KDTree for fast generalized N-point problems
neighbors.KernelDensity(*[, bandwidth, . . .]) Kernel Density Estimation.
neighbors.KNeighborsClassifier([. . .]) Classifier implementing the k-nearest neighbors vote.
neighbors.KNeighborsRegressor([n_neighbors,
. . .])

Regression based on k-nearest neighbors.

neighbors.KNeighborsTransformer(*[,
mode, . . .])

Transform X into a (weighted) graph of k nearest neigh-
bors

neighbors.LocalOutlierFactor([n_neighbors,
. . .])

Unsupervised Outlier Detection using Local Outlier
Factor (LOF)

neighbors.RadiusNeighborsClassifier([. . .])Classifier implementing a vote among neighbors within
a given radius

neighbors.RadiusNeighborsRegressor([radius,
. . .])

Regression based on neighbors within a fixed radius.

neighbors.RadiusNeighborsTransformer(*[,
. . .])

Transform X into a (weighted) graph of neighbors
nearer than a radius

neighbors.NearestCentroid([metric, . . .]) Nearest centroid classifier.
neighbors.NearestNeighbors(*[,
n_neighbors, . . .])

Unsupervised learner for implementing neighbor
searches.

neighbors.NeighborhoodComponentsAnalysis([. . .])Neighborhood Components Analysis

7.30.1 sklearn.neighbors.BallTree

class sklearn.neighbors.BallTree(X, leaf_size=40, metric=’minkowski’, **kwargs)
BallTree for fast generalized N-point problems

Parameters

X [array-like of shape (n_samples, n_features)] n_samples is the number of points in the data
set, and n_features is the dimension of the parameter space. Note: if X is a C-contiguous
array of doubles then data will not be copied. Otherwise, an internal copy will be made.

leaf_size [positive int, default=40] Number of points at which to switch to brute-force. Chang-
ing leaf_size will not affect the results of a query, but can significantly impact the speed
of a query and the memory required to store the constructed tree. The amount of mem-
ory needed to store the tree scales as approximately n_samples / leaf_size. For a specified
leaf_size, a leaf node is guaranteed to satisfy leaf_size <= n_points <= 2 *
leaf_size, except in the case that n_samples < leaf_size.

metric [str or DistanceMetric object] the distance metric to use for the tree. De-
fault=’minkowski’ with p=2 (that is, a euclidean metric). See the documentation of the
DistanceMetric class for a list of available metrics. ball_tree.valid_metrics gives a list of the
metrics which are valid for BallTree.

Additional keywords are passed to the distance metric class.

Note: Callable functions in the metric parameter are NOT supported for KDTree

and Ball Tree. Function call overhead will result in very poor performance.

Attributes

data [memory view] The training data

7.30. sklearn.neighbors: Nearest Neighbors 2393

scikit-learn user guide, Release 0.23.2

Examples

Query for k-nearest neighbors

>>> import numpy as np
>>> rng = np.random.RandomState(0)
>>> X = rng.random_sample((10, 3)) # 10 points in 3 dimensions
>>> tree = BallTree(X, leaf_size=2) # doctest: +SKIP
>>> dist, ind = tree.query(X[:1], k=3) # doctest: +SKIP
>>> print(ind) # indices of 3 closest neighbors
[0 3 1]
>>> print(dist) # distances to 3 closest neighbors
[0. 0.19662693 0.29473397]

Pickle and Unpickle a tree. Note that the state of the tree is saved in the pickle operation: the tree needs not be
rebuilt upon unpickling.

>>> import numpy as np
>>> import pickle
>>> rng = np.random.RandomState(0)
>>> X = rng.random_sample((10, 3)) # 10 points in 3 dimensions
>>> tree = BallTree(X, leaf_size=2) # doctest: +SKIP
>>> s = pickle.dumps(tree) # doctest: +SKIP
>>> tree_copy = pickle.loads(s) # doctest: +SKIP
>>> dist, ind = tree_copy.query(X[:1], k=3) # doctest: +SKIP
>>> print(ind) # indices of 3 closest neighbors
[0 3 1]
>>> print(dist) # distances to 3 closest neighbors
[0. 0.19662693 0.29473397]

Query for neighbors within a given radius

>>> import numpy as np
>>> rng = np.random.RandomState(0)
>>> X = rng.random_sample((10, 3)) # 10 points in 3 dimensions
>>> tree = BallTree(X, leaf_size=2) # doctest: +SKIP
>>> print(tree.query_radius(X[:1], r=0.3, count_only=True))
3
>>> ind = tree.query_radius(X[:1], r=0.3) # doctest: +SKIP
>>> print(ind) # indices of neighbors within distance 0.3
[3 0 1]

Compute a gaussian kernel density estimate:

>>> import numpy as np
>>> rng = np.random.RandomState(42)
>>> X = rng.random_sample((100, 3))
>>> tree = BallTree(X) # doctest: +SKIP
>>> tree.kernel_density(X[:3], h=0.1, kernel='gaussian')
array([6.94114649, 7.83281226, 7.2071716])

Compute a two-point auto-correlation function

>>> import numpy as np
>>> rng = np.random.RandomState(0)
>>> X = rng.random_sample((30, 3))
>>> r = np.linspace(0, 1, 5)
>>> tree = BallTree(X) # doctest: +SKIP

(continues on next page)

2394 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

(continued from previous page)

>>> tree.two_point_correlation(X, r)
array([30, 62, 278, 580, 820])

Methods

get_arrays(self) Get data and node arrays.
get_n_calls(self) Get number of calls.
get_tree_stats(self) Get tree status.
kernel_density(self, X, h[, kernel, atol, . . .]) Compute the kernel density estimate at points X with

the given kernel, using the distance metric specified
at tree creation.

query(X[, k, return_distance, dualtree, . . .]) query the tree for the k nearest neighbors
query_radius(X, r[, return_distance, . . .]) query the tree for neighbors within a radius r
reset_n_calls(self) Reset number of calls to 0.
two_point_correlation(X, r[, dualtree]) Compute the two-point correlation function

__init__(*args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

get_arrays(self)
Get data and node arrays.

Returns

arrays: tuple of array Arrays for storing tree data, index, node data and node bounds.

get_n_calls(self)
Get number of calls.

Returns

n_calls: int number of distance computation calls

get_tree_stats(self)
Get tree status.

Returns

tree_stats: tuple of int (number of trims, number of leaves, number of splits)

kernel_density(self, X, h, kernel=’gaussian’, atol=0, rtol=1E-8, breadth_first=True, re-
turn_log=False)

Compute the kernel density estimate at points X with the given kernel, using the distance metric specified
at tree creation.

Parameters

X [array-like of shape (n_samples, n_features)] An array of points to query. Last dimension
should match dimension of training data.

h [float] the bandwidth of the kernel

kernel [str, default=”gaussian”] specify the kernel to use. Options are - ‘gaussian’ - ‘tophat’
- ‘epanechnikov’ - ‘exponential’ - ‘linear’ - ‘cosine’ Default is kernel = ‘gaussian’

atol, rtol [float, default=0, 1e-8] Specify the desired relative and absolute tolerance of the
result. If the true result is K_true, then the returned result K_ret satisfies abs(K_true

7.30. sklearn.neighbors: Nearest Neighbors 2395

scikit-learn user guide, Release 0.23.2

- K_ret) < atol + rtol * K_ret The default is zero (i.e. machine precision)
for both.

breadth_first [bool, default=False] If True, use a breadth-first search. If False (default)
use a depth-first search. Breadth-first is generally faster for compact kernels and/or high
tolerances.

return_log [bool, default=False] Return the logarithm of the result. This can be more accu-
rate than returning the result itself for narrow kernels.

Returns

density [ndarray of shape X.shape[:-1]] The array of (log)-density evaluations

query(X, k=1, return_distance=True, dualtree=False, breadth_first=False)
query the tree for the k nearest neighbors

Parameters

X [array-like of shape (n_samples, n_features)] An array of points to query

k [int, default=1] The number of nearest neighbors to return

return_distance [bool, default=True] if True, return a tuple (d, i) of distances and indices if
False, return array i

dualtree [bool, default=False] if True, use the dual tree formalism for the query: a tree is
built for the query points, and the pair of trees is used to efficiently search this space. This
can lead to better performance as the number of points grows large.

breadth_first [bool, default=False] if True, then query the nodes in a breadth-first manner.
Otherwise, query the nodes in a depth-first manner.

sort_results [bool, default=True] if True, then distances and indices of each point are sorted
on return, so that the first column contains the closest points. Otherwise, neighbors are
returned in an arbitrary order.

Returns

i [if return_distance == False]

(d,i) [if return_distance == True]

d [ndarray of shape X.shape[:-1] + k, dtype=double] Each entry gives the list of distances to
the neighbors of the corresponding point.

i [ndarray of shape X.shape[:-1] + k, dtype=int] Each entry gives the list of indices of neigh-
bors of the corresponding point.

query_radius(X, r, return_distance=False, count_only=False, sort_results=False)
query the tree for neighbors within a radius r

Parameters

X [array-like of shape (n_samples, n_features)] An array of points to query

r [distance within which neighbors are returned] r can be a single value, or an array of values
of shape x.shape[:-1] if different radii are desired for each point.

return_distance [bool, default=False] if True, return distances to neighbors of each
point if False, return only neighbors Note that unlike the query() method, setting re-
turn_distance=True here adds to the computation time. Not all distances need to be
calculated explicitly for return_distance=False. Results are not sorted by default: see
sort_results keyword.

2396 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

count_only [bool, default=False] if True, return only the count of points within distance r
if False, return the indices of all points within distance r If return_distance==True, setting
count_only=True will result in an error.

sort_results [bool, default=False] if True, the distances and indices will be sorted before
being returned. If False, the results will not be sorted. If return_distance == False, setting
sort_results = True will result in an error.

Returns

count [if count_only == True]

ind [if count_only == False and return_distance == False]

(ind, dist) [if count_only == False and return_distance == True]

count [ndarray of shape X.shape[:-1], dtype=int] Each entry gives the number of neighbors
within a distance r of the corresponding point.

ind [ndarray of shape X.shape[:-1], dtype=object] Each element is a numpy integer array
listing the indices of neighbors of the corresponding point. Note that unlike the results of
a k-neighbors query, the returned neighbors are not sorted by distance by default.

dist [ndarray of shape X.shape[:-1], dtype=object] Each element is a numpy double array
listing the distances corresponding to indices in i.

reset_n_calls(self)
Reset number of calls to 0.

two_point_correlation(X, r, dualtree=False)
Compute the two-point correlation function

Parameters

X [array-like of shape (n_samples, n_features)] An array of points to query. Last dimension
should match dimension of training data.

r [array-like] A one-dimensional array of distances

dualtree [bool, default=False] If True, use a dualtree algorithm. Otherwise, use a single-tree
algorithm. Dual tree algorithms can have better scaling for large N.

Returns

counts [ndarray] counts[i] contains the number of pairs of points with distance less than or
equal to r[i]

7.30.2 sklearn.neighbors.DistanceMetric

class sklearn.neighbors.DistanceMetric
DistanceMetric class

This class provides a uniform interface to fast distance metric functions. The various metrics can be accessed
via the get_metric class method and the metric string identifier (see below).

Examples

>>> from sklearn.neighbors import DistanceMetric
>>> dist = DistanceMetric.get_metric('euclidean')
>>> X = [[0, 1, 2],

(continues on next page)

7.30. sklearn.neighbors: Nearest Neighbors 2397

scikit-learn user guide, Release 0.23.2

(continued from previous page)

[3, 4, 5]]
>>> dist.pairwise(X)
array([[0. , 5.19615242],

[5.19615242, 0.]])

Available Metrics

The following lists the string metric identifiers and the associated distance metric classes:

Metrics intended for real-valued vector spaces:

identifier class name args distance function
“euclidean” EuclideanDistance

•
sqrt(sum((x -
y)^2))

“manhattan” ManhattanDistance
•

sum(|x - y|)

“chebyshev” ChebyshevDistance
•

max(|x - y|)

“minkowski” MinkowskiDistance p sum(|x -
y|^p)^(1/p)

“wminkowski” WMinkowskiDistance p, w sum(|w * (x -
y)|^p)^(1/p)

“seuclidean” SEuclideanDistance V sqrt(sum((x -
y)^2 / V))

“mahalanobis” MahalanobisDistance V or VI sqrt((x - y)'
V^-1 (x - y))

Metrics intended for two-dimensional vector spaces: Note that the haversine distance metric requires data in
the form of [latitude, longitude] and both inputs and outputs are in units of radians.

identifier class name distance function
“haver-
sine”

HaversineDis-
tance

2 arcsin(sqrt(sin^2(0.5*dx) +
cos(x1)cos(x2)sin^2(0.5*dy)))

Metrics intended for integer-valued vector spaces: Though intended for integer-valued vectors, these are also
valid metrics in the case of real-valued vectors.

identifier class name distance function
“hamming” HammingDistance N_unequal(x, y) / N_tot
“canberra” CanberraDistance sum(|x - y| / (|x| + |y|))
“braycurtis” BrayCurtisDistance sum(|x - y|) / (sum(|x|) + sum(|y|))

Metrics intended for boolean-valued vector spaces: Any nonzero entry is evaluated to “True”. In the listings
below, the following abbreviations are used:

• N : number of dimensions

• NTT : number of dims in which both values are True

• NTF : number of dims in which the first value is True, second is False

• NFT : number of dims in which the first value is False, second is True

2398 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

• NFF : number of dims in which both values are False

• NNEQ : number of non-equal dimensions, NNEQ = NTF + NFT

• NNZ : number of nonzero dimensions, NNZ = NTF + NFT + NTT

identifier class name distance function
“jaccard” JaccardDistance NNEQ / NNZ
“matching” MatchingDistance NNEQ / N
“dice” DiceDistance NNEQ / (NTT + NNZ)
“kulsinski” KulsinskiDistance (NNEQ + N - NTT) / (NNEQ + N)
“rogerstanimoto” RogersTanimotoDistance 2 * NNEQ / (N + NNEQ)
“russellrao” RussellRaoDistance NNZ / N
“sokalmichener” SokalMichenerDistance 2 * NNEQ / (N + NNEQ)
“sokalsneath” SokalSneathDistance NNEQ / (NNEQ + 0.5 * NTT)

User-defined distance:

identifier class name args
“pyfunc” PyFuncDistance func

Here func is a function which takes two one-dimensional numpy arrays, and returns a distance. Note that
in order to be used within the BallTree, the distance must be a true metric: i.e. it must satisfy the following
properties

1) Non-negativity: d(x, y) >= 0

2) Identity: d(x, y) = 0 if and only if x == y

3) Symmetry: d(x, y) = d(y, x)

4) Triangle Inequality: d(x, y) + d(y, z) >= d(x, z)

Because of the Python object overhead involved in calling the python function, this will be fairly slow, but it
will have the same scaling as other distances.

Methods

dist_to_rdist Convert the true distance to the reduced distance.
get_metric Get the given distance metric from the string identi-

fier.
pairwise Compute the pairwise distances between X and Y
rdist_to_dist Convert the Reduced distance to the true distance.

__init__(*args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

dist_to_rdist()
Convert the true distance to the reduced distance.

The reduced distance, defined for some metrics, is a computationally more efficient measure which pre-
serves the rank of the true distance. For example, in the Euclidean distance metric, the reduced distance is
the squared-euclidean distance.

get_metric()
Get the given distance metric from the string identifier.

7.30. sklearn.neighbors: Nearest Neighbors 2399

scikit-learn user guide, Release 0.23.2

See the docstring of DistanceMetric for a list of available metrics.

Parameters

metric [string or class name] The distance metric to use

**kwargs additional arguments will be passed to the requested metric

pairwise()
Compute the pairwise distances between X and Y

This is a convenience routine for the sake of testing. For many metrics, the utilities in
scipy.spatial.distance.cdist and scipy.spatial.distance.pdist will be faster.

Parameters

X [array_like] Array of shape (Nx, D), representing Nx points in D dimensions.

Y [array_like (optional)] Array of shape (Ny, D), representing Ny points in D dimensions.
If not specified, then Y=X.

Returns

——-

dist [ndarray] The shape (Nx, Ny) array of pairwise distances between points in X and Y.

rdist_to_dist()
Convert the Reduced distance to the true distance.

The reduced distance, defined for some metrics, is a computationally more efficient measure which pre-
serves the rank of the true distance. For example, in the Euclidean distance metric, the reduced distance is
the squared-euclidean distance.

7.30.3 sklearn.neighbors.KDTree

class sklearn.neighbors.KDTree(X, leaf_size=40, metric=’minkowski’, **kwargs)
KDTree for fast generalized N-point problems

Parameters

X [array-like of shape (n_samples, n_features)] n_samples is the number of points in the data
set, and n_features is the dimension of the parameter space. Note: if X is a C-contiguous
array of doubles then data will not be copied. Otherwise, an internal copy will be made.

leaf_size [positive int, default=40] Number of points at which to switch to brute-force. Chang-
ing leaf_size will not affect the results of a query, but can significantly impact the speed
of a query and the memory required to store the constructed tree. The amount of mem-
ory needed to store the tree scales as approximately n_samples / leaf_size. For a specified
leaf_size, a leaf node is guaranteed to satisfy leaf_size <= n_points <= 2 *
leaf_size, except in the case that n_samples < leaf_size.

metric [str or DistanceMetric object] the distance metric to use for the tree. De-
fault=’minkowski’ with p=2 (that is, a euclidean metric). See the documentation of the
DistanceMetric class for a list of available metrics. kd_tree.valid_metrics gives a list of the
metrics which are valid for KDTree.

Additional keywords are passed to the distance metric class.

Note: Callable functions in the metric parameter are NOT supported for KDTree

and Ball Tree. Function call overhead will result in very poor performance.

Attributes

2400 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

data [memory view] The training data

Examples

Query for k-nearest neighbors

>>> import numpy as np
>>> rng = np.random.RandomState(0)
>>> X = rng.random_sample((10, 3)) # 10 points in 3 dimensions
>>> tree = KDTree(X, leaf_size=2) # doctest: +SKIP
>>> dist, ind = tree.query(X[:1], k=3) # doctest: +SKIP
>>> print(ind) # indices of 3 closest neighbors
[0 3 1]
>>> print(dist) # distances to 3 closest neighbors
[0. 0.19662693 0.29473397]

Pickle and Unpickle a tree. Note that the state of the tree is saved in the pickle operation: the tree needs not be
rebuilt upon unpickling.

>>> import numpy as np
>>> import pickle
>>> rng = np.random.RandomState(0)
>>> X = rng.random_sample((10, 3)) # 10 points in 3 dimensions
>>> tree = KDTree(X, leaf_size=2) # doctest: +SKIP
>>> s = pickle.dumps(tree) # doctest: +SKIP
>>> tree_copy = pickle.loads(s) # doctest: +SKIP
>>> dist, ind = tree_copy.query(X[:1], k=3) # doctest: +SKIP
>>> print(ind) # indices of 3 closest neighbors
[0 3 1]
>>> print(dist) # distances to 3 closest neighbors
[0. 0.19662693 0.29473397]

Query for neighbors within a given radius

>>> import numpy as np
>>> rng = np.random.RandomState(0)
>>> X = rng.random_sample((10, 3)) # 10 points in 3 dimensions
>>> tree = KDTree(X, leaf_size=2) # doctest: +SKIP
>>> print(tree.query_radius(X[:1], r=0.3, count_only=True))
3
>>> ind = tree.query_radius(X[:1], r=0.3) # doctest: +SKIP
>>> print(ind) # indices of neighbors within distance 0.3
[3 0 1]

Compute a gaussian kernel density estimate:

>>> import numpy as np
>>> rng = np.random.RandomState(42)
>>> X = rng.random_sample((100, 3))
>>> tree = KDTree(X) # doctest: +SKIP
>>> tree.kernel_density(X[:3], h=0.1, kernel='gaussian')
array([6.94114649, 7.83281226, 7.2071716])

Compute a two-point auto-correlation function

>>> import numpy as np
>>> rng = np.random.RandomState(0)

(continues on next page)

7.30. sklearn.neighbors: Nearest Neighbors 2401

scikit-learn user guide, Release 0.23.2

(continued from previous page)

>>> X = rng.random_sample((30, 3))
>>> r = np.linspace(0, 1, 5)
>>> tree = KDTree(X) # doctest: +SKIP
>>> tree.two_point_correlation(X, r)
array([30, 62, 278, 580, 820])

Methods

get_arrays(self) Get data and node arrays.
get_n_calls(self) Get number of calls.
get_tree_stats(self) Get tree status.
kernel_density(self, X, h[, kernel, atol, . . .]) Compute the kernel density estimate at points X with

the given kernel, using the distance metric specified
at tree creation.

query(X[, k, return_distance, dualtree, . . .]) query the tree for the k nearest neighbors
query_radius(X, r[, return_distance, . . .]) query the tree for neighbors within a radius r
reset_n_calls(self) Reset number of calls to 0.
two_point_correlation(X, r[, dualtree]) Compute the two-point correlation function

__init__(*args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

get_arrays(self)
Get data and node arrays.

Returns

arrays: tuple of array Arrays for storing tree data, index, node data and node bounds.

get_n_calls(self)
Get number of calls.

Returns

n_calls: int number of distance computation calls

get_tree_stats(self)
Get tree status.

Returns

tree_stats: tuple of int (number of trims, number of leaves, number of splits)

kernel_density(self, X, h, kernel=’gaussian’, atol=0, rtol=1E-8, breadth_first=True, re-
turn_log=False)

Compute the kernel density estimate at points X with the given kernel, using the distance metric specified
at tree creation.

Parameters

X [array-like of shape (n_samples, n_features)] An array of points to query. Last dimension
should match dimension of training data.

h [float] the bandwidth of the kernel

kernel [str, default=”gaussian”] specify the kernel to use. Options are - ‘gaussian’ - ‘tophat’
- ‘epanechnikov’ - ‘exponential’ - ‘linear’ - ‘cosine’ Default is kernel = ‘gaussian’

2402 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

atol, rtol [float, default=0, 1e-8] Specify the desired relative and absolute tolerance of the
result. If the true result is K_true, then the returned result K_ret satisfies abs(K_true
- K_ret) < atol + rtol * K_ret The default is zero (i.e. machine precision)
for both.

breadth_first [bool, default=False] If True, use a breadth-first search. If False (default)
use a depth-first search. Breadth-first is generally faster for compact kernels and/or high
tolerances.

return_log [bool, default=False] Return the logarithm of the result. This can be more accu-
rate than returning the result itself for narrow kernels.

Returns

density [ndarray of shape X.shape[:-1]] The array of (log)-density evaluations

query(X, k=1, return_distance=True, dualtree=False, breadth_first=False)
query the tree for the k nearest neighbors

Parameters

X [array-like of shape (n_samples, n_features)] An array of points to query

k [int, default=1] The number of nearest neighbors to return

return_distance [bool, default=True] if True, return a tuple (d, i) of distances and indices if
False, return array i

dualtree [bool, default=False] if True, use the dual tree formalism for the query: a tree is
built for the query points, and the pair of trees is used to efficiently search this space. This
can lead to better performance as the number of points grows large.

breadth_first [bool, default=False] if True, then query the nodes in a breadth-first manner.
Otherwise, query the nodes in a depth-first manner.

sort_results [bool, default=True] if True, then distances and indices of each point are sorted
on return, so that the first column contains the closest points. Otherwise, neighbors are
returned in an arbitrary order.

Returns

i [if return_distance == False]

(d,i) [if return_distance == True]

d [ndarray of shape X.shape[:-1] + k, dtype=double] Each entry gives the list of distances to
the neighbors of the corresponding point.

i [ndarray of shape X.shape[:-1] + k, dtype=int] Each entry gives the list of indices of neigh-
bors of the corresponding point.

query_radius(X, r, return_distance=False, count_only=False, sort_results=False)
query the tree for neighbors within a radius r

Parameters

X [array-like of shape (n_samples, n_features)] An array of points to query

r [distance within which neighbors are returned] r can be a single value, or an array of values
of shape x.shape[:-1] if different radii are desired for each point.

return_distance [bool, default=False] if True, return distances to neighbors of each
point if False, return only neighbors Note that unlike the query() method, setting re-
turn_distance=True here adds to the computation time. Not all distances need to be

7.30. sklearn.neighbors: Nearest Neighbors 2403

scikit-learn user guide, Release 0.23.2

calculated explicitly for return_distance=False. Results are not sorted by default: see
sort_results keyword.

count_only [bool, default=False] if True, return only the count of points within distance r
if False, return the indices of all points within distance r If return_distance==True, setting
count_only=True will result in an error.

sort_results [bool, default=False] if True, the distances and indices will be sorted before
being returned. If False, the results will not be sorted. If return_distance == False, setting
sort_results = True will result in an error.

Returns

count [if count_only == True]

ind [if count_only == False and return_distance == False]

(ind, dist) [if count_only == False and return_distance == True]

count [ndarray of shape X.shape[:-1], dtype=int] Each entry gives the number of neighbors
within a distance r of the corresponding point.

ind [ndarray of shape X.shape[:-1], dtype=object] Each element is a numpy integer array
listing the indices of neighbors of the corresponding point. Note that unlike the results of
a k-neighbors query, the returned neighbors are not sorted by distance by default.

dist [ndarray of shape X.shape[:-1], dtype=object] Each element is a numpy double array
listing the distances corresponding to indices in i.

reset_n_calls(self)
Reset number of calls to 0.

two_point_correlation(X, r, dualtree=False)
Compute the two-point correlation function

Parameters

X [array-like of shape (n_samples, n_features)] An array of points to query. Last dimension
should match dimension of training data.

r [array-like] A one-dimensional array of distances

dualtree [bool, default=False] If True, use a dualtree algorithm. Otherwise, use a single-tree
algorithm. Dual tree algorithms can have better scaling for large N.

Returns

counts [ndarray] counts[i] contains the number of pairs of points with distance less than or
equal to r[i]

7.30.4 sklearn.neighbors.KernelDensity

class sklearn.neighbors.KernelDensity(*, bandwidth=1.0, algorithm=’auto’, ker-
nel=’gaussian’, metric=’euclidean’, atol=0,
rtol=0, breadth_first=True, leaf_size=40, met-
ric_params=None)

Kernel Density Estimation.

Read more in the User Guide.

Parameters

bandwidth [float] The bandwidth of the kernel.

2404 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

algorithm [str] The tree algorithm to use. Valid options are [‘kd_tree’|’ball_tree’|’auto’]. De-
fault is ‘auto’.

kernel [str] The kernel to use. Valid kernels are [‘gaus-
sian’|’tophat’|’epanechnikov’|’exponential’|’linear’|’cosine’] Default is ‘gaussian’.

metric [str] The distance metric to use. Note that not all metrics are valid with all algorithms.
Refer to the documentation of BallTree and KDTree for a description of available algo-
rithms. Note that the normalization of the density output is correct only for the Euclidean
distance metric. Default is ‘euclidean’.

atol [float] The desired absolute tolerance of the result. A larger tolerance will generally lead
to faster execution. Default is 0.

rtol [float] The desired relative tolerance of the result. A larger tolerance will generally lead to
faster execution. Default is 1E-8.

breadth_first [bool] If true (default), use a breadth-first approach to the problem. Otherwise
use a depth-first approach.

leaf_size [int] Specify the leaf size of the underlying tree. See BallTree or KDTree for
details. Default is 40.

metric_params [dict] Additional parameters to be passed to the tree for use with the metric.
For more information, see the documentation of BallTree or KDTree.

See also:

sklearn.neighbors.KDTree K-dimensional tree for fast generalized N-point problems.

sklearn.neighbors.BallTree Ball tree for fast generalized N-point problems.

Examples

Compute a gaussian kernel density estimate with a fixed bandwidth. >>> import numpy as np
>>> rng = np.random.RandomState(42) >>> X = rng.random_sample((100, 3)) >>> kde = KernelDen-
sity(kernel=’gaussian’, bandwidth=0.5).fit(X) >>> log_density = kde.score_samples(X[:3]) >>> log_density
array([-1.52955942, -1.51462041, -1.60244657])

Methods

fit(X[, y, sample_weight]) Fit the Kernel Density model on the data.
get_params([deep]) Get parameters for this estimator.
sample([n_samples, random_state]) Generate random samples from the model.
score(X[, y]) Compute the total log probability density under the

model.
score_samples(X) Evaluate the log density model on the data.
set_params(**params) Set the parameters of this estimator.

__init__(*, bandwidth=1.0, algorithm=’auto’, kernel=’gaussian’, metric=’euclidean’, atol=0,
rtol=0, breadth_first=True, leaf_size=40, metric_params=None)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None, sample_weight=None)
Fit the Kernel Density model on the data.

Parameters

7.30. sklearn.neighbors: Nearest Neighbors 2405

scikit-learn user guide, Release 0.23.2

X [array_like, shape (n_samples, n_features)] List of n_features-dimensional data points.
Each row corresponds to a single data point.

y [None] Ignored. This parameter exists only for compatibility with sklearn.
pipeline.Pipeline.

sample_weight [array_like, shape (n_samples,), optional] List of sample weights attached
to the data X.

New in version 0.20.

Returns

self [object] Returns instance of object.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

sample(n_samples=1, random_state=None)
Generate random samples from the model.

Currently, this is implemented only for gaussian and tophat kernels.

Parameters

n_samples [int, optional] Number of samples to generate. Defaults to 1.

random_state [int, RandomState instance, default=None] Determines random number gen-
eration used to generate random samples. Pass an int for reproducible results across mul-
tiple function calls. See :term: Glossary <random_state>.

Returns

X [array_like, shape (n_samples, n_features)] List of samples.

score(X, y=None)
Compute the total log probability density under the model.

Parameters

X [array_like, shape (n_samples, n_features)] List of n_features-dimensional data points.
Each row corresponds to a single data point.

y [None] Ignored. This parameter exists only for compatibility with sklearn.
pipeline.Pipeline.

Returns

logprob [float] Total log-likelihood of the data in X. This is normalized to be a probability
density, so the value will be low for high-dimensional data.

score_samples(X)
Evaluate the log density model on the data.

Parameters

X [array_like, shape (n_samples, n_features)] An array of points to query. Last dimension
should match dimension of training data (n_features).

2406 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Returns

density [ndarray, shape (n_samples,)] The array of log(density) evaluations. These are nor-
malized to be probability densities, so values will be low for high-dimensional data.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.neighbors.KernelDensity

• Kernel Density Estimation

• Kernel Density Estimate of Species Distributions

• Simple 1D Kernel Density Estimation

7.30.5 sklearn.neighbors.KNeighborsClassifier

class sklearn.neighbors.KNeighborsClassifier(n_neighbors=5, *, weights=’uniform’,
algorithm=’auto’, leaf_size=30, p=2, met-
ric=’minkowski’, metric_params=None,
n_jobs=None, **kwargs)

Classifier implementing the k-nearest neighbors vote.

Read more in the User Guide.

Parameters

n_neighbors [int, default=5] Number of neighbors to use by default for kneighbors queries.

weights [{‘uniform’, ‘distance’} or callable, default=’uniform’] weight function used in pre-
diction. Possible values:

• ‘uniform’ : uniform weights. All points in each neighborhood are weighted equally.

• ‘distance’ : weight points by the inverse of their distance. in this case, closer neighbors
of a query point will have a greater influence than neighbors which are further away.

• [callable] : a user-defined function which accepts an array of distances, and returns an
array of the same shape containing the weights.

algorithm [{‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, default=’auto’] Algorithm used to compute
the nearest neighbors:

• ‘ball_tree’ will use BallTree

• ‘kd_tree’ will use KDTree

• ‘brute’ will use a brute-force search.

7.30. sklearn.neighbors: Nearest Neighbors 2407

scikit-learn user guide, Release 0.23.2

• ‘auto’ will attempt to decide the most appropriate algorithm based on the values passed
to fit method.

Note: fitting on sparse input will override the setting of this parameter, using brute force.

leaf_size [int, default=30] Leaf size passed to BallTree or KDTree. This can affect the speed of
the construction and query, as well as the memory required to store the tree. The optimal
value depends on the nature of the problem.

p [int, default=2] Power parameter for the Minkowski metric. When p = 1, this is equivalent
to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p,
minkowski_distance (l_p) is used.

metric [str or callable, default=’minkowski’] the distance metric to use for the tree. The default
metric is minkowski, and with p=2 is equivalent to the standard Euclidean metric. See the
documentation of DistanceMetric for a list of available metrics. If metric is “precom-
puted”, X is assumed to be a distance matrix and must be square during fit. X may be a
sparse graph, in which case only “nonzero” elements may be considered neighbors.

metric_params [dict, default=None] Additional keyword arguments for the metric function.

n_jobs [int, default=None] The number of parallel jobs to run for neighbors search. None
means 1 unless in a joblib.parallel_backend context. -1 means using all proces-
sors. See Glossary for more details. Doesn’t affect fit method.

Attributes

classes_ [array of shape (n_classes,)] Class labels known to the classifier

effective_metric_ [str or callble] The distance metric used. It will be same as the metric
parameter or a synonym of it, e.g. ‘euclidean’ if the metric parameter set to ‘minkowski’
and p parameter set to 2.

effective_metric_params_ [dict] Additional keyword arguments for the metric function. For
most metrics will be same with metric_params parameter, but may also contain the p
parameter value if the effective_metric_ attribute is set to ‘minkowski’.

outputs_2d_ [bool] False when y’s shape is (n_samples,) or (n_samples, 1) during fit otherwise
True.

See also:

RadiusNeighborsClassifier

KNeighborsRegressor

RadiusNeighborsRegressor

NearestNeighbors

Notes

See Nearest Neighbors in the online documentation for a discussion of the choice of algorithm and
leaf_size.

Warning: Regarding the Nearest Neighbors algorithms, if it is found that two neighbors, neighbor k+1 and
k, have identical distances but different labels, the results will depend on the ordering of the training data.

https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

2408 Chapter 7. API Reference

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend
https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

scikit-learn user guide, Release 0.23.2

Examples

>>> X = [[0], [1], [2], [3]]
>>> y = [0, 0, 1, 1]
>>> from sklearn.neighbors import KNeighborsClassifier
>>> neigh = KNeighborsClassifier(n_neighbors=3)
>>> neigh.fit(X, y)
KNeighborsClassifier(...)
>>> print(neigh.predict([[1.1]]))
[0]
>>> print(neigh.predict_proba([[0.9]]))
[[0.66666667 0.33333333]]

Methods

fit(X, y) Fit the model using X as training data and y as target
values

get_params([deep]) Get parameters for this estimator.
kneighbors([X, n_neighbors, return_distance]) Finds the K-neighbors of a point.
kneighbors_graph([X, n_neighbors, mode]) Computes the (weighted) graph of k-Neighbors for

points in X
predict(X) Predict the class labels for the provided data.
predict_proba(X) Return probability estimates for the test data X.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(n_neighbors=5, *, weights=’uniform’, algorithm=’auto’, leaf_size=30, p=2, met-
ric=’minkowski’, metric_params=None, n_jobs=None, **kwargs)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y)
Fit the model using X as training data and y as target values

Parameters

X [{array-like, sparse matrix, BallTree, KDTree}] Training data. If array or matrix, shape
[n_samples, n_features], or [n_samples, n_samples] if metric=’precomputed’.

y [{array-like, sparse matrix}] Target values of shape = [n_samples] or [n_samples,
n_outputs]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

kneighbors(X=None, n_neighbors=None, return_distance=True)
Finds the K-neighbors of a point. Returns indices of and distances to the neighbors of each point.

Parameters

7.30. sklearn.neighbors: Nearest Neighbors 2409

scikit-learn user guide, Release 0.23.2

X [array-like, shape (n_queries, n_features), or (n_queries, n_indexed) if metric == ‘pre-
computed’] The query point or points. If not provided, neighbors of each indexed point
are returned. In this case, the query point is not considered its own neighbor.

n_neighbors [int] Number of neighbors to get (default is the value passed to the construc-
tor).

return_distance [boolean, optional. Defaults to True.] If False, distances will not be re-
turned

Returns

neigh_dist [array, shape (n_queries, n_neighbors)] Array representing the lengths to points,
only present if return_distance=True

neigh_ind [array, shape (n_queries, n_neighbors)] Indices of the nearest points in the popu-
lation matrix.

Examples

In the following example, we construct a NearestNeighbors class from an array representing our data set
and ask who’s the closest point to [1,1,1]

>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=1)
>>> neigh.fit(samples)
NearestNeighbors(n_neighbors=1)
>>> print(neigh.kneighbors([[1., 1., 1.]]))
(array([[0.5]]), array([[2]]))

As you can see, it returns [[0.5]], and [[2]], which means that the element is at distance 0.5 and is the third
element of samples (indexes start at 0). You can also query for multiple points:

>>> X = [[0., 1., 0.], [1., 0., 1.]]
>>> neigh.kneighbors(X, return_distance=False)
array([[1],

[2]]...)

kneighbors_graph(X=None, n_neighbors=None, mode=’connectivity’)
Computes the (weighted) graph of k-Neighbors for points in X

Parameters

X [array-like, shape (n_queries, n_features), or (n_queries, n_indexed) if metric == ‘pre-
computed’] The query point or points. If not provided, neighbors of each indexed point
are returned. In this case, the query point is not considered its own neighbor.

n_neighbors [int] Number of neighbors for each sample. (default is value passed to the
constructor).

mode [{‘connectivity’, ‘distance’}, optional] Type of returned matrix: ‘connectivity’ will
return the connectivity matrix with ones and zeros, in ‘distance’ the edges are Euclidean
distance between points.

Returns

A [sparse graph in CSR format, shape = [n_queries, n_samples_fit]] n_samples_fit is the
number of samples in the fitted data A[i, j] is assigned the weight of edge that connects i
to j.

2410 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

See also:

NearestNeighbors.radius_neighbors_graph

Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=2)
>>> neigh.fit(X)
NearestNeighbors(n_neighbors=2)
>>> A = neigh.kneighbors_graph(X)
>>> A.toarray()
array([[1., 0., 1.],

[0., 1., 1.],
[1., 0., 1.]])

predict(X)
Predict the class labels for the provided data.

Parameters

X [array-like of shape (n_queries, n_features), or (n_queries, n_indexed) if metric == ‘pre-
computed’] Test samples.

Returns

y [ndarray of shape (n_queries,) or (n_queries, n_outputs)] Class labels for each data sample.

predict_proba(X)
Return probability estimates for the test data X.

Parameters

X [array-like of shape (n_queries, n_features), or (n_queries, n_indexed) if metric == ‘pre-
computed’] Test samples.

Returns

p [ndarray of shape (n_queries, n_classes), or a list of n_outputs] of such arrays if n_outputs
> 1. The class probabilities of the input samples. Classes are ordered by lexicographic
order.

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

7.30. sklearn.neighbors: Nearest Neighbors 2411

scikit-learn user guide, Release 0.23.2

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.neighbors.KNeighborsClassifier

• Classifier comparison

• Plot the decision boundaries of a VotingClassifier

• Nearest Neighbors Classification

• Caching nearest neighbors

• Comparing Nearest Neighbors with and without Neighborhood Components Analysis

• Dimensionality Reduction with Neighborhood Components Analysis

• Digits Classification Exercise

• Classification of text documents using sparse features

7.30.6 sklearn.neighbors.KNeighborsRegressor

class sklearn.neighbors.KNeighborsRegressor(n_neighbors=5, *, weights=’uniform’,
algorithm=’auto’, leaf_size=30, p=2, met-
ric=’minkowski’, metric_params=None,
n_jobs=None, **kwargs)

Regression based on k-nearest neighbors.

The target is predicted by local interpolation of the targets associated of the nearest neighbors in the training set.

Read more in the User Guide.

New in version 0.9.

Parameters

n_neighbors [int, default=5] Number of neighbors to use by default for kneighbors queries.

weights [{‘uniform’, ‘distance’} or callable, default=’uniform’] weight function used in pre-
diction. Possible values:

• ‘uniform’ : uniform weights. All points in each neighborhood are weighted equally.

• ‘distance’ : weight points by the inverse of their distance. in this case, closer neighbors
of a query point will have a greater influence than neighbors which are further away.

• [callable] : a user-defined function which accepts an array of distances, and returns an
array of the same shape containing the weights.

Uniform weights are used by default.

2412 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

algorithm [{‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, default=’auto’] Algorithm used to compute
the nearest neighbors:

• ‘ball_tree’ will use BallTree

• ‘kd_tree’ will use KDTree

• ‘brute’ will use a brute-force search.

• ‘auto’ will attempt to decide the most appropriate algorithm based on the values passed
to fit method.

Note: fitting on sparse input will override the setting of this parameter, using brute force.

leaf_size [int, default=30] Leaf size passed to BallTree or KDTree. This can affect the speed of
the construction and query, as well as the memory required to store the tree. The optimal
value depends on the nature of the problem.

p [int, default=2] Power parameter for the Minkowski metric. When p = 1, this is equivalent
to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p,
minkowski_distance (l_p) is used.

metric [str or callable, default=’minkowski’] the distance metric to use for the tree. The default
metric is minkowski, and with p=2 is equivalent to the standard Euclidean metric. See the
documentation of DistanceMetric for a list of available metrics. If metric is “precom-
puted”, X is assumed to be a distance matrix and must be square during fit. X may be a
sparse graph, in which case only “nonzero” elements may be considered neighbors.

metric_params [dict, default=None] Additional keyword arguments for the metric function.

n_jobs [int, default=None] The number of parallel jobs to run for neighbors search. None
means 1 unless in a joblib.parallel_backend context. -1 means using all proces-
sors. See Glossary for more details. Doesn’t affect fit method.

Attributes

effective_metric_ [str or callable] The distance metric to use. It will be same as the metric
parameter or a synonym of it, e.g. ‘euclidean’ if the metric parameter set to ‘minkowski’
and p parameter set to 2.

effective_metric_params_ [dict] Additional keyword arguments for the metric function. For
most metrics will be same with metric_params parameter, but may also contain the p
parameter value if the effective_metric_ attribute is set to ‘minkowski’.

See also:

NearestNeighbors

RadiusNeighborsRegressor

KNeighborsClassifier

RadiusNeighborsClassifier

Notes

See Nearest Neighbors in the online documentation for a discussion of the choice of algorithm and
leaf_size.

7.30. sklearn.neighbors: Nearest Neighbors 2413

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

Warning: Regarding the Nearest Neighbors algorithms, if it is found that two neighbors, neighbor k+1 and
k, have identical distances but different labels, the results will depend on the ordering of the training data.

https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

Examples

>>> X = [[0], [1], [2], [3]]
>>> y = [0, 0, 1, 1]
>>> from sklearn.neighbors import KNeighborsRegressor
>>> neigh = KNeighborsRegressor(n_neighbors=2)
>>> neigh.fit(X, y)
KNeighborsRegressor(...)
>>> print(neigh.predict([[1.5]]))
[0.5]

Methods

fit(X, y) Fit the model using X as training data and y as target
values

get_params([deep]) Get parameters for this estimator.
kneighbors([X, n_neighbors, return_distance]) Finds the K-neighbors of a point.
kneighbors_graph([X, n_neighbors, mode]) Computes the (weighted) graph of k-Neighbors for

points in X
predict(X) Predict the target for the provided data
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.

__init__(n_neighbors=5, *, weights=’uniform’, algorithm=’auto’, leaf_size=30, p=2, met-
ric=’minkowski’, metric_params=None, n_jobs=None, **kwargs)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y)
Fit the model using X as training data and y as target values

Parameters

X [{array-like, sparse matrix, BallTree, KDTree}] Training data. If array or matrix, shape
[n_samples, n_features], or [n_samples, n_samples] if metric=’precomputed’.

y [{array-like, sparse matrix}]

Target values, array of float values, shape = [n_samples] or [n_samples, n_outputs]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

2414 Chapter 7. API Reference

https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

scikit-learn user guide, Release 0.23.2

params [mapping of string to any] Parameter names mapped to their values.

kneighbors(X=None, n_neighbors=None, return_distance=True)
Finds the K-neighbors of a point. Returns indices of and distances to the neighbors of each point.

Parameters

X [array-like, shape (n_queries, n_features), or (n_queries, n_indexed) if metric == ‘pre-
computed’] The query point or points. If not provided, neighbors of each indexed point
are returned. In this case, the query point is not considered its own neighbor.

n_neighbors [int] Number of neighbors to get (default is the value passed to the construc-
tor).

return_distance [boolean, optional. Defaults to True.] If False, distances will not be re-
turned

Returns

neigh_dist [array, shape (n_queries, n_neighbors)] Array representing the lengths to points,
only present if return_distance=True

neigh_ind [array, shape (n_queries, n_neighbors)] Indices of the nearest points in the popu-
lation matrix.

Examples

In the following example, we construct a NearestNeighbors class from an array representing our data set
and ask who’s the closest point to [1,1,1]

>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=1)
>>> neigh.fit(samples)
NearestNeighbors(n_neighbors=1)
>>> print(neigh.kneighbors([[1., 1., 1.]]))
(array([[0.5]]), array([[2]]))

As you can see, it returns [[0.5]], and [[2]], which means that the element is at distance 0.5 and is the third
element of samples (indexes start at 0). You can also query for multiple points:

>>> X = [[0., 1., 0.], [1., 0., 1.]]
>>> neigh.kneighbors(X, return_distance=False)
array([[1],

[2]]...)

kneighbors_graph(X=None, n_neighbors=None, mode=’connectivity’)
Computes the (weighted) graph of k-Neighbors for points in X

Parameters

X [array-like, shape (n_queries, n_features), or (n_queries, n_indexed) if metric == ‘pre-
computed’] The query point or points. If not provided, neighbors of each indexed point
are returned. In this case, the query point is not considered its own neighbor.

n_neighbors [int] Number of neighbors for each sample. (default is value passed to the
constructor).

mode [{‘connectivity’, ‘distance’}, optional] Type of returned matrix: ‘connectivity’ will
return the connectivity matrix with ones and zeros, in ‘distance’ the edges are Euclidean
distance between points.

7.30. sklearn.neighbors: Nearest Neighbors 2415

scikit-learn user guide, Release 0.23.2

Returns

A [sparse graph in CSR format, shape = [n_queries, n_samples_fit]] n_samples_fit is the
number of samples in the fitted data A[i, j] is assigned the weight of edge that connects i
to j.

See also:

NearestNeighbors.radius_neighbors_graph

Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=2)
>>> neigh.fit(X)
NearestNeighbors(n_neighbors=2)
>>> A = neigh.kneighbors_graph(X)
>>> A.toarray()
array([[1., 0., 1.],

[0., 1., 1.],
[1., 0., 1.]])

predict(X)
Predict the target for the provided data

Parameters

X [array-like of shape (n_queries, n_features), or (n_queries, n_indexed) if metric == ‘pre-
computed’] Test samples.

Returns

y [ndarray of shape (n_queries,) or (n_queries, n_outputs), dtype=int] Target values.

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

2416 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.neighbors.KNeighborsRegressor

• Face completion with a multi-output estimators

• Imputing missing values with variants of IterativeImputer

• Nearest Neighbors regression

7.30.7 sklearn.neighbors.KNeighborsTransformer

class sklearn.neighbors.KNeighborsTransformer(*, mode=’distance’, n_neighbors=5,
algorithm=’auto’, leaf_size=30,
metric=’minkowski’, p=2, met-
ric_params=None, n_jobs=1)

Transform X into a (weighted) graph of k nearest neighbors

The transformed data is a sparse graph as returned by kneighbors_graph.

Read more in the User Guide.

New in version 0.22.

Parameters

mode [{‘distance’, ‘connectivity’}, default=’distance’] Type of returned matrix: ‘connectivity’
will return the connectivity matrix with ones and zeros, and ‘distance’ will return the dis-
tances between neighbors according to the given metric.

n_neighbors [int, default=5] Number of neighbors for each sample in the transformed sparse
graph. For compatibility reasons, as each sample is considered as its own neighbor, one
extra neighbor will be computed when mode == ‘distance’. In this case, the sparse graph
contains (n_neighbors + 1) neighbors.

algorithm [{‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, default=’auto’] Algorithm used to compute
the nearest neighbors:

• ‘ball_tree’ will use BallTree

• ‘kd_tree’ will use KDTree

7.30. sklearn.neighbors: Nearest Neighbors 2417

scikit-learn user guide, Release 0.23.2

• ‘brute’ will use a brute-force search.

• ‘auto’ will attempt to decide the most appropriate algorithm based on the values passed
to fit method.

Note: fitting on sparse input will override the setting of this parameter, using brute force.

leaf_size [int, default=30] Leaf size passed to BallTree or KDTree. This can affect the speed of
the construction and query, as well as the memory required to store the tree. The optimal
value depends on the nature of the problem.

metric [str or callable, default=’minkowski’] metric to use for distance computation. Any met-
ric from scikit-learn or scipy.spatial.distance can be used.

If metric is a callable function, it is called on each pair of instances (rows) and the resulting
value recorded. The callable should take two arrays as input and return one value indicating
the distance between them. This works for Scipy’s metrics, but is less efficient than passing
the metric name as a string.

Distance matrices are not supported.

Valid values for metric are:

• from scikit-learn: [‘cityblock’, ‘cosine’, ‘euclidean’, ‘l1’, ‘l2’, ‘manhattan’]

• from scipy.spatial.distance: [‘braycurtis’, ‘canberra’, ‘chebyshev’, ‘correlation’, ‘dice’,
‘hamming’, ‘jaccard’, ‘kulsinski’, ‘mahalanobis’, ‘minkowski’, ‘rogerstanimoto’, ‘rus-
sellrao’, ‘seuclidean’, ‘sokalmichener’, ‘sokalsneath’, ‘sqeuclidean’, ‘yule’]

See the documentation for scipy.spatial.distance for details on these metrics.

p [int, default=2] Parameter for the Minkowski metric from
sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is equivalent to us-
ing manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p,
minkowski_distance (l_p) is used.

metric_params [dict, default=None] Additional keyword arguments for the metric function.

n_jobs [int, default=1] The number of parallel jobs to run for neighbors search. If -1, then the
number of jobs is set to the number of CPU cores.

Examples

>>> from sklearn.manifold import Isomap
>>> from sklearn.neighbors import KNeighborsTransformer
>>> from sklearn.pipeline import make_pipeline
>>> estimator = make_pipeline(
... KNeighborsTransformer(n_neighbors=5, mode='distance'),
... Isomap(neighbors_algorithm='precomputed'))

Methods

fit(X[, y]) Fit the model using X as training data
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
kneighbors([X, n_neighbors, return_distance]) Finds the K-neighbors of a point.

Continued on next page

2418 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Table 250 – continued from previous page
kneighbors_graph([X, n_neighbors, mode]) Computes the (weighted) graph of k-Neighbors for

points in X
set_params(**params) Set the parameters of this estimator.
transform(X) Computes the (weighted) graph of Neighbors for

points in X

__init__(*, mode=’distance’, n_neighbors=5, algorithm=’auto’, leaf_size=30, metric=’minkowski’,
p=2, metric_params=None, n_jobs=1)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Fit the model using X as training data

Parameters

X [{array-like, sparse matrix, BallTree, KDTree}] Training data. If array or matrix, shape
[n_samples, n_features], or [n_samples, n_samples] if metric=’precomputed’.

fit_transform(X, y=None)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [array-like of shape (n_samples, n_features)] Training set.

y [ignored]

Returns

Xt [sparse matrix of shape (n_samples, n_samples)] Xt[i, j] is assigned the weight of edge
that connects i to j. Only the neighbors have an explicit value. The diagonal is always
explicit. The matrix is of CSR format.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

kneighbors(X=None, n_neighbors=None, return_distance=True)
Finds the K-neighbors of a point. Returns indices of and distances to the neighbors of each point.

Parameters

X [array-like, shape (n_queries, n_features), or (n_queries, n_indexed) if metric == ‘pre-
computed’] The query point or points. If not provided, neighbors of each indexed point
are returned. In this case, the query point is not considered its own neighbor.

n_neighbors [int] Number of neighbors to get (default is the value passed to the construc-
tor).

return_distance [boolean, optional. Defaults to True.] If False, distances will not be re-
turned

Returns

7.30. sklearn.neighbors: Nearest Neighbors 2419

scikit-learn user guide, Release 0.23.2

neigh_dist [array, shape (n_queries, n_neighbors)] Array representing the lengths to points,
only present if return_distance=True

neigh_ind [array, shape (n_queries, n_neighbors)] Indices of the nearest points in the popu-
lation matrix.

Examples

In the following example, we construct a NearestNeighbors class from an array representing our data set
and ask who’s the closest point to [1,1,1]

>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=1)
>>> neigh.fit(samples)
NearestNeighbors(n_neighbors=1)
>>> print(neigh.kneighbors([[1., 1., 1.]]))
(array([[0.5]]), array([[2]]))

As you can see, it returns [[0.5]], and [[2]], which means that the element is at distance 0.5 and is the third
element of samples (indexes start at 0). You can also query for multiple points:

>>> X = [[0., 1., 0.], [1., 0., 1.]]
>>> neigh.kneighbors(X, return_distance=False)
array([[1],

[2]]...)

kneighbors_graph(X=None, n_neighbors=None, mode=’connectivity’)
Computes the (weighted) graph of k-Neighbors for points in X

Parameters

X [array-like, shape (n_queries, n_features), or (n_queries, n_indexed) if metric == ‘pre-
computed’] The query point or points. If not provided, neighbors of each indexed point
are returned. In this case, the query point is not considered its own neighbor.

n_neighbors [int] Number of neighbors for each sample. (default is value passed to the
constructor).

mode [{‘connectivity’, ‘distance’}, optional] Type of returned matrix: ‘connectivity’ will
return the connectivity matrix with ones and zeros, in ‘distance’ the edges are Euclidean
distance between points.

Returns

A [sparse graph in CSR format, shape = [n_queries, n_samples_fit]] n_samples_fit is the
number of samples in the fitted data A[i, j] is assigned the weight of edge that connects i
to j.

See also:

NearestNeighbors.radius_neighbors_graph

Examples

2420 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=2)
>>> neigh.fit(X)
NearestNeighbors(n_neighbors=2)
>>> A = neigh.kneighbors_graph(X)
>>> A.toarray()
array([[1., 0., 1.],

[0., 1., 1.],
[1., 0., 1.]])

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Computes the (weighted) graph of Neighbors for points in X

Parameters

X [array-like of shape (n_samples_transform, n_features)] Sample data.

Returns

Xt [sparse matrix of shape (n_samples_transform, n_samples_fit)] Xt[i, j] is assigned the
weight of edge that connects i to j. Only the neighbors have an explicit value. The diagonal
is always explicit. The matrix is of CSR format.

Examples using sklearn.neighbors.KNeighborsTransformer

• Approximate nearest neighbors in TSNE

7.30.8 sklearn.neighbors.LocalOutlierFactor

class sklearn.neighbors.LocalOutlierFactor(n_neighbors=20, *, algorithm=’auto’,
leaf_size=30, metric=’minkowski’, p=2,
metric_params=None, contamination=’auto’,
novelty=False, n_jobs=None)

Unsupervised Outlier Detection using Local Outlier Factor (LOF)

The anomaly score of each sample is called Local Outlier Factor. It measures the local deviation of density of
a given sample with respect to its neighbors. It is local in that the anomaly score depends on how isolated the
object is with respect to the surrounding neighborhood. More precisely, locality is given by k-nearest neighbors,
whose distance is used to estimate the local density. By comparing the local density of a sample to the local
densities of its neighbors, one can identify samples that have a substantially lower density than their neighbors.
These are considered outliers.

New in version 0.19.

7.30. sklearn.neighbors: Nearest Neighbors 2421

scikit-learn user guide, Release 0.23.2

Parameters

n_neighbors [int, default=20] Number of neighbors to use by default for kneighbors
queries. If n_neighbors is larger than the number of samples provided, all samples will
be used.

algorithm [{‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, default=’auto’] Algorithm used to compute
the nearest neighbors:

• ‘ball_tree’ will use BallTree

• ‘kd_tree’ will use KDTree

• ‘brute’ will use a brute-force search.

• ‘auto’ will attempt to decide the most appropriate algorithm based on the values passed
to fit method.

Note: fitting on sparse input will override the setting of this parameter, using brute force.

leaf_size [int, default=30] Leaf size passed to BallTree or KDTree. This can affect the
speed of the construction and query, as well as the memory required to store the tree. The
optimal value depends on the nature of the problem.

metric [str or callable, default=’minkowski’] metric used for the distance computation. Any
metric from scikit-learn or scipy.spatial.distance can be used.

If metric is “precomputed”, X is assumed to be a distance matrix and must be square. X may
be a sparse matrix, in which case only “nonzero” elements may be considered neighbors.

If metric is a callable function, it is called on each pair of instances (rows) and the resulting
value recorded. The callable should take two arrays as input and return one value indicating
the distance between them. This works for Scipy’s metrics, but is less efficient than passing
the metric name as a string.

Valid values for metric are:

• from scikit-learn: [‘cityblock’, ‘cosine’, ‘euclidean’, ‘l1’, ‘l2’, ‘manhattan’]

• from scipy.spatial.distance: [‘braycurtis’, ‘canberra’, ‘chebyshev’, ‘correlation’, ‘dice’,
‘hamming’, ‘jaccard’, ‘kulsinski’, ‘mahalanobis’, ‘minkowski’, ‘rogerstanimoto’, ‘rus-
sellrao’, ‘seuclidean’, ‘sokalmichener’, ‘sokalsneath’, ‘sqeuclidean’, ‘yule’]

See the documentation for scipy.spatial.distance for details on these metrics: https://docs.
scipy.org/doc/scipy/reference/spatial.distance.html

p [int, default=2] Parameter for the Minkowski metric from sklearn.metrics.
pairwise.pairwise_distances. When p = 1, this is equivalent to using manhat-
tan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance
(l_p) is used.

metric_params [dict, default=None] Additional keyword arguments for the metric function.

contamination [‘auto’ or float, default=’auto’] The amount of contamination of the data set,
i.e. the proportion of outliers in the data set. When fitting this is used to define the threshold
on the scores of the samples.

• if ‘auto’, the threshold is determined as in the original paper,

• if a float, the contamination should be in the range [0, 0.5].

Changed in version 0.22: The default value of contamination changed from 0.1 to
'auto'.

2422 Chapter 7. API Reference

https://docs.scipy.org/doc/scipy/reference/spatial.distance.html
https://docs.scipy.org/doc/scipy/reference/spatial.distance.html

scikit-learn user guide, Release 0.23.2

novelty [bool, default=False] By default, LocalOutlierFactor is only meant to be used for out-
lier detection (novelty=False). Set novelty to True if you want to use LocalOutlierFactor
for novelty detection. In this case be aware that that you should only use predict, deci-
sion_function and score_samples on new unseen data and not on the training set.

New in version 0.20.

n_jobs [int, default=None] The number of parallel jobs to run for neighbors search. None
means 1 unless in a joblib.parallel_backend context. -1 means using all proces-
sors. See Glossary for more details.

Attributes

negative_outlier_factor_ [ndarray of shape (n_samples,)] The opposite LOF of the training
samples. The higher, the more normal. Inliers tend to have a LOF score close to 1
(negative_outlier_factor_ close to -1), while outliers tend to have a larger LOF
score.

The local outlier factor (LOF) of a sample captures its supposed ‘degree of abnormality’.
It is the average of the ratio of the local reachability density of a sample and those of its
k-nearest neighbors.

n_neighbors_ [int] The actual number of neighbors used for kneighbors queries.

offset_ [float] Offset used to obtain binary labels from the raw scores. Observations having a
negative_outlier_factor smaller than offset_ are detected as abnormal. The offset is set to
-1.5 (inliers score around -1), except when a contamination parameter different than “auto”
is provided. In that case, the offset is defined in such a way we obtain the expected number
of outliers in training.

New in version 0.20.

References

[1]

Examples

>>> import numpy as np
>>> from sklearn.neighbors import LocalOutlierFactor
>>> X = [[-1.1], [0.2], [101.1], [0.3]]
>>> clf = LocalOutlierFactor(n_neighbors=2)
>>> clf.fit_predict(X)
array([1, 1, -1, 1])
>>> clf.negative_outlier_factor_
array([-0.9821..., -1.0370..., -73.3697..., -0.9821...])

Methods

fit(X[, y]) Fit the model using X as training data.
get_params([deep]) Get parameters for this estimator.
kneighbors([X, n_neighbors, return_distance]) Finds the K-neighbors of a point.
kneighbors_graph([X, n_neighbors, mode]) Computes the (weighted) graph of k-Neighbors for

points in X
Continued on next page

7.30. sklearn.neighbors: Nearest Neighbors 2423

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

Table 251 – continued from previous page
set_params(**params) Set the parameters of this estimator.

__init__(n_neighbors=20, *, algorithm=’auto’, leaf_size=30, metric=’minkowski’, p=2, met-
ric_params=None, contamination=’auto’, novelty=False, n_jobs=None)

Initialize self. See help(type(self)) for accurate signature.

property decision_function
Shifted opposite of the Local Outlier Factor of X.

Bigger is better, i.e. large values correspond to inliers.

Only available for novelty detection (when novelty is set to True). The shift offset allows a zero thresh-
old for being an outlier. The argument X is supposed to contain new data: if X contains a point from
training, it considers the later in its own neighborhood. Also, the samples in X are not considered in the
neighborhood of any point.

Parameters

X [array-like of shape (n_samples, n_features)] The query sample or samples to compute
the Local Outlier Factor w.r.t. the training samples.

Returns

shifted_opposite_lof_scores [ndarray of shape (n_samples,)] The shifted opposite of the
Local Outlier Factor of each input samples. The lower, the more abnormal. Negative
scores represent outliers, positive scores represent inliers.

fit(X, y=None)
Fit the model using X as training data.

Parameters

X [BallTree, KDTree or {array-like, sparse matrix} of shape (n_samples, n_features) or
(n_samples, n_samples)] Training data. If array or matrix, the shape is (n_samples,
n_features), or (n_samples, n_samples) if metric=’precomputed’.

y [Ignored] Not used, present for API consistency by convention.

Returns

self [object]

property fit_predict
Fits the model to the training set X and returns the labels.

Only available for novelty detection (when novelty is set to True). Label is 1 for an inlier and -1 for an
outlier according to the LOF score and the contamination parameter.

Parameters

X [array-like of shape (n_samples, n_features), default=None] The query sample or samples
to compute the Local Outlier Factor w.r.t. to the training samples.

y [Ignored] Not used, present for API consistency by convention.

Returns

is_inlier [ndarray of shape (n_samples,)] Returns -1 for anomalies/outliers and 1 for inliers.

get_params(deep=True)
Get parameters for this estimator.

Parameters

2424 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

kneighbors(X=None, n_neighbors=None, return_distance=True)
Finds the K-neighbors of a point. Returns indices of and distances to the neighbors of each point.

Parameters

X [array-like, shape (n_queries, n_features), or (n_queries, n_indexed) if metric == ‘pre-
computed’] The query point or points. If not provided, neighbors of each indexed point
are returned. In this case, the query point is not considered its own neighbor.

n_neighbors [int] Number of neighbors to get (default is the value passed to the construc-
tor).

return_distance [boolean, optional. Defaults to True.] If False, distances will not be re-
turned

Returns

neigh_dist [array, shape (n_queries, n_neighbors)] Array representing the lengths to points,
only present if return_distance=True

neigh_ind [array, shape (n_queries, n_neighbors)] Indices of the nearest points in the popu-
lation matrix.

Examples

In the following example, we construct a NearestNeighbors class from an array representing our data set
and ask who’s the closest point to [1,1,1]

>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=1)
>>> neigh.fit(samples)
NearestNeighbors(n_neighbors=1)
>>> print(neigh.kneighbors([[1., 1., 1.]]))
(array([[0.5]]), array([[2]]))

As you can see, it returns [[0.5]], and [[2]], which means that the element is at distance 0.5 and is the third
element of samples (indexes start at 0). You can also query for multiple points:

>>> X = [[0., 1., 0.], [1., 0., 1.]]
>>> neigh.kneighbors(X, return_distance=False)
array([[1],

[2]]...)

kneighbors_graph(X=None, n_neighbors=None, mode=’connectivity’)
Computes the (weighted) graph of k-Neighbors for points in X

Parameters

X [array-like, shape (n_queries, n_features), or (n_queries, n_indexed) if metric == ‘pre-
computed’] The query point or points. If not provided, neighbors of each indexed point
are returned. In this case, the query point is not considered its own neighbor.

7.30. sklearn.neighbors: Nearest Neighbors 2425

scikit-learn user guide, Release 0.23.2

n_neighbors [int] Number of neighbors for each sample. (default is value passed to the
constructor).

mode [{‘connectivity’, ‘distance’}, optional] Type of returned matrix: ‘connectivity’ will
return the connectivity matrix with ones and zeros, in ‘distance’ the edges are Euclidean
distance between points.

Returns

A [sparse graph in CSR format, shape = [n_queries, n_samples_fit]] n_samples_fit is the
number of samples in the fitted data A[i, j] is assigned the weight of edge that connects i
to j.

See also:

NearestNeighbors.radius_neighbors_graph

Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=2)
>>> neigh.fit(X)
NearestNeighbors(n_neighbors=2)
>>> A = neigh.kneighbors_graph(X)
>>> A.toarray()
array([[1., 0., 1.],

[0., 1., 1.],
[1., 0., 1.]])

property predict
Predict the labels (1 inlier, -1 outlier) of X according to LOF.

Only available for novelty detection (when novelty is set to True). This method allows to generalize
prediction to new observations (not in the training set).

Parameters

X [array-like of shape (n_samples, n_features)] The query sample or samples to compute
the Local Outlier Factor w.r.t. to the training samples.

Returns

is_inlier [ndarray of shape (n_samples,)] Returns -1 for anomalies/outliers and +1 for in-
liers.

property score_samples
Opposite of the Local Outlier Factor of X.

It is the opposite as bigger is better, i.e. large values correspond to inliers.

Only available for novelty detection (when novelty is set to True). The argument X is supposed to
contain new data: if X contains a point from training, it considers the later in its own neighborhood. Also,
the samples in X are not considered in the neighborhood of any point. The score_samples on training data
is available by considering the the negative_outlier_factor_ attribute.

Parameters

X [array-like of shape (n_samples, n_features)] The query sample or samples to compute
the Local Outlier Factor w.r.t. the training samples.

2426 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Returns

opposite_lof_scores [ndarray of shape (n_samples,)] The opposite of the Local Outlier Fac-
tor of each input samples. The lower, the more abnormal.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.neighbors.LocalOutlierFactor

• Comparing anomaly detection algorithms for outlier detection on toy datasets

• Outlier detection with Local Outlier Factor (LOF)

• Novelty detection with Local Outlier Factor (LOF)

7.30.9 sklearn.neighbors.RadiusNeighborsClassifier

class sklearn.neighbors.RadiusNeighborsClassifier(radius=1.0, *, weights=’uniform’,
algorithm=’auto’, leaf_size=30,
p=2, metric=’minkowski’,
outlier_label=None, met-
ric_params=None, n_jobs=None,
**kwargs)

Classifier implementing a vote among neighbors within a given radius

Read more in the User Guide.

Parameters

radius [float, default=1.0] Range of parameter space to use by default for
radius_neighbors queries.

weights [{‘uniform’, ‘distance’} or callable, default=’uniform’] weight function used in pre-
diction. Possible values:

• ‘uniform’ : uniform weights. All points in each neighborhood are weighted equally.

• ‘distance’ : weight points by the inverse of their distance. in this case, closer neighbors
of a query point will have a greater influence than neighbors which are further away.

• [callable] : a user-defined function which accepts an array of distances, and returns an
array of the same shape containing the weights.

Uniform weights are used by default.

algorithm [{‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, default=’auto’] Algorithm used to compute
the nearest neighbors:

• ‘ball_tree’ will use BallTree

7.30. sklearn.neighbors: Nearest Neighbors 2427

scikit-learn user guide, Release 0.23.2

• ‘kd_tree’ will use KDTree

• ‘brute’ will use a brute-force search.

• ‘auto’ will attempt to decide the most appropriate algorithm based on the values passed
to fit method.

Note: fitting on sparse input will override the setting of this parameter, using brute force.

leaf_size [int, default=30] Leaf size passed to BallTree or KDTree. This can affect the speed of
the construction and query, as well as the memory required to store the tree. The optimal
value depends on the nature of the problem.

p [int, default=2] Power parameter for the Minkowski metric. When p = 1, this is equivalent
to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p,
minkowski_distance (l_p) is used.

metric [str or callable, default=’minkowski’] the distance metric to use for the tree. The default
metric is minkowski, and with p=2 is equivalent to the standard Euclidean metric. See the
documentation of DistanceMetric for a list of available metrics. If metric is “precom-
puted”, X is assumed to be a distance matrix and must be square during fit. X may be a
sparse graph, in which case only “nonzero” elements may be considered neighbors.

outlier_label [{manual label, ‘most_frequent’}, default=None] label for outlier samples (sam-
ples with no neighbors in given radius).

• manual label: str or int label (should be the same type as y) or list of manual labels if
multi-output is used.

• ‘most_frequent’ : assign the most frequent label of y to outliers.

• None : when any outlier is detected, ValueError will be raised.

metric_params [dict, default=None] Additional keyword arguments for the metric function.

n_jobs [int, default=None] The number of parallel jobs to run for neighbors search. None
means 1 unless in a joblib.parallel_backend context. -1 means using all proces-
sors. See Glossary for more details.

Attributes

classes_ [ndarray of shape (n_classes,)] Class labels known to the classifier.

effective_metric_ [str or callble] The distance metric used. It will be same as the metric
parameter or a synonym of it, e.g. ‘euclidean’ if the metric parameter set to ‘minkowski’
and p parameter set to 2.

effective_metric_params_ [dict] Additional keyword arguments for the metric function. For
most metrics will be same with metric_params parameter, but may also contain the p
parameter value if the effective_metric_ attribute is set to ‘minkowski’.

outputs_2d_ [bool] False when y’s shape is (n_samples,) or (n_samples, 1) during fit otherwise
True.

See also:

KNeighborsClassifier

RadiusNeighborsRegressor

KNeighborsRegressor

NearestNeighbors

2428 Chapter 7. API Reference

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

Notes

See Nearest Neighbors in the online documentation for a discussion of the choice of algorithm and
leaf_size.

https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

Examples

>>> X = [[0], [1], [2], [3]]
>>> y = [0, 0, 1, 1]
>>> from sklearn.neighbors import RadiusNeighborsClassifier
>>> neigh = RadiusNeighborsClassifier(radius=1.0)
>>> neigh.fit(X, y)
RadiusNeighborsClassifier(...)
>>> print(neigh.predict([[1.5]]))
[0]
>>> print(neigh.predict_proba([[1.0]]))
[[0.66666667 0.33333333]]

Methods

fit(X, y) Fit the model using X as training data and y as target
values

get_params([deep]) Get parameters for this estimator.
predict(X) Predict the class labels for the provided data.
predict_proba(X) Return probability estimates for the test data X.
radius_neighbors([X, radius, . . .]) Finds the neighbors within a given radius of a point

or points.
radius_neighbors_graph([X, radius, mode,
. . .])

Computes the (weighted) graph of Neighbors for
points in X

score(X, y[, sample_weight]) Return the mean accuracy on the given test data and
labels.

set_params(**params) Set the parameters of this estimator.

__init__(radius=1.0, *, weights=’uniform’, algorithm=’auto’, leaf_size=30, p=2, met-
ric=’minkowski’, outlier_label=None, metric_params=None, n_jobs=None, **kwargs)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y)
Fit the model using X as training data and y as target values

Parameters

X [BallTree, KDTree or {array-like, sparse matrix} of shape (n_samples, n_features) or
(n_samples, n_samples)] Training data. If array or matrix, the shape is (n_samples,
n_features), or (n_samples, n_samples) if metric=’precomputed’.

y [{array-like, sparse matrix} of shape (n_samples,) or (n_samples, n_output)] Target val-
ues.

get_params(deep=True)
Get parameters for this estimator.

Parameters

7.30. sklearn.neighbors: Nearest Neighbors 2429

https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

scikit-learn user guide, Release 0.23.2

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict the class labels for the provided data.

Parameters

X [array-like of shape (n_queries, n_features), or (n_queries, n_indexed) if metric == ‘pre-
computed’] Test samples.

Returns

y [ndarray of shape (n_queries,) or (n_queries, n_outputs)] Class labels for each data sample.

predict_proba(X)
Return probability estimates for the test data X.

Parameters

X [array-like of shape (n_queries, n_features), or (n_queries, n_indexed) if metric == ‘pre-
computed’] Test samples.

Returns

p [ndarray of shape (n_queries, n_classes), or a list of n_outputs] of such arrays if n_outputs
> 1. The class probabilities of the input samples. Classes are ordered by lexicographic
order.

radius_neighbors(X=None, radius=None, return_distance=True, sort_results=False)
Finds the neighbors within a given radius of a point or points.

Return the indices and distances of each point from the dataset lying in a ball with size radius around
the points of the query array. Points lying on the boundary are included in the results.

The result points are not necessarily sorted by distance to their query point.

Parameters

X [array-like, (n_samples, n_features), optional] The query point or points. If not provided,
neighbors of each indexed point are returned. In this case, the query point is not considered
its own neighbor.

radius [float] Limiting distance of neighbors to return. (default is the value passed to the
constructor).

return_distance [boolean, optional. Defaults to True.] If False, distances will not be re-
turned.

sort_results [boolean, optional. Defaults to False.] If True, the distances and indices will
be sorted before being returned. If False, the results will not be sorted. If return_distance
== False, setting sort_results = True will result in an error.

New in version 0.22.

Returns

neigh_dist [array, shape (n_samples,) of arrays] Array representing the distances to each
point, only present if return_distance=True. The distance values are computed according
to the metric constructor parameter.

2430 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

neigh_ind [array, shape (n_samples,) of arrays] An array of arrays of indices of the ap-
proximate nearest points from the population matrix that lie within a ball of size radius
around the query points.

Notes

Because the number of neighbors of each point is not necessarily equal, the results for multiple query
points cannot be fit in a standard data array. For efficiency, radius_neighbors returns arrays of
objects, where each object is a 1D array of indices or distances.

Examples

In the following example, we construct a NeighborsClassifier class from an array representing our data set
and ask who’s the closest point to [1, 1, 1]:

>>> import numpy as np
>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(radius=1.6)
>>> neigh.fit(samples)
NearestNeighbors(radius=1.6)
>>> rng = neigh.radius_neighbors([[1., 1., 1.]])
>>> print(np.asarray(rng[0][0]))
[1.5 0.5]
>>> print(np.asarray(rng[1][0]))
[1 2]

The first array returned contains the distances to all points which are closer than 1.6, while the second
array returned contains their indices. In general, multiple points can be queried at the same time.

radius_neighbors_graph(X=None, radius=None, mode=’connectivity’, sort_results=False)
Computes the (weighted) graph of Neighbors for points in X

Neighborhoods are restricted the points at a distance lower than radius.

Parameters

X [array-like of shape (n_samples, n_features), default=None] The query point or points. If
not provided, neighbors of each indexed point are returned. In this case, the query point is
not considered its own neighbor.

radius [float] Radius of neighborhoods. (default is the value passed to the constructor).

mode [{‘connectivity’, ‘distance’}, optional] Type of returned matrix: ‘connectivity’ will
return the connectivity matrix with ones and zeros, in ‘distance’ the edges are Euclidean
distance between points.

sort_results [boolean, optional. Defaults to False.] If True, the distances and indices will
be sorted before being returned. If False, the results will not be sorted. Only used with
mode=’distance’.

New in version 0.22.

Returns

A [sparse graph in CSR format, shape = [n_queries, n_samples_fit]] n_samples_fit is the
number of samples in the fitted data A[i, j] is assigned the weight of edge that connects i
to j.

7.30. sklearn.neighbors: Nearest Neighbors 2431

scikit-learn user guide, Release 0.23.2

See also:

kneighbors_graph

Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(radius=1.5)
>>> neigh.fit(X)
NearestNeighbors(radius=1.5)
>>> A = neigh.radius_neighbors_graph(X)
>>> A.toarray()
array([[1., 0., 1.],

[0., 1., 0.],
[1., 0., 1.]])

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

7.30.10 sklearn.neighbors.RadiusNeighborsRegressor

class sklearn.neighbors.RadiusNeighborsRegressor(radius=1.0, *, weights=’uniform’,
algorithm=’auto’, leaf_size=30,
p=2, metric=’minkowski’, met-
ric_params=None, n_jobs=None,
**kwargs)

Regression based on neighbors within a fixed radius.

The target is predicted by local interpolation of the targets associated of the nearest neighbors in the training set.

2432 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Read more in the User Guide.

New in version 0.9.

Parameters

radius [float, default=1.0] Range of parameter space to use by default for
radius_neighbors queries.

weights [{‘uniform’, ‘distance’} or callable, default=’uniform’] weight function used in pre-
diction. Possible values:

• ‘uniform’ : uniform weights. All points in each neighborhood are weighted equally.

• ‘distance’ : weight points by the inverse of their distance. in this case, closer neighbors
of a query point will have a greater influence than neighbors which are further away.

• [callable] : a user-defined function which accepts an array of distances, and returns an
array of the same shape containing the weights.

Uniform weights are used by default.

algorithm [{‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, default=’auto’] Algorithm used to compute
the nearest neighbors:

• ‘ball_tree’ will use BallTree

• ‘kd_tree’ will use KDTree

• ‘brute’ will use a brute-force search.

• ‘auto’ will attempt to decide the most appropriate algorithm based on the values passed
to fit method.

Note: fitting on sparse input will override the setting of this parameter, using brute force.

leaf_size [int, default=30] Leaf size passed to BallTree or KDTree. This can affect the speed of
the construction and query, as well as the memory required to store the tree. The optimal
value depends on the nature of the problem.

p [int, default=2] Power parameter for the Minkowski metric. When p = 1, this is equivalent
to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p,
minkowski_distance (l_p) is used.

metric [str or callable, default=’minkowski’] the distance metric to use for the tree. The default
metric is minkowski, and with p=2 is equivalent to the standard Euclidean metric. See the
documentation of DistanceMetric for a list of available metrics. If metric is “precom-
puted”, X is assumed to be a distance matrix and must be square during fit. X may be a
sparse graph, in which case only “nonzero” elements may be considered neighbors.

metric_params [dict, default=None] Additional keyword arguments for the metric function.

n_jobs [int, default=None] The number of parallel jobs to run for neighbors search. None
means 1 unless in a joblib.parallel_backend context. -1 means using all proces-
sors. See Glossary for more details.

Attributes

effective_metric_ [str or callable] The distance metric to use. It will be same as the metric
parameter or a synonym of it, e.g. ‘euclidean’ if the metric parameter set to ‘minkowski’
and p parameter set to 2.

effective_metric_params_ [dict] Additional keyword arguments for the metric function. For
most metrics will be same with metric_params parameter, but may also contain the p
parameter value if the effective_metric_ attribute is set to ‘minkowski’.

7.30. sklearn.neighbors: Nearest Neighbors 2433

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

See also:

NearestNeighbors

KNeighborsRegressor

KNeighborsClassifier

RadiusNeighborsClassifier

Notes

See Nearest Neighbors in the online documentation for a discussion of the choice of algorithm and
leaf_size.

https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

Examples

>>> X = [[0], [1], [2], [3]]
>>> y = [0, 0, 1, 1]
>>> from sklearn.neighbors import RadiusNeighborsRegressor
>>> neigh = RadiusNeighborsRegressor(radius=1.0)
>>> neigh.fit(X, y)
RadiusNeighborsRegressor(...)
>>> print(neigh.predict([[1.5]]))
[0.5]

Methods

fit(X, y) Fit the model using X as training data and y as target
values

get_params([deep]) Get parameters for this estimator.
predict(X) Predict the target for the provided data
radius_neighbors([X, radius, . . .]) Finds the neighbors within a given radius of a point

or points.
radius_neighbors_graph([X, radius, mode,
. . .])

Computes the (weighted) graph of Neighbors for
points in X

score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the
prediction.

set_params(**params) Set the parameters of this estimator.

__init__(radius=1.0, *, weights=’uniform’, algorithm=’auto’, leaf_size=30, p=2, met-
ric=’minkowski’, metric_params=None, n_jobs=None, **kwargs)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y)
Fit the model using X as training data and y as target values

Parameters

X [{array-like, sparse matrix, BallTree, KDTree}] Training data. If array or matrix, shape
[n_samples, n_features], or [n_samples, n_samples] if metric=’precomputed’.

y [{array-like, sparse matrix}]

2434 Chapter 7. API Reference

https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

scikit-learn user guide, Release 0.23.2

Target values, array of float values, shape = [n_samples] or [n_samples, n_outputs]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict the target for the provided data

Parameters

X [array-like of shape (n_queries, n_features), or (n_queries, n_indexed) if metric == ‘pre-
computed’] Test samples.

Returns

y [ndarray of shape (n_queries,) or (n_queries, n_outputs), dtype=double] Target values.

radius_neighbors(X=None, radius=None, return_distance=True, sort_results=False)
Finds the neighbors within a given radius of a point or points.

Return the indices and distances of each point from the dataset lying in a ball with size radius around
the points of the query array. Points lying on the boundary are included in the results.

The result points are not necessarily sorted by distance to their query point.

Parameters

X [array-like, (n_samples, n_features), optional] The query point or points. If not provided,
neighbors of each indexed point are returned. In this case, the query point is not considered
its own neighbor.

radius [float] Limiting distance of neighbors to return. (default is the value passed to the
constructor).

return_distance [boolean, optional. Defaults to True.] If False, distances will not be re-
turned.

sort_results [boolean, optional. Defaults to False.] If True, the distances and indices will
be sorted before being returned. If False, the results will not be sorted. If return_distance
== False, setting sort_results = True will result in an error.

New in version 0.22.

Returns

neigh_dist [array, shape (n_samples,) of arrays] Array representing the distances to each
point, only present if return_distance=True. The distance values are computed according
to the metric constructor parameter.

neigh_ind [array, shape (n_samples,) of arrays] An array of arrays of indices of the ap-
proximate nearest points from the population matrix that lie within a ball of size radius
around the query points.

7.30. sklearn.neighbors: Nearest Neighbors 2435

scikit-learn user guide, Release 0.23.2

Notes

Because the number of neighbors of each point is not necessarily equal, the results for multiple query
points cannot be fit in a standard data array. For efficiency, radius_neighbors returns arrays of
objects, where each object is a 1D array of indices or distances.

Examples

In the following example, we construct a NeighborsClassifier class from an array representing our data set
and ask who’s the closest point to [1, 1, 1]:

>>> import numpy as np
>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(radius=1.6)
>>> neigh.fit(samples)
NearestNeighbors(radius=1.6)
>>> rng = neigh.radius_neighbors([[1., 1., 1.]])
>>> print(np.asarray(rng[0][0]))
[1.5 0.5]
>>> print(np.asarray(rng[1][0]))
[1 2]

The first array returned contains the distances to all points which are closer than 1.6, while the second
array returned contains their indices. In general, multiple points can be queried at the same time.

radius_neighbors_graph(X=None, radius=None, mode=’connectivity’, sort_results=False)
Computes the (weighted) graph of Neighbors for points in X

Neighborhoods are restricted the points at a distance lower than radius.

Parameters

X [array-like of shape (n_samples, n_features), default=None] The query point or points. If
not provided, neighbors of each indexed point are returned. In this case, the query point is
not considered its own neighbor.

radius [float] Radius of neighborhoods. (default is the value passed to the constructor).

mode [{‘connectivity’, ‘distance’}, optional] Type of returned matrix: ‘connectivity’ will
return the connectivity matrix with ones and zeros, in ‘distance’ the edges are Euclidean
distance between points.

sort_results [boolean, optional. Defaults to False.] If True, the distances and indices will
be sorted before being returned. If False, the results will not be sorted. Only used with
mode=’distance’.

New in version 0.22.

Returns

A [sparse graph in CSR format, shape = [n_queries, n_samples_fit]] n_samples_fit is the
number of samples in the fitted data A[i, j] is assigned the weight of edge that connects i
to j.

See also:

kneighbors_graph

2436 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(radius=1.5)
>>> neigh.fit(X)
NearestNeighbors(radius=1.5)
>>> A = neigh.radius_neighbors_graph(X)
>>> A.toarray()
array([[1., 0., 1.],

[0., 1., 0.],
[1., 0., 1.]])

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

7.30. sklearn.neighbors: Nearest Neighbors 2437

scikit-learn user guide, Release 0.23.2

7.30.11 sklearn.neighbors.RadiusNeighborsTransformer

class sklearn.neighbors.RadiusNeighborsTransformer(*, mode=’distance’, radius=1.0,
algorithm=’auto’, leaf_size=30,
metric=’minkowski’, p=2, met-
ric_params=None, n_jobs=1)

Transform X into a (weighted) graph of neighbors nearer than a radius

The transformed data is a sparse graph as returned by radius_neighbors_graph.

Read more in the User Guide.

New in version 0.22.

Parameters

mode [{‘distance’, ‘connectivity’}, default=’distance’] Type of returned matrix: ‘connectivity’
will return the connectivity matrix with ones and zeros, and ‘distance’ will return the dis-
tances between neighbors according to the given metric.

radius [float, default=1.] Radius of neighborhood in the transformed sparse graph.

algorithm [{‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, default=’auto’] Algorithm used to compute
the nearest neighbors:

• ‘ball_tree’ will use BallTree

• ‘kd_tree’ will use KDTree

• ‘brute’ will use a brute-force search.

• ‘auto’ will attempt to decide the most appropriate algorithm based on the values passed
to fit method.

Note: fitting on sparse input will override the setting of this parameter, using brute force.

leaf_size [int, default=30] Leaf size passed to BallTree or KDTree. This can affect the speed of
the construction and query, as well as the memory required to store the tree. The optimal
value depends on the nature of the problem.

metric [str or callable, default=’minkowski’] metric to use for distance computation. Any met-
ric from scikit-learn or scipy.spatial.distance can be used.

If metric is a callable function, it is called on each pair of instances (rows) and the resulting
value recorded. The callable should take two arrays as input and return one value indicating
the distance between them. This works for Scipy’s metrics, but is less efficient than passing
the metric name as a string.

Distance matrices are not supported.

Valid values for metric are:

• from scikit-learn: [‘cityblock’, ‘cosine’, ‘euclidean’, ‘l1’, ‘l2’, ‘manhattan’]

• from scipy.spatial.distance: [‘braycurtis’, ‘canberra’, ‘chebyshev’, ‘correlation’, ‘dice’,
‘hamming’, ‘jaccard’, ‘kulsinski’, ‘mahalanobis’, ‘minkowski’, ‘rogerstanimoto’, ‘rus-
sellrao’, ‘seuclidean’, ‘sokalmichener’, ‘sokalsneath’, ‘sqeuclidean’, ‘yule’]

See the documentation for scipy.spatial.distance for details on these metrics.

p [int, default=2] Parameter for the Minkowski metric from
sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is equivalent to us-
ing manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p,
minkowski_distance (l_p) is used.

2438 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

metric_params [dict, default=None] Additional keyword arguments for the metric function.

n_jobs [int, default=1] The number of parallel jobs to run for neighbors search. If -1, then the
number of jobs is set to the number of CPU cores.

Examples

>>> from sklearn.cluster import DBSCAN
>>> from sklearn.neighbors import RadiusNeighborsTransformer
>>> from sklearn.pipeline import make_pipeline
>>> estimator = make_pipeline(
... RadiusNeighborsTransformer(radius=42.0, mode='distance'),
... DBSCAN(min_samples=30, metric='precomputed'))

Methods

fit(X[, y]) Fit the model using X as training data
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
radius_neighbors([X, radius, . . .]) Finds the neighbors within a given radius of a point

or points.
radius_neighbors_graph([X, radius, mode,
. . .])

Computes the (weighted) graph of Neighbors for
points in X

set_params(**params) Set the parameters of this estimator.
transform(X) Computes the (weighted) graph of Neighbors for

points in X

__init__(*, mode=’distance’, radius=1.0, algorithm=’auto’, leaf_size=30, metric=’minkowski’, p=2,
metric_params=None, n_jobs=1)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Fit the model using X as training data

Parameters

X [{array-like, sparse matrix, BallTree, KDTree}] Training data. If array or matrix, shape
[n_samples, n_features], or [n_samples, n_samples] if metric=’precomputed’.

fit_transform(X, y=None)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [array-like of shape (n_samples, n_features)] Training set.

y [ignored]

Returns

Xt [sparse matrix of shape (n_samples, n_samples)] Xt[i, j] is assigned the weight of edge
that connects i to j. Only the neighbors have an explicit value. The diagonal is always
explicit. The matrix is of CSR format.

7.30. sklearn.neighbors: Nearest Neighbors 2439

scikit-learn user guide, Release 0.23.2

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

radius_neighbors(X=None, radius=None, return_distance=True, sort_results=False)
Finds the neighbors within a given radius of a point or points.

Return the indices and distances of each point from the dataset lying in a ball with size radius around
the points of the query array. Points lying on the boundary are included in the results.

The result points are not necessarily sorted by distance to their query point.

Parameters

X [array-like, (n_samples, n_features), optional] The query point or points. If not provided,
neighbors of each indexed point are returned. In this case, the query point is not considered
its own neighbor.

radius [float] Limiting distance of neighbors to return. (default is the value passed to the
constructor).

return_distance [boolean, optional. Defaults to True.] If False, distances will not be re-
turned.

sort_results [boolean, optional. Defaults to False.] If True, the distances and indices will
be sorted before being returned. If False, the results will not be sorted. If return_distance
== False, setting sort_results = True will result in an error.

New in version 0.22.

Returns

neigh_dist [array, shape (n_samples,) of arrays] Array representing the distances to each
point, only present if return_distance=True. The distance values are computed according
to the metric constructor parameter.

neigh_ind [array, shape (n_samples,) of arrays] An array of arrays of indices of the ap-
proximate nearest points from the population matrix that lie within a ball of size radius
around the query points.

Notes

Because the number of neighbors of each point is not necessarily equal, the results for multiple query
points cannot be fit in a standard data array. For efficiency, radius_neighbors returns arrays of
objects, where each object is a 1D array of indices or distances.

Examples

In the following example, we construct a NeighborsClassifier class from an array representing our data set
and ask who’s the closest point to [1, 1, 1]:

2440 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

>>> import numpy as np
>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(radius=1.6)
>>> neigh.fit(samples)
NearestNeighbors(radius=1.6)
>>> rng = neigh.radius_neighbors([[1., 1., 1.]])
>>> print(np.asarray(rng[0][0]))
[1.5 0.5]
>>> print(np.asarray(rng[1][0]))
[1 2]

The first array returned contains the distances to all points which are closer than 1.6, while the second
array returned contains their indices. In general, multiple points can be queried at the same time.

radius_neighbors_graph(X=None, radius=None, mode=’connectivity’, sort_results=False)
Computes the (weighted) graph of Neighbors for points in X

Neighborhoods are restricted the points at a distance lower than radius.

Parameters

X [array-like of shape (n_samples, n_features), default=None] The query point or points. If
not provided, neighbors of each indexed point are returned. In this case, the query point is
not considered its own neighbor.

radius [float] Radius of neighborhoods. (default is the value passed to the constructor).

mode [{‘connectivity’, ‘distance’}, optional] Type of returned matrix: ‘connectivity’ will
return the connectivity matrix with ones and zeros, in ‘distance’ the edges are Euclidean
distance between points.

sort_results [boolean, optional. Defaults to False.] If True, the distances and indices will
be sorted before being returned. If False, the results will not be sorted. Only used with
mode=’distance’.

New in version 0.22.

Returns

A [sparse graph in CSR format, shape = [n_queries, n_samples_fit]] n_samples_fit is the
number of samples in the fitted data A[i, j] is assigned the weight of edge that connects i
to j.

See also:

kneighbors_graph

Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(radius=1.5)
>>> neigh.fit(X)
NearestNeighbors(radius=1.5)
>>> A = neigh.radius_neighbors_graph(X)
>>> A.toarray()
array([[1., 0., 1.],

(continues on next page)

7.30. sklearn.neighbors: Nearest Neighbors 2441

scikit-learn user guide, Release 0.23.2

(continued from previous page)

[0., 1., 0.],
[1., 0., 1.]])

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Computes the (weighted) graph of Neighbors for points in X

Parameters

X [array-like of shape (n_samples_transform, n_features)] Sample data

Returns

Xt [sparse matrix of shape (n_samples_transform, n_samples_fit)] Xt[i, j] is assigned the
weight of edge that connects i to j. Only the neighbors have an explicit value. The diagonal
is always explicit. The matrix is of CSR format.

7.30.12 sklearn.neighbors.NearestCentroid

class sklearn.neighbors.NearestCentroid(metric=’euclidean’, *, shrink_threshold=None)
Nearest centroid classifier.

Each class is represented by its centroid, with test samples classified to the class with the nearest centroid.

Read more in the User Guide.

Parameters

metric [str or callable] The metric to use when calculating distance between instances in a
feature array. If metric is a string or callable, it must be one of the options allowed by
metrics.pairwise.pairwise_distances for its metric parameter. The centroids for the samples
corresponding to each class is the point from which the sum of the distances (according to
the metric) of all samples that belong to that particular class are minimized. If the “manhat-
tan” metric is provided, this centroid is the median and for all other metrics, the centroid is
now set to be the mean.

Changed in version 0.19: metric='precomputed' was deprecated and now raises an
error

shrink_threshold [float, default=None] Threshold for shrinking centroids to remove features.

Attributes

centroids_ [array-like of shape (n_classes, n_features)] Centroid of each class.

classes_ [array of shape (n_classes,)] The unique classes labels.

See also:

2442 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

sklearn.neighbors.KNeighborsClassifier nearest neighbors classifier

Notes

When used for text classification with tf-idf vectors, this classifier is also known as the Rocchio classifier.

References

Tibshirani, R., Hastie, T., Narasimhan, B., & Chu, G. (2002). Diagnosis of multiple cancer types by shrunken
centroids of gene expression. Proceedings of the National Academy of Sciences of the United States of America,
99(10), 6567-6572. The National Academy of Sciences.

Examples

>>> from sklearn.neighbors import NearestCentroid
>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> y = np.array([1, 1, 1, 2, 2, 2])
>>> clf = NearestCentroid()
>>> clf.fit(X, y)
NearestCentroid()
>>> print(clf.predict([[-0.8, -1]]))
[1]

Methods

fit(X, y) Fit the NearestCentroid model according to the given
training data.

get_params([deep]) Get parameters for this estimator.
predict(X) Perform classification on an array of test vectors X.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(metric=’euclidean’, *, shrink_threshold=None)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y)
Fit the NearestCentroid model according to the given training data.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training vector, where
n_samples is the number of samples and n_features is the number of features. Note that
centroid shrinking cannot be used with sparse matrices.

y [array-like of shape (n_samples,)] Target values (integers)

get_params(deep=True)
Get parameters for this estimator.

Parameters

7.30. sklearn.neighbors: Nearest Neighbors 2443

scikit-learn user guide, Release 0.23.2

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Perform classification on an array of test vectors X.

The predicted class C for each sample in X is returned.

Parameters

X [array-like of shape (n_samples, n_features)]

Returns

C [ndarray of shape (n_samples,)]

Notes

If the metric constructor parameter is “precomputed”, X is assumed to be the distance matrix between the
data to be predicted and self.centroids_.

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.neighbors.NearestCentroid

• Nearest Centroid Classification

• Classification of text documents using sparse features

2444 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

7.30.13 sklearn.neighbors.NearestNeighbors

class sklearn.neighbors.NearestNeighbors(*, n_neighbors=5, radius=1.0, algorithm=’auto’,
leaf_size=30, metric=’minkowski’, p=2, met-
ric_params=None, n_jobs=None)

Unsupervised learner for implementing neighbor searches.

Read more in the User Guide.

New in version 0.9.

Parameters

n_neighbors [int, default=5] Number of neighbors to use by default for kneighbors queries.

radius [float, default=1.0] Range of parameter space to use by default for
radius_neighbors queries.

algorithm [{‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, default=’auto’] Algorithm used to compute
the nearest neighbors:

• ‘ball_tree’ will use BallTree

• ‘kd_tree’ will use KDTree

• ‘brute’ will use a brute-force search.

• ‘auto’ will attempt to decide the most appropriate algorithm based on the values passed
to fit method.

Note: fitting on sparse input will override the setting of this parameter, using brute force.

leaf_size [int, default=30] Leaf size passed to BallTree or KDTree. This can affect the speed of
the construction and query, as well as the memory required to store the tree. The optimal
value depends on the nature of the problem.

metric [str or callable, default=’minkowski’] the distance metric to use for the tree. The default
metric is minkowski, and with p=2 is equivalent to the standard Euclidean metric. See the
documentation of DistanceMetric for a list of available metrics. If metric is “precom-
puted”, X is assumed to be a distance matrix and must be square during fit. X may be a
sparse graph, in which case only “nonzero” elements may be considered neighbors.

p [int, default=2] Parameter for the Minkowski metric from
sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is equivalent to us-
ing manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p,
minkowski_distance (l_p) is used.

metric_params [dict, default=None] Additional keyword arguments for the metric function.

n_jobs [int, default=None] The number of parallel jobs to run for neighbors search. None
means 1 unless in a joblib.parallel_backend context. -1 means using all proces-
sors. See Glossary for more details.

Attributes

effective_metric_ [str] Metric used to compute distances to neighbors.

effective_metric_params_ [dict] Parameters for the metric used to compute distances to neigh-
bors.

See also:

KNeighborsClassifier

RadiusNeighborsClassifier

7.30. sklearn.neighbors: Nearest Neighbors 2445

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

KNeighborsRegressor

RadiusNeighborsRegressor

BallTree

Notes

See Nearest Neighbors in the online documentation for a discussion of the choice of algorithm and
leaf_size.

https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

Examples

>>> import numpy as np
>>> from sklearn.neighbors import NearestNeighbors
>>> samples = [[0, 0, 2], [1, 0, 0], [0, 0, 1]]

>>> neigh = NearestNeighbors(n_neighbors=2, radius=0.4)
>>> neigh.fit(samples)
NearestNeighbors(...)

>>> neigh.kneighbors([[0, 0, 1.3]], 2, return_distance=False)
array([[2, 0]]...)

>>> nbrs = neigh.radius_neighbors([[0, 0, 1.3]], 0.4, return_distance=False)
>>> np.asarray(nbrs[0][0])
array(2)

Methods

fit(X[, y]) Fit the model using X as training data
get_params([deep]) Get parameters for this estimator.
kneighbors([X, n_neighbors, return_distance]) Finds the K-neighbors of a point.
kneighbors_graph([X, n_neighbors, mode]) Computes the (weighted) graph of k-Neighbors for

points in X
radius_neighbors([X, radius, . . .]) Finds the neighbors within a given radius of a point

or points.
radius_neighbors_graph([X, radius, mode,
. . .])

Computes the (weighted) graph of Neighbors for
points in X

set_params(**params) Set the parameters of this estimator.

__init__(*, n_neighbors=5, radius=1.0, algorithm=’auto’, leaf_size=30, metric=’minkowski’, p=2,
metric_params=None, n_jobs=None)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Fit the model using X as training data

Parameters

X [{array-like, sparse matrix, BallTree, KDTree}] Training data. If array or matrix, shape

2446 Chapter 7. API Reference

https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

scikit-learn user guide, Release 0.23.2

[n_samples, n_features], or [n_samples, n_samples] if metric=’precomputed’.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

kneighbors(X=None, n_neighbors=None, return_distance=True)
Finds the K-neighbors of a point. Returns indices of and distances to the neighbors of each point.

Parameters

X [array-like, shape (n_queries, n_features), or (n_queries, n_indexed) if metric == ‘pre-
computed’] The query point or points. If not provided, neighbors of each indexed point
are returned. In this case, the query point is not considered its own neighbor.

n_neighbors [int] Number of neighbors to get (default is the value passed to the construc-
tor).

return_distance [boolean, optional. Defaults to True.] If False, distances will not be re-
turned

Returns

neigh_dist [array, shape (n_queries, n_neighbors)] Array representing the lengths to points,
only present if return_distance=True

neigh_ind [array, shape (n_queries, n_neighbors)] Indices of the nearest points in the popu-
lation matrix.

Examples

In the following example, we construct a NearestNeighbors class from an array representing our data set
and ask who’s the closest point to [1,1,1]

>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=1)
>>> neigh.fit(samples)
NearestNeighbors(n_neighbors=1)
>>> print(neigh.kneighbors([[1., 1., 1.]]))
(array([[0.5]]), array([[2]]))

As you can see, it returns [[0.5]], and [[2]], which means that the element is at distance 0.5 and is the third
element of samples (indexes start at 0). You can also query for multiple points:

>>> X = [[0., 1., 0.], [1., 0., 1.]]
>>> neigh.kneighbors(X, return_distance=False)
array([[1],

[2]]...)

kneighbors_graph(X=None, n_neighbors=None, mode=’connectivity’)
Computes the (weighted) graph of k-Neighbors for points in X

Parameters

7.30. sklearn.neighbors: Nearest Neighbors 2447

scikit-learn user guide, Release 0.23.2

X [array-like, shape (n_queries, n_features), or (n_queries, n_indexed) if metric == ‘pre-
computed’] The query point or points. If not provided, neighbors of each indexed point
are returned. In this case, the query point is not considered its own neighbor.

n_neighbors [int] Number of neighbors for each sample. (default is value passed to the
constructor).

mode [{‘connectivity’, ‘distance’}, optional] Type of returned matrix: ‘connectivity’ will
return the connectivity matrix with ones and zeros, in ‘distance’ the edges are Euclidean
distance between points.

Returns

A [sparse graph in CSR format, shape = [n_queries, n_samples_fit]] n_samples_fit is the
number of samples in the fitted data A[i, j] is assigned the weight of edge that connects i
to j.

See also:

NearestNeighbors.radius_neighbors_graph

Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=2)
>>> neigh.fit(X)
NearestNeighbors(n_neighbors=2)
>>> A = neigh.kneighbors_graph(X)
>>> A.toarray()
array([[1., 0., 1.],

[0., 1., 1.],
[1., 0., 1.]])

radius_neighbors(X=None, radius=None, return_distance=True, sort_results=False)
Finds the neighbors within a given radius of a point or points.

Return the indices and distances of each point from the dataset lying in a ball with size radius around
the points of the query array. Points lying on the boundary are included in the results.

The result points are not necessarily sorted by distance to their query point.

Parameters

X [array-like, (n_samples, n_features), optional] The query point or points. If not provided,
neighbors of each indexed point are returned. In this case, the query point is not considered
its own neighbor.

radius [float] Limiting distance of neighbors to return. (default is the value passed to the
constructor).

return_distance [boolean, optional. Defaults to True.] If False, distances will not be re-
turned.

sort_results [boolean, optional. Defaults to False.] If True, the distances and indices will
be sorted before being returned. If False, the results will not be sorted. If return_distance
== False, setting sort_results = True will result in an error.

New in version 0.22.

Returns

2448 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

neigh_dist [array, shape (n_samples,) of arrays] Array representing the distances to each
point, only present if return_distance=True. The distance values are computed according
to the metric constructor parameter.

neigh_ind [array, shape (n_samples,) of arrays] An array of arrays of indices of the ap-
proximate nearest points from the population matrix that lie within a ball of size radius
around the query points.

Notes

Because the number of neighbors of each point is not necessarily equal, the results for multiple query
points cannot be fit in a standard data array. For efficiency, radius_neighbors returns arrays of
objects, where each object is a 1D array of indices or distances.

Examples

In the following example, we construct a NeighborsClassifier class from an array representing our data set
and ask who’s the closest point to [1, 1, 1]:

>>> import numpy as np
>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(radius=1.6)
>>> neigh.fit(samples)
NearestNeighbors(radius=1.6)
>>> rng = neigh.radius_neighbors([[1., 1., 1.]])
>>> print(np.asarray(rng[0][0]))
[1.5 0.5]
>>> print(np.asarray(rng[1][0]))
[1 2]

The first array returned contains the distances to all points which are closer than 1.6, while the second
array returned contains their indices. In general, multiple points can be queried at the same time.

radius_neighbors_graph(X=None, radius=None, mode=’connectivity’, sort_results=False)
Computes the (weighted) graph of Neighbors for points in X

Neighborhoods are restricted the points at a distance lower than radius.

Parameters

X [array-like of shape (n_samples, n_features), default=None] The query point or points. If
not provided, neighbors of each indexed point are returned. In this case, the query point is
not considered its own neighbor.

radius [float] Radius of neighborhoods. (default is the value passed to the constructor).

mode [{‘connectivity’, ‘distance’}, optional] Type of returned matrix: ‘connectivity’ will
return the connectivity matrix with ones and zeros, in ‘distance’ the edges are Euclidean
distance between points.

sort_results [boolean, optional. Defaults to False.] If True, the distances and indices will
be sorted before being returned. If False, the results will not be sorted. Only used with
mode=’distance’.

New in version 0.22.

Returns

7.30. sklearn.neighbors: Nearest Neighbors 2449

scikit-learn user guide, Release 0.23.2

A [sparse graph in CSR format, shape = [n_queries, n_samples_fit]] n_samples_fit is the
number of samples in the fitted data A[i, j] is assigned the weight of edge that connects i
to j.

See also:

kneighbors_graph

Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(radius=1.5)
>>> neigh.fit(X)
NearestNeighbors(radius=1.5)
>>> A = neigh.radius_neighbors_graph(X)
>>> A.toarray()
array([[1., 0., 1.],

[0., 1., 0.],
[1., 0., 1.]])

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

7.30.14 sklearn.neighbors.NeighborhoodComponentsAnalysis

class sklearn.neighbors.NeighborhoodComponentsAnalysis(n_components=None,
*, init=’auto’,
warm_start=False,
max_iter=50, tol=1e-05,
callback=None, verbose=0,
random_state=None)

Neighborhood Components Analysis

Neighborhood Component Analysis (NCA) is a machine learning algorithm for metric learning. It learns a linear
transformation in a supervised fashion to improve the classification accuracy of a stochastic nearest neighbors
rule in the transformed space.

Read more in the User Guide.

Parameters

n_components [int, default=None] Preferred dimensionality of the projected space. If None it
will be set to n_features.

2450 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

init [{‘auto’, ‘pca’, ‘lda’, ‘identity’, ‘random’} or ndarray of shape (n_features_a,
n_features_b), default=’auto’] Initialization of the linear transformation. Possible options
are ‘auto’, ‘pca’, ‘lda’, ‘identity’, ‘random’, and a numpy array of shape (n_features_a,
n_features_b).

‘auto’ Depending on n_components, the most reasonable initialization will be chosen.
If n_components <= n_classes we use ‘lda’, as it uses labels information. If
not, but n_components < min(n_features, n_samples), we use ‘pca’, as it
projects data in meaningful directions (those of higher variance). Otherwise, we just use
‘identity’.

‘pca’ n_components principal components of the inputs passed to fit will be used to
initialize the transformation. (See PCA)

‘lda’ min(n_components, n_classes) most discriminative components of the
inputs passed to fit will be used to initialize the transformation. (If
n_components > n_classes, the rest of the components will be zero.) (See
LinearDiscriminantAnalysis)

‘identity’ If n_components is strictly smaller than the dimensionality of the inputs
passed to fit, the identity matrix will be truncated to the first n_components rows.

‘random’ The initial transformation will be a random array of shape (n_components,
n_features). Each value is sampled from the standard normal distribution.

numpy array n_features_b must match the dimensionality of the inputs passed to fit
and n_features_a must be less than or equal to that. If n_components is not None,
n_features_a must match it.

warm_start [bool, default=False] If True and fit has been called before, the solution of the
previous call to fit is used as the initial linear transformation (n_components and init
will be ignored).

max_iter [int, default=50] Maximum number of iterations in the optimization.

tol [float, default=1e-5] Convergence tolerance for the optimization.

callback [callable, default=None] If not None, this function is called after every iteration of
the optimizer, taking as arguments the current solution (flattened transformation matrix) and
the number of iterations. This might be useful in case one wants to examine or store the
transformation found after each iteration.

verbose [int, default=0] If 0, no progress messages will be printed. If 1, progress messages will
be printed to stdout. If > 1, progress messages will be printed and the disp parameter of
scipy.optimize.minimize will be set to verbose - 2.

random_state [int or numpy.RandomState, default=None] A pseudo random number generator
object or a seed for it if int. If init='random', random_state is used to initialize
the random transformation. If init='pca', random_state is passed as an argument
to PCA when initializing the transformation. Pass an int for reproducible results across
multiple function calls. See :term: Glossary <random_state>.

Attributes

components_ [ndarray of shape (n_components, n_features)] The linear transformation learned
during fitting.

n_iter_ [int] Counts the number of iterations performed by the optimizer.

random_state_ [numpy.RandomState] Pseudo random number generator object used during
initialization.

7.30. sklearn.neighbors: Nearest Neighbors 2451

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize

scikit-learn user guide, Release 0.23.2

References

[1], [2]

Examples

>>> from sklearn.neighbors import NeighborhoodComponentsAnalysis
>>> from sklearn.neighbors import KNeighborsClassifier
>>> from sklearn.datasets import load_iris
>>> from sklearn.model_selection import train_test_split
>>> X, y = load_iris(return_X_y=True)
>>> X_train, X_test, y_train, y_test = train_test_split(X, y,
... stratify=y, test_size=0.7, random_state=42)
>>> nca = NeighborhoodComponentsAnalysis(random_state=42)
>>> nca.fit(X_train, y_train)
NeighborhoodComponentsAnalysis(...)
>>> knn = KNeighborsClassifier(n_neighbors=3)
>>> knn.fit(X_train, y_train)
KNeighborsClassifier(...)
>>> print(knn.score(X_test, y_test))
0.933333...
>>> knn.fit(nca.transform(X_train), y_train)
KNeighborsClassifier(...)
>>> print(knn.score(nca.transform(X_test), y_test))
0.961904...

Methods

fit(X, y) Fit the model according to the given training data.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Applies the learned transformation to the given data.

__init__(n_components=None, *, init=’auto’, warm_start=False, max_iter=50, tol=1e-05, call-
back=None, verbose=0, random_state=None)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y)
Fit the model according to the given training data.

Parameters

X [array-like of shape (n_samples, n_features)] The training samples.

y [array-like of shape (n_samples,)] The corresponding training labels.

Returns

self [object] returns a trained NeighborhoodComponentsAnalysis model.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

2452 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Applies the learned transformation to the given data.

Parameters

X [array-like of shape (n_samples, n_features)] Data samples.

Returns

X_embedded: ndarray of shape (n_samples, n_components) The data samples trans-
formed.

Raises

NotFittedError If fit has not been called before.

Examples using sklearn.neighbors.NeighborhoodComponentsAnalysis

• Manifold learning on handwritten digits: Locally Linear Embedding, Isomap. . .

• Neighborhood Components Analysis Illustration

• Comparing Nearest Neighbors with and without Neighborhood Components Analysis

• Dimensionality Reduction with Neighborhood Components Analysis

7.30. sklearn.neighbors: Nearest Neighbors 2453

scikit-learn user guide, Release 0.23.2

neighbors.kneighbors_graph(X,
n_neighbors, *)

Computes the (weighted) graph of k-Neighbors for
points in X

neighbors.radius_neighbors_graph(X, ra-
dius, *)

Computes the (weighted) graph of Neighbors for points
in X

7.30.15 sklearn.neighbors.kneighbors_graph

sklearn.neighbors.kneighbors_graph(X, n_neighbors, *, mode=’connectivity’, met-
ric=’minkowski’, p=2, metric_params=None, in-
clude_self=False, n_jobs=None)

Computes the (weighted) graph of k-Neighbors for points in X

Read more in the User Guide.

Parameters

X [array-like of shape (n_samples, n_features) or BallTree] Sample data, in the form of a numpy
array or a precomputed BallTree.

n_neighbors [int] Number of neighbors for each sample.

mode [{‘connectivity’, ‘distance’}, default=’connectivity’] Type of returned matrix: ‘connec-
tivity’ will return the connectivity matrix with ones and zeros, and ‘distance’ will return the
distances between neighbors according to the given metric.

metric [str, default=’minkowski’] The distance metric used to calculate the k-Neighbors for
each sample point. The DistanceMetric class gives a list of available metrics. The default
distance is ‘euclidean’ (‘minkowski’ metric with the p param equal to 2.)

p [int, default=2] Power parameter for the Minkowski metric. When p = 1, this is equivalent
to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p,
minkowski_distance (l_p) is used.

metric_params [dict, default=None] additional keyword arguments for the metric function.

include_self [bool or ‘auto’, default=False] Whether or not to mark each sample as the first
nearest neighbor to itself. If ‘auto’, then True is used for mode=’connectivity’ and False for
mode=’distance’.

n_jobs [int, default=None] The number of parallel jobs to run for neighbors search. None
means 1 unless in a joblib.parallel_backend context. -1 means using all proces-
sors. See Glossary for more details.

Returns

A [sparse matrix of shape (n_samples, n_samples)] Graph where A[i, j] is assigned the weight
of edge that connects i to j. The matrix is of CSR format.

See also:

radius_neighbors_graph

Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import kneighbors_graph
>>> A = kneighbors_graph(X, 2, mode='connectivity', include_self=True)

(continues on next page)

2454 Chapter 7. API Reference

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

(continued from previous page)

>>> A.toarray()
array([[1., 0., 1.],

[0., 1., 1.],
[1., 0., 1.]])

Examples using sklearn.neighbors.kneighbors_graph

• Agglomerative clustering with and without structure

• Hierarchical clustering: structured vs unstructured ward

• Comparing different clustering algorithms on toy datasets

7.30.16 sklearn.neighbors.radius_neighbors_graph

sklearn.neighbors.radius_neighbors_graph(X, radius, *, mode=’connectivity’, met-
ric=’minkowski’, p=2, metric_params=None,
include_self=False, n_jobs=None)

Computes the (weighted) graph of Neighbors for points in X

Neighborhoods are restricted the points at a distance lower than radius.

Read more in the User Guide.

Parameters

X [array-like of shape (n_samples, n_features) or BallTree] Sample data, in the form of a numpy
array or a precomputed BallTree.

radius [float] Radius of neighborhoods.

mode [{‘connectivity’, ‘distance’}, default=’connectivity’] Type of returned matrix: ‘connec-
tivity’ will return the connectivity matrix with ones and zeros, and ‘distance’ will return the
distances between neighbors according to the given metric.

metric [str, default=’minkowski’] The distance metric used to calculate the neighbors within
a given radius for each sample point. The DistanceMetric class gives a list of available
metrics. The default distance is ‘euclidean’ (‘minkowski’ metric with the param equal to 2.)

p [int, default=2] Power parameter for the Minkowski metric. When p = 1, this is equivalent
to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p,
minkowski_distance (l_p) is used.

metric_params [dict, default=None] additional keyword arguments for the metric function.

include_self [bool or ‘auto’, default=False] Whether or not to mark each sample as the first
nearest neighbor to itself. If ‘auto’, then True is used for mode=’connectivity’ and False for
mode=’distance’.

n_jobs [int, default=None] The number of parallel jobs to run for neighbors search. None
means 1 unless in a joblib.parallel_backend context. -1 means using all proces-
sors. See Glossary for more details.

Returns

A [sparse matrix of shape (n_samples, n_samples)] Graph where A[i, j] is assigned the weight
of edge that connects i to j. The matrix is of CSR format.

See also:

7.30. sklearn.neighbors: Nearest Neighbors 2455

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

kneighbors_graph

Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import radius_neighbors_graph
>>> A = radius_neighbors_graph(X, 1.5, mode='connectivity',
... include_self=True)
>>> A.toarray()
array([[1., 0., 1.],

[0., 1., 0.],
[1., 0., 1.]])

7.31 sklearn.neural_network: Neural network models

The sklearn.neural_network module includes models based on neural networks.

User guide: See the Neural network models (supervised) and Neural network models (unsupervised) sections for
further details.

neural_network.BernoulliRBM ([n_components,
. . .])

Bernoulli Restricted Boltzmann Machine (RBM).

neural_network.MLPClassifier([. . .]) Multi-layer Perceptron classifier.
neural_network.MLPRegressor([. . .]) Multi-layer Perceptron regressor.

7.31.1 sklearn.neural_network.BernoulliRBM

class sklearn.neural_network.BernoulliRBM(n_components=256, *, learning_rate=0.1,
batch_size=10, n_iter=10, verbose=0, ran-
dom_state=None)

Bernoulli Restricted Boltzmann Machine (RBM).

A Restricted Boltzmann Machine with binary visible units and binary hidden units. Parameters are estimated
using Stochastic Maximum Likelihood (SML), also known as Persistent Contrastive Divergence (PCD) [2].

The time complexity of this implementation is O(d ** 2) assuming d ~ n_features ~ n_components.

Read more in the User Guide.

Parameters

n_components [int, default=256] Number of binary hidden units.

learning_rate [float, default=0.1] The learning rate for weight updates. It is highly recom-
mended to tune this hyper-parameter. Reasonable values are in the 10**[0., -3.] range.

batch_size [int, default=10] Number of examples per minibatch.

n_iter [int, default=10] Number of iterations/sweeps over the training dataset to perform during
training.

verbose [int, default=0] The verbosity level. The default, zero, means silent mode.

random_state [integer or RandomState, default=None] Determines random number generation
for:

2456 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

• Gibbs sampling from visible and hidden layers.

• Initializing components, sampling from layers during fit.

• Corrupting the data when scoring samples.

Pass an int for reproducible results across multiple function calls. See Glossary.

Attributes

intercept_hidden_ [array-like, shape (n_components,)] Biases of the hidden units.

intercept_visible_ [array-like, shape (n_features,)] Biases of the visible units.

components_ [array-like, shape (n_components, n_features)] Weight matrix, where n_features
in the number of visible units and n_components is the number of hidden units.

h_samples_ [array-like, shape (batch_size, n_components)] Hidden Activation sampled from
the model distribution, where batch_size in the number of examples per minibatch and
n_components is the number of hidden units.

References

[1] Hinton, G. E., Osindero, S. and Teh, Y. A fast learning algorithm for deep belief nets. Neural Compu-
tation 18, pp 1527-1554. https://www.cs.toronto.edu/~hinton/absps/fastnc.pdf

[2] Tieleman, T. Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradi-
ent. International Conference on Machine Learning (ICML) 2008

Examples

>>> import numpy as np
>>> from sklearn.neural_network import BernoulliRBM
>>> X = np.array([[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]])
>>> model = BernoulliRBM(n_components=2)
>>> model.fit(X)
BernoulliRBM(n_components=2)

Methods

fit(X[, y]) Fit the model to the data X.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
gibbs(v) Perform one Gibbs sampling step.
partial_fit(X[, y]) Fit the model to the data X which should contain a

partial segment of the data.
score_samples(X) Compute the pseudo-likelihood of X.
set_params(**params) Set the parameters of this estimator.
transform(X) Compute the hidden layer activation probabilities,

P(h=1|v=X).

__init__(n_components=256, *, learning_rate=0.1, batch_size=10, n_iter=10, verbose=0, ran-
dom_state=None)

Initialize self. See help(type(self)) for accurate signature.

7.31. sklearn.neural_network: Neural network models 2457

https://www.cs.toronto.edu/~hinton/absps/fastnc.pdf

scikit-learn user guide, Release 0.23.2

fit(X, y=None)
Fit the model to the data X.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training data.

Returns

self [BernoulliRBM] The fitted model.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

gibbs(v)
Perform one Gibbs sampling step.

Parameters

v [ndarray of shape (n_samples, n_features)] Values of the visible layer to start from.

Returns

v_new [ndarray of shape (n_samples, n_features)] Values of the visible layer after one Gibbs
step.

partial_fit(X, y=None)
Fit the model to the data X which should contain a partial segment of the data.

Parameters

X [ndarray of shape (n_samples, n_features)] Training data.

Returns

self [BernoulliRBM] The fitted model.

score_samples(X)
Compute the pseudo-likelihood of X.

Parameters

2458 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Values of the visible layer.
Must be all-boolean (not checked).

Returns

pseudo_likelihood [ndarray of shape (n_samples,)] Value of the pseudo-likelihood (proxy
for likelihood).

Notes

This method is not deterministic: it computes a quantity called the free energy on X, then on a randomly
corrupted version of X, and returns the log of the logistic function of the difference.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Compute the hidden layer activation probabilities, P(h=1|v=X).

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The data to be transformed.

Returns

h [ndarray of shape (n_samples, n_components)] Latent representations of the data.

Examples using sklearn.neural_network.BernoulliRBM

• Restricted Boltzmann Machine features for digit classification

7.31.2 sklearn.neural_network.MLPClassifier

class sklearn.neural_network.MLPClassifier(hidden_layer_sizes=(100,), activa-
tion=’relu’, *, solver=’adam’, alpha=0.0001,
batch_size=’auto’, learning_rate=’constant’,
learning_rate_init=0.001, power_t=0.5,
max_iter=200, shuffle=True, ran-
dom_state=None, tol=0.0001, ver-
bose=False, warm_start=False, momen-
tum=0.9, nesterovs_momentum=True,
early_stopping=False, valida-
tion_fraction=0.1, beta_1=0.9, beta_2=0.999,
epsilon=1e-08, n_iter_no_change=10,
max_fun=15000)

Multi-layer Perceptron classifier.

7.31. sklearn.neural_network: Neural network models 2459

scikit-learn user guide, Release 0.23.2

This model optimizes the log-loss function using LBFGS or stochastic gradient descent.

New in version 0.18.

Parameters

hidden_layer_sizes [tuple, length = n_layers - 2, default=(100,)] The ith element represents the
number of neurons in the ith hidden layer.

activation [{‘identity’, ‘logistic’, ‘tanh’, ‘relu’}, default=’relu’] Activation function for the hid-
den layer.

• ‘identity’, no-op activation, useful to implement linear bottleneck, returns f(x) = x

• ‘logistic’, the logistic sigmoid function, returns f(x) = 1 / (1 + exp(-x)).

• ‘tanh’, the hyperbolic tan function, returns f(x) = tanh(x).

• ‘relu’, the rectified linear unit function, returns f(x) = max(0, x)

solver [{‘lbfgs’, ‘sgd’, ‘adam’}, default=’adam’] The solver for weight optimization.

• ‘lbfgs’ is an optimizer in the family of quasi-Newton methods.

• ‘sgd’ refers to stochastic gradient descent.

• ‘adam’ refers to a stochastic gradient-based optimizer proposed by Kingma, Diederik,
and Jimmy Ba

Note: The default solver ‘adam’ works pretty well on relatively large datasets (with thou-
sands of training samples or more) in terms of both training time and validation score. For
small datasets, however, ‘lbfgs’ can converge faster and perform better.

alpha [float, default=0.0001] L2 penalty (regularization term) parameter.

batch_size [int, default=’auto’] Size of minibatches for stochastic optimizers. If the
solver is ‘lbfgs’, the classifier will not use minibatch. When set to “auto”,
batch_size=min(200, n_samples)

learning_rate [{‘constant’, ‘invscaling’, ‘adaptive’}, default=’constant’] Learning rate sched-
ule for weight updates.

• ‘constant’ is a constant learning rate given by ‘learning_rate_init’.

• ‘invscaling’ gradually decreases the learning rate at each time step ‘t’ using an in-
verse scaling exponent of ‘power_t’. effective_learning_rate = learning_rate_init / pow(t,
power_t)

• ‘adaptive’ keeps the learning rate constant to ‘learning_rate_init’ as long as training loss
keeps decreasing. Each time two consecutive epochs fail to decrease training loss by at
least tol, or fail to increase validation score by at least tol if ‘early_stopping’ is on, the
current learning rate is divided by 5.

Only used when solver='sgd'.

learning_rate_init [double, default=0.001] The initial learning rate used. It controls the step-
size in updating the weights. Only used when solver=’sgd’ or ‘adam’.

power_t [double, default=0.5] The exponent for inverse scaling learning rate. It is used in
updating effective learning rate when the learning_rate is set to ‘invscaling’. Only used
when solver=’sgd’.

max_iter [int, default=200] Maximum number of iterations. The solver iterates until con-
vergence (determined by ‘tol’) or this number of iterations. For stochastic solvers (‘sgd’,

2460 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

‘adam’), note that this determines the number of epochs (how many times each data point
will be used), not the number of gradient steps.

shuffle [bool, default=True] Whether to shuffle samples in each iteration. Only used when
solver=’sgd’ or ‘adam’.

random_state [int, RandomState instance, default=None] Determines random number gener-
ation for weights and bias initialization, train-test split if early stopping is used, and batch
sampling when solver=’sgd’ or ‘adam’. Pass an int for reproducible results across multiple
function calls. See Glossary.

tol [float, default=1e-4] Tolerance for the optimization. When the loss or score is not
improving by at least tol for n_iter_no_change consecutive iterations, unless
learning_rate is set to ‘adaptive’, convergence is considered to be reached and training
stops.

verbose [bool, default=False] Whether to print progress messages to stdout.

warm_start [bool, default=False] When set to True, reuse the solution of the previous call to
fit as initialization, otherwise, just erase the previous solution. See the Glossary.

momentum [float, default=0.9] Momentum for gradient descent update. Should be between 0
and 1. Only used when solver=’sgd’.

nesterovs_momentum [boolean, default=True] Whether to use Nesterov’s momentum. Only
used when solver=’sgd’ and momentum > 0.

early_stopping [bool, default=False] Whether to use early stopping to terminate training when
validation score is not improving. If set to true, it will automatically set aside 10% of
training data as validation and terminate training when validation score is not improving by
at least tol for n_iter_no_change consecutive epochs. The split is stratified, except in
a multilabel setting. Only effective when solver=’sgd’ or ‘adam’

validation_fraction [float, default=0.1] The proportion of training data to set aside as validation
set for early stopping. Must be between 0 and 1. Only used if early_stopping is True

beta_1 [float, default=0.9] Exponential decay rate for estimates of first moment vector in adam,
should be in [0, 1). Only used when solver=’adam’

beta_2 [float, default=0.999] Exponential decay rate for estimates of second moment vector in
adam, should be in [0, 1). Only used when solver=’adam’

epsilon [float, default=1e-8] Value for numerical stability in adam. Only used when
solver=’adam’

n_iter_no_change [int, default=10] Maximum number of epochs to not meet tol improve-
ment. Only effective when solver=’sgd’ or ‘adam’

New in version 0.20.

max_fun [int, default=15000] Only used when solver=’lbfgs’. Maximum number of loss func-
tion calls. The solver iterates until convergence (determined by ‘tol’), number of iterations
reaches max_iter, or this number of loss function calls. Note that number of loss function
calls will be greater than or equal to the number of iterations for the MLPClassifier.

New in version 0.22.

Attributes

classes_ [ndarray or list of ndarray of shape (n_classes,)] Class labels for each output.

loss_ [float] The current loss computed with the loss function.

7.31. sklearn.neural_network: Neural network models 2461

scikit-learn user guide, Release 0.23.2

coefs_ [list, length n_layers - 1] The ith element in the list represents the weight matrix corre-
sponding to layer i.

intercepts_ [list, length n_layers - 1] The ith element in the list represents the bias vector cor-
responding to layer i + 1.

n_iter_ [int,] The number of iterations the solver has ran.

n_layers_ [int] Number of layers.

n_outputs_ [int] Number of outputs.

out_activation_ [string] Name of the output activation function.

Notes

MLPClassifier trains iteratively since at each time step the partial derivatives of the loss function with respect to
the model parameters are computed to update the parameters.

It can also have a regularization term added to the loss function that shrinks model parameters to prevent over-
fitting.

This implementation works with data represented as dense numpy arrays or sparse scipy arrays of floating point
values.

References

Hinton, Geoffrey E. “Connectionist learning procedures.” Artificial intelligence 40.1 (1989): 185-234.

Glorot, Xavier, and Yoshua Bengio. “Understanding the difficulty of training deep feedforward neural net-
works.” International Conference on Artificial Intelligence and Statistics. 2010.

He, Kaiming, et al. “Delving deep into rectifiers: Surpassing human-level performance on imagenet classi-
fication.” arXiv preprint arXiv:1502.01852 (2015).

Kingma, Diederik, and Jimmy Ba. “Adam: A method for stochastic optimization.” arXiv preprint
arXiv:1412.6980 (2014).

Examples

>>> from sklearn.neural_network import MLPClassifier
>>> from sklearn.datasets import make_classification
>>> from sklearn.model_selection import train_test_split
>>> X, y = make_classification(n_samples=100, random_state=1)
>>> X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y,
... random_state=1)
>>> clf = MLPClassifier(random_state=1, max_iter=300).fit(X_train, y_train)
>>> clf.predict_proba(X_test[:1])
array([[0.038..., 0.961...]])
>>> clf.predict(X_test[:5, :])
array([1, 0, 1, 0, 1])
>>> clf.score(X_test, y_test)
0.8...

Methods

2462 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

fit(X, y) Fit the model to data matrix X and target(s) y.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the multi-layer perceptron classifier
predict_log_proba(X) Return the log of probability estimates.
predict_proba(X) Probability estimates.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(hidden_layer_sizes=(100,), activation=’relu’, *, solver=’adam’, alpha=0.0001,
batch_size=’auto’, learning_rate=’constant’, learning_rate_init=0.001, power_t=0.5,
max_iter=200, shuffle=True, random_state=None, tol=0.0001, verbose=False,
warm_start=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False,
validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08, n_iter_no_change=10,
max_fun=15000)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y)
Fit the model to data matrix X and target(s) y.

Parameters

X [ndarray or sparse matrix of shape (n_samples, n_features)] The input data.

y [ndarray, shape (n_samples,) or (n_samples, n_outputs)] The target values (class labels in
classification, real numbers in regression).

Returns

self [returns a trained MLP model.]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

property partial_fit
Update the model with a single iteration over the given data.

Parameters

X [{array-like, sparse matrix}, shape (n_samples, n_features)] The input data.

y [array-like, shape (n_samples,)] The target values.

classes [array, shape (n_classes), default None] Classes across all calls to partial_fit. Can be
obtained via np.unique(y_all), where y_all is the target vector of the entire dataset.
This argument is required for the first call to partial_fit and can be omitted in the subse-
quent calls. Note that y doesn’t need to contain all labels in classes.

Returns

self [returns a trained MLP model.]

7.31. sklearn.neural_network: Neural network models 2463

scikit-learn user guide, Release 0.23.2

predict(X)
Predict using the multi-layer perceptron classifier

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input data.

Returns

y [ndarray, shape (n_samples,) or (n_samples, n_classes)] The predicted classes.

predict_log_proba(X)
Return the log of probability estimates.

Parameters

X [ndarray of shape (n_samples, n_features)] The input data.

Returns

log_y_prob [ndarray of shape (n_samples, n_classes)] The predicted log-probability of the
sample for each class in the model, where classes are ordered as they are in self.
classes_. Equivalent to log(predict_proba(X))

predict_proba(X)
Probability estimates.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input data.

Returns

y_prob [ndarray of shape (n_samples, n_classes)] The predicted probability of the sample
for each class in the model, where classes are ordered as they are in self.classes_.

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

2464 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Examples using sklearn.neural_network.MLPClassifier

• Classifier comparison

• Visualization of MLP weights on MNIST

• Compare Stochastic learning strategies for MLPClassifier

• Varying regularization in Multi-layer Perceptron

7.31.3 sklearn.neural_network.MLPRegressor

class sklearn.neural_network.MLPRegressor(hidden_layer_sizes=(100,), activa-
tion=’relu’, *, solver=’adam’, al-
pha=0.0001, batch_size=’auto’, learn-
ing_rate=’constant’, learning_rate_init=0.001,
power_t=0.5, max_iter=200, shuffle=True,
random_state=None, tol=0.0001, ver-
bose=False, warm_start=False, momen-
tum=0.9, nesterovs_momentum=True,
early_stopping=False, validation_fraction=0.1,
beta_1=0.9, beta_2=0.999, epsilon=1e-08,
n_iter_no_change=10, max_fun=15000)

Multi-layer Perceptron regressor.

This model optimizes the squared-loss using LBFGS or stochastic gradient descent.

New in version 0.18.

Parameters

hidden_layer_sizes [tuple, length = n_layers - 2, default=(100,)] The ith element represents the
number of neurons in the ith hidden layer.

activation [{‘identity’, ‘logistic’, ‘tanh’, ‘relu’}, default=’relu’] Activation function for the hid-
den layer.

• ‘identity’, no-op activation, useful to implement linear bottleneck, returns f(x) = x

• ‘logistic’, the logistic sigmoid function, returns f(x) = 1 / (1 + exp(-x)).

• ‘tanh’, the hyperbolic tan function, returns f(x) = tanh(x).

• ‘relu’, the rectified linear unit function, returns f(x) = max(0, x)

solver [{‘lbfgs’, ‘sgd’, ‘adam’}, default=’adam’] The solver for weight optimization.

• ‘lbfgs’ is an optimizer in the family of quasi-Newton methods.

• ‘sgd’ refers to stochastic gradient descent.

• ‘adam’ refers to a stochastic gradient-based optimizer proposed by Kingma, Diederik,
and Jimmy Ba

Note: The default solver ‘adam’ works pretty well on relatively large datasets (with thou-
sands of training samples or more) in terms of both training time and validation score. For
small datasets, however, ‘lbfgs’ can converge faster and perform better.

alpha [float, default=0.0001] L2 penalty (regularization term) parameter.

batch_size [int, default=’auto’] Size of minibatches for stochastic optimizers. If the
solver is ‘lbfgs’, the classifier will not use minibatch. When set to “auto”,
batch_size=min(200, n_samples)

7.31. sklearn.neural_network: Neural network models 2465

scikit-learn user guide, Release 0.23.2

learning_rate [{‘constant’, ‘invscaling’, ‘adaptive’}, default=’constant’] Learning rate sched-
ule for weight updates.

• ‘constant’ is a constant learning rate given by ‘learning_rate_init’.

• ‘invscaling’ gradually decreases the learning rate learning_rate_ at each time step
‘t’ using an inverse scaling exponent of ‘power_t’. effective_learning_rate = learn-
ing_rate_init / pow(t, power_t)

• ‘adaptive’ keeps the learning rate constant to ‘learning_rate_init’ as long as training loss
keeps decreasing. Each time two consecutive epochs fail to decrease training loss by at
least tol, or fail to increase validation score by at least tol if ‘early_stopping’ is on, the
current learning rate is divided by 5.

Only used when solver=’sgd’.

learning_rate_init [double, default=0.001] The initial learning rate used. It controls the step-
size in updating the weights. Only used when solver=’sgd’ or ‘adam’.

power_t [double, default=0.5] The exponent for inverse scaling learning rate. It is used in
updating effective learning rate when the learning_rate is set to ‘invscaling’. Only used
when solver=’sgd’.

max_iter [int, default=200] Maximum number of iterations. The solver iterates until con-
vergence (determined by ‘tol’) or this number of iterations. For stochastic solvers (‘sgd’,
‘adam’), note that this determines the number of epochs (how many times each data point
will be used), not the number of gradient steps.

shuffle [bool, default=True] Whether to shuffle samples in each iteration. Only used when
solver=’sgd’ or ‘adam’.

random_state [int, RandomState instance, default=None] Determines random number gener-
ation for weights and bias initialization, train-test split if early stopping is used, and batch
sampling when solver=’sgd’ or ‘adam’. Pass an int for reproducible results across multiple
function calls. See Glossary.

tol [float, default=1e-4] Tolerance for the optimization. When the loss or score is not
improving by at least tol for n_iter_no_change consecutive iterations, unless
learning_rate is set to ‘adaptive’, convergence is considered to be reached and training
stops.

verbose [bool, default=False] Whether to print progress messages to stdout.

warm_start [bool, default=False] When set to True, reuse the solution of the previous call to
fit as initialization, otherwise, just erase the previous solution. See the Glossary.

momentum [float, default=0.9] Momentum for gradient descent update. Should be between 0
and 1. Only used when solver=’sgd’.

nesterovs_momentum [boolean, default=True] Whether to use Nesterov’s momentum. Only
used when solver=’sgd’ and momentum > 0.

early_stopping [bool, default=False] Whether to use early stopping to terminate training when
validation score is not improving. If set to true, it will automatically set aside 10% of training
data as validation and terminate training when validation score is not improving by at least
tol for n_iter_no_change consecutive epochs. Only effective when solver=’sgd’ or
‘adam’

validation_fraction [float, default=0.1] The proportion of training data to set aside as validation
set for early stopping. Must be between 0 and 1. Only used if early_stopping is True

2466 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

beta_1 [float, default=0.9] Exponential decay rate for estimates of first moment vector in adam,
should be in [0, 1). Only used when solver=’adam’

beta_2 [float, default=0.999] Exponential decay rate for estimates of second moment vector in
adam, should be in [0, 1). Only used when solver=’adam’

epsilon [float, default=1e-8] Value for numerical stability in adam. Only used when
solver=’adam’

n_iter_no_change [int, default=10] Maximum number of epochs to not meet tol improve-
ment. Only effective when solver=’sgd’ or ‘adam’

New in version 0.20.

max_fun [int, default=15000] Only used when solver=’lbfgs’. Maximum number of func-
tion calls. The solver iterates until convergence (determined by ‘tol’), number of iterations
reaches max_iter, or this number of function calls. Note that number of function calls will
be greater than or equal to the number of iterations for the MLPRegressor.

New in version 0.22.

Attributes

loss_ [float] The current loss computed with the loss function.

coefs_ [list, length n_layers - 1] The ith element in the list represents the weight matrix corre-
sponding to layer i.

intercepts_ [list, length n_layers - 1] The ith element in the list represents the bias vector cor-
responding to layer i + 1.

n_iter_ [int,] The number of iterations the solver has ran.

n_layers_ [int] Number of layers.

n_outputs_ [int] Number of outputs.

out_activation_ [string] Name of the output activation function.

Notes

MLPRegressor trains iteratively since at each time step the partial derivatives of the loss function with respect
to the model parameters are computed to update the parameters.

It can also have a regularization term added to the loss function that shrinks model parameters to prevent over-
fitting.

This implementation works with data represented as dense and sparse numpy arrays of floating point values.

References

Hinton, Geoffrey E. “Connectionist learning procedures.” Artificial intelligence 40.1 (1989): 185-234.

Glorot, Xavier, and Yoshua Bengio. “Understanding the difficulty of training deep feedforward neural net-
works.” International Conference on Artificial Intelligence and Statistics. 2010.

He, Kaiming, et al. “Delving deep into rectifiers: Surpassing human-level performance on imagenet classi-
fication.” arXiv preprint arXiv:1502.01852 (2015).

Kingma, Diederik, and Jimmy Ba. “Adam: A method for stochastic optimization.” arXiv preprint
arXiv:1412.6980 (2014).

7.31. sklearn.neural_network: Neural network models 2467

scikit-learn user guide, Release 0.23.2

Examples

>>> from sklearn.neural_network import MLPRegressor
>>> from sklearn.datasets import make_regression
>>> from sklearn.model_selection import train_test_split
>>> X, y = make_regression(n_samples=200, random_state=1)
>>> X_train, X_test, y_train, y_test = train_test_split(X, y,
... random_state=1)
>>> regr = MLPRegressor(random_state=1, max_iter=500).fit(X_train, y_train)
>>> regr.predict(X_test[:2])
array([-0.9..., -7.1...])
>>> regr.score(X_test, y_test)
0.4...

Methods

fit(X, y) Fit the model to data matrix X and target(s) y.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the multi-layer perceptron model.
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.

__init__(hidden_layer_sizes=(100,), activation=’relu’, *, solver=’adam’, alpha=0.0001,
batch_size=’auto’, learning_rate=’constant’, learning_rate_init=0.001, power_t=0.5,
max_iter=200, shuffle=True, random_state=None, tol=0.0001, verbose=False,
warm_start=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False,
validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08, n_iter_no_change=10,
max_fun=15000)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y)
Fit the model to data matrix X and target(s) y.

Parameters

X [ndarray or sparse matrix of shape (n_samples, n_features)] The input data.

y [ndarray of shape (n_samples,) or (n_samples, n_outputs)] The target values (class labels
in classification, real numbers in regression).

Returns

self [returns a trained MLP model.]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

2468 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

property partial_fit
Update the model with a single iteration over the given data.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input data.

y [ndarray of shape (n_samples,)] The target values.

Returns

self [returns a trained MLP model.]

predict(X)
Predict using the multi-layer perceptron model.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input data.

Returns

y [ndarray of shape (n_samples, n_outputs)] The predicted values.

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

7.31. sklearn.neural_network: Neural network models 2469

scikit-learn user guide, Release 0.23.2

self [object] Estimator instance.

Examples using sklearn.neural_network.MLPRegressor

• Partial Dependence Plots

• Advanced Plotting With Partial Dependence

7.32 sklearn.pipeline: Pipeline

The sklearn.pipeline module implements utilities to build a composite estimator, as a chain of transforms and
estimators.

User guide: See the Pipelines and composite estimators section for further details.

pipeline.FeatureUnion(transformer_list, *[,
. . .])

Concatenates results of multiple transformer objects.

pipeline.Pipeline(steps, *[, memory, verbose]) Pipeline of transforms with a final estimator.

7.32.1 sklearn.pipeline.FeatureUnion

class sklearn.pipeline.FeatureUnion(transformer_list, *, n_jobs=None, trans-
former_weights=None, verbose=False)

Concatenates results of multiple transformer objects.

This estimator applies a list of transformer objects in parallel to the input data, then concatenates the results.
This is useful to combine several feature extraction mechanisms into a single transformer.

Parameters of the transformers may be set using its name and the parameter name separated by a ‘__’. A
transformer may be replaced entirely by setting the parameter with its name to another transformer, or removed
by setting to ‘drop’.

Read more in the User Guide.

New in version 0.13.

Parameters

transformer_list [list of (string, transformer) tuples] List of transformer objects to be applied
to the data. The first half of each tuple is the name of the transformer.

Changed in version 0.22: Deprecated None as a transformer in favor of ‘drop’.

n_jobs [int, default=None] Number of jobs to run in parallel. None means 1 unless in a
joblib.parallel_backend context. -1 means using all processors. See Glossary
for more details.

Changed in version v0.20: n_jobs default changed from 1 to None

transformer_weights [dict, default=None] Multiplicative weights for features per transformer.
Keys are transformer names, values the weights.

verbose [bool, default=False] If True, the time elapsed while fitting each transformer will be
printed as it is completed.

Attributes

n_features_in_

2470 Chapter 7. API Reference

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

See also:

sklearn.pipeline.make_union Convenience function for simplified feature union construction.

Examples

>>> from sklearn.pipeline import FeatureUnion
>>> from sklearn.decomposition import PCA, TruncatedSVD
>>> union = FeatureUnion([("pca", PCA(n_components=1)),
... ("svd", TruncatedSVD(n_components=2))])
>>> X = [[0., 1., 3], [2., 2., 5]]
>>> union.fit_transform(X)
array([[1.5 , 3.0..., 0.8...],

[-1.5 , 5.7..., -0.4...]])

Methods

fit(X[, y]) Fit all transformers using X.
fit_transform(X[, y]) Fit all transformers, transform the data and concate-

nate results.
get_feature_names() Get feature names from all transformers.
get_params([deep]) Get parameters for this estimator.
set_params(**kwargs) Set the parameters of this estimator.
transform(X) Transform X separately by each transformer, con-

catenate results.

__init__(transformer_list, *, n_jobs=None, transformer_weights=None, verbose=False)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None, **fit_params)
Fit all transformers using X.

Parameters

X [iterable or array-like, depending on transformers] Input data, used to fit transformers.

y [array-like of shape (n_samples, n_outputs), default=None] Targets for supervised learn-
ing.

Returns

self [FeatureUnion] This estimator

fit_transform(X, y=None, **fit_params)
Fit all transformers, transform the data and concatenate results.

Parameters

X [iterable or array-like, depending on transformers] Input data to be transformed.

y [array-like of shape (n_samples, n_outputs), default=None] Targets for supervised learn-
ing.

Returns

X_t [array-like or sparse matrix of shape (n_samples, sum_n_components)] hstack of results
of transformers. sum_n_components is the sum of n_components (output dimension) over

7.32. sklearn.pipeline: Pipeline 2471

scikit-learn user guide, Release 0.23.2

transformers.

get_feature_names()
Get feature names from all transformers.

Returns

feature_names [list of strings] Names of the features produced by transform.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

set_params(**kwargs)
Set the parameters of this estimator.

Valid parameter keys can be listed with get_params().

Returns

self

transform(X)
Transform X separately by each transformer, concatenate results.

Parameters

X [iterable or array-like, depending on transformers] Input data to be transformed.

Returns

X_t [array-like or sparse matrix of shape (n_samples, sum_n_components)] hstack of results
of transformers. sum_n_components is the sum of n_components (output dimension) over
transformers.

Examples using sklearn.pipeline.FeatureUnion

• Concatenating multiple feature extraction methods

7.32.2 sklearn.pipeline.Pipeline

class sklearn.pipeline.Pipeline(steps, *, memory=None, verbose=False)
Pipeline of transforms with a final estimator.

Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be ‘trans-
forms’, that is, they must implement fit and transform methods. The final estimator only needs to implement fit.
The transformers in the pipeline can be cached using memory argument.

The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting differ-
ent parameters. For this, it enables setting parameters of the various steps using their names and the parameter
name separated by a ‘__’, as in the example below. A step’s estimator may be replaced entirely by setting the
parameter with its name to another estimator, or a transformer removed by setting it to ‘passthrough’ or None.

Read more in the User Guide.

2472 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

New in version 0.5.

Parameters

steps [list] List of (name, transform) tuples (implementing fit/transform) that are chained, in the
order in which they are chained, with the last object an estimator.

memory [str or object with the joblib.Memory interface, default=None] Used to cache the fitted
transformers of the pipeline. By default, no caching is performed. If a string is given, it is
the path to the caching directory. Enabling caching triggers a clone of the transformers be-
fore fitting. Therefore, the transformer instance given to the pipeline cannot be inspected di-
rectly. Use the attribute named_steps or steps to inspect estimators within the pipeline.
Caching the transformers is advantageous when fitting is time consuming.

verbose [bool, default=False] If True, the time elapsed while fitting each step will be printed as
it is completed.

Attributes

named_steps [Bunch] Dictionary-like object, with the following attributes. Read-only at-
tribute to access any step parameter by user given name. Keys are step names and values are
steps parameters.

See also:

sklearn.pipeline.make_pipeline Convenience function for simplified pipeline construction.

Examples

>>> from sklearn.svm import SVC
>>> from sklearn.preprocessing import StandardScaler
>>> from sklearn.datasets import make_classification
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.pipeline import Pipeline
>>> X, y = make_classification(random_state=0)
>>> X_train, X_test, y_train, y_test = train_test_split(X, y,
... random_state=0)
>>> pipe = Pipeline([('scaler', StandardScaler()), ('svc', SVC())])
>>> # The pipeline can be used as any other estimator
>>> # and avoids leaking the test set into the train set
>>> pipe.fit(X_train, y_train)
Pipeline(steps=[('scaler', StandardScaler()), ('svc', SVC())])
>>> pipe.score(X_test, y_test)
0.88

Methods

decision_function(X) Apply transforms, and decision_function of the final
estimator

fit(X[, y]) Fit the model
fit_predict(X[, y]) Applies fit_predict of last step in pipeline after trans-

forms.
fit_transform(X[, y]) Fit the model and transform with the final estimator
get_params([deep]) Get parameters for this estimator.

Continued on next page

7.32. sklearn.pipeline: Pipeline 2473

scikit-learn user guide, Release 0.23.2

Table 265 – continued from previous page
predict(X, **predict_params) Apply transforms to the data, and predict with the

final estimator
predict_log_proba(X) Apply transforms, and predict_log_proba of the final

estimator
predict_proba(X) Apply transforms, and predict_proba of the final es-

timator
score(X[, y, sample_weight]) Apply transforms, and score with the final estimator
score_samples(X) Apply transforms, and score_samples of the final es-

timator.
set_params(**kwargs) Set the parameters of this estimator.

__init__(steps, *, memory=None, verbose=False)
Initialize self. See help(type(self)) for accurate signature.

decision_function(X)
Apply transforms, and decision_function of the final estimator

Parameters

X [iterable] Data to predict on. Must fulfill input requirements of first step of the pipeline.

Returns

y_score [array-like of shape (n_samples, n_classes)]

fit(X, y=None, **fit_params)
Fit the model

Fit all the transforms one after the other and transform the data, then fit the transformed data using the final
estimator.

Parameters

X [iterable] Training data. Must fulfill input requirements of first step of the pipeline.

y [iterable, default=None] Training targets. Must fulfill label requirements for all steps of
the pipeline.

**fit_params [dict of string -> object] Parameters passed to the fit method of each step,
where each parameter name is prefixed such that parameter p for step s has key s__p.

Returns

self [Pipeline] This estimator

fit_predict(X, y=None, **fit_params)
Applies fit_predict of last step in pipeline after transforms.

Applies fit_transforms of a pipeline to the data, followed by the fit_predict method of the final estimator in
the pipeline. Valid only if the final estimator implements fit_predict.

Parameters

X [iterable] Training data. Must fulfill input requirements of first step of the pipeline.

y [iterable, default=None] Training targets. Must fulfill label requirements for all steps of
the pipeline.

**fit_params [dict of string -> object] Parameters passed to the fit method of each step,
where each parameter name is prefixed such that parameter p for step s has key s__p.

Returns

2474 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

y_pred [array-like]

fit_transform(X, y=None, **fit_params)
Fit the model and transform with the final estimator

Fits all the transforms one after the other and transforms the data, then uses fit_transform on transformed
data with the final estimator.

Parameters

X [iterable] Training data. Must fulfill input requirements of first step of the pipeline.

y [iterable, default=None] Training targets. Must fulfill label requirements for all steps of
the pipeline.

**fit_params [dict of string -> object] Parameters passed to the fit method of each step,
where each parameter name is prefixed such that parameter p for step s has key s__p.

Returns

Xt [array-like of shape (n_samples, n_transformed_features)] Transformed samples

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

property inverse_transform
Apply inverse transformations in reverse order

All estimators in the pipeline must support inverse_transform.

Parameters

Xt [array-like of shape (n_samples, n_transformed_features)] Data samples, where
n_samples is the number of samples and n_features is the number of features. Must
fulfill input requirements of last step of pipeline’s inverse_transform method.

Returns

Xt [array-like of shape (n_samples, n_features)]

predict(X, **predict_params)
Apply transforms to the data, and predict with the final estimator

Parameters

X [iterable] Data to predict on. Must fulfill input requirements of first step of the pipeline.

**predict_params [dict of string -> object] Parameters to the predict called at the end of
all transformations in the pipeline. Note that while this may be used to return uncertainties
from some models with return_std or return_cov, uncertainties that are generated by the
transformations in the pipeline are not propagated to the final estimator.

New in version 0.20.

Returns

y_pred [array-like]

7.32. sklearn.pipeline: Pipeline 2475

scikit-learn user guide, Release 0.23.2

predict_log_proba(X)
Apply transforms, and predict_log_proba of the final estimator

Parameters

X [iterable] Data to predict on. Must fulfill input requirements of first step of the pipeline.

Returns

y_score [array-like of shape (n_samples, n_classes)]

predict_proba(X)
Apply transforms, and predict_proba of the final estimator

Parameters

X [iterable] Data to predict on. Must fulfill input requirements of first step of the pipeline.

Returns

y_proba [array-like of shape (n_samples, n_classes)]

score(X, y=None, sample_weight=None)
Apply transforms, and score with the final estimator

Parameters

X [iterable] Data to predict on. Must fulfill input requirements of first step of the pipeline.

y [iterable, default=None] Targets used for scoring. Must fulfill label requirements for all
steps of the pipeline.

sample_weight [array-like, default=None] If not None, this argument is passed as
sample_weight keyword argument to the score method of the final estimator.

Returns

score [float]

score_samples(X)
Apply transforms, and score_samples of the final estimator.

Parameters

X [iterable] Data to predict on. Must fulfill input requirements of first step of the pipeline.

Returns

y_score [ndarray of shape (n_samples,)]

set_params(**kwargs)
Set the parameters of this estimator.

Valid parameter keys can be listed with get_params().

Returns

self

property transform
Apply transforms, and transform with the final estimator

This also works where final estimator is None: all prior transformations are applied.

Parameters

X [iterable] Data to transform. Must fulfill input requirements of first step of the pipeline.

Returns

2476 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Xt [array-like of shape (n_samples, n_transformed_features)]

Examples using sklearn.pipeline.Pipeline

• Sample pipeline for text feature extraction and evaluation

pipeline.make_pipeline(*steps, **kwargs) Construct a Pipeline from the given estimators.
pipeline.make_union(*transformers, **kwargs) Construct a FeatureUnion from the given transformers.

7.32.3 sklearn.pipeline.make_pipeline

sklearn.pipeline.make_pipeline(*steps, **kwargs)
Construct a Pipeline from the given estimators.

This is a shorthand for the Pipeline constructor; it does not require, and does not permit, naming the estimators.
Instead, their names will be set to the lowercase of their types automatically.

Parameters

*steps [list of estimators.]

memory [str or object with the joblib.Memory interface, default=None] Used to cache the fitted
transformers of the pipeline. By default, no caching is performed. If a string is given, it is
the path to the caching directory. Enabling caching triggers a clone of the transformers be-
fore fitting. Therefore, the transformer instance given to the pipeline cannot be inspected di-
rectly. Use the attribute named_steps or steps to inspect estimators within the pipeline.
Caching the transformers is advantageous when fitting is time consuming.

verbose [bool, default=False] If True, the time elapsed while fitting each step will be printed as
it is completed.

Returns

p [Pipeline]

See also:

sklearn.pipeline.Pipeline Class for creating a pipeline of transforms with a final estimator.

Examples

>>> from sklearn.naive_bayes import GaussianNB
>>> from sklearn.preprocessing import StandardScaler
>>> make_pipeline(StandardScaler(), GaussianNB(priors=None))
Pipeline(steps=[('standardscaler', StandardScaler()),

('gaussiannb', GaussianNB())])

Examples using sklearn.pipeline.make_pipeline

• Approximate nearest neighbors in TSNE

7.32. sklearn.pipeline: Pipeline 2477

scikit-learn user guide, Release 0.23.2

7.32.4 sklearn.pipeline.make_union

sklearn.pipeline.make_union(*transformers, **kwargs)
Construct a FeatureUnion from the given transformers.

This is a shorthand for the FeatureUnion constructor; it does not require, and does not permit, naming the
transformers. Instead, they will be given names automatically based on their types. It also does not allow
weighting.

Parameters

*transformers [list of estimators]

n_jobs [int, default=None] Number of jobs to run in parallel. None means 1 unless in a
joblib.parallel_backend context. -1 means using all processors. See Glossary
for more details.

Changed in version v0.20: n_jobs default changed from 1 to None

verbose [bool, default=False] If True, the time elapsed while fitting each transformer will be
printed as it is completed.

Returns

f [FeatureUnion]

See also:

sklearn.pipeline.FeatureUnion Class for concatenating the results of multiple transformer objects.

Examples

>>> from sklearn.decomposition import PCA, TruncatedSVD
>>> from sklearn.pipeline import make_union
>>> make_union(PCA(), TruncatedSVD())
FeatureUnion(transformer_list=[('pca', PCA()),

('truncatedsvd', TruncatedSVD())])

7.33 sklearn.preprocessing: Preprocessing and Normalization

The sklearn.preprocessing module includes scaling, centering, normalization, binarization methods.

User guide: See the Preprocessing data section for further details.

preprocessing.Binarizer(*[, threshold,
copy])

Binarize data (set feature values to 0 or 1) according to
a threshold

preprocessing.FunctionTransformer([func,
. . .])

Constructs a transformer from an arbitrary callable.

preprocessing.KBinsDiscretizer([n_bins,
. . .])

Bin continuous data into intervals.

preprocessing.KernelCenterer() Center a kernel matrix
preprocessing.LabelBinarizer(*[,
neg_label, . . .])

Binarize labels in a one-vs-all fashion

preprocessing.LabelEncoder Encode target labels with value between 0 and
n_classes-1.

Continued on next page

2478 Chapter 7. API Reference

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

Table 267 – continued from previous page
preprocessing.MultiLabelBinarizer(*[,
. . .])

Transform between iterable of iterables and a multilabel
format

preprocessing.MaxAbsScaler(*[, copy]) Scale each feature by its maximum absolute value.
preprocessing.MinMaxScaler([feature_range,
copy])

Transform features by scaling each feature to a given
range.

preprocessing.Normalizer([norm, copy]) Normalize samples individually to unit norm.
preprocessing.OneHotEncoder(*[, categories,
. . .])

Encode categorical features as a one-hot numeric array.

preprocessing.OrdinalEncoder(*[, . . .]) Encode categorical features as an integer array.
preprocessing.PolynomialFeatures([degree,
. . .])

Generate polynomial and interaction features.

preprocessing.PowerTransformer([method,
. . .])

Apply a power transform featurewise to make data more
Gaussian-like.

preprocessing.QuantileTransformer(*[,
. . .])

Transform features using quantiles information.

preprocessing.RobustScaler(*[, . . .]) Scale features using statistics that are robust to outliers.
preprocessing.StandardScaler(*[, copy,
. . .])

Standardize features by removing the mean and scaling
to unit variance

7.33.1 sklearn.preprocessing.Binarizer

class sklearn.preprocessing.Binarizer(*, threshold=0.0, copy=True)
Binarize data (set feature values to 0 or 1) according to a threshold

Values greater than the threshold map to 1, while values less than or equal to the threshold map to 0. With the
default threshold of 0, only positive values map to 1.

Binarization is a common operation on text count data where the analyst can decide to only consider the presence
or absence of a feature rather than a quantified number of occurrences for instance.

It can also be used as a pre-processing step for estimators that consider boolean random variables (e.g. modelled
using the Bernoulli distribution in a Bayesian setting).

Read more in the User Guide.

Parameters

threshold [float, optional (0.0 by default)] Feature values below or equal to this are replaced by
0, above it by 1. Threshold may not be less than 0 for operations on sparse matrices.

copy [boolean, optional, default True] set to False to perform inplace binarization and avoid a
copy (if the input is already a numpy array or a scipy.sparse CSR matrix).

See also:

binarize Equivalent function without the estimator API.

Notes

If the input is a sparse matrix, only the non-zero values are subject to update by the Binarizer class.

This estimator is stateless (besides constructor parameters), the fit method does nothing but is useful when used
in a pipeline.

7.33. sklearn.preprocessing: Preprocessing and Normalization 2479

scikit-learn user guide, Release 0.23.2

Examples

>>> from sklearn.preprocessing import Binarizer
>>> X = [[1., -1., 2.],
... [2., 0., 0.],
... [0., 1., -1.]]
>>> transformer = Binarizer().fit(X) # fit does nothing.
>>> transformer
Binarizer()
>>> transformer.transform(X)
array([[1., 0., 1.],

[1., 0., 0.],
[0., 1., 0.]])

Methods

fit(X[, y]) Do nothing and return the estimator unchanged
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X[, copy]) Binarize each element of X

__init__(*, threshold=0.0, copy=True)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Do nothing and return the estimator unchanged

This method is just there to implement the usual API and hence work in pipelines.

Parameters

X [array-like]

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

2480 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

params [mapping of string to any] Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X, copy=None)
Binarize each element of X

Parameters

X [{array-like, sparse matrix}, shape [n_samples, n_features]] The data to binarize, element
by element. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy.

copy [bool] Copy the input X or not.

7.33.2 sklearn.preprocessing.FunctionTransformer

class sklearn.preprocessing.FunctionTransformer(func=None, inverse_func=None, *,
validate=False, accept_sparse=False,
check_inverse=True, kw_args=None,
inv_kw_args=None)

Constructs a transformer from an arbitrary callable.

A FunctionTransformer forwards its X (and optionally y) arguments to a user-defined function or function
object and returns the result of this function. This is useful for stateless transformations such as taking the log
of frequencies, doing custom scaling, etc.

Note: If a lambda is used as the function, then the resulting transformer will not be pickleable.

New in version 0.17.

Read more in the User Guide.

Parameters

func [callable, optional default=None] The callable to use for the transformation. This will be
passed the same arguments as transform, with args and kwargs forwarded. If func is None,
then func will be the identity function.

inverse_func [callable, optional default=None] The callable to use for the inverse transforma-
tion. This will be passed the same arguments as inverse transform, with args and kwargs
forwarded. If inverse_func is None, then inverse_func will be the identity function.

validate [bool, optional default=False] Indicate that the input X array should be checked before
calling func. The possibilities are:

• If False, there is no input validation.

• If True, then X will be converted to a 2-dimensional NumPy array or sparse matrix. If the
conversion is not possible an exception is raised.

Changed in version 0.22: The default of validate changed from True to False.

7.33. sklearn.preprocessing: Preprocessing and Normalization 2481

scikit-learn user guide, Release 0.23.2

accept_sparse [boolean, optional] Indicate that func accepts a sparse matrix as input. If validate
is False, this has no effect. Otherwise, if accept_sparse is false, sparse matrix inputs will
cause an exception to be raised.

check_inverse [bool, default=True] Whether to check that or func followed by
inverse_func leads to the original inputs. It can be used for a sanity check, raising
a warning when the condition is not fulfilled.

New in version 0.20.

kw_args [dict, optional] Dictionary of additional keyword arguments to pass to func.

New in version 0.18.

inv_kw_args [dict, optional] Dictionary of additional keyword arguments to pass to in-
verse_func.

New in version 0.18.

Examples

>>> import numpy as np
>>> from sklearn.preprocessing import FunctionTransformer
>>> transformer = FunctionTransformer(np.log1p)
>>> X = np.array([[0, 1], [2, 3]])
>>> transformer.transform(X)
array([[0. , 0.6931...],

[1.0986..., 1.3862...]])

Methods

fit(X[, y]) Fit transformer by checking X.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
inverse_transform(X) Transform X using the inverse function.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform X using the forward function.

__init__(func=None, inverse_func=None, *, validate=False, accept_sparse=False,
check_inverse=True, kw_args=None, inv_kw_args=None)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Fit transformer by checking X.

If validate is True, X will be checked.

Parameters

X [array-like, shape (n_samples, n_features)] Input array.

Returns

self

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

2482 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

inverse_transform(X)
Transform X using the inverse function.

Parameters

X [array-like, shape (n_samples, n_features)] Input array.

Returns

X_out [array-like, shape (n_samples, n_features)] Transformed input.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Transform X using the forward function.

Parameters

X [array-like, shape (n_samples, n_features)] Input array.

Returns

X_out [array-like, shape (n_samples, n_features)] Transformed input.

7.33. sklearn.preprocessing: Preprocessing and Normalization 2483

scikit-learn user guide, Release 0.23.2

Examples using sklearn.preprocessing.FunctionTransformer

• Poisson regression and non-normal loss

• Tweedie regression on insurance claims

• Column Transformer with Heterogeneous Data Sources

• Using FunctionTransformer to select columns

7.33.3 sklearn.preprocessing.KBinsDiscretizer

class sklearn.preprocessing.KBinsDiscretizer(n_bins=5, *, encode=’onehot’, strat-
egy=’quantile’)

Bin continuous data into intervals.

Read more in the User Guide.

New in version 0.20.

Parameters

n_bins [int or array-like, shape (n_features,) (default=5)] The number of bins to produce.
Raises ValueError if n_bins < 2.

encode [{‘onehot’, ‘onehot-dense’, ‘ordinal’}, (default=’onehot’)] Method used to encode the
transformed result.

onehot Encode the transformed result with one-hot encoding and return a sparse matrix.
Ignored features are always stacked to the right.

onehot-dense Encode the transformed result with one-hot encoding and return a dense ar-
ray. Ignored features are always stacked to the right.

ordinal Return the bin identifier encoded as an integer value.

strategy [{‘uniform’, ‘quantile’, ‘kmeans’}, (default=’quantile’)] Strategy used to define the
widths of the bins.

uniform All bins in each feature have identical widths.

quantile All bins in each feature have the same number of points.

kmeans Values in each bin have the same nearest center of a 1D k-means cluster.

Attributes

n_bins_ [int array, shape (n_features,)] Number of bins per feature. Bins whose width are too
small (i.e., <= 1e-8) are removed with a warning.

bin_edges_ [array of arrays, shape (n_features,)] The edges of each bin. Contain arrays of
varying shapes (n_bins_,) Ignored features will have empty arrays.

See also:

sklearn.preprocessing.Binarizer Class used to bin values as 0 or 1 based on a parameter
threshold.

Notes

In bin edges for feature i, the first and last values are used only for inverse_transform. During transform,
bin edges are extended to:

2484 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

np.concatenate([-np.inf, bin_edges_[i][1:-1], np.inf])

You can combine KBinsDiscretizer with sklearn.compose.ColumnTransformer if you only
want to preprocess part of the features.

KBinsDiscretizer might produce constant features (e.g., when encode = 'onehot' and certain bins
do not contain any data). These features can be removed with feature selection algorithms (e.g., sklearn.
feature_selection.VarianceThreshold).

Examples

>>> X = [[-2, 1, -4, -1],
... [-1, 2, -3, -0.5],
... [0, 3, -2, 0.5],
... [1, 4, -1, 2]]
>>> est = KBinsDiscretizer(n_bins=3, encode='ordinal', strategy='uniform')
>>> est.fit(X)
KBinsDiscretizer(...)
>>> Xt = est.transform(X)
>>> Xt # doctest: +SKIP
array([[0., 0., 0., 0.],

[1., 1., 1., 0.],
[2., 2., 2., 1.],
[2., 2., 2., 2.]])

Sometimes it may be useful to convert the data back into the original feature space. The
inverse_transform function converts the binned data into the original feature space. Each value will
be equal to the mean of the two bin edges.

>>> est.bin_edges_[0]
array([-2., -1., 0., 1.])
>>> est.inverse_transform(Xt)
array([[-1.5, 1.5, -3.5, -0.5],

[-0.5, 2.5, -2.5, -0.5],
[0.5, 3.5, -1.5, 0.5],
[0.5, 3.5, -1.5, 1.5]])

Methods

fit(X[, y]) Fit the estimator.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
inverse_transform(Xt) Transform discretized data back to original feature

space.
set_params(**params) Set the parameters of this estimator.
transform(X) Discretize the data.

__init__(n_bins=5, *, encode=’onehot’, strategy=’quantile’)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Fit the estimator.

7.33. sklearn.preprocessing: Preprocessing and Normalization 2485

scikit-learn user guide, Release 0.23.2

Parameters

X [numeric array-like, shape (n_samples, n_features)] Data to be discretized.

y [None] Ignored. This parameter exists only for compatibility with sklearn.
pipeline.Pipeline.

Returns

self

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

inverse_transform(Xt)
Transform discretized data back to original feature space.

Note that this function does not regenerate the original data due to discretization rounding.

Parameters

Xt [numeric array-like, shape (n_sample, n_features)] Transformed data in the binned space.

Returns

Xinv [numeric array-like] Data in the original feature space.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

2486 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

transform(X)
Discretize the data.

Parameters

X [numeric array-like, shape (n_samples, n_features)] Data to be discretized.

Returns

Xt [numeric array-like or sparse matrix] Data in the binned space.

Examples using sklearn.preprocessing.KBinsDiscretizer

• Poisson regression and non-normal loss

• Tweedie regression on insurance claims

• Using KBinsDiscretizer to discretize continuous features

• Demonstrating the different strategies of KBinsDiscretizer

• Feature discretization

7.33.4 sklearn.preprocessing.KernelCenterer

class sklearn.preprocessing.KernelCenterer
Center a kernel matrix

Let K(x, z) be a kernel defined by phi(x)^T phi(z), where phi is a function mapping x to a Hilbert space.
KernelCenterer centers (i.e., normalize to have zero mean) the data without explicitly computing phi(x). It is
equivalent to centering phi(x) with sklearn.preprocessing.StandardScaler(with_std=False).

Read more in the User Guide.

Attributes

K_fit_rows_ [array, shape (n_samples,)] Average of each column of kernel matrix

K_fit_all_ [float] Average of kernel matrix

Examples

>>> from sklearn.preprocessing import KernelCenterer
>>> from sklearn.metrics.pairwise import pairwise_kernels
>>> X = [[1., -2., 2.],
... [-2., 1., 3.],
... [4., 1., -2.]]
>>> K = pairwise_kernels(X, metric='linear')
>>> K
array([[9., 2., -2.],

[2., 14., -13.],
[-2., -13., 21.]])

>>> transformer = KernelCenterer().fit(K)
>>> transformer
KernelCenterer()
>>> transformer.transform(K)
array([[5., 0., -5.],

[0., 14., -14.],
[-5., -14., 19.]])

7.33. sklearn.preprocessing: Preprocessing and Normalization 2487

scikit-learn user guide, Release 0.23.2

Methods

fit(K[, y]) Fit KernelCenterer
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(K[, copy]) Center kernel matrix.

__init__()
Initialize self. See help(type(self)) for accurate signature.

fit(K, y=None)
Fit KernelCenterer

Parameters

K [numpy array of shape [n_samples, n_samples]] Kernel matrix.

Returns

self [returns an instance of self.]

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

2488 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

transform(K, copy=True)
Center kernel matrix.

Parameters

K [numpy array of shape [n_samples1, n_samples2]] Kernel matrix.

copy [boolean, optional, default True] Set to False to perform inplace computation.

Returns

K_new [numpy array of shape [n_samples1, n_samples2]]

7.33.5 sklearn.preprocessing.LabelBinarizer

class sklearn.preprocessing.LabelBinarizer(*, neg_label=0, pos_label=1,
sparse_output=False)

Binarize labels in a one-vs-all fashion

Several regression and binary classification algorithms are available in scikit-learn. A simple way to extend
these algorithms to the multi-class classification case is to use the so-called one-vs-all scheme.

At learning time, this simply consists in learning one regressor or binary classifier per class. In doing so, one
needs to convert multi-class labels to binary labels (belong or does not belong to the class). LabelBinarizer
makes this process easy with the transform method.

At prediction time, one assigns the class for which the corresponding model gave the greatest confidence. La-
belBinarizer makes this easy with the inverse_transform method.

Read more in the User Guide.

Parameters

neg_label [int (default: 0)] Value with which negative labels must be encoded.

pos_label [int (default: 1)] Value with which positive labels must be encoded.

sparse_output [boolean (default: False)] True if the returned array from transform is desired to
be in sparse CSR format.

Attributes

classes_ [array of shape [n_class]] Holds the label for each class.

y_type_ [str,] Represents the type of the target data as evaluated by
utils.multiclass.type_of_target. Possible type are ‘continuous’, ‘continuous-multioutput’,
‘binary’, ‘multiclass’, ‘multiclass-multioutput’, ‘multilabel-indicator’, and ‘unknown’.

sparse_input_ [boolean,] True if the input data to transform is given as a sparse matrix, False
otherwise.

See also:

label_binarize function to perform the transform operation of LabelBinarizer with fixed classes.

sklearn.preprocessing.OneHotEncoder encode categorical features using a one-hot aka one-of-K
scheme.

Examples

7.33. sklearn.preprocessing: Preprocessing and Normalization 2489

scikit-learn user guide, Release 0.23.2

>>> from sklearn import preprocessing
>>> lb = preprocessing.LabelBinarizer()
>>> lb.fit([1, 2, 6, 4, 2])
LabelBinarizer()
>>> lb.classes_
array([1, 2, 4, 6])
>>> lb.transform([1, 6])
array([[1, 0, 0, 0],

[0, 0, 0, 1]])

Binary targets transform to a column vector

>>> lb = preprocessing.LabelBinarizer()
>>> lb.fit_transform(['yes', 'no', 'no', 'yes'])
array([[1],

[0],
[0],
[1]])

Passing a 2D matrix for multilabel classification

>>> import numpy as np
>>> lb.fit(np.array([[0, 1, 1], [1, 0, 0]]))
LabelBinarizer()
>>> lb.classes_
array([0, 1, 2])
>>> lb.transform([0, 1, 2, 1])
array([[1, 0, 0],

[0, 1, 0],
[0, 0, 1],
[0, 1, 0]])

Methods

fit(y) Fit label binarizer
fit_transform(y) Fit label binarizer and transform multi-class labels to

binary labels.
get_params([deep]) Get parameters for this estimator.
inverse_transform(Y[, threshold]) Transform binary labels back to multi-class labels
set_params(**params) Set the parameters of this estimator.
transform(y) Transform multi-class labels to binary labels

__init__(*, neg_label=0, pos_label=1, sparse_output=False)
Initialize self. See help(type(self)) for accurate signature.

fit(y)
Fit label binarizer

Parameters

y [array of shape [n_samples,] or [n_samples, n_classes]] Target values. The 2-d matrix
should only contain 0 and 1, represents multilabel classification.

Returns

self [returns an instance of self.]

2490 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

fit_transform(y)
Fit label binarizer and transform multi-class labels to binary labels.

The output of transform is sometimes referred to as the 1-of-K coding scheme.

Parameters

y [array or sparse matrix of shape [n_samples,] or [n_samples, n_classes]] Target values.
The 2-d matrix should only contain 0 and 1, represents multilabel classification. Sparse
matrix can be CSR, CSC, COO, DOK, or LIL.

Returns

Y [array or CSR matrix of shape [n_samples, n_classes]] Shape will be [n_samples, 1] for
binary problems.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

inverse_transform(Y, threshold=None)
Transform binary labels back to multi-class labels

Parameters

Y [numpy array or sparse matrix with shape [n_samples, n_classes]] Target values. All
sparse matrices are converted to CSR before inverse transformation.

threshold [float or None] Threshold used in the binary and multi-label cases.

Use 0 when Y contains the output of decision_function (classifier). Use 0.5 when Y con-
tains the output of predict_proba.

If None, the threshold is assumed to be half way between neg_label and pos_label.

Returns

y [numpy array or CSR matrix of shape [n_samples] Target values.]

Notes

In the case when the binary labels are fractional (probabilistic), inverse_transform chooses the class with
the greatest value. Typically, this allows to use the output of a linear model’s decision_function method
directly as the input of inverse_transform.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

7.33. sklearn.preprocessing: Preprocessing and Normalization 2491

scikit-learn user guide, Release 0.23.2

self [object] Estimator instance.

transform(y)
Transform multi-class labels to binary labels

The output of transform is sometimes referred to by some authors as the 1-of-K coding scheme.

Parameters

y [array or sparse matrix of shape [n_samples,] or [n_samples, n_classes]] Target values.
The 2-d matrix should only contain 0 and 1, represents multilabel classification. Sparse
matrix can be CSR, CSC, COO, DOK, or LIL.

Returns

Y [numpy array or CSR matrix of shape [n_samples, n_classes]] Shape will be [n_samples,
1] for binary problems.

7.33.6 sklearn.preprocessing.LabelEncoder

class sklearn.preprocessing.LabelEncoder
Encode target labels with value between 0 and n_classes-1.

This transformer should be used to encode target values, i.e. y, and not the input X.

Read more in the User Guide.

New in version 0.12.

Attributes

classes_ [array of shape (n_class,)] Holds the label for each class.

See also:

sklearn.preprocessing.OrdinalEncoder Encode categorical features using an ordinal encoding
scheme.

sklearn.preprocessing.OneHotEncoder Encode categorical features as a one-hot numeric array.

Examples

LabelEncoder can be used to normalize labels.

>>> from sklearn import preprocessing
>>> le = preprocessing.LabelEncoder()
>>> le.fit([1, 2, 2, 6])
LabelEncoder()
>>> le.classes_
array([1, 2, 6])
>>> le.transform([1, 1, 2, 6])
array([0, 0, 1, 2]...)
>>> le.inverse_transform([0, 0, 1, 2])
array([1, 1, 2, 6])

It can also be used to transform non-numerical labels (as long as they are hashable and comparable) to numerical
labels.

2492 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

>>> le = preprocessing.LabelEncoder()
>>> le.fit(["paris", "paris", "tokyo", "amsterdam"])
LabelEncoder()
>>> list(le.classes_)
['amsterdam', 'paris', 'tokyo']
>>> le.transform(["tokyo", "tokyo", "paris"])
array([2, 2, 1]...)
>>> list(le.inverse_transform([2, 2, 1]))
['tokyo', 'tokyo', 'paris']

Methods

fit(y) Fit label encoder
fit_transform(y) Fit label encoder and return encoded labels
get_params([deep]) Get parameters for this estimator.
inverse_transform(y) Transform labels back to original encoding.
set_params(**params) Set the parameters of this estimator.
transform(y) Transform labels to normalized encoding.

__init__(*args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

fit(y)
Fit label encoder

Parameters

y [array-like of shape (n_samples,)] Target values.

Returns

self [returns an instance of self.]

fit_transform(y)
Fit label encoder and return encoded labels

Parameters

y [array-like of shape [n_samples]] Target values.

Returns

y [array-like of shape [n_samples]]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

inverse_transform(y)
Transform labels back to original encoding.

Parameters

7.33. sklearn.preprocessing: Preprocessing and Normalization 2493

scikit-learn user guide, Release 0.23.2

y [numpy array of shape [n_samples]] Target values.

Returns

y [numpy array of shape [n_samples]]

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(y)
Transform labels to normalized encoding.

Parameters

y [array-like of shape [n_samples]] Target values.

Returns

y [array-like of shape [n_samples]]

7.33.7 sklearn.preprocessing.MultiLabelBinarizer

class sklearn.preprocessing.MultiLabelBinarizer(*, classes=None,
sparse_output=False)

Transform between iterable of iterables and a multilabel format

Although a list of sets or tuples is a very intuitive format for multilabel data, it is unwieldy to process. This
transformer converts between this intuitive format and the supported multilabel format: a (samples x classes)
binary matrix indicating the presence of a class label.

Parameters

classes [array-like of shape [n_classes] (optional)] Indicates an ordering for the class labels. All
entries should be unique (cannot contain duplicate classes).

sparse_output [boolean (default: False),] Set to true if output binary array is desired in CSR
sparse format

Attributes

classes_ [array of labels] A copy of the classes parameter where provided, or otherwise, the
sorted set of classes found when fitting.

See also:

sklearn.preprocessing.OneHotEncoder encode categorical features using a one-hot aka one-of-K
scheme.

2494 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Examples

>>> from sklearn.preprocessing import MultiLabelBinarizer
>>> mlb = MultiLabelBinarizer()
>>> mlb.fit_transform([(1, 2), (3,)])
array([[1, 1, 0],

[0, 0, 1]])
>>> mlb.classes_
array([1, 2, 3])

>>> mlb.fit_transform([{'sci-fi', 'thriller'}, {'comedy'}])
array([[0, 1, 1],

[1, 0, 0]])
>>> list(mlb.classes_)
['comedy', 'sci-fi', 'thriller']

A common mistake is to pass in a list, which leads to the following issue:

>>> mlb = MultiLabelBinarizer()
>>> mlb.fit(['sci-fi', 'thriller', 'comedy'])
MultiLabelBinarizer()
>>> mlb.classes_
array(['-', 'c', 'd', 'e', 'f', 'h', 'i', 'l', 'm', 'o', 'r', 's', 't',

'y'], dtype=object)

To correct this, the list of labels should be passed in as:

>>> mlb = MultiLabelBinarizer()
>>> mlb.fit([['sci-fi', 'thriller', 'comedy']])
MultiLabelBinarizer()
>>> mlb.classes_
array(['comedy', 'sci-fi', 'thriller'], dtype=object)

Methods

fit(y) Fit the label sets binarizer, storing classes_
fit_transform(y) Fit the label sets binarizer and transform the given

label sets
get_params([deep]) Get parameters for this estimator.
inverse_transform(yt) Transform the given indicator matrix into label sets
set_params(**params) Set the parameters of this estimator.
transform(y) Transform the given label sets

__init__(*, classes=None, sparse_output=False)
Initialize self. See help(type(self)) for accurate signature.

fit(y)
Fit the label sets binarizer, storing classes_

Parameters

y [iterable of iterables] A set of labels (any orderable and hashable object) for each sample.
If the classes parameter is set, y will not be iterated.

Returns

7.33. sklearn.preprocessing: Preprocessing and Normalization 2495

scikit-learn user guide, Release 0.23.2

self [returns this MultiLabelBinarizer instance]

fit_transform(y)
Fit the label sets binarizer and transform the given label sets

Parameters

y [iterable of iterables] A set of labels (any orderable and hashable object) for each sample.
If the classes parameter is set, y will not be iterated.

Returns

y_indicator [array or CSR matrix, shape (n_samples, n_classes)] A matrix such that
y_indicator[i, j] = 1 iff classes_[j] is in y[i], and 0 otherwise.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

inverse_transform(yt)
Transform the given indicator matrix into label sets

Parameters

yt [array or sparse matrix of shape (n_samples, n_classes)] A matrix containing only 1s ands
0s.

Returns

y [list of tuples] The set of labels for each sample such that y[i] consists of
classes_[j] for each yt[i, j] == 1.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(y)
Transform the given label sets

Parameters

y [iterable of iterables] A set of labels (any orderable and hashable object) for each sample.
If the classes parameter is set, y will not be iterated.

Returns

y_indicator [array or CSR matrix, shape (n_samples, n_classes)] A matrix such that
y_indicator[i, j] = 1 iff classes_[j] is in y[i], and 0 otherwise.

2496 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

7.33.8 sklearn.preprocessing.MaxAbsScaler

class sklearn.preprocessing.MaxAbsScaler(*, copy=True)
Scale each feature by its maximum absolute value.

This estimator scales and translates each feature individually such that the maximal absolute value of each
feature in the training set will be 1.0. It does not shift/center the data, and thus does not destroy any sparsity.

This scaler can also be applied to sparse CSR or CSC matrices.

New in version 0.17.

Parameters

copy [boolean, optional, default is True] Set to False to perform inplace scaling and avoid a
copy (if the input is already a numpy array).

Attributes

scale_ [ndarray, shape (n_features,)] Per feature relative scaling of the data.

New in version 0.17: scale_ attribute.

max_abs_ [ndarray, shape (n_features,)] Per feature maximum absolute value.

n_samples_seen_ [int] The number of samples processed by the estimator. Will be reset on
new calls to fit, but increments across partial_fit calls.

See also:

maxabs_scale Equivalent function without the estimator API.

Notes

NaNs are treated as missing values: disregarded in fit, and maintained in transform.

For a comparison of the different scalers, transformers, and normalizers, see exam-
ples/preprocessing/plot_all_scaling.py.

Examples

>>> from sklearn.preprocessing import MaxAbsScaler
>>> X = [[1., -1., 2.],
... [2., 0., 0.],
... [0., 1., -1.]]
>>> transformer = MaxAbsScaler().fit(X)
>>> transformer
MaxAbsScaler()
>>> transformer.transform(X)
array([[0.5, -1. , 1.],

[1. , 0. , 0.],
[0. , 1. , -0.5]])

Methods

7.33. sklearn.preprocessing: Preprocessing and Normalization 2497

scikit-learn user guide, Release 0.23.2

fit(X[, y]) Compute the maximum absolute value to be used for
later scaling.

fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
inverse_transform(X) Scale back the data to the original representation
partial_fit(X[, y]) Online computation of max absolute value of X for

later scaling.
set_params(**params) Set the parameters of this estimator.
transform(X) Scale the data

__init__(*, copy=True)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Compute the maximum absolute value to be used for later scaling.

Parameters

X [{array-like, sparse matrix}, shape [n_samples, n_features]] The data used to compute the
per-feature minimum and maximum used for later scaling along the features axis.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

inverse_transform(X)
Scale back the data to the original representation

Parameters

X [{array-like, sparse matrix}] The data that should be transformed back.

partial_fit(X, y=None)
Online computation of max absolute value of X for later scaling.

All of X is processed as a single batch. This is intended for cases when fit is not feasible due to very
large number of n_samples or because X is read from a continuous stream.

Parameters

2498 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

X [{array-like, sparse matrix}, shape [n_samples, n_features]] The data used to compute the
mean and standard deviation used for later scaling along the features axis.

y [None] Ignored.

Returns

self [object] Transformer instance.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Scale the data

Parameters

X [{array-like, sparse matrix}] The data that should be scaled.

Examples using sklearn.preprocessing.MaxAbsScaler

• Compare the effect of different scalers on data with outliers

7.33.9 sklearn.preprocessing.MinMaxScaler

class sklearn.preprocessing.MinMaxScaler(feature_range=(0, 1), *, copy=True)
Transform features by scaling each feature to a given range.

This estimator scales and translates each feature individually such that it is in the given range on the training set,
e.g. between zero and one.

The transformation is given by:

X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))
X_scaled = X_std * (max - min) + min

where min, max = feature_range.

This transformation is often used as an alternative to zero mean, unit variance scaling.

Read more in the User Guide.

Parameters

feature_range [tuple (min, max), default=(0, 1)] Desired range of transformed data.

copy [bool, default=True] Set to False to perform inplace row normalization and avoid a copy
(if the input is already a numpy array).

Attributes

7.33. sklearn.preprocessing: Preprocessing and Normalization 2499

scikit-learn user guide, Release 0.23.2

min_ [ndarray of shape (n_features,)] Per feature adjustment for minimum. Equivalent to min
- X.min(axis=0) * self.scale_

scale_ [ndarray of shape (n_features,)] Per feature relative scaling of the data. Equivalent to
(max - min) / (X.max(axis=0) - X.min(axis=0))

New in version 0.17: scale_ attribute.

data_min_ [ndarray of shape (n_features,)] Per feature minimum seen in the data

New in version 0.17: data_min_

data_max_ [ndarray of shape (n_features,)] Per feature maximum seen in the data

New in version 0.17: data_max_

data_range_ [ndarray of shape (n_features,)] Per feature range (data_max_ -
data_min_) seen in the data

New in version 0.17: data_range_

n_samples_seen_ [int] The number of samples processed by the estimator. It will be reset on
new calls to fit, but increments across partial_fit calls.

See also:

minmax_scale Equivalent function without the estimator API.

Notes

NaNs are treated as missing values: disregarded in fit, and maintained in transform.

For a comparison of the different scalers, transformers, and normalizers, see exam-
ples/preprocessing/plot_all_scaling.py.

Examples

>>> from sklearn.preprocessing import MinMaxScaler
>>> data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]]
>>> scaler = MinMaxScaler()
>>> print(scaler.fit(data))
MinMaxScaler()
>>> print(scaler.data_max_)
[1. 18.]
>>> print(scaler.transform(data))
[[0. 0.]
[0.25 0.25]
[0.5 0.5]
[1. 1.]]

>>> print(scaler.transform([[2, 2]]))
[[1.5 0.]]

Methods

fit(X[, y]) Compute the minimum and maximum to be used for
later scaling.

Continued on next page

2500 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Table 276 – continued from previous page
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
inverse_transform(X) Undo the scaling of X according to feature_range.
partial_fit(X[, y]) Online computation of min and max on X for later

scaling.
set_params(**params) Set the parameters of this estimator.
transform(X) Scale features of X according to feature_range.

__init__(feature_range=(0, 1), *, copy=True)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Compute the minimum and maximum to be used for later scaling.

Parameters

X [array-like of shape (n_samples, n_features)] The data used to compute the per-feature
minimum and maximum used for later scaling along the features axis.

y [None] Ignored.

Returns

self [object] Fitted scaler.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

inverse_transform(X)
Undo the scaling of X according to feature_range.

Parameters

X [array-like of shape (n_samples, n_features)] Input data that will be transformed. It cannot
be sparse.

Returns

Xt [array-like of shape (n_samples, n_features)] Transformed data.

7.33. sklearn.preprocessing: Preprocessing and Normalization 2501

scikit-learn user guide, Release 0.23.2

partial_fit(X, y=None)
Online computation of min and max on X for later scaling.

All of X is processed as a single batch. This is intended for cases when fit is not feasible due to very
large number of n_samples or because X is read from a continuous stream.

Parameters

X [array-like of shape (n_samples, n_features)] The data used to compute the mean and
standard deviation used for later scaling along the features axis.

y [None] Ignored.

Returns

self [object] Transformer instance.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Scale features of X according to feature_range.

Parameters

X [array-like of shape (n_samples, n_features)] Input data that will be transformed.

Returns

Xt [array-like of shape (n_samples, n_features)] Transformed data.

Examples using sklearn.preprocessing.MinMaxScaler

• Univariate Feature Selection

• Compare Stochastic learning strategies for MLPClassifier

• Compare the effect of different scalers on data with outliers

7.33.10 sklearn.preprocessing.Normalizer

class sklearn.preprocessing.Normalizer(norm=’l2’, *, copy=True)
Normalize samples individually to unit norm.

Each sample (i.e. each row of the data matrix) with at least one non zero component is rescaled independently
of other samples so that its norm (l1, l2 or inf) equals one.

This transformer is able to work both with dense numpy arrays and scipy.sparse matrix (use CSR format if you
want to avoid the burden of a copy / conversion).

2502 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Scaling inputs to unit norms is a common operation for text classification or clustering for instance. For instance
the dot product of two l2-normalized TF-IDF vectors is the cosine similarity of the vectors and is the base
similarity metric for the Vector Space Model commonly used by the Information Retrieval community.

Read more in the User Guide.

Parameters

norm [‘l1’, ‘l2’, or ‘max’, optional (‘l2’ by default)] The norm to use to normalize each non
zero sample. If norm=’max’ is used, values will be rescaled by the maximum of the absolute
values.

copy [boolean, optional, default True] set to False to perform inplace row normalization and
avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix).

See also:

normalize Equivalent function without the estimator API.

Notes

This estimator is stateless (besides constructor parameters), the fit method does nothing but is useful when used
in a pipeline.

For a comparison of the different scalers, transformers, and normalizers, see exam-
ples/preprocessing/plot_all_scaling.py.

Examples

>>> from sklearn.preprocessing import Normalizer
>>> X = [[4, 1, 2, 2],
... [1, 3, 9, 3],
... [5, 7, 5, 1]]
>>> transformer = Normalizer().fit(X) # fit does nothing.
>>> transformer
Normalizer()
>>> transformer.transform(X)
array([[0.8, 0.2, 0.4, 0.4],

[0.1, 0.3, 0.9, 0.3],
[0.5, 0.7, 0.5, 0.1]])

Methods

fit(X[, y]) Do nothing and return the estimator unchanged
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X[, copy]) Scale each non zero row of X to unit norm

__init__(norm=’l2’, *, copy=True)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Do nothing and return the estimator unchanged

7.33. sklearn.preprocessing: Preprocessing and Normalization 2503

scikit-learn user guide, Release 0.23.2

This method is just there to implement the usual API and hence work in pipelines.

Parameters

X [array-like]

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X, copy=None)
Scale each non zero row of X to unit norm

Parameters

X [{array-like, sparse matrix}, shape [n_samples, n_features]] The data to normalize, row
by row. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy.

copy [bool, optional (default: None)] Copy the input X or not.

Examples using sklearn.preprocessing.Normalizer

• Compare the effect of different scalers on data with outliers

• Clustering text documents using k-means

2504 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

7.33.11 sklearn.preprocessing.OneHotEncoder

class sklearn.preprocessing.OneHotEncoder(*, categories=’auto’, drop=None, sparse=True,
dtype=<class ’numpy.float64’>, han-
dle_unknown=’error’)

Encode categorical features as a one-hot numeric array.

The input to this transformer should be an array-like of integers or strings, denoting the values taken on by
categorical (discrete) features. The features are encoded using a one-hot (aka ‘one-of-K’ or ‘dummy’) encoding
scheme. This creates a binary column for each category and returns a sparse matrix or dense array (depending
on the sparse parameter)

By default, the encoder derives the categories based on the unique values in each feature. Alternatively, you can
also specify the categories manually.

This encoding is needed for feeding categorical data to many scikit-learn estimators, notably linear models and
SVMs with the standard kernels.

Note: a one-hot encoding of y labels should use a LabelBinarizer instead.

Read more in the User Guide.

Changed in version 0.20.

Parameters

categories [‘auto’ or a list of array-like, default=’auto’] Categories (unique values) per feature:

• ‘auto’ : Determine categories automatically from the training data.

• list : categories[i] holds the categories expected in the ith column. The passed
categories should not mix strings and numeric values within a single feature, and should
be sorted in case of numeric values.

The used categories can be found in the categories_ attribute.

New in version 0.20.

drop [{‘first’, ‘if_binary’} or a array-like of shape (n_features,), default=None] Specifies a
methodology to use to drop one of the categories per feature. This is useful in situations
where perfectly collinear features cause problems, such as when feeding the resulting data
into a neural network or an unregularized regression.

However, dropping one category breaks the symmetry of the original representation and can
therefore induce a bias in downstream models, for instance for penalized linear classification
or regression models.

• None : retain all features (the default).

• ‘first’ : drop the first category in each feature. If only one category is present, the feature
will be dropped entirely.

• ‘if_binary’ : drop the first category in each feature with two categories. Features with 1
or more than 2 categories are left intact.

• array : drop[i] is the category in feature X[:, i] that should be dropped.

sparse [bool, default=True] Will return sparse matrix if set True else will return an array.

dtype [number type, default=np.float] Desired dtype of output.

handle_unknown [{‘error’, ‘ignore’}, default=’error’] Whether to raise an error or ignore if
an unknown categorical feature is present during transform (default is to raise). When this
parameter is set to ‘ignore’ and an unknown category is encountered during transform, the

7.33. sklearn.preprocessing: Preprocessing and Normalization 2505

scikit-learn user guide, Release 0.23.2

resulting one-hot encoded columns for this feature will be all zeros. In the inverse transform,
an unknown category will be denoted as None.

Attributes

categories_ [list of arrays] The categories of each feature determined during fitting (in order
of the features in X and corresponding with the output of transform). This includes the
category specified in drop (if any).

drop_idx_ [array of shape (n_features,)]

• drop_idx_[i] is the index in categories_[i] of the category to be dropped for
each feature.

• drop_idx_[i] = None if no category is to be dropped from the feature with index
i, e.g. when drop='if_binary' and the feature isn’t binary.

• drop_idx_ = None if all the transformed features will be retained.

See also:

sklearn.preprocessing.OrdinalEncoder Performs an ordinal (integer) encoding of the categorical
features.

sklearn.feature_extraction.DictVectorizer Performs a one-hot encoding of dictionary items
(also handles string-valued features).

sklearn.feature_extraction.FeatureHasher Performs an approximate one-hot encoding of dic-
tionary items or strings.

sklearn.preprocessing.LabelBinarizer Binarizes labels in a one-vs-all fashion.

sklearn.preprocessing.MultiLabelBinarizer Transforms between iterable of iterables and a
multilabel format, e.g. a (samples x classes) binary matrix indicating the presence of a class label.

Examples

Given a dataset with two features, we let the encoder find the unique values per feature and transform the data
to a binary one-hot encoding.

>>> from sklearn.preprocessing import OneHotEncoder

One can discard categories not seen during fit:

>>> enc = OneHotEncoder(handle_unknown='ignore')
>>> X = [['Male', 1], ['Female', 3], ['Female', 2]]
>>> enc.fit(X)
OneHotEncoder(handle_unknown='ignore')
>>> enc.categories_
[array(['Female', 'Male'], dtype=object), array([1, 2, 3], dtype=object)]
>>> enc.transform([['Female', 1], ['Male', 4]]).toarray()
array([[1., 0., 1., 0., 0.],

[0., 1., 0., 0., 0.]])
>>> enc.inverse_transform([[0, 1, 1, 0, 0], [0, 0, 0, 1, 0]])
array([['Male', 1],

[None, 2]], dtype=object)
>>> enc.get_feature_names(['gender', 'group'])
array(['gender_Female', 'gender_Male', 'group_1', 'group_2', 'group_3'],
dtype=object)

2506 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

One can always drop the first column for each feature:

>>> drop_enc = OneHotEncoder(drop='first').fit(X)
>>> drop_enc.categories_
[array(['Female', 'Male'], dtype=object), array([1, 2, 3], dtype=object)]
>>> drop_enc.transform([['Female', 1], ['Male', 2]]).toarray()
array([[0., 0., 0.],

[1., 1., 0.]])

Or drop a column for feature only having 2 categories:

>>> drop_binary_enc = OneHotEncoder(drop='if_binary').fit(X)
>>> drop_binary_enc.transform([['Female', 1], ['Male', 2]]).toarray()
array([[0., 1., 0., 0.],

[1., 0., 1., 0.]])

Methods

fit(X[, y]) Fit OneHotEncoder to X.
fit_transform(X[, y]) Fit OneHotEncoder to X, then transform X.
get_feature_names([input_features]) Return feature names for output features.
get_params([deep]) Get parameters for this estimator.
inverse_transform(X) Convert the data back to the original representation.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform X using one-hot encoding.

__init__(*, categories=’auto’, drop=None, sparse=True, dtype=<class ’numpy.float64’>, han-
dle_unknown=’error’)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Fit OneHotEncoder to X.

Parameters

X [array-like, shape [n_samples, n_features]] The data to determine the categories of each
feature.

y [None] Ignored. This parameter exists only for compatibility with sklearn.
pipeline.Pipeline.

Returns

self

fit_transform(X, y=None)
Fit OneHotEncoder to X, then transform X.

Equivalent to fit(X).transform(X) but more convenient.

Parameters

X [array-like, shape [n_samples, n_features]] The data to encode.

y [None] Ignored. This parameter exists only for compatibility with sklearn.
pipeline.Pipeline.

Returns

7.33. sklearn.preprocessing: Preprocessing and Normalization 2507

scikit-learn user guide, Release 0.23.2

X_out [sparse matrix if sparse=True else a 2-d array] Transformed input.

get_feature_names(input_features=None)
Return feature names for output features.

Parameters

input_features [list of str of shape (n_features,)] String names for input features if available.
By default, “x0”, “x1”, . . . “xn_features” is used.

Returns

output_feature_names [ndarray of shape (n_output_features,)] Array of feature names.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

inverse_transform(X)
Convert the data back to the original representation.

In case unknown categories are encountered (all zeros in the one-hot encoding), None is used to represent
this category.

Parameters

X [array-like or sparse matrix, shape [n_samples, n_encoded_features]] The transformed
data.

Returns

X_tr [array-like, shape [n_samples, n_features]] Inverse transformed array.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Transform X using one-hot encoding.

Parameters

X [array-like, shape [n_samples, n_features]] The data to encode.

Returns

X_out [sparse matrix if sparse=True else a 2-d array] Transformed input.

2508 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Examples using sklearn.preprocessing.OneHotEncoder

• Release Highlights for scikit-learn 0.23

• Feature transformations with ensembles of trees

• Combine predictors using stacking

• Poisson regression and non-normal loss

• Tweedie regression on insurance claims

• Permutation Importance vs Random Forest Feature Importance (MDI)

• Common pitfalls in interpretation of coefficients of linear models

• Column Transformer with Mixed Types

7.33.12 sklearn.preprocessing.OrdinalEncoder

class sklearn.preprocessing.OrdinalEncoder(*, categories=’auto’, dtype=<class
’numpy.float64’>)

Encode categorical features as an integer array.

The input to this transformer should be an array-like of integers or strings, denoting the values taken on by
categorical (discrete) features. The features are converted to ordinal integers. This results in a single column of
integers (0 to n_categories - 1) per feature.

Read more in the User Guide.

New in version 0.20.

Parameters

categories [‘auto’ or a list of array-like, default=’auto’] Categories (unique values) per feature:

• ‘auto’ : Determine categories automatically from the training data.

• list : categories[i] holds the categories expected in the ith column. The passed
categories should not mix strings and numeric values, and should be sorted in case of
numeric values.

The used categories can be found in the categories_ attribute.

dtype [number type, default np.float64] Desired dtype of output.

Attributes

categories_ [list of arrays] The categories of each feature determined during fitting (in order of
the features in X and corresponding with the output of transform).

See also:

sklearn.preprocessing.OneHotEncoder Performs a one-hot encoding of categorical features.

sklearn.preprocessing.LabelEncoder Encodes target labels with values between 0 and n_classes-
1.

Examples

Given a dataset with two features, we let the encoder find the unique values per feature and transform the data
to an ordinal encoding.

7.33. sklearn.preprocessing: Preprocessing and Normalization 2509

scikit-learn user guide, Release 0.23.2

>>> from sklearn.preprocessing import OrdinalEncoder
>>> enc = OrdinalEncoder()
>>> X = [['Male', 1], ['Female', 3], ['Female', 2]]
>>> enc.fit(X)
OrdinalEncoder()
>>> enc.categories_
[array(['Female', 'Male'], dtype=object), array([1, 2, 3], dtype=object)]
>>> enc.transform([['Female', 3], ['Male', 1]])
array([[0., 2.],

[1., 0.]])

>>> enc.inverse_transform([[1, 0], [0, 1]])
array([['Male', 1],

['Female', 2]], dtype=object)

Methods

fit(X[, y]) Fit the OrdinalEncoder to X.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
inverse_transform(X) Convert the data back to the original representation.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform X to ordinal codes.

__init__(*, categories=’auto’, dtype=<class ’numpy.float64’>)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Fit the OrdinalEncoder to X.

Parameters

X [array-like, shape [n_samples, n_features]] The data to determine the categories of each
feature.

y [None] Ignored. This parameter exists only for compatibility with sklearn.
pipeline.Pipeline.

Returns

self

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

2510 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

inverse_transform(X)
Convert the data back to the original representation.

Parameters

X [array-like or sparse matrix, shape [n_samples, n_encoded_features]] The transformed
data.

Returns

X_tr [array-like, shape [n_samples, n_features]] Inverse transformed array.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Transform X to ordinal codes.

Parameters

X [array-like, shape [n_samples, n_features]] The data to encode.

Returns

X_out [sparse matrix or a 2-d array] Transformed input.

Examples using sklearn.preprocessing.OrdinalEncoder

• Combine predictors using stacking

• Poisson regression and non-normal loss

7.33.13 sklearn.preprocessing.PolynomialFeatures

class sklearn.preprocessing.PolynomialFeatures(degree=2, *, interaction_only=False, in-
clude_bias=True, order=’C’)

Generate polynomial and interaction features.

7.33. sklearn.preprocessing: Preprocessing and Normalization 2511

scikit-learn user guide, Release 0.23.2

Generate a new feature matrix consisting of all polynomial combinations of the features with degree less than
or equal to the specified degree. For example, if an input sample is two dimensional and of the form [a, b], the
degree-2 polynomial features are [1, a, b, a^2, ab, b^2].

Parameters

degree [integer] The degree of the polynomial features. Default = 2.

interaction_only [boolean, default = False] If true, only interaction features are produced: fea-
tures that are products of at most degree distinct input features (so not x[1] ** 2,
x[0] * x[2] ** 3, etc.).

include_bias [boolean] If True (default), then include a bias column, the feature in which all
polynomial powers are zero (i.e. a column of ones - acts as an intercept term in a linear
model).

order [str in {‘C’, ‘F’}, default ‘C’] Order of output array in the dense case. ‘F’ order is faster
to compute, but may slow down subsequent estimators.

New in version 0.21.

Attributes

powers_ [array, shape (n_output_features, n_input_features)] powers_[i, j] is the exponent of
the jth input in the ith output.

n_input_features_ [int] The total number of input features.

n_output_features_ [int] The total number of polynomial output features. The number of out-
put features is computed by iterating over all suitably sized combinations of input features.

Notes

Be aware that the number of features in the output array scales polynomially in the number of features of the
input array, and exponentially in the degree. High degrees can cause overfitting.

See examples/linear_model/plot_polynomial_interpolation.py

Examples

>>> import numpy as np
>>> from sklearn.preprocessing import PolynomialFeatures
>>> X = np.arange(6).reshape(3, 2)
>>> X
array([[0, 1],

[2, 3],
[4, 5]])

>>> poly = PolynomialFeatures(2)
>>> poly.fit_transform(X)
array([[1., 0., 1., 0., 0., 1.],

[1., 2., 3., 4., 6., 9.],
[1., 4., 5., 16., 20., 25.]])

>>> poly = PolynomialFeatures(interaction_only=True)
>>> poly.fit_transform(X)
array([[1., 0., 1., 0.],

[1., 2., 3., 6.],
[1., 4., 5., 20.]])

2512 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Methods

fit(X[, y]) Compute number of output features.
fit_transform(X[, y]) Fit to data, then transform it.
get_feature_names([input_features]) Return feature names for output features
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Transform data to polynomial features

__init__(degree=2, *, interaction_only=False, include_bias=True, order=’C’)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Compute number of output features.

Parameters

X [array-like, shape (n_samples, n_features)] The data.

Returns

self [instance]

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_feature_names(input_features=None)
Return feature names for output features

Parameters

input_features [list of string, length n_features, optional] String names for input features if
available. By default, “x0”, “x1”, . . . “xn_features” is used.

Returns

output_feature_names [list of string, length n_output_features]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

7.33. sklearn.preprocessing: Preprocessing and Normalization 2513

scikit-learn user guide, Release 0.23.2

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Transform data to polynomial features

Parameters

X [array-like or CSR/CSC sparse matrix, shape [n_samples, n_features]] The data to trans-
form, row by row.

Prefer CSR over CSC for sparse input (for speed), but CSC is required if the degree is 4
or higher. If the degree is less than 4 and the input format is CSC, it will be converted to
CSR, have its polynomial features generated, then converted back to CSC.

If the degree is 2 or 3, the method described in “Leveraging Sparsity to Speed Up Polyno-
mial Feature Expansions of CSR Matrices Using K-Simplex Numbers” by Andrew Nys-
trom and John Hughes is used, which is much faster than the method used on CSC input.
For this reason, a CSC input will be converted to CSR, and the output will be converted
back to CSC prior to being returned, hence the preference of CSR.

Returns

XP [np.ndarray or CSR/CSC sparse matrix, shape [n_samples, NP]] The matrix of features,
where NP is the number of polynomial features generated from the combination of inputs.

Examples using sklearn.preprocessing.PolynomialFeatures

• Polynomial interpolation

• Robust linear estimator fitting

• Poisson regression and non-normal loss

• Underfitting vs. Overfitting

7.33.14 sklearn.preprocessing.PowerTransformer

class sklearn.preprocessing.PowerTransformer(method=’yeo-johnson’, *, standard-
ize=True, copy=True)

Apply a power transform featurewise to make data more Gaussian-like.

Power transforms are a family of parametric, monotonic transformations that are applied to make data more
Gaussian-like. This is useful for modeling issues related to heteroscedasticity (non-constant variance), or other
situations where normality is desired.

Currently, PowerTransformer supports the Box-Cox transform and the Yeo-Johnson transform. The optimal
parameter for stabilizing variance and minimizing skewness is estimated through maximum likelihood.

Box-Cox requires input data to be strictly positive, while Yeo-Johnson supports both positive or negative data.

2514 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

By default, zero-mean, unit-variance normalization is applied to the transformed data.

Read more in the User Guide.

New in version 0.20.

Parameters

method [str, (default=’yeo-johnson’)] The power transform method. Available methods are:

• ‘yeo-johnson’ [1], works with positive and negative values

• ‘box-cox’ [2], only works with strictly positive values

standardize [boolean, default=True] Set to True to apply zero-mean, unit-variance normaliza-
tion to the transformed output.

copy [boolean, optional, default=True] Set to False to perform inplace computation during
transformation.

Attributes

lambdas_ [array of float, shape (n_features,)] The parameters of the power transformation for
the selected features.

See also:

power_transform Equivalent function without the estimator API.

QuantileTransformer Maps data to a standard normal distribution with the parameter
output_distribution='normal'.

Notes

NaNs are treated as missing values: disregarded in fit, and maintained in transform.

For a comparison of the different scalers, transformers, and normalizers, see exam-
ples/preprocessing/plot_all_scaling.py.

References

[1], [2]

Examples

>>> import numpy as np
>>> from sklearn.preprocessing import PowerTransformer
>>> pt = PowerTransformer()
>>> data = [[1, 2], [3, 2], [4, 5]]
>>> print(pt.fit(data))
PowerTransformer()
>>> print(pt.lambdas_)
[1.386... -3.100...]
>>> print(pt.transform(data))
[[-1.316... -0.707...]
[0.209... -0.707...]
[1.106... 1.414...]]

7.33. sklearn.preprocessing: Preprocessing and Normalization 2515

scikit-learn user guide, Release 0.23.2

Methods

fit(X[, y]) Estimate the optimal parameter lambda for each fea-
ture.

fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
inverse_transform(X) Apply the inverse power transformation using the fit-

ted lambdas.
set_params(**params) Set the parameters of this estimator.
transform(X) Apply the power transform to each feature using the

fitted lambdas.

__init__(method=’yeo-johnson’, *, standardize=True, copy=True)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Estimate the optimal parameter lambda for each feature.

The optimal lambda parameter for minimizing skewness is estimated on each feature independently using
maximum likelihood.

Parameters

X [array-like, shape (n_samples, n_features)] The data used to estimate the optimal trans-
formation parameters.

y [Ignored]

Returns

self [object]

fit_transform(X, y=None)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

2516 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

inverse_transform(X)
Apply the inverse power transformation using the fitted lambdas.

The inverse of the Box-Cox transformation is given by:

if lambda_ == 0:
X = exp(X_trans)

else:
X = (X_trans * lambda_ + 1) ** (1 / lambda_)

The inverse of the Yeo-Johnson transformation is given by:

if X >= 0 and lambda_ == 0:
X = exp(X_trans) - 1

elif X >= 0 and lambda_ != 0:
X = (X_trans * lambda_ + 1) ** (1 / lambda_) - 1

elif X < 0 and lambda_ != 2:
X = 1 - (-(2 - lambda_) * X_trans + 1) ** (1 / (2 - lambda_))

elif X < 0 and lambda_ == 2:
X = 1 - exp(-X_trans)

Parameters

X [array-like, shape (n_samples, n_features)] The transformed data.

Returns

X [array-like, shape (n_samples, n_features)] The original data

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Apply the power transform to each feature using the fitted lambdas.

Parameters

X [array-like, shape (n_samples, n_features)] The data to be transformed using a power
transformation.

Returns

X_trans [array-like, shape (n_samples, n_features)] The transformed data.

Examples using sklearn.preprocessing.PowerTransformer

• Map data to a normal distribution

• Compare the effect of different scalers on data with outliers

7.33. sklearn.preprocessing: Preprocessing and Normalization 2517

scikit-learn user guide, Release 0.23.2

7.33.15 sklearn.preprocessing.QuantileTransformer

class sklearn.preprocessing.QuantileTransformer(*, n_quantiles=1000, out-
put_distribution=’uniform’, ig-
nore_implicit_zeros=False, subsam-
ple=100000, random_state=None,
copy=True)

Transform features using quantiles information.

This method transforms the features to follow a uniform or a normal distribution. Therefore, for a given feature,
this transformation tends to spread out the most frequent values. It also reduces the impact of (marginal) outliers:
this is therefore a robust preprocessing scheme.

The transformation is applied on each feature independently. First an estimate of the cumulative distribution
function of a feature is used to map the original values to a uniform distribution. The obtained values are then
mapped to the desired output distribution using the associated quantile function. Features values of new/unseen
data that fall below or above the fitted range will be mapped to the bounds of the output distribution. Note that
this transform is non-linear. It may distort linear correlations between variables measured at the same scale but
renders variables measured at different scales more directly comparable.

Read more in the User Guide.

New in version 0.19.

Parameters

n_quantiles [int, optional (default=1000 or n_samples)] Number of quantiles to be computed.
It corresponds to the number of landmarks used to discretize the cumulative distribution
function. If n_quantiles is larger than the number of samples, n_quantiles is set to the
number of samples as a larger number of quantiles does not give a better approximation of
the cumulative distribution function estimator.

output_distribution [str, optional (default=’uniform’)] Marginal distribution for the trans-
formed data. The choices are ‘uniform’ (default) or ‘normal’.

ignore_implicit_zeros [bool, optional (default=False)] Only applies to sparse matrices. If True,
the sparse entries of the matrix are discarded to compute the quantile statistics. If False,
these entries are treated as zeros.

subsample [int, optional (default=1e5)] Maximum number of samples used to estimate the
quantiles for computational efficiency. Note that the subsampling procedure may differ
for value-identical sparse and dense matrices.

random_state [int, RandomState instance or None, optional (default=None)] Determines ran-
dom number generation for subsampling and smoothing noise. Please see subsample
for more details. Pass an int for reproducible results across multiple function calls. See
Glossary

copy [boolean, optional, (default=True)] Set to False to perform inplace transformation and
avoid a copy (if the input is already a numpy array).

Attributes

n_quantiles_ [integer] The actual number of quantiles used to discretize the cumulative distri-
bution function.

quantiles_ [ndarray, shape (n_quantiles, n_features)] The values corresponding the quantiles of
reference.

references_ [ndarray, shape(n_quantiles,)] Quantiles of references.

See also:

2518 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

quantile_transform Equivalent function without the estimator API.

PowerTransformer Perform mapping to a normal distribution using a power transform.

StandardScaler Perform standardization that is faster, but less robust to outliers.

RobustScaler Perform robust standardization that removes the influence of outliers but does not put outliers
and inliers on the same scale.

Notes

NaNs are treated as missing values: disregarded in fit, and maintained in transform.

For a comparison of the different scalers, transformers, and normalizers, see exam-
ples/preprocessing/plot_all_scaling.py.

Examples

>>> import numpy as np
>>> from sklearn.preprocessing import QuantileTransformer
>>> rng = np.random.RandomState(0)
>>> X = np.sort(rng.normal(loc=0.5, scale=0.25, size=(25, 1)), axis=0)
>>> qt = QuantileTransformer(n_quantiles=10, random_state=0)
>>> qt.fit_transform(X)
array([...])

Methods

fit(X[, y]) Compute the quantiles used for transforming.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
inverse_transform(X) Back-projection to the original space.
set_params(**params) Set the parameters of this estimator.
transform(X) Feature-wise transformation of the data.

__init__(*, n_quantiles=1000, output_distribution=’uniform’, ignore_implicit_zeros=False, subsam-
ple=100000, random_state=None, copy=True)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Compute the quantiles used for transforming.

Parameters

X [ndarray or sparse matrix, shape (n_samples, n_features)] The data used to scale
along the features axis. If a sparse matrix is provided, it will be converted into
a sparse csc_matrix. Additionally, the sparse matrix needs to be nonnegative if
ignore_implicit_zeros is False.

Returns

self [object]

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

7.33. sklearn.preprocessing: Preprocessing and Normalization 2519

scikit-learn user guide, Release 0.23.2

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

inverse_transform(X)
Back-projection to the original space.

Parameters

X [ndarray or sparse matrix, shape (n_samples, n_features)] The data used to scale
along the features axis. If a sparse matrix is provided, it will be converted into
a sparse csc_matrix. Additionally, the sparse matrix needs to be nonnegative if
ignore_implicit_zeros is False.

Returns

Xt [ndarray or sparse matrix, shape (n_samples, n_features)] The projected data.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Feature-wise transformation of the data.

Parameters

X [ndarray or sparse matrix, shape (n_samples, n_features)] The data used to scale
along the features axis. If a sparse matrix is provided, it will be converted into
a sparse csc_matrix. Additionally, the sparse matrix needs to be nonnegative if
ignore_implicit_zeros is False.

Returns

2520 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Xt [ndarray or sparse matrix, shape (n_samples, n_features)] The projected data.

Examples using sklearn.preprocessing.QuantileTransformer

• Partial Dependence Plots

• Effect of transforming the targets in regression model

• Map data to a normal distribution

• Compare the effect of different scalers on data with outliers

7.33.16 sklearn.preprocessing.RobustScaler

class sklearn.preprocessing.RobustScaler(*, with_centering=True, with_scaling=True,
quantile_range=(25.0, 75.0), copy=True)

Scale features using statistics that are robust to outliers.

This Scaler removes the median and scales the data according to the quantile range (defaults to IQR: Interquartile
Range). The IQR is the range between the 1st quartile (25th quantile) and the 3rd quartile (75th quantile).

Centering and scaling happen independently on each feature by computing the relevant statistics on the samples
in the training set. Median and interquartile range are then stored to be used on later data using the transform
method.

Standardization of a dataset is a common requirement for many machine learning estimators. Typically this is
done by removing the mean and scaling to unit variance. However, outliers can often influence the sample mean
/ variance in a negative way. In such cases, the median and the interquartile range often give better results.

New in version 0.17.

Read more in the User Guide.

Parameters

with_centering [boolean, True by default] If True, center the data before scaling. This will
cause transform to raise an exception when attempted on sparse matrices, because cen-
tering them entails building a dense matrix which in common use cases is likely to be too
large to fit in memory.

with_scaling [boolean, True by default] If True, scale the data to interquartile range.

quantile_range [tuple (q_min, q_max), 0.0 < q_min < q_max < 100.0] Default: (25.0, 75.0) =
(1st quantile, 3rd quantile) = IQR Quantile range used to calculate scale_.

New in version 0.18.

copy [boolean, optional, default is True] If False, try to avoid a copy and do inplace scaling
instead. This is not guaranteed to always work inplace; e.g. if the data is not a NumPy array
or scipy.sparse CSR matrix, a copy may still be returned.

Attributes

center_ [array of floats] The median value for each feature in the training set.

scale_ [array of floats] The (scaled) interquartile range for each feature in the training set.

New in version 0.17: scale_ attribute.

See also:

robust_scale Equivalent function without the estimator API.

7.33. sklearn.preprocessing: Preprocessing and Normalization 2521

scikit-learn user guide, Release 0.23.2

sklearn.decomposition.PCA Further removes the linear correlation across features with
‘whiten=True’.

Notes

For a comparison of the different scalers, transformers, and normalizers, see exam-
ples/preprocessing/plot_all_scaling.py.

https://en.wikipedia.org/wiki/Median https://en.wikipedia.org/wiki/Interquartile_range

Examples

>>> from sklearn.preprocessing import RobustScaler
>>> X = [[1., -2., 2.],
... [-2., 1., 3.],
... [4., 1., -2.]]
>>> transformer = RobustScaler().fit(X)
>>> transformer
RobustScaler()
>>> transformer.transform(X)
array([[0. , -2. , 0.],

[-1. , 0. , 0.4],
[1. , 0. , -1.6]])

Methods

fit(X[, y]) Compute the median and quantiles to be used for
scaling.

fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
inverse_transform(X) Scale back the data to the original representation
set_params(**params) Set the parameters of this estimator.
transform(X) Center and scale the data.

__init__(*, with_centering=True, with_scaling=True, quantile_range=(25.0, 75.0), copy=True)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Compute the median and quantiles to be used for scaling.

Parameters

X [array-like, shape [n_samples, n_features]] The data used to compute the median and
quantiles used for later scaling along the features axis.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

2522 Chapter 7. API Reference

https://en.wikipedia.org/wiki/Median
https://en.wikipedia.org/wiki/Interquartile_range

scikit-learn user guide, Release 0.23.2

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

inverse_transform(X)
Scale back the data to the original representation

Parameters

X [array-like] The data used to scale along the specified axis.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Center and scale the data.

Parameters

X [{array-like, sparse matrix}] The data used to scale along the specified axis.

Examples using sklearn.preprocessing.RobustScaler

• Compare the effect of different scalers on data with outliers

7.33.17 sklearn.preprocessing.StandardScaler

class sklearn.preprocessing.StandardScaler(*, copy=True, with_mean=True,
with_std=True)

Standardize features by removing the mean and scaling to unit variance

The standard score of a sample x is calculated as:

z = (x - u) / s

7.33. sklearn.preprocessing: Preprocessing and Normalization 2523

scikit-learn user guide, Release 0.23.2

where u is the mean of the training samples or zero if with_mean=False, and s is the standard deviation of
the training samples or one if with_std=False.

Centering and scaling happen independently on each feature by computing the relevant statistics on the samples
in the training set. Mean and standard deviation are then stored to be used on later data using transform.

Standardization of a dataset is a common requirement for many machine learning estimators: they might behave
badly if the individual features do not more or less look like standard normally distributed data (e.g. Gaussian
with 0 mean and unit variance).

For instance many elements used in the objective function of a learning algorithm (such as the RBF kernel of
Support Vector Machines or the L1 and L2 regularizers of linear models) assume that all features are centered
around 0 and have variance in the same order. If a feature has a variance that is orders of magnitude larger
that others, it might dominate the objective function and make the estimator unable to learn from other features
correctly as expected.

This scaler can also be applied to sparse CSR or CSC matrices by passing with_mean=False to avoid
breaking the sparsity structure of the data.

Read more in the User Guide.

Parameters

copy [boolean, optional, default True] If False, try to avoid a copy and do inplace scaling in-
stead. This is not guaranteed to always work inplace; e.g. if the data is not a NumPy array
or scipy.sparse CSR matrix, a copy may still be returned.

with_mean [boolean, True by default] If True, center the data before scaling. This does not
work (and will raise an exception) when attempted on sparse matrices, because centering
them entails building a dense matrix which in common use cases is likely to be too large to
fit in memory.

with_std [boolean, True by default] If True, scale the data to unit variance (or equivalently, unit
standard deviation).

Attributes

scale_ [ndarray or None, shape (n_features,)] Per feature relative scaling of the data. This is
calculated using np.sqrt(var_). Equal to None when with_std=False.

New in version 0.17: scale_

mean_ [ndarray or None, shape (n_features,)] The mean value for each feature in the training
set. Equal to None when with_mean=False.

var_ [ndarray or None, shape (n_features,)] The variance for each feature in the training set.
Used to compute scale_. Equal to None when with_std=False.

n_samples_seen_ [int or array, shape (n_features,)] The number of samples processed by the
estimator for each feature. If there are not missing samples, the n_samples_seen will
be an integer, otherwise it will be an array. Will be reset on new calls to fit, but increments
across partial_fit calls.

See also:

scale Equivalent function without the estimator API.

sklearn.decomposition.PCA Further removes the linear correlation across features with
‘whiten=True’.

2524 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Notes

NaNs are treated as missing values: disregarded in fit, and maintained in transform.

We use a biased estimator for the standard deviation, equivalent to numpy.std(x, ddof=0). Note that the
choice of ddof is unlikely to affect model performance.

For a comparison of the different scalers, transformers, and normalizers, see exam-
ples/preprocessing/plot_all_scaling.py.

Examples

>>> from sklearn.preprocessing import StandardScaler
>>> data = [[0, 0], [0, 0], [1, 1], [1, 1]]
>>> scaler = StandardScaler()
>>> print(scaler.fit(data))
StandardScaler()
>>> print(scaler.mean_)
[0.5 0.5]
>>> print(scaler.transform(data))
[[-1. -1.]
[-1. -1.]
[1. 1.]
[1. 1.]]

>>> print(scaler.transform([[2, 2]]))
[[3. 3.]]

Methods

fit(X[, y]) Compute the mean and std to be used for later scal-
ing.

fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
inverse_transform(X[, copy]) Scale back the data to the original representation
partial_fit(X[, y]) Online computation of mean and std on X for later

scaling.
set_params(**params) Set the parameters of this estimator.
transform(X[, copy]) Perform standardization by centering and scaling

__init__(*, copy=True, with_mean=True, with_std=True)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Compute the mean and std to be used for later scaling.

Parameters

X [{array-like, sparse matrix}, shape [n_samples, n_features]] The data used to compute the
mean and standard deviation used for later scaling along the features axis.

y Ignored

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

7.33. sklearn.preprocessing: Preprocessing and Normalization 2525

scikit-learn user guide, Release 0.23.2

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

inverse_transform(X, copy=None)
Scale back the data to the original representation

Parameters

X [array-like, shape [n_samples, n_features]] The data used to scale along the features axis.

copy [bool, optional (default: None)] Copy the input X or not.

Returns

X_tr [array-like, shape [n_samples, n_features]] Transformed array.

partial_fit(X, y=None)
Online computation of mean and std on X for later scaling.

All of X is processed as a single batch. This is intended for cases when fit is not feasible due to very
large number of n_samples or because X is read from a continuous stream.

The algorithm for incremental mean and std is given in Equation 1.5a,b in Chan, Tony F., Gene H. Golub,
and Randall J. LeVeque. “Algorithms for computing the sample variance: Analysis and recommendations.”
The American Statistician 37.3 (1983): 242-247:

Parameters

X [{array-like, sparse matrix}, shape [n_samples, n_features]] The data used to compute the
mean and standard deviation used for later scaling along the features axis.

y [None] Ignored.

Returns

self [object] Transformer instance.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

2526 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X, copy=None)
Perform standardization by centering and scaling

Parameters

X [array-like, shape [n_samples, n_features]] The data used to scale along the features axis.

copy [bool, optional (default: None)] Copy the input X or not.

Examples using sklearn.preprocessing.StandardScaler

• Release Highlights for scikit-learn 0.23

• Release Highlights for scikit-learn 0.22

• Classifier comparison

• Demo of DBSCAN clustering algorithm

• Comparing different hierarchical linkage methods on toy datasets

• Comparing different clustering algorithms on toy datasets

• Combine predictors using stacking

• Prediction Latency

• MNIST classification using multinomial logistic + L1

• L1 Penalty and Sparsity in Logistic Regression

• Poisson regression and non-normal loss

• Tweedie regression on insurance claims

• Common pitfalls in interpretation of coefficients of linear models

• Visualizations with Display Objects

• Advanced Plotting With Partial Dependence

• Comparing Nearest Neighbors with and without Neighborhood Components Analysis

• Dimensionality Reduction with Neighborhood Components Analysis

• Varying regularization in Multi-layer Perceptron

• Column Transformer with Mixed Types

• Importance of Feature Scaling

• Feature discretization

• Compare the effect of different scalers on data with outliers

• SVM-Anova: SVM with univariate feature selection

• RBF SVM parameters

7.33. sklearn.preprocessing: Preprocessing and Normalization 2527

scikit-learn user guide, Release 0.23.2

preprocessing.add_dummy_feature(X[,
value])

Augment dataset with an additional dummy feature.

preprocessing.binarize(X, *[, threshold,
copy])

Boolean thresholding of array-like or scipy.sparse ma-
trix

preprocessing.label_binarize(y, *, classes) Binarize labels in a one-vs-all fashion
preprocessing.maxabs_scale(X, *[, axis,
copy])

Scale each feature to the [-1, 1] range without breaking
the sparsity.

preprocessing.minmax_scale(X[, . . .]) Transform features by scaling each feature to a given
range.

preprocessing.normalize(X[, norm, axis, . . .]) Scale input vectors individually to unit norm (vector
length).

preprocessing.quantile_transform(X, *[,
. . .])

Transform features using quantiles information.

preprocessing.robust_scale(X, *[, axis,
. . .])

Standardize a dataset along any axis

preprocessing.scale(X, *[, axis, with_mean,
. . .])

Standardize a dataset along any axis

preprocessing.power_transform(X[,
method, . . .])

Power transforms are a family of parametric, mono-
tonic transformations that are applied to make data more
Gaussian-like.

7.33.18 sklearn.preprocessing.add_dummy_feature

sklearn.preprocessing.add_dummy_feature(X, value=1.0)
Augment dataset with an additional dummy feature.

This is useful for fitting an intercept term with implementations which cannot otherwise fit it directly.

Parameters

X [{array-like, sparse matrix}, shape [n_samples, n_features]] Data.

value [float] Value to use for the dummy feature.

Returns

X [{array, sparse matrix}, shape [n_samples, n_features + 1]] Same data with dummy feature
added as first column.

Examples

>>> from sklearn.preprocessing import add_dummy_feature
>>> add_dummy_feature([[0, 1], [1, 0]])
array([[1., 0., 1.],

[1., 1., 0.]])

7.33.19 sklearn.preprocessing.binarize

sklearn.preprocessing.binarize(X, *, threshold=0.0, copy=True)
Boolean thresholding of array-like or scipy.sparse matrix

Read more in the User Guide.

Parameters

2528 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

X [{array-like, sparse matrix}, shape [n_samples, n_features]] The data to binarize, element by
element. scipy.sparse matrices should be in CSR or CSC format to avoid an un-necessary
copy.

threshold [float, optional (0.0 by default)] Feature values below or equal to this are replaced by
0, above it by 1. Threshold may not be less than 0 for operations on sparse matrices.

copy [boolean, optional, default True] set to False to perform inplace binarization and avoid a
copy (if the input is already a numpy array or a scipy.sparse CSR / CSC matrix and if axis
is 1).

See also:

Binarizer Performs binarization using the Transformer API (e.g. as part of a preprocessing sklearn.
pipeline.Pipeline).

7.33.20 sklearn.preprocessing.label_binarize

sklearn.preprocessing.label_binarize(y, *, classes, neg_label=0, pos_label=1,
sparse_output=False)

Binarize labels in a one-vs-all fashion

Several regression and binary classification algorithms are available in scikit-learn. A simple way to extend
these algorithms to the multi-class classification case is to use the so-called one-vs-all scheme.

This function makes it possible to compute this transformation for a fixed set of class labels known ahead of
time.

Parameters

y [array-like] Sequence of integer labels or multilabel data to encode.

classes [array-like of shape [n_classes]] Uniquely holds the label for each class.

neg_label [int (default: 0)] Value with which negative labels must be encoded.

pos_label [int (default: 1)] Value with which positive labels must be encoded.

sparse_output [boolean (default: False),] Set to true if output binary array is desired in CSR
sparse format

Returns

Y [numpy array or CSR matrix of shape [n_samples, n_classes]] Shape will be [n_samples, 1]
for binary problems.

See also:

LabelBinarizer class used to wrap the functionality of label_binarize and allow for fitting to classes inde-
pendently of the transform operation

Examples

>>> from sklearn.preprocessing import label_binarize
>>> label_binarize([1, 6], classes=[1, 2, 4, 6])
array([[1, 0, 0, 0],

[0, 0, 0, 1]])

The class ordering is preserved:

7.33. sklearn.preprocessing: Preprocessing and Normalization 2529

scikit-learn user guide, Release 0.23.2

>>> label_binarize([1, 6], classes=[1, 6, 4, 2])
array([[1, 0, 0, 0],

[0, 1, 0, 0]])

Binary targets transform to a column vector

>>> label_binarize(['yes', 'no', 'no', 'yes'], classes=['no', 'yes'])
array([[1],

[0],
[0],
[1]])

Examples using sklearn.preprocessing.label_binarize

• Receiver Operating Characteristic (ROC)

• Precision-Recall

7.33.21 sklearn.preprocessing.maxabs_scale

sklearn.preprocessing.maxabs_scale(X, *, axis=0, copy=True)
Scale each feature to the [-1, 1] range without breaking the sparsity.

This estimator scales each feature individually such that the maximal absolute value of each feature in the
training set will be 1.0.

This scaler can also be applied to sparse CSR or CSC matrices.

Parameters

X [array-like, shape (n_samples, n_features)] The data.

axis [int (0 by default)] axis used to scale along. If 0, independently scale each feature, other-
wise (if 1) scale each sample.

copy [boolean, optional, default is True] Set to False to perform inplace scaling and avoid a
copy (if the input is already a numpy array).

See also:

MaxAbsScaler Performs scaling to the [-1, 1] range using the‘‘Transformer‘‘ API (e.g. as part of a prepro-
cessing sklearn.pipeline.Pipeline).

Notes

NaNs are treated as missing values: disregarded to compute the statistics, and maintained during the data trans-
formation.

For a comparison of the different scalers, transformers, and normalizers, see exam-
ples/preprocessing/plot_all_scaling.py.

2530 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

7.33.22 sklearn.preprocessing.minmax_scale

sklearn.preprocessing.minmax_scale(X, feature_range=(0, 1), *, axis=0, copy=True)
Transform features by scaling each feature to a given range.

This estimator scales and translates each feature individually such that it is in the given range on the training set,
i.e. between zero and one.

The transformation is given by (when axis=0):

X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))
X_scaled = X_std * (max - min) + min

where min, max = feature_range.

The transformation is calculated as (when axis=0):

X_scaled = scale * X + min - X.min(axis=0) * scale
where scale = (max - min) / (X.max(axis=0) - X.min(axis=0))

This transformation is often used as an alternative to zero mean, unit variance scaling.

Read more in the User Guide.

New in version 0.17: minmax_scale function interface to sklearn.preprocessing.MinMaxScaler.

Parameters

X [array-like of shape (n_samples, n_features)] The data.

feature_range [tuple (min, max), default=(0, 1)] Desired range of transformed data.

axis [int, default=0] Axis used to scale along. If 0, independently scale each feature, otherwise
(if 1) scale each sample.

copy [bool, default=True] Set to False to perform inplace scaling and avoid a copy (if the input
is already a numpy array).

See also:

MinMaxScaler Performs scaling to a given range using the‘‘Transformer‘‘ API (e.g. as part of a preprocess-
ing sklearn.pipeline.Pipeline).

Notes

For a comparison of the different scalers, transformers, and normalizers, see exam-
ples/preprocessing/plot_all_scaling.py.

Examples using sklearn.preprocessing.minmax_scale

• Compare the effect of different scalers on data with outliers

7.33.23 sklearn.preprocessing.normalize

sklearn.preprocessing.normalize(X, norm=’l2’, *, axis=1, copy=True, return_norm=False)
Scale input vectors individually to unit norm (vector length).

Read more in the User Guide.

7.33. sklearn.preprocessing: Preprocessing and Normalization 2531

scikit-learn user guide, Release 0.23.2

Parameters

X [{array-like, sparse matrix}, shape [n_samples, n_features]] The data to normalize, element
by element. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy.

norm [‘l1’, ‘l2’, or ‘max’, optional (‘l2’ by default)] The norm to use to normalize each non
zero sample (or each non-zero feature if axis is 0).

axis [0 or 1, optional (1 by default)] axis used to normalize the data along. If 1, independently
normalize each sample, otherwise (if 0) normalize each feature.

copy [boolean, optional, default True] set to False to perform inplace row normalization and
avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix and if axis
is 1).

return_norm [boolean, default False] whether to return the computed norms

Returns

X [{array-like, sparse matrix}, shape [n_samples, n_features]] Normalized input X.

norms [array, shape [n_samples] if axis=1 else [n_features]] An array of norms along given
axis for X. When X is sparse, a NotImplementedError will be raised for norm ‘l1’ or ‘l2’.

See also:

Normalizer Performs normalization using the Transformer API (e.g. as part of a preprocessing
sklearn.pipeline.Pipeline).

Notes

For a comparison of the different scalers, transformers, and normalizers, see exam-
ples/preprocessing/plot_all_scaling.py.

7.33.24 sklearn.preprocessing.quantile_transform

sklearn.preprocessing.quantile_transform(X, *, axis=0, n_quantiles=1000,
output_distribution=’uniform’, ig-
nore_implicit_zeros=False, subsample=100000,
random_state=None, copy=True)

Transform features using quantiles information.

This method transforms the features to follow a uniform or a normal distribution. Therefore, for a given feature,
this transformation tends to spread out the most frequent values. It also reduces the impact of (marginal) outliers:
this is therefore a robust preprocessing scheme.

The transformation is applied on each feature independently. First an estimate of the cumulative distribution
function of a feature is used to map the original values to a uniform distribution. The obtained values are then
mapped to the desired output distribution using the associated quantile function. Features values of new/unseen
data that fall below or above the fitted range will be mapped to the bounds of the output distribution. Note that
this transform is non-linear. It may distort linear correlations between variables measured at the same scale but
renders variables measured at different scales more directly comparable.

Read more in the User Guide.

Parameters

X [array-like, sparse matrix] The data to transform.

2532 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

axis [int, (default=0)] Axis used to compute the means and standard deviations along. If 0,
transform each feature, otherwise (if 1) transform each sample.

n_quantiles [int, optional (default=1000 or n_samples)] Number of quantiles to be computed.
It corresponds to the number of landmarks used to discretize the cumulative distribution
function. If n_quantiles is larger than the number of samples, n_quantiles is set to the
number of samples as a larger number of quantiles does not give a better approximation of
the cumulative distribution function estimator.

output_distribution [str, optional (default=’uniform’)] Marginal distribution for the trans-
formed data. The choices are ‘uniform’ (default) or ‘normal’.

ignore_implicit_zeros [bool, optional (default=False)] Only applies to sparse matrices. If True,
the sparse entries of the matrix are discarded to compute the quantile statistics. If False,
these entries are treated as zeros.

subsample [int, optional (default=1e5)] Maximum number of samples used to estimate the
quantiles for computational efficiency. Note that the subsampling procedure may differ
for value-identical sparse and dense matrices.

random_state [int, RandomState instance or None, optional (default=None)] Determines ran-
dom number generation for subsampling and smoothing noise. Please see subsample
for more details. Pass an int for reproducible results across multiple function calls. See
Glossary

copy [boolean, optional, (default=True)] Set to False to perform inplace transformation and
avoid a copy (if the input is already a numpy array). If True, a copy of X is transformed,
leaving the original X unchanged

..versionchanged:: 0.23 The default value of copy changed from False to True in 0.23.

Returns

Xt [ndarray or sparse matrix, shape (n_samples, n_features)] The transformed data.

See also:

QuantileTransformer Performs quantile-based scaling using the Transformer API (e.g. as part of a
preprocessing sklearn.pipeline.Pipeline).

power_transform Maps data to a normal distribution using a power transformation.

scale Performs standardization that is faster, but less robust to outliers.

robust_scale Performs robust standardization that removes the influence of outliers but does not put out-
liers and inliers on the same scale.

Notes

NaNs are treated as missing values: disregarded in fit, and maintained in transform.

For a comparison of the different scalers, transformers, and normalizers, see exam-
ples/preprocessing/plot_all_scaling.py.

Examples

7.33. sklearn.preprocessing: Preprocessing and Normalization 2533

scikit-learn user guide, Release 0.23.2

>>> import numpy as np
>>> from sklearn.preprocessing import quantile_transform
>>> rng = np.random.RandomState(0)
>>> X = np.sort(rng.normal(loc=0.5, scale=0.25, size=(25, 1)), axis=0)
>>> quantile_transform(X, n_quantiles=10, random_state=0, copy=True)
array([...])

Examples using sklearn.preprocessing.quantile_transform

• Effect of transforming the targets in regression model

7.33.25 sklearn.preprocessing.robust_scale

sklearn.preprocessing.robust_scale(X, *, axis=0, with_centering=True, with_scaling=True,
quantile_range=(25.0, 75.0), copy=True)

Standardize a dataset along any axis

Center to the median and component wise scale according to the interquartile range.

Read more in the User Guide.

Parameters

X [array-like] The data to center and scale.

axis [int (0 by default)] axis used to compute the medians and IQR along. If 0, independently
scale each feature, otherwise (if 1) scale each sample.

with_centering [boolean, True by default] If True, center the data before scaling.

with_scaling [boolean, True by default] If True, scale the data to unit variance (or equivalently,
unit standard deviation).

quantile_range [tuple (q_min, q_max), 0.0 < q_min < q_max < 100.0] Default: (25.0, 75.0) =
(1st quantile, 3rd quantile) = IQR Quantile range used to calculate scale_.

New in version 0.18.

copy [boolean, optional, default is True] set to False to perform inplace row normalization and
avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix and if axis
is 1).

See also:

RobustScaler Performs centering and scaling using the Transformer API (e.g. as part of a preprocess-
ing sklearn.pipeline.Pipeline).

Notes

This implementation will refuse to center scipy.sparse matrices since it would make them non-sparse and would
potentially crash the program with memory exhaustion problems.

Instead the caller is expected to either set explicitly with_centering=False (in that case, only variance
scaling will be performed on the features of the CSR matrix) or to call X.toarray() if he/she expects the
materialized dense array to fit in memory.

To avoid memory copy the caller should pass a CSR matrix.

2534 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

For a comparison of the different scalers, transformers, and normalizers, see exam-
ples/preprocessing/plot_all_scaling.py.

7.33.26 sklearn.preprocessing.scale

sklearn.preprocessing.scale(X, *, axis=0, with_mean=True, with_std=True, copy=True)
Standardize a dataset along any axis

Center to the mean and component wise scale to unit variance.

Read more in the User Guide.

Parameters

X [{array-like, sparse matrix}] The data to center and scale.

axis [int (0 by default)] axis used to compute the means and standard deviations along. If 0,
independently standardize each feature, otherwise (if 1) standardize each sample.

with_mean [boolean, True by default] If True, center the data before scaling.

with_std [boolean, True by default] If True, scale the data to unit variance (or equivalently, unit
standard deviation).

copy [boolean, optional, default True] set to False to perform inplace row normalization and
avoid a copy (if the input is already a numpy array or a scipy.sparse CSC matrix and if axis
is 1).

See also:

StandardScaler Performs scaling to unit variance using the‘‘Transformer‘‘ API (e.g. as part of a prepro-
cessing sklearn.pipeline.Pipeline).

Notes

This implementation will refuse to center scipy.sparse matrices since it would make them non-sparse and would
potentially crash the program with memory exhaustion problems.

Instead the caller is expected to either set explicitly with_mean=False (in that case, only variance scaling
will be performed on the features of the CSC matrix) or to call X.toarray() if he/she expects the materialized
dense array to fit in memory.

To avoid memory copy the caller should pass a CSC matrix.

NaNs are treated as missing values: disregarded to compute the statistics, and maintained during the data trans-
formation.

We use a biased estimator for the standard deviation, equivalent to numpy.std(x, ddof=0). Note that the
choice of ddof is unlikely to affect model performance.

For a comparison of the different scalers, transformers, and normalizers, see exam-
ples/preprocessing/plot_all_scaling.py.

Examples using sklearn.preprocessing.scale

• A demo of K-Means clustering on the handwritten digits data

7.33. sklearn.preprocessing: Preprocessing and Normalization 2535

scikit-learn user guide, Release 0.23.2

7.33.27 sklearn.preprocessing.power_transform

sklearn.preprocessing.power_transform(X, method=’yeo-johnson’, *, standardize=True,
copy=True)

Power transforms are a family of parametric, monotonic transformations that are applied to make data more
Gaussian-like. This is useful for modeling issues related to heteroscedasticity (non-constant variance), or other
situations where normality is desired.

Currently, power_transform supports the Box-Cox transform and the Yeo-Johnson transform. The optimal pa-
rameter for stabilizing variance and minimizing skewness is estimated through maximum likelihood.

Box-Cox requires input data to be strictly positive, while Yeo-Johnson supports both positive or negative data.

By default, zero-mean, unit-variance normalization is applied to the transformed data.

Read more in the User Guide.

Parameters

X [array-like, shape (n_samples, n_features)] The data to be transformed using a power trans-
formation.

method [{‘yeo-johnson’, ‘box-cox’}, default=’yeo-johnson’] The power transform method.
Available methods are:

• ‘yeo-johnson’ [1], works with positive and negative values

• ‘box-cox’ [2], only works with strictly positive values

Changed in version 0.23: The default value of the method parameter changed from ‘box-
cox’ to ‘yeo-johnson’ in 0.23.

standardize [boolean, default=True] Set to True to apply zero-mean, unit-variance normaliza-
tion to the transformed output.

copy [boolean, optional, default=True] Set to False to perform inplace computation during
transformation.

Returns

X_trans [array-like, shape (n_samples, n_features)] The transformed data.

See also:

PowerTransformer Equivalent transformation with the Transformer API (e.g. as part of a preprocess-
ing sklearn.pipeline.Pipeline).

quantile_transform Maps data to a standard normal distribution with the parameter
output_distribution='normal'.

Notes

NaNs are treated as missing values: disregarded in fit, and maintained in transform.

For a comparison of the different scalers, transformers, and normalizers, see exam-
ples/preprocessing/plot_all_scaling.py.

References

[1], [2]

2536 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Examples

>>> import numpy as np
>>> from sklearn.preprocessing import power_transform
>>> data = [[1, 2], [3, 2], [4, 5]]
>>> print(power_transform(data, method='box-cox'))
[[-1.332... -0.707...]
[0.256... -0.707...]
[1.076... 1.414...]]

7.34 sklearn.random_projection: Random projection

Random Projection transformers

Random Projections are a simple and computationally efficient way to reduce the dimensionality of the data by trading
a controlled amount of accuracy (as additional variance) for faster processing times and smaller model sizes.

The dimensions and distribution of Random Projections matrices are controlled so as to preserve the pairwise distances
between any two samples of the dataset.

The main theoretical result behind the efficiency of random projection is the Johnson-Lindenstrauss lemma (quoting
Wikipedia):

In mathematics, the Johnson-Lindenstrauss lemma is a result concerning low-distortion embeddings of
points from high-dimensional into low-dimensional Euclidean space. The lemma states that a small set
of points in a high-dimensional space can be embedded into a space of much lower dimension in such a
way that distances between the points are nearly preserved. The map used for the embedding is at least
Lipschitz, and can even be taken to be an orthogonal projection.

User guide: See the Random Projection section for further details.

random_projection.
GaussianRandomProjection([. . .])

Reduce dimensionality through Gaussian random pro-
jection

random_projection.
SparseRandomProjection([. . .])

Reduce dimensionality through sparse random projec-
tion

7.34.1 sklearn.random_projection.GaussianRandomProjection

class sklearn.random_projection.GaussianRandomProjection(n_components=’auto’,
*, eps=0.1, ran-
dom_state=None)

Reduce dimensionality through Gaussian random projection

The components of the random matrix are drawn from N(0, 1 / n_components).

Read more in the User Guide.

New in version 0.13.

Parameters

n_components [int or ‘auto’, optional (default = ‘auto’)] Dimensionality of the target projection
space.

n_components can be automatically adjusted according to the number of samples in the
dataset and the bound given by the Johnson-Lindenstrauss lemma. In that case the quality

7.34. sklearn.random_projection: Random projection 2537

https://en.wikipedia.org/wiki/Johnson%E2%80%93Lindenstrauss_lemma
https://en.wikipedia.org/wiki/Johnson%E2%80%93Lindenstrauss_lemma

scikit-learn user guide, Release 0.23.2

of the embedding is controlled by the eps parameter.

It should be noted that Johnson-Lindenstrauss lemma can yield very conservative estimated
of the required number of components as it makes no assumption on the structure of the
dataset.

eps [strictly positive float, optional (default=0.1)] Parameter to control the quality of the embed-
ding according to the Johnson-Lindenstrauss lemma when n_components is set to ‘auto’.

Smaller values lead to better embedding and higher number of dimensions (n_components)
in the target projection space.

random_state [int, RandomState instance or None, optional (default=None)] Controls the
pseudo random number generator used to generate the projection matrix at fit time. Pass
an int for reproducible output across multiple function calls. See Glossary.

Attributes

n_components_ [int] Concrete number of components computed when n_components=”auto”.

components_ [numpy array of shape [n_components, n_features]] Random matrix used for the
projection.

See also:

SparseRandomProjection

Examples

>>> import numpy as np
>>> from sklearn.random_projection import GaussianRandomProjection
>>> rng = np.random.RandomState(42)
>>> X = rng.rand(100, 10000)
>>> transformer = GaussianRandomProjection(random_state=rng)
>>> X_new = transformer.fit_transform(X)
>>> X_new.shape
(100, 3947)

Methods

fit(X[, y]) Generate a sparse random projection matrix
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Project the data by using matrix product with the ran-

dom matrix

__init__(n_components=’auto’, *, eps=0.1, random_state=None)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Generate a sparse random projection matrix

Parameters

X [numpy array or scipy.sparse of shape [n_samples, n_features]] Training set: only the
shape is used to find optimal random matrix dimensions based on the theory referenced in

2538 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

the afore mentioned papers.

y Ignored

Returns

self

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Project the data by using matrix product with the random matrix

Parameters

X [numpy array or scipy.sparse of shape [n_samples, n_features]] The input data to project
into a smaller dimensional space.

Returns

X_new [numpy array or scipy sparse of shape [n_samples, n_components]] Projected array.

7.34. sklearn.random_projection: Random projection 2539

scikit-learn user guide, Release 0.23.2

7.34.2 sklearn.random_projection.SparseRandomProjection

class sklearn.random_projection.SparseRandomProjection(n_components=’auto’, *,
density=’auto’, eps=0.1,
dense_output=False, ran-
dom_state=None)

Reduce dimensionality through sparse random projection

Sparse random matrix is an alternative to dense random projection matrix that guarantees similar embedding
quality while being much more memory efficient and allowing faster computation of the projected data.

If we note s = 1 / density the components of the random matrix are drawn from:

• -sqrt(s) / sqrt(n_components) with probability 1 / 2s

• 0 with probability 1 - 1 / s

• +sqrt(s) / sqrt(n_components) with probability 1 / 2s

Read more in the User Guide.

New in version 0.13.

Parameters

n_components [int or ‘auto’, optional (default = ‘auto’)] Dimensionality of the target projection
space.

n_components can be automatically adjusted according to the number of samples in the
dataset and the bound given by the Johnson-Lindenstrauss lemma. In that case the quality
of the embedding is controlled by the eps parameter.

It should be noted that Johnson-Lindenstrauss lemma can yield very conservative estimated
of the required number of components as it makes no assumption on the structure of the
dataset.

density [float in range]0, 1], optional (default=’auto’)] Ratio of non-zero component in the
random projection matrix.

If density = ‘auto’, the value is set to the minimum density as recommended by Ping Li et
al.: 1 / sqrt(n_features).

Use density = 1 / 3.0 if you want to reproduce the results from Achlioptas, 2001.

eps [strictly positive float, optional, (default=0.1)] Parameter to control the quality of the em-
bedding according to the Johnson-Lindenstrauss lemma when n_components is set to ‘auto’.

Smaller values lead to better embedding and higher number of dimensions (n_components)
in the target projection space.

dense_output [boolean, optional (default=False)] If True, ensure that the output of the random
projection is a dense numpy array even if the input and random projection matrix are both
sparse. In practice, if the number of components is small the number of zero components in
the projected data will be very small and it will be more CPU and memory efficient to use a
dense representation.

If False, the projected data uses a sparse representation if the input is sparse.

random_state [int, RandomState instance or None, optional (default=None)] Controls the
pseudo random number generator used to generate the projection matrix at fit time. Pass
an int for reproducible output across multiple function calls. See Glossary.

Attributes

n_components_ [int] Concrete number of components computed when n_components=”auto”.

2540 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

components_ [CSR matrix with shape [n_components, n_features]] Random matrix used for
the projection.

density_ [float in range 0.0 - 1.0] Concrete density computed from when density = “auto”.

See also:

GaussianRandomProjection

References

[1], [2]

Examples

>>> import numpy as np
>>> from sklearn.random_projection import SparseRandomProjection
>>> rng = np.random.RandomState(42)
>>> X = rng.rand(100, 10000)
>>> transformer = SparseRandomProjection(random_state=rng)
>>> X_new = transformer.fit_transform(X)
>>> X_new.shape
(100, 3947)
>>> # very few components are non-zero
>>> np.mean(transformer.components_ != 0)
0.0100...

Methods

fit(X[, y]) Generate a sparse random projection matrix
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X) Project the data by using matrix product with the ran-

dom matrix

__init__(n_components=’auto’, *, density=’auto’, eps=0.1, dense_output=False, ran-
dom_state=None)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y=None)
Generate a sparse random projection matrix

Parameters

X [numpy array or scipy.sparse of shape [n_samples, n_features]] Training set: only the
shape is used to find optimal random matrix dimensions based on the theory referenced in
the afore mentioned papers.

y Ignored

Returns

self

7.34. sklearn.random_projection: Random projection 2541

scikit-learn user guide, Release 0.23.2

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [ndarray of shape (n_samples,), default=None] Target values.

**fit_params [dict] Additional fit parameters.

Returns

X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

transform(X)
Project the data by using matrix product with the random matrix

Parameters

X [numpy array or scipy.sparse of shape [n_samples, n_features]] The input data to project
into a smaller dimensional space.

Returns

X_new [numpy array or scipy sparse of shape [n_samples, n_components]] Projected array.

Examples using sklearn.random_projection.SparseRandomProjection

• Manifold learning on handwritten digits: Locally Linear Embedding, Isomap. . .

• The Johnson-Lindenstrauss bound for embedding with random projections

random_projection.
johnson_lindenstrauss_min_dim(. . .)

Find a ‘safe’ number of components to randomly project
to

2542 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

7.34.3 sklearn.random_projection.johnson_lindenstrauss_min_dim

sklearn.random_projection.johnson_lindenstrauss_min_dim(n_samples, *, eps=0.1)
Find a ‘safe’ number of components to randomly project to

The distortion introduced by a random projection p only changes the distance between two points by a factor (1
+- eps) in an euclidean space with good probability. The projection p is an eps-embedding as defined by:

(1 - eps) ||u - v||^2 < ||p(u) - p(v)||^2 < (1 + eps) ||u - v||^2

Where u and v are any rows taken from a dataset of shape [n_samples, n_features], eps is in]0, 1[and p is a
projection by a random Gaussian N(0, 1) matrix with shape [n_components, n_features] (or a sparse Achlioptas
matrix).

The minimum number of components to guarantee the eps-embedding is given by:

n_components >= 4 log(n_samples) / (eps^2 / 2 - eps^3 / 3)

Note that the number of dimensions is independent of the original number of features but instead depends on
the size of the dataset: the larger the dataset, the higher is the minimal dimensionality of an eps-embedding.

Read more in the User Guide.

Parameters

n_samples [int or numpy array of int greater than 0,] Number of samples. If an array is given,
it will compute a safe number of components array-wise.

eps [float or numpy array of float in]0,1[, optional (default=0.1)] Maximum distortion rate as
defined by the Johnson-Lindenstrauss lemma. If an array is given, it will compute a safe
number of components array-wise.

Returns

n_components [int or numpy array of int,] The minimal number of components to guarantee
with good probability an eps-embedding with n_samples.

References

[1], [2]

Examples

>>> johnson_lindenstrauss_min_dim(1e6, eps=0.5)
663

>>> johnson_lindenstrauss_min_dim(1e6, eps=[0.5, 0.1, 0.01])
array([663, 11841, 1112658])

>>> johnson_lindenstrauss_min_dim([1e4, 1e5, 1e6], eps=0.1)
array([7894, 9868, 11841])

Examples using sklearn.random_projection.johnson_lindenstrauss_min_dim

• The Johnson-Lindenstrauss bound for embedding with random projections

7.34. sklearn.random_projection: Random projection 2543

scikit-learn user guide, Release 0.23.2

7.35 sklearn.semi_supervised Semi-Supervised Learning

The sklearn.semi_supervised module implements semi-supervised learning algorithms. These algorithms
utilized small amounts of labeled data and large amounts of unlabeled data for classification tasks. This module
includes Label Propagation.

User guide: See the Semi-Supervised section for further details.

semi_supervised.
LabelPropagation([kernel, . . .])

Label Propagation classifier

semi_supervised.LabelSpreading([kernel,
. . .])

LabelSpreading model for semi-supervised learning

7.35.1 sklearn.semi_supervised.LabelPropagation

class sklearn.semi_supervised.LabelPropagation(kernel=’rbf’, *, gamma=20,
n_neighbors=7, max_iter=1000,
tol=0.001, n_jobs=None)

Label Propagation classifier

Read more in the User Guide.

Parameters

kernel [{‘knn’, ‘rbf’} or callable, default=’rbf’] String identifier for kernel function to use or
the kernel function itself. Only ‘rbf’ and ‘knn’ strings are valid inputs. The function passed
should take two inputs, each of shape (n_samples, n_features), and return a (n_samples,
n_samples) shaped weight matrix.

gamma [float, default=20] Parameter for rbf kernel.

n_neighbors [int, default=7] Parameter for knn kernel which need to be strictly positive.

max_iter [int, default=1000] Change maximum number of iterations allowed.

tol [float, 1e-3] Convergence tolerance: threshold to consider the system at steady state.

n_jobs [int, default=None] The number of parallel jobs to run. None means 1 unless in a
joblib.parallel_backend context. -1 means using all processors. See Glossary
for more details.

Attributes

X_ [ndarray of shape (n_samples, n_features)] Input array.

classes_ [ndarray of shape (n_classes,)] The distinct labels used in classifying instances.

label_distributions_ [ndarray of shape (n_samples, n_classes)] Categorical distribution for
each item.

transduction_ [ndarray of shape (n_samples)] Label assigned to each item via the transduction.

n_iter_ [int] Number of iterations run.

See also:

LabelSpreading Alternate label propagation strategy more robust to noise

2544 Chapter 7. API Reference

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend

scikit-learn user guide, Release 0.23.2

References

Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label propagation. Tech-
nical Report CMU-CALD-02-107, Carnegie Mellon University, 2002 http://pages.cs.wisc.edu/~jerryzhu/pub/
CMU-CALD-02-107.pdf

Examples

>>> import numpy as np
>>> from sklearn import datasets
>>> from sklearn.semi_supervised import LabelPropagation
>>> label_prop_model = LabelPropagation()
>>> iris = datasets.load_iris()
>>> rng = np.random.RandomState(42)
>>> random_unlabeled_points = rng.rand(len(iris.target)) < 0.3
>>> labels = np.copy(iris.target)
>>> labels[random_unlabeled_points] = -1
>>> label_prop_model.fit(iris.data, labels)
LabelPropagation(...)

Methods

fit(X, y) Fit a semi-supervised label propagation model based
get_params([deep]) Get parameters for this estimator.
predict(X) Performs inductive inference across the model.
predict_proba(X) Predict probability for each possible outcome.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(kernel=’rbf’, *, gamma=20, n_neighbors=7, max_iter=1000, tol=0.001, n_jobs=None)
Initialize self. See help(type(self)) for accurate signature.

fit(X, y)
Fit a semi-supervised label propagation model based

All the input data is provided matrix X (labeled and unlabeled) and corresponding label matrix y with a
dedicated marker value for unlabeled samples.

Parameters

X [array-like of shape (n_samples, n_features)] A matrix of shape (n_samples, n_samples)
will be created from this.

y [array-like of shape (n_samples,)] n_labeled_samples (unlabeled points are marked
as -1) All unlabeled samples will be transductively assigned labels.

Returns

self [object]

get_params(deep=True)
Get parameters for this estimator.

Parameters

7.35. sklearn.semi_supervised Semi-Supervised Learning 2545

http://pages.cs.wisc.edu/~jerryzhu/pub/CMU-CALD-02-107.pdf
http://pages.cs.wisc.edu/~jerryzhu/pub/CMU-CALD-02-107.pdf

scikit-learn user guide, Release 0.23.2

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Performs inductive inference across the model.

Parameters

X [array-like of shape (n_samples, n_features)] The data matrix.

Returns

y [ndarray of shape (n_samples,)] Predictions for input data.

predict_proba(X)
Predict probability for each possible outcome.

Compute the probability estimates for each single sample in X and each possible outcome seen during
training (categorical distribution).

Parameters

X [array-like of shape (n_samples, n_features)] The data matrix.

Returns

probabilities [ndarray of shape (n_samples, n_classes)] Normalized probability distribu-
tions across class labels.

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

2546 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

7.35.2 sklearn.semi_supervised.LabelSpreading

class sklearn.semi_supervised.LabelSpreading(kernel=’rbf’, *, gamma=20,
n_neighbors=7, alpha=0.2, max_iter=30,
tol=0.001, n_jobs=None)

LabelSpreading model for semi-supervised learning

This model is similar to the basic Label Propagation algorithm, but uses affinity matrix based on the normalized
graph Laplacian and soft clamping across the labels.

Read more in the User Guide.

Parameters

kernel [{‘knn’, ‘rbf’} or callable, default=’rbf’] String identifier for kernel function to use or
the kernel function itself. Only ‘rbf’ and ‘knn’ strings are valid inputs. The function passed
should take two inputs, each of shape (n_samples, n_features), and return a (n_samples,
n_samples) shaped weight matrix.

gamma [float, default=20] Parameter for rbf kernel.

n_neighbors [int, default=7] Parameter for knn kernel which is a strictly positive integer.

alpha [float, default=0.2] Clamping factor. A value in (0, 1) that specifies the relative amount
that an instance should adopt the information from its neighbors as opposed to its initial
label. alpha=0 means keeping the initial label information; alpha=1 means replacing all
initial information.

max_iter [int, default=30] Maximum number of iterations allowed.

tol [float, default=1e-3] Convergence tolerance: threshold to consider the system at steady state.

n_jobs [int, default=None] The number of parallel jobs to run. None means 1 unless in a
joblib.parallel_backend context. -1 means using all processors. See Glossary
for more details.

Attributes

X_ [ndarray of shape (n_samples, n_features)] Input array.

classes_ [ndarray of shape (n_classes,)] The distinct labels used in classifying instances.

label_distributions_ [ndarray of shape (n_samples, n_classes)] Categorical distribution for
each item.

transduction_ [ndarray of shape (n_samples,)] Label assigned to each item via the transduc-
tion.

n_iter_ [int] Number of iterations run.

See also:

LabelPropagation Unregularized graph based semi-supervised learning

References

Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, Bernhard Schoelkopf. Learning with
local and global consistency (2004) http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.115.3219

7.35. sklearn.semi_supervised Semi-Supervised Learning 2547

https://joblib.readthedocs.io/en/latest/parallel.html#joblib.parallel_backend
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.115.3219

scikit-learn user guide, Release 0.23.2

Examples

>>> import numpy as np
>>> from sklearn import datasets
>>> from sklearn.semi_supervised import LabelSpreading
>>> label_prop_model = LabelSpreading()
>>> iris = datasets.load_iris()
>>> rng = np.random.RandomState(42)
>>> random_unlabeled_points = rng.rand(len(iris.target)) < 0.3
>>> labels = np.copy(iris.target)
>>> labels[random_unlabeled_points] = -1
>>> label_prop_model.fit(iris.data, labels)
LabelSpreading(...)

Methods

fit(X, y) Fit a semi-supervised label propagation model based
get_params([deep]) Get parameters for this estimator.
predict(X) Performs inductive inference across the model.
predict_proba(X) Predict probability for each possible outcome.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(kernel=’rbf’, *, gamma=20, n_neighbors=7, alpha=0.2, max_iter=30, tol=0.001,
n_jobs=None)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y)
Fit a semi-supervised label propagation model based

All the input data is provided matrix X (labeled and unlabeled) and corresponding label matrix y with a
dedicated marker value for unlabeled samples.

Parameters

X [array-like of shape (n_samples, n_features)] A matrix of shape (n_samples, n_samples)
will be created from this.

y [array-like of shape (n_samples,)] n_labeled_samples (unlabeled points are marked
as -1) All unlabeled samples will be transductively assigned labels.

Returns

self [object]

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

2548 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

predict(X)
Performs inductive inference across the model.

Parameters

X [array-like of shape (n_samples, n_features)] The data matrix.

Returns

y [ndarray of shape (n_samples,)] Predictions for input data.

predict_proba(X)
Predict probability for each possible outcome.

Compute the probability estimates for each single sample in X and each possible outcome seen during
training (categorical distribution).

Parameters

X [array-like of shape (n_samples, n_features)] The data matrix.

Returns

probabilities [ndarray of shape (n_samples, n_classes)] Normalized probability distribu-
tions across class labels.

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.semi_supervised.LabelSpreading

• Decision boundary of label propagation versus SVM on the Iris dataset

• Label Propagation learning a complex structure

• Label Propagation digits: Demonstrating performance

7.35. sklearn.semi_supervised Semi-Supervised Learning 2549

scikit-learn user guide, Release 0.23.2

• Label Propagation digits active learning

7.36 sklearn.svm: Support Vector Machines

The sklearn.svm module includes Support Vector Machine algorithms.

User guide: See the Support Vector Machines section for further details.

7.36.1 Estimators

svm.LinearSVC([penalty, loss, dual, tol, C, . . .]) Linear Support Vector Classification.
svm.LinearSVR(*[, epsilon, tol, C, loss, . . .]) Linear Support Vector Regression.
svm.NuSVC(*[, nu, kernel, degree, gamma, . . .]) Nu-Support Vector Classification.
svm.NuSVR(*[, nu, C, kernel, degree, gamma, . . .]) Nu Support Vector Regression.
svm.OneClassSVM (*[, kernel, degree, gamma, . . .]) Unsupervised Outlier Detection.
svm.SVC(*[, C, kernel, degree, gamma, . . .]) C-Support Vector Classification.
svm.SVR(*[, kernel, degree, gamma, coef0, . . .]) Epsilon-Support Vector Regression.

sklearn.svm.LinearSVC

class sklearn.svm.LinearSVC(penalty=’l2’, loss=’squared_hinge’, *, dual=True, tol=0.0001,
C=1.0, multi_class=’ovr’, fit_intercept=True, intercept_scaling=1,
class_weight=None, verbose=0, random_state=None,
max_iter=1000)

Linear Support Vector Classification.

Similar to SVC with parameter kernel=’linear’, but implemented in terms of liblinear rather than libsvm, so it
has more flexibility in the choice of penalties and loss functions and should scale better to large numbers of
samples.

This class supports both dense and sparse input and the multiclass support is handled according to a one-vs-the-
rest scheme.

Read more in the User Guide.

Parameters

penalty [{‘l1’, ‘l2’}, default=’l2’] Specifies the norm used in the penalization. The ‘l2’ penalty
is the standard used in SVC. The ‘l1’ leads to coef_ vectors that are sparse.

loss [{‘hinge’, ‘squared_hinge’}, default=’squared_hinge’] Specifies the loss function. ‘hinge’
is the standard SVM loss (used e.g. by the SVC class) while ‘squared_hinge’ is the square
of the hinge loss.

dual [bool, default=True] Select the algorithm to either solve the dual or primal optimization
problem. Prefer dual=False when n_samples > n_features.

tol [float, default=1e-4] Tolerance for stopping criteria.

C [float, default=1.0] Regularization parameter. The strength of the regularization is inversely
proportional to C. Must be strictly positive.

multi_class [{‘ovr’, ‘crammer_singer’}, default=’ovr’] Determines the multi-class strategy
if y contains more than two classes. "ovr" trains n_classes one-vs-rest classi-
fiers, while "crammer_singer" optimizes a joint objective over all classes. While

2550 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

crammer_singer is interesting from a theoretical perspective as it is consistent, it is sel-
dom used in practice as it rarely leads to better accuracy and is more expensive to compute.
If "crammer_singer" is chosen, the options loss, penalty and dual will be ignored.

fit_intercept [bool, default=True] Whether to calculate the intercept for this model. If set to
false, no intercept will be used in calculations (i.e. data is expected to be already centered).

intercept_scaling [float, default=1] When self.fit_intercept is True, instance vector x becomes
[x, self.intercept_scaling], i.e. a “synthetic” feature with constant value
equals to intercept_scaling is appended to the instance vector. The intercept becomes in-
tercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to
l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic
feature weight (and therefore on the intercept) intercept_scaling has to be increased.

class_weight [dict or ‘balanced’, default=None] Set the parameter C of class i to
class_weight[i]*C for SVC. If not given, all classes are supposed to have weight
one. The “balanced” mode uses the values of y to automatically adjust weights inversely
proportional to class frequencies in the input data as n_samples / (n_classes *
np.bincount(y)).

verbose [int, default=0] Enable verbose output. Note that this setting takes advantage of a per-
process runtime setting in liblinear that, if enabled, may not work properly in a multithreaded
context.

random_state [int or RandomState instance, default=None] Controls the pseudo random num-
ber generation for shuffling the data for the dual coordinate descent (if dual=True).
When dual=False the underlying implementation of LinearSVC is not random and
random_state has no effect on the results. Pass an int for reproducible output across
multiple function calls. See Glossary.

max_iter [int, default=1000] The maximum number of iterations to be run.

Attributes

coef_ [ndarray of shape (1, n_features) if n_classes == 2 else (n_classes, n_features)] Weights
assigned to the features (coefficients in the primal problem). This is only available in the
case of a linear kernel.

coef_ is a readonly property derived from raw_coef_ that follows the internal memory
layout of liblinear.

intercept_ [ndarray of shape (1,) if n_classes == 2 else (n_classes,)] Constants in decision
function.

classes_ [ndarray of shape (n_classes,)] The unique classes labels.

n_iter_ [int] Maximum number of iterations run across all classes.

See also:

SVC Implementation of Support Vector Machine classifier using libsvm: the kernel can be non-linear but its
SMO algorithm does not scale to large number of samples as LinearSVC does. Furthermore SVC multi-
class mode is implemented using one vs one scheme while LinearSVC uses one vs the rest. It is possible to
implement one vs the rest with SVC by using the sklearn.multiclass.OneVsRestClassifier
wrapper. Finally SVC can fit dense data without memory copy if the input is C-contiguous. Sparse data
will still incur memory copy though.

sklearn.linear_model.SGDClassifier SGDClassifier can optimize the same cost function as Lin-
earSVC by adjusting the penalty and loss parameters. In addition it requires less memory, allows incre-
mental (online) learning, and implements various loss functions and regularization regimes.

7.36. sklearn.svm: Support Vector Machines 2551

scikit-learn user guide, Release 0.23.2

Notes

The underlying C implementation uses a random number generator to select features when fitting the model.
It is thus not uncommon to have slightly different results for the same input data. If that happens, try with a
smaller tol parameter.

The underlying implementation, liblinear, uses a sparse internal representation for the data that will incur a
memory copy.

Predict output may not match that of standalone liblinear in certain cases. See differences from liblinear in the
narrative documentation.

References

LIBLINEAR: A Library for Large Linear Classification

Examples

>>> from sklearn.svm import LinearSVC
>>> from sklearn.pipeline import make_pipeline
>>> from sklearn.preprocessing import StandardScaler
>>> from sklearn.datasets import make_classification
>>> X, y = make_classification(n_features=4, random_state=0)
>>> clf = make_pipeline(StandardScaler(),
... LinearSVC(random_state=0, tol=1e-5))
>>> clf.fit(X, y)
Pipeline(steps=[('standardscaler', StandardScaler()),

('linearsvc', LinearSVC(random_state=0, tol=1e-05))])

>>> print(clf.named_steps['linearsvc'].coef_)
[[0.141... 0.526... 0.679... 0.493...]]

>>> print(clf.named_steps['linearsvc'].intercept_)
[0.1693...]
>>> print(clf.predict([[0, 0, 0, 0]]))
[1]

Methods

decision_function(X) Predict confidence scores for samples.
densify() Convert coefficient matrix to dense array format.
fit(X, y[, sample_weight]) Fit the model according to the given training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict class labels for samples in X.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.
sparsify() Convert coefficient matrix to sparse format.

2552 Chapter 7. API Reference

https://www.csie.ntu.edu.tw/~cjlin/liblinear/

scikit-learn user guide, Release 0.23.2

__init__(penalty=’l2’, loss=’squared_hinge’, *, dual=True, tol=0.0001, C=1.0, multi_class=’ovr’,
fit_intercept=True, intercept_scaling=1, class_weight=None, verbose=0, ran-
dom_state=None, max_iter=1000)

Initialize self. See help(type(self)) for accurate signature.

decision_function(X)
Predict confidence scores for samples.

The confidence score for a sample is the signed distance of that sample to the hyperplane.

Parameters

X [array_like or sparse matrix, shape (n_samples, n_features)] Samples.

Returns

array, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes) Confidence
scores per (sample, class) combination. In the binary case, confidence score for
self.classes_[1] where >0 means this class would be predicted.

densify()
Convert coefficient matrix to dense array format.

Converts the coef_ member (back) to a numpy.ndarray. This is the default format of coef_ and is
required for fitting, so calling this method is only required on models that have previously been sparsified;
otherwise, it is a no-op.

Returns

self Fitted estimator.

fit(X, y, sample_weight=None)
Fit the model according to the given training data.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training vector, where
n_samples in the number of samples and n_features is the number of features.

y [array-like of shape (n_samples,)] Target vector relative to X.

sample_weight [array-like of shape (n_samples,), default=None] Array of weights that are
assigned to individual samples. If not provided, then each sample is given unit weight.

New in version 0.18.

Returns

self [object] An instance of the estimator.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict class labels for samples in X.

Parameters

7.36. sklearn.svm: Support Vector Machines 2553

scikit-learn user guide, Release 0.23.2

X [array_like or sparse matrix, shape (n_samples, n_features)] Samples.

Returns

C [array, shape [n_samples]] Predicted class label per sample.

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

sparsify()
Convert coefficient matrix to sparse format.

Converts the coef_ member to a scipy.sparse matrix, which for L1-regularized models can be much more
memory- and storage-efficient than the usual numpy.ndarray representation.

The intercept_ member is not converted.

Returns

self Fitted estimator.

Notes

For non-sparse models, i.e. when there are not many zeros in coef_, this may actually increase memory
usage, so use this method with care. A rule of thumb is that the number of zero elements, which can be
computed with (coef_ == 0).sum(), must be more than 50% for this to provide significant benefits.

After calling this method, further fitting with the partial_fit method (if any) will not work until you call
densify.

2554 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Examples using sklearn.svm.LinearSVC

• Release Highlights for scikit-learn 0.22

• Comparison of Calibration of Classifiers

• Probability Calibration curves

• Pipeline Anova SVM

• Univariate Feature Selection

• Explicit feature map approximation for RBF kernels

• Balance model complexity and cross-validated score

• Precision-Recall

• Selecting dimensionality reduction with Pipeline and GridSearchCV

• Column Transformer with Heterogeneous Data Sources

• Feature discretization

• Plot the support vectors in LinearSVC

• Plot different SVM classifiers in the iris dataset

• Scaling the regularization parameter for SVCs

• Classification of text documents using sparse features

sklearn.svm.LinearSVR

class sklearn.svm.LinearSVR(*, epsilon=0.0, tol=0.0001, C=1.0, loss=’epsilon_insensitive’,
fit_intercept=True, intercept_scaling=1.0, dual=True, verbose=0,
random_state=None, max_iter=1000)

Linear Support Vector Regression.

Similar to SVR with parameter kernel=’linear’, but implemented in terms of liblinear rather than libsvm, so it
has more flexibility in the choice of penalties and loss functions and should scale better to large numbers of
samples.

This class supports both dense and sparse input.

Read more in the User Guide.

New in version 0.16.

Parameters

epsilon [float, default=0.0] Epsilon parameter in the epsilon-insensitive loss function. Note that
the value of this parameter depends on the scale of the target variable y. If unsure, set
epsilon=0.

tol [float, default=1e-4] Tolerance for stopping criteria.

C [float, default=1.0] Regularization parameter. The strength of the regularization is inversely
proportional to C. Must be strictly positive.

loss [{‘epsilon_insensitive’, ‘squared_epsilon_insensitive’}, default=’epsilon_insensitive’]
Specifies the loss function. The epsilon-insensitive loss (standard SVR) is the L1 loss,
while the squared epsilon-insensitive loss (‘squared_epsilon_insensitive’) is the L2 loss.

7.36. sklearn.svm: Support Vector Machines 2555

scikit-learn user guide, Release 0.23.2

fit_intercept [bool, default=True] Whether to calculate the intercept for this model. If set to
false, no intercept will be used in calculations (i.e. data is expected to be already centered).

intercept_scaling [float, default=1.] When self.fit_intercept is True, instance vector x becomes
[x, self.intercept_scaling], i.e. a “synthetic” feature with constant value equals to inter-
cept_scaling is appended to the instance vector. The intercept becomes intercept_scaling *
synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization
as all other features. To lessen the effect of regularization on synthetic feature weight (and
therefore on the intercept) intercept_scaling has to be increased.

dual [bool, default=True] Select the algorithm to either solve the dual or primal optimization
problem. Prefer dual=False when n_samples > n_features.

verbose [int, default=0] Enable verbose output. Note that this setting takes advantage of a per-
process runtime setting in liblinear that, if enabled, may not work properly in a multithreaded
context.

random_state [int or RandomState instance, default=None] Controls the pseudo random num-
ber generation for shuffling the data. Pass an int for reproducible output across multiple
function calls. See Glossary.

max_iter [int, default=1000] The maximum number of iterations to be run.

Attributes

coef_ [ndarray of shape (n_features) if n_classes == 2 else (n_classes, n_features)] Weights
assigned to the features (coefficients in the primal problem). This is only available in the
case of a linear kernel.

coef_ is a readonly property derived from raw_coef_ that follows the internal memory
layout of liblinear.

intercept_ [ndarray of shape (1) if n_classes == 2 else (n_classes)] Constants in decision func-
tion.

n_iter_ [int] Maximum number of iterations run across all classes.

See also:

LinearSVC Implementation of Support Vector Machine classifier using the same library as this class (liblin-
ear).

SVR Implementation of Support Vector Machine regression using libsvm: the kernel can be non-linear but its
SMO algorithm does not scale to large number of samples as LinearSVC does.

sklearn.linear_model.SGDRegressor SGDRegressor can optimize the same cost function as Lin-
earSVR by adjusting the penalty and loss parameters. In addition it requires less memory, allows incre-
mental (online) learning, and implements various loss functions and regularization regimes.

Examples

>>> from sklearn.svm import LinearSVR
>>> from sklearn.pipeline import make_pipeline
>>> from sklearn.preprocessing import StandardScaler
>>> from sklearn.datasets import make_regression
>>> X, y = make_regression(n_features=4, random_state=0)
>>> regr = make_pipeline(StandardScaler(),
... LinearSVR(random_state=0, tol=1e-5))
>>> regr.fit(X, y)

(continues on next page)

2556 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

(continued from previous page)

Pipeline(steps=[('standardscaler', StandardScaler()),
('linearsvr', LinearSVR(random_state=0, tol=1e-05))])

>>> print(regr.named_steps['linearsvr'].coef_)
[18.582... 27.023... 44.357... 64.522...]
>>> print(regr.named_steps['linearsvr'].intercept_)
[-4...]
>>> print(regr.predict([[0, 0, 0, 0]]))
[-2.384...]

Methods

fit(X, y[, sample_weight]) Fit the model according to the given training data.
get_params([deep]) Get parameters for this estimator.
predict(X) Predict using the linear model.
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.

__init__(*, epsilon=0.0, tol=0.0001, C=1.0, loss=’epsilon_insensitive’, fit_intercept=True, inter-
cept_scaling=1.0, dual=True, verbose=0, random_state=None, max_iter=1000)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y, sample_weight=None)
Fit the model according to the given training data.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training vector, where
n_samples in the number of samples and n_features is the number of features.

y [array-like of shape (n_samples,)] Target vector relative to X

sample_weight [array-like of shape (n_samples,), default=None] Array of weights that are
assigned to individual samples. If not provided, then each sample is given unit weight.

New in version 0.18.

Returns

self [object] An instance of the estimator.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Predict using the linear model.

Parameters

7.36. sklearn.svm: Support Vector Machines 2557

scikit-learn user guide, Release 0.23.2

X [array_like or sparse matrix, shape (n_samples, n_features)] Samples.

Returns

C [array, shape (n_samples,)] Returns predicted values.

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

sklearn.svm.NuSVC

class sklearn.svm.NuSVC(*, nu=0.5, kernel=’rbf’, degree=3, gamma=’scale’, coef0=0.0,
shrinking=True, probability=False, tol=0.001, cache_size=200,
class_weight=None, verbose=False, max_iter=-1, deci-
sion_function_shape=’ovr’, break_ties=False, random_state=None)

Nu-Support Vector Classification.

Similar to SVC but uses a parameter to control the number of support vectors.

The implementation is based on libsvm.

2558 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Read more in the User Guide.

Parameters

nu [float, default=0.5] An upper bound on the fraction of margin errors (see User Guide) and a
lower bound of the fraction of support vectors. Should be in the interval (0, 1].

kernel [{‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’}, default=’rbf’] Specifies the kernel
type to be used in the algorithm. It must be one of ‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘pre-
computed’ or a callable. If none is given, ‘rbf’ will be used. If a callable is given it is used
to precompute the kernel matrix.

degree [int, default=3] Degree of the polynomial kernel function (‘poly’). Ignored by all other
kernels.

gamma [{‘scale’, ‘auto’} or float, default=’scale’] Kernel coefficient for ‘rbf’, ‘poly’ and ‘sig-
moid’.

• if gamma='scale' (default) is passed then it uses 1 / (n_features * X.var()) as value of
gamma,

• if ‘auto’, uses 1 / n_features.

Changed in version 0.22: The default value of gamma changed from ‘auto’ to ‘scale’.

coef0 [float, default=0.0] Independent term in kernel function. It is only significant in ‘poly’
and ‘sigmoid’.

shrinking [bool, default=True] Whether to use the shrinking heuristic. See the User Guide.

probability [bool, default=False] Whether to enable probability estimates. This must be en-
abled prior to calling fit, will slow down that method as it internally uses 5-fold cross-
validation, and predict_proba may be inconsistent with predict. Read more in the
User Guide.

tol [float, default=1e-3] Tolerance for stopping criterion.

cache_size [float, default=200] Specify the size of the kernel cache (in MB).

class_weight [{dict, ‘balanced’}, default=None] Set the parameter C of class i to
class_weight[i]*C for SVC. If not given, all classes are supposed to have weight one. The
“balanced” mode uses the values of y to automatically adjust weights inversely proportional
to class frequencies as n_samples / (n_classes * np.bincount(y))

verbose [bool, default=False] Enable verbose output. Note that this setting takes advantage
of a per-process runtime setting in libsvm that, if enabled, may not work properly in a
multithreaded context.

max_iter [int, default=-1] Hard limit on iterations within solver, or -1 for no limit.

decision_function_shape [{‘ovo’, ‘ovr’}, default=’ovr’] Whether to return a one-vs-rest (‘ovr’)
decision function of shape (n_samples, n_classes) as all other classifiers, or the original
one-vs-one (‘ovo’) decision function of libsvm which has shape (n_samples, n_classes *
(n_classes - 1) / 2). However, one-vs-one (‘ovo’) is always used as multi-class strategy. The
parameter is ignored for binary classification.

Changed in version 0.19: decision_function_shape is ‘ovr’ by default.

New in version 0.17: decision_function_shape=’ovr’ is recommended.

Changed in version 0.17: Deprecated decision_function_shape=’ovo’ and None.

7.36. sklearn.svm: Support Vector Machines 2559

scikit-learn user guide, Release 0.23.2

break_ties [bool, default=False] If true, decision_function_shape='ovr', and num-
ber of classes > 2, predict will break ties according to the confidence values of deci-
sion_function; otherwise the first class among the tied classes is returned. Please note that
breaking ties comes at a relatively high computational cost compared to a simple predict.

New in version 0.22.

random_state [int or RandomState instance, default=None] Controls the pseudo random
number generation for shuffling the data for probability estimates. Ignored when
probability is False. Pass an int for reproducible output across multiple function calls.
See Glossary.

Attributes

support_ [ndarray of shape (n_SV,)] Indices of support vectors.

support_vectors_ [ndarray of shape (n_SV, n_features)] Support vectors.

n_support_ [ndarray of shape (n_class), dtype=int32] Number of support vectors for each class.

dual_coef_ [ndarray of shape (n_class-1, n_SV)] Dual coefficients of the support vector in the
decision function (see Mathematical formulation), multiplied by their targets. For multi-
class, coefficient for all 1-vs-1 classifiers. The layout of the coefficients in the multiclass
case is somewhat non-trivial. See the multi-class section of the User Guide for details.

coef_ [ndarray of shape (n_class * (n_class-1) / 2, n_features)] Weights assigned to the features
(coefficients in the primal problem). This is only available in the case of a linear kernel.

coef_ is readonly property derived from dual_coef_ and support_vectors_.

intercept_ [ndarray of shape (n_class * (n_class-1) / 2,)] Constants in decision function.

classes_ [ndarray of shape (n_classes,)] The unique classes labels.

fit_status_ [int] 0 if correctly fitted, 1 if the algorithm did not converge.

probA_ [ndarray of shape (n_class * (n_class-1) / 2,)]

probB_ [ndarray of shape (n_class * (n_class-1) / 2,)] If probability=True, it corresponds
to the parameters learned in Platt scaling to produce probability estimates from decision val-
ues. If probability=False, it’s an empty array. Platt scaling uses the logistic function
1 / (1 + exp(decision_value * probA_ + probB_)) where probA_ and
probB_ are learned from the dataset [2]. For more information on the multiclass case and
training procedure see section 8 of [1].

class_weight_ [ndarray of shape (n_class,)] Multipliers of parameter C of each class. Computed
based on the class_weight parameter.

shape_fit_ [tuple of int of shape (n_dimensions_of_X,)] Array dimensions of training vector X.

See also:

SVC Support Vector Machine for classification using libsvm.

LinearSVC Scalable linear Support Vector Machine for classification using liblinear.

References

[1], [2]

2560 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Examples

>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
>>> y = np.array([1, 1, 2, 2])
>>> from sklearn.pipeline import make_pipeline
>>> from sklearn.preprocessing import StandardScaler
>>> from sklearn.svm import NuSVC
>>> clf = make_pipeline(StandardScaler(), NuSVC())
>>> clf.fit(X, y)
Pipeline(steps=[('standardscaler', StandardScaler()), ('nusvc', NuSVC())])
>>> print(clf.predict([[-0.8, -1]]))
[1]

Methods

decision_function(X) Evaluates the decision function for the samples in X.
fit(X, y[, sample_weight]) Fit the SVM model according to the given training

data.
get_params([deep]) Get parameters for this estimator.
predict(X) Perform classification on samples in X.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(*, nu=0.5, kernel=’rbf’, degree=3, gamma=’scale’, coef0=0.0, shrinking=True, probabil-
ity=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1,
decision_function_shape=’ovr’, break_ties=False, random_state=None)

Initialize self. See help(type(self)) for accurate signature.

decision_function(X)
Evaluates the decision function for the samples in X.

Parameters

X [array-like of shape (n_samples, n_features)]

Returns

X [ndarray of shape (n_samples, n_classes * (n_classes-1) / 2)] Returns the decision function
of the sample for each class in the model. If decision_function_shape=’ovr’, the shape is
(n_samples, n_classes).

Notes

If decision_function_shape=’ovo’, the function values are proportional to the distance of the samples X to
the separating hyperplane. If the exact distances are required, divide the function values by the norm of
the weight vector (coef_). See also this question for further details. If decision_function_shape=’ovr’,
the decision function is a monotonic transformation of ovo decision function.

fit(X, y, sample_weight=None)
Fit the SVM model according to the given training data.

Parameters

7.36. sklearn.svm: Support Vector Machines 2561

https://stats.stackexchange.com/questions/14876/interpreting-distance-from-hyperplane-in-svm

scikit-learn user guide, Release 0.23.2

X [{array-like, sparse matrix} of shape (n_samples, n_features) or (n_samples, n_samples)]
Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features. For kernel=”precomputed”, the expected shape of X is (n_samples,
n_samples).

y [array-like of shape (n_samples,)] Target values (class labels in classification, real numbers
in regression)

sample_weight [array-like of shape (n_samples,), default=None] Per-sample weights.
Rescale C per sample. Higher weights force the classifier to put more emphasis on these
points.

Returns

self [object]

Notes

If X and y are not C-ordered and contiguous arrays of np.float64 and X is not a scipy.sparse.csr_matrix, X
and/or y may be copied.

If X is a dense array, then the other methods will not support sparse matrices as input.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Perform classification on samples in X.

For an one-class model, +1 or -1 is returned.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features) or (n_samples_test,
n_samples_train)] For kernel=”precomputed”, the expected shape of X is (n_samples_test,
n_samples_train).

Returns

y_pred [ndarray of shape (n_samples,)] Class labels for samples in X.

property predict_log_proba
Compute log probabilities of possible outcomes for samples in X.

The model need to have probability information computed at training time: fit with attribute
probability set to True.

Parameters

X [array-like of shape (n_samples, n_features) or (n_samples_test, n_samples_train)] For
kernel=”precomputed”, the expected shape of X is (n_samples_test, n_samples_train).

Returns

2562 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

T [ndarray of shape (n_samples, n_classes)] Returns the log-probabilities of the sample for
each class in the model. The columns correspond to the classes in sorted order, as they
appear in the attribute classes_.

Notes

The probability model is created using cross validation, so the results can be slightly different than those
obtained by predict. Also, it will produce meaningless results on very small datasets.

property predict_proba
Compute probabilities of possible outcomes for samples in X.

The model need to have probability information computed at training time: fit with attribute
probability set to True.

Parameters

X [array-like of shape (n_samples, n_features)] For kernel=”precomputed”, the expected
shape of X is [n_samples_test, n_samples_train]

Returns

T [ndarray of shape (n_samples, n_classes)] Returns the probability of the sample for each
class in the model. The columns correspond to the classes in sorted order, as they appear
in the attribute classes_.

Notes

The probability model is created using cross validation, so the results can be slightly different than those
obtained by predict. Also, it will produce meaningless results on very small datasets.

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

7.36. sklearn.svm: Support Vector Machines 2563

scikit-learn user guide, Release 0.23.2

Examples using sklearn.svm.NuSVC

• Non-linear SVM

sklearn.svm.NuSVR

class sklearn.svm.NuSVR(*, nu=0.5, C=1.0, kernel=’rbf’, degree=3, gamma=’scale’, coef0=0.0,
shrinking=True, tol=0.001, cache_size=200, verbose=False, max_iter=-
1)

Nu Support Vector Regression.

Similar to NuSVC, for regression, uses a parameter nu to control the number of support vectors. However,
unlike NuSVC, where nu replaces C, here nu replaces the parameter epsilon of epsilon-SVR.

The implementation is based on libsvm.

Read more in the User Guide.

Parameters

nu [float, default=0.5] An upper bound on the fraction of training errors and a lower bound of
the fraction of support vectors. Should be in the interval (0, 1]. By default 0.5 will be taken.

C [float, default=1.0] Penalty parameter C of the error term.

kernel [{‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’}, default=’rbf’] Specifies the kernel
type to be used in the algorithm. It must be one of ‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘pre-
computed’ or a callable. If none is given, ‘rbf’ will be used. If a callable is given it is used
to precompute the kernel matrix.

degree [int, default=3] Degree of the polynomial kernel function (‘poly’). Ignored by all other
kernels.

gamma [{‘scale’, ‘auto’} or float, default=’scale’] Kernel coefficient for ‘rbf’, ‘poly’ and ‘sig-
moid’.

• if gamma='scale' (default) is passed then it uses 1 / (n_features * X.var()) as value of
gamma,

• if ‘auto’, uses 1 / n_features.

Changed in version 0.22: The default value of gamma changed from ‘auto’ to ‘scale’.

coef0 [float, default=0.0] Independent term in kernel function. It is only significant in ‘poly’
and ‘sigmoid’.

shrinking [bool, default=True] Whether to use the shrinking heuristic. See the User Guide.

tol [float, default=1e-3] Tolerance for stopping criterion.

cache_size [float, default=200] Specify the size of the kernel cache (in MB).

verbose [bool, default=False] Enable verbose output. Note that this setting takes advantage
of a per-process runtime setting in libsvm that, if enabled, may not work properly in a
multithreaded context.

max_iter [int, default=-1] Hard limit on iterations within solver, or -1 for no limit.

Attributes

support_ [ndarray of shape (n_SV,)] Indices of support vectors.

support_vectors_ [ndarray of shape (n_SV, n_features)] Support vectors.

2564 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

dual_coef_ [ndarray of shape (1, n_SV)] Coefficients of the support vector in the decision func-
tion.

coef_ [ndarray of shape (1, n_features)] Weights assigned to the features (coefficients in the
primal problem). This is only available in the case of a linear kernel.

coef_ is readonly property derived from dual_coef_ and support_vectors_.

intercept_ [ndarray of shape (1,)] Constants in decision function.

See also:

NuSVC Support Vector Machine for classification implemented with libsvm with a parameter to control the
number of support vectors.

SVR epsilon Support Vector Machine for regression implemented with libsvm.

Notes

References: LIBSVM: A Library for Support Vector Machines

Examples

>>> from sklearn.svm import NuSVR
>>> from sklearn.pipeline import make_pipeline
>>> from sklearn.preprocessing import StandardScaler
>>> import numpy as np
>>> n_samples, n_features = 10, 5
>>> np.random.seed(0)
>>> y = np.random.randn(n_samples)
>>> X = np.random.randn(n_samples, n_features)
>>> regr = make_pipeline(StandardScaler(), NuSVR(C=1.0, nu=0.1))
>>> regr.fit(X, y)
Pipeline(steps=[('standardscaler', StandardScaler()),

('nusvr', NuSVR(nu=0.1))])

Methods

fit(X, y[, sample_weight]) Fit the SVM model according to the given training
data.

get_params([deep]) Get parameters for this estimator.
predict(X) Perform regression on samples in X.
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.

__init__(*, nu=0.5, C=1.0, kernel=’rbf’, degree=3, gamma=’scale’, coef0=0.0, shrinking=True,
tol=0.001, cache_size=200, verbose=False, max_iter=-1)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y, sample_weight=None)
Fit the SVM model according to the given training data.

Parameters

7.36. sklearn.svm: Support Vector Machines 2565

http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf

scikit-learn user guide, Release 0.23.2

X [{array-like, sparse matrix} of shape (n_samples, n_features) or (n_samples, n_samples)]
Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features. For kernel=”precomputed”, the expected shape of X is (n_samples,
n_samples).

y [array-like of shape (n_samples,)] Target values (class labels in classification, real numbers
in regression)

sample_weight [array-like of shape (n_samples,), default=None] Per-sample weights.
Rescale C per sample. Higher weights force the classifier to put more emphasis on these
points.

Returns

self [object]

Notes

If X and y are not C-ordered and contiguous arrays of np.float64 and X is not a scipy.sparse.csr_matrix, X
and/or y may be copied.

If X is a dense array, then the other methods will not support sparse matrices as input.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Perform regression on samples in X.

For an one-class model, +1 (inlier) or -1 (outlier) is returned.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] For kernel=”precomputed”,
the expected shape of X is (n_samples_test, n_samples_train).

Returns

y_pred [ndarray of shape (n_samples,)]

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

2566 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.svm.NuSVR

• Model Complexity Influence

sklearn.svm.OneClassSVM

class sklearn.svm.OneClassSVM(*, kernel=’rbf’, degree=3, gamma=’scale’, coef0=0.0, tol=0.001,
nu=0.5, shrinking=True, cache_size=200, verbose=False,
max_iter=-1)

Unsupervised Outlier Detection.

Estimate the support of a high-dimensional distribution.

The implementation is based on libsvm.

Read more in the User Guide.

Parameters

kernel [{‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’}, default=’rbf’] Specifies the kernel
type to be used in the algorithm. It must be one of ‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘pre-
computed’ or a callable. If none is given, ‘rbf’ will be used. If a callable is given it is used
to precompute the kernel matrix.

degree [int, default=3] Degree of the polynomial kernel function (‘poly’). Ignored by all other
kernels.

gamma [{‘scale’, ‘auto’} or float, default=’scale’] Kernel coefficient for ‘rbf’, ‘poly’ and ‘sig-
moid’.

7.36. sklearn.svm: Support Vector Machines 2567

scikit-learn user guide, Release 0.23.2

• if gamma='scale' (default) is passed then it uses 1 / (n_features * X.var()) as value of
gamma,

• if ‘auto’, uses 1 / n_features.

Changed in version 0.22: The default value of gamma changed from ‘auto’ to ‘scale’.

coef0 [float, default=0.0] Independent term in kernel function. It is only significant in ‘poly’
and ‘sigmoid’.

tol [float, default=1e-3] Tolerance for stopping criterion.

nu [float, default=0.5] An upper bound on the fraction of training errors and a lower bound of
the fraction of support vectors. Should be in the interval (0, 1]. By default 0.5 will be taken.

shrinking [bool, default=True] Whether to use the shrinking heuristic. See the User Guide.

cache_size [float, default=200] Specify the size of the kernel cache (in MB).

verbose [bool, default=False] Enable verbose output. Note that this setting takes advantage
of a per-process runtime setting in libsvm that, if enabled, may not work properly in a
multithreaded context.

max_iter [int, default=-1] Hard limit on iterations within solver, or -1 for no limit.

Attributes

support_ [ndarray of shape (n_SV,)] Indices of support vectors.

support_vectors_ [ndarray of shape (n_SV, n_features)] Support vectors.

dual_coef_ [ndarray of shape (1, n_SV)] Coefficients of the support vectors in the decision
function.

coef_ [ndarray of shape (1, n_features)] Weights assigned to the features (coefficients in the
primal problem). This is only available in the case of a linear kernel.

coef_ is readonly property derived from dual_coef_ and support_vectors_

intercept_ [ndarray of shape (1,)] Constant in the decision function.

offset_ [float] Offset used to define the decision function from the raw scores. We have the
relation: decision_function = score_samples - offset_. The offset is the opposite of
intercept_ and is provided for consistency with other outlier detection algorithms.

New in version 0.20.

fit_status_ [int] 0 if correctly fitted, 1 otherwise (will raise warning)

Examples

>>> from sklearn.svm import OneClassSVM
>>> X = [[0], [0.44], [0.45], [0.46], [1]]
>>> clf = OneClassSVM(gamma='auto').fit(X)
>>> clf.predict(X)
array([-1, 1, 1, 1, -1])
>>> clf.score_samples(X)
array([1.7798..., 2.0547..., 2.0556..., 2.0561..., 1.7332...])

Methods

2568 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

decision_function(X) Signed distance to the separating hyperplane.
fit(X[, y, sample_weight]) Detects the soft boundary of the set of samples X.
fit_predict(X[, y]) Perform fit on X and returns labels for X.
get_params([deep]) Get parameters for this estimator.
predict(X) Perform classification on samples in X.
score_samples(X) Raw scoring function of the samples.
set_params(**params) Set the parameters of this estimator.

__init__(*, kernel=’rbf’, degree=3, gamma=’scale’, coef0=0.0, tol=0.001, nu=0.5, shrinking=True,
cache_size=200, verbose=False, max_iter=-1)

Initialize self. See help(type(self)) for accurate signature.

decision_function(X)
Signed distance to the separating hyperplane.

Signed distance is positive for an inlier and negative for an outlier.

Parameters

X [array-like of shape (n_samples, n_features)] The data matrix.

Returns

dec [ndarray of shape (n_samples,)] Returns the decision function of the samples.

fit(X, y=None, sample_weight=None, **params)
Detects the soft boundary of the set of samples X.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Set of samples, where
n_samples is the number of samples and n_features is the number of features.

sample_weight [array-like of shape (n_samples,), default=None] Per-sample weights.
Rescale C per sample. Higher weights force the classifier to put more emphasis on these
points.

y [Ignored] not used, present for API consistency by convention.

Returns

self [object]

Notes

If X is not a C-ordered contiguous array it is copied.

fit_predict(X, y=None)
Perform fit on X and returns labels for X.

Returns -1 for outliers and 1 for inliers.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)]

y [Ignored] Not used, present for API consistency by convention.

Returns

y [ndarray of shape (n_samples,)] 1 for inliers, -1 for outliers.

7.36. sklearn.svm: Support Vector Machines 2569

scikit-learn user guide, Release 0.23.2

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Perform classification on samples in X.

For a one-class model, +1 or -1 is returned.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features) or (n_samples_test,
n_samples_train)] For kernel=”precomputed”, the expected shape of X is (n_samples_test,
n_samples_train).

Returns

y_pred [ndarray of shape (n_samples,)] Class labels for samples in X.

score_samples(X)
Raw scoring function of the samples.

Parameters

X [array-like of shape (n_samples, n_features)] The data matrix.

Returns

score_samples [ndarray of shape (n_samples,)] Returns the (unshifted) scoring function of
the samples.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.svm.OneClassSVM

• Libsvm GUI

2570 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

sklearn.svm.SVC

class sklearn.svm.SVC(*, C=1.0, kernel=’rbf’, degree=3, gamma=’scale’, coef0=0.0,
shrinking=True, probability=False, tol=0.001, cache_size=200,
class_weight=None, verbose=False, max_iter=-1, deci-
sion_function_shape=’ovr’, break_ties=False, random_state=None)

C-Support Vector Classification.

The implementation is based on libsvm. The fit time scales at least quadratically with the number of samples
and may be impractical beyond tens of thousands of samples. For large datasets consider using sklearn.
svm.LinearSVC or sklearn.linear_model.SGDClassifier instead, possibly after a sklearn.
kernel_approximation.Nystroem transformer.

The multiclass support is handled according to a one-vs-one scheme.

For details on the precise mathematical formulation of the provided kernel functions and how gamma, coef0
and degree affect each other, see the corresponding section in the narrative documentation: Kernel functions.

Read more in the User Guide.

Parameters

C [float, default=1.0] Regularization parameter. The strength of the regularization is inversely
proportional to C. Must be strictly positive. The penalty is a squared l2 penalty.

kernel [{‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’}, default=’rbf’] Specifies the kernel
type to be used in the algorithm. It must be one of ‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘pre-
computed’ or a callable. If none is given, ‘rbf’ will be used. If a callable is given it is used to
pre-compute the kernel matrix from data matrices; that matrix should be an array of shape
(n_samples, n_samples).

degree [int, default=3] Degree of the polynomial kernel function (‘poly’). Ignored by all other
kernels.

gamma [{‘scale’, ‘auto’} or float, default=’scale’] Kernel coefficient for ‘rbf’, ‘poly’ and ‘sig-
moid’.

• if gamma='scale' (default) is passed then it uses 1 / (n_features * X.var()) as value of
gamma,

• if ‘auto’, uses 1 / n_features.

Changed in version 0.22: The default value of gamma changed from ‘auto’ to ‘scale’.

coef0 [float, default=0.0] Independent term in kernel function. It is only significant in ‘poly’
and ‘sigmoid’.

shrinking [bool, default=True] Whether to use the shrinking heuristic. See the User Guide.

probability [bool, default=False] Whether to enable probability estimates. This must be en-
abled prior to calling fit, will slow down that method as it internally uses 5-fold cross-
validation, and predict_proba may be inconsistent with predict. Read more in the
User Guide.

tol [float, default=1e-3] Tolerance for stopping criterion.

cache_size [float, default=200] Specify the size of the kernel cache (in MB).

class_weight [dict or ‘balanced’, default=None] Set the parameter C of class i to
class_weight[i]*C for SVC. If not given, all classes are supposed to have weight one. The
“balanced” mode uses the values of y to automatically adjust weights inversely propor-
tional to class frequencies in the input data as n_samples / (n_classes * np.
bincount(y))

7.36. sklearn.svm: Support Vector Machines 2571

scikit-learn user guide, Release 0.23.2

verbose [bool, default=False] Enable verbose output. Note that this setting takes advantage
of a per-process runtime setting in libsvm that, if enabled, may not work properly in a
multithreaded context.

max_iter [int, default=-1] Hard limit on iterations within solver, or -1 for no limit.

decision_function_shape [{‘ovo’, ‘ovr’}, default=’ovr’] Whether to return a one-vs-rest (‘ovr’)
decision function of shape (n_samples, n_classes) as all other classifiers, or the original
one-vs-one (‘ovo’) decision function of libsvm which has shape (n_samples, n_classes *
(n_classes - 1) / 2). However, one-vs-one (‘ovo’) is always used as multi-class strategy. The
parameter is ignored for binary classification.

Changed in version 0.19: decision_function_shape is ‘ovr’ by default.

New in version 0.17: decision_function_shape=’ovr’ is recommended.

Changed in version 0.17: Deprecated decision_function_shape=’ovo’ and None.

break_ties [bool, default=False] If true, decision_function_shape='ovr', and num-
ber of classes > 2, predict will break ties according to the confidence values of deci-
sion_function; otherwise the first class among the tied classes is returned. Please note that
breaking ties comes at a relatively high computational cost compared to a simple predict.

New in version 0.22.

random_state [int or RandomState instance, default=None] Controls the pseudo random
number generation for shuffling the data for probability estimates. Ignored when
probability is False. Pass an int for reproducible output across multiple function calls.
See Glossary.

Attributes

support_ [ndarray of shape (n_SV,)] Indices of support vectors.

support_vectors_ [ndarray of shape (n_SV, n_features)] Support vectors.

n_support_ [ndarray of shape (n_class,), dtype=int32] Number of support vectors for each
class.

dual_coef_ [ndarray of shape (n_class-1, n_SV)] Dual coefficients of the support vector in the
decision function (see Mathematical formulation), multiplied by their targets. For multi-
class, coefficient for all 1-vs-1 classifiers. The layout of the coefficients in the multiclass
case is somewhat non-trivial. See the multi-class section of the User Guide for details.

coef_ [ndarray of shape (n_class * (n_class-1) / 2, n_features)] Weights assigned to the features
(coefficients in the primal problem). This is only available in the case of a linear kernel.

coef_ is a readonly property derived from dual_coef_ and support_vectors_.

intercept_ [ndarray of shape (n_class * (n_class-1) / 2,)] Constants in decision function.

fit_status_ [int] 0 if correctly fitted, 1 otherwise (will raise warning)

classes_ [ndarray of shape (n_classes,)] The classes labels.

probA_ [ndarray of shape (n_class * (n_class-1) / 2)]

probB_ [ndarray of shape (n_class * (n_class-1) / 2)] If probability=True, it corresponds
to the parameters learned in Platt scaling to produce probability estimates from decision val-
ues. If probability=False, it’s an empty array. Platt scaling uses the logistic function
1 / (1 + exp(decision_value * probA_ + probB_)) where probA_ and
probB_ are learned from the dataset [2]. For more information on the multiclass case and
training procedure see section 8 of [1].

2572 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

class_weight_ [ndarray of shape (n_class,)] Multipliers of parameter C for each class. Com-
puted based on the class_weight parameter.

shape_fit_ [tuple of int of shape (n_dimensions_of_X,)] Array dimensions of training vector X.

See also:

SVR Support Vector Machine for Regression implemented using libsvm.

LinearSVC Scalable Linear Support Vector Machine for classification implemented using liblinear. Check
the See also section of LinearSVC for more comparison element.

References

[1], [2]

Examples

>>> import numpy as np
>>> from sklearn.pipeline import make_pipeline
>>> from sklearn.preprocessing import StandardScaler
>>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
>>> y = np.array([1, 1, 2, 2])
>>> from sklearn.svm import SVC
>>> clf = make_pipeline(StandardScaler(), SVC(gamma='auto'))
>>> clf.fit(X, y)
Pipeline(steps=[('standardscaler', StandardScaler()),

('svc', SVC(gamma='auto'))])

>>> print(clf.predict([[-0.8, -1]]))
[1]

Methods

decision_function(X) Evaluates the decision function for the samples in X.
fit(X, y[, sample_weight]) Fit the SVM model according to the given training

data.
get_params([deep]) Get parameters for this estimator.
predict(X) Perform classification on samples in X.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(*, C=1.0, kernel=’rbf’, degree=3, gamma=’scale’, coef0=0.0, shrinking=True, probabil-
ity=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1,
decision_function_shape=’ovr’, break_ties=False, random_state=None)

Initialize self. See help(type(self)) for accurate signature.

decision_function(X)
Evaluates the decision function for the samples in X.

Parameters

X [array-like of shape (n_samples, n_features)]

7.36. sklearn.svm: Support Vector Machines 2573

scikit-learn user guide, Release 0.23.2

Returns

X [ndarray of shape (n_samples, n_classes * (n_classes-1) / 2)] Returns the decision function
of the sample for each class in the model. If decision_function_shape=’ovr’, the shape is
(n_samples, n_classes).

Notes

If decision_function_shape=’ovo’, the function values are proportional to the distance of the samples X to
the separating hyperplane. If the exact distances are required, divide the function values by the norm of
the weight vector (coef_). See also this question for further details. If decision_function_shape=’ovr’,
the decision function is a monotonic transformation of ovo decision function.

fit(X, y, sample_weight=None)
Fit the SVM model according to the given training data.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features) or (n_samples, n_samples)]
Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features. For kernel=”precomputed”, the expected shape of X is (n_samples,
n_samples).

y [array-like of shape (n_samples,)] Target values (class labels in classification, real numbers
in regression)

sample_weight [array-like of shape (n_samples,), default=None] Per-sample weights.
Rescale C per sample. Higher weights force the classifier to put more emphasis on these
points.

Returns

self [object]

Notes

If X and y are not C-ordered and contiguous arrays of np.float64 and X is not a scipy.sparse.csr_matrix, X
and/or y may be copied.

If X is a dense array, then the other methods will not support sparse matrices as input.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Perform classification on samples in X.

For an one-class model, +1 or -1 is returned.

Parameters

2574 Chapter 7. API Reference

https://stats.stackexchange.com/questions/14876/interpreting-distance-from-hyperplane-in-svm

scikit-learn user guide, Release 0.23.2

X [{array-like, sparse matrix} of shape (n_samples, n_features) or (n_samples_test,
n_samples_train)] For kernel=”precomputed”, the expected shape of X is (n_samples_test,
n_samples_train).

Returns

y_pred [ndarray of shape (n_samples,)] Class labels for samples in X.

property predict_log_proba
Compute log probabilities of possible outcomes for samples in X.

The model need to have probability information computed at training time: fit with attribute
probability set to True.

Parameters

X [array-like of shape (n_samples, n_features) or (n_samples_test, n_samples_train)] For
kernel=”precomputed”, the expected shape of X is (n_samples_test, n_samples_train).

Returns

T [ndarray of shape (n_samples, n_classes)] Returns the log-probabilities of the sample for
each class in the model. The columns correspond to the classes in sorted order, as they
appear in the attribute classes_.

Notes

The probability model is created using cross validation, so the results can be slightly different than those
obtained by predict. Also, it will produce meaningless results on very small datasets.

property predict_proba
Compute probabilities of possible outcomes for samples in X.

The model need to have probability information computed at training time: fit with attribute
probability set to True.

Parameters

X [array-like of shape (n_samples, n_features)] For kernel=”precomputed”, the expected
shape of X is [n_samples_test, n_samples_train]

Returns

T [ndarray of shape (n_samples, n_classes)] Returns the probability of the sample for each
class in the model. The columns correspond to the classes in sorted order, as they appear
in the attribute classes_.

Notes

The probability model is created using cross validation, so the results can be slightly different than those
obtained by predict. Also, it will produce meaningless results on very small datasets.

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples.

7.36. sklearn.svm: Support Vector Machines 2575

scikit-learn user guide, Release 0.23.2

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.svm.SVC

• Libsvm GUI

sklearn.svm.SVR

class sklearn.svm.SVR(*, kernel=’rbf’, degree=3, gamma=’scale’, coef0=0.0, tol=0.001, C=1.0, ep-
silon=0.1, shrinking=True, cache_size=200, verbose=False, max_iter=-1)

Epsilon-Support Vector Regression.

The free parameters in the model are C and epsilon.

The implementation is based on libsvm. The fit time complexity is more than quadratic with the number of sam-
ples which makes it hard to scale to datasets with more than a couple of 10000 samples. For large datasets con-
sider using sklearn.svm.LinearSVR or sklearn.linear_model.SGDRegressor instead, possi-
bly after a sklearn.kernel_approximation.Nystroem transformer.

Read more in the User Guide.

Parameters

kernel [{‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’}, default=’rbf’] Specifies the kernel
type to be used in the algorithm. It must be one of ‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘pre-
computed’ or a callable. If none is given, ‘rbf’ will be used. If a callable is given it is used
to precompute the kernel matrix.

degree [int, default=3] Degree of the polynomial kernel function (‘poly’). Ignored by all other
kernels.

gamma [{‘scale’, ‘auto’} or float, default=’scale’] Kernel coefficient for ‘rbf’, ‘poly’ and ‘sig-
moid’.

• if gamma='scale' (default) is passed then it uses 1 / (n_features * X.var()) as value of
gamma,

• if ‘auto’, uses 1 / n_features.

Changed in version 0.22: The default value of gamma changed from ‘auto’ to ‘scale’.

2576 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

coef0 [float, default=0.0] Independent term in kernel function. It is only significant in ‘poly’
and ‘sigmoid’.

tol [float, default=1e-3] Tolerance for stopping criterion.

C [float, default=1.0] Regularization parameter. The strength of the regularization is inversely
proportional to C. Must be strictly positive. The penalty is a squared l2 penalty.

epsilon [float, default=0.1] Epsilon in the epsilon-SVR model. It specifies the epsilon-tube
within which no penalty is associated in the training loss function with points predicted
within a distance epsilon from the actual value.

shrinking [bool, default=True] Whether to use the shrinking heuristic. See the User Guide.

cache_size [float, default=200] Specify the size of the kernel cache (in MB).

verbose [bool, default=False] Enable verbose output. Note that this setting takes advantage
of a per-process runtime setting in libsvm that, if enabled, may not work properly in a
multithreaded context.

max_iter [int, default=-1] Hard limit on iterations within solver, or -1 for no limit.

Attributes

support_ [ndarray of shape (n_SV,)] Indices of support vectors.

support_vectors_ [ndarray of shape (n_SV, n_features)] Support vectors.

dual_coef_ [ndarray of shape (1, n_SV)] Coefficients of the support vector in the decision func-
tion.

coef_ [ndarray of shape (1, n_features)] Weights assigned to the features (coefficients in the
primal problem). This is only available in the case of a linear kernel.

coef_ is readonly property derived from dual_coef_ and support_vectors_.

fit_status_ [int] 0 if correctly fitted, 1 otherwise (will raise warning)

intercept_ [ndarray of shape (1,)] Constants in decision function.

See also:

NuSVR Support Vector Machine for regression implemented using libsvm using a parameter to control the
number of support vectors.

LinearSVR Scalable Linear Support Vector Machine for regression implemented using liblinear.

Notes

References: LIBSVM: A Library for Support Vector Machines

Examples

>>> from sklearn.svm import SVR
>>> from sklearn.pipeline import make_pipeline
>>> from sklearn.preprocessing import StandardScaler
>>> import numpy as np
>>> n_samples, n_features = 10, 5
>>> rng = np.random.RandomState(0)
>>> y = rng.randn(n_samples)
>>> X = rng.randn(n_samples, n_features)

(continues on next page)

7.36. sklearn.svm: Support Vector Machines 2577

http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf

scikit-learn user guide, Release 0.23.2

(continued from previous page)

>>> regr = make_pipeline(StandardScaler(), SVR(C=1.0, epsilon=0.2))
>>> regr.fit(X, y)
Pipeline(steps=[('standardscaler', StandardScaler()),

('svr', SVR(epsilon=0.2))])

Methods

fit(X, y[, sample_weight]) Fit the SVM model according to the given training
data.

get_params([deep]) Get parameters for this estimator.
predict(X) Perform regression on samples in X.
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.

__init__(*, kernel=’rbf’, degree=3, gamma=’scale’, coef0=0.0, tol=0.001, C=1.0, epsilon=0.1,
shrinking=True, cache_size=200, verbose=False, max_iter=-1)

Initialize self. See help(type(self)) for accurate signature.

fit(X, y, sample_weight=None)
Fit the SVM model according to the given training data.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features) or (n_samples, n_samples)]
Training vectors, where n_samples is the number of samples and n_features is the num-
ber of features. For kernel=”precomputed”, the expected shape of X is (n_samples,
n_samples).

y [array-like of shape (n_samples,)] Target values (class labels in classification, real numbers
in regression)

sample_weight [array-like of shape (n_samples,), default=None] Per-sample weights.
Rescale C per sample. Higher weights force the classifier to put more emphasis on these
points.

Returns

self [object]

Notes

If X and y are not C-ordered and contiguous arrays of np.float64 and X is not a scipy.sparse.csr_matrix, X
and/or y may be copied.

If X is a dense array, then the other methods will not support sparse matrices as input.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

2578 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

params [mapping of string to any] Parameter names mapped to their values.

predict(X)
Perform regression on samples in X.

For an one-class model, +1 (inlier) or -1 (outlier) is returned.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] For kernel=”precomputed”,
the expected shape of X is (n_samples_test, n_samples_train).

Returns

y_pred [ndarray of shape (n_samples,)]

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

7.36. sklearn.svm: Support Vector Machines 2579

scikit-learn user guide, Release 0.23.2

Examples using sklearn.svm.SVR

• Prediction Latency

• Comparison of kernel ridge regression and SVR

• Support Vector Regression (SVR) using linear and non-linear kernels

svm.l1_min_c(X, y, *[, loss, fit_intercept, . . .]) Return the lowest bound for C such that for C in
(l1_min_C, infinity) the model is guaranteed not to be
empty.

sklearn.svm.l1_min_c

sklearn.svm.l1_min_c(X, y, *, loss=’squared_hinge’, fit_intercept=True, intercept_scaling=1.0)
Return the lowest bound for C such that for C in (l1_min_C, infinity) the model is guaranteed not
to be empty. This applies to l1 penalized classifiers, such as LinearSVC with penalty=’l1’ and lin-
ear_model.LogisticRegression with penalty=’l1’.

This value is valid if class_weight parameter in fit() is not set.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] Training vector, where
n_samples in the number of samples and n_features is the number of features.

y [array-like of shape (n_samples,)] Target vector relative to X.

loss [{‘squared_hinge’, ‘log’}, default=’squared_hinge’] Specifies the loss function. With
‘squared_hinge’ it is the squared hinge loss (a.k.a. L2 loss). With ‘log’ it is the loss of
logistic regression models.

fit_intercept [bool, default=True] Specifies if the intercept should be fitted by the model. It
must match the fit() method parameter.

intercept_scaling [float, default=1.0] when fit_intercept is True, instance vector x becomes [x,
intercept_scaling], i.e. a “synthetic” feature with constant value equals to intercept_scaling
is appended to the instance vector. It must match the fit() method parameter.

Returns

l1_min_c [float] minimum value for C

Examples using sklearn.svm.l1_min_c

• Regularization path of L1- Logistic Regression

7.37 sklearn.tree: Decision Trees

The sklearn.tree module includes decision tree-based models for classification and regression.

User guide: See the Decision Trees section for further details.

2580 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

tree.DecisionTreeClassifier(*[, criterion,
. . .])

A decision tree classifier.

tree.DecisionTreeRegressor(*[, criterion,
. . .])

A decision tree regressor.

tree.ExtraTreeClassifier(*[, criterion, . . .]) An extremely randomized tree classifier.
tree.ExtraTreeRegressor(*[, criterion, . . .]) An extremely randomized tree regressor.

7.37.1 sklearn.tree.DecisionTreeClassifier

class sklearn.tree.DecisionTreeClassifier(*, criterion=’gini’, split-
ter=’best’, max_depth=None,
min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_features=None, ran-
dom_state=None, max_leaf_nodes=None,
min_impurity_decrease=0.0,
min_impurity_split=None, class_weight=None,
presort=’deprecated’, ccp_alpha=0.0)

A decision tree classifier.

Read more in the User Guide.

Parameters

criterion [{“gini”, “entropy”}, default=”gini”] The function to measure the quality of a split.
Supported criteria are “gini” for the Gini impurity and “entropy” for the information gain.

splitter [{“best”, “random”}, default=”best”] The strategy used to choose the split at each node.
Supported strategies are “best” to choose the best split and “random” to choose the best
random split.

max_depth [int, default=None] The maximum depth of the tree. If None, then nodes are ex-
panded until all leaves are pure or until all leaves contain less than min_samples_split sam-
ples.

min_samples_split [int or float, default=2] The minimum number of samples required to split
an internal node:

• If int, then consider min_samples_split as the minimum number.

• If float, then min_samples_split is a fraction and ceil(min_samples_split
* n_samples) are the minimum number of samples for each split.

Changed in version 0.18: Added float values for fractions.

min_samples_leaf [int or float, default=1] The minimum number of samples required to be
at a leaf node. A split point at any depth will only be considered if it leaves at least
min_samples_leaf training samples in each of the left and right branches. This may
have the effect of smoothing the model, especially in regression.

• If int, then consider min_samples_leaf as the minimum number.

• If float, then min_samples_leaf is a fraction and ceil(min_samples_leaf *
n_samples) are the minimum number of samples for each node.

Changed in version 0.18: Added float values for fractions.

7.37. sklearn.tree: Decision Trees 2581

scikit-learn user guide, Release 0.23.2

min_weight_fraction_leaf [float, default=0.0] The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Samples have equal weight
when sample_weight is not provided.

max_features [int, float or {“auto”, “sqrt”, “log2”}, default=None] The number of features to
consider when looking for the best split:

• If int, then consider max_features features at each split.

• If float, then max_features is a fraction and int(max_features *
n_features) features are considered at each split.

• If “auto”, then max_features=sqrt(n_features).

• If “sqrt”, then max_features=sqrt(n_features).

• If “log2”, then max_features=log2(n_features).

• If None, then max_features=n_features.

Note: the search for a split does not stop until at least one valid partition of the node samples
is found, even if it requires to effectively inspect more than max_features features.

random_state [int, RandomState instance, default=None] Controls the randomness of the es-
timator. The features are always randomly permuted at each split, even if splitter
is set to "best". When max_features < n_features, the algorithm will select
max_features at random at each split before finding the best split among them. But the
best found split may vary across different runs, even if max_features=n_features.
That is the case, if the improvement of the criterion is identical for several splits and one
split has to be selected at random. To obtain a deterministic behaviour during fitting,
random_state has to be fixed to an integer. See Glossary for details.

max_leaf_nodes [int, default=None] Grow a tree with max_leaf_nodes in best-first fash-
ion. Best nodes are defined as relative reduction in impurity. If None then unlimited number
of leaf nodes.

min_impurity_decrease [float, default=0.0] A node will be split if this split induces a decrease
of the impurity greater than or equal to this value.

The weighted impurity decrease equation is the following:

N_t / N * (impurity - N_t_R / N_t * right_impurity
- N_t_L / N_t * left_impurity)

where N is the total number of samples, N_t is the number of samples at the current node,
N_t_L is the number of samples in the left child, and N_t_R is the number of samples in
the right child.

N, N_t, N_t_R and N_t_L all refer to the weighted sum, if sample_weight is passed.

New in version 0.19.

min_impurity_split [float, default=0] Threshold for early stopping in tree growth. A node will
split if its impurity is above the threshold, otherwise it is a leaf.

Deprecated since version 0.19: min_impurity_split has been deprecated in favor of
min_impurity_decrease in 0.19. The default value of min_impurity_split
has changed from 1e-7 to 0 in 0.23 and it will be removed in 0.25. Use
min_impurity_decrease instead.

class_weight [dict, list of dict or “balanced”, default=None] Weights associated with classes in
the form {class_label: weight}. If None, all classes are supposed to have weight

2582 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

one. For multi-output problems, a list of dicts can be provided in the same order as the
columns of y.

Note that for multioutput (including multilabel) weights should be defined for each class of
every column in its own dict. For example, for four-class multilabel classification weights
should be [{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}] instead of [{1:1}, {2:5},
{3:1}, {4:1}].

The “balanced” mode uses the values of y to automatically adjust weights inversely pro-
portional to class frequencies in the input data as n_samples / (n_classes * np.
bincount(y))

For multi-output, the weights of each column of y will be multiplied.

Note that these weights will be multiplied with sample_weight (passed through the fit
method) if sample_weight is specified.

presort [deprecated, default=’deprecated’] This parameter is deprecated and will be removed
in v0.24.

Deprecated since version 0.22.

ccp_alpha [non-negative float, default=0.0] Complexity parameter used for Minimal Cost-
Complexity Pruning. The subtree with the largest cost complexity that is smaller than
ccp_alpha will be chosen. By default, no pruning is performed. See Minimal Cost-
Complexity Pruning for details.

New in version 0.22.

Attributes

classes_ [ndarray of shape (n_classes,) or list of ndarray] The classes labels (single output prob-
lem), or a list of arrays of class labels (multi-output problem).

feature_importances_ [ndarray of shape (n_features,)] Return the feature importances.

max_features_ [int] The inferred value of max_features.

n_classes_ [int or list of int] The number of classes (for single output problems), or a list con-
taining the number of classes for each output (for multi-output problems).

n_features_ [int] The number of features when fit is performed.

n_outputs_ [int] The number of outputs when fit is performed.

tree_ [Tree] The underlying Tree object. Please refer to help(sklearn.tree._tree.
Tree) for attributes of Tree object and Understanding the decision tree structure for basic
usage of these attributes.

See also:

DecisionTreeRegressor A decision tree regressor.

Notes

The default values for the parameters controlling the size of the trees (e.g. max_depth,
min_samples_leaf, etc.) lead to fully grown and unpruned trees which can potentially be very large on
some data sets. To reduce memory consumption, the complexity and size of the trees should be controlled by
setting those parameter values.

7.37. sklearn.tree: Decision Trees 2583

scikit-learn user guide, Release 0.23.2

References

[1], [2], [3], [4]

Examples

>>> from sklearn.datasets import load_iris
>>> from sklearn.model_selection import cross_val_score
>>> from sklearn.tree import DecisionTreeClassifier
>>> clf = DecisionTreeClassifier(random_state=0)
>>> iris = load_iris()
>>> cross_val_score(clf, iris.data, iris.target, cv=10)
... # doctest: +SKIP
...
array([1. , 0.93..., 0.86..., 0.93..., 0.93...,

0.93..., 0.93..., 1. , 0.93..., 1.])

Methods

apply(X[, check_input]) Return the index of the leaf that each sample is pre-
dicted as.

cost_complexity_pruning_path(X, y[,
. . .])

Compute the pruning path during Minimal Cost-
Complexity Pruning.

decision_path(X[, check_input]) Return the decision path in the tree.
fit(X, y[, sample_weight, check_input, . . .]) Build a decision tree classifier from the training set

(X, y).
get_depth() Return the depth of the decision tree.
get_n_leaves() Return the number of leaves of the decision tree.
get_params([deep]) Get parameters for this estimator.
predict(X[, check_input]) Predict class or regression value for X.
predict_log_proba(X) Predict class log-probabilities of the input samples

X.
predict_proba(X[, check_input]) Predict class probabilities of the input samples X.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(*, criterion=’gini’, splitter=’best’, max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None,
random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0,
min_impurity_split=None, class_weight=None, presort=’deprecated’, ccp_alpha=0.0)

Initialize self. See help(type(self)) for accurate signature.

apply(X, check_input=True)
Return the index of the leaf that each sample is predicted as.

New in version 0.17.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, it will be converted to dtype=np.float32 and if a sparse matrix is provided to
a sparse csr_matrix.

2584 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

check_input [bool, default=True] Allow to bypass several input checking. Don’t use this
parameter unless you know what you do.

Returns

X_leaves [array-like of shape (n_samples,)] For each datapoint x in X, return the index of
the leaf x ends up in. Leaves are numbered within [0; self.tree_.node_count),
possibly with gaps in the numbering.

cost_complexity_pruning_path(X, y, sample_weight=None)
Compute the pruning path during Minimal Cost-Complexity Pruning.

See Minimal Cost-Complexity Pruning for details on the pruning process.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The training input samples.
Internally, it will be converted to dtype=np.float32 and if a sparse matrix is provided
to a sparse csc_matrix.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] The target values (class la-
bels) as integers or strings.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights. If None,
then samples are equally weighted. Splits that would create child nodes with net zero or
negative weight are ignored while searching for a split in each node. Splits are also ignored
if they would result in any single class carrying a negative weight in either child node.

Returns

ccp_path [Bunch] Dictionary-like object, with the following attributes.

ccp_alphas [ndarray] Effective alphas of subtree during pruning.

impurities [ndarray] Sum of the impurities of the subtree leaves for the corresponding
alpha value in ccp_alphas.

decision_path(X, check_input=True)
Return the decision path in the tree.

New in version 0.18.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, it will be converted to dtype=np.float32 and if a sparse matrix is provided to
a sparse csr_matrix.

check_input [bool, default=True] Allow to bypass several input checking. Don’t use this
parameter unless you know what you do.

Returns

indicator [sparse matrix of shape (n_samples, n_nodes)] Return a node indicator CSR ma-
trix where non zero elements indicates that the samples goes through the nodes.

property feature_importances_
Return the feature importances.

The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that
feature. It is also known as the Gini importance.

Warning: impurity-based feature importances can be misleading for high cardinality features (many unique
values). See sklearn.inspection.permutation_importance as an alternative.

7.37. sklearn.tree: Decision Trees 2585

scikit-learn user guide, Release 0.23.2

Returns

feature_importances_ [ndarray of shape (n_features,)] Normalized total reduction of crite-
ria by feature (Gini importance).

fit(X, y, sample_weight=None, check_input=True, X_idx_sorted=None)
Build a decision tree classifier from the training set (X, y).

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The training input samples.
Internally, it will be converted to dtype=np.float32 and if a sparse matrix is provided
to a sparse csc_matrix.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] The target values (class la-
bels) as integers or strings.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights. If None,
then samples are equally weighted. Splits that would create child nodes with net zero or
negative weight are ignored while searching for a split in each node. Splits are also ignored
if they would result in any single class carrying a negative weight in either child node.

check_input [bool, default=True] Allow to bypass several input checking. Don’t use this
parameter unless you know what you do.

X_idx_sorted [array-like of shape (n_samples, n_features), default=None] The indexes of
the sorted training input samples. If many tree are grown on the same dataset, this allows
the ordering to be cached between trees. If None, the data will be sorted here. Don’t use
this parameter unless you know what to do.

Returns

self [DecisionTreeClassifier] Fitted estimator.

get_depth()
Return the depth of the decision tree.

The depth of a tree is the maximum distance between the root and any leaf.

Returns

self.tree_.max_depth [int] The maximum depth of the tree.

get_n_leaves()
Return the number of leaves of the decision tree.

Returns

self.tree_.n_leaves [int] Number of leaves.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X, check_input=True)
Predict class or regression value for X.

2586 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

For a classification model, the predicted class for each sample in X is returned. For a regression model,
the predicted value based on X is returned.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, it will be converted to dtype=np.float32 and if a sparse matrix is provided to
a sparse csr_matrix.

check_input [bool, default=True] Allow to bypass several input checking. Don’t use this
parameter unless you know what you do.

Returns

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] The predicted classes, or the
predict values.

predict_log_proba(X)
Predict class log-probabilities of the input samples X.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, it will be converted to dtype=np.float32 and if a sparse matrix is provided to
a sparse csr_matrix.

Returns

proba [ndarray of shape (n_samples, n_classes) or list of n_outputs such arrays if n_outputs
> 1] The class log-probabilities of the input samples. The order of the classes corresponds
to that in the attribute classes_.

predict_proba(X, check_input=True)
Predict class probabilities of the input samples X.

The predicted class probability is the fraction of samples of the same class in a leaf.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, it will be converted to dtype=np.float32 and if a sparse matrix is provided to
a sparse csr_matrix.

check_input [bool, default=True] Allow to bypass several input checking. Don’t use this
parameter unless you know what you do.

Returns

proba [ndarray of shape (n_samples, n_classes) or list of n_outputs such arrays if n_outputs
> 1] The class probabilities of the input samples. The order of the classes corresponds to
that in the attribute classes_.

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

7.37. sklearn.tree: Decision Trees 2587

scikit-learn user guide, Release 0.23.2

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

Examples using sklearn.tree.DecisionTreeClassifier

• Classifier comparison

• Plot the decision surface of a decision tree on the iris dataset

• Post pruning decision trees with cost complexity pruning

• Understanding the decision tree structure

• Plot the decision boundaries of a VotingClassifier

• Two-class AdaBoost

• Multi-class AdaBoosted Decision Trees

• Discrete versus Real AdaBoost

• Plot the decision surfaces of ensembles of trees on the iris dataset

• Demonstration of multi-metric evaluation on cross_val_score and GridSearchCV

7.37.2 sklearn.tree.DecisionTreeRegressor

class sklearn.tree.DecisionTreeRegressor(*, criterion=’mse’, split-
ter=’best’, max_depth=None,
min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_features=None, ran-
dom_state=None, max_leaf_nodes=None,
min_impurity_decrease=0.0,
min_impurity_split=None, presort=’deprecated’,
ccp_alpha=0.0)

A decision tree regressor.

Read more in the User Guide.

Parameters

criterion [{“mse”, “friedman_mse”, “mae”}, default=”mse”] The function to measure the qual-
ity of a split. Supported criteria are “mse” for the mean squared error, which is equal to
variance reduction as feature selection criterion and minimizes the L2 loss using the mean
of each terminal node, “friedman_mse”, which uses mean squared error with Friedman’s

2588 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

improvement score for potential splits, and “mae” for the mean absolute error, which mini-
mizes the L1 loss using the median of each terminal node.

New in version 0.18: Mean Absolute Error (MAE) criterion.

splitter [{“best”, “random”}, default=”best”] The strategy used to choose the split at each node.
Supported strategies are “best” to choose the best split and “random” to choose the best
random split.

max_depth [int, default=None] The maximum depth of the tree. If None, then nodes are ex-
panded until all leaves are pure or until all leaves contain less than min_samples_split sam-
ples.

min_samples_split [int or float, default=2] The minimum number of samples required to split
an internal node:

• If int, then consider min_samples_split as the minimum number.

• If float, then min_samples_split is a fraction and ceil(min_samples_split
* n_samples) are the minimum number of samples for each split.

Changed in version 0.18: Added float values for fractions.

min_samples_leaf [int or float, default=1] The minimum number of samples required to be
at a leaf node. A split point at any depth will only be considered if it leaves at least
min_samples_leaf training samples in each of the left and right branches. This may
have the effect of smoothing the model, especially in regression.

• If int, then consider min_samples_leaf as the minimum number.

• If float, then min_samples_leaf is a fraction and ceil(min_samples_leaf *
n_samples) are the minimum number of samples for each node.

Changed in version 0.18: Added float values for fractions.

min_weight_fraction_leaf [float, default=0.0] The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Samples have equal weight
when sample_weight is not provided.

max_features [int, float or {“auto”, “sqrt”, “log2”}, default=None] The number of features to
consider when looking for the best split:

• If int, then consider max_features features at each split.

• If float, then max_features is a fraction and int(max_features *
n_features) features are considered at each split.

• If “auto”, then max_features=n_features.

• If “sqrt”, then max_features=sqrt(n_features).

• If “log2”, then max_features=log2(n_features).

• If None, then max_features=n_features.

Note: the search for a split does not stop until at least one valid partition of the node samples
is found, even if it requires to effectively inspect more than max_features features.

random_state [int, RandomState instance, default=None] Controls the randomness of the es-
timator. The features are always randomly permuted at each split, even if splitter
is set to "best". When max_features < n_features, the algorithm will select
max_features at random at each split before finding the best split among them. But the
best found split may vary across different runs, even if max_features=n_features.
That is the case, if the improvement of the criterion is identical for several splits and one

7.37. sklearn.tree: Decision Trees 2589

scikit-learn user guide, Release 0.23.2

split has to be selected at random. To obtain a deterministic behaviour during fitting,
random_state has to be fixed to an integer. See Glossary for details.

max_leaf_nodes [int, default=None] Grow a tree with max_leaf_nodes in best-first fash-
ion. Best nodes are defined as relative reduction in impurity. If None then unlimited number
of leaf nodes.

min_impurity_decrease [float, default=0.0] A node will be split if this split induces a decrease
of the impurity greater than or equal to this value.

The weighted impurity decrease equation is the following:

N_t / N * (impurity - N_t_R / N_t * right_impurity
- N_t_L / N_t * left_impurity)

where N is the total number of samples, N_t is the number of samples at the current node,
N_t_L is the number of samples in the left child, and N_t_R is the number of samples in
the right child.

N, N_t, N_t_R and N_t_L all refer to the weighted sum, if sample_weight is passed.

New in version 0.19.

min_impurity_split [float, (default=0)] Threshold for early stopping in tree growth. A node
will split if its impurity is above the threshold, otherwise it is a leaf.

Deprecated since version 0.19: min_impurity_split has been deprecated in favor of
min_impurity_decrease in 0.19. The default value of min_impurity_split
has changed from 1e-7 to 0 in 0.23 and it will be removed in 0.25. Use
min_impurity_decrease instead.

presort [deprecated, default=’deprecated’] This parameter is deprecated and will be removed
in v0.24.

Deprecated since version 0.22.

ccp_alpha [non-negative float, default=0.0] Complexity parameter used for Minimal Cost-
Complexity Pruning. The subtree with the largest cost complexity that is smaller than
ccp_alpha will be chosen. By default, no pruning is performed. See Minimal Cost-
Complexity Pruning for details.

New in version 0.22.

Attributes

feature_importances_ [ndarray of shape (n_features,)] Return the feature importances.

max_features_ [int] The inferred value of max_features.

n_features_ [int] The number of features when fit is performed.

n_outputs_ [int] The number of outputs when fit is performed.

tree_ [Tree] The underlying Tree object. Please refer to help(sklearn.tree._tree.
Tree) for attributes of Tree object and Understanding the decision tree structure for basic
usage of these attributes.

See also:

DecisionTreeClassifier A decision tree classifier.

2590 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Notes

The default values for the parameters controlling the size of the trees (e.g. max_depth,
min_samples_leaf, etc.) lead to fully grown and unpruned trees which can potentially be very large on
some data sets. To reduce memory consumption, the complexity and size of the trees should be controlled by
setting those parameter values.

References

[1], [2], [3], [4]

Examples

>>> from sklearn.datasets import load_diabetes
>>> from sklearn.model_selection import cross_val_score
>>> from sklearn.tree import DecisionTreeRegressor
>>> X, y = load_diabetes(return_X_y=True)
>>> regressor = DecisionTreeRegressor(random_state=0)
>>> cross_val_score(regressor, X, y, cv=10)
... # doctest: +SKIP
...
array([-0.39..., -0.46..., 0.02..., 0.06..., -0.50...,

0.16..., 0.11..., -0.73..., -0.30..., -0.00...])

Methods

apply(X[, check_input]) Return the index of the leaf that each sample is pre-
dicted as.

cost_complexity_pruning_path(X, y[,
. . .])

Compute the pruning path during Minimal Cost-
Complexity Pruning.

decision_path(X[, check_input]) Return the decision path in the tree.
fit(X, y[, sample_weight, check_input, . . .]) Build a decision tree regressor from the training set

(X, y).
get_depth() Return the depth of the decision tree.
get_n_leaves() Return the number of leaves of the decision tree.
get_params([deep]) Get parameters for this estimator.
predict(X[, check_input]) Predict class or regression value for X.
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.

__init__(*, criterion=’mse’, splitter=’best’, max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None,
random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0,
min_impurity_split=None, presort=’deprecated’, ccp_alpha=0.0)

Initialize self. See help(type(self)) for accurate signature.

apply(X, check_input=True)
Return the index of the leaf that each sample is predicted as.

New in version 0.17.

7.37. sklearn.tree: Decision Trees 2591

scikit-learn user guide, Release 0.23.2

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, it will be converted to dtype=np.float32 and if a sparse matrix is provided to
a sparse csr_matrix.

check_input [bool, default=True] Allow to bypass several input checking. Don’t use this
parameter unless you know what you do.

Returns

X_leaves [array-like of shape (n_samples,)] For each datapoint x in X, return the index of
the leaf x ends up in. Leaves are numbered within [0; self.tree_.node_count),
possibly with gaps in the numbering.

cost_complexity_pruning_path(X, y, sample_weight=None)
Compute the pruning path during Minimal Cost-Complexity Pruning.

See Minimal Cost-Complexity Pruning for details on the pruning process.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The training input samples.
Internally, it will be converted to dtype=np.float32 and if a sparse matrix is provided
to a sparse csc_matrix.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] The target values (class la-
bels) as integers or strings.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights. If None,
then samples are equally weighted. Splits that would create child nodes with net zero or
negative weight are ignored while searching for a split in each node. Splits are also ignored
if they would result in any single class carrying a negative weight in either child node.

Returns

ccp_path [Bunch] Dictionary-like object, with the following attributes.

ccp_alphas [ndarray] Effective alphas of subtree during pruning.

impurities [ndarray] Sum of the impurities of the subtree leaves for the corresponding
alpha value in ccp_alphas.

decision_path(X, check_input=True)
Return the decision path in the tree.

New in version 0.18.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, it will be converted to dtype=np.float32 and if a sparse matrix is provided to
a sparse csr_matrix.

check_input [bool, default=True] Allow to bypass several input checking. Don’t use this
parameter unless you know what you do.

Returns

indicator [sparse matrix of shape (n_samples, n_nodes)] Return a node indicator CSR ma-
trix where non zero elements indicates that the samples goes through the nodes.

property feature_importances_
Return the feature importances.

2592 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that
feature. It is also known as the Gini importance.

Warning: impurity-based feature importances can be misleading for high cardinality features (many unique
values). See sklearn.inspection.permutation_importance as an alternative.

Returns

feature_importances_ [ndarray of shape (n_features,)] Normalized total reduction of crite-
ria by feature (Gini importance).

fit(X, y, sample_weight=None, check_input=True, X_idx_sorted=None)
Build a decision tree regressor from the training set (X, y).

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The training input samples.
Internally, it will be converted to dtype=np.float32 and if a sparse matrix is provided
to a sparse csc_matrix.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] The target values (real num-
bers). Use dtype=np.float64 and order='C' for maximum efficiency.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights. If None,
then samples are equally weighted. Splits that would create child nodes with net zero or
negative weight are ignored while searching for a split in each node.

check_input [bool, default=True] Allow to bypass several input checking. Don’t use this
parameter unless you know what you do.

X_idx_sorted [array-like of shape (n_samples, n_features), default=None] The indexes of
the sorted training input samples. If many tree are grown on the same dataset, this allows
the ordering to be cached between trees. If None, the data will be sorted here. Don’t use
this parameter unless you know what to do.

Returns

self [DecisionTreeRegressor] Fitted estimator.

get_depth()
Return the depth of the decision tree.

The depth of a tree is the maximum distance between the root and any leaf.

Returns

self.tree_.max_depth [int] The maximum depth of the tree.

get_n_leaves()
Return the number of leaves of the decision tree.

Returns

self.tree_.n_leaves [int] Number of leaves.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

7.37. sklearn.tree: Decision Trees 2593

scikit-learn user guide, Release 0.23.2

predict(X, check_input=True)
Predict class or regression value for X.

For a classification model, the predicted class for each sample in X is returned. For a regression model,
the predicted value based on X is returned.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, it will be converted to dtype=np.float32 and if a sparse matrix is provided to
a sparse csr_matrix.

check_input [bool, default=True] Allow to bypass several input checking. Don’t use this
parameter unless you know what you do.

Returns

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] The predicted classes, or the
predict values.

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

2594 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Examples using sklearn.tree.DecisionTreeRegressor

• Release Highlights for scikit-learn 0.22

• Decision Tree Regression

• Multi-output Decision Tree Regression

• Decision Tree Regression with AdaBoost

• Single estimator versus bagging: bias-variance decomposition

• Advanced Plotting With Partial Dependence

• Imputing missing values with variants of IterativeImputer

• Using KBinsDiscretizer to discretize continuous features

7.37.3 sklearn.tree.ExtraTreeClassifier

class sklearn.tree.ExtraTreeClassifier(*, criterion=’gini’, split-
ter=’random’, max_depth=None,
min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_features=’auto’, ran-
dom_state=None, max_leaf_nodes=None,
min_impurity_decrease=0.0,
min_impurity_split=None, class_weight=None,
ccp_alpha=0.0)

An extremely randomized tree classifier.

Extra-trees differ from classic decision trees in the way they are built. When looking for the best split to separate
the samples of a node into two groups, random splits are drawn for each of the max_features randomly
selected features and the best split among those is chosen. When max_features is set 1, this amounts to
building a totally random decision tree.

Warning: Extra-trees should only be used within ensemble methods.

Read more in the User Guide.

Parameters

criterion [{“gini”, “entropy”}, default=”gini”] The function to measure the quality of a split.
Supported criteria are “gini” for the Gini impurity and “entropy” for the information gain.

splitter [{“random”, “best”}, default=”random”] The strategy used to choose the split at each
node. Supported strategies are “best” to choose the best split and “random” to choose the
best random split.

max_depth [int, default=None] The maximum depth of the tree. If None, then nodes are ex-
panded until all leaves are pure or until all leaves contain less than min_samples_split sam-
ples.

min_samples_split [int or float, default=2] The minimum number of samples required to split
an internal node:

• If int, then consider min_samples_split as the minimum number.

• If float, then min_samples_split is a fraction and ceil(min_samples_split
* n_samples) are the minimum number of samples for each split.

Changed in version 0.18: Added float values for fractions.

7.37. sklearn.tree: Decision Trees 2595

scikit-learn user guide, Release 0.23.2

min_samples_leaf [int or float, default=1] The minimum number of samples required to be
at a leaf node. A split point at any depth will only be considered if it leaves at least
min_samples_leaf training samples in each of the left and right branches. This may
have the effect of smoothing the model, especially in regression.

• If int, then consider min_samples_leaf as the minimum number.

• If float, then min_samples_leaf is a fraction and ceil(min_samples_leaf *
n_samples) are the minimum number of samples for each node.

Changed in version 0.18: Added float values for fractions.

min_weight_fraction_leaf [float, default=0.0] The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Samples have equal weight
when sample_weight is not provided.

max_features [int, float, {“auto”, “sqrt”, “log2”} or None, default=”auto”] The number of
features to consider when looking for the best split:

• If int, then consider max_features features at each split.

• If float, then max_features is a fraction and int(max_features *
n_features) features are considered at each split.

• If “auto”, then max_features=sqrt(n_features).

• If “sqrt”, then max_features=sqrt(n_features).

• If “log2”, then max_features=log2(n_features).

• If None, then max_features=n_features.

Note: the search for a split does not stop until at least one valid partition of the node samples
is found, even if it requires to effectively inspect more than max_features features.

random_state [int, RandomState instance, default=None] Used to pick randomly the
max_features used at each split. See Glossary for details.

max_leaf_nodes [int, default=None] Grow a tree with max_leaf_nodes in best-first fash-
ion. Best nodes are defined as relative reduction in impurity. If None then unlimited number
of leaf nodes.

min_impurity_decrease [float, default=0.0] A node will be split if this split induces a decrease
of the impurity greater than or equal to this value.

The weighted impurity decrease equation is the following:

N_t / N * (impurity - N_t_R / N_t * right_impurity
- N_t_L / N_t * left_impurity)

where N is the total number of samples, N_t is the number of samples at the current node,
N_t_L is the number of samples in the left child, and N_t_R is the number of samples in
the right child.

N, N_t, N_t_R and N_t_L all refer to the weighted sum, if sample_weight is passed.

New in version 0.19.

min_impurity_split [float, (default=0)] Threshold for early stopping in tree growth. A node
will split if its impurity is above the threshold, otherwise it is a leaf.

Deprecated since version 0.19: min_impurity_split has been deprecated in favor of
min_impurity_decrease in 0.19. The default value of min_impurity_split

2596 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

has changed from 1e-7 to 0 in 0.23 and it will be removed in 0.25. Use
min_impurity_decrease instead.

class_weight [dict, list of dict or “balanced”, default=None] Weights associated with classes in
the form {class_label: weight}. If None, all classes are supposed to have weight
one. For multi-output problems, a list of dicts can be provided in the same order as the
columns of y.

Note that for multioutput (including multilabel) weights should be defined for each class of
every column in its own dict. For example, for four-class multilabel classification weights
should be [{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}] instead of [{1:1}, {2:5},
{3:1}, {4:1}].

The “balanced” mode uses the values of y to automatically adjust weights inversely pro-
portional to class frequencies in the input data as n_samples / (n_classes * np.
bincount(y))

For multi-output, the weights of each column of y will be multiplied.

Note that these weights will be multiplied with sample_weight (passed through the fit
method) if sample_weight is specified.

ccp_alpha [non-negative float, default=0.0] Complexity parameter used for Minimal Cost-
Complexity Pruning. The subtree with the largest cost complexity that is smaller than
ccp_alpha will be chosen. By default, no pruning is performed. See Minimal Cost-
Complexity Pruning for details.

New in version 0.22.

Attributes

classes_ [ndarray of shape (n_classes,) or list of ndarray] The classes labels (single output prob-
lem), or a list of arrays of class labels (multi-output problem).

max_features_ [int] The inferred value of max_features.

n_classes_ [int or list of int] The number of classes (for single output problems), or a list con-
taining the number of classes for each output (for multi-output problems).

feature_importances_ [ndarray of shape (n_features,)] Return the feature importances.

n_features_ [int] The number of features when fit is performed.

n_outputs_ [int] The number of outputs when fit is performed.

tree_ [Tree] The underlying Tree object. Please refer to help(sklearn.tree._tree.
Tree) for attributes of Tree object and Understanding the decision tree structure for basic
usage of these attributes.

See also:

ExtraTreeRegressor An extremely randomized tree regressor.

sklearn.ensemble.ExtraTreesClassifier An extra-trees classifier.

sklearn.ensemble.ExtraTreesRegressor An extra-trees regressor.

Notes

The default values for the parameters controlling the size of the trees (e.g. max_depth,
min_samples_leaf, etc.) lead to fully grown and unpruned trees which can potentially be very large on

7.37. sklearn.tree: Decision Trees 2597

scikit-learn user guide, Release 0.23.2

some data sets. To reduce memory consumption, the complexity and size of the trees should be controlled by
setting those parameter values.

References

[1]

Examples

>>> from sklearn.datasets import load_iris
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.ensemble import BaggingClassifier
>>> from sklearn.tree import ExtraTreeClassifier
>>> X, y = load_iris(return_X_y=True)
>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, random_state=0)
>>> extra_tree = ExtraTreeClassifier(random_state=0)
>>> cls = BaggingClassifier(extra_tree, random_state=0).fit(
... X_train, y_train)
>>> cls.score(X_test, y_test)
0.8947...

Methods

apply(X[, check_input]) Return the index of the leaf that each sample is pre-
dicted as.

cost_complexity_pruning_path(X, y[,
. . .])

Compute the pruning path during Minimal Cost-
Complexity Pruning.

decision_path(X[, check_input]) Return the decision path in the tree.
fit(X, y[, sample_weight, check_input, . . .]) Build a decision tree classifier from the training set

(X, y).
get_depth() Return the depth of the decision tree.
get_n_leaves() Return the number of leaves of the decision tree.
get_params([deep]) Get parameters for this estimator.
predict(X[, check_input]) Predict class or regression value for X.
predict_log_proba(X) Predict class log-probabilities of the input samples

X.
predict_proba(X[, check_input]) Predict class probabilities of the input samples X.
score(X, y[, sample_weight]) Return the mean accuracy on the given test data and

labels.
set_params(**params) Set the parameters of this estimator.

__init__(*, criterion=’gini’, splitter=’random’, max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=’auto’,
random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0,
min_impurity_split=None, class_weight=None, ccp_alpha=0.0)

Initialize self. See help(type(self)) for accurate signature.

apply(X, check_input=True)
Return the index of the leaf that each sample is predicted as.

New in version 0.17.

2598 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, it will be converted to dtype=np.float32 and if a sparse matrix is provided to
a sparse csr_matrix.

check_input [bool, default=True] Allow to bypass several input checking. Don’t use this
parameter unless you know what you do.

Returns

X_leaves [array-like of shape (n_samples,)] For each datapoint x in X, return the index of
the leaf x ends up in. Leaves are numbered within [0; self.tree_.node_count),
possibly with gaps in the numbering.

cost_complexity_pruning_path(X, y, sample_weight=None)
Compute the pruning path during Minimal Cost-Complexity Pruning.

See Minimal Cost-Complexity Pruning for details on the pruning process.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The training input samples.
Internally, it will be converted to dtype=np.float32 and if a sparse matrix is provided
to a sparse csc_matrix.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] The target values (class la-
bels) as integers or strings.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights. If None,
then samples are equally weighted. Splits that would create child nodes with net zero or
negative weight are ignored while searching for a split in each node. Splits are also ignored
if they would result in any single class carrying a negative weight in either child node.

Returns

ccp_path [Bunch] Dictionary-like object, with the following attributes.

ccp_alphas [ndarray] Effective alphas of subtree during pruning.

impurities [ndarray] Sum of the impurities of the subtree leaves for the corresponding
alpha value in ccp_alphas.

decision_path(X, check_input=True)
Return the decision path in the tree.

New in version 0.18.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, it will be converted to dtype=np.float32 and if a sparse matrix is provided to
a sparse csr_matrix.

check_input [bool, default=True] Allow to bypass several input checking. Don’t use this
parameter unless you know what you do.

Returns

indicator [sparse matrix of shape (n_samples, n_nodes)] Return a node indicator CSR ma-
trix where non zero elements indicates that the samples goes through the nodes.

property feature_importances_
Return the feature importances.

7.37. sklearn.tree: Decision Trees 2599

scikit-learn user guide, Release 0.23.2

The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that
feature. It is also known as the Gini importance.

Warning: impurity-based feature importances can be misleading for high cardinality features (many unique
values). See sklearn.inspection.permutation_importance as an alternative.

Returns

feature_importances_ [ndarray of shape (n_features,)] Normalized total reduction of crite-
ria by feature (Gini importance).

fit(X, y, sample_weight=None, check_input=True, X_idx_sorted=None)
Build a decision tree classifier from the training set (X, y).

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The training input samples.
Internally, it will be converted to dtype=np.float32 and if a sparse matrix is provided
to a sparse csc_matrix.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] The target values (class la-
bels) as integers or strings.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights. If None,
then samples are equally weighted. Splits that would create child nodes with net zero or
negative weight are ignored while searching for a split in each node. Splits are also ignored
if they would result in any single class carrying a negative weight in either child node.

check_input [bool, default=True] Allow to bypass several input checking. Don’t use this
parameter unless you know what you do.

X_idx_sorted [array-like of shape (n_samples, n_features), default=None] The indexes of
the sorted training input samples. If many tree are grown on the same dataset, this allows
the ordering to be cached between trees. If None, the data will be sorted here. Don’t use
this parameter unless you know what to do.

Returns

self [DecisionTreeClassifier] Fitted estimator.

get_depth()
Return the depth of the decision tree.

The depth of a tree is the maximum distance between the root and any leaf.

Returns

self.tree_.max_depth [int] The maximum depth of the tree.

get_n_leaves()
Return the number of leaves of the decision tree.

Returns

self.tree_.n_leaves [int] Number of leaves.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

2600 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

params [mapping of string to any] Parameter names mapped to their values.

predict(X, check_input=True)
Predict class or regression value for X.

For a classification model, the predicted class for each sample in X is returned. For a regression model,
the predicted value based on X is returned.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, it will be converted to dtype=np.float32 and if a sparse matrix is provided to
a sparse csr_matrix.

check_input [bool, default=True] Allow to bypass several input checking. Don’t use this
parameter unless you know what you do.

Returns

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] The predicted classes, or the
predict values.

predict_log_proba(X)
Predict class log-probabilities of the input samples X.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, it will be converted to dtype=np.float32 and if a sparse matrix is provided to
a sparse csr_matrix.

Returns

proba [ndarray of shape (n_samples, n_classes) or list of n_outputs such arrays if n_outputs
> 1] The class log-probabilities of the input samples. The order of the classes corresponds
to that in the attribute classes_.

predict_proba(X, check_input=True)
Predict class probabilities of the input samples X.

The predicted class probability is the fraction of samples of the same class in a leaf.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, it will be converted to dtype=np.float32 and if a sparse matrix is provided to
a sparse csr_matrix.

check_input [bool, default=True] Allow to bypass several input checking. Don’t use this
parameter unless you know what you do.

Returns

proba [ndarray of shape (n_samples, n_classes) or list of n_outputs such arrays if n_outputs
> 1] The class probabilities of the input samples. The order of the classes corresponds to
that in the attribute classes_.

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

7.37. sklearn.tree: Decision Trees 2601

scikit-learn user guide, Release 0.23.2

X [array-like of shape (n_samples, n_features)] Test samples.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True labels for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] Mean accuracy of self.predict(X) wrt. y.

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

7.37.4 sklearn.tree.ExtraTreeRegressor

class sklearn.tree.ExtraTreeRegressor(*, criterion=’mse’, splitter=’random’,
max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0,
max_features=’auto’, random_state=None,
min_impurity_decrease=0.0,
min_impurity_split=None, max_leaf_nodes=None,
ccp_alpha=0.0)

An extremely randomized tree regressor.

Extra-trees differ from classic decision trees in the way they are built. When looking for the best split to separate
the samples of a node into two groups, random splits are drawn for each of the max_features randomly
selected features and the best split among those is chosen. When max_features is set 1, this amounts to
building a totally random decision tree.

Warning: Extra-trees should only be used within ensemble methods.

Read more in the User Guide.

Parameters

criterion [{“mse”, “friedman_mse”, “mae”}, default=”mse”] The function to measure the qual-
ity of a split. Supported criteria are “mse” for the mean squared error, which is equal to
variance reduction as feature selection criterion, and “mae” for the mean absolute error.

New in version 0.18: Mean Absolute Error (MAE) criterion.

splitter [{“random”, “best”}, default=”random”] The strategy used to choose the split at each
node. Supported strategies are “best” to choose the best split and “random” to choose the
best random split.

max_depth [int, default=None] The maximum depth of the tree. If None, then nodes are ex-
panded until all leaves are pure or until all leaves contain less than min_samples_split sam-
ples.

min_samples_split [int or float, default=2] The minimum number of samples required to split
an internal node:

2602 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

• If int, then consider min_samples_split as the minimum number.

• If float, then min_samples_split is a fraction and ceil(min_samples_split
* n_samples) are the minimum number of samples for each split.

Changed in version 0.18: Added float values for fractions.

min_samples_leaf [int or float, default=1] The minimum number of samples required to be
at a leaf node. A split point at any depth will only be considered if it leaves at least
min_samples_leaf training samples in each of the left and right branches. This may
have the effect of smoothing the model, especially in regression.

• If int, then consider min_samples_leaf as the minimum number.

• If float, then min_samples_leaf is a fraction and ceil(min_samples_leaf *
n_samples) are the minimum number of samples for each node.

Changed in version 0.18: Added float values for fractions.

min_weight_fraction_leaf [float, default=0.0] The minimum weighted fraction of the sum total
of weights (of all the input samples) required to be at a leaf node. Samples have equal weight
when sample_weight is not provided.

max_features [int, float, {“auto”, “sqrt”, “log2”} or None, default=”auto”] The number of
features to consider when looking for the best split:

• If int, then consider max_features features at each split.

• If float, then max_features is a fraction and int(max_features *
n_features) features are considered at each split.

• If “auto”, then max_features=n_features.

• If “sqrt”, then max_features=sqrt(n_features).

• If “log2”, then max_features=log2(n_features).

• If None, then max_features=n_features.

Note: the search for a split does not stop until at least one valid partition of the node samples
is found, even if it requires to effectively inspect more than max_features features.

random_state [int, RandomState instance, default=None] Used to pick randomly the
max_features used at each split. See Glossary for details.

min_impurity_decrease [float, default=0.0] A node will be split if this split induces a decrease
of the impurity greater than or equal to this value.

The weighted impurity decrease equation is the following:

N_t / N * (impurity - N_t_R / N_t * right_impurity
- N_t_L / N_t * left_impurity)

where N is the total number of samples, N_t is the number of samples at the current node,
N_t_L is the number of samples in the left child, and N_t_R is the number of samples in
the right child.

N, N_t, N_t_R and N_t_L all refer to the weighted sum, if sample_weight is passed.

New in version 0.19.

min_impurity_split [float, (default=0)] Threshold for early stopping in tree growth. A node
will split if its impurity is above the threshold, otherwise it is a leaf.

7.37. sklearn.tree: Decision Trees 2603

scikit-learn user guide, Release 0.23.2

Deprecated since version 0.19: min_impurity_split has been deprecated in favor of
min_impurity_decrease in 0.19. The default value of min_impurity_split
has changed from 1e-7 to 0 in 0.23 and it will be removed in 0.25. Use
min_impurity_decrease instead.

max_leaf_nodes [int, default=None] Grow a tree with max_leaf_nodes in best-first fash-
ion. Best nodes are defined as relative reduction in impurity. If None then unlimited number
of leaf nodes.

ccp_alpha [non-negative float, default=0.0] Complexity parameter used for Minimal Cost-
Complexity Pruning. The subtree with the largest cost complexity that is smaller than
ccp_alpha will be chosen. By default, no pruning is performed. See Minimal Cost-
Complexity Pruning for details.

New in version 0.22.

Attributes

max_features_ [int] The inferred value of max_features.

n_features_ [int] The number of features when fit is performed.

feature_importances_ [ndarray of shape (n_features,)] Return the feature importances.

n_outputs_ [int] The number of outputs when fit is performed.

tree_ [Tree] The underlying Tree object. Please refer to help(sklearn.tree._tree.
Tree) for attributes of Tree object and Understanding the decision tree structure for basic
usage of these attributes.

See also:

ExtraTreeClassifier An extremely randomized tree classifier.

sklearn.ensemble.ExtraTreesClassifier An extra-trees classifier.

sklearn.ensemble.ExtraTreesRegressor An extra-trees regressor.

Notes

The default values for the parameters controlling the size of the trees (e.g. max_depth,
min_samples_leaf, etc.) lead to fully grown and unpruned trees which can potentially be very large on
some data sets. To reduce memory consumption, the complexity and size of the trees should be controlled by
setting those parameter values.

References

[1]

Examples

>>> from sklearn.datasets import load_diabetes
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.ensemble import BaggingRegressor
>>> from sklearn.tree import ExtraTreeRegressor
>>> X, y = load_diabetes(return_X_y=True)
>>> X_train, X_test, y_train, y_test = train_test_split(

(continues on next page)

2604 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

(continued from previous page)

... X, y, random_state=0)
>>> extra_tree = ExtraTreeRegressor(random_state=0)
>>> reg = BaggingRegressor(extra_tree, random_state=0).fit(
... X_train, y_train)
>>> reg.score(X_test, y_test)
0.33...

Methods

apply(X[, check_input]) Return the index of the leaf that each sample is pre-
dicted as.

cost_complexity_pruning_path(X, y[,
. . .])

Compute the pruning path during Minimal Cost-
Complexity Pruning.

decision_path(X[, check_input]) Return the decision path in the tree.
fit(X, y[, sample_weight, check_input, . . .]) Build a decision tree regressor from the training set

(X, y).
get_depth() Return the depth of the decision tree.
get_n_leaves() Return the number of leaves of the decision tree.
get_params([deep]) Get parameters for this estimator.
predict(X[, check_input]) Predict class or regression value for X.
score(X, y[, sample_weight]) Return the coefficient of determination R^2 of the

prediction.
set_params(**params) Set the parameters of this estimator.

__init__(*, criterion=’mse’, splitter=’random’, max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=’auto’,
random_state=None, min_impurity_decrease=0.0, min_impurity_split=None,
max_leaf_nodes=None, ccp_alpha=0.0)

Initialize self. See help(type(self)) for accurate signature.

apply(X, check_input=True)
Return the index of the leaf that each sample is predicted as.

New in version 0.17.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, it will be converted to dtype=np.float32 and if a sparse matrix is provided to
a sparse csr_matrix.

check_input [bool, default=True] Allow to bypass several input checking. Don’t use this
parameter unless you know what you do.

Returns

X_leaves [array-like of shape (n_samples,)] For each datapoint x in X, return the index of
the leaf x ends up in. Leaves are numbered within [0; self.tree_.node_count),
possibly with gaps in the numbering.

cost_complexity_pruning_path(X, y, sample_weight=None)
Compute the pruning path during Minimal Cost-Complexity Pruning.

See Minimal Cost-Complexity Pruning for details on the pruning process.

Parameters

7.37. sklearn.tree: Decision Trees 2605

scikit-learn user guide, Release 0.23.2

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The training input samples.
Internally, it will be converted to dtype=np.float32 and if a sparse matrix is provided
to a sparse csc_matrix.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] The target values (class la-
bels) as integers or strings.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights. If None,
then samples are equally weighted. Splits that would create child nodes with net zero or
negative weight are ignored while searching for a split in each node. Splits are also ignored
if they would result in any single class carrying a negative weight in either child node.

Returns

ccp_path [Bunch] Dictionary-like object, with the following attributes.

ccp_alphas [ndarray] Effective alphas of subtree during pruning.

impurities [ndarray] Sum of the impurities of the subtree leaves for the corresponding
alpha value in ccp_alphas.

decision_path(X, check_input=True)
Return the decision path in the tree.

New in version 0.18.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, it will be converted to dtype=np.float32 and if a sparse matrix is provided to
a sparse csr_matrix.

check_input [bool, default=True] Allow to bypass several input checking. Don’t use this
parameter unless you know what you do.

Returns

indicator [sparse matrix of shape (n_samples, n_nodes)] Return a node indicator CSR ma-
trix where non zero elements indicates that the samples goes through the nodes.

property feature_importances_
Return the feature importances.

The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that
feature. It is also known as the Gini importance.

Warning: impurity-based feature importances can be misleading for high cardinality features (many unique
values). See sklearn.inspection.permutation_importance as an alternative.

Returns

feature_importances_ [ndarray of shape (n_features,)] Normalized total reduction of crite-
ria by feature (Gini importance).

fit(X, y, sample_weight=None, check_input=True, X_idx_sorted=None)
Build a decision tree regressor from the training set (X, y).

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The training input samples.
Internally, it will be converted to dtype=np.float32 and if a sparse matrix is provided
to a sparse csc_matrix.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] The target values (real num-
bers). Use dtype=np.float64 and order='C' for maximum efficiency.

2606 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

sample_weight [array-like of shape (n_samples,), default=None] Sample weights. If None,
then samples are equally weighted. Splits that would create child nodes with net zero or
negative weight are ignored while searching for a split in each node.

check_input [bool, default=True] Allow to bypass several input checking. Don’t use this
parameter unless you know what you do.

X_idx_sorted [array-like of shape (n_samples, n_features), default=None] The indexes of
the sorted training input samples. If many tree are grown on the same dataset, this allows
the ordering to be cached between trees. If None, the data will be sorted here. Don’t use
this parameter unless you know what to do.

Returns

self [DecisionTreeRegressor] Fitted estimator.

get_depth()
Return the depth of the decision tree.

The depth of a tree is the maximum distance between the root and any leaf.

Returns

self.tree_.max_depth [int] The maximum depth of the tree.

get_n_leaves()
Return the number of leaves of the decision tree.

Returns

self.tree_.n_leaves [int] Number of leaves.

get_params(deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns

params [mapping of string to any] Parameter names mapped to their values.

predict(X, check_input=True)
Predict class or regression value for X.

For a classification model, the predicted class for each sample in X is returned. For a regression model,
the predicted value based on X is returned.

Parameters

X [{array-like, sparse matrix} of shape (n_samples, n_features)] The input samples. Inter-
nally, it will be converted to dtype=np.float32 and if a sparse matrix is provided to
a sparse csr_matrix.

check_input [bool, default=True] Allow to bypass several input checking. Don’t use this
parameter unless you know what you do.

Returns

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] The predicted classes, or the
predict values.

7.37. sklearn.tree: Decision Trees 2607

scikit-learn user guide, Release 0.23.2

score(X, y, sample_weight=None)
Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) **
2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score
is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters

X [array-like of shape (n_samples, n_features)] Test samples. For some estimators this may
be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples,
n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for
the estimator.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] True values for X.

sample_weight [array-like of shape (n_samples,), default=None] Sample weights.

Returns

score [float] R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average'
from version 0.23 to keep consistent with default value of r2_score. This influences the score method
of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters

**params [dict] Estimator parameters.

Returns

self [object] Estimator instance.

tree.export_graphviz(decision_tree[, . . .]) Export a decision tree in DOT format.
tree.export_text(decision_tree, *[, . . .]) Build a text report showing the rules of a decision tree.

7.37.5 sklearn.tree.export_graphviz

sklearn.tree.export_graphviz(decision_tree, out_file=None, *, max_depth=None, fea-
ture_names=None, class_names=None, label=’all’, filled=False,
leaves_parallel=False, impurity=True, node_ids=False,
proportion=False, rotate=False, rounded=False, spe-
cial_characters=False, precision=3)

Export a decision tree in DOT format.

This function generates a GraphViz representation of the decision tree, which is then written into out_file.
Once exported, graphical renderings can be generated using, for example:

2608 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

$ dot -Tps tree.dot -o tree.ps (PostScript format)
$ dot -Tpng tree.dot -o tree.png (PNG format)

The sample counts that are shown are weighted with any sample_weights that might be present.

Read more in the User Guide.

Parameters

decision_tree [decision tree classifier] The decision tree to be exported to GraphViz.

out_file [file object or string, optional (default=None)] Handle or name of the output file. If
None, the result is returned as a string.

Changed in version 0.20: Default of out_file changed from “tree.dot” to None.

max_depth [int, optional (default=None)] The maximum depth of the representation. If None,
the tree is fully generated.

feature_names [list of strings, optional (default=None)] Names of each of the features.

class_names [list of strings, bool or None, optional (default=None)] Names of each of the target
classes in ascending numerical order. Only relevant for classification and not supported for
multi-output. If True, shows a symbolic representation of the class name.

label [{‘all’, ‘root’, ‘none’}, optional (default=’all’)] Whether to show informative labels for
impurity, etc. Options include ‘all’ to show at every node, ‘root’ to show only at the top root
node, or ‘none’ to not show at any node.

filled [bool, optional (default=False)] When set to True, paint nodes to indicate majority class
for classification, extremity of values for regression, or purity of node for multi-output.

leaves_parallel [bool, optional (default=False)] When set to True, draw all leaf nodes at the
bottom of the tree.

impurity [bool, optional (default=True)] When set to True, show the impurity at each node.

node_ids [bool, optional (default=False)] When set to True, show the ID number on each
node.

proportion [bool, optional (default=False)] When set to True, change the display of ‘values’
and/or ‘samples’ to be proportions and percentages respectively.

rotate [bool, optional (default=False)] When set to True, orient tree left to right rather than
top-down.

rounded [bool, optional (default=False)] When set to True, draw node boxes with rounded
corners and use Helvetica fonts instead of Times-Roman.

special_characters [bool, optional (default=False)] When set to False, ignore special char-
acters for PostScript compatibility.

precision [int, optional (default=3)] Number of digits of precision for floating point in the val-
ues of impurity, threshold and value attributes of each node.

Returns

dot_data [string] String representation of the input tree in GraphViz dot format. Only returned
if out_file is None.

New in version 0.18.

7.37. sklearn.tree: Decision Trees 2609

scikit-learn user guide, Release 0.23.2

Examples

>>> from sklearn.datasets import load_iris
>>> from sklearn import tree

>>> clf = tree.DecisionTreeClassifier()
>>> iris = load_iris()

>>> clf = clf.fit(iris.data, iris.target)
>>> tree.export_graphviz(clf)
'digraph Tree {...

7.37.6 sklearn.tree.export_text

sklearn.tree.export_text(decision_tree, *, feature_names=None, max_depth=10, spacing=3, deci-
mals=2, show_weights=False)

Build a text report showing the rules of a decision tree.

Note that backwards compatibility may not be supported.

Parameters

decision_tree [object] The decision tree estimator to be exported. It can be an instance of
DecisionTreeClassifier or DecisionTreeRegressor.

feature_names [list, optional (default=None)] A list of length n_features containing the feature
names. If None generic names will be used (“feature_0”, “feature_1”, . . .).

max_depth [int, optional (default=10)] Only the first max_depth levels of the tree are exported.
Truncated branches will be marked with “. . . ”.

spacing [int, optional (default=3)] Number of spaces between edges. The higher it is, the wider
the result.

decimals [int, optional (default=2)] Number of decimal digits to display.

show_weights [bool, optional (default=False)] If true the classification weights will be exported
on each leaf. The classification weights are the number of samples each class.

Returns

report [string] Text summary of all the rules in the decision tree.

Examples

>>> from sklearn.datasets import load_iris
>>> from sklearn.tree import DecisionTreeClassifier
>>> from sklearn.tree import export_text
>>> iris = load_iris()
>>> X = iris['data']
>>> y = iris['target']
>>> decision_tree = DecisionTreeClassifier(random_state=0, max_depth=2)
>>> decision_tree = decision_tree.fit(X, y)
>>> r = export_text(decision_tree, feature_names=iris['feature_names'])
>>> print(r)
|--- petal width (cm) <= 0.80
| |--- class: 0

(continues on next page)

2610 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

(continued from previous page)

|--- petal width (cm) > 0.80
| |--- petal width (cm) <= 1.75
| | |--- class: 1
| |--- petal width (cm) > 1.75
| | |--- class: 2

7.37.7 Plotting

tree.plot_tree(decision_tree, *[, . . .]) Plot a decision tree.

sklearn.tree.plot_tree

sklearn.tree.plot_tree(decision_tree, *, max_depth=None, feature_names=None,
class_names=None, label=’all’, filled=False, impurity=True,
node_ids=False, proportion=False, rotate=’deprecated’, rounded=False,
precision=3, ax=None, fontsize=None)

Plot a decision tree.

The sample counts that are shown are weighted with any sample_weights that might be present.

The visualization is fit automatically to the size of the axis. Use the figsize or dpi arguments of plt.
figure to control the size of the rendering.

Read more in the User Guide.

New in version 0.21.

Parameters

decision_tree [decision tree regressor or classifier] The decision tree to be plotted.

max_depth [int, optional (default=None)] The maximum depth of the representation. If None,
the tree is fully generated.

feature_names [list of strings, optional (default=None)] Names of each of the features.

class_names [list of strings, bool or None, optional (default=None)] Names of each of the target
classes in ascending numerical order. Only relevant for classification and not supported for
multi-output. If True, shows a symbolic representation of the class name.

label [{‘all’, ‘root’, ‘none’}, optional (default=’all’)] Whether to show informative labels for
impurity, etc. Options include ‘all’ to show at every node, ‘root’ to show only at the top root
node, or ‘none’ to not show at any node.

filled [bool, optional (default=False)] When set to True, paint nodes to indicate majority class
for classification, extremity of values for regression, or purity of node for multi-output.

impurity [bool, optional (default=True)] When set to True, show the impurity at each node.

node_ids [bool, optional (default=False)] When set to True, show the ID number on each
node.

proportion [bool, optional (default=False)] When set to True, change the display of ‘values’
and/or ‘samples’ to be proportions and percentages respectively.

rotate [bool, optional (default=False)] This parameter has no effect on the matplotlib tree visu-
alisation and it is kept here for backward compatibility.

Deprecated since version 0.23: rotate is deprecated in 0.23 and will be removed in 0.25.

7.37. sklearn.tree: Decision Trees 2611

scikit-learn user guide, Release 0.23.2

rounded [bool, optional (default=False)] When set to True, draw node boxes with rounded
corners and use Helvetica fonts instead of Times-Roman.

precision [int, optional (default=3)] Number of digits of precision for floating point in the val-
ues of impurity, threshold and value attributes of each node.

ax [matplotlib axis, optional (default=None)] Axes to plot to. If None, use current axis. Any
previous content is cleared.

fontsize [int, optional (default=None)] Size of text font. If None, determined automatically to
fit figure.

Returns

annotations [list of artists] List containing the artists for the annotation boxes making up the
tree.

Examples

>>> from sklearn.datasets import load_iris
>>> from sklearn import tree

>>> clf = tree.DecisionTreeClassifier(random_state=0)
>>> iris = load_iris()

>>> clf = clf.fit(iris.data, iris.target)
>>> tree.plot_tree(clf) # doctest: +SKIP
[Text(251.5,345.217,'X[3] <= 0.8...

Examples using sklearn.tree.plot_tree

• Plot the decision surface of a decision tree on the iris dataset

7.38 sklearn.utils: Utilities

The sklearn.utils module includes various utilities.

Developer guide: See the Utilities for Developers page for further details.

utils.arrayfuncs.min_pos Find the minimum value of an array over positive values
utils.as_float_array(X, *[, copy, . . .]) Converts an array-like to an array of floats.
utils.assert_all_finite(X, *[, allow_nan]) Throw a ValueError if X contains NaN or infinity.
utils.Bunch(**kwargs) Container object exposing keys as attributes
utils.check_X_y(X, y[, accept_sparse, . . .]) Input validation for standard estimators.
utils.check_array(array[, accept_sparse, . . .]) Input validation on an array, list, sparse matrix or simi-

lar.
utils.check_scalar(x, name, target_type, *) Validate scalar parameters type and value.
utils.check_consistent_length(*arrays) Check that all arrays have consistent first dimensions.
utils.check_random_state(seed) Turn seed into a np.random.RandomState instance
utils.class_weight.
compute_class_weight(. . .)

Estimate class weights for unbalanced datasets.

Continued on next page

2612 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Table 309 – continued from previous page
utils.class_weight.
compute_sample_weight(. . .)

Estimate sample weights by class for unbalanced
datasets.

utils.deprecated([extra]) Decorator to mark a function or class as deprecated.
utils.estimator_checks.
check_estimator(Estimator)

Check if estimator adheres to scikit-learn conventions.

utils.estimator_checks.
parametrize_with_checks(. . .)

Pytest specific decorator for parametrizing estimator
checks.

utils.estimator_html_repr(estimator) Build a HTML representation of an estimator.
utils.extmath.safe_sparse_dot(a, b, *[,
. . .])

Dot product that handle the sparse matrix case correctly

utils.extmath.randomized_range_finder(A,
*, . . .)

Computes an orthonormal matrix whose range approxi-
mates the range of A.

utils.extmath.randomized_svd(M,
n_components, *)

Computes a truncated randomized SVD

utils.extmath.fast_logdet(A) Compute log(det(A)) for A symmetric
utils.extmath.density(w, **kwargs) Compute density of a sparse vector
utils.extmath.weighted_mode(a, w, *[, axis]) Returns an array of the weighted modal (most common)

value in a
utils.gen_even_slices(n, n_packs, *[,
n_samples])

Generator to create n_packs slices going up to n.

utils.graph.single_source_shortest_path_length(. . .)Return the shortest path length from source to all reach-
able nodes.

utils.graph_shortest_path.
graph_shortest_path

Perform a shortest-path graph search on a positive di-
rected or undirected graph.

utils.indexable(*iterables) Make arrays indexable for cross-validation.
utils.metaestimators.
if_delegate_has_method(. . .)

Create a decorator for methods that are delegated to a
sub-estimator

utils.multiclass.type_of_target(y) Determine the type of data indicated by the target.
utils.multiclass.is_multilabel(y) Check if y is in a multilabel format.
utils.multiclass.unique_labels(*ys) Extract an ordered array of unique labels
utils.murmurhash3_32 Compute the 32bit murmurhash3 of key at seed.
utils.resample(*arrays, **options) Resample arrays or sparse matrices in a consistent way
utils._safe_indexing(X, indices, *[, axis]) Return rows, items or columns of X using indices.
utils.safe_mask(X, mask) Return a mask which is safe to use on X.
utils.safe_sqr(X, *[, copy]) Element wise squaring of array-likes and sparse matri-

ces.
utils.shuffle(*arrays, **options) Shuffle arrays or sparse matrices in a consistent way
utils.sparsefuncs.
incr_mean_variance_axis(X, . . .)

Compute incremental mean and variance along an axix
on a CSR or CSC matrix.

utils.sparsefuncs.
inplace_column_scale(X, scale)

Inplace column scaling of a CSC/CSR matrix.

utils.sparsefuncs.
inplace_row_scale(X, scale)

Inplace row scaling of a CSR or CSC matrix.

utils.sparsefuncs.inplace_swap_row(X,
m, n)

Swaps two rows of a CSC/CSR matrix in-place.

utils.sparsefuncs.
inplace_swap_column(X, m, n)

Swaps two columns of a CSC/CSR matrix in-place.

utils.sparsefuncs.
mean_variance_axis(X, axis)

Compute mean and variance along an axix on a CSR or
CSC matrix

utils.sparsefuncs.
inplace_csr_column_scale(X, . . .)

Inplace column scaling of a CSR matrix.

Continued on next page

7.38. sklearn.utils: Utilities 2613

scikit-learn user guide, Release 0.23.2

Table 309 – continued from previous page
utils.sparsefuncs_fast.
inplace_csr_row_normalize_l1

Inplace row normalize using the l1 norm

utils.sparsefuncs_fast.
inplace_csr_row_normalize_l2

Inplace row normalize using the l2 norm

utils.random.sample_without_replacementSample integers without replacement.
utils.validation.
check_is_fitted(estimator)

Perform is_fitted validation for estimator.

utils.validation.check_memory(memory) Check that memory is joblib.Memory-like.
utils.validation.check_symmetric(array,
*[, . . .])

Make sure that array is 2D, square and symmetric.

utils.validation.column_or_1d(y, *[,
warn])

Ravel column or 1d numpy array, else raises an error

utils.validation.
has_fit_parameter(. . .)

Checks whether the estimator’s fit method supports the
given parameter.

utils.all_estimators([type_filter]) Get a list of all estimators from sklearn.

7.38.1 sklearn.utils.arrayfuncs.min_pos

sklearn.utils.arrayfuncs.min_pos()
Find the minimum value of an array over positive values

Returns a huge value if none of the values are positive

7.38.2 sklearn.utils.as_float_array

sklearn.utils.as_float_array(X, *, copy=True, force_all_finite=True)
Converts an array-like to an array of floats.

The new dtype will be np.float32 or np.float64, depending on the original type. The function can create a copy
or modify the argument depending on the argument copy.

Parameters

X [{array-like, sparse matrix}]

copy [bool, optional] If True, a copy of X will be created. If False, a copy may still be returned
if X’s dtype is not a floating point type.

force_all_finite [boolean or ‘allow-nan’, (default=True)] Whether to raise an error on np.inf,
np.nan, pd.NA in X. The possibilities are:

• True: Force all values of X to be finite.

• False: accepts np.inf, np.nan, pd.NA in X.

• ‘allow-nan’: accepts only np.nan and pd.NA values in X. Values cannot be infinite.

New in version 0.20: force_all_finite accepts the string 'allow-nan'.

Changed in version 0.23: Accepts pd.NA and converts it into np.nan

Returns

XT [{array, sparse matrix}] An array of type np.float

2614 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

7.38.3 sklearn.utils.assert_all_finite

sklearn.utils.assert_all_finite(X, *, allow_nan=False)
Throw a ValueError if X contains NaN or infinity.

Parameters

X [array or sparse matrix]

allow_nan [bool]

7.38.4 sklearn.utils.Bunch

sklearn.utils.Bunch(**kwargs)
Container object exposing keys as attributes

Bunch objects are sometimes used as an output for functions and methods. They extend dictionaries by enabling
values to be accessed by key, bunch["value_key"], or by an attribute, bunch.value_key.

Examples

>>> b = Bunch(a=1, b=2)
>>> b['b']
2
>>> b.b
2
>>> b.a = 3
>>> b['a']
3
>>> b.c = 6
>>> b['c']
6

Examples using sklearn.utils.Bunch

• Species distribution modeling

7.38.5 sklearn.utils.check_X_y

sklearn.utils.check_X_y(X, y, accept_sparse=False, *, accept_large_sparse=True,
dtype=’numeric’, order=None, copy=False, force_all_finite=True,
ensure_2d=True, allow_nd=False, multi_output=False, en-
sure_min_samples=1, ensure_min_features=1, y_numeric=False, es-
timator=None)

Input validation for standard estimators.

Checks X and y for consistent length, enforces X to be 2D and y 1D. By default, X is checked to be non-empty
and containing only finite values. Standard input checks are also applied to y, such as checking that y does not
have np.nan or np.inf targets. For multi-label y, set multi_output=True to allow 2D and sparse y. If the dtype of
X is object, attempt converting to float, raising on failure.

Parameters

X [nd-array, list or sparse matrix] Input data.

7.38. sklearn.utils: Utilities 2615

scikit-learn user guide, Release 0.23.2

y [nd-array, list or sparse matrix] Labels.

accept_sparse [string, boolean or list of string (default=False)] String[s] representing allowed
sparse matrix formats, such as ‘csc’, ‘csr’, etc. If the input is sparse but not in the allowed
format, it will be converted to the first listed format. True allows the input to be any format.
False means that a sparse matrix input will raise an error.

accept_large_sparse [bool (default=True)] If a CSR, CSC, COO or BSR sparse matrix is sup-
plied and accepted by accept_sparse, accept_large_sparse will cause it to be accepted only
if its indices are stored with a 32-bit dtype.

New in version 0.20.

dtype [string, type, list of types or None (default=”numeric”)] Data type of result. If None, the
dtype of the input is preserved. If “numeric”, dtype is preserved unless array.dtype is object.
If dtype is a list of types, conversion on the first type is only performed if the dtype of the
input is not in the list.

order [‘F’, ‘C’ or None (default=None)] Whether an array will be forced to be fortran or c-style.

copy [boolean (default=False)] Whether a forced copy will be triggered. If copy=False, a copy
might be triggered by a conversion.

force_all_finite [boolean or ‘allow-nan’, (default=True)] Whether to raise an error on np.inf,
np.nan, pd.NA in X. This parameter does not influence whether y can have np.inf, np.nan,
pd.NA values. The possibilities are:

• True: Force all values of X to be finite.

• False: accepts np.inf, np.nan, pd.NA in X.

• ‘allow-nan’: accepts only np.nan or pd.NA values in X. Values cannot be infinite.

New in version 0.20: force_all_finite accepts the string 'allow-nan'.

Changed in version 0.23: Accepts pd.NA and converts it into np.nan

ensure_2d [boolean (default=True)] Whether to raise a value error if X is not 2D.

allow_nd [boolean (default=False)] Whether to allow X.ndim > 2.

multi_output [boolean (default=False)] Whether to allow 2D y (array or sparse matrix).
If false, y will be validated as a vector. y cannot have np.nan or np.inf values if
multi_output=True.

ensure_min_samples [int (default=1)] Make sure that X has a minimum number of samples in
its first axis (rows for a 2D array).

ensure_min_features [int (default=1)] Make sure that the 2D array has some minimum number
of features (columns). The default value of 1 rejects empty datasets. This check is only
enforced when X has effectively 2 dimensions or is originally 1D and ensure_2d is True.
Setting to 0 disables this check.

y_numeric [boolean (default=False)] Whether to ensure that y has a numeric type. If dtype of
y is object, it is converted to float64. Should only be used for regression algorithms.

estimator [str or estimator instance (default=None)] If passed, include the name of the estimator
in warning messages.

Returns

X_converted [object] The converted and validated X.

y_converted [object] The converted and validated y.

2616 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

7.38.6 sklearn.utils.check_array

sklearn.utils.check_array(array, accept_sparse=False, *, accept_large_sparse=True,
dtype=’numeric’, order=None, copy=False, force_all_finite=True,
ensure_2d=True, allow_nd=False, ensure_min_samples=1, en-
sure_min_features=1, estimator=None)

Input validation on an array, list, sparse matrix or similar.

By default, the input is checked to be a non-empty 2D array containing only finite values. If the dtype of the
array is object, attempt converting to float, raising on failure.

Parameters

array [object] Input object to check / convert.

accept_sparse [string, boolean or list/tuple of strings (default=False)] String[s] representing
allowed sparse matrix formats, such as ‘csc’, ‘csr’, etc. If the input is sparse but not in the
allowed format, it will be converted to the first listed format. True allows the input to be any
format. False means that a sparse matrix input will raise an error.

accept_large_sparse [bool (default=True)] If a CSR, CSC, COO or BSR sparse matrix is sup-
plied and accepted by accept_sparse, accept_large_sparse=False will cause it to be accepted
only if its indices are stored with a 32-bit dtype.

New in version 0.20.

dtype [string, type, list of types or None (default=”numeric”)] Data type of result. If None, the
dtype of the input is preserved. If “numeric”, dtype is preserved unless array.dtype is object.
If dtype is a list of types, conversion on the first type is only performed if the dtype of the
input is not in the list.

order [‘F’, ‘C’ or None (default=None)] Whether an array will be forced to be fortran or c-style.
When order is None (default), then if copy=False, nothing is ensured about the memory
layout of the output array; otherwise (copy=True) the memory layout of the returned array
is kept as close as possible to the original array.

copy [boolean (default=False)] Whether a forced copy will be triggered. If copy=False, a copy
might be triggered by a conversion.

force_all_finite [boolean or ‘allow-nan’, (default=True)] Whether to raise an error on np.inf,
np.nan, pd.NA in array. The possibilities are:

• True: Force all values of array to be finite.

• False: accepts np.inf, np.nan, pd.NA in array.

• ‘allow-nan’: accepts only np.nan and pd.NA values in array. Values cannot be infinite.

New in version 0.20: force_all_finite accepts the string 'allow-nan'.

Changed in version 0.23: Accepts pd.NA and converts it into np.nan

ensure_2d [boolean (default=True)] Whether to raise a value error if array is not 2D.

allow_nd [boolean (default=False)] Whether to allow array.ndim > 2.

ensure_min_samples [int (default=1)] Make sure that the array has a minimum number of
samples in its first axis (rows for a 2D array). Setting to 0 disables this check.

ensure_min_features [int (default=1)] Make sure that the 2D array has some minimum number
of features (columns). The default value of 1 rejects empty datasets. This check is only en-
forced when the input data has effectively 2 dimensions or is originally 1D and ensure_2d
is True. Setting to 0 disables this check.

7.38. sklearn.utils: Utilities 2617

scikit-learn user guide, Release 0.23.2

estimator [str or estimator instance (default=None)] If passed, include the name of the estimator
in warning messages.

Returns

array_converted [object] The converted and validated array.

7.38.7 sklearn.utils.check_scalar

sklearn.utils.check_scalar(x, name, target_type, *, min_val=None, max_val=None)
Validate scalar parameters type and value.

Parameters

x [object] The scalar parameter to validate.

name [str] The name of the parameter to be printed in error messages.

target_type [type or tuple] Acceptable data types for the parameter.

min_val [float or int, optional (default=None)] The minimum valid value the parameter can
take. If None (default) it is implied that the parameter does not have a lower bound.

max_val [float or int, optional (default=None)] The maximum valid value the parameter can
take. If None (default) it is implied that the parameter does not have an upper bound.

Raises

TypeError If the parameter’s type does not match the desired type.

ValueError If the parameter’s value violates the given bounds.

7.38.8 sklearn.utils.check_consistent_length

sklearn.utils.check_consistent_length(*arrays)
Check that all arrays have consistent first dimensions.

Checks whether all objects in arrays have the same shape or length.

Parameters

*arrays [list or tuple of input objects.] Objects that will be checked for consistent length.

7.38.9 sklearn.utils.check_random_state

sklearn.utils.check_random_state(seed)
Turn seed into a np.random.RandomState instance

Parameters

seed [None | int | instance of RandomState] If seed is None, return the RandomState singleton
used by np.random. If seed is an int, return a new RandomState instance seeded with seed.
If seed is already a RandomState instance, return it. Otherwise raise ValueError.

2618 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Examples using sklearn.utils.check_random_state

• Empirical evaluation of the impact of k-means initialization

• MNIST classification using multinomial logistic + L1

• Manifold Learning methods on a severed sphere

• Isotonic Regression

• Face completion with a multi-output estimators

• Scaling the regularization parameter for SVCs

7.38.10 sklearn.utils.class_weight.compute_class_weight

sklearn.utils.class_weight.compute_class_weight(class_weight, *, classes, y)
Estimate class weights for unbalanced datasets.

Parameters

class_weight [dict, ‘balanced’ or None] If ‘balanced’, class weights will be given by
n_samples / (n_classes * np.bincount(y)). If a dictionary is given, keys
are classes and values are corresponding class weights. If None is given, the class weights
will be uniform.

classes [ndarray] Array of the classes occurring in the data, as given by np.unique(y_org)
with y_org the original class labels.

y [array-like, shape (n_samples,)] Array of original class labels per sample;

Returns

class_weight_vect [ndarray, shape (n_classes,)] Array with class_weight_vect[i] the weight for
i-th class

References

The “balanced” heuristic is inspired by Logistic Regression in Rare Events Data, King, Zen, 2001.

7.38.11 sklearn.utils.class_weight.compute_sample_weight

sklearn.utils.class_weight.compute_sample_weight(class_weight, y, *, indices=None)
Estimate sample weights by class for unbalanced datasets.

Parameters

class_weight [dict, list of dicts, “balanced”, or None, optional] Weights associated with classes
in the form {class_label: weight}. If not given, all classes are supposed to have
weight one. For multi-output problems, a list of dicts can be provided in the same order as
the columns of y.

Note that for multioutput (including multilabel) weights should be defined for each class of
every column in its own dict. For example, for four-class multilabel classification weights
should be [{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}] instead of [{1:1}, {2:5},
{3:1}, {4:1}].

7.38. sklearn.utils: Utilities 2619

scikit-learn user guide, Release 0.23.2

The “balanced” mode uses the values of y to automatically adjust weights inversely pro-
portional to class frequencies in the input data: n_samples / (n_classes * np.
bincount(y)).

For multi-output, the weights of each column of y will be multiplied.

y [array-like of shape (n_samples,) or (n_samples, n_outputs)] Array of original class labels per
sample.

indices [array-like, shape (n_subsample,), or None] Array of indices to be used in a subsample.
Can be of length less than n_samples in the case of a subsample, or equal to n_samples in
the case of a bootstrap subsample with repeated indices. If None, the sample weight will
be calculated over the full sample. Only “balanced” is supported for class_weight if this is
provided.

Returns

sample_weight_vect [ndarray, shape (n_samples,)] Array with sample weights as applied to
the original y

7.38.12 sklearn.utils.deprecated

sklearn.utils.deprecated(extra=”)
Decorator to mark a function or class as deprecated.

Issue a warning when the function is called/the class is instantiated and adds a warning to the docstring.

The optional extra argument will be appended to the deprecation message and the docstring. Note: to use this
with the default value for extra, put in an empty of parentheses:

>>> from sklearn.utils import deprecated
>>> deprecated()
<sklearn.utils.deprecation.deprecated object at ...>

>>> @deprecated()
... def some_function(): pass

Parameters

extra [string] to be added to the deprecation messages

7.38.13 sklearn.utils.estimator_checks.check_estimator

sklearn.utils.estimator_checks.check_estimator(Estimator, generate_only=False)
Check if estimator adheres to scikit-learn conventions.

This estimator will run an extensive test-suite for input validation, shapes, etc, making sure that the estimator
complies with scikit-learn conventions as detailed in Rolling your own estimator. Additional tests for
classifiers, regressors, clustering or transformers will be run if the Estimator class inherits from the correspond-
ing mixin from sklearn.base.

This test can be applied to classes or instances. Classes currently have some additional tests that related to
construction, while passing instances allows the testing of multiple options. However, support for classes is
deprecated since version 0.23 and will be removed in version 0.24 (class checks will still be run on the instances).

Setting generate_only=True returns a generator that yields (estimator, check) tuples where the check
can be called independently from each other, i.e. check(estimator). This allows all checks to be run
independently and report the checks that are failing.

2620 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

scikit-learn provides a pytest specific decorator, parametrize_with_checks, making it easier to test mul-
tiple estimators.

Parameters

estimator [estimator object] Estimator to check. Estimator is a class object or instance.

Deprecated since version 0.23: Passing a class is deprecated from version 0.23, and won’t
be supported in 0.24. Pass an instance instead.

generate_only [bool, optional (default=False)] When False, checks are evaluated when
check_estimator is called. When True, check_estimator returns a generator
that yields (estimator, check) tuples. The check is run by calling check(estimator).

New in version 0.22.

Returns

checks_generator [generator] Generator that yields (estimator, check) tuples. Returned when
generate_only=True.

7.38.14 sklearn.utils.estimator_checks.parametrize_with_checks

sklearn.utils.estimator_checks.parametrize_with_checks(estimators)
Pytest specific decorator for parametrizing estimator checks.

The id of each check is set to be a pprint version of the estimator and the name of the check with its keyword
arguments. This allows to use pytest -k to specify which tests to run:

pytest test_check_estimators.py -k check_estimators_fit_returns_self

Parameters

estimators [list of estimators objects or classes] Estimators to generated checks for.

Deprecated since version 0.23: Passing a class is deprecated from version 0.23, and won’t
be supported in 0.24. Pass an instance instead.

Returns

decorator [pytest.mark.parametrize]

Examples

>>> from sklearn.utils.estimator_checks import parametrize_with_checks
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.tree import DecisionTreeRegressor

>>> @parametrize_with_checks([LogisticRegression(),
... DecisionTreeRegressor()])
... def test_sklearn_compatible_estimator(estimator, check):
... check(estimator)

Examples using sklearn.utils.estimator_checks.parametrize_with_checks

• Release Highlights for scikit-learn 0.22

7.38. sklearn.utils: Utilities 2621

scikit-learn user guide, Release 0.23.2

7.38.15 sklearn.utils.estimator_html_repr

sklearn.utils.estimator_html_repr(estimator)
Build a HTML representation of an estimator.

Read more in the User Guide.

Parameters

estimator [estimator object] The estimator to visualize.

Returns

html: str HTML representation of estimator.

7.38.16 sklearn.utils.extmath.safe_sparse_dot

sklearn.utils.extmath.safe_sparse_dot(a, b, *, dense_output=False)
Dot product that handle the sparse matrix case correctly

Parameters

a [array or sparse matrix]

b [array or sparse matrix]

dense_output [boolean, (default=False)] When False, a and b both being sparse will yield
sparse output. When True, output will always be a dense array.

Returns

dot_product [array or sparse matrix] sparse if a and b are sparse and
dense_output=False.

7.38.17 sklearn.utils.extmath.randomized_range_finder

sklearn.utils.extmath.randomized_range_finder(A, *, size, n_iter,
power_iteration_normalizer=’auto’,
random_state=None)

Computes an orthonormal matrix whose range approximates the range of A.

Parameters

A [2D array] The input data matrix

size [integer] Size of the return array

n_iter [integer] Number of power iterations used to stabilize the result

power_iteration_normalizer [‘auto’ (default), ‘QR’, ‘LU’, ‘none’] Whether the power iter-
ations are normalized with step-by-step QR factorization (the slowest but most accurate),
‘none’ (the fastest but numerically unstable when n_iter is large, e.g. typically 5 or
larger), or ‘LU’ factorization (numerically stable but can lose slightly in accuracy). The
‘auto’ mode applies no normalization if n_iter <= 2 and switches to LU otherwise.

New in version 0.18.

random_state [int, RandomState instance or None, optional (default=None)] The seed of the
pseudo random number generator to use when shuffling the data, i.e. getting the random
vectors to initialize the algorithm. Pass an int for reproducible results across multiple func-
tion calls. See Glossary.

2622 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Returns

Q [2D array] A (size x size) projection matrix, the range of which approximates well the range
of the input matrix A.

Notes

Follows Algorithm 4.3 of Finding structure with randomness: Stochastic algorithms for constructing approxi-
mate matrix decompositions Halko, et al., 2009 (arXiv:909) https://arxiv.org/pdf/0909.4061.pdf

An implementation of a randomized algorithm for principal component analysis A. Szlam et al. 2014

7.38.18 sklearn.utils.extmath.randomized_svd

sklearn.utils.extmath.randomized_svd(M, n_components, *, n_oversamples=10,
n_iter=’auto’, power_iteration_normalizer=’auto’,
transpose=’auto’, flip_sign=True, random_state=0)

Computes a truncated randomized SVD

Parameters

M [ndarray or sparse matrix] Matrix to decompose

n_components [int] Number of singular values and vectors to extract.

n_oversamples [int (default is 10)] Additional number of random vectors to sample the range
of M so as to ensure proper conditioning. The total number of random vectors used to find
the range of M is n_components + n_oversamples. Smaller number can improve speed but
can negatively impact the quality of approximation of singular vectors and singular values.

n_iter [int or ‘auto’ (default is ‘auto’)] Number of power iterations. It can be used to deal
with very noisy problems. When ‘auto’, it is set to 4, unless n_components is small (<
.1 * min(X.shape)) n_iter in which case is set to 7. This improves precision with few
components.

Changed in version 0.18.

power_iteration_normalizer [‘auto’ (default), ‘QR’, ‘LU’, ‘none’] Whether the power iter-
ations are normalized with step-by-step QR factorization (the slowest but most accurate),
‘none’ (the fastest but numerically unstable when n_iter is large, e.g. typically 5 or
larger), or ‘LU’ factorization (numerically stable but can lose slightly in accuracy). The
‘auto’ mode applies no normalization if n_iter <= 2 and switches to LU otherwise.

New in version 0.18.

transpose [True, False or ‘auto’ (default)] Whether the algorithm should be applied to M.T
instead of M. The result should approximately be the same. The ‘auto’ mode will trigger
the transposition if M.shape[1] > M.shape[0] since this implementation of randomized SVD
tend to be a little faster in that case.

Changed in version 0.18.

flip_sign [boolean, (True by default)] The output of a singular value decomposition is only
unique up to a permutation of the signs of the singular vectors. If flip_sign is set to
True, the sign ambiguity is resolved by making the largest loadings for each component in
the left singular vectors positive.

random_state [int, RandomState instance or None, optional (default=None)] The seed of the
pseudo random number generator to use when shuffling the data, i.e. getting the random

7.38. sklearn.utils: Utilities 2623

scikit-learn user guide, Release 0.23.2

vectors to initialize the algorithm. Pass an int for reproducible results across multiple func-
tion calls. See Glossary.

Notes

This algorithm finds a (usually very good) approximate truncated singular value decomposition using random-
ization to speed up the computations. It is particularly fast on large matrices on which you wish to extract only
a small number of components. In order to obtain further speed up, n_iter can be set <=2 (at the cost of loss
of precision).

References

• Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompo-
sitions Halko, et al., 2009 https://arxiv.org/abs/0909.4061

• A randomized algorithm for the decomposition of matrices Per-Gunnar Martinsson, Vladimir Rokhlin and
Mark Tygert

• An implementation of a randomized algorithm for principal component analysis A. Szlam et al. 2014

7.38.19 sklearn.utils.extmath.fast_logdet

sklearn.utils.extmath.fast_logdet(A)
Compute log(det(A)) for A symmetric

Equivalent to : np.log(nl.det(A)) but more robust. It returns -Inf if det(A) is non positive or is not defined.

Parameters

A [array_like] The matrix

7.38.20 sklearn.utils.extmath.density

sklearn.utils.extmath.density(w, **kwargs)
Compute density of a sparse vector

Parameters

w [array_like] The sparse vector

Returns

float The density of w, between 0 and 1

Examples using sklearn.utils.extmath.density

• Classification of text documents using sparse features

7.38.21 sklearn.utils.extmath.weighted_mode

sklearn.utils.extmath.weighted_mode(a, w, *, axis=0)
Returns an array of the weighted modal (most common) value in a

If there is more than one such value, only the first is returned. The bin-count for the modal bins is also returned.

2624 Chapter 7. API Reference

https://arxiv.org/abs/0909.4061

scikit-learn user guide, Release 0.23.2

This is an extension of the algorithm in scipy.stats.mode.

Parameters

a [array_like] n-dimensional array of which to find mode(s).

w [array_like] n-dimensional array of weights for each value

axis [int, optional] Axis along which to operate. Default is 0, i.e. the first axis.

Returns

vals [ndarray] Array of modal values.

score [ndarray] Array of weighted counts for each mode.

See also:

scipy.stats.mode

Examples

>>> from sklearn.utils.extmath import weighted_mode
>>> x = [4, 1, 4, 2, 4, 2]
>>> weights = [1, 1, 1, 1, 1, 1]
>>> weighted_mode(x, weights)
(array([4.]), array([3.]))

The value 4 appears three times: with uniform weights, the result is simply the mode of the distribution.

>>> weights = [1, 3, 0.5, 1.5, 1, 2] # deweight the 4's
>>> weighted_mode(x, weights)
(array([2.]), array([3.5]))

The value 2 has the highest score: it appears twice with weights of 1.5 and 2: the sum of these is 3.5.

7.38.22 sklearn.utils.gen_even_slices

sklearn.utils.gen_even_slices(n, n_packs, *, n_samples=None)
Generator to create n_packs slices going up to n.

Parameters

n [int]

n_packs [int] Number of slices to generate.

n_samples [int or None (default = None)] Number of samples. Pass n_samples when the slices
are to be used for sparse matrix indexing; slicing off-the-end raises an exception, while it
works for NumPy arrays.

Yields

slice

Examples

7.38. sklearn.utils: Utilities 2625

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mode.html#scipy.stats.mode

scikit-learn user guide, Release 0.23.2

>>> from sklearn.utils import gen_even_slices
>>> list(gen_even_slices(10, 1))
[slice(0, 10, None)]
>>> list(gen_even_slices(10, 10))
[slice(0, 1, None), slice(1, 2, None), ..., slice(9, 10, None)]
>>> list(gen_even_slices(10, 5))
[slice(0, 2, None), slice(2, 4, None), ..., slice(8, 10, None)]
>>> list(gen_even_slices(10, 3))
[slice(0, 4, None), slice(4, 7, None), slice(7, 10, None)]

Examples using sklearn.utils.gen_even_slices

• Poisson regression and non-normal loss

7.38.23 sklearn.utils.graph.single_source_shortest_path_length

sklearn.utils.graph.single_source_shortest_path_length(graph, source, *, cut-
off=None)

Return the shortest path length from source to all reachable nodes.

Returns a dictionary of shortest path lengths keyed by target.

Parameters

graph [sparse matrix or 2D array (preferably LIL matrix)] Adjacency matrix of the graph

source [integer] Starting node for path

cutoff [integer, optional] Depth to stop the search - only paths of length <= cutoff are returned.

Examples

>>> from sklearn.utils.graph import single_source_shortest_path_length
>>> import numpy as np
>>> graph = np.array([[0, 1, 0, 0],
... [1, 0, 1, 0],
... [0, 1, 0, 1],
... [0, 0, 1, 0]])
>>> list(sorted(single_source_shortest_path_length(graph, 0).items()))
[(0, 0), (1, 1), (2, 2), (3, 3)]
>>> graph = np.ones((6, 6))
>>> list(sorted(single_source_shortest_path_length(graph, 2).items()))
[(0, 1), (1, 1), (2, 0), (3, 1), (4, 1), (5, 1)]

7.38.24 sklearn.utils.graph_shortest_path.graph_shortest_path

sklearn.utils.graph_shortest_path.graph_shortest_path()
Perform a shortest-path graph search on a positive directed or undirected graph.

Parameters

dist_matrix [arraylike or sparse matrix, shape = (N,N)] Array of positive distances. If vertex
i is connected to vertex j, then dist_matrix[i,j] gives the distance between the vertices. If
vertex i is not connected to vertex j, then dist_matrix[i,j] = 0

2626 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

directed [boolean] if True, then find the shortest path on a directed graph: only progress from
a point to its neighbors, not the other way around. if False, then find the shortest path on an
undirected graph: the algorithm can progress from a point to its neighbors and vice versa.

method [string [‘auto’|’FW’|’D’]] method to use. Options are ‘auto’ : attempt to choose the best
method for the current problem ‘FW’ : Floyd-Warshall algorithm. O[N^3] ‘D’ : Dijkstra’s
algorithm with Fibonacci stacks. O[(k+log(N))N^2]

Returns

G [np.ndarray, float, shape = [N,N]] G[i,j] gives the shortest distance from point i to point j
along the graph.

Notes

As currently implemented, Dijkstra’s algorithm does not work for graphs with direction-dependent distances
when directed == False. i.e., if dist_matrix[i,j] and dist_matrix[j,i] are not equal and both are nonzero,
method=’D’ will not necessarily yield the correct result.

Also, these routines have not been tested for graphs with negative distances. Negative distances can lead to
infinite cycles that must be handled by specialized algorithms.

7.38.25 sklearn.utils.indexable

sklearn.utils.indexable(*iterables)
Make arrays indexable for cross-validation.

Checks consistent length, passes through None, and ensures that everything can be indexed by converting sparse
matrices to csr and converting non-interable objects to arrays.

Parameters

*iterables [lists, dataframes, arrays, sparse matrices] List of objects to ensure sliceability.

7.38.26 sklearn.utils.metaestimators.if_delegate_has_method

sklearn.utils.metaestimators.if_delegate_has_method(delegate)
Create a decorator for methods that are delegated to a sub-estimator

This enables ducktyping by hasattr returning True according to the sub-estimator.

Parameters

delegate [string, list of strings or tuple of strings] Name of the sub-estimator that can be ac-
cessed as an attribute of the base object. If a list or a tuple of names are provided, the first
sub-estimator that is an attribute of the base object will be used.

Examples using sklearn.utils.metaestimators.if_delegate_has_method

• Inductive Clustering

7.38. sklearn.utils: Utilities 2627

scikit-learn user guide, Release 0.23.2

7.38.27 sklearn.utils.multiclass.type_of_target

sklearn.utils.multiclass.type_of_target(y)
Determine the type of data indicated by the target.

Note that this type is the most specific type that can be inferred. For example:

• binary is more specific but compatible with multiclass.

• multiclass of integers is more specific but compatible with continuous.

• multilabel-indicator is more specific but compatible with multiclass-multioutput.

Parameters

y [array-like]

Returns

target_type [string] One of:

• ‘continuous’: y is an array-like of floats that are not all integers, and is 1d or a column
vector.

• ‘continuous-multioutput’: y is a 2d array of floats that are not all integers, and both
dimensions are of size > 1.

• ‘binary’: y contains <= 2 discrete values and is 1d or a column vector.

• ‘multiclass’: y contains more than two discrete values, is not a sequence of sequences,
and is 1d or a column vector.

• ‘multiclass-multioutput’: y is a 2d array that contains more than two discrete values, is
not a sequence of sequences, and both dimensions are of size > 1.

• ‘multilabel-indicator’: y is a label indicator matrix, an array of two dimensions with at
least two columns, and at most 2 unique values.

• ‘unknown’: y is array-like but none of the above, such as a 3d array, sequence of se-
quences, or an array of non-sequence objects.

Examples

>>> import numpy as np
>>> type_of_target([0.1, 0.6])
'continuous'
>>> type_of_target([1, -1, -1, 1])
'binary'
>>> type_of_target(['a', 'b', 'a'])
'binary'
>>> type_of_target([1.0, 2.0])
'binary'
>>> type_of_target([1, 0, 2])
'multiclass'
>>> type_of_target([1.0, 0.0, 3.0])
'multiclass'
>>> type_of_target(['a', 'b', 'c'])
'multiclass'
>>> type_of_target(np.array([[1, 2], [3, 1]]))
'multiclass-multioutput'
>>> type_of_target([[1, 2]])

(continues on next page)

2628 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

(continued from previous page)

'multilabel-indicator'
>>> type_of_target(np.array([[1.5, 2.0], [3.0, 1.6]]))
'continuous-multioutput'
>>> type_of_target(np.array([[0, 1], [1, 1]]))
'multilabel-indicator'

7.38.28 sklearn.utils.multiclass.is_multilabel

sklearn.utils.multiclass.is_multilabel(y)
Check if y is in a multilabel format.

Parameters

y [numpy array of shape [n_samples]] Target values.

Returns

out [bool,] Return True, if y is in a multilabel format, else `False.

Examples

>>> import numpy as np
>>> from sklearn.utils.multiclass import is_multilabel
>>> is_multilabel([0, 1, 0, 1])
False
>>> is_multilabel([[1], [0, 2], []])
False
>>> is_multilabel(np.array([[1, 0], [0, 0]]))
True
>>> is_multilabel(np.array([[1], [0], [0]]))
False
>>> is_multilabel(np.array([[1, 0, 0]]))
True

7.38.29 sklearn.utils.multiclass.unique_labels

sklearn.utils.multiclass.unique_labels(*ys)
Extract an ordered array of unique labels

We don’t allow:

• mix of multilabel and multiclass (single label) targets

• mix of label indicator matrix and anything else, because there are no explicit labels)

• mix of label indicator matrices of different sizes

• mix of string and integer labels

At the moment, we also don’t allow “multiclass-multioutput” input type.

Parameters

*ys [array-likes]

Returns

7.38. sklearn.utils: Utilities 2629

scikit-learn user guide, Release 0.23.2

out [numpy array of shape [n_unique_labels]] An ordered array of unique labels.

Examples

>>> from sklearn.utils.multiclass import unique_labels
>>> unique_labels([3, 5, 5, 5, 7, 7])
array([3, 5, 7])
>>> unique_labels([1, 2, 3, 4], [2, 2, 3, 4])
array([1, 2, 3, 4])
>>> unique_labels([1, 2, 10], [5, 11])
array([1, 2, 5, 10, 11])

7.38.30 sklearn.utils.murmurhash3_32

sklearn.utils.murmurhash3_32()
Compute the 32bit murmurhash3 of key at seed.

The underlying implementation is MurmurHash3_x86_32 generating low latency 32bits hash suitable for im-
plementing lookup tables, Bloom filters, count min sketch or feature hashing.

Parameters

key [int32, bytes, unicode or ndarray with dtype int32] the physical object to hash

seed [int, optional default is 0] integer seed for the hashing algorithm.

positive [boolean, optional default is False]

True: the results is casted to an unsigned int from 0 to 2 ** 32 - 1

False: the results is casted to a signed int from -(2 ** 31) to 2 ** 31 - 1

7.38.31 sklearn.utils.resample

sklearn.utils.resample(*arrays, **options)
Resample arrays or sparse matrices in a consistent way

The default strategy implements one step of the bootstrapping procedure.

Parameters

*arrays [sequence of indexable data-structures] Indexable data-structures can be arrays, lists,
dataframes or scipy sparse matrices with consistent first dimension.

Returns

resampled_arrays [sequence of indexable data-structures] Sequence of resampled copies of
the collections. The original arrays are not impacted.

Other Parameters

replace [boolean, True by default] Implements resampling with replacement. If False, this will
implement (sliced) random permutations.

n_samples [int, None by default] Number of samples to generate. If left to None this is auto-
matically set to the first dimension of the arrays. If replace is False it should not be larger
than the length of arrays.

2630 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

random_state [int, RandomState instance or None, optional (default=None)] Determines ran-
dom number generation for shuffling the data. Pass an int for reproducible results across
multiple function calls. See Glossary.

stratify [array-like or None (default=None)] If not None, data is split in a stratified fashion,
using this as the class labels.

See also:

sklearn.utils.shuffle

Examples

It is possible to mix sparse and dense arrays in the same run:

>>> X = np.array([[1., 0.], [2., 1.], [0., 0.]])
>>> y = np.array([0, 1, 2])

>>> from scipy.sparse import coo_matrix
>>> X_sparse = coo_matrix(X)

>>> from sklearn.utils import resample
>>> X, X_sparse, y = resample(X, X_sparse, y, random_state=0)
>>> X
array([[1., 0.],

[2., 1.],
[1., 0.]])

>>> X_sparse
<3x2 sparse matrix of type '<... 'numpy.float64'>'

with 4 stored elements in Compressed Sparse Row format>

>>> X_sparse.toarray()
array([[1., 0.],

[2., 1.],
[1., 0.]])

>>> y
array([0, 1, 0])

>>> resample(y, n_samples=2, random_state=0)
array([0, 1])

Example using stratification:

>>> y = [0, 0, 1, 1, 1, 1, 1, 1, 1]
>>> resample(y, n_samples=5, replace=False, stratify=y,
... random_state=0)
[1, 1, 1, 0, 1]

7.38.32 sklearn.utils._safe_indexing

sklearn.utils._safe_indexing(X, indices, *, axis=0)
Return rows, items or columns of X using indices.

7.38. sklearn.utils: Utilities 2631

scikit-learn user guide, Release 0.23.2

Warning: This utility is documented, but private. This means that backward compatibility might be broken
without any deprecation cycle.

Parameters

X [array-like, sparse-matrix, list, pandas.DataFrame, pandas.Series] Data from which to sample
rows, items or columns. list are only supported when axis=0.

indices [bool, int, str, slice, array-like]

• If axis=0, boolean and integer array-like, integer slice, and scalar integer are supported.

• If axis=1:

– to select a single column, indices can be of int type for all X types and str
only for dataframe. The selected subset will be 1D, unless X is a sparse matrix in
which case it will be 2D.

– to select multiples columns, indices can be one of the following: list, array,
slice. The type used in these containers can be one of the following: int, ‘bool’
and str. However, str is only supported when X is a dataframe. The selected
subset will be 2D.

axis [int, default=0] The axis along which X will be subsampled. axis=0 will select rows
while axis=1 will select columns.

Returns

subset Subset of X on axis 0 or 1.

Notes

CSR, CSC, and LIL sparse matrices are supported. COO sparse matrices are not supported.

7.38.33 sklearn.utils.safe_mask

sklearn.utils.safe_mask(X, mask)
Return a mask which is safe to use on X.

Parameters

X [{array-like, sparse matrix}] Data on which to apply mask.

mask [array] Mask to be used on X.

Returns

mask

7.38.34 sklearn.utils.safe_sqr

sklearn.utils.safe_sqr(X, *, copy=True)
Element wise squaring of array-likes and sparse matrices.

Parameters

X [array like, matrix, sparse matrix]

2632 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

copy [boolean, optional, default True] Whether to create a copy of X and operate on it or to
perform inplace computation (default behaviour).

Returns

X ** 2 [element wise square]

7.38.35 sklearn.utils.shuffle

sklearn.utils.shuffle(*arrays, **options)
Shuffle arrays or sparse matrices in a consistent way

This is a convenience alias to resample(*arrays, replace=False) to do random permutations of the
collections.

Parameters

*arrays [sequence of indexable data-structures] Indexable data-structures can be arrays, lists,
dataframes or scipy sparse matrices with consistent first dimension.

Returns

shuffled_arrays [sequence of indexable data-structures] Sequence of shuffled copies of the col-
lections. The original arrays are not impacted.

Other Parameters

random_state [int, RandomState instance or None, optional (default=None)] Determines ran-
dom number generation for shuffling the data. Pass an int for reproducible results across
multiple function calls. See Glossary.

n_samples [int, None by default] Number of samples to generate. If left to None this is auto-
matically set to the first dimension of the arrays.

See also:

sklearn.utils.resample

Examples

It is possible to mix sparse and dense arrays in the same run:

>>> X = np.array([[1., 0.], [2., 1.], [0., 0.]])
>>> y = np.array([0, 1, 2])

>>> from scipy.sparse import coo_matrix
>>> X_sparse = coo_matrix(X)

>>> from sklearn.utils import shuffle
>>> X, X_sparse, y = shuffle(X, X_sparse, y, random_state=0)
>>> X
array([[0., 0.],

[2., 1.],
[1., 0.]])

>>> X_sparse
<3x2 sparse matrix of type '<... 'numpy.float64'>'

with 3 stored elements in Compressed Sparse Row format>

(continues on next page)

7.38. sklearn.utils: Utilities 2633

scikit-learn user guide, Release 0.23.2

(continued from previous page)

>>> X_sparse.toarray()
array([[0., 0.],

[2., 1.],
[1., 0.]])

>>> y
array([2, 1, 0])

>>> shuffle(y, n_samples=2, random_state=0)
array([0, 1])

Examples using sklearn.utils.shuffle

• Approximate nearest neighbors in TSNE

7.38.36 sklearn.utils.sparsefuncs.incr_mean_variance_axis

sklearn.utils.sparsefuncs.incr_mean_variance_axis(X, *, axis, last_mean, last_var,
last_n)

Compute incremental mean and variance along an axix on a CSR or CSC matrix.

last_mean, last_var are the statistics computed at the last step by this function. Both must be initialized to 0-
arrays of the proper size, i.e. the number of features in X. last_n is the number of samples encountered until
now.

Parameters

X [CSR or CSC sparse matrix, shape (n_samples, n_features)] Input data.

axis [int (either 0 or 1)] Axis along which the axis should be computed.

last_mean [float array with shape (n_features,)] Array of feature-wise means to update with the
new data X.

last_var [float array with shape (n_features,)] Array of feature-wise var to update with the new
data X.

last_n [int with shape (n_features,)] Number of samples seen so far, excluded X.

Returns

means [float array with shape (n_features,)] Updated feature-wise means.

variances [float array with shape (n_features,)] Updated feature-wise variances.

n [int with shape (n_features,)] Updated number of seen samples.

Notes

NaNs are ignored in the algorithm.

7.38.37 sklearn.utils.sparsefuncs.inplace_column_scale

sklearn.utils.sparsefuncs.inplace_column_scale(X, scale)
Inplace column scaling of a CSC/CSR matrix.

2634 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

Scale each feature of the data matrix by multiplying with specific scale provided by the caller assuming a
(n_samples, n_features) shape.

Parameters

X [CSC or CSR matrix with shape (n_samples, n_features)] Matrix to normalize using the vari-
ance of the features.

scale [float array with shape (n_features,)] Array of precomputed feature-wise values to use for
scaling.

7.38.38 sklearn.utils.sparsefuncs.inplace_row_scale

sklearn.utils.sparsefuncs.inplace_row_scale(X, scale)
Inplace row scaling of a CSR or CSC matrix.

Scale each row of the data matrix by multiplying with specific scale provided by the caller assuming a
(n_samples, n_features) shape.

Parameters

X [CSR or CSC sparse matrix, shape (n_samples, n_features)] Matrix to be scaled.

scale [float array with shape (n_features,)] Array of precomputed sample-wise values to use for
scaling.

7.38.39 sklearn.utils.sparsefuncs.inplace_swap_row

sklearn.utils.sparsefuncs.inplace_swap_row(X, m, n)
Swaps two rows of a CSC/CSR matrix in-place.

Parameters

X [CSR or CSC sparse matrix, shape=(n_samples, n_features)] Matrix whose two rows are to
be swapped.

m [int] Index of the row of X to be swapped.

n [int] Index of the row of X to be swapped.

7.38.40 sklearn.utils.sparsefuncs.inplace_swap_column

sklearn.utils.sparsefuncs.inplace_swap_column(X, m, n)
Swaps two columns of a CSC/CSR matrix in-place.

Parameters

X [CSR or CSC sparse matrix, shape=(n_samples, n_features)] Matrix whose two columns are
to be swapped.

m [int] Index of the column of X to be swapped.

n [int] Index of the column of X to be swapped.

7.38. sklearn.utils: Utilities 2635

scikit-learn user guide, Release 0.23.2

7.38.41 sklearn.utils.sparsefuncs.mean_variance_axis

sklearn.utils.sparsefuncs.mean_variance_axis(X, axis)
Compute mean and variance along an axix on a CSR or CSC matrix

Parameters

X [CSR or CSC sparse matrix, shape (n_samples, n_features)] Input data.

axis [int (either 0 or 1)] Axis along which the axis should be computed.

Returns

means [float array with shape (n_features,)] Feature-wise means

variances [float array with shape (n_features,)] Feature-wise variances

7.38.42 sklearn.utils.sparsefuncs.inplace_csr_column_scale

sklearn.utils.sparsefuncs.inplace_csr_column_scale(X, scale)
Inplace column scaling of a CSR matrix.

Scale each feature of the data matrix by multiplying with specific scale provided by the caller assuming a
(n_samples, n_features) shape.

Parameters

X [CSR matrix with shape (n_samples, n_features)] Matrix to normalize using the variance of
the features.

scale [float array with shape (n_features,)] Array of precomputed feature-wise values to use for
scaling.

7.38.43 sklearn.utils.sparsefuncs_fast.inplace_csr_row_normalize_l1

sklearn.utils.sparsefuncs_fast.inplace_csr_row_normalize_l1()
Inplace row normalize using the l1 norm

7.38.44 sklearn.utils.sparsefuncs_fast.inplace_csr_row_normalize_l2

sklearn.utils.sparsefuncs_fast.inplace_csr_row_normalize_l2()
Inplace row normalize using the l2 norm

7.38.45 sklearn.utils.random.sample_without_replacement

sklearn.utils.random.sample_without_replacement()
Sample integers without replacement.

Select n_samples integers from the set [0, n_population) without replacement.

Parameters

n_population [int,] The size of the set to sample from.

n_samples [int,] The number of integer to sample.

2636 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

random_state [int, RandomState instance or None, optional (default=None)] If int, ran-
dom_state is the seed used by the random number generator; If RandomState instance,
random_state is the random number generator; If None, the random number generator is
the RandomState instance used by np.random.

method [“auto”, “tracking_selection”, “reservoir_sampling” or “pool”] If method == “auto”,
the ratio of n_samples / n_population is used to determine which algorithm to use: If ra-
tio is between 0 and 0.01, tracking selection is used. If ratio is between 0.01 and 0.99,
numpy.random.permutation is used. If ratio is greater than 0.99, reservoir sampling is used.
The order of the selected integers is undefined. If a random order is desired, the selected
subset should be shuffled.

If method ==”tracking_selection”, a set based implementation is used which is suitable for
n_samples <<< n_population.

If method == “reservoir_sampling”, a reservoir sampling algorithm is used which is suitable
for high memory constraint or when O(n_samples) ~ O(n_population). The order of
the selected integers is undefined. If a random order is desired, the selected subset should
be shuffled.

If method == “pool”, a pool based algorithm is particularly fast, even faster than the tracking
selection method. Hovewer, a vector containing the entire population has to be initialized.
If n_samples ~ n_population, the reservoir sampling method is faster.

Returns

out [array of size (n_samples,)] The sampled subsets of integer. The subset of selected integer
might not be randomized, see the method argument.

7.38.46 sklearn.utils.validation.check_is_fitted

sklearn.utils.validation.check_is_fitted(estimator, attributes=None, *, msg=None,
all_or_any=<built-in function all>)

Perform is_fitted validation for estimator.

Checks if the estimator is fitted by verifying the presence of fitted attributes (ending with a trailing underscore)
and otherwise raises a NotFittedError with the given message.

This utility is meant to be used internally by estimators themselves, typically in their own predict / transform
methods.

Parameters

estimator [estimator instance.] estimator instance for which the check is performed.

attributes [str, list or tuple of str, default=None] Attribute name(s) given as string or a list/tuple
of strings Eg.: ["coef_", "estimator_", ...], "coef_"

If None, estimator is considered fitted if there exist an attribute that ends with a under-
score and does not start with double underscore.

msg [string] The default error message is, “This %(name)s instance is not fitted yet. Call ‘fit’
with appropriate arguments before using this estimator.”

For custom messages if “%(name)s” is present in the message string, it is substituted for the
estimator name.

Eg. : “Estimator, %(name)s, must be fitted before sparsifying”.

all_or_any [callable, {all, any}, default all] Specify whether all or any of the given attributes
must exist.

7.38. sklearn.utils: Utilities 2637

scikit-learn user guide, Release 0.23.2

Returns

None

Raises

NotFittedError If the attributes are not found.

7.38.47 sklearn.utils.validation.check_memory

sklearn.utils.validation.check_memory(memory)
Check that memory is joblib.Memory-like.

joblib.Memory-like means that memory can be converted into a joblib.Memory instance (typically a str denoting
the location) or has the same interface (has a cache method).

Parameters

memory [None, str or object with the joblib.Memory interface]

Returns

memory [object with the joblib.Memory interface]

Raises

ValueError If memory is not joblib.Memory-like.

7.38.48 sklearn.utils.validation.check_symmetric

sklearn.utils.validation.check_symmetric(array, *, tol=1e-10, raise_warning=True,
raise_exception=False)

Make sure that array is 2D, square and symmetric.

If the array is not symmetric, then a symmetrized version is returned. Optionally, a warning or exception is
raised if the matrix is not symmetric.

Parameters

array [nd-array or sparse matrix] Input object to check / convert. Must be two-dimensional and
square, otherwise a ValueError will be raised.

tol [float] Absolute tolerance for equivalence of arrays. Default = 1E-10.

raise_warning [boolean (default=True)] If True then raise a warning if conversion is required.

raise_exception [boolean (default=False)] If True then raise an exception if array is not sym-
metric.

Returns

array_sym [ndarray or sparse matrix] Symmetrized version of the input array, i.e. the average
of array and array.transpose(). If sparse, then duplicate entries are first summed and zeros
are eliminated.

7.38.49 sklearn.utils.validation.column_or_1d

sklearn.utils.validation.column_or_1d(y, *, warn=False)
Ravel column or 1d numpy array, else raises an error

Parameters

2638 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

y [array-like]

warn [boolean, default False] To control display of warnings.

Returns

y [array]

7.38.50 sklearn.utils.validation.has_fit_parameter

sklearn.utils.validation.has_fit_parameter(estimator, parameter)
Checks whether the estimator’s fit method supports the given parameter.

Parameters

estimator [object] An estimator to inspect.

parameter [str] The searched parameter.

Returns

is_parameter: bool Whether the parameter was found to be a named parameter of the estima-
tor’s fit method.

Examples

>>> from sklearn.svm import SVC
>>> has_fit_parameter(SVC(), "sample_weight")
True

7.38.51 sklearn.utils.all_estimators

sklearn.utils.all_estimators(type_filter=None)
Get a list of all estimators from sklearn.

This function crawls the module and gets all classes that inherit from BaseEstimator. Classes that are defined in
test-modules are not included. By default meta_estimators such as GridSearchCV are also not included.

Parameters

type_filter [string, list of string, or None, default=None] Which kind of estimators should be
returned. If None, no filter is applied and all estimators are returned. Possible values are
‘classifier’, ‘regressor’, ‘cluster’ and ‘transformer’ to get estimators only of these specific
types, or a list of these to get the estimators that fit at least one of the types.

Returns

estimators [list of tuples] List of (name, class), where name is the class name as string and
class is the actuall type of the class.

Utilities from joblib:

utils.parallel_backend(backend[, n_jobs,
. . .])

Change the default backend used by Parallel inside a
with block.

utils.register_parallel_backend(name,
factory)

Register a new Parallel backend factory.

7.38. sklearn.utils: Utilities 2639

scikit-learn user guide, Release 0.23.2

7.38.52 sklearn.utils.parallel_backend

sklearn.utils.parallel_backend(backend, n_jobs=-1, inner_max_num_threads=None, **back-
end_params)

Change the default backend used by Parallel inside a with block.

If backend is a string it must match a previously registered implementation using the
register_parallel_backend function.

By default the following backends are available:

• ‘loky’: single-host, process-based parallelism (used by default),

• ‘threading’: single-host, thread-based parallelism,

• ‘multiprocessing’: legacy single-host, process-based parallelism.

‘loky’ is recommended to run functions that manipulate Python objects. ‘threading’ is a low-overhead alternative
that is most efficient for functions that release the Global Interpreter Lock: e.g. I/O-bound code or CPU-bound
code in a few calls to native code that explicitly releases the GIL.

In addition, if the dask and distributed Python packages are installed, it is possible to use the ‘dask’
backend for better scheduling of nested parallel calls without over-subscription and potentially distribute parallel
calls over a networked cluster of several hosts.

Alternatively the backend can be passed directly as an instance.

By default all available workers will be used (n_jobs=-1) unless the caller passes an explicit value for the
n_jobs parameter.

This is an alternative to passing a backend='backend_name' argument to the Parallel class construc-
tor. It is particularly useful when calling into library code that uses joblib internally but does not expose the
backend argument in its own API.

>>> from operator import neg
>>> with parallel_backend('threading'):
... print(Parallel()(delayed(neg)(i + 1) for i in range(5)))
...
[-1, -2, -3, -4, -5]

Warning: this function is experimental and subject to change in a future version of joblib.

Joblib also tries to limit the oversubscription by limiting the number of threads usable in some third-party library
threadpools like OpenBLAS, MKL or OpenMP. The default limit in each worker is set to max(cpu_count()
// effective_n_jobs, 1) but this limit can be overwritten with the inner_max_num_threads
argument which will be used to set this limit in the child processes.

New in version 0.10.

7.38.53 sklearn.utils.register_parallel_backend

sklearn.utils.register_parallel_backend(name, factory, make_default=False)
Register a new Parallel backend factory.

The new backend can then be selected by passing its name as the backend argument to the Parallel class.
Moreover, the default backend can be overwritten globally by setting make_default=True.

The factory can be any callable that takes no argument and return an instance of ParallelBackendBase.

Warning: this function is experimental and subject to change in a future version of joblib.

New in version 0.10.

2640 Chapter 7. API Reference

scikit-learn user guide, Release 0.23.2

7.39 Recently deprecated

7.39.1 To be removed in 0.24

model_selection.fit_grid_point(X, y, . . . [,
. . .])

DEPRECATED: fit_grid_point is deprecated in version
0.23 and will be removed in version 0.25

utils.safe_indexing(X, indices, *[, axis]) DEPRECATED: safe_indexing is deprecated in version
0.22 and will be removed in version 0.24.

sklearn.model_selection.fit_grid_point

Warning: DEPRECATED

sklearn.model_selection.fit_grid_point(X, y, estimator, parameters, train, test, scorer, ver-
bose, error_score=nan, **fit_params)

DEPRECATED: fit_grid_point is deprecated in version 0.23 and will be removed in version 0.25

Run fit on one set of parameters.

Parameters

X [array-like, sparse matrix or list] Input data.

y [array-like or None] Targets for input data.

estimator [estimator object] A object of that type is instantiated for each grid point. This is
assumed to implement the scikit-learn estimator interface. Either estimator needs to provide
a score function, or scoring must be passed.

parameters [dict] Parameters to be set on estimator for this grid point.

train [ndarray, dtype int or bool] Boolean mask or indices for training set.

test [ndarray, dtype int or bool] Boolean mask or indices for test set.

scorer [callable or None] The scorer callable object / function must have its signature as
scorer(estimator, X, y).

If None the estimator’s score method is used.

verbose [int] Verbosity level.

**fit_params [kwargs] Additional parameter passed to the fit function of the estimator.

error_score [‘raise’ or numeric, default=np.nan] Value to assign to the score if an error occurs
in estimator fitting. If set to ‘raise’, the error is raised. If a numeric value is given, FitFailed-
Warning is raised. This parameter does not affect the refit step, which will always raise the
error.

Returns

score [float] Score of this parameter setting on given test split.

parameters [dict] The parameters that have been evaluated.

n_samples_test [int] Number of test samples in this split.

7.39. Recently deprecated 2641

scikit-learn user guide, Release 0.23.2

sklearn.utils.safe_indexing

Warning: DEPRECATED

sklearn.utils.safe_indexing(X, indices, *, axis=0)
DEPRECATED: safe_indexing is deprecated in version 0.22 and will be removed in version 0.24.

Return rows, items or columns of X using indices.

Deprecated since version 0.22: This function was deprecated in version 0.22 and will be removed in version
0.24.

Parameters

X [array-like, sparse-matrix, list, pandas.DataFrame, pandas.Series] Data from which to sample
rows, items or columns. list are only supported when axis=0.

indices [bool, int, str, slice, array-like]

• If axis=0, boolean and integer array-like, integer slice, and scalar integer are supported.

• If axis=1:

– to select a single column, indices can be of int type for all X types and str only
for dataframe. The selected subset will be 1D, unless X is a sparse matrix in which case
it will be 2D.

– to select multiples columns, indices can be one of the following: list, array,
slice. The type used in these containers can be one of the following: int, ‘bool’
and str. However, str is only supported when X is a dataframe. The selected subset
will be 2D.

axis [int, default=0] The axis along which X will be subsampled. axis=0 will select rows
while axis=1 will select columns.

Returns

subset Subset of X on axis 0 or 1.

Notes

CSR, CSC, and LIL sparse matrices are supported. COO sparse matrices are not supported.

2642 Chapter 7. API Reference

CHAPTER

EIGHT

DEVELOPER’S GUIDE

8.1 Contributing

This project is a community effort, and everyone is welcome to contribute.

The project is hosted on https://github.com/scikit-learn/scikit-learn

The decision making process and governance structure of scikit-learn is laid out in the governance document: Scikit-
learn governance and decision-making.

Scikit-learn is somewhat selective when it comes to adding new algorithms, and the best way to contribute and to help
the project is to start working on known issues. See Issues for New Contributors to get started.

Our community, our values

We are a community based on openness and friendly, didactic, discussions.

We aspire to treat everybody equally, and value their contributions.

Decisions are made based on technical merit and consensus.

Code is not the only way to help the project. Reviewing pull requests, answering questions to help others on
mailing lists or issues, organizing and teaching tutorials, working on the website, improving the documentation, are
all priceless contributions.

We abide by the principles of openness, respect, and consideration of others of the Python Software Foundation:
https://www.python.org/psf/codeofconduct/

In case you experience issues using this package, do not hesitate to submit a ticket to the GitHub issue tracker. You
are also welcome to post feature requests or pull requests.

8.1.1 Ways to contribute

There are many ways to contribute to scikit-learn, with the most common ones being contribution of code or docu-
mentation to the project. Improving the documentation is no less important than improving the library itself. If you
find a typo in the documentation, or have made improvements, do not hesitate to send an email to the mailing list or
preferably submit a GitHub pull request. Full documentation can be found under the doc/ directory.

But there are many other ways to help. In particular answering queries on the issue tracker, investigating bugs,
and reviewing other developers’ pull requests are very valuable contributions that decrease the burden on the project
maintainers.

2643

https://github.com/scikit-learn/scikit-learn
https://www.python.org/psf/codeofconduct/
https://github.com/scikit-learn/scikit-learn/issues
https://github.com/scikit-learn/scikit-learn/issues

scikit-learn user guide, Release 0.23.2

Another way to contribute is to report issues you’re facing, and give a “thumbs up” on issues that others reported and
that are relevant to you. It also helps us if you spread the word: reference the project from your blog and articles, link
to it from your website, or simply star to say “I use it”:

In case a contribution/issue involves changes to the API principles or changes to dependencies or supported versions, it
must be backed by a Enhancement proposals (SLEPs), where a SLEP must be submitted as a pull-request to enhance-
ment proposals using the SLEP template and follows the decision-making process outlined in Scikit-learn governance
and decision-making.

Contributing to related projects

Scikit-learn thrives in an ecosystem of several related projects, which also may have relevant issues to work on,
including smaller projects such as:

• scikit-learn-contrib

• joblib

• sphinx-gallery

• numpydoc

• liac-arff

and larger projects:

• numpy

• scipy

• matplotlib

• and so on.

Look for issues marked “help wanted” or similar. Helping these projects may help Scikit-learn too. See also Related
Projects.

8.1.2 Submitting a bug report or a feature request

We use GitHub issues to track all bugs and feature requests; feel free to open an issue if you have found a bug or wish
to see a feature implemented.

In case you experience issues using this package, do not hesitate to submit a ticket to the Bug Tracker. You are also
welcome to post feature requests or pull requests.

It is recommended to check that your issue complies with the following rules before submitting:

• Verify that your issue is not being currently addressed by other issues or pull requests.

• If you are submitting an algorithm or feature request, please verify that the algorithm fulfills our new algorithm
requirements.

• If you are submitting a bug report, we strongly encourage you to follow the guidelines in How to make a good
bug report.

How to make a good bug report

When you submit an issue to Github, please do your best to follow these guidelines! This will make it a lot easier to
provide you with good feedback:

2644 Chapter 8. Developer’s Guide

https://scikit-learn-enhancement-proposals.readthedocs.io
https://scikit-learn-enhancement-proposals.readthedocs.io
https://scikit-learn-enhancement-proposals.readthedocs.io/en/latest/slep_template.html
https://github.com/search?q=org%3Ascikit-learn-contrib+is%3Aissue+is%3Aopen+sort%3Aupdated-desc&type=Issues
https://github.com/joblib/joblib/issues
https://github.com/sphinx-gallery/sphinx-gallery/issues
https://github.com/numpy/numpydoc/issues
https://github.com/renatopp/liac-arff
https://github.com/numpy/numpy/issues
https://github.com/scipy/scipy/issues
https://github.com/matplotlib/matplotlib/issues
https://github.com/scikit-learn/scikit-learn/issues
https://github.com/scikit-learn/scikit-learn/issues?q=
https://github.com/scikit-learn/scikit-learn/pulls?q=
http://scikit-learn.org/stable/faq.html#what-are-the-inclusion-criteria-for-new-algorithms
http://scikit-learn.org/stable/faq.html#what-are-the-inclusion-criteria-for-new-algorithms
https://github.com/scikit-learn/scikit-learn/issues

scikit-learn user guide, Release 0.23.2

• The ideal bug report contains a short reproducible code snippet, this way anyone can try to reproduce the bug
easily (see this for more details). If your snippet is longer than around 50 lines, please link to a gist or a github
repo.

• If not feasible to include a reproducible snippet, please be specific about what estimators and/or functions are
involved and the shape of the data.

• If an exception is raised, please provide the full traceback.

• Please include your operating system type and version number, as well as your Python, scikit-learn, numpy,
and scipy versions. This information can be found by running the following code snippet:

>>> import sklearn
>>> sklearn.show_versions()

Note: This utility function is only available in scikit-learn v0.20+. For previous versions, one has to explicitly
run:

import platform; print(platform.platform())
import sys; print("Python", sys.version)
import numpy; print("NumPy", numpy.__version__)
import scipy; print("SciPy", scipy.__version__)
import sklearn; print("Scikit-Learn", sklearn.__version__)

• Please ensure all code snippets and error messages are formatted in appropriate code blocks. See Creating
and highlighting code blocks for more details.

8.1.3 Contributing code

Note: To avoid duplicating work, it is highly advised that you search through the issue tracker and the PR list. If in
doubt about duplicated work, or if you want to work on a non-trivial feature, it’s recommended to first open an issue
in the issue tracker to get some feedbacks from core developers.

One easy way to find an issue to work on is by applying the “help wanted” label in your search. This lists all the issues
that have been unclaimed so far. In order to claim an issue for yourself, please comment exactly take on it for the CI
to automatically assign the issue to you.

How to contribute

The preferred way to contribute to scikit-learn is to fork the main repository on GitHub, then submit a “pull request”
(PR).

In the first few steps, we explain how to locally install scikit-learn, and how to set up your git repository:

1. Create an account on GitHub if you do not already have one.

2. Fork the project repository: click on the ‘Fork’ button near the top of the page. This creates a copy of the code
under your account on the GitHub user account. For more details on how to fork a repository see this guide.

3. Clone your fork of the scikit-learn repo from your GitHub account to your local disk:

8.1. Contributing 2645

https://stackoverflow.com/help/mcve
https://gist.github.com
https://help.github.com/articles/creating-and-highlighting-code-blocks
https://help.github.com/articles/creating-and-highlighting-code-blocks
https://github.com/scikit-learn/scikit-learn/issues
https://github.com/scikit-learn/scikit-learn/pulls
https://github.com/scikit-learn/scikit-learn/issues
https://github.com/scikit-learn/scikit-learn/
https://github.com/join
https://github.com/scikit-learn/scikit-learn
https://help.github.com/articles/fork-a-repo/

scikit-learn user guide, Release 0.23.2

$ git clone git@github.com:YourLogin/scikit-learn.git # add --depth 1 if your
→˓connection is slow
$ cd scikit-learn

4. Install the development dependencies:

$ pip install cython pytest pytest-cov flake8 mypy

5. Install scikit-learn in editable mode:

$ pip install --no-build-isolation --editable .

for more details about advanced installation, see the Building from source section.

6. Add the upstream remote. This saves a reference to the main scikit-learn repository, which you can use to
keep your repository synchronized with the latest changes:

$ git remote add upstream https://github.com/scikit-learn/scikit-learn.git

You should now have a working installation of scikit-learn, and your git repository properly configured. The next steps
now describe the process of modifying code and submitting a PR:

7. Synchronize your master branch with the upstream master branch:

$ git checkout master
$ git pull upstream master

8. Create a feature branch to hold your development changes:

$ git checkout -b my_feature

and start making changes. Always use a feature branch. It’s good practice to never work on the master branch!

9. (Optional) Install pre-commit to run code style checks before each commit:

$ pip install pre-commit
$ pre-commit install

pre-commit checks can be disabled for a particular commit with git commit -n.

10. Develop the feature on your feature branch on your computer, using Git to do the version control. When you’re
done editing, add changed files using git add and then git commit:

$ git add modified_files
$ git commit

to record your changes in Git, then push the changes to your GitHub account with:

$ git push -u origin my_feature

11. Follow these instructions to create a pull request from your fork. This will send an email to the committers. You
may want to consider sending an email to the mailing list for more visibility.

Note: If you are modifying a Cython module, you have to re-compile after modifications and before testing them:

pip install --no-build-isolation -e .

2646 Chapter 8. Developer’s Guide

https://pre-commit.com/#install
https://help.github.com/articles/creating-a-pull-request-from-a-fork

scikit-learn user guide, Release 0.23.2

Use the --no-build-isolation flag to avoid compiling the whole project each time, only the files you have
modified.

It is often helpful to keep your local feature branch synchronized with the latest changes of the main scikit-learn
repository:

$ git fetch upstream
$ git merge upstream/master

Subsequently, you might need to solve the conflicts. You can refer to the Git documentation related to resolving merge
conflict using the command line.

Learning git:

The Git documentation and http://try.github.io are excellent resources to get started with git, and understanding all
of the commands shown here.

Pull request checklist

Before a PR can be merged, it needs to be approved by two core developers. Please prefix the title of your pull request
with [MRG] if the contribution is complete and should be subjected to a detailed review. An incomplete contribution
– where you expect to do more work before receiving a full review – should be prefixed [WIP] (to indicate a work in
progress) and changed to [MRG] when it matures. WIPs may be useful to: indicate you are working on something to
avoid duplicated work, request broad review of functionality or API, or seek collaborators. WIPs often benefit from
the inclusion of a task list in the PR description.

In order to ease the reviewing process, we recommend that your contribution complies with the following rules before
marking a PR as [MRG]. The bolded ones are especially important:

1. Give your pull request a helpful title that summarises what your contribution does. This title will often become
the commit message once merged so it should summarise your contribution for posterity. In some cases “Fix
<ISSUE TITLE>” is enough. “Fix #<ISSUE NUMBER>” is never a good title.

2. Make sure your code passes the tests. The whole test suite can be run with pytest, but it is usually not
recommended since it takes a long time. It is often enough to only run the test related to your changes: for
example, if you changed something in sklearn/linear_model/logistic.py, running the following
commands will usually be enough:

• pytest sklearn/linear_model/logistic.py to make sure the doctest examples are correct

• pytest sklearn/linear_model/tests/test_logistic.py to run the tests specific to the
file

• pytest sklearn/linear_model to test the whole linear_model module

• pytest doc/modules/linear_model.rst to make sure the user guide examples are correct.

• pytest sklearn/tests/test_common.py -k LogisticRegression to run all our esti-
mator checks (specifically for LogisticRegression, if that’s the estimator you changed).

There may be other failing tests, but they will be caught by the CI so you don’t need to run the whole test suite
locally. For guidelines on how to use pytest efficiently, see the Useful pytest aliases and flags.

3. Make sure your code is properly commented and documented, and make sure the documentation renders
properly. To build the documentation, please refer to our Documentation guidelines. The CI will also build the
docs: please refer to Generated documentation on CircleCI.

8.1. Contributing 2647

https://help.github.com/articles/resolving-a-merge-conflict-using-the-command-line/
https://help.github.com/articles/resolving-a-merge-conflict-using-the-command-line/
https://git-scm.com/documentation
http://try.github.io
https://github.com/blog/1375-task-lists-in-gfm-issues-pulls-comments

scikit-learn user guide, Release 0.23.2

4. Tests are necessary for enhancements to be accepted. Bug-fixes or new features should be provided with non-
regression tests. These tests verify the correct behavior of the fix or feature. In this manner, further modifications
on the code base are granted to be consistent with the desired behavior. In the case of bug fixes, at the time of
the PR, the non-regression tests should fail for the code base in the master branch and pass for the PR code.

5. Make sure that your PR does not add PEP8 violations. To check the code that you changed, you can run the
following command (see above to set up the upstream remote):

git diff upstream/master -u -- "*.py" | flake8 --diff

or make flake8-diff which should work on unix-like system.

6. Follow the Coding guidelines.

7. When applicable, use the validation tools and scripts in the sklearn.utils submodule. A list of utility
routines available for developers can be found in the Utilities for Developers page.

8. Often pull requests resolve one or more other issues (or pull requests). If merging your pull request means that
some other issues/PRs should be closed, you should use keywords to create link to them (e.g., Fixes #1234;
multiple issues/PRs are allowed as long as each one is preceded by a keyword). Upon merging, those issues/PRs
will automatically be closed by GitHub. If your pull request is simply related to some other issues/PRs, create a
link to them without using the keywords (e.g., See also #1234).

9. PRs should often substantiate the change, through benchmarks of performance and efficiency or through exam-
ples of usage. Examples also illustrate the features and intricacies of the library to users. Have a look at other
examples in the examples/ directory for reference. Examples should demonstrate why the new functionality is
useful in practice and, if possible, compare it to other methods available in scikit-learn.

10. New features often need to be illustrated with narrative documentation in the user guide, with small code snip-
pets. If relevant, please also add references in the literature, with PDF links when possible.

11. The user guide should also include expected time and space complexity of the algorithm and scalability, e.g.
“this algorithm can scale to a large number of samples > 100000, but does not scale in dimensionality: n_features
is expected to be lower than 100”.

You can also check our Code Review Guidelines to get an idea of what reviewers will expect.

You can check for common programming errors with the following tools:

• Code with a good unittest coverage (at least 80%, better 100%), check with:

$ pip install pytest pytest-cov
$ pytest --cov sklearn path/to/tests_for_package

see also Testing and improving test coverage

• A moderate use of type annotations is encouraged but is not mandatory. See [mypy quickstart](https://mypy.
readthedocs.io/en/latest/getting_started.html) for an introduction, as well as [pandas contributing documenta-
tion](https://pandas.pydata.org/pandas-docs/stable/development/contributing.html#type-hints) for style guide-
lines. Whether you add type annotation or not:

mypy --ignore-missing-import sklearn

must not produce new errors in your pull request. Using # type: ignore annotation can be a workaround
for a few cases that are not supported by mypy, in particular,

– when importing C or Cython modules

– on properties with decorators

Bonus points for contributions that include a performance analysis with a benchmark script and profiling output (please
report on the mailing list or on the GitHub issue).

2648 Chapter 8. Developer’s Guide

https://en.wikipedia.org/wiki/Non-regression_testing
https://en.wikipedia.org/wiki/Non-regression_testing
https://github.com/blog/1506-closing-issues-via-pull-requests/
https://github.com/scikit-learn/scikit-learn/tree/master/examples
https://mypy.readthedocs.io/en/latest/getting_started.html
https://mypy.readthedocs.io/en/latest/getting_started.html
https://pandas.pydata.org/pandas-docs/stable/development/contributing.html#type-hints

scikit-learn user guide, Release 0.23.2

Also check out the How to optimize for speed guide for more details on profiling and Cython optimizations.

Note: The current state of the scikit-learn code base is not compliant with all of those guidelines, but we expect that
enforcing those constraints on all new contributions will get the overall code base quality in the right direction.

Note: For two very well documented and more detailed guides on development workflow, please pay a visit to the
Scipy Development Workflow - and the Astropy Workflow for Developers sections.

Continuous Integration (CI)

• Azure pipelines are used for testing scikit-learn on Linux, Mac and Windows, with different dependencies and
settings.

• CircleCI is used to build the docs for viewing, for linting with flake8, and for testing with PyPy on Linux

Please note that if one of the following markers appear in the latest commit message, the following actions are taken.

Commit Message
Marker

Action Taken by CI

[scipy-dev] Add a Travis build with our dependencies (numpy, scipy, etc . . .) develop-
ment builds

[ci skip] CI is skipped completely
[lint skip] Azure pipeline skips linting
[doc skip] Docs are not built
[doc quick] Docs built, but excludes example gallery plots
[doc build] Docs built including example gallery plots

Stalled pull requests

As contributing a feature can be a lengthy process, some pull requests appear inactive but unfinished. In such a case,
taking them over is a great service for the project.

A good etiquette to take over is:

• Determine if a PR is stalled

– A pull request may have the label “stalled” or “help wanted” if we have already identified it as a candidate
for other contributors.

– To decide whether an inactive PR is stalled, ask the contributor if she/he plans to continue working on
the PR in the near future. Failure to respond within 2 weeks with an activity that moves the PR forward
suggests that the PR is stalled and will result in tagging that PR with “help wanted”.

Note that if a PR has received earlier comments on the contribution that have had no reply in a month, it is
safe to assume that the PR is stalled and to shorten the wait time to one day.

After a sprint, follow-up for un-merged PRs opened during sprint will be communicated to participants at
the sprint, and those PRs will be tagged “sprint”. PRs tagged with “sprint” can be reassigned or declared
stalled by sprint leaders.

• Taking over a stalled PR: To take over a PR, it is important to comment on the stalled PR that you are taking
over and to link from the new PR to the old one. The new PR should be created by pulling from the old one.

8.1. Contributing 2649

https://docs.scipy.org/doc/numpy/dev/gitwash/development_workflow.html
https://astropy.readthedocs.io/en/latest/development/workflow/development_workflow.html

scikit-learn user guide, Release 0.23.2

Issues for New Contributors

New contributors should look for the following tags when looking for issues. We strongly recommend that new
contributors tackle “easy” issues first: this helps the contributor become familiar with the contribution workflow, and
for the core devs to become acquainted with the contributor; besides which, we frequently underestimate how easy an
issue is to solve!

good first issue tag

A great way to start contributing to scikit-learn is to pick an item from the list of good first issues in the issue tracker.
Resolving these issues allow you to start contributing to the project without much prior knowledge. If you have
already contributed to scikit-learn, you should look at Easy issues instead.

Easy tag

If you have already contributed to scikit-learn, another great way to contribute to scikit-learn is to pick an item
from the list of Easy issues in the issue tracker. Your assistance in this area will be greatly appreciated by the more
experienced developers as it helps free up their time to concentrate on other issues.

help wanted tag

We often use the help wanted tag to mark issues regardless of difficulty. Additionally, we use the help wanted tag to
mark Pull Requests which have been abandoned by their original contributor and are available for someone to pick
up where the original contributor left off. The list of issues with the help wanted tag can be found here .

Note that not all issues which need contributors will have this tag.

8.1.4 Documentation

We are glad to accept any sort of documentation: function docstrings, reStructuredText documents (like this one),
tutorials, etc. reStructuredText documents live in the source code repository under the doc/ directory.

You can edit the documentation using any text editor, and then generate the HTML output by typing make from
the doc/ directory. Alternatively, make html may be used to generate the documentation with the example gallery
(which takes quite some time). The resulting HTML files will be placed in _build/html/stable and are viewable
in a web browser.

Building the documentation

First, make sure you have properly installed the development version.

Building the documentation requires installing some additional packages:

pip install sphinx sphinx-gallery numpydoc matplotlib Pillow pandas \
scikit-image packaging seaborn

To build the documentation, you need to be in the doc folder:

cd doc

2650 Chapter 8. Developer’s Guide

https://github.com/scikit-learn/scikit-learn/labels/good%20first%20issue
https://github.com/scikit-learn/scikit-learn/labels/Easy
https://github.com/scikit-learn/scikit-learn/labels/help%20wanted

scikit-learn user guide, Release 0.23.2

In the vast majority of cases, you only need to generate the full web site, without the example gallery:

make

The documentation will be generated in the _build/html/stable directory. To also generate the example gallery
you can use:

make html

This will run all the examples, which takes a while. If you only want to generate a few examples, you can use:

EXAMPLES_PATTERN=your_regex_goes_here make html

This is particularly useful if you are modifying a few examples.

Set the environment variable NO_MATHJAX=1 if you intend to view the documentation in an offline setting.

To build the PDF manual, run:

make latexpdf

Warning: Sphinx version

While we do our best to have the documentation build under as many versions of Sphinx as possible, the different
versions tend to behave slightly differently. To get the best results, you should use the same version as the one we
used on CircleCI. Look at this github search to know the exact version.

Guidelines for writing documentation

It is important to keep a good compromise between mathematical and algorithmic details, and give intuition to the
reader on what the algorithm does.

Basically, to elaborate on the above, it is best to always start with a small paragraph with a hand-waving explanation of
what the method does to the data. Then, it is very helpful to point out why the feature is useful and when it should be
used - the latter also including “big O” (𝑂 (𝑔 (𝑛))) complexities of the algorithm, as opposed to just rules of thumb, as
the latter can be very machine-dependent. If those complexities are not available, then rules of thumb may be provided
instead.

Secondly, a generated figure from an example (as mentioned in the previous paragraph) should then be included to
further provide some intuition.

Next, one or two small code examples to show its use can be added.

Next, any math and equations, followed by references, can be added to further the documentation. Not starting the
documentation with the maths makes it more friendly towards users that are just interested in what the feature will do,
as opposed to how it works “under the hood”.

Finally, follow the formatting rules below to make it consistently good:

• Add “See also” in docstrings for related classes/functions.

• “See also” in docstrings should be one line per reference, with a colon and an explanation, for example:

See also

SelectKBest : Select features based on the k highest scores.
SelectFpr : Select features based on a false positive rate test.

8.1. Contributing 2651

https://github.com/search?utf8=%E2%9C%93&q=sphinx+repo%3Ascikit-learn%2Fscikit-learn+extension%3Ash+path%3Abuild_tools%2Fcircle&type=Code

scikit-learn user guide, Release 0.23.2

• When documenting the parameters and attributes, here is a list of some well-formatted examples:

n_clusters : int, default=3
The number of clusters detected by the algorithm.

some_param : {'hello', 'goodbye'}, bool or int, default=True
The parameter description goes here, which can be either a string
literal (either `hello` or `goodbye`), a bool, or an int. The default
value is True.

array_parameter : {array-like, sparse matrix, dataframe} of shape (n_samples, n_
→˓features) or (n_samples,)

This parameter accepts data in either of the mentioned forms, with one
of the mentioned shapes. The default value is
`np.ones(shape=(n_samples,))`.

list_param : list of int

typed_ndarray : ndarray of shape (n_samples,), dtype=np.int32

sample_weight : array-like of shape (n_samples,), default=None

In general have the following in mind:

1. Use Python basic types. (bool instead of boolean)

2. Use parenthesis for defining shapes: array-like of shape (n_samples,) or array-like of
shape (n_samples, n_features)

3. For strings with multiple options, use brackets: input: {'log', 'squared', 'multinomial'}

4. 1D or 2D data can be a subset of {array-like, ndarray, sparse matrix, dataframe}. Note
that array-like can also be a list, while ndarray is explicitly only a numpy.ndarray.

5. When specifying the data type of a list, use of as a delimiter: list of int.

6. When specifying the dtype of an ndarray, use e.g. dtype=np.int32 after defining the shape: ndarray of
shape (n_samples,), dtype=np.int32.

7. When the default is None, None only needs to be specified at the end with default=None. Be sure to
include in the docstring, what it means for the parameter or attribute to be None.

• For unwritten formatting rules, try to follow existing good works:

– For “References” in docstrings, see the Silhouette Coefficient (sklearn.metrics.
silhouette_score).

• When editing reStructuredText (.rst) files, try to keep line length under 80 characters when possible (excep-
tions include links and tables).

• Before submitting you pull request check if your modifications have introduced new sphinx warnings and try to
fix them.

Generated documentation on CircleCI

When you change the documentation in a pull request, CircleCI automatically builds it. To view the documentation
generated by CircleCI, simply go at the bottom of your PR page and look for the “ci/circleci: doc artifact” link.

2652 Chapter 8. Developer’s Guide

scikit-learn user guide, Release 0.23.2

8.1.5 Testing and improving test coverage

High-quality unit testing is a corner-stone of the scikit-learn development process. For this purpose, we use the pytest
package. The tests are functions appropriately named, located in tests subdirectories, that check the validity of the
algorithms and the different options of the code.

Running pytest in a folder will run all the tests of the corresponding subpackages. For a more detailed pytest
workflow, please refer to the Pull request checklist.

We expect code coverage of new features to be at least around 90%.

Writing matplotlib related tests

Test fixtures ensure that a set of tests will be executing with the appropriate initialization and cleanup. The scikit-learn
test suite implements a fixture which can be used with matplotlib.

pyplot The pyplot fixture should be used when a test function is dealing with matplotlib. matplotlib
is a soft dependency and is not required. This fixture is in charge of skipping the tests if matplotlib is not
installed. In addition, figures created during the tests will be automatically closed once the test function has
been executed.

To use this fixture in a test function, one needs to pass it as an argument:

def test_requiring_mpl_fixture(pyplot):
you can now safely use matplotlib

Workflow to improve test coverage

To test code coverage, you need to install the coverage package in addition to pytest.

1. Run ‘make test-coverage’. The output lists for each file the line numbers that are not tested.

2. Find a low hanging fruit, looking at which lines are not tested, write or adapt a test specifically for these
lines.

3. Loop.

8.1.6 Issue Tracker Tags

All issues and pull requests on the GitHub issue tracker should have (at least) one of the following tags:

Bug / Crash Something is happening that clearly shouldn’t happen. Wrong results as well as unexpected
errors from estimators go here.

Cleanup / Enhancement Improving performance, usability, consistency.

Documentation Missing, incorrect or sub-standard documentations and examples.

New Feature Feature requests and pull requests implementing a new feature.

There are four other tags to help new contributors:

good first issue This issue is ideal for a first contribution to scikit-learn. Ask for help if the formulation
is unclear. If you have already contributed to scikit-learn, look at Easy issues instead.

Easy This issue can be tackled without much prior experience.

Moderate Might need some knowledge of machine learning or the package, but is still approachable for
someone new to the project.

8.1. Contributing 2653

https://en.wikipedia.org/wiki/Unit_testing
https://docs.pytest.org
https://pypi.org/project/coverage/
https://github.com/scikit-learn/scikit-learn/issues

scikit-learn user guide, Release 0.23.2

help wanted This tag marks an issue which currently lacks a contributor or a PR that needs another
contributor to take over the work. These issues can range in difficulty, and may not be approachable
for new contributors. Note that not all issues which need contributors will have this tag.

8.1.7 Maintaining backwards compatibility

Deprecation

If any publicly accessible method, function, attribute or parameter is renamed, we still support the old one for two
releases and issue a deprecation warning when it is called/passed/accessed. E.g., if the function zero_one is re-
named to zero_one_loss, we add the decorator deprecated (from sklearn.utils) to zero_one and call
zero_one_loss from that function:

from ..utils import deprecated

def zero_one_loss(y_true, y_pred, normalize=True):
actual implementation
pass

@deprecated("Function 'zero_one' was renamed to 'zero_one_loss' "
"in version 0.13 and will be removed in release 0.15. "
"Default behavior is changed from 'normalize=False' to "
"'normalize=True'")

def zero_one(y_true, y_pred, normalize=False):
return zero_one_loss(y_true, y_pred, normalize)

If an attribute is to be deprecated, use the decorator deprecated on a property. Please note that the property
decorator should be placed before the deprecated decorator for the docstrings to be rendered properly. E.g.,
renaming an attribute labels_ to classes_ can be done as:

@deprecated("Attribute labels_ was deprecated in version 0.13 and "
"will be removed in 0.15. Use 'classes_' instead")

@property
def labels_(self):

return self.classes_

If a parameter has to be deprecated, a FutureWarning warning must be raised too. In the following example, k is
deprecated and renamed to n_clusters:

import warnings

def example_function(n_clusters=8, k='deprecated'):
if k != 'deprecated':

warnings.warn("'k' was renamed to n_clusters in version 0.13 and "
"will be removed in 0.15.",
FutureWarning)

n_clusters = k

When the change is in a class, we validate and raise warning in fit:

import warnings

class ExampleEstimator(BaseEstimator):
def __init__(self, n_clusters=8, k='deprecated'):

self.n_clusters = n_clusters

(continues on next page)

2654 Chapter 8. Developer’s Guide

scikit-learn user guide, Release 0.23.2

(continued from previous page)

self.k = k

def fit(self, X, y):
if self.k != 'deprecated':

warnings.warn("'k' was renamed to n_clusters in version 0.13 and "
"will be removed in 0.15.",
FutureWarning)

self._n_clusters = self.k
else:

self._n_clusters = self.n_clusters

As in these examples, the warning message should always give both the version in which the deprecation happened
and the version in which the old behavior will be removed. If the deprecation happened in version 0.x-dev, the message
should say deprecation occurred in version 0.x and the removal will be in 0.(x+2), so that users will have enough time
to adapt their code to the new behaviour. For example, if the deprecation happened in version 0.18-dev, the message
should say it happened in version 0.18 and the old behavior will be removed in version 0.20.

In addition, a deprecation note should be added in the docstring, recalling the same information as the deprecation
warning as explained above. Use the .. deprecated:: directive:

.. deprecated:: 0.13
``k`` was renamed to ``n_clusters`` in version 0.13 and will be removed
in 0.15.

What’s more, a deprecation requires a test which ensures that the warning is raised in relevant cases but not in other
cases. The warning should be caught in all other tests (using e.g., @pytest.mark.filterwarnings), and there
should be no warning in the examples.

Change the default value of a parameter

If the default value of a parameter needs to be changed, please replace the default value with a specific value (e.g.,
warn) and raise FutureWarning when users are using the default value. In the following example, we change the
default value of n_clusters from 5 to 10 (current version is 0.20):

import warnings

def example_function(n_clusters='warn'):
if n_clusters == 'warn':

warnings.warn("The default value of n_clusters will change from "
"5 to 10 in 0.22.", FutureWarning)

n_clusters = 5

When the change is in a class, we validate and raise warning in fit:

import warnings

class ExampleEstimator:
def __init__(self, n_clusters='warn'):

self.n_clusters = n_clusters

def fit(self, X, y):
if self.n_clusters == 'warn':
warnings.warn("The default value of n_clusters will change from "

"5 to 10 in 0.22.", FutureWarning)
self._n_clusters = 5

8.1. Contributing 2655

scikit-learn user guide, Release 0.23.2

Similar to deprecations, the warning message should always give both the version in which the change happened and
the version in which the old behavior will be removed. The docstring needs to be updated accordingly. We need a test
which ensures that the warning is raised in relevant cases but not in other cases. The warning should be caught in all
other tests (using e.g., @pytest.mark.filterwarnings), and there should be no warning in the examples.

8.1.8 Code Review Guidelines

Reviewing code contributed to the project as PRs is a crucial component of scikit-learn development. We encourage
anyone to start reviewing code of other developers. The code review process is often highly educational for everybody
involved. This is particularly appropriate if it is a feature you would like to use, and so can respond critically about
whether the PR meets your needs. While each pull request needs to be signed off by two core developers, you can
speed up this process by providing your feedback.

Here are a few important aspects that need to be covered in any code review, from high-level questions to a more
detailed check-list.

• Do we want this in the library? Is it likely to be used? Do you, as a scikit-learn user, like the change and intend
to use it? Is it in the scope of scikit-learn? Will the cost of maintaining a new feature be worth its benefits?

• Is the code consistent with the API of scikit-learn? Are public functions/classes/parameters well named and
intuitively designed?

• Are all public functions/classes and their parameters, return types, and stored attributes named according to
scikit-learn conventions and documented clearly?

• Is any new functionality described in the user-guide and illustrated with examples?

• Is every public function/class tested? Are a reasonable set of parameters, their values, value types, and combi-
nations tested? Do the tests validate that the code is correct, i.e. doing what the documentation says it does? If
the change is a bug-fix, is a non-regression test included? Look at this to get started with testing in Python.

• Do the tests pass in the continuous integration build? If appropriate, help the contributor understand why tests
failed.

• Do the tests cover every line of code (see the coverage report in the build log)? If not, are the lines missing
coverage good exceptions?

• Is the code easy to read and low on redundancy? Should variable names be improved for clarity or consistency?
Should comments be added? Should comments be removed as unhelpful or extraneous?

• Could the code easily be rewritten to run much more efficiently for relevant settings?

• Is the code backwards compatible with previous versions? (or is a deprecation cycle necessary?)

• Will the new code add any dependencies on other libraries? (this is unlikely to be accepted)

• Does the documentation render properly (see the Documentation section for more details), and are the plots
instructive?

Standard replies for reviewing includes some frequent comments that reviewers may make.

8.1.9 Reading the existing code base

Reading and digesting an existing code base is always a difficult exercise that takes time and experience to master.
Even though we try to write simple code in general, understanding the code can seem overwhelming at first, given the
sheer size of the project. Here is a list of tips that may help make this task easier and faster (in no particular order).

• Get acquainted with the APIs of scikit-learn objects: understand what fit, predict, transform, etc. are used for.

2656 Chapter 8. Developer’s Guide

https://jeffknupp.com/blog/2013/12/09/improve-your-python-understanding-unit-testing

scikit-learn user guide, Release 0.23.2

• Before diving into reading the code of a function / class, go through the docstrings first and try to get an idea of
what each parameter / attribute is doing. It may also help to stop a minute and think how would I do this myself
if I had to?

• The trickiest thing is often to identify which portions of the code are relevant, and which are not. In scikit-
learn a lot of input checking is performed, especially at the beginning of the fit methods. Sometimes,
only a very small portion of the code is doing the actual job. For example looking at the fit() method
of sklearn.linear_model.LinearRegression, what you’re looking for might just be the call the
scipy.linalg.lstsq, but it is buried into multiple lines of input checking and the handling of different
kinds of parameters.

• Due to the use of Inheritance, some methods may be implemented in parent classes. All estimators inherit
at least from BaseEstimator, and from a Mixin class (e.g. ClassifierMixin) that enables default
behaviour depending on the nature of the estimator (classifier, regressor, transformer, etc.).

• Sometimes, reading the tests for a given function will give you an idea of what its intended purpose is. You can
use git grep (see below) to find all the tests written for a function. Most tests for a specific function/class
are placed under the tests/ folder of the module

• You’ll often see code looking like this: out = Parallel(...
)(delayed(some_function)(param) for param in some_iterable). This runs
some_function in parallel using Joblib. out is then an iterable containing the values returned by
some_function for each call.

• We use Cython to write fast code. Cython code is located in .pyx and .pxd files. Cython code has a more
C-like flavor: we use pointers, perform manual memory allocation, etc. Having some minimal experience in C
/ C++ is pretty much mandatory here.

• Master your tools.

– With such a big project, being efficient with your favorite editor or IDE goes a long way towards digesting
the code base. Being able to quickly jump (or peek) to a function/class/attribute definition helps a lot. So
does being able to quickly see where a given name is used in a file.

– git also has some built-in killer features. It is often useful to understand how a file changed over time,
using e.g. git blame (manual). This can also be done directly on GitHub. git grep (examples) is
also extremely useful to see every occurrence of a pattern (e.g. a function call or a variable) in the code
base.

8.2 Developing scikit-learn estimators

Whether you are proposing an estimator for inclusion in scikit-learn, developing a separate package compatible with
scikit-learn, or implementing custom components for your own projects, this chapter details how to develop objects
that safely interact with scikit-learn Pipelines and model selection tools.

8.2.1 APIs of scikit-learn objects

To have a uniform API, we try to have a common basic API for all the objects. In addition, to avoid the proliferation
of framework code, we try to adopt simple conventions and limit to a minimum the number of methods an object must
implement.

Elements of the scikit-learn API are described more definitively in the Glossary of Common Terms and API Elements.

8.2. Developing scikit-learn estimators 2657

https://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)
https://joblib.readthedocs.io/
https://cython.org/
https://git-scm.com/book/en
https://git-scm.com/docs/git-blame
https://git-scm.com/docs/git-grep#_examples

scikit-learn user guide, Release 0.23.2

Different objects

The main objects in scikit-learn are (one class can implement multiple interfaces):

Estimator The base object, implements a fit method to learn from data, either:

estimator = estimator.fit(data, targets)

or:

estimator = estimator.fit(data)

Predictor For supervised learning, or some unsupervised problems, implements:

prediction = predictor.predict(data)

Classification algorithms usually also offer a way to quantify certainty of a prediction, either using
decision_function or predict_proba:

probability = predictor.predict_proba(data)

Transformer For filtering or modifying the data, in a supervised or unsupervised way, implements:

new_data = transformer.transform(data)

When fitting and transforming can be performed much more efficiently together than separately,
implements:

new_data = transformer.fit_transform(data)

Model A model that can give a goodness of fit measure or a likelihood of unseen data, implements (higher
is better):

score = model.score(data)

Estimators

The API has one predominant object: the estimator. An estimator is an object that fits a model based on some training
data and is capable of inferring some properties on new data. It can be, for instance, a classifier or a regressor. All
estimators implement the fit method:

estimator.fit(X, y)

All built-in estimators also have a set_params method, which sets data-independent parameters (overriding previ-
ous parameter values passed to __init__).

All estimators in the main scikit-learn codebase should inherit from sklearn.base.BaseEstimator.

Instantiation

This concerns the creation of an object. The object’s __init__ method might accept constants as arguments that
determine the estimator’s behavior (like the C constant in SVMs). It should not, however, take the actual training data
as an argument, as this is left to the fit() method:

2658 Chapter 8. Developer’s Guide

https://en.wikipedia.org/wiki/Goodness_of_fit

scikit-learn user guide, Release 0.23.2

clf2 = SVC(C=2.3)
clf3 = SVC([[1, 2], [2, 3]], [-1, 1]) # WRONG!

The arguments accepted by __init__ should all be keyword arguments with a default value. In other words, a user
should be able to instantiate an estimator without passing any arguments to it. The arguments should all correspond to
hyperparameters describing the model or the optimisation problem the estimator tries to solve. These initial arguments
(or parameters) are always remembered by the estimator. Also note that they should not be documented under the
“Attributes” section, but rather under the “Parameters” section for that estimator.

In addition, every keyword argument accepted by __init__ should correspond to an attribute on the instance.
Scikit-learn relies on this to find the relevant attributes to set on an estimator when doing model selection.

To summarize, an __init__ should look like:

def __init__(self, param1=1, param2=2):
self.param1 = param1
self.param2 = param2

There should be no logic, not even input validation, and the parameters should not be changed. The corresponding
logic should be put where the parameters are used, typically in fit. The following is wrong:

def __init__(self, param1=1, param2=2, param3=3):
WRONG: parameters should not be modified
if param1 > 1:

param2 += 1
self.param1 = param1
WRONG: the object's attributes should have exactly the name of
the argument in the constructor
self.param3 = param2

The reason for postponing the validation is that the same validation would have to be performed in set_params,
which is used in algorithms like GridSearchCV.

Fitting

The next thing you will probably want to do is to estimate some parameters in the model. This is implemented in the
fit() method.

The fit() method takes the training data as arguments, which can be one array in the case of unsupervised learning,
or two arrays in the case of supervised learning.

Note that the model is fitted using X and y, but the object holds no reference to X and y. There are, however, some
exceptions to this, as in the case of precomputed kernels where this data must be stored for use by the predict method.

Parameters
X array-like, shape (n_samples, n_features)
y array, shape (n_samples,)
kwargs optional data-dependent parameters.

X.shape[0] should be the same as y.shape[0]. If this requisite is not met, an exception of type ValueError
should be raised.

y might be ignored in the case of unsupervised learning. However, to make it possible to use the estimator as part of
a pipeline that can mix both supervised and unsupervised transformers, even unsupervised estimators need to accept
a y=None keyword argument in the second position that is just ignored by the estimator. For the same reason,

8.2. Developing scikit-learn estimators 2659

scikit-learn user guide, Release 0.23.2

fit_predict, fit_transform, score and partial_fitmethods need to accept a y argument in the second
place if they are implemented.

The method should return the object (self). This pattern is useful to be able to implement quick one liners in an
IPython session such as:

y_predicted = SVC(C=100).fit(X_train, y_train).predict(X_test)

Depending on the nature of the algorithm, fit can sometimes also accept additional keywords arguments. However,
any parameter that can have a value assigned prior to having access to the data should be an __init__ keyword
argument. fit parameters should be restricted to directly data dependent variables. For instance a Gram matrix
or an affinity matrix which are precomputed from the data matrix X are data dependent. A tolerance stopping criterion
tol is not directly data dependent (although the optimal value according to some scoring function probably is).

When fit is called, any previous call to fit should be ignored. In general, calling estimator.fit(X1) and
then estimator.fit(X2) should be the same as only calling estimator.fit(X2). However, this may not
be true in practice when fit depends on some random process, see random_state. Another exception to this rule is
when the hyper-parameter warm_start is set to True for estimators that support it. warm_start=True means
that the previous state of the trainable parameters of the estimator are reused instead of using the default initialization
strategy.

Estimated Attributes

Attributes that have been estimated from the data must always have a name ending with trailing underscore, for
example the coefficients of some regression estimator would be stored in a coef_ attribute after fit has been called.

The estimated attributes are expected to be overridden when you call fit a second time.

Optional Arguments

In iterative algorithms, the number of iterations should be specified by an integer called n_iter.

Pairwise Attributes

An estimator that accepts X of shape (n_samples, n_samples) and defines a _pairwise property equal to True
allows for cross-validation of the dataset, e.g. when X is a precomputed kernel matrix. Specifically, the _pairwise
property is used by utils.metaestimators._safe_split to slice rows and columns.

Universal attributes

Estimators that expect tabular input should set a n_features_in_ attribute at fit time to indicate the number of
features that the estimator expects for subsequent calls to predict or transform. See SLEP010 for details.

8.2.2 Rolling your own estimator

If you want to implement a new estimator that is scikit-learn-compatible, whether it is just for you or for contributing it
to scikit-learn, there are several internals of scikit-learn that you should be aware of in addition to the scikit-learn API
outlined above. You can check whether your estimator adheres to the scikit-learn interface and standards by running
check_estimator on an instance. The parametrize_with_checks pytest decorator can also be used (see
its docstring for details and possible interactions with pytest):

2660 Chapter 8. Developer’s Guide

https://scikit-learn-enhancement-proposals.readthedocs.io/en/latest/slep010/proposal.html

scikit-learn user guide, Release 0.23.2

>>> from sklearn.utils.estimator_checks import check_estimator
>>> from sklearn.svm import LinearSVC
>>> check_estimator(LinearSVC()) # passes

The main motivation to make a class compatible to the scikit-learn estimator interface might be that you want
to use it together with model evaluation and selection tools such as model_selection.GridSearchCV and
pipeline.Pipeline.

Before detailing the required interface below, we describe two ways to achieve the correct interface more easily.

Project template:

We provide a project template which helps in the creation of Python packages containing scikit-learn compatible
estimators. It provides:

• an initial git repository with Python package directory structure

• a template of a scikit-learn estimator

• an initial test suite including use of check_estimator

• directory structures and scripts to compile documentation and example galleries

• scripts to manage continuous integration (testing on Linux and Windows)

• instructions from getting started to publishing on PyPi

BaseEstimator and mixins:

We tend to use “duck typing”, so building an estimator which follows the API suffices for compatibility, without
needing to inherit from or even import any scikit-learn classes.

However, if a dependency on scikit-learn is acceptable in your code, you can prevent a lot of boilerplate code by
deriving a class from BaseEstimator and optionally the mixin classes in sklearn.base. For example, below
is a custom classifier, with more examples included in the scikit-learn-contrib project template.

>>> import numpy as np
>>> from sklearn.base import BaseEstimator, ClassifierMixin
>>> from sklearn.utils.validation import check_X_y, check_array, check_is_fitted
>>> from sklearn.utils.multiclass import unique_labels
>>> from sklearn.metrics import euclidean_distances
>>> class TemplateClassifier(BaseEstimator, ClassifierMixin):
...
... def __init__(self, demo_param='demo'):
... self.demo_param = demo_param
...
... def fit(self, X, y):
...
... # Check that X and y have correct shape
... X, y = check_X_y(X, y)
... # Store the classes seen during fit
... self.classes_ = unique_labels(y)
...
... self.X_ = X
... self.y_ = y
... # Return the classifier
... return self
...
... def predict(self, X):
...
... # Check is fit had been called
... check_is_fitted(self)
...
... # Input validation
... X = check_array(X)
...
... closest = np.argmin(euclidean_distances(X, self.X_), axis=1)
... return self.y_[closest]

8.2. Developing scikit-learn estimators 2661

https://github.com/scikit-learn-contrib/project-template/
https://pypi.org/
https://github.com/scikit-learn-contrib/project-template/blob/master/skltemplate/_template.py

scikit-learn user guide, Release 0.23.2

get_params and set_params

All scikit-learn estimators have get_params and set_params functions. The get_params function takes no
arguments and returns a dict of the __init__ parameters of the estimator, together with their values. It must take
one keyword argument, deep, which receives a boolean value that determines whether the method should return the
parameters of sub-estimators (for most estimators, this can be ignored). The default value for deep should be true.

The set_params on the other hand takes as input a dict of the form 'parameter': value and sets the
parameter of the estimator using this dict. Return value must be estimator itself.

While the get_params mechanism is not essential (see Cloning below), the set_params function is necessary as
it is used to set parameters during grid searches.

The easiest way to implement these functions, and to get a sensible __repr__ method, is to inherit from sklearn.
base.BaseEstimator. If you do not want to make your code dependent on scikit-learn, the easiest way to
implement the interface is:

def get_params(self, deep=True):
suppose this estimator has parameters "alpha" and "recursive"
return {"alpha": self.alpha, "recursive": self.recursive}

def set_params(self, **parameters):
for parameter, value in parameters.items():

setattr(self, parameter, value)
return self

Parameters and init

As model_selection.GridSearchCV uses set_params to apply parameter setting to estimators, it is essen-
tial that calling set_params has the same effect as setting parameters using the __init__ method. The easiest
and recommended way to accomplish this is to not do any parameter validation in __init__. All logic behind
estimator parameters, like translating string arguments into functions, should be done in fit.

Also it is expected that parameters with trailing _ are not to be set inside the __init__ method. All and only the
public attributes set by fit have a trailing _. As a result the existence of parameters with trailing _ is used to check if
the estimator has been fitted.

Cloning

For use with the model_selection module, an estimator must support the base.clone function to repli-
cate an estimator. This can be done by providing a get_params method. If get_params is present, then
clone(estimator) will be an instance of type(estimator) on which set_params has been called with
clones of the result of estimator.get_params().

Objects that do not provide this method will be deep-copied (using the Python standard function copy.deepcopy)
if safe=False is passed to clone.

Pipeline compatibility

For an estimator to be usable together with pipeline.Pipeline in any but the last step, it needs to provide a fit
or fit_transform function. To be able to evaluate the pipeline on any data but the training set, it also needs to
provide a transform function. There are no special requirements for the last step in a pipeline, except that it has a

2662 Chapter 8. Developer’s Guide

scikit-learn user guide, Release 0.23.2

fit function. All fit and fit_transform functions must take arguments X, y, even if y is not used. Similarly,
for score to be usable, the last step of the pipeline needs to have a score function that accepts an optional y.

Estimator types

Some common functionality depends on the kind of estimator passed. For example, cross-validation in
model_selection.GridSearchCV and model_selection.cross_val_score defaults to being strat-
ified when used on a classifier, but not otherwise. Similarly, scorers for average precision that take a continuous
prediction need to call decision_function for classifiers, but predict for regressors. This distinction be-
tween classifiers and regressors is implemented using the _estimator_type attribute, which takes a string value.
It should be "classifier" for classifiers and "regressor" for regressors and "clusterer" for clustering
methods, to work as expected. Inheriting from ClassifierMixin, RegressorMixin or ClusterMixin will
set the attribute automatically. When a meta-estimator needs to distinguish among estimator types, instead of checking
_estimator_type directly, helpers like base.is_classifier should be used.

Specific models

Classifiers should accept y (target) arguments to fit that are sequences (lists, arrays) of either strings or integers.
They should not assume that the class labels are a contiguous range of integers; instead, they should store a list of
classes in a classes_ attribute or property. The order of class labels in this attribute should match the order in which
predict_proba, predict_log_proba and decision_function return their values. The easiest way to
achieve this is to put:

self.classes_, y = np.unique(y, return_inverse=True)

in fit. This returns a new y that contains class indexes, rather than labels, in the range [0, n_classes).

A classifier’s predict method should return arrays containing class labels from classes_. In a classifier that
implements decision_function, this can be achieved with:

def predict(self, X):
D = self.decision_function(X)
return self.classes_[np.argmax(D, axis=1)]

In linear models, coefficients are stored in an array called coef_, and the independent term is stored in intercept_.
sklearn.linear_model._base contains a few base classes and mixins that implement common linear model
patterns.

The sklearn.utils.multiclass module contains useful functions for working with multiclass and multilabel
problems.

Estimator Tags

Warning: The estimator tags are experimental and the API is subject to change.

Scikit-learn introduced estimator tags in version 0.21. These are annotations of estimators that allow programmatic
inspection of their capabilities, such as sparse matrix support, supported output types and supported methods. The
estimator tags are a dictionary returned by the method _get_tags(). These tags are used by the common tests and
the sklearn.utils.estimator_checks.check_estimator function to decide what tests to run and what
input data is appropriate. Tags can depend on estimator parameters or even system architecture and can in general only
be determined at runtime. The default values for the estimator tags are defined in the BaseEstimator class.

8.2. Developing scikit-learn estimators 2663

scikit-learn user guide, Release 0.23.2

The current set of estimator tags are:

allow_nan (default=False) whether the estimator supports data with missing values encoded as np.NaN

binary_only (default=False) whether estimator supports binary classification but lacks multi-class classification sup-
port.

multilabel (default=False) whether the estimator supports multilabel output

multioutput (default=False) whether a regressor supports multi-target outputs or a classifier supports multi-class
multi-output.

multioutput_only (default=False) whether estimator supports only multi-output classification or regression.

no_validation (default=False) whether the estimator skips input-validation. This is only meant for stateless and
dummy transformers!

non_deterministic (default=False) whether the estimator is not deterministic given a fixed random_state

poor_score (default=False) whether the estimator fails to provide a “reasonable” test-set score, which currently for
regression is an R2 of 0.5 on a subset of the boston housing dataset, and for classification an accuracy of 0.83 on
make_blobs(n_samples=300, random_state=0). These datasets and values are based on current
estimators in sklearn and might be replaced by something more systematic.

requires_fit (default=True) whether the estimator requires to be fitted before calling one of transform,
predict, predict_proba, or decision_function.

requires_positive_X (default=False) whether the estimator requires positive X.

requires_y (default=False) whether the estimator requires y to be passed to fit, fit_predict or
fit_transform methods. The tag is True for estimators inheriting from ~sklearn.base.
RegressorMixin and ~sklearn.base.ClassifierMixin.

requires_positive_y (default=False) whether the estimator requires a positive y (only applicable for regression).

_skip_test (default=False) whether to skip common tests entirely. Don’t use this unless you have a very good reason.

_xfail_checks (default=False) dictionary {check_name: reason} of common checks that will be marked
as XFAIL for pytest, when using parametrize_with_checks. This tag currently has no effect on
check_estimator. Don’t use this unless there is a very good reason for your estimator not to pass the
check. Also note that the usage of this tag is highly subject to change because we are trying to make it more
flexible: be prepared for breaking changes in the future.

stateless (default=False) whether the estimator needs access to data for fitting. Even though an estimator is stateless,
it might still need a call to fit for initialization.

X_types (default=[‘2darray’]) Supported input types for X as list of strings. Tests are currently only run if ‘2darray’
is contained in the list, signifying that the estimator takes continuous 2d numpy arrays as input. The default value
is [‘2darray’]. Other possible types are 'string', 'sparse', 'categorical', dict, '1dlabels'
and '2dlabels'. The goal is that in the future the supported input type will determine the data used during
testing, in particular for 'string', 'sparse' and 'categorical' data. For now, the test for sparse data
do not make use of the 'sparse' tag.

To override the tags of a child class, one must define the _more_tags() method and return a dict with the desired
tags, e.g:

class MyMultiOutputEstimator(BaseEstimator):

def _more_tags(self):
return {'multioutput_only': True,

'non_deterministic': True}

2664 Chapter 8. Developer’s Guide

scikit-learn user guide, Release 0.23.2

In addition to the tags, estimators also need to declare any non-optional parameters to __init__ in the
_required_parameters class attribute, which is a list or tuple. If _required_parameters is only
["estimator"] or ["base_estimator"], then the estimator will be instantiated with an instance of
LinearDiscriminantAnalysis (or RidgeRegression if the estimator is a regressor) in the tests. The
choice of these two models is somewhat idiosyncratic but both should provide robust closed-form solutions.

8.2.3 Coding guidelines

The following are some guidelines on how new code should be written for inclusion in scikit-learn, and which may be
appropriate to adopt in external projects. Of course, there are special cases and there will be exceptions to these rules.
However, following these rules when submitting new code makes the review easier so new code can be integrated in
less time.

Uniformly formatted code makes it easier to share code ownership. The scikit-learn project tries to closely follow the
official Python guidelines detailed in PEP8 that detail how code should be formatted and indented. Please read it and
follow it.

In addition, we add the following guidelines:

• Use underscores to separate words in non class names: n_samples rather than nsamples.

• Avoid multiple statements on one line. Prefer a line return after a control flow statement (if/for).

• Use relative imports for references inside scikit-learn.

• Unit tests are an exception to the previous rule; they should use absolute imports, exactly as client code would.
A corollary is that, if sklearn.foo exports a class or function that is implemented in sklearn.foo.bar.
baz, the test should import it from sklearn.foo.

• Please don’t use import * in any case. It is considered harmful by the official Python recommendations. It
makes the code harder to read as the origin of symbols is no longer explicitly referenced, but most important, it
prevents using a static analysis tool like pyflakes to automatically find bugs in scikit-learn.

• Use the numpy docstring standard in all your docstrings.

A good example of code that we like can be found here.

Input validation

The module sklearn.utils contains various functions for doing input validation and conversion. Sometimes,
np.asarray suffices for validation; do not use np.asanyarray or np.atleast_2d, since those let NumPy’s
np.matrix through, which has a different API (e.g., * means dot product on np.matrix, but Hadamard product
on np.ndarray).

In other cases, be sure to call check_array on any array-like argument passed to a scikit-learn API function. The
exact parameters to use depends mainly on whether and which scipy.sparse matrices must be accepted.

For more information, refer to the Utilities for Developers page.

Random Numbers

If your code depends on a random number generator, do not use numpy.random.random() or similar routines.
To ensure repeatability in error checking, the routine should accept a keyword random_state and use this to con-
struct a numpy.random.RandomState object. See sklearn.utils.check_random_state in Utilities
for Developers.

Here’s a simple example of code using some of the above guidelines:

8.2. Developing scikit-learn estimators 2665

https://www.python.org/dev/peps/pep-0008
https://docs.python.org/3.1/howto/doanddont.html#at-module-level
https://divmod.readthedocs.io/en/latest/products/pyflakes.html
https://numpydoc.readthedocs.io/en/latest/format.html#numpydoc-docstring-guide
https://gist.github.com/nateGeorge/5455d2c57fb33c1ae04706f2dc4fee01

scikit-learn user guide, Release 0.23.2

from sklearn.utils import check_array, check_random_state

def choose_random_sample(X, random_state=0):
"""
Choose a random point from X

Parameters

X : array-like, shape (n_samples, n_features)

array representing the data
random_state : RandomState or an int seed (0 by default)

A random number generator instance to define the state of the
random permutations generator.

Returns

x : numpy array, shape (n_features,)

A random point selected from X
"""
X = check_array(X)
random_state = check_random_state(random_state)
i = random_state.randint(X.shape[0])
return X[i]

If you use randomness in an estimator instead of a freestanding function, some additional guidelines apply.

First off, the estimator should take a random_state argument to its __init__ with a default value of
None. It should store that argument’s value, unmodified, in an attribute random_state. fit can call
check_random_state on that attribute to get an actual random number generator. If, for some reason, ran-
domness is needed after fit, the RNG should be stored in an attribute random_state_. The following example
should make this clear:

class GaussianNoise(BaseEstimator, TransformerMixin):
"""This estimator ignores its input and returns random Gaussian noise.

It also does not adhere to all scikit-learn conventions,
but showcases how to handle randomness.
"""

def __init__(self, n_components=100, random_state=None):
self.random_state = random_state

the arguments are ignored anyway, so we make them optional
def fit(self, X=None, y=None):

self.random_state_ = check_random_state(self.random_state)

def transform(self, X):
n_samples = X.shape[0]
return self.random_state_.randn(n_samples, n_components)

The reason for this setup is reproducibility: when an estimator is fit twice to the same data, it should produce an
identical model both times, hence the validation in fit, not __init__.

2666 Chapter 8. Developer’s Guide

scikit-learn user guide, Release 0.23.2

8.3 Developers’ Tips and Tricks

8.3.1 Productivity and sanity-preserving tips

In this section we gather some useful advice and tools that may increase your quality-of-life when reviewing pull
requests, running unit tests, and so forth. Some of these tricks consist of userscripts that require a browser extension
such as TamperMonkey or GreaseMonkey; to set up userscripts you must have one of these extensions installed,
enabled and running. We provide userscripts as GitHub gists; to install them, click on the “Raw” button on the gist
page.

Folding and unfolding outdated diffs on pull requests

GitHub hides discussions on PRs when the corresponding lines of code have been changed in the mean while. This
userscript provides a shortcut (Control-Alt-P at the time of writing but look at the code to be sure) to unfold all such
hidden discussions at once, so you can catch up.

Checking out pull requests as remote-tracking branches

In your local fork, add to your .git/config, under the [remote "upstream"] heading, the line:

fetch = +refs/pull/*/head:refs/remotes/upstream/pr/*

You may then use git checkout pr/PR_NUMBER to navigate to the code of the pull-request with the given
number. (Read more in this gist.)

Display code coverage in pull requests

To overlay the code coverage reports generated by the CodeCov continuous integration, consider this browser exten-
sion. The coverage of each line will be displayed as a color background behind the line number.

Useful pytest aliases and flags

The full test suite takes fairly long to run. For faster iterations, it is possibly to select a subset of tests using pytest
selectors. In particular, one can run a single test based on its node ID:

pytest -v sklearn/linear_model/tests/test_logistic.py::test_sparsify

or use the -k pytest parameter to select tests based on their name. For instance,:

pytest sklearn/tests/test_common.py -v -k LogisticRegression

will run all common tests for the LogisticRegression estimator.

When a unit test fails, the following tricks can make debugging easier:

1. The command line argument pytest -l instructs pytest to print the local variables when a failure occurs.

2. The argument pytest --pdb drops into the Python debugger on failure. To instead drop into the rich IPython
debugger ipdb, you may set up a shell alias to:

pytest --pdbcls=IPython.terminal.debugger:TerminalPdb --capture no

Other pytest options that may become useful include:

8.3. Developers’ Tips and Tricks 2667

https://tampermonkey.net/
https://www.greasespot.net/
https://raw.githubusercontent.com/lesteve/userscripts/master/github-expand-all.user.js
https://gist.github.com/piscisaureus/3342247
https://github.com/codecov/browser-extension
https://github.com/codecov/browser-extension
https://docs.pytest.org/en/latest/example/markers.html#selecting-tests-based-on-their-node-id
https://docs.pytest.org/en/latest/example/markers.html#using-k-expr-to-select-tests-based-on-their-name

scikit-learn user guide, Release 0.23.2

• -x which exits on the first failed test

• --lf to rerun the tests that failed on the previous run

• --ff to rerun all previous tests, running the ones that failed first

• -s so that pytest does not capture the output of print() statements

• --tb=short or --tb=line to control the length of the logs

• --runxfail also run tests marked as a known failure (XFAIL) and report errors.

Since our continuous integration tests will error if FutureWarning isn’t properly caught, it is also recommended
to run pytest along with the -Werror::FutureWarning flag.

Standard replies for reviewing

It may be helpful to store some of these in GitHub’s saved replies for reviewing:

Issue: Usage questions

You're asking a usage question. The issue tracker is mainly for bugs and new
→˓features. For usage questions, it is recommended to try [Stack Overflow](https:/
→˓/stackoverflow.com/questions/tagged/scikit-learn) or [the Mailing List](https://
→˓mail.python.org/mailman/listinfo/scikit-learn).

Issue: You’re welcome to update the docs

Please feel free to offer a pull request updating the documentation if you feel
→˓it could be improved.

Issue: Self-contained example for bug

Please provide [self-contained example code](https://stackoverflow.com/help/mcve),
→˓ including imports and data (if possible), so that other contributors can just
→˓run it and reproduce your issue. Ideally your example code should be minimal.

Issue: Software versions

To help diagnose your issue, please paste the output of:
```py
import sklearn; sklearn.show_versions()
```
Thanks.

Issue: Code blocks

Readability can be greatly improved if you [format](https://help.github.com/
→˓articles/creating-and-highlighting-code-blocks/) your code snippets and
→˓complete error messages appropriately. For example:

```python
print(something)
```

generates:
```python
print(something)
```
And:

(continues on next page)

2668 Chapter 8. Developer’s Guide

https://github.com/settings/replies/

scikit-learn user guide, Release 0.23.2

(continued from previous page)

```pytb
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ImportError: No module named 'hello'
```

generates:
```pytb
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ImportError: No module named 'hello'
```
You can edit your issue descriptions and comments at any time to improve
→˓readability. This helps maintainers a lot. Thanks!

Issue/Comment: Linking to code

Friendly advice: for clarity's sake, you can link to code like [this](https://
→˓help.github.com/articles/creating-a-permanent-link-to-a-code-snippet/).

Issue/Comment: Linking to comments

Please use links to comments, which make it a lot easier to see what you are
→˓referring to, rather than just linking to the issue. See [this](https://
→˓stackoverflow.com/questions/25163598/how-do-i-reference-a-specific-issue-
→˓comment-on-github) for more details.

PR-NEW: Better description and title

Thanks for the pull request! Please make the title of the PR more descriptive.
→˓The title will become the commit message when this is merged. You should state
→˓what issue (or PR) it fixes/resolves in the description using the syntax
→˓described [here](http://scikit-learn.org/dev/developers/contributing.html
→˓#contributing-pull-requests).

PR-NEW: Fix #

Please use "Fix #issueNumber" in your PR description (and you can do it more than
→˓once). This way the associated issue gets closed automatically when the PR is
→˓merged. For more details, look at [this](https://github.com/blog/1506-closing-
→˓issues-via-pull-requests).

PR-NEW or Issue: Maintenance cost

Every feature we include has a [maintenance cost](http://scikit-learn.org/dev/faq.
→˓html#why-are-you-so-selective-on-what-algorithms-you-include-in-scikit-learn).
→˓Our maintainers are mostly volunteers. For a new feature to be included, we
→˓need evidence that it is often useful and, ideally, [well-established](http://
→˓scikit-learn.org/dev/faq.html#what-are-the-inclusion-criteria-for-new-
→˓algorithms) in the literature or in practice. That doesn't stop you
→˓implementing it for yourself and publishing it in a separate repository, or
→˓even [scikit-learn-contrib](https://scikit-learn-contrib.github.io).

PR-WIP: What’s needed before merge?

Please clarify (perhaps as a TODO list in the PR description) what work you
→˓believe still needs to be done before it can be reviewed for merge. When it is
→˓ready, please prefix the PR title with `[MRG]`. (continues on next page)

8.3. Developers’ Tips and Tricks 2669

scikit-learn user guide, Release 0.23.2

(continued from previous page)

PR-WIP: Regression test needed

Please add a [non-regression test](https://en.wikipedia.org/wiki/Non-regression_
→˓testing) that would fail at master but pass in this PR.

PR-WIP: PEP8

You have some [PEP8](https://www.python.org/dev/peps/pep-0008/) violations, whose
→˓details you can see in the Circle CI `lint` job. It might be worth configuring
→˓your code editor to check for such errors on the fly, so you can catch them
→˓before committing.

PR-MRG: Patience

Before merging, we generally require two core developers to agree that your pull
→˓request is desirable and ready. [Please be patient](http://scikit-learn.org/dev/
→˓faq.html#why-is-my-pull-request-not-getting-any-attention), as we mostly rely
→˓on volunteered time from busy core developers. (You are also welcome to help us
→˓out with [reviewing other PRs](http://scikit-learn.org/dev/developers/
→˓contributing.html#code-review-guidelines).)

PR-MRG: Add to what’s new

Please add an entry to the change log at `doc/whats_new/v*.rst`. Like the other
→˓entries there, please reference this pull request with `:pr:` and credit
→˓yourself (and other contributors if applicable) with `:user:`.

PR: Don’t change unrelated

Please do not change unrelated lines. It makes your contribution harder to review
→˓and may introduce merge conflicts to other pull requests.

8.3.2 Debugging memory errors in Cython with valgrind

While python/numpy’s built-in memory management is relatively robust, it can lead to performance penalties for some
routines. For this reason, much of the high-performance code in scikit-learn in written in cython. This performance
gain comes with a tradeoff, however: it is very easy for memory bugs to crop up in cython code, especially in situations
where that code relies heavily on pointer arithmetic.

Memory errors can manifest themselves a number of ways. The easiest ones to debug are often segmentation faults
and related glibc errors. Uninitialized variables can lead to unexpected behavior that is difficult to track down. A very
useful tool when debugging these sorts of errors is valgrind.

Valgrind is a command-line tool that can trace memory errors in a variety of code. Follow these steps:

1. Install valgrind on your system.

2. Download the python valgrind suppression file: valgrind-python.supp.

3. Follow the directions in the README.valgrind file to customize your python suppressions. If you don’t, you
will have spurious output coming related to the python interpreter instead of your own code.

4. Run valgrind as follows:

2670 Chapter 8. Developer’s Guide

http://valgrind.org
http://valgrind.org
https://github.com/python/cpython/blob/master/Misc/valgrind-python.supp
https://github.com/python/cpython/blob/master/Misc/README.valgrind

scikit-learn user guide, Release 0.23.2

$> valgrind -v --suppressions=valgrind-python.supp python my_test_script.py

The result will be a list of all the memory-related errors, which reference lines in the C-code generated by cython
from your .pyx file. If you examine the referenced lines in the .c file, you will see comments which indicate the
corresponding location in your .pyx source file. Hopefully the output will give you clues as to the source of your
memory error.

For more information on valgrind and the array of options it has, see the tutorials and documentation on the valgrind
web site.

8.4 Utilities for Developers

Scikit-learn contains a number of utilities to help with development. These are located in sklearn.utils, and
include tools in a number of categories. All the following functions and classes are in the module sklearn.utils.

Warning: These utilities are meant to be used internally within the scikit-learn package. They are not guar-
anteed to be stable between versions of scikit-learn. Backports, in particular, will be removed as the scikit-learn
dependencies evolve.

8.4.1 Validation Tools

These are tools used to check and validate input. When you write a function which accepts arrays, matrices, or sparse
matrices as arguments, the following should be used when applicable.

• assert_all_finite: Throw an error if array contains NaNs or Infs.

• as_float_array: convert input to an array of floats. If a sparse matrix is passed, a sparse matrix will be
returned.

• check_array: check that input is a 2D array, raise error on sparse matrices. Allowed sparse matrix formats
can be given optionally, as well as allowing 1D or N-dimensional arrays. Calls assert_all_finite by
default.

• check_X_y: check that X and y have consistent length, calls check_array on X, and column_or_1d on y. For
multilabel classification or multitarget regression, specify multi_output=True, in which case check_array will
be called on y.

• indexable: check that all input arrays have consistent length and can be sliced or indexed using safe_index.
This is used to validate input for cross-validation.

• validation.check_memory checks that input is joblib.Memory-like, which means that it can be
converted into a sklearn.utils.Memory instance (typically a str denoting the cachedir) or has the
same interface.

If your code relies on a random number generator, it should never use functions like numpy.random.random
or numpy.random.normal. This approach can lead to repeatability issues in unit tests. Instead, a numpy.
random.RandomState object should be used, which is built from a random_state argument passed to the class
or function. The function check_random_state, below, can then be used to create a random number generator
object.

• check_random_state: create a np.random.RandomState object from a parameter random_state.

– If random_state is None or np.random, then a randomly-initialized RandomState object is re-
turned.

8.4. Utilities for Developers 2671

http://valgrind.org
http://valgrind.org

scikit-learn user guide, Release 0.23.2

– If random_state is an integer, then it is used to seed a new RandomState object.

– If random_state is a RandomState object, then it is passed through.

For example:

>>> from sklearn.utils import check_random_state
>>> random_state = 0
>>> random_state = check_random_state(random_state)
>>> random_state.rand(4)
array([0.5488135 , 0.71518937, 0.60276338, 0.54488318])

When developing your own scikit-learn compatible estimator, the following helpers are available.

• validation.check_is_fitted: check that the estimator has been fitted before calling transform,
predict, or similar methods. This helper allows to raise a standardized error message across estimator.

• validation.has_fit_parameter: check that a given parameter is supported in the fit method of a
given estimator.

8.4.2 Efficient Linear Algebra & Array Operations

• extmath.randomized_range_finder: construct an orthonormal matrix whose range approximates the
range of the input. This is used in extmath.randomized_svd, below.

• extmath.randomized_svd: compute the k-truncated randomized SVD. This algorithm finds the exact
truncated singular values decomposition using randomization to speed up the computations. It is particularly
fast on large matrices on which you wish to extract only a small number of components.

• arrayfuncs.cholesky_delete: (used in sklearn.linear_model.lars_path) Remove an item
from a cholesky factorization.

• arrayfuncs.min_pos: (used in sklearn.linear_model.least_angle) Find the minimum of the
positive values within an array.

• extmath.fast_logdet: efficiently compute the log of the determinant of a matrix.

• extmath.density: efficiently compute the density of a sparse vector

• extmath.safe_sparse_dot: dot product which will correctly handle scipy.sparse inputs. If the
inputs are dense, it is equivalent to numpy.dot.

• extmath.weighted_mode: an extension of scipy.stats.mode which allows each item to have a real-
valued weight.

• resample: Resample arrays or sparse matrices in a consistent way. used in shuffle, below.

• shuffle: Shuffle arrays or sparse matrices in a consistent way. Used in sklearn.cluster.k_means.

8.4.3 Efficient Random Sampling

• random.sample_without_replacement: implements efficient algorithms for sampling n_samples
integers from a population of size n_population without replacement.

8.4.4 Efficient Routines for Sparse Matrices

The sklearn.utils.sparsefuncs cython module hosts compiled extensions to efficiently process scipy.
sparse data.

2672 Chapter 8. Developer’s Guide

scikit-learn user guide, Release 0.23.2

• sparsefuncs.mean_variance_axis: compute the means and variances along a specified axis of a CSR
matrix. Used for normalizing the tolerance stopping criterion in sklearn.cluster.KMeans.

• sparsefuncs_fast.inplace_csr_row_normalize_l1 and sparsefuncs_fast.
inplace_csr_row_normalize_l2: can be used to normalize individual sparse samples to unit L1
or L2 norm as done in sklearn.preprocessing.Normalizer.

• sparsefuncs.inplace_csr_column_scale: can be used to multiply the columns of a CSR matrix
by a constant scale (one scale per column). Used for scaling features to unit standard deviation in sklearn.
preprocessing.StandardScaler.

8.4.5 Graph Routines

• graph.single_source_shortest_path_length: (not currently used in scikit-learn) Return the
shortest path from a single source to all connected nodes on a graph. Code is adapted from networkx.
If this is ever needed again, it would be far faster to use a single iteration of Dijkstra’s algorithm from
graph_shortest_path.

• graph_shortest_path.graph_shortest_path: (used in sklearn.manifold.Isomap) Return
the shortest path between all pairs of connected points on a directed or undirected graph. Both the Floyd-
Warshall algorithm and Dijkstra’s algorithm are available. The algorithm is most efficient when the connectivity
matrix is a scipy.sparse.csr_matrix.

8.4.6 Testing Functions

• all_estimators : returns a list of all estimators in scikit-learn to test for consistent behavior and interfaces.

8.4.7 Multiclass and multilabel utility function

• multiclass.is_multilabel: Helper function to check if the task is a multi-label classification one.

• multiclass.unique_labels: Helper function to extract an ordered array of unique labels from different
formats of target.

8.4.8 Helper Functions

• gen_even_slices: generator to create n-packs of slices going up to n. Used in sklearn.
decomposition.dict_learning and sklearn.cluster.k_means.

• safe_mask: Helper function to convert a mask to the format expected by the numpy array or scipy sparse
matrix on which to use it (sparse matrices support integer indices only while numpy arrays support both boolean
masks and integer indices).

• safe_sqr: Helper function for unified squaring (**2) of array-likes, matrices and sparse matrices.

8.4.9 Hash Functions

• murmurhash3_32 provides a python wrapper for the MurmurHash3_x86_32 C++ non cryptographic hash
function. This hash function is suitable for implementing lookup tables, Bloom filters, Count Min Sketch, feature
hashing and implicitly defined sparse random projections:

8.4. Utilities for Developers 2673

https://networkx.github.io/

scikit-learn user guide, Release 0.23.2

>>> from sklearn.utils import murmurhash3_32
>>> murmurhash3_32("some feature", seed=0) == -384616559
True

>>> murmurhash3_32("some feature", seed=0, positive=True) == 3910350737
True

The sklearn.utils.murmurhash module can also be “cimported” from other cython modules so as to
benefit from the high performance of MurmurHash while skipping the overhead of the Python interpreter.

8.4.10 Warnings and Exceptions

• deprecated: Decorator to mark a function or class as deprecated.

• sklearn.exceptions.ConvergenceWarning: Custom warning to catch convergence problems. Used
in sklearn.covariance.graphical_lasso.

8.5 How to optimize for speed

The following gives some practical guidelines to help you write efficient code for the scikit-learn project.

Note: While it is always useful to profile your code so as to check performance assumptions, it is also highly
recommended to review the literature to ensure that the implemented algorithm is the state of the art for the task
before investing into costly implementation optimization.

Times and times, hours of efforts invested in optimizing complicated implementation details have been rendered
irrelevant by the subsequent discovery of simple algorithmic tricks, or by using another algorithm altogether that is
better suited to the problem.

The section A simple algorithmic trick: warm restarts gives an example of such a trick.

8.5.1 Python, Cython or C/C++?

In general, the scikit-learn project emphasizes the readability of the source code to make it easy for the project
users to dive into the source code so as to understand how the algorithm behaves on their data but also for ease of
maintainability (by the developers).

When implementing a new algorithm is thus recommended to start implementing it in Python using Numpy and
Scipy by taking care of avoiding looping code using the vectorized idioms of those libraries. In practice this means
trying to replace any nested for loops by calls to equivalent Numpy array methods. The goal is to avoid the CPU
wasting time in the Python interpreter rather than crunching numbers to fit your statistical model. It’s generally a good
idea to consider NumPy and SciPy performance tips: https://scipy.github.io/old-wiki/pages/PerformanceTips

Sometimes however an algorithm cannot be expressed efficiently in simple vectorized Numpy code. In this case, the
recommended strategy is the following:

1. Profile the Python implementation to find the main bottleneck and isolate it in a dedicated module level func-
tion. This function will be reimplemented as a compiled extension module.

2. If there exists a well maintained BSD or MIT C/C++ implementation of the same algorithm that is not too
big, you can write a Cython wrapper for it and include a copy of the source code of the library in the scikit-
learn source tree: this strategy is used for the classes svm.LinearSVC, svm.SVC and linear_model.
LogisticRegression (wrappers for liblinear and libsvm).

2674 Chapter 8. Developer’s Guide

https://scipy.github.io/old-wiki/pages/PerformanceTips

scikit-learn user guide, Release 0.23.2

3. Otherwise, write an optimized version of your Python function using Cython directly. This strategy is used for
the linear_model.ElasticNet and linear_model.SGDClassifier classes for instance.

4. Move the Python version of the function in the tests and use it to check that the results of the compiled
extension are consistent with the gold standard, easy to debug Python version.

5. Once the code is optimized (not simple bottleneck spottable by profiling), check whether it is possible to have
coarse grained parallelism that is amenable to multi-processing by using the joblib.Parallel class.

When using Cython, use either

$ python setup.py build_ext -i $ python setup.py install

to generate C files. You are responsible for adding .c/.cpp extensions along with build parameters in each submodule
setup.py.

C/C++ generated files are embedded in distributed stable packages. The goal is to make it possible to install scikit-learn
stable version on any machine with Python, Numpy, Scipy and C/C++ compiler.

8.5.2 Profiling Python code

In order to profile Python code we recommend to write a script that loads and prepare you data and then use the
IPython integrated profiler for interactively exploring the relevant part for the code.

Suppose we want to profile the Non Negative Matrix Factorization module of scikit-learn. Let us setup a new IPython
session and load the digits dataset and as in the Recognizing hand-written digits example:

In [1]: from sklearn.decomposition import NMF

In [2]: from sklearn.datasets import load_digits

In [3]: X, _ = load_digits(return_X_y=True)

Before starting the profiling session and engaging in tentative optimization iterations, it is important to measure the
total execution time of the function we want to optimize without any kind of profiler overhead and save it somewhere
for later reference:

In [4]: %timeit NMF(n_components=16, tol=1e-2).fit(X)
1 loops, best of 3: 1.7 s per loop

To have a look at the overall performance profile using the %prun magic command:

In [5]: %prun -l nmf.py NMF(n_components=16, tol=1e-2).fit(X)
14496 function calls in 1.682 CPU seconds

Ordered by: internal time
List reduced from 90 to 9 due to restriction <'nmf.py'>

ncalls tottime percall cumtime percall filename:lineno(function)
36 0.609 0.017 1.499 0.042 nmf.py:151(_nls_subproblem)

1263 0.157 0.000 0.157 0.000 nmf.py:18(_pos)
1 0.053 0.053 1.681 1.681 nmf.py:352(fit_transform)

673 0.008 0.000 0.057 0.000 nmf.py:28(norm)
1 0.006 0.006 0.047 0.047 nmf.py:42(_initialize_nmf)

36 0.001 0.000 0.010 0.000 nmf.py:36(_sparseness)
30 0.001 0.000 0.001 0.000 nmf.py:23(_neg)
1 0.000 0.000 0.000 0.000 nmf.py:337(__init__)
1 0.000 0.000 1.681 1.681 nmf.py:461(fit)

8.5. How to optimize for speed 2675

scikit-learn user guide, Release 0.23.2

The tottime column is the most interesting: it gives to total time spent executing the code of a given function
ignoring the time spent in executing the sub-functions. The real total time (local code + sub-function calls) is given by
the cumtime column.

Note the use of the -l nmf.py that restricts the output to lines that contains the “nmf.py” string. This is useful to
have a quick look at the hotspot of the nmf Python module it-self ignoring anything else.

Here is the beginning of the output of the same command without the -l nmf.py filter:

In [5] %prun NMF(n_components=16, tol=1e-2).fit(X)
16159 function calls in 1.840 CPU seconds

Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(function)
2833 0.653 0.000 0.653 0.000 {numpy.core._dotblas.dot}

46 0.651 0.014 1.636 0.036 nmf.py:151(_nls_subproblem)
1397 0.171 0.000 0.171 0.000 nmf.py:18(_pos)
2780 0.167 0.000 0.167 0.000 {method 'sum' of 'numpy.ndarray'

→˓objects}
1 0.064 0.064 1.840 1.840 nmf.py:352(fit_transform)

1542 0.043 0.000 0.043 0.000 {method 'flatten' of 'numpy.ndarray'
→˓objects}

337 0.019 0.000 0.019 0.000 {method 'all' of 'numpy.ndarray'
→˓objects}

2734 0.011 0.000 0.181 0.000 fromnumeric.py:1185(sum)
2 0.010 0.005 0.010 0.005 {numpy.linalg.lapack_lite.dgesdd}

748 0.009 0.000 0.065 0.000 nmf.py:28(norm)
...

The above results show that the execution is largely dominated by dot products operations (delegated to blas). Hence
there is probably no huge gain to expect by rewriting this code in Cython or C/C++: in this case out of the 1.7s total
execution time, almost 0.7s are spent in compiled code we can consider optimal. By rewriting the rest of the Python
code and assuming we could achieve a 1000% boost on this portion (which is highly unlikely given the shallowness
of the Python loops), we would not gain more than a 2.4x speed-up globally.

Hence major improvements can only be achieved by algorithmic improvements in this particular example (e.g.
trying to find operation that are both costly and useless to avoid computing then rather than trying to optimize their
implementation).

It is however still interesting to check what’s happening inside the _nls_subproblem function which is the hotspot
if we only consider Python code: it takes around 100% of the accumulated time of the module. In order to better
understand the profile of this specific function, let us install line_profiler and wire it to IPython:

$ pip install line_profiler

• Under IPython 0.13+, first create a configuration profile:

$ ipython profile create

Then register the line_profiler extension in ~/.ipython/profile_default/ipython_config.py:

c.TerminalIPythonApp.extensions.append('line_profiler')
c.InteractiveShellApp.extensions.append('line_profiler')

This will register the %lprun magic command in the IPython terminal application and the other frontends such
as qtconsole and notebook.

Now restart IPython and let us use this new toy:

2676 Chapter 8. Developer’s Guide

scikit-learn user guide, Release 0.23.2

In [1]: from sklearn.datasets import load_digits

In [2]: from sklearn.decomposition import NMF
... : from sklearn.decomposition._nmf import _nls_subproblem

In [3]: X, _ = load_digits(return_X_y=True)

In [4]: %lprun -f _nls_subproblem NMF(n_components=16, tol=1e-2).fit(X)
Timer unit: 1e-06 s

File: sklearn/decomposition/nmf.py
Function: _nls_subproblem at line 137
Total time: 1.73153 s

Line # Hits Time Per Hit % Time Line Contents
==

137 def _nls_subproblem(V, W, H_init,
→˓tol, max_iter):

138 """Non-negative least square
→˓solver

...
170 """
171 48 5863 122.1 0.3 if (H_init < 0).any():
172 raise ValueError("Negative

→˓values in H_init passed to NLS solver.")
173
174 48 139 2.9 0.0 H = H_init
175 48 112141 2336.3 5.8 WtV = np.dot(W.T, V)
176 48 16144 336.3 0.8 WtW = np.dot(W.T, W)
177
178 # values justified in the paper
179 48 144 3.0 0.0 alpha = 1
180 48 113 2.4 0.0 beta = 0.1
181 638 1880 2.9 0.1 for n_iter in range(1, max_iter

→˓+ 1):
182 638 195133 305.9 10.2 grad = np.dot(WtW, H) - WtV
183 638 495761 777.1 25.9 proj_gradient = norm(grad[np.

→˓logical_or(grad < 0, H > 0)])
184 638 2449 3.8 0.1 if proj_gradient < tol:
185 48 130 2.7 0.0 break
186
187 1474 4474 3.0 0.2 for inner_iter in range(1,

→˓20):
188 1474 83833 56.9 4.4 Hn = H - alpha * grad
189 # Hn = np.where(Hn > 0,

→˓Hn, 0)
190 1474 194239 131.8 10.1 Hn = _pos(Hn)
191 1474 48858 33.1 2.5 d = Hn - H
192 1474 150407 102.0 7.8 gradd = np.sum(grad * d)
193 1474 515390 349.7 26.9 dQd = np.sum(np.dot(WtW,

→˓d) * d)
...

By looking at the top values of the % Time column it is really easy to pin-point the most expensive expressions that
would deserve additional care.

8.5. How to optimize for speed 2677

scikit-learn user guide, Release 0.23.2

8.5.3 Memory usage profiling

You can analyze in detail the memory usage of any Python code with the help of memory_profiler. First, install the
latest version:

$ pip install -U memory_profiler

Then, setup the magics in a manner similar to line_profiler.

• Under IPython 0.11+, first create a configuration profile:

$ ipython profile create

Then register the extension in ~/.ipython/profile_default/ipython_config.py alongside the
line profiler:

c.TerminalIPythonApp.extensions.append('memory_profiler')
c.InteractiveShellApp.extensions.append('memory_profiler')

This will register the %memit and %mprun magic commands in the IPython terminal application and the other
frontends such as qtconsole and notebook.

%mprun is useful to examine, line-by-line, the memory usage of key functions in your program. It is very similar to
%lprun, discussed in the previous section. For example, from the memory_profiler examples directory:

In [1] from example import my_func

In [2] %mprun -f my_func my_func()
Filename: example.py

Line # Mem usage Increment Line Contents
==

3 @profile
4 5.97 MB 0.00 MB def my_func():
5 13.61 MB 7.64 MB a = [1] * (10 ** 6)
6 166.20 MB 152.59 MB b = [2] * (2 * 10 ** 7)
7 13.61 MB -152.59 MB del b
8 13.61 MB 0.00 MB return a

Another useful magic that memory_profiler defines is %memit, which is analogous to %timeit. It can be used
as follows:

In [1]: import numpy as np

In [2]: %memit np.zeros(1e7)
maximum of 3: 76.402344 MB per loop

For more details, see the docstrings of the magics, using %memit? and %mprun?.

8.5.4 Performance tips for the Cython developer

If profiling of the Python code reveals that the Python interpreter overhead is larger by one order of magnitude or
more than the cost of the actual numerical computation (e.g. for loops over vector components, nested evaluation
of conditional expression, scalar arithmetic. . .), it is probably adequate to extract the hotspot portion of the code as a
standalone function in a .pyx file, add static type declarations and then use Cython to generate a C program suitable
to be compiled as a Python extension module.

2678 Chapter 8. Developer’s Guide

https://pypi.org/project/memory_profiler/

scikit-learn user guide, Release 0.23.2

The official documentation available at http://docs.cython.org/ contains a tutorial and reference guide for developing
such a module. In the following we will just highlight a couple of tricks that we found important in practice on the
existing cython codebase in the scikit-learn project.

TODO: html report, type declarations, bound checks, division by zero checks, memory alignment, direct blas calls. . .

• https://www.youtube.com/watch?v=gMvkiQ-gOW8

• http://conference.scipy.org/proceedings/SciPy2009/paper_1/

• http://conference.scipy.org/proceedings/SciPy2009/paper_2/

Using OpenMP

Since scikit-learn can be built without OpenMP, it’s necessary to protect each direct call to OpenMP. This can be done
using the following syntax:

importing OpenMP
IF SKLEARN_OPENMP_PARALLELISM_ENABLED:

cimport openmp

calling OpenMP
IF SKLEARN_OPENMP_PARALLELISM_ENABLED:

max_threads = openmp.omp_get_max_threads()
ELSE:

max_threads = 1

Note: Protecting the parallel loop, prange, is already done by cython.

8.5.5 Profiling compiled extensions

When working with compiled extensions (written in C/C++ with a wrapper or directly as Cython extension), the default
Python profiler is useless: we need a dedicated tool to introspect what’s happening inside the compiled extension it-
self.

Using yep and gperftools

Easy profiling without special compilation options use yep:

• https://pypi.org/project/yep/

• http://fa.bianp.net/blog/2011/a-profiler-for-python-extensions

Using gprof

In order to profile compiled Python extensions one could use gprof after having recompiled the project with gcc
-pg and using the python-dbg variant of the interpreter on debian / ubuntu: however this approach requires to also
have numpy and scipy recompiled with -pg which is rather complicated to get working.

Fortunately there exist two alternative profilers that don’t require you to recompile everything.

8.5. How to optimize for speed 2679

http://docs.cython.org/
https://www.youtube.com/watch?v=gMvkiQ-gOW8
http://conference.scipy.org/proceedings/SciPy2009/paper_1/
http://conference.scipy.org/proceedings/SciPy2009/paper_2/
https://pypi.org/project/yep/
http://fa.bianp.net/blog/2011/a-profiler-for-python-extensions

scikit-learn user guide, Release 0.23.2

Using valgrind / callgrind / kcachegrind

kcachegrind

yep can be used to create a profiling report. kcachegrind provides a graphical environment to visualize this report:

Run yep to profile some python script
python -m yep -c my_file.py

open my_file.py.callgrin with kcachegrind
kcachegrind my_file.py.prof

Note: yep can be executed with the argument --lines or -l to compile a profiling report ‘line by line’.

8.5.6 Multi-core parallelism using joblib.Parallel

See joblib documentation

8.5.7 A simple algorithmic trick: warm restarts

See the glossary entry for warm_start

8.6 Installing the development version of scikit-learn

This section introduces how to install the master branch of scikit-learn. This can be done by either installing a nightly
build or building from source.

8.6.1 Installing nightly builds

The continuous integration servers of the scikit-learn project build, test and upload wheel packages for the most recent
Python version on a nightly basis.

Installing a nightly build is the quickest way to:

• try a new feature that will be shipped in the next release (that is, a feature from a pull-request that was recently
merged to the master branch);

• check whether a bug you encountered has been fixed since the last release.

pip install --pre --extra-index https://pypi.anaconda.org/scipy-wheels-nightly/simple
→˓scikit-learn

8.6.2 Building from source

Building from source is required to work on a contribution (bug fix, new feature, code or documentation improvement).

1. Use Git to check out the latest source from the scikit-learn repository on Github.:

2680 Chapter 8. Developer’s Guide

https://joblib.readthedocs.io
http://scikit-learn.org/dev/glossary.html#term-warm-start
https://git-scm.com/
https://github.com/scikit-learn/scikit-learn

scikit-learn user guide, Release 0.23.2

git clone git://github.com/scikit-learn/scikit-learn.git # add --depth 1 if your
→˓connection is slow
cd scikit-learn

If you plan on submitting a pull-request, you should clone from your fork instead.

2. Install a compiler with OpenMP support for your platform. See instructions for Windows, macOS, Linux and
FreeBSD.

3. Optional (but recommended): create and activate a dedicated virtualenv or conda environment.

4. Install Cython and build the project with pip in Editable mode:

pip install cython
pip install --verbose --no-build-isolation --editable .

5. Check that the installed scikit-learn has a version number ending with .dev0:

python -c "import sklearn; sklearn.show_versions()"

6. Please refer to the Developer’s Guide and Useful pytest aliases and flags to run the tests on the module of your
choice.

Note: You will have to run the pip install --no-build-isolation --editable . command every
time the source code of a Cython file is updated (ending in .pyx or .pxd). Use the --no-build-isolation
flag to avoid compiling the whole project each time, only the files you have modified.

Dependencies

Runtime dependencies

Scikit-learn requires the following dependencies both at build time and at runtime:

• Python (>= 3.6),

• NumPy (>= 1.13.3),

• SciPy (>= 0.19),

• Joblib (>= 0.11),

• threadpoolctl (>= 2.0.0).

Those dependencies are automatically installed by pip if they were missing when building scikit-learn from source.

Note: For running on PyPy, PyPy3-v5.10+, Numpy 1.14.0+, and scipy 1.1.0+ are required. For PyPy, only installation
instructions with pip apply.

Build dependencies

Building Scikit-learn also requires:

• Cython >= 0.28.5

8.6. Installing the development version of scikit-learn 2681

https://en.wikipedia.org/wiki/OpenMP
https://docs.python.org/3/tutorial/venv.html
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://cython.org

scikit-learn user guide, Release 0.23.2

• A C/C++ compiler and a matching OpenMP runtime library. See the platform system specific instructions for
more details.

Note: If OpenMP is not supported by the compiler, the build will be done with OpenMP functionalities disabled. This
is not recommended since it will force some estimators to run in sequential mode instead of leveraging thread-based
parallelism. Setting the SKLEARN_FAIL_NO_OPENMP environment variable (before cythonization) will force the
build to fail if OpenMP is not supported.

Since version 0.21, scikit-learn automatically detects and use the linear algebrea library used by SciPy at runtime.
Scikit-learn has therefore no build dependency on BLAS/LAPACK implementations such as OpenBlas, Atlas, Blis or
MKL.

Test dependencies

Running tests requires:

• pytest >=4.6.2

Some tests also require pandas.

Building a specific version from a tag

If you want to build a stable version, you can git checkout <VERSION> to get the code for that particular
version, or download an zip archive of the version from github.

Editable mode

If you run the development version, it is cumbersome to reinstall the package each time you update the sources. There-
fore it is recommended that you install in with the pip install --no-build-isolation --editable .
command, which allows you to edit the code in-place. This builds the extension in place and creates a link to the
development directory (see the pip docs).

This is fundamentally similar to using the command python setup.py develop (see the setuptool docs). It is
however preferred to use pip.

On Unix-like systems, you can equivalently type make in from the top-level folder. Have a look at the Makefile
for additional utilities.

8.6.3 Platform-specific instructions

Here are instructions to install a working C/C++ compiler with OpenMP support to build scikit-learn Cython exten-
sions for each supported platform.

Windows

First, install Build Tools for Visual Studio 2019.

Warning: You DO NOT need to install Visual Studio 2019. You only need the “Build Tools for Visual Studio
2019”, under “All downloads” -> “Tools for Visual Studio 2019”.

2682 Chapter 8. Developer’s Guide

https://en.wikipedia.org/wiki/OpenMP
https://pandas.pydata.org
https://pip.pypa.io/en/stable/reference/pip_install/#editable-installs
https://setuptools.readthedocs.io/en/latest/setuptools.html#development-mode
https://visualstudio.microsoft.com/downloads/

scikit-learn user guide, Release 0.23.2

Secondly, find out if you are running 64-bit or 32-bit Python. The building command depends on the architecture of
the Python interpreter. You can check the architecture by running the following in cmd or powershell console:

python -c "import struct; print(struct.calcsize('P') * 8)"

For 64-bit Python, configure the build environment with:

SET DISTUTILS_USE_SDK=1
"C:\Program Files (x86)\Microsoft Visual
→˓Studio\2019\BuildTools\VC\Auxiliary\Build\vcvarsall.bat" x64

Replace x64 by x86 to build for 32-bit Python.

Please be aware that the path above might be different from user to user. The aim is to point to the “vcvarsall.bat” file
that will set the necessary environment variables in the current command prompt.

Finally, build scikit-learn from this command prompt:

pip install --verbose --no-build-isolation --editable .

macOS

The default C compiler on macOS, Apple clang (confusingly aliased as /usr/bin/gcc), does not directly support
OpenMP. We present two alternatives to enable OpenMP support:

• either install conda-forge::compilers with conda;

• or install libomp with Homebrew to extend the default Apple clang compiler.

macOS compilers from conda-forge

If you use the conda package manager (version >= 4.7), you can install the compilers meta-package from the
conda-forge channel, which provides OpenMP-enabled C/C++ compilers based on the llvm toolchain.

First install the macOS command line tools:

xcode-select --install

It is recommended to use a dedicated conda environment to build scikit-learn from source:

conda create -n sklearn-dev python numpy scipy cython joblib pytest \
"conda-forge::compilers>=1.0.4" conda-forge::llvm-openmp

conda activate sklearn-dev
make clean
pip install --verbose --no-build-isolation --editable .

Note: If you get any conflicting dependency error message, try commenting out any custom conda configuration
in the $HOME/.condarc file. In particular the channel_priority: strict directive is known to cause
problems for this setup.

You can check that the custom compilers are properly installed from conda forge using the following command:

conda list

8.6. Installing the development version of scikit-learn 2683

https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html

scikit-learn user guide, Release 0.23.2

which should include compilers and llvm-openmp.

The compilers meta-package will automatically set custom environment variables:

echo $CC
echo $CXX
echo $CFLAGS
echo $CXXFLAGS
echo $LDFLAGS

They point to files and folders from your sklearn-dev conda environment (in particular in the bin/, include/ and
lib/ subfolders). For instance -L/path/to/conda/envs/sklearn-dev/lib should appear in LDFLAGS.

In the log, you should see the compiled extension being built with the clang and clang++ compilers installed by conda
with the -fopenmp command line flag.

macOS compilers from Homebrew

Another solution is to enable OpenMP support for the clang compiler shipped by default on macOS.

First install the macOS command line tools:

xcode-select --install

Install the Homebrew package manager for macOS.

Install the LLVM OpenMP library:

brew install libomp

Set the following environment variables:

export CC=/usr/bin/clang
export CXX=/usr/bin/clang++
export CPPFLAGS="$CPPFLAGS -Xpreprocessor -fopenmp"
export CFLAGS="$CFLAGS -I/usr/local/opt/libomp/include"
export CXXFLAGS="$CXXFLAGS -I/usr/local/opt/libomp/include"
export LDFLAGS="$LDFLAGS -Wl,-rpath,/usr/local/opt/libomp/lib -L/usr/local/opt/libomp/
→˓lib -lomp"

Finally, build scikit-learn in verbose mode (to check for the presence of the -fopenmp flag in the compiler com-
mands):

make clean
pip install --verbose --no-build-isolation --editable .

Linux

Linux compilers from the system

Installing scikit-learn from source without using conda requires you to have installed the scikit-learn Python develop-
ment headers and a working C/C++ compiler with OpenMP support (typically the GCC toolchain).

Install build dependencies for Debian-based operating systems, e.g. Ubuntu:

2684 Chapter 8. Developer’s Guide

https://brew.sh

scikit-learn user guide, Release 0.23.2

sudo apt-get install build-essential python3-dev python3-pip

then proceed as usual:

pip3 install cython
pip3 install --verbose --editable .

Cython and the pre-compiled wheels for the runtime dependencies (numpy, scipy and joblib) should automatically
be installed in $HOME/.local/lib/pythonX.Y/site-packages. Alternatively you can run the above com-
mands from a virtualenv or a conda environment to get full isolation from the Python packages installed via the system
packager. When using an isolated environment, pip3 should be replaced by pip in the above commands.

When precompiled wheels of the runtime dependencies are not avalaible for your architecture (e.g. ARM), you can
install the system versions:

sudo apt-get install cython3 python3-numpy python3-scipy

On Red Hat and clones (e.g. CentOS), install the dependencies using:

sudo yum -y install gcc gcc-c++ python3-devel numpy scipy

Linux compilers from conda-forge

Alternatively, install a recent version of the GNU C Compiler toolchain (GCC) in the user folder using conda:

conda create -n sklearn-dev numpy scipy joblib cython conda-forge::compilers
conda activate sklearn-dev
pip install --verbose --no-build-isolation --editable .

FreeBSD

The clang compiler included in FreeBSD 12.0 and 11.2 base systems does not include OpenMP support. You need to
install the openmp library from packages (or ports):

sudo pkg install openmp

This will install header files in /usr/local/include and libs in /usr/local/lib. Since these directories are
not searched by default, you can set the environment variables to these locations:

export CFLAGS="$CFLAGS -I/usr/local/include"
export CXXFLAGS="$CXXFLAGS -I/usr/local/include"
export LDFLAGS="$LDFLAGS -Wl,-rpath,/usr/local/lib -L/usr/local/lib -lomp"

Finally, build the package using the standard command:

pip install --verbose --no-build-isolation --editable .

For the upcoming FreeBSD 12.1 and 11.3 versions, OpenMP will be included in the base system and these steps will
not be necessary.

8.6. Installing the development version of scikit-learn 2685

https://docs.python.org/3/tutorial/venv.html
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html

scikit-learn user guide, Release 0.23.2

8.7 Maintainer / core-developer information

8.7.1 Releasing

This section is about preparing a major release, incrementing the minor version, or a bug fix release incrementing the
patch version. Our convention is that we release one or more release candidates (0.RRrcN) before releasing the final
distributions. We follow the PEP101 to indicate release candidates, post, and minor releases.

Before a release

1. Update authors table:

$ cd build_tools; make authors; cd ..

and commit. This is only needed if the authors have changed since the last release. This step is sometimes done
independent of the release. This updates the maintainer list and is not the contributor list for the release.

2. Confirm any blockers tagged for the milestone are resolved, and that other issues tagged for the milestone can
be postponed.

3. Ensure the change log and commits correspond (within reason!), and that the change log is reasonably well
curated. Some tools for these tasks include:

• maint_tools/sort_whats_new.py can put what’s new entries into sections. It’s not perfect, and
requires manual checking of the changes. If the whats new list is well curated, it may not be necessary.

• The maint_tools/whats_missing.sh script may be used to identify pull requests that were
merged but likely missing from What’s New.

4. Make sure the deprecations, FIXME and TODOs tagged for the release have been taken care of.

Permissions

The release manager requires a set of permissions on top of the usual permissions given to maintainers, which includes:

• maintainer role on scikit-learn projects on pypi.org and test.pypi.org, separately.

• become a member of the scikit-learn team on conda-forge by editing the recipe/meta.yaml file on
https://github.com/conda-forge/scikit-learn-feedstock

• maintainer on https://github.com/MacPython/scikit-learn-wheels

Preparing a release PR

Releasing the first RC of e.g. version 0.99 involves creating the release branch 0.99.X directly on the main repo,
where X really is the letter X, not a placeholder. This is considered the feature freeze. The development for the major
and minor releases of 0.99 should also happen under 0.99.X. Each release (rc, major, or minor) is a tag under that
branch.

In terms of including changes, the first RC ideally counts as a feature freeze. Each coming release candidate and the
final release afterwards will include minor documentation changes and bug fixes. Any major enhancement or feature
should be excluded.

The minor releases should include bug fixes and some relevant documentation changes only. Any PR resulting in a
behavior change which is not a bug fix should be excluded.

First, create a branch, on your own fork (to release e.g. 0.999.3):

2686 Chapter 8. Developer’s Guide

https://www.python.org/dev/peps/pep-0101/

scikit-learn user guide, Release 0.23.2

$ # assuming master and upstream/master are the same
$ git checkout -b release-0.999.3 master

Then, create a PR to the scikit-learn/0.999.X branch (not to master!) with all the desired changes:

$ git rebase -i upstream/0.999.2

Do not forget to add a commit updating sklearn.__version__.

It’s nice to have a copy of the git rebase -i log in the PR to help others understand what’s included.

Making a release

0. Create the release branch on the main repo, if it does not exist. This is done only once, as the major and minor
releases happen on the same branch:

$ git checkout -b 0.99.X

Again, X is literal here, and 99 is replaced by the release number. The branches are called 0.19.X, 0.20.X,
etc.

1. Update docs. Note that this is for the final release, not necessarily for the RC releases. These changes should be
made in master and cherry-picked into the release branch, only before the final release.

• Edit the doc/whats_new.rst file to add release title and commit statistics. You can retrieve commit statistics
with:

$ git shortlog -s 0.99.33.. | cut -f2- | sort --ignore-case | tr '\n' ';' |
→˓sed 's/;/, /g;s/, $//'

• Update the release date in whats_new.rst

• Edit the doc/templates/index.html to change the ‘News’ entry of the front page.

2. On the branch for releasing, update the version number in sklearn/__init__.py, the __version__
variable by removing dev* only when ready to release. On master, increment the version in the same place
(when branching for release). This means while we’re in the release candidate period, the latest stable is two
versions behind the master branch, instead of one.

3. At this point all relevant PRs should have been merged into the 0.99.X branch. Create the source tarball:

• Wipe clean your repo:

$ git clean -xfd

• Generate the tarball:

$ python setup.py sdist

• You can also test a binary dist build using:

$ python setup.py bdist_wheel

• You can test if PyPi is going to accept the package using:

$ twine check dist/*

8.7. Maintainer / core-developer information 2687

scikit-learn user guide, Release 0.23.2

You can run twine check after step 5 (fetching artifacts) as well.

The result should be in the dist/ folder. We will upload it later with the wheels. Check that you can install it
in a new virtualenv and that the tests pass.

4. Proceed with caution. Ideally, tags should be created when you’re almost certain that the release is ready, since
adding a tag to the main repo can trigger certain automated processes. You can test upload the sdist to test.
pypi.org, and test the next step by setting BUILD_COMMIT to the branch name (0.99.X for instance) in a
PR to the wheel building repo. Once all works, you can proceed with tagging. Create the tag and push it (if it’s
an RC, it can be 0.xxrc1 for instance):

$ git tag -a 0.99 # in the 0.99.X branch

$ git push git@github.com:scikit-learn/scikit-learn.git 0.99

5. Update the dependency versions and set BUILD_COMMIT variable to the release tag at:

https://github.com/MacPython/scikit-learn-wheels

Once the CI has completed successfully, collect the generated binary wheel packages and upload them to PyPI
by running the following commands in the scikit-learn source folder (checked out at the release tag):

$ rm -r dist # only if there's anything other than the sdist tar.gz there
$ pip install -U wheelhouse_uploader twine
$ python setup.py fetch_artifacts

6. Check the content of the dist/ folder: it should contain all the wheels along with the source tarball (“scikit-
learn-RRR.tar.gz”).

Make sure that you do not have developer versions or older versions of the scikit-learn package in that folder.

Before uploading to pypi, you can test upload to test.pypi.org:

$ twine upload --verbose --repository-url https://test.pypi.org/legacy/ dist/*

Upload everything at once to https://pypi.org:

$ twine upload dist/*

7. For major/minor (not bug-fix release), update the symlink for stable and the latestStable variable in
https://github.com/scikit-learn/scikit-learn.github.io:

$ cd /tmp
$ git clone --depth 1 --no-checkout git@github.com:scikit-learn/scikit-learn.
→˓github.io.git
$ cd scikit-learn.github.io
$ echo stable > .git/info/sparse-checkout
$ git checkout master
$ rm stable
$ ln -s 0.999 stable
$ sed -i "s/latestStable = '.*/latestStable = '0.999';/" versionwarning.js
$ git add stable/ versionwarning.js
$ git commit -m "Update stable to point to 0.999"
$ git push origin master

The following GitHub checklist might be helpful in a release PR:

* [] update news and what's new date in master and release branch

* [] create tag

(continues on next page)

2688 Chapter 8. Developer’s Guide

https://github.com/MacPython/scikit-learn-wheels
https://pypi.org
https://github.com/scikit-learn/scikit-learn.github.io

scikit-learn user guide, Release 0.23.2

(continued from previous page)

* [] update dependencies and release tag at
https://github.com/MacPython/scikit-learn-wheels

* [] twine the wheels to PyPI when that's green

* [] https://github.com/scikit-learn/scikit-learn/releases draft

* [] confirm bot detected at
https://github.com/conda-forge/scikit-learn-feedstock and wait for merge

* [] https://github.com/scikit-learn/scikit-learn/releases publish

* [] fix the binder release version in ``.binder/requirement.txt`` (see
#15847)

* [] announce on mailing list and on twitter

8.7.2 Merging Pull Requests

Individual commits are squashed when a Pull Request (PR) is merged on Github. Before merging,

• the resulting commit title can be edited if necessary. Note that this will rename the PR title by default.

• the detailed description, containing the titles of all the commits, can be edited or deleted.

• for PRs with multiple code contributors care must be taken to keep the Co-authored-by: name
<name@example.com> tags in the detailed description. This will mark the PR as having multiple co-authors.
Whether code contributions are significanly enough to merit co-authorship is left to the maintainer’s discretion,
same as for the “what’s new” entry.

8.7.3 The scikit-learn.org web site

The scikit-learn web site (http://scikit-learn.org) is hosted at GitHub, but should rarely be updated manually by pushing
to the https://github.com/scikit-learn/scikit-learn.github.io repository. Most updates can be made by pushing to master
(for /dev) or a release branch like 0.99.X, from which Circle CI builds and uploads the documentation automatically.

8.7.4 Travis Cron jobs

From https://docs.travis-ci.com/user/cron-jobs: Travis CI cron jobs work similarly to the cron utility, they run builds
at regular scheduled intervals independently of whether any commits were pushed to the repository. Cron jobs always
fetch the most recent commit on a particular branch and build the project at that state. Cron jobs can run daily, weekly
or monthly, which in practice means up to an hour after the selected time span, and you cannot set them to run at a
specific time.

For scikit-learn, Cron jobs are used for builds that we do not want to run in each PR. As an example the build with the
dev versions of numpy and scipy is run as a Cron job. Most of the time when this numpy-dev build fail, it is related to
a numpy change and not a scikit-learn one, so it would not make sense to blame the PR author for the Travis failure.

The definition of what gets run in the Cron job is done in the .travis.yml config file, exactly the same way as the other
Travis jobs. We use a if: type = cron filter in order for the build to be run only in Cron jobs.

The branch targeted by the Cron job and the frequency of the Cron job is set via the web UI at https://www.travis-ci.
org/scikit-learn/scikit-learn/settings.

8.7.5 Experimental features

The sklearn.experimental module was introduced in 0.21 and contains experimental features / estimators that
are subject to change without deprecation cycle.

8.7. Maintainer / core-developer information 2689

https://help.github.com/en/github/committing-changes-to-your-project/creating-a-commit-with-multiple-authors
http://scikit-learn.org
https://github.com/scikit-learn/scikit-learn.github.io
https://docs.travis-ci.com/user/cron-jobs
https://www.travis-ci.org/scikit-learn/scikit-learn/settings
https://www.travis-ci.org/scikit-learn/scikit-learn/settings

scikit-learn user guide, Release 0.23.2

To create an experimental module, you can just copy and modify the content of enable_hist_gradient_boosting.py, or
enable_iterative_imputer.py.

Note that the public import path must be to a public subpackage (like sklearn/ensemble or sklearn/impute),
not just a .py module. Also, the (private) experimental features that are imported must be in a submodule/subpackage
of the public subpackage, e.g. sklearn/ensemble/_hist_gradient_boosting/ or sklearn/impute/
_iterative.py. This is needed so that pickles still work in the future when the features aren’t experimental
anymore

To avoid type checker (e.g. mypy) errors a direct import of experimenal estimators should be done in the
parent module, protected by the if typing.TYPE_CHECKING check. See sklearn/ensemble/__init__.py, or
sklearn/impute/__init__.py for an example.

Please also write basic tests following those in test_enable_hist_gradient_boosting.py.

Make sure every user-facing code you write explicitly mentions that the feature is experimental, and add a # noqa
comment to avoid pep8-related warnings:

To use this experimental feature, we need to explicitly ask for it:
from sklearn.experimental import enable_hist_gradient_boosting # noqa
from sklearn.ensemble import HistGradientBoostingRegressor

For the docs to render properly, please also import enable_my_experimental_feature in doc/conf.py,
else sphinx won’t be able to import the corresponding modules. Note that using from sklearn.experimental
import * does not work.

Note that some experimental classes / functions are not included in the sklearn.experimental module:
sklearn.datasets.fetch_openml.

8.8 Developing with the Plotting API

Scikit-learn defines a simple API for creating visualizations for machine learning. The key features of this API is to
run calculations once and to have the flexibility to adjust the visualizations after the fact. This section is intended
for developers who wish to develop or maintain plotting tools. For usage, users should refer to the :ref‘User Guide
<visualizations>‘.

8.8.1 Plotting API Overview

This logic is encapsulated into a display object where the computed data is stored and the plotting is done in a plot
method. The display object’s __init__ method contains only the data needed to create the visualization. The plot
method takes in parameters that only have to do with visualization, such as a matplotlib axes. The plot method will
store the matplotlib artists as attributes allowing for style adjustments through the display object. A plot_* helper
function accepts parameters to do the computation and the parameters used for plotting. After the helper function
creates the display object with the computed values, it calls the display’s plot method. Note that the plot method
defines attributes related to matplotlib, such as the line artist. This allows for customizations after calling the plot
method.

For example, the RocCurveDisplay defines the following methods and attributes:

class RocCurveDisplay:
def __init__(self, fpr, tpr, roc_auc, estimator_name):

...
self.fpr = fpr
self.tpr = tpr
self.roc_auc = roc_auc

(continues on next page)

2690 Chapter 8. Developer’s Guide

https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/experimental/enable_hist_gradient_boosting.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/experimental/enable_iterative_imputer.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/__init__.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/impute/__init__.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/experimental/tests/test_enable_hist_gradient_boosting.py

scikit-learn user guide, Release 0.23.2

(continued from previous page)

self.estimator_name = estimator_name

def plot(self, ax=None, name=None, **kwargs):
...
self.line_ = ...
self.ax_ = ax
self.figure_ = ax.figure_

def plot_roc_curve(estimator, X, y, pos_label=None, sample_weight=None,
drop_intermediate=True, response_method="auto",
name=None, ax=None, **kwargs):

do computation
viz = RocCurveDisplay(fpr, tpr, roc_auc,

estimator.__class__.__name__)
return viz.plot(ax=ax, name=name, **kwargs)

Read more in ROC Curve with Visualization API and the User Guide.

8.8.2 Plotting with Multiple Axes

Some of the plotting tools like plot_partial_dependence and PartialDependenceDisplay support
plottong on multiple axes. Two different scenarios are supported:

1. If a list of axes is passed in, plot will check if the number of axes is consistent with the number of axes it expects
and then draws on those axes. 2. If a single axes is passed in, that axes defines a space for multiple axes to be placed.
In this case, we suggest using matplotlib’s ~matplotlib.gridspec.GridSpecFromSubplotSpec to split
up the space:

import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpecFromSubplotSpec

fig, ax = plt.subplots()
gs = GridSpecFromSubplotSpec(2, 2, subplot_spec=ax.get_subplotspec())

ax_top_left = fig.add_subplot(gs[0, 0])
ax_top_right = fig.add_subplot(gs[0, 1])
ax_bottom = fig.add_subplot(gs[1, :])

By default, the ax keyword in plot is None. In this case, the single axes is created and the gridspec api is used to
create the regions to plot in.

See for example, plot_partial_dependence which plots multiple lines and contours using this API. The axes
defining the bounding box is saved in a bounding_ax_ attribute. The individual axes created are stored in an axes_
ndarray, corresponding to the axes position on the grid. Positions that are not used are set to None. Furthermore, the
matplotlib Artists are stored in lines_ and contours_ where the key is the position on the grid. When a list of
axes is passed in, the axes_, lines_, and contours_ is a 1d ndarray corresponding to the list of axes passed in.

8.8. Developing with the Plotting API 2691

scikit-learn user guide, Release 0.23.2

2692 Chapter 8. Developer’s Guide

BIBLIOGRAPHY

[M2012] “Machine Learning: A Probabilistic Perspective” Murphy, K. P. - chapter 14.4.3, pp. 492-493, The MIT
Press, 2012

[RW2006] Carl Eduard Rasmussen and Christopher K.I. Williams, “Gaussian Processes for Machine Learning”,
MIT Press 2006, Link to an official complete PDF version of the book here .

[Duv2014] David Duvenaud, “The Kernel Cookbook: Advice on Covariance functions”, 2014, Link .

[BRE] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Wadsworth,
Belmont, CA, 1984.

[B1999] L. Breiman, “Pasting small votes for classification in large databases and on-line”, Machine Learning,
36(1), 85-103, 1999.

[B1996] L. Breiman, “Bagging predictors”, Machine Learning, 24(2), 123-140, 1996.

[H1998] T. Ho, “The random subspace method for constructing decision forests”, Pattern Analysis and Machine
Intelligence, 20(8), 832-844, 1998.

[LG2012] G. Louppe and P. Geurts, “Ensembles on Random Patches”, Machine Learning and Knowledge Discovery
in Databases, 346-361, 2012.

[B2001] L. Breiman, “Random Forests”, Machine Learning, 45(1), 5-32, 2001.

[B1998] L. Breiman, “Arcing Classifiers”, Annals of Statistics 1998.

[L2014] G. Louppe, “Understanding Random Forests: From Theory to Practice”, PhD Thesis, U. of Liege, 2014.

[FS1995] Y. Freund, and R. Schapire, “A Decision-Theoretic Generalization of On-Line Learning and an Applica-
tion to Boosting”, 1997.

[ZZRH2009] J. Zhu, H. Zou, S. Rosset, T. Hastie. “Multi-class AdaBoost”, 2009.

[D1997] H. Drucker. “Improving Regressors using Boosting Techniques”, 1997.

[HTF] T. Hastie, R. Tibshirani and J. Friedman, “Elements of Statistical Learning Ed. 2”, Springer, 2009.

[F1999] Friedmann, Jerome H., 2007, “Stochastic Gradient Boosting”

[R2007] G. Ridgeway, “Generalized Boosted Models: A guide to the gbm package”, 2007

[XGBoost] Tianqi Chen, Carlos Guestrin, “XGBoost: A Scalable Tree Boosting System”

[LightGBM] Ke et. al. “LightGBM: A Highly Efficient Gradient BoostingDecision Tree”

[W1992] Wolpert, David H. “Stacked generalization.” Neural networks 5.2 (1992): 241-259.

[VEB2009] Vinh, Epps, and Bailey, (2009). “Information theoretic measures for clusterings comparison”.
Proceedings of the 26th Annual International Conference on Machine Learning - ICML ‘09.
doi:10.1145/1553374.1553511. ISBN 9781605585161.

2693

http://www.gaussianprocess.org/gpml/chapters/RW.pdf
https://www.cs.toronto.edu/~duvenaud/cookbook/
https://statweb.stanford.edu/~jhf/ftp/stobst.pdf
https://arxiv.org/abs/1603.02754
https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree
https://dl.acm.org/citation.cfm?doid=1553374.1553511

scikit-learn user guide, Release 0.23.2

[VEB2010] Vinh, Epps, and Bailey, (2010). “Information Theoretic Measures for Clusterings Comparison: Vari-
ants, Properties, Normalization and Correction for Chance”. JMLR <http://jmlr.csail.mit.edu/papers/
volume11/vinh10a/vinh10a.pdf>

[YAT2016] Yang, Algesheimer, and Tessone, (2016). “A comparative analysis of community detection algorithms on
artificial networks”. Scientific Reports 6: 30750. doi:10.1038/srep30750.

[B2011] Identication and Characterization of Events in Social Media, Hila Becker, PhD Thesis.

[Mrl09] “Online Dictionary Learning for Sparse Coding” J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009

[Jen09] “Structured Sparse Principal Component Analysis” R. Jenatton, G. Obozinski, F. Bach, 2009

[1] L. Breiman, “Random Forests”, Machine Learning, 45(1), 5-32, 2001.

[1] L. Breiman, “Random Forests”, Machine Learning, 45(1), 5-32, 2001.

[2] P. Geurts, D. Ernst., and L. Wehenkel, “Extremely randomized trees”, Machine Learning, 63(1), 3-42,
2006.

[1] P. Geurts, D. Ernst., and L. Wehenkel, “Extremely randomized trees”, Machine Learning, 63(1), 3-42,
2006.

[1] P. Geurts, D. Ernst., and L. Wehenkel, “Extremely randomized trees”, Machine Learning, 63(1), 3-42,
2006.

[Guyon2015] I. Guyon, K. Bennett, G. Cawley, H.J. Escalante, S. Escalera, T.K. Ho, N. Macià, B. Ray, M. Saeed,
A.R. Statnikov, E. Viegas, Design of the 2015 ChaLearn AutoML Challenge, IJCNN 2015.

[Mosley2013] L. Mosley, A balanced approach to the multi-class imbalance problem, IJCV 2010.

[Kelleher2015] John. D. Kelleher, Brian Mac Namee, Aoife D’Arcy, Fundamentals of Machine Learning for Predic-
tive Data Analytics: Algorithms, Worked Examples, and Case Studies, 2015.

[Urbanowicz2015] Urbanowicz R.J., Moore, J.H. ExSTraCS 2.0: description and evaluation of a scalable learning
classifier system, Evol. Intel. (2015) 8: 89.

[Manning2008] C.D. Manning, P. Raghavan, H. Schütze, Introduction to Information Retrieval, 2008.

[Everingham2010] M. Everingham, L. Van Gool, C.K.I. Williams, J. Winn, A. Zisserman, The Pascal Visual Object
Classes (VOC) Challenge, IJCV 2010.

[Davis2006] J. Davis, M. Goadrich, The Relationship Between Precision-Recall and ROC Curves, ICML 2006.

[Flach2015] P.A. Flach, M. Kull, Precision-Recall-Gain Curves: PR Analysis Done Right, NIPS 2015.

[HT2001] Hand, D.J. and Till, R.J., (2001). A simple generalisation of the area under the ROC curve for multiple
class classification problems. Machine learning, 45(2), pp.171-186.

[FC2009] Ferri, Cèsar & Hernandez-Orallo, Jose & Modroiu, R. (2009). An Experimental Comparison of Perfor-
mance Measures for Classification. Pattern Recognition Letters. 30. 27-38.

[PD2000] Provost, F., Domingos, P. (2000). Well-trained PETs: Improving probability estimation trees (Section
6.2), CeDER Working Paper #IS-00-04, Stern School of Business, New York University.

[F2006] Fawcett, T., 2006. An introduction to ROC analysis. Pattern Recognition Letters, 27(8), pp. 861-874.

[F2001] Fawcett, T., 2001. Using rule sets to maximize ROC performance In Data Mining, 2001. Proceedings
IEEE International Conference, pp. 131-138.

[NQY18] J. Nothman, H. Qin and R. Yurchak (2018). “Stop Word Lists in Free Open-source Software Packages”.
In Proc. Workshop for NLP Open Source Software.

[OL2001] Olga Troyanskaya, Michael Cantor, Gavin Sherlock, Pat Brown, Trevor Hastie, Robert Tibshirani, David
Botstein and Russ B. Altman, Missing value estimation methods for DNA microarrays, BIOINFORMAT-
ICS Vol. 17 no. 6, 2001 Pages 520-525.

2694 Bibliography

http://jmlr.csail.mit.edu/papers/volume11/vinh10a/vinh10a.pdf
http://jmlr.csail.mit.edu/papers/volume11/vinh10a/vinh10a.pdf
https://www.nature.com/articles/srep30750
http://www.cs.columbia.edu/~hila/hila-thesis-distributed.pdf
https://www.di.ens.fr/sierra/pdfs/icml09.pdf
https://www.di.ens.fr/~fbach/sspca_AISTATS2010.pdf
https://ieeexplore.ieee.org/document/7280767
https://lib.dr.iastate.edu/etd/13537/
https://mitpress.mit.edu/books/fundamentals-machine-learning-predictive-data-analytics
https://mitpress.mit.edu/books/fundamentals-machine-learning-predictive-data-analytics
https://doi.org/10.1007/s12065-015-0128-8
https://doi.org/10.1007/s12065-015-0128-8
https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-ranked-retrieval-results-1.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.157.5766&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.157.5766&rep=rep1&type=pdf
http://www.machinelearning.org/proceedings/icml2006/030_The_Relationship_Bet.pdf
https://papers.nips.cc/paper/5867-precision-recall-gain-curves-pr-analysis-done-right.pdf
http://link.springer.com/article/10.1023/A:1010920819831
http://link.springer.com/article/10.1023/A:1010920819831
https://www.math.ucdavis.edu/~saito/data/roc/ferri-class-perf-metrics.pdf
https://www.math.ucdavis.edu/~saito/data/roc/ferri-class-perf-metrics.pdf
http://www.sciencedirect.com/science/article/pii/S016786550500303X
http://ieeexplore.ieee.org/document/989510/
https://aclweb.org/anthology/W18-2502

scikit-learn user guide, Release 0.23.2

[RR2007] “Random features for large-scale kernel machines” Rahimi, A. and Recht, B. - Advances in neural infor-
mation processing 2007,

[LS2010] “Random Fourier approximations for skewed multiplicative histogram kernels” Random Fourier approx-
imations for skewed multiplicative histogram kernels - Lecture Notes for Computer Sciencd (DAGM)

[VZ2010] “Efficient additive kernels via explicit feature maps” Vedaldi, A. and Zisserman, A. - Computer Vision
and Pattern Recognition 2010

[VVZ2010] “Generalized RBF feature maps for Efficient Detection” Vempati, S. and Vedaldi, A. and Zisserman, A.
and Jawahar, CV - 2010

[1] Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers, B. Zadrozny
& C. Elkan, ICML 2001

[2] Transforming Classifier Scores into Accurate Multiclass Probability Estimates, B. Zadrozny & C. Elkan,
(KDD 2002)

[3] Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods,
J. Platt, (1999)

[4] Predicting Good Probabilities with Supervised Learning, A. Niculescu-Mizil & R. Caruana, ICML 2005

[1] Ankerst, Mihael, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander. “OPTICS: ordering points to
identify the clustering structure.” ACM SIGMOD Record 28, no. 2 (1999): 49-60.

[2] Schubert, Erich, Michael Gertz. “Improving the Cluster Structure Extracted from OPTICS Plots.” Proc.
of the Conference “Lernen, Wissen, Daten, Analysen” (LWDA) (2018): 318-329.

[1] Ankerst, Mihael, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander. “OPTICS: ordering points to
identify the clustering structure.” ACM SIGMOD Record 28, no. 2 (1999): 49-60.

[1] Rousseeuw, P.J., Van Driessen, K. “A fast algorithm for the minimum covariance determinant estimator”
Technometrics 41(3), 212 (1999)

[RVD] A Fast Algorithm for the Minimum Covariance Determinant Estimator, 1999, American Statistical Asso-
ciation and the American Society for Quality, TECHNOMETRICS

[RVDriessen] A Fast Algorithm for the Minimum Covariance Determinant Estimator, 1999, American Statistical
Association and the American Society for Quality, TECHNOMETRICS

[Rouseeuw1984] P. J. Rousseeuw. Least median of squares regression. J. Am Stat Ass, 79:871, 1984.

[Rousseeuw] A Fast Algorithm for the Minimum Covariance Determinant Estimator, 1999, American Statistical As-
sociation and the American Society for Quality, TECHNOMETRICS

[ButlerDavies] R. W. Butler, P. L. Davies and M. Jhun, Asymptotics For The Minimum Covariance Determinant
Estimator, The Annals of Statistics, 1993, Vol. 21, No. 3, 1385-1400

[RVD] A Fast Algorithm for the Minimum Covariance Determinant Estimator, 1999, American Statistical Asso-
ciation and the American Society for Quality, TECHNOMETRICS

[RVDriessen] A Fast Algorithm for the Minimum Covariance Determinant Estimator, 1999, American Statistical
Association and the American Society for Quality, TECHNOMETRICS

[1] Dhillon, I. S. (2001, August). Co-clustering documents and words using bipartite spectral graph parti-
tioning. In Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery
and data mining (pp. 269-274). ACM.

[1] Kluger, Y., Basri, R., Chang, J. T., & Gerstein, M. (2003). Spectral biclustering of microarray data:
coclustering genes and conditions. Genome research, 13(4), 703-716.

[1] I. Guyon, “Design of experiments for the NIPS 2003 variable selection benchmark”, 2003.

[1] J. Friedman, “Multivariate adaptive regression splines”, The Annals of Statistics 19 (1), pages 1-67, 1991.

Bibliography 2695

https://www.robots.ox.ac.uk/~vgg/rg/papers/randomfeatures.pdf
http://www.maths.lth.se/matematiklth/personal/sminchis/papers/lis_dagm10.pdf
https://www.robots.ox.ac.uk/~vgg/publications/2011/Vedaldi11/vedaldi11.pdf
https://www.robots.ox.ac.uk/~vgg/publications/2010/Sreekanth10/sreekanth10.pdf

scikit-learn user guide, Release 0.23.2

[2] L. Breiman, “Bagging predictors”, Machine Learning 24, pages 123-140, 1996.

[1] J. Friedman, “Multivariate adaptive regression splines”, The Annals of Statistics 19 (1), pages 1-67, 1991.

[2] L. Breiman, “Bagging predictors”, Machine Learning 24, pages 123-140, 1996.

[1] J. Friedman, “Multivariate adaptive regression splines”, The Annals of Statistics 19 (1), pages 1-67, 1991.

[2] L. Breiman, “Bagging predictors”, Machine Learning 24, pages 123-140, 1996.

[1] J. Zhu, H. Zou, S. Rosset, T. Hastie, “Multi-class AdaBoost”, 2009.

[1] T. Hastie, R. Tibshirani and J. Friedman, “Elements of Statistical Learning Ed. 2”, Springer, 2009.

[1] G. Celeux, M. El Anbari, J.-M. Marin, C. P. Robert, “Regularization in regression: comparing Bayesian
and frequentist methods in a poorly informative situation”, 2009.

[1] S. Marsland, “Machine Learning: An Algorithmic Perspective”, Chapter 10, 2009. http://seat.massey.ac.
nz/personal/s.r.marsland/Code/10/lle.py

[1] “Online Learning for Latent Dirichlet Allocation”, Matthew D. Hoffman, David M. Blei, Francis Bach,
2010

[1] Y. Freund, R. Schapire, “A Decision-Theoretic Generalization of on-Line Learning and an Application to
Boosting”, 1995.

[2] J. Zhu, H. Zou, S. Rosset, T. Hastie, “Multi-class AdaBoost”, 2009.

[1] Y. Freund, R. Schapire, “A Decision-Theoretic Generalization of on-Line Learning and an Application to
Boosting”, 1995.

[2] H. Drucker, “Improving Regressors using Boosting Techniques”, 1997.

[1] L. Breiman, “Pasting small votes for classification in large databases and on-line”, Machine Learning,
36(1), 85-103, 1999.

[2] L. Breiman, “Bagging predictors”, Machine Learning, 24(2), 123-140, 1996.

[3] T. Ho, “The random subspace method for constructing decision forests”, Pattern Analysis and Machine
Intelligence, 20(8), 832-844, 1998.

[4] G. Louppe and P. Geurts, “Ensembles on Random Patches”, Machine Learning and Knowledge Discovery
in Databases, 346-361, 2012.

[1] L. Breiman, “Pasting small votes for classification in large databases and on-line”, Machine Learning,
36(1), 85-103, 1999.

[2] L. Breiman, “Bagging predictors”, Machine Learning, 24(2), 123-140, 1996.

[3] T. Ho, “The random subspace method for constructing decision forests”, Pattern Analysis and Machine
Intelligence, 20(8), 832-844, 1998.

[4] G. Louppe and P. Geurts, “Ensembles on Random Patches”, Machine Learning and Knowledge Discovery
in Databases, 346-361, 2012.

[1] Liu, Fei Tony, Ting, Kai Ming and Zhou, Zhi-Hua. “Isolation forest.” Data Mining, 2008. ICDM’08.
Eighth IEEE International Conference on.

[2] Liu, Fei Tony, Ting, Kai Ming and Zhou, Zhi-Hua. “Isolation-based anomaly detection.” ACM Transac-
tions on Knowledge Discovery from Data (TKDD) 6.1 (2012): 3.

[1] P. Geurts, D. Ernst., and L. Wehenkel, “Extremely randomized trees”, Machine Learning, 63(1), 3-42,
2006.

[2] Moosmann, F. and Triggs, B. and Jurie, F. “Fast discriminative visual codebooks using randomized clus-
tering forests” NIPS 2007

2696 Bibliography

http://seat.massey.ac.nz/personal/s.r.marsland/Code/10/lle.py
http://seat.massey.ac.nz/personal/s.r.marsland/Code/10/lle.py

scikit-learn user guide, Release 0.23.2

[1] Wolpert, David H. “Stacked generalization.” Neural networks 5.2 (1992): 241-259.

[1] Wolpert, David H. “Stacked generalization.” Neural networks 5.2 (1992): 241-259.

[Yates2011] R. Baeza-Yates and B. Ribeiro-Neto (2011). Modern Information Retrieval. Addison Wesley, pp. 68-74.

[MRS2008] C.D. Manning, P. Raghavan and H. Schütze (2008). Introduction to Information Retrieval. Cambridge
University Press, pp. 118-120.

[1] Guyon, I., Weston, J., Barnhill, S., & Vapnik, V., “Gene selection for cancer classification using support
vector machines”, Mach. Learn., 46(1-3), 389–422, 2002.

[1] Guyon, I., Weston, J., Barnhill, S., & Vapnik, V., “Gene selection for cancer classification using support
vector machines”, Mach. Learn., 46(1-3), 389–422, 2002.

[1] Mutual Information on Wikipedia.

[2] A. Kraskov, H. Stogbauer and P. Grassberger, “Estimating mutual information”. Phys. Rev. E 69, 2004.

[3] B. C. Ross “Mutual Information between Discrete and Continuous Data Sets”. PLoS ONE 9(2), 2014.

[4] L. F. Kozachenko, N. N. Leonenko, “Sample Estimate of the Entropy of a Random Vector:, Probl.
Peredachi Inf., 23:2 (1987), 9-16

[1] Mutual Information on Wikipedia.

[2] A. Kraskov, H. Stogbauer and P. Grassberger, “Estimating mutual information”. Phys. Rev. E 69, 2004.

[3] B. C. Ross “Mutual Information between Discrete and Continuous Data Sets”. PLoS ONE 9(2), 2014.

[4] L. F. Kozachenko, N. N. Leonenko, “Sample Estimate of the Entropy of a Random Vector”, Probl.
Peredachi Inf., 23:2 (1987), 9-16

[1] Carl Edward Rasmussen, Christopher K. I. Williams (2006). “Gaussian Processes for Machine Learning”.
The MIT Press.

[1] Carl Edward Rasmussen, Christopher K. I. Williams (2006). “Gaussian Processes for Machine Learning”.
The MIT Press.

[1] David Duvenaud (2014). “The Kernel Cookbook: Advice on Covariance functions”.

[2] Carl Edward Rasmussen, Christopher K. I. Williams (2006). “Gaussian Processes for Machine Learning”.
The MIT Press.

[1] David Duvenaud (2014). “The Kernel Cookbook: Advice on Covariance functions”.

[1] Stef van Buuren, Karin Groothuis-Oudshoorn (2011). “mice: Multivariate Imputation by Chained Equa-
tions in R”. Journal of Statistical Software 45: 1-67.

[2] S. F. Buck, (1960). “A Method of Estimation of Missing Values in Multivariate Data Suitable for use with
an Electronic Computer”. Journal of the Royal Statistical Society 22(2): 302-306.

[BRE] L. Breiman, “Random Forests”, Machine Learning, 45(1), 5-32, 2001. https://doi.org/10.1023/A:
1010933404324

[1] Peter J. Huber, Elvezio M. Ronchetti, Robust Statistics Concomitant scale estimates, pg 172

[2] Art B. Owen (2006), A robust hybrid of lasso and ridge regression. https://statweb.stanford.edu/~owen/
reports/hhu.pdf

[1] https://en.wikipedia.org/wiki/RANSAC

[2] https://www.sri.com/sites/default/files/publications/ransac-publication.pdf

[3] http://www.bmva.org/bmvc/2009/Papers/Paper355/Paper355.pdf

[1] “Least Angle Regression”, Efron et al. http://statweb.stanford.edu/~tibs/ftp/lars.pdf

Bibliography 2697

https://en.wikipedia.org/wiki/Mutual_information
https://en.wikipedia.org/wiki/Mutual_information
http://www.gaussianprocess.org/gpml/
http://www.gaussianprocess.org/gpml/
http://www.gaussianprocess.org/gpml/
http://www.gaussianprocess.org/gpml/
https://www.cs.toronto.edu/~duvenaud/cookbook/
http://www.gaussianprocess.org/gpml/
http://www.gaussianprocess.org/gpml/
https://www.cs.toronto.edu/~duvenaud/cookbook/
https://www.jstatsoft.org/article/view/v045i03
https://www.jstatsoft.org/article/view/v045i03
https://www.jstor.org/stable/2984099
https://www.jstor.org/stable/2984099
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://statweb.stanford.edu/~owen/reports/hhu.pdf
https://statweb.stanford.edu/~owen/reports/hhu.pdf
https://en.wikipedia.org/wiki/RANSAC
https://www.sri.com/sites/default/files/publications/ransac-publication.pdf
http://www.bmva.org/bmvc/2009/Papers/Paper355/Paper355.pdf
http://statweb.stanford.edu/~tibs/ftp/lars.pdf

scikit-learn user guide, Release 0.23.2

[2] Wikipedia entry on the Least-angle regression

[3] Wikipedia entry on the Lasso

[1] “Least Angle Regression”, Efron et al. http://statweb.stanford.edu/~tibs/ftp/lars.pdf

[2] Wikipedia entry on the Least-angle regression

[3] Wikipedia entry on the Lasso

[1] Tenenbaum, J.B.; De Silva, V.; & Langford, J.C. A global geometric framework for nonlinear dimension-
ality reduction. Science 290 (5500)

[1] Roweis, S. & Saul, L. Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323
(2000).

[2] Donoho, D. & Grimes, C. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional
data. Proc Natl Acad Sci U S A. 100:5591 (2003).

[3] Zhang, Z. & Wang, J. MLLE: Modified Locally Linear Embedding Using Multiple Weights. http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382

[4] Zhang, Z. & Zha, H. Principal manifolds and nonlinear dimensionality reduction via tangent space align-
ment. Journal of Shanghai Univ. 8:406 (2004)

[1] Roweis, S. & Saul, L. Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323
(2000).

[2] Donoho, D. & Grimes, C. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional
data. Proc Natl Acad Sci U S A. 100:5591 (2003).

[3] Zhang, Z. & Wang, J. MLLE: Modified Locally Linear Embedding Using Multiple Weights. http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382

[4] Zhang, Z. & Zha, H. Principal manifolds and nonlinear dimensionality reduction via tangent space align-
ment. Journal of Shanghai Univ. 8:406 (2004)

[1] Wikipedia entry for the Average precision

[1] Brodersen, K.H.; Ong, C.S.; Stephan, K.E.; Buhmann, J.M. (2010). The balanced accuracy and its poste-
rior distribution. Proceedings of the 20th International Conference on Pattern Recognition, 3121-24.

[2] John. D. Kelleher, Brian Mac Namee, Aoife D’Arcy, (2015). Fundamentals of Machine Learning for
Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies.

[1] Wikipedia entry for the Brier score.

[1] J. Cohen (1960). “A coefficient of agreement for nominal scales”. Educational and Psychological Mea-
surement 20(1):37-46. doi:10.1177/001316446002000104.

[2] R. Artstein and M. Poesio (2008). “Inter-coder agreement for computational linguistics”. Computational
Linguistics 34(4):555-596.

[3] Wikipedia entry for the Cohen’s kappa.

[1] Wikipedia entry for the Confusion matrix (Wikipedia and other references may use a different convention
for axes)

[1] Wikipedia entry for the F1-score

[1] R. Baeza-Yates and B. Ribeiro-Neto (2011). Modern Information Retrieval. Addison Wesley, pp. 327-
328.

[2] Wikipedia entry for the F1-score

2698 Bibliography

https://en.wikipedia.org/wiki/Least-angle_regression
https://en.wikipedia.org/wiki/Lasso_(statistics)
http://statweb.stanford.edu/~tibs/ftp/lars.pdf
https://en.wikipedia.org/wiki/Least-angle_regression
https://en.wikipedia.org/wiki/Lasso_(statistics)
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382
https://en.wikipedia.org/w/index.php?title=Information_retrieval&oldid=793358396#Average_precision
https://mitpress.mit.edu/books/fundamentals-machine-learning-predictive-data-analytics
https://mitpress.mit.edu/books/fundamentals-machine-learning-predictive-data-analytics
https://en.wikipedia.org/wiki/Brier_score
https://www.mitpressjournals.org/doi/pdf/10.1162/coli.07-034-R2
https://www.mitpressjournals.org/doi/pdf/10.1162/coli.07-034-R2
https://en.wikipedia.org/wiki/Cohen%27s_kappa
https://en.wikipedia.org/wiki/Confusion_matrix
https://en.wikipedia.org/wiki/F1_score
https://en.wikipedia.org/wiki/F1_score

scikit-learn user guide, Release 0.23.2

[1] Grigorios Tsoumakas, Ioannis Katakis. Multi-Label Classification: An Overview. International Journal
of Data Warehousing & Mining, 3(3), 1-13, July-September 2007.

[2] Wikipedia entry on the Hamming distance

[1] Wikipedia entry on the Hinge loss

[2] Koby Crammer, Yoram Singer. On the Algorithmic Implementation of Multiclass Kernel-based Vector
Machines. Journal of Machine Learning Research 2, (2001), 265-292

[3] L1 AND L2 Regularization for Multiclass Hinge Loss Models by Robert C. Moore, John DeNero.

[1] Wikipedia entry for the Jaccard index

[1] Baldi, Brunak, Chauvin, Andersen and Nielsen, (2000). Assessing the accuracy of prediction algorithms
for classification: an overview

[2] Wikipedia entry for the Matthews Correlation Coefficient

[3] Gorodkin, (2004). Comparing two K-category assignments by a K-category correlation coefficient

[4] Jurman, Riccadonna, Furlanello, (2012). A Comparison of MCC and CEN Error Measures in MultiClass
Prediction

[1] Wikipedia entry for the Precision and recall

[2] Wikipedia entry for the F1-score

[3] Discriminative Methods for Multi-labeled Classification Advances in Knowledge Discovery and Data
Mining (2004), pp. 22-30 by Shantanu Godbole, Sunita Sarawagi

[1] Wikipedia entry for the Receiver operating characteristic

[2] Analyzing a portion of the ROC curve. McClish, 1989

[3] Provost, F., Domingos, P. (2000). Well-trained PETs: Improving probability estimation trees (Section
6.2), CeDER Working Paper #IS-00-04, Stern School of Business, New York University.

[4] Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861-874.

[5] Hand, D.J., Till, R.J. (2001). A Simple Generalisation of the Area Under the ROC Curve for Multiple
Class Classification Problems. Machine Learning, 45(2), 171-186.

[1] Wikipedia entry for the Receiver operating characteristic

[2] Fawcett T. An introduction to ROC analysis[J]. Pattern Recognition Letters, 2006, 27(8):861-874.

[1] Wikipedia entry on the Coefficient of determination

[1] Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010). Mining multi-label data. In Data mining and knowl-
edge discovery handbook (pp. 667-685). Springer US.

[1] Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010). Mining multi-label data. In Data mining and knowl-
edge discovery handbook (pp. 667-685). Springer US.

[1] Vinh, Epps, and Bailey, (2010). Information Theoretic Measures for Clusterings Comparison: Variants,
Properties, Normalization and Correction for Chance, JMLR

[2] Wikipedia entry for the Adjusted Mutual Information

[Hubert1985] L. Hubert and P. Arabie, Comparing Partitions, Journal of Classification 1985 https://link.springer.com/
article/10.1007%2FBF01908075

[wk] https://en.wikipedia.org/wiki/Rand_index#Adjusted_Rand_index

[1] T. Calinski and J. Harabasz, 1974. “A dendrite method for cluster analysis”. Communications in Statistics

Bibliography 2699

https://en.wikipedia.org/wiki/Hamming_distance
https://en.wikipedia.org/wiki/Hinge_loss
http://www.ttic.edu/sigml/symposium2011/papers/Moore+DeNero_Regularization.pdf
https://en.wikipedia.org/wiki/Jaccard_index
https://doi.org/10.1093/bioinformatics/16.5.412
https://doi.org/10.1093/bioinformatics/16.5.412
https://en.wikipedia.org/wiki/Matthews_correlation_coefficient
https://www.sciencedirect.com/science/article/pii/S1476927104000799
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0041882
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0041882
https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/F1_score
http://www.godbole.net/shantanu/pubs/multilabelsvm-pakdd04.pdf
http://www.godbole.net/shantanu/pubs/multilabelsvm-pakdd04.pdf
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://www.ncbi.nlm.nih.gov/pubmed/2668680
https://www.sciencedirect.com/science/article/pii/S016786550500303X
http://link.springer.com/article/10.1023/A:1010920819831
http://link.springer.com/article/10.1023/A:1010920819831
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Coefficient_of_determination
http://jmlr.csail.mit.edu/papers/volume11/vinh10a/vinh10a.pdf
http://jmlr.csail.mit.edu/papers/volume11/vinh10a/vinh10a.pdf
https://en.wikipedia.org/wiki/Adjusted_Mutual_Information
https://link.springer.com/article/10.1007%2FBF01908075
https://link.springer.com/article/10.1007%2FBF01908075
https://en.wikipedia.org/wiki/Rand_index#Adjusted_Rand_index
https://www.tandfonline.com/doi/abs/10.1080/03610927408827101

scikit-learn user guide, Release 0.23.2

[1] Davies, David L.; Bouldin, Donald W. (1979). “A Cluster Separation Measure”. IEEE Transactions on
Pattern Analysis and Machine Intelligence. PAMI-1 (2): 224-227

[1] Andrew Rosenberg and Julia Hirschberg, 2007. V-Measure: A conditional entropy-based external cluster
evaluation measure

[1] E. B. Fowkles and C. L. Mallows, 1983. “A method for comparing two hierarchical clusterings”. Journal
of the American Statistical Association

[2] Wikipedia entry for the Fowlkes-Mallows Index

[1] Andrew Rosenberg and Julia Hirschberg, 2007. V-Measure: A conditional entropy-based external cluster
evaluation measure

[1] Peter J. Rousseeuw (1987). “Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster
Analysis”. Computational and Applied Mathematics 20: 53-65.

[2] Wikipedia entry on the Silhouette Coefficient

[1] Peter J. Rousseeuw (1987). “Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster
Analysis”. Computational and Applied Mathematics 20: 53-65.

[2] Wikipedia entry on the Silhouette Coefficient

[1] Andrew Rosenberg and Julia Hirschberg, 2007. V-Measure: A conditional entropy-based external cluster
evaluation measure

[1] Bishop, Christopher M. (2006). “Pattern recognition and machine learning”. Vol. 4 No. 4. New York:
Springer.

[2] Hagai Attias. (2000). “A Variational Bayesian Framework for Graphical Models”. In Advances in Neural
Information Processing Systems 12.

[3] Blei, David M. and Michael I. Jordan. (2006). “Variational inference for Dirichlet process mixtures”.
Bayesian analysis 1.1

[1] “Solving multiclass learning problems via error-correcting output codes”, Dietterich T., Bakiri G., Journal
of Artificial Intelligence Research 2, 1995.

[2] “The error coding method and PICTs”, James G., Hastie T., Journal of Computational and Graphical
statistics 7, 1998.

[3] “The Elements of Statistical Learning”, Hastie T., Tibshirani R., Friedman J., page 606 (second-edition)
2008.

[1] Breunig, M. M., Kriegel, H. P., Ng, R. T., & Sander, J. (2000, May). LOF: identifying density-based local
outliers. In ACM sigmod record.

[1] J. Goldberger, G. Hinton, S. Roweis, R. Salakhutdinov. “Neighbourhood Components Analysis”. Ad-
vances in Neural Information Processing Systems. 17, 513-520, 2005. http://www.cs.nyu.edu/~roweis/
papers/ncanips.pdf

[2] Wikipedia entry on Neighborhood Components Analysis https://en.wikipedia.org/wiki/Neighbourhood_
components_analysis

[1] I.K. Yeo and R.A. Johnson, “A new family of power transformations to improve normality or symmetry.”
Biometrika, 87(4), pp.954-959, (2000).

[2] G.E.P. Box and D.R. Cox, “An Analysis of Transformations”, Journal of the Royal Statistical Society B,
26, 211-252 (1964).

[1] I.K. Yeo and R.A. Johnson, “A new family of power transformations to improve normality or symmetry.”
Biometrika, 87(4), pp.954-959, (2000).

2700 Bibliography

https://ieeexplore.ieee.org/document/4766909
https://aclweb.org/anthology/D/D07/D07-1043.pdf
https://aclweb.org/anthology/D/D07/D07-1043.pdf
http://wildfire.stat.ucla.edu/pdflibrary/fowlkes.pdf
http://wildfire.stat.ucla.edu/pdflibrary/fowlkes.pdf
https://en.wikipedia.org/wiki/Fowlkes-Mallows_index
https://aclweb.org/anthology/D/D07/D07-1043.pdf
https://aclweb.org/anthology/D/D07/D07-1043.pdf
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://en.wikipedia.org/wiki/Silhouette_(clustering)
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://en.wikipedia.org/wiki/Silhouette_(clustering)
https://aclweb.org/anthology/D/D07/D07-1043.pdf
https://aclweb.org/anthology/D/D07/D07-1043.pdf
https://www.springer.com/kr/book/9780387310732
https://www.springer.com/kr/book/9780387310732
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.36.2841&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.36.2841&rep=rep1&type=pdf
https://www.cs.princeton.edu/courses/archive/fall11/cos597C/reading/BleiJordan2005.pdf
https://www.cs.princeton.edu/courses/archive/fall11/cos597C/reading/BleiJordan2005.pdf
http://www.cs.nyu.edu/~roweis/papers/ncanips.pdf
http://www.cs.nyu.edu/~roweis/papers/ncanips.pdf
https://en.wikipedia.org/wiki/Neighbourhood_components_analysis
https://en.wikipedia.org/wiki/Neighbourhood_components_analysis

scikit-learn user guide, Release 0.23.2

[2] G.E.P. Box and D.R. Cox, “An Analysis of Transformations”, Journal of the Royal Statistical Society B,
26, 211-252 (1964).

[1] Ping Li, T. Hastie and K. W. Church, 2006, “Very Sparse Random Projections”. https://web.stanford.edu/
~hastie/Papers/Ping/KDD06_rp.pdf

[2] D. Achlioptas, 2001, “Database-friendly random projections”, https://users.soe.ucsc.edu/~optas/papers/
jl.pdf

[1] https://en.wikipedia.org/wiki/Johnson%E2%80%93Lindenstrauss_lemma

[2] Sanjoy Dasgupta and Anupam Gupta, 1999, “An elementary proof of the Johnson-Lindenstrauss Lemma.”
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.3654

[1] LIBSVM: A Library for Support Vector Machines

[2] Platt, John (1999). “Probabilistic outputs for support vector machines and comparison to regularizedlike-
lihood methods.”

[1] LIBSVM: A Library for Support Vector Machines

[2] Platt, John (1999). “Probabilistic outputs for support vector machines and comparison to regularizedlike-
lihood methods.”

[1] https://en.wikipedia.org/wiki/Decision_tree_learning

[2] L. Breiman, J. Friedman, R. Olshen, and C. Stone, “Classification and Regression Trees”, Wadsworth,
Belmont, CA, 1984.

[3] T. Hastie, R. Tibshirani and J. Friedman. “Elements of Statistical Learning”, Springer, 2009.

[4] L. Breiman, and A. Cutler, “Random Forests”, https://www.stat.berkeley.edu/~breiman/RandomForests/
cc_home.htm

[1] https://en.wikipedia.org/wiki/Decision_tree_learning

[2] L. Breiman, J. Friedman, R. Olshen, and C. Stone, “Classification and Regression Trees”, Wadsworth,
Belmont, CA, 1984.

[3] T. Hastie, R. Tibshirani and J. Friedman. “Elements of Statistical Learning”, Springer, 2009.

[4] L. Breiman, and A. Cutler, “Random Forests”, https://www.stat.berkeley.edu/~breiman/RandomForests/
cc_home.htm

[1] P. Geurts, D. Ernst., and L. Wehenkel, “Extremely randomized trees”, Machine Learning, 63(1), 3-42,
2006.

[1] P. Geurts, D. Ernst., and L. Wehenkel, “Extremely randomized trees”, Machine Learning, 63(1), 3-42,
2006.

Bibliography 2701

https://web.stanford.edu/~hastie/Papers/Ping/KDD06_rp.pdf
https://web.stanford.edu/~hastie/Papers/Ping/KDD06_rp.pdf
https://users.soe.ucsc.edu/~optas/papers/jl.pdf
https://users.soe.ucsc.edu/~optas/papers/jl.pdf
https://en.wikipedia.org/wiki/Johnson%E2%80%93Lindenstrauss_lemma
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.3654
http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.1639
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.1639
http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.1639
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.1639
https://en.wikipedia.org/wiki/Decision_tree_learning
https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
https://en.wikipedia.org/wiki/Decision_tree_learning
https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm

scikit-learn user guide, Release 0.23.2

2702 Bibliography

INDEX

Symbols
__call__() (sklearn.gaussian_process.kernels.CompoundKernel

method), 1996
__call__() (sklearn.gaussian_process.kernels.ConstantKernel

method), 1999
__call__() (sklearn.gaussian_process.kernels.DotProduct

method), 2002
__call__() (sklearn.gaussian_process.kernels.ExpSineSquared

method), 2005
__call__() (sklearn.gaussian_process.kernels.Exponentiation

method), 2008
__call__() (sklearn.gaussian_process.kernels.Hyperparameter

method), 2010
__call__() (sklearn.gaussian_process.kernels.Kernel

method), 2011
__call__() (sklearn.gaussian_process.kernels.Matern

method), 2014
__call__() (sklearn.gaussian_process.kernels.PairwiseKernel

method), 2017
__call__() (sklearn.gaussian_process.kernels.Product

method), 2019
__call__() (sklearn.gaussian_process.kernels.RBF

method), 2022
__call__() (sklearn.gaussian_process.kernels.RationalQuadratic

method), 2026
__call__() (sklearn.gaussian_process.kernels.Sum

method), 2028
__call__() (sklearn.gaussian_process.kernels.WhiteKernel

method), 2031
__init__() (sklearn.base.BaseEstimator method),

1616
__init__() (sklearn.base.BiclusterMixin method),

1616
__init__() (sklearn.base.ClassifierMixin method),

1617
__init__() (sklearn.base.ClusterMixin method),

1618
__init__() (sklearn.base.DensityMixin method),

1618
__init__() (sklearn.base.RegressorMixin method),

1619
__init__() (sklearn.base.TransformerMixin method),

1620
__init__() (sklearn.calibration.CalibratedClassifierCV

method), 1626
__init__() (sklearn.cluster.AffinityPropagation

method), 1631
__init__() (sklearn.cluster.AgglomerativeClustering

method), 1634
__init__() (sklearn.cluster.Birch method), 1637
__init__() (sklearn.cluster.DBSCAN method), 1640
__init__() (sklearn.cluster.FeatureAgglomeration

method), 1643
__init__() (sklearn.cluster.KMeans method), 1648
__init__() (sklearn.cluster.MeanShift method), 1657
__init__() (sklearn.cluster.MiniBatchKMeans

method), 1652
__init__() (sklearn.cluster.OPTICS method), 1660
__init__() (sklearn.cluster.SpectralBiclustering

method), 1667
__init__() (sklearn.cluster.SpectralClustering

method), 1664
__init__() (sklearn.cluster.SpectralCoclustering

method), 1670
__init__() (sklearn.compose.ColumnTransformer

method), 1685
__init__() (sklearn.compose.TransformedTargetRegressor

method), 1689
__init__() (sklearn.covariance.EllipticEnvelope

method), 1698
__init__() (sklearn.covariance.EmpiricalCovariance

method), 1694
__init__() (sklearn.covariance.GraphicalLasso

method), 1703
__init__() (sklearn.covariance.GraphicalLassoCV

method), 1707
__init__() (sklearn.covariance.LedoitWolf method),

1710
__init__() (sklearn.covariance.MinCovDet method),

1714
__init__() (sklearn.covariance.OAS method), 1718
__init__() (sklearn.covariance.ShrunkCovariance

method), 1721
__init__() (sklearn.cross_decomposition.CCA

2703

scikit-learn user guide, Release 0.23.2

method), 1728
__init__() (sklearn.cross_decomposition.PLSCanonical

method), 1733
__init__() (sklearn.cross_decomposition.PLSRegression

method), 1737
__init__() (sklearn.cross_decomposition.PLSSVD

method), 1740
__init__() (sklearn.decomposition.DictionaryLearning

method), 1792
__init__() (sklearn.decomposition.FactorAnalysis

method), 1795
__init__() (sklearn.decomposition.FastICA method),

1799
__init__() (sklearn.decomposition.IncrementalPCA

method), 1803
__init__() (sklearn.decomposition.KernelPCA

method), 1807
__init__() (sklearn.decomposition.LatentDirichletAllocation

method), 1811
__init__() (sklearn.decomposition.MiniBatchDictionaryLearning

method), 1815
__init__() (sklearn.decomposition.MiniBatchSparsePCA

method), 1818
__init__() (sklearn.decomposition.NMF method),

1822
__init__() (sklearn.decomposition.PCA method),

1827
__init__() (sklearn.decomposition.SparseCoder

method), 1835
__init__() (sklearn.decomposition.SparsePCA

method), 1832
__init__() (sklearn.decomposition.TruncatedSVD

method), 1837
__init__() (sklearn.discriminant_analysis.LinearDiscriminantAnalysis

method), 1850
__init__() (sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis

method), 1854
__init__() (sklearn.dummy.DummyClassifier

method), 1857
__init__() (sklearn.dummy.DummyRegressor

method), 1860
__init__() (sklearn.ensemble.AdaBoostClassifier

method), 1864
__init__() (sklearn.ensemble.AdaBoostRegressor

method), 1869
__init__() (sklearn.ensemble.BaggingClassifier

method), 1874
__init__() (sklearn.ensemble.BaggingRegressor

method), 1878
__init__() (sklearn.ensemble.ExtraTreesClassifier

method), 563
__init__() (sklearn.ensemble.ExtraTreesRegressor

method), 570
__init__() (sklearn.ensemble.GradientBoostingClassifier

method), 577
__init__() (sklearn.ensemble.GradientBoostingRegressor

method), 585
__init__() (sklearn.ensemble.HistGradientBoostingClassifier

method), 1912
__init__() (sklearn.ensemble.HistGradientBoostingRegressor

method), 1907
__init__() (sklearn.ensemble.IsolationForest

method), 1882
__init__() (sklearn.ensemble.RandomForestClassifier

method), 550
__init__() (sklearn.ensemble.RandomForestRegressor

method), 557
__init__() (sklearn.ensemble.RandomTreesEmbedding

method), 1887
__init__() (sklearn.ensemble.StackingClassifier

method), 1891
__init__() (sklearn.ensemble.StackingRegressor

method), 1895
__init__() (sklearn.ensemble.VotingClassifier

method), 1899
__init__() (sklearn.ensemble.VotingRegressor

method), 1903
__init__() (sklearn.feature_extraction.DictVectorizer

method), 1920
__init__() (sklearn.feature_extraction.FeatureHasher

method), 1924
__init__() (sklearn.feature_extraction.image.PatchExtractor

method), 1929
__init__() (sklearn.feature_extraction.text.CountVectorizer

method), 1933
__init__() (sklearn.feature_extraction.text.HashingVectorizer

method), 1938
__init__() (sklearn.feature_extraction.text.TfidfTransformer

method), 1942
__init__() (sklearn.feature_extraction.text.TfidfVectorizer

method), 1947
__init__() (sklearn.feature_selection.GenericUnivariateSelect

method), 1951
__init__() (sklearn.feature_selection.RFE method),

1971
__init__() (sklearn.feature_selection.RFECV

method), 1976
__init__() (sklearn.feature_selection.SelectFdr

method), 1962
__init__() (sklearn.feature_selection.SelectFpr

method), 1960
__init__() (sklearn.feature_selection.SelectFromModel

method), 1965
__init__() (sklearn.feature_selection.SelectFwe

method), 1968
__init__() (sklearn.feature_selection.SelectKBest

method), 1957
__init__() (sklearn.feature_selection.SelectPercentile

2704 Index

scikit-learn user guide, Release 0.23.2

method), 1954
__init__() (sklearn.feature_selection.SelectorMixin

method), 1620
__init__() (sklearn.feature_selection.VarianceThreshold

method), 1980
__init__() (sklearn.gaussian_process.GaussianProcessClassifier

method), 1988
__init__() (sklearn.gaussian_process.GaussianProcessRegressor

method), 1993
__init__() (sklearn.gaussian_process.kernels.CompoundKernel

method), 1996
__init__() (sklearn.gaussian_process.kernels.ConstantKernel

method), 1999
__init__() (sklearn.gaussian_process.kernels.DotProduct

method), 2002
__init__() (sklearn.gaussian_process.kernels.ExpSineSquared

method), 2005
__init__() (sklearn.gaussian_process.kernels.Exponentiation

method), 2008
__init__() (sklearn.gaussian_process.kernels.Hyperparameter

method), 2010
__init__() (sklearn.gaussian_process.kernels.Kernel

method), 2011
__init__() (sklearn.gaussian_process.kernels.Matern

method), 2014
__init__() (sklearn.gaussian_process.kernels.PairwiseKernel

method), 2017
__init__() (sklearn.gaussian_process.kernels.Product

method), 2019
__init__() (sklearn.gaussian_process.kernels.RBF

method), 2022
__init__() (sklearn.gaussian_process.kernels.RationalQuadratic

method), 2026
__init__() (sklearn.gaussian_process.kernels.Sum

method), 2028
__init__() (sklearn.gaussian_process.kernels.WhiteKernel

method), 2031
__init__() (sklearn.impute.IterativeImputer method),

2039
__init__() (sklearn.impute.KNNImputer method),

2044
__init__() (sklearn.impute.MissingIndicator

method), 2041
__init__() (sklearn.impute.SimpleImputer method),

2035
__init__() (sklearn.inspection.PartialDependenceDisplay

method), 2050
__init__() (sklearn.isotonic.IsotonicRegression

method), 2054
__init__() (sklearn.kernel_approximation.AdditiveChi2Sampler

method), 2059
__init__() (sklearn.kernel_approximation.Nystroem

method), 2062
__init__() (sklearn.kernel_approximation.RBFSampler

method), 2064
__init__() (sklearn.kernel_approximation.SkewedChi2Sampler

method), 2066
__init__() (sklearn.kernel_ridge.KernelRidge

method), 2069
__init__() (sklearn.linear_model.ARDRegression

method), 2134
__init__() (sklearn.linear_model.BayesianRidge

method), 2137
__init__() (sklearn.linear_model.ElasticNet

method), 2114
__init__() (sklearn.linear_model.ElasticNetCV

method), 498
__init__() (sklearn.linear_model.GammaRegressor

method), 2165
__init__() (sklearn.linear_model.HuberRegressor

method), 2151
__init__() (sklearn.linear_model.Lars method),

2119
__init__() (sklearn.linear_model.LarsCV method),

503
__init__() (sklearn.linear_model.Lasso method),

2122
__init__() (sklearn.linear_model.LassoCV method),

507
__init__() (sklearn.linear_model.LassoLars

method), 2127
__init__() (sklearn.linear_model.LassoLarsCV

method), 512
__init__() (sklearn.linear_model.LassoLarsIC

method), 543
__init__() (sklearn.linear_model.LinearRegression

method), 2100
__init__() (sklearn.linear_model.LogisticRegression

method), 2075
__init__() (sklearn.linear_model.LogisticRegressionCV

method), 518
__init__() (sklearn.linear_model.MultiTaskElasticNet

method), 2141
__init__() (sklearn.linear_model.MultiTaskElasticNetCV

method), 523
__init__() (sklearn.linear_model.MultiTaskLasso

method), 2146
__init__() (sklearn.linear_model.MultiTaskLassoCV

method), 528
__init__() (sklearn.linear_model.OrthogonalMatchingPursuit

method), 2130
__init__() (sklearn.linear_model.OrthogonalMatchingPursuitCV

method), 533
__init__() (sklearn.linear_model.PassiveAggressiveClassifier

method), 2081
__init__() (sklearn.linear_model.Perceptron

method), 2085
__init__() (sklearn.linear_model.PoissonRegressor

Index 2705

scikit-learn user guide, Release 0.23.2

method), 2160
__init__() (sklearn.linear_model.RANSACRegressor

method), 2155
__init__() (sklearn.linear_model.Ridge method),

2104
__init__() (sklearn.linear_model.RidgeCV method),

536
__init__() (sklearn.linear_model.RidgeClassifier

method), 2090
__init__() (sklearn.linear_model.RidgeClassifierCV

method), 540
__init__() (sklearn.linear_model.SGDClassifier

method), 2095
__init__() (sklearn.linear_model.SGDRegressor

method), 2109
__init__() (sklearn.linear_model.TheilSenRegressor

method), 2158
__init__() (sklearn.linear_model.TweedieRegressor

method), 2163
__init__() (sklearn.manifold.Isomap method), 2181
__init__() (sklearn.manifold.LocallyLinearEmbedding

method), 2185
__init__() (sklearn.manifold.MDS method), 2188
__init__() (sklearn.manifold.SpectralEmbedding

method), 2190
__init__() (sklearn.manifold.TSNE method), 2194
__init__() (sklearn.metrics.ConfusionMatrixDisplay

method), 2285
__init__() (sklearn.metrics.PrecisionRecallDisplay

method), 2286
__init__() (sklearn.metrics.RocCurveDisplay

method), 2287
__init__() (sklearn.mixture.BayesianGaussianMixture

method), 2292
__init__() (sklearn.mixture.GaussianMixture

method), 2297
__init__() (sklearn.model_selection.GridSearchCV

method), 2332
__init__() (sklearn.model_selection.GroupKFold

method), 2301
__init__() (sklearn.model_selection.GroupShuffleSplit

method), 2303
__init__() (sklearn.model_selection.KFold method),

2305
__init__() (sklearn.model_selection.LeaveOneGroupOut

method), 2306
__init__() (sklearn.model_selection.LeaveOneOut

method), 2310
__init__() (sklearn.model_selection.LeavePGroupsOut

method), 2308
__init__() (sklearn.model_selection.LeavePOut

method), 2311
__init__() (sklearn.model_selection.ParameterGrid

method), 2335

__init__() (sklearn.model_selection.ParameterSampler
method), 2336

__init__() (sklearn.model_selection.PredefinedSplit
method), 2312

__init__() (sklearn.model_selection.RandomizedSearchCV
method), 2341

__init__() (sklearn.model_selection.RepeatedKFold
method), 2314

__init__() (sklearn.model_selection.RepeatedStratifiedKFold
method), 2316

__init__() (sklearn.model_selection.ShuffleSplit
method), 2317

__init__() (sklearn.model_selection.StratifiedKFold
method), 2319

__init__() (sklearn.model_selection.StratifiedShuffleSplit
method), 2321

__init__() (sklearn.model_selection.TimeSeriesSplit
method), 2323

__init__() (sklearn.multiclass.OneVsOneClassifier
method), 2359

__init__() (sklearn.multiclass.OneVsRestClassifier
method), 2356

__init__() (sklearn.multiclass.OutputCodeClassifier
method), 2362

__init__() (sklearn.multioutput.ClassifierChain
method), 2365

__init__() (sklearn.multioutput.MultiOutputClassifier
method), 2370

__init__() (sklearn.multioutput.MultiOutputRegressor
method), 2368

__init__() (sklearn.multioutput.RegressorChain
method), 2373

__init__() (sklearn.naive_bayes.BernoulliNB
method), 2376

__init__() (sklearn.naive_bayes.CategoricalNB
method), 2380

__init__() (sklearn.naive_bayes.ComplementNB
method), 2383

__init__() (sklearn.naive_bayes.GaussianNB
method), 2386

__init__() (sklearn.naive_bayes.MultinomialNB
method), 2390

__init__() (sklearn.neighbors.BallTree method),
2395

__init__() (sklearn.neighbors.DistanceMetric
method), 2399

__init__() (sklearn.neighbors.KDTree method),
2402

__init__() (sklearn.neighbors.KNeighborsClassifier
method), 2409

__init__() (sklearn.neighbors.KNeighborsRegressor
method), 2414

__init__() (sklearn.neighbors.KNeighborsTransformer
method), 2419

2706 Index

scikit-learn user guide, Release 0.23.2

__init__() (sklearn.neighbors.KernelDensity
method), 2405

__init__() (sklearn.neighbors.LocalOutlierFactor
method), 2424

__init__() (sklearn.neighbors.NearestCentroid
method), 2443

__init__() (sklearn.neighbors.NearestNeighbors
method), 2446

__init__() (sklearn.neighbors.NeighborhoodComponentsAnalysis
method), 2452

__init__() (sklearn.neighbors.RadiusNeighborsClassifier
method), 2429

__init__() (sklearn.neighbors.RadiusNeighborsRegressor
method), 2434

__init__() (sklearn.neighbors.RadiusNeighborsTransformer
method), 2439

__init__() (sklearn.neural_network.BernoulliRBM
method), 2457

__init__() (sklearn.neural_network.MLPClassifier
method), 2463

__init__() (sklearn.neural_network.MLPRegressor
method), 2468

__init__() (sklearn.pipeline.FeatureUnion method),
2471

__init__() (sklearn.pipeline.Pipeline method), 2474
__init__() (sklearn.preprocessing.Binarizer

method), 2480
__init__() (sklearn.preprocessing.FunctionTransformer

method), 2482
__init__() (sklearn.preprocessing.KBinsDiscretizer

method), 2485
__init__() (sklearn.preprocessing.KernelCenterer

method), 2488
__init__() (sklearn.preprocessing.LabelBinarizer

method), 2490
__init__() (sklearn.preprocessing.LabelEncoder

method), 2493
__init__() (sklearn.preprocessing.MaxAbsScaler

method), 2498
__init__() (sklearn.preprocessing.MinMaxScaler

method), 2501
__init__() (sklearn.preprocessing.MultiLabelBinarizer

method), 2495
__init__() (sklearn.preprocessing.Normalizer

method), 2503
__init__() (sklearn.preprocessing.OneHotEncoder

method), 2507
__init__() (sklearn.preprocessing.OrdinalEncoder

method), 2510
__init__() (sklearn.preprocessing.PolynomialFeatures

method), 2513
__init__() (sklearn.preprocessing.PowerTransformer

method), 2516
__init__() (sklearn.preprocessing.QuantileTransformer

method), 2519
__init__() (sklearn.preprocessing.RobustScaler

method), 2522
__init__() (sklearn.preprocessing.StandardScaler

method), 2525
__init__() (sklearn.random_projection.GaussianRandomProjection

method), 2538
__init__() (sklearn.random_projection.SparseRandomProjection

method), 2541
__init__() (sklearn.semi_supervised.LabelPropagation

method), 2545
__init__() (sklearn.semi_supervised.LabelSpreading

method), 2548
__init__() (sklearn.svm.LinearSVC method), 2553
__init__() (sklearn.svm.LinearSVR method), 2557
__init__() (sklearn.svm.NuSVC method), 2561
__init__() (sklearn.svm.NuSVR method), 2565
__init__() (sklearn.svm.OneClassSVM method),

2569
__init__() (sklearn.svm.SVC method), 2573
__init__() (sklearn.svm.SVR method), 2578
__init__() (sklearn.tree.DecisionTreeClassifier

method), 2584
__init__() (sklearn.tree.DecisionTreeRegressor

method), 2591
__init__() (sklearn.tree.ExtraTreeClassifier

method), 2598
__init__() (sklearn.tree.ExtraTreeRegressor

method), 2605
_estimator_type, 727
_pairwise, 727
_safe_indexing() (in module sklearn.utils), 2631
1d, 723
1d array, 723
2d, 723
2d array, 723

A
accuracy_score() (in module sklearn.metrics),

2202
AdaBoostClassifier (class in sklearn.ensemble),

1862
AdaBoostRegressor (class in sklearn.ensemble),

1868
add_dummy_feature() (in module

sklearn.preprocessing), 2528
additive_chi2_kernel() (in module

sklearn.metrics.pairwise), 2264
AdditiveChi2Sampler (class in

sklearn.kernel_approximation), 2058
adjusted_mutual_info_score() (in module

sklearn.metrics), 2248
adjusted_rand_score() (in module

sklearn.metrics), 2250

Index 2707

scikit-learn user guide, Release 0.23.2

affinity_propagation() (in module
sklearn.cluster), 1672

AffinityPropagation (class in sklearn.cluster),
1629

AgglomerativeClustering (class in
sklearn.cluster), 1632

aic() (sklearn.mixture.GaussianMixture method), 2297
all_estimators() (in module sklearn.utils), 2639
API, 723
apply() (sklearn.ensemble.ExtraTreesClassifier

method), 563
apply() (sklearn.ensemble.ExtraTreesRegressor

method), 570
apply() (sklearn.ensemble.GradientBoostingClassifier

method), 577
apply() (sklearn.ensemble.GradientBoostingRegressor

method), 585
apply() (sklearn.ensemble.RandomForestClassifier

method), 550
apply() (sklearn.ensemble.RandomForestRegressor

method), 557
apply() (sklearn.ensemble.RandomTreesEmbedding

method), 1887
apply() (sklearn.tree.DecisionTreeClassifier method),

2584
apply() (sklearn.tree.DecisionTreeRegressor method),

2591
apply() (sklearn.tree.ExtraTreeClassifier method),

2598
apply() (sklearn.tree.ExtraTreeRegressor method),

2605
ARDRegression (class in sklearn.linear_model), 2132
array-like, 723
as_float_array() (in module sklearn.utils), 2614
assert_all_finite() (in module sklearn.utils),

2615
attribute, 724
attributes, 724
auc() (in module sklearn.metrics), 2204
average_precision_score() (in module

sklearn.metrics), 2204

B
backwards compatibility, 724
BaggingClassifier (class in sklearn.ensemble),

1872
BaggingRegressor (class in sklearn.ensemble), 1876
balanced_accuracy_score() (in module

sklearn.metrics), 2206
BallTree (class in sklearn.neighbors), 2393
BaseEstimator (class in sklearn.base), 1615
BayesianGaussianMixture (class in

sklearn.mixture), 2288
BayesianRidge (class in sklearn.linear_model), 2135

BernoulliNB (class in sklearn.naive_bayes), 2375
BernoulliRBM (class in sklearn.neural_network),

2456
bic() (sklearn.mixture.GaussianMixture method), 2297
BiclusterMixin (class in sklearn.base), 1616
biclusters_() (sklearn.base.BiclusterMixin prop-

erty), 1616
biclusters_() (sklearn.cluster.SpectralBiclustering

property), 1667
biclusters_() (sklearn.cluster.SpectralCoclustering

property), 1670
binarize() (in module sklearn.preprocessing), 2528
Binarizer (class in sklearn.preprocessing), 2479
binary, 734
Birch (class in sklearn.cluster), 1635
bounds (sklearn.gaussian_process.kernels.Hyperparameter

attribute), 2010
bounds() (sklearn.gaussian_process.kernels.CompoundKernel

property), 1997
bounds() (sklearn.gaussian_process.kernels.ConstantKernel

property), 1999
bounds() (sklearn.gaussian_process.kernels.DotProduct

property), 2002
bounds() (sklearn.gaussian_process.kernels.Exponentiation

property), 2008
bounds() (sklearn.gaussian_process.kernels.ExpSineSquared

property), 2005
bounds() (sklearn.gaussian_process.kernels.Kernel

property), 2011
bounds() (sklearn.gaussian_process.kernels.Matern

property), 2014
bounds() (sklearn.gaussian_process.kernels.PairwiseKernel

property), 2017
bounds() (sklearn.gaussian_process.kernels.Product

property), 2020
bounds() (sklearn.gaussian_process.kernels.RationalQuadratic

property), 2026
bounds() (sklearn.gaussian_process.kernels.RBF

property), 2023
bounds() (sklearn.gaussian_process.kernels.Sum

property), 2029
bounds() (sklearn.gaussian_process.kernels.WhiteKernel

property), 2031
brier_score_loss() (in module sklearn.metrics),

2207
build_analyzer() (sklearn.feature_extraction.text.CountVectorizer

method), 1933
build_analyzer() (sklearn.feature_extraction.text.HashingVectorizer

method), 1938
build_analyzer() (sklearn.feature_extraction.text.TfidfVectorizer

method), 1947
build_preprocessor()

(sklearn.feature_extraction.text.CountVectorizer
method), 1933

2708 Index

scikit-learn user guide, Release 0.23.2

build_preprocessor()
(sklearn.feature_extraction.text.HashingVectorizer
method), 1939

build_preprocessor()
(sklearn.feature_extraction.text.TfidfVectorizer
method), 1947

build_tokenizer()
(sklearn.feature_extraction.text.CountVectorizer
method), 1934

build_tokenizer()
(sklearn.feature_extraction.text.HashingVectorizer
method), 1939

build_tokenizer()
(sklearn.feature_extraction.text.TfidfVectorizer
method), 1947

Bunch() (in module sklearn.utils), 2615

C
CalibratedClassifierCV (class in

sklearn.calibration), 1625
calibration_curve() (in module

sklearn.calibration), 1627
calinski_harabasz_score() (in module

sklearn.metrics), 2251
callable, 724
categorical feature, 725
CategoricalNB (class in sklearn.naive_bayes), 2379
CCA (class in sklearn.cross_decomposition), 1727
ChangedBehaviorWarning (class in

sklearn.exceptions), 1914
check_array() (in module sklearn.utils), 2617
check_consistent_length() (in module

sklearn.utils), 2618
check_cv() (in module sklearn.model_selection),

2324
check_estimator() (in module

sklearn.utils.estimator_checks), 2620
check_increasing() (in module sklearn.isotonic),

2056
check_is_fitted() (in module

sklearn.utils.validation), 2637
check_memory() (in module sklearn.utils.validation),

2638
check_random_state() (in module sklearn.utils),

2618
check_scalar() (in module sklearn.utils), 2618
check_scoring() (in module sklearn.metrics), 2200
check_symmetric() (in module

sklearn.utils.validation), 2638
check_X_y() (in module sklearn.utils), 2615
chi2() (in module sklearn.feature_selection), 1981
chi2_kernel() (in module sklearn.metrics.pairwise),

2265
class_weight, 739

classes_, 741
classification_report() (in module

sklearn.metrics), 2208
classifier, 732
ClassifierChain (class in sklearn.multioutput),

2364
ClassifierMixin (class in sklearn.base), 1617
classifiers, 732
clear_data_home() (in module sklearn.datasets),

1742
clone, 725
clone() (in module sklearn.base), 1622
clone_with_theta()

(sklearn.gaussian_process.kernels.CompoundKernel
method), 1997

clone_with_theta()
(sklearn.gaussian_process.kernels.ConstantKernel
method), 2000

clone_with_theta()
(sklearn.gaussian_process.kernels.DotProduct
method), 2002

clone_with_theta()
(sklearn.gaussian_process.kernels.Exponentiation
method), 2008

clone_with_theta()
(sklearn.gaussian_process.kernels.ExpSineSquared
method), 2006

clone_with_theta()
(sklearn.gaussian_process.kernels.Kernel
method), 2011

clone_with_theta()
(sklearn.gaussian_process.kernels.Matern
method), 2015

clone_with_theta()
(sklearn.gaussian_process.kernels.PairwiseKernel
method), 2017

clone_with_theta()
(sklearn.gaussian_process.kernels.Product
method), 2020

clone_with_theta()
(sklearn.gaussian_process.kernels.RationalQuadratic
method), 2026

clone_with_theta()
(sklearn.gaussian_process.kernels.RBF
method), 2023

clone_with_theta()
(sklearn.gaussian_process.kernels.Sum
method), 2029

clone_with_theta()
(sklearn.gaussian_process.kernels.WhiteKernel
method), 2031

cloned, 725
cluster_optics_dbscan() (in module

sklearn.cluster), 1673

Index 2709

scikit-learn user guide, Release 0.23.2

cluster_optics_xi() (in module sklearn.cluster),
1674

clusterer, 732
clusterers, 732
ClusterMixin (class in sklearn.base), 1618
coef_, 741
cohen_kappa_score() (in module sklearn.metrics),

2210
column_or_1d() (in module sklearn.utils.validation),

2638
ColumnTransformer (class in sklearn.compose),

1683
common tests, 725
ComplementNB (class in sklearn.naive_bayes), 2382
completeness_score() (in module

sklearn.metrics), 2252
components_, 741
CompoundKernel (class in

sklearn.gaussian_process.kernels), 1996
compute_class_weight() (in module

sklearn.utils.class_weight), 2619
compute_optics_graph() (in module

sklearn.cluster), 1674
compute_sample_weight() (in module

sklearn.utils.class_weight), 2619
config_context() (in module sklearn), 1622
confusion_matrix() (in module sklearn.metrics),

2211
ConfusionMatrixDisplay (class in

sklearn.metrics), 2284
consensus_score() (in module sklearn.metrics),

2263
ConstantKernel (class in

sklearn.gaussian_process.kernels), 1998
contingency_matrix() (in module

sklearn.metrics.cluster), 2253
continuous, 735
continuous multioutput, 735
ConvergenceWarning (class in sklearn.exceptions),

1914
correct_covariance()

(sklearn.covariance.EllipticEnvelope method),
1698

correct_covariance()
(sklearn.covariance.MinCovDet method),
1714

cosine_distances() (in module
sklearn.metrics.pairwise), 2266

cosine_similarity() (in module
sklearn.metrics.pairwise), 2266

cost_complexity_pruning_path()
(sklearn.tree.DecisionTreeClassifier method),
2585

cost_complexity_pruning_path()

(sklearn.tree.DecisionTreeRegressor method),
2592

cost_complexity_pruning_path()
(sklearn.tree.ExtraTreeClassifier method),
2599

cost_complexity_pruning_path()
(sklearn.tree.ExtraTreeRegressor method),
2605

count() (sklearn.gaussian_process.kernels.Hyperparameter
method), 2010

CountVectorizer (class in
sklearn.feature_extraction.text), 1930

coverage_error() (in module sklearn.metrics),
2246

cross-validation estimator, 734
cross-validation generator, 734
cross-validation splitter, 734
cross_val_predict() (in module

sklearn.model_selection), 2346
cross_val_score() (in module

sklearn.model_selection), 2348
cross_validate() (in module

sklearn.model_selection), 2343
cv, 739
CV splitter, 734

D
data leakage, 728
data type, 725
DataConversionWarning (class in

sklearn.exceptions), 1915
DataDimensionalityWarning (class in

sklearn.exceptions), 1915
davies_bouldin_score() (in module

sklearn.metrics), 2252
DBSCAN (class in sklearn.cluster), 1638
dbscan() (in module sklearn.cluster), 1676
dcg_score() (in module sklearn.metrics), 2212
decision_function, 736
decision_function()

(sklearn.covariance.EllipticEnvelope method),
1698

decision_function()
(sklearn.discriminant_analysis.LinearDiscriminantAnalysis
method), 1850

decision_function()
(sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis
method), 1854

decision_function()
(sklearn.ensemble.AdaBoostClassifier method),
1864

decision_function()
(sklearn.ensemble.BaggingClassifier method),
1874

2710 Index

scikit-learn user guide, Release 0.23.2

decision_function()
(sklearn.ensemble.GradientBoostingClassifier
method), 578

decision_function()
(sklearn.ensemble.HistGradientBoostingClassifier
method), 1912

decision_function()
(sklearn.ensemble.IsolationForest method),
1882

decision_function()
(sklearn.ensemble.StackingClassifier method),
1891

decision_function()
(sklearn.feature_selection.RFE method),
1971

decision_function()
(sklearn.feature_selection.RFECV method),
1976

decision_function()
(sklearn.linear_model.LogisticRegression
method), 2075

decision_function()
(sklearn.linear_model.LogisticRegressionCV
method), 518

decision_function()
(sklearn.linear_model.PassiveAggressiveClassifier
method), 2081

decision_function()
(sklearn.linear_model.Perceptron method),
2085

decision_function()
(sklearn.linear_model.RidgeClassifier
method), 2090

decision_function()
(sklearn.linear_model.RidgeClassifierCV
method), 540

decision_function()
(sklearn.linear_model.SGDClassifier method),
2095

decision_function()
(sklearn.model_selection.GridSearchCV
method), 2332

decision_function()
(sklearn.model_selection.RandomizedSearchCV
method), 2341

decision_function()
(sklearn.multiclass.OneVsOneClassifier
method), 2359

decision_function()
(sklearn.multiclass.OneVsRestClassifier
method), 2356

decision_function()
(sklearn.multioutput.ClassifierChain method),
2365

decision_function()
(sklearn.neighbors.LocalOutlierFactor prop-
erty), 2424

decision_function() (sklearn.pipeline.Pipeline
method), 2474

decision_function() (sklearn.svm.LinearSVC
method), 2553

decision_function() (sklearn.svm.NuSVC
method), 2561

decision_function() (sklearn.svm.OneClassSVM
method), 2569

decision_function() (sklearn.svm.SVC method),
2573

decision_path() (sklearn.ensemble.ExtraTreesClassifier
method), 564

decision_path() (sklearn.ensemble.ExtraTreesRegressor
method), 570

decision_path() (sklearn.ensemble.RandomForestClassifier
method), 550

decision_path() (sklearn.ensemble.RandomForestRegressor
method), 557

decision_path() (sklearn.ensemble.RandomTreesEmbedding
method), 1887

decision_path() (sklearn.tree.DecisionTreeClassifier
method), 2585

decision_path() (sklearn.tree.DecisionTreeRegressor
method), 2592

decision_path() (sklearn.tree.ExtraTreeClassifier
method), 2599

decision_path() (sklearn.tree.ExtraTreeRegressor
method), 2606

DecisionTreeClassifier (class in sklearn.tree),
2581

DecisionTreeRegressor (class in sklearn.tree),
2588

decode() (sklearn.feature_extraction.text.CountVectorizer
method), 1934

decode() (sklearn.feature_extraction.text.HashingVectorizer
method), 1939

decode() (sklearn.feature_extraction.text.TfidfVectorizer
method), 1947

densify() (sklearn.linear_model.LogisticRegression
method), 2075

densify() (sklearn.linear_model.LogisticRegressionCV
method), 518

densify() (sklearn.linear_model.PassiveAggressiveClassifier
method), 2081

densify() (sklearn.linear_model.Perceptron method),
2085

densify() (sklearn.linear_model.SGDClassifier
method), 2095

densify() (sklearn.linear_model.SGDRegressor
method), 2109

densify() (sklearn.svm.LinearSVC method), 2553

Index 2711

scikit-learn user guide, Release 0.23.2

density estimator, 732
density() (in module sklearn.utils.extmath), 2624
DensityMixin (class in sklearn.base), 1618
deprecated() (in module sklearn.utils), 2620
deprecation, 725
diag() (sklearn.gaussian_process.kernels.CompoundKernel

method), 1997
diag() (sklearn.gaussian_process.kernels.ConstantKernel

method), 2000
diag() (sklearn.gaussian_process.kernels.DotProduct

method), 2003
diag() (sklearn.gaussian_process.kernels.Exponentiation

method), 2009
diag() (sklearn.gaussian_process.kernels.ExpSineSquared

method), 2006
diag() (sklearn.gaussian_process.kernels.Kernel

method), 2011
diag() (sklearn.gaussian_process.kernels.Matern

method), 2015
diag() (sklearn.gaussian_process.kernels.PairwiseKernel

method), 2017
diag() (sklearn.gaussian_process.kernels.Product

method), 2020
diag() (sklearn.gaussian_process.kernels.RationalQuadratic

method), 2026
diag() (sklearn.gaussian_process.kernels.RBF

method), 2023
diag() (sklearn.gaussian_process.kernels.Sum

method), 2029
diag() (sklearn.gaussian_process.kernels.WhiteKernel

method), 2031
dict_learning() (in module

sklearn.decomposition), 1839
dict_learning_online() (in module

sklearn.decomposition), 1841
DictionaryLearning (class in

sklearn.decomposition), 1790
DictVectorizer (class in

sklearn.feature_extraction), 1919
dimensionality, 725
dist_to_rdist() (sklearn.neighbors.DistanceMetric

method), 2399
distance_metrics() (in module

sklearn.metrics.pairwise), 2266
DistanceMetric (class in sklearn.neighbors), 2397
docstring, 725
DotProduct (class in

sklearn.gaussian_process.kernels), 2001
double underscore, 725
double underscore notation, 725
dtype, 725
duck typing, 726
DummyClassifier (class in sklearn.dummy), 1856
DummyRegressor (class in sklearn.dummy), 1859

dump_svmlight_file() (in module
sklearn.datasets), 1743

E
early stopping, 726
EfficiencyWarning (class in sklearn.exceptions),

1916
ElasticNet (class in sklearn.linear_model), 2111
ElasticNetCV (class in sklearn.linear_model), 496
EllipticEnvelope (class in sklearn.covariance),

1696
embedding_, 742
empirical_covariance() (in module

sklearn.covariance), 1723
EmpiricalCovariance (class in

sklearn.covariance), 1693
enet_path() (in module sklearn.linear_model), 2169
error_norm() (sklearn.covariance.EllipticEnvelope

method), 1699
error_norm() (sklearn.covariance.EmpiricalCovariance

method), 1694
error_norm() (sklearn.covariance.GraphicalLasso

method), 1703
error_norm() (sklearn.covariance.GraphicalLassoCV

method), 1707
error_norm() (sklearn.covariance.LedoitWolf

method), 1710
error_norm() (sklearn.covariance.MinCovDet

method), 1714
error_norm() (sklearn.covariance.OAS method),

1718
error_norm() (sklearn.covariance.ShrunkCovariance

method), 1721
estimate_bandwidth() (in module

sklearn.cluster), 1677
estimator, 732
estimator instance, 726
estimator tags, 727
estimator_html_repr() (in module sklearn.utils),

2622
estimators, 732
estimators_samples_()

(sklearn.ensemble.BaggingClassifier prop-
erty), 1874

estimators_samples_()
(sklearn.ensemble.BaggingRegressor prop-
erty), 1878

estimators_samples_()
(sklearn.ensemble.IsolationForest property),
1883

euclidean_distances() (in module
sklearn.metrics.pairwise), 2267

evaluation metric, 726
evaluation metrics, 726

2712 Index

scikit-learn user guide, Release 0.23.2

examples, 726
explained_variance_score() (in module

sklearn.metrics), 2237
Exponentiation (class in

sklearn.gaussian_process.kernels), 2007
export_graphviz() (in module sklearn.tree), 2608
export_text() (in module sklearn.tree), 2610
ExpSineSquared (class in

sklearn.gaussian_process.kernels), 2004
extract_patches_2d() (in module

sklearn.feature_extraction.image), 1925
ExtraTreeClassifier (class in sklearn.tree), 2595
ExtraTreeRegressor (class in sklearn.tree), 2602
ExtraTreesClassifier (class in

sklearn.ensemble), 559
ExtraTreesRegressor (class in sklearn.ensemble),

566

F
f1_score() (in module sklearn.metrics), 2213
f_classif() (in module sklearn.feature_selection),

1982
f_regression() (in module

sklearn.feature_selection), 1983
FactorAnalysis (class in sklearn.decomposition),

1794
fast_logdet() (in module sklearn.utils.extmath),

2624
FastICA (class in sklearn.decomposition), 1797
fastica() (in module sklearn.decomposition), 1842
fbeta_score() (in module sklearn.metrics), 2215
feature, 727
feature extractor, 733
feature extractors, 733
feature vector, 727
feature_importances_, 742
feature_importances_()

(sklearn.ensemble.AdaBoostClassifier prop-
erty), 1864

feature_importances_()
(sklearn.ensemble.AdaBoostRegressor prop-
erty), 1869

feature_importances_()
(sklearn.ensemble.ExtraTreesClassifier prop-
erty), 564

feature_importances_()
(sklearn.ensemble.ExtraTreesRegressor prop-
erty), 570

feature_importances_()
(sklearn.ensemble.GradientBoostingClassifier
property), 578

feature_importances_()
(sklearn.ensemble.GradientBoostingRegressor
property), 586

feature_importances_()
(sklearn.ensemble.RandomForestClassifier
property), 550

feature_importances_()
(sklearn.ensemble.RandomForestRegressor
property), 557

feature_importances_()
(sklearn.ensemble.RandomTreesEmbedding
property), 1887

feature_importances_()
(sklearn.tree.DecisionTreeClassifier prop-
erty), 2585

feature_importances_()
(sklearn.tree.DecisionTreeRegressor prop-
erty), 2592

feature_importances_()
(sklearn.tree.ExtraTreeClassifier property),
2599

feature_importances_()
(sklearn.tree.ExtraTreeRegressor property),
2606

FeatureAgglomeration (class in sklearn.cluster),
1642

FeatureHasher (class in sklearn.feature_extraction),
1922

features, 727
FeatureUnion (class in sklearn.pipeline), 2470
fetch_20newsgroups() (in module

sklearn.datasets), 1743
fetch_20newsgroups_vectorized() (in mod-

ule sklearn.datasets), 1745
fetch_california_housing() (in module

sklearn.datasets), 1746
fetch_covtype() (in module sklearn.datasets), 1747
fetch_kddcup99() (in module sklearn.datasets),

1748
fetch_lfw_pairs() (in module sklearn.datasets),

1749
fetch_lfw_people() (in module sklearn.datasets),

1750
fetch_olivetti_faces() (in module

sklearn.datasets), 1751
fetch_openml() (in module sklearn.datasets), 1752
fetch_rcv1() (in module sklearn.datasets), 1753
fetch_species_distributions() (in module

sklearn.datasets), 1754
fit, 736
fit() (sklearn.calibration.CalibratedClassifierCV

method), 1626
fit() (sklearn.cluster.AffinityPropagation method),

1631
fit() (sklearn.cluster.AgglomerativeClustering

method), 1634
fit() (sklearn.cluster.Birch method), 1637

Index 2713

scikit-learn user guide, Release 0.23.2

fit() (sklearn.cluster.DBSCAN method), 1640
fit() (sklearn.cluster.FeatureAgglomeration method),

1643
fit() (sklearn.cluster.KMeans method), 1648
fit() (sklearn.cluster.MeanShift method), 1657
fit() (sklearn.cluster.MiniBatchKMeans method),

1652
fit() (sklearn.cluster.OPTICS method), 1660
fit() (sklearn.cluster.SpectralBiclustering method),

1667
fit() (sklearn.cluster.SpectralClustering method),

1664
fit() (sklearn.cluster.SpectralCoclustering method),

1670
fit() (sklearn.compose.ColumnTransformer method),

1685
fit() (sklearn.compose.TransformedTargetRegressor

method), 1689
fit() (sklearn.covariance.EllipticEnvelope method),

1699
fit() (sklearn.covariance.EmpiricalCovariance

method), 1695
fit() (sklearn.covariance.GraphicalLasso method),

1703
fit() (sklearn.covariance.GraphicalLassoCV method),

1707
fit() (sklearn.covariance.LedoitWolf method), 1710
fit() (sklearn.covariance.MinCovDet method), 1714
fit() (sklearn.covariance.OAS method), 1718
fit() (sklearn.covariance.ShrunkCovariance method),

1721
fit() (sklearn.cross_decomposition.CCA method),

1728
fit() (sklearn.cross_decomposition.PLSCanonical

method), 1733
fit() (sklearn.cross_decomposition.PLSRegression

method), 1737
fit() (sklearn.cross_decomposition.PLSSVD method),

1740
fit() (sklearn.decomposition.DictionaryLearning

method), 1792
fit() (sklearn.decomposition.FactorAnalysis method),

1795
fit() (sklearn.decomposition.FastICA method), 1799
fit() (sklearn.decomposition.IncrementalPCA

method), 1803
fit() (sklearn.decomposition.KernelPCA method),

1807
fit() (sklearn.decomposition.LatentDirichletAllocation

method), 1811
fit() (sklearn.decomposition.MiniBatchDictionaryLearning

method), 1815
fit() (sklearn.decomposition.MiniBatchSparsePCA

method), 1818

fit() (sklearn.decomposition.NMF method), 1822
fit() (sklearn.decomposition.PCA method), 1827
fit() (sklearn.decomposition.SparseCoder method),

1835
fit() (sklearn.decomposition.SparsePCA method),

1832
fit() (sklearn.decomposition.TruncatedSVD method),

1837
fit() (sklearn.discriminant_analysis.LinearDiscriminantAnalysis

method), 1850
fit() (sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis

method), 1854
fit() (sklearn.dummy.DummyClassifier method), 1857
fit() (sklearn.dummy.DummyRegressor method), 1860
fit() (sklearn.ensemble.AdaBoostClassifier method),

1865
fit() (sklearn.ensemble.AdaBoostRegressor method),

1870
fit() (sklearn.ensemble.BaggingClassifier method),

1874
fit() (sklearn.ensemble.BaggingRegressor method),

1878
fit() (sklearn.ensemble.ExtraTreesClassifier method),

564
fit() (sklearn.ensemble.ExtraTreesRegressor method),

571
fit() (sklearn.ensemble.GradientBoostingClassifier

method), 578
fit() (sklearn.ensemble.GradientBoostingRegressor

method), 586
fit() (sklearn.ensemble.HistGradientBoostingClassifier

method), 1912
fit() (sklearn.ensemble.HistGradientBoostingRegressor

method), 1907
fit() (sklearn.ensemble.IsolationForest method), 1883
fit() (sklearn.ensemble.RandomForestClassifier

method), 551
fit() (sklearn.ensemble.RandomForestRegressor

method), 557
fit() (sklearn.ensemble.RandomTreesEmbedding

method), 1887
fit() (sklearn.ensemble.StackingClassifier method),

1892
fit() (sklearn.ensemble.StackingRegressor method),

1895
fit() (sklearn.ensemble.VotingClassifier method),

1899
fit() (sklearn.ensemble.VotingRegressor method),

1903
fit() (sklearn.feature_extraction.DictVectorizer

method), 1920
fit() (sklearn.feature_extraction.FeatureHasher

method), 1924
fit() (sklearn.feature_extraction.image.PatchExtractor

2714 Index

scikit-learn user guide, Release 0.23.2

method), 1929
fit() (sklearn.feature_extraction.text.CountVectorizer

method), 1934
fit() (sklearn.feature_extraction.text.HashingVectorizer

method), 1939
fit() (sklearn.feature_extraction.text.TfidfTransformer

method), 1942
fit() (sklearn.feature_extraction.text.TfidfVectorizer

method), 1948
fit() (sklearn.feature_selection.GenericUnivariateSelect

method), 1951
fit() (sklearn.feature_selection.RFE method), 1972
fit() (sklearn.feature_selection.RFECV method), 1976
fit() (sklearn.feature_selection.SelectFdr method),

1962
fit() (sklearn.feature_selection.SelectFpr method),

1960
fit() (sklearn.feature_selection.SelectFromModel

method), 1965
fit() (sklearn.feature_selection.SelectFwe method),

1968
fit() (sklearn.feature_selection.SelectKBest method),

1957
fit() (sklearn.feature_selection.SelectPercentile

method), 1954
fit() (sklearn.feature_selection.VarianceThreshold

method), 1980
fit() (sklearn.gaussian_process.GaussianProcessClassifier

method), 1988
fit() (sklearn.gaussian_process.GaussianProcessRegressor

method), 1993
fit() (sklearn.impute.IterativeImputer method), 2039
fit() (sklearn.impute.KNNImputer method), 2044
fit() (sklearn.impute.MissingIndicator method), 2041
fit() (sklearn.impute.SimpleImputer method), 2035
fit() (sklearn.isotonic.IsotonicRegression method),

2054
fit() (sklearn.kernel_approximation.AdditiveChi2Sampler

method), 2059
fit() (sklearn.kernel_approximation.Nystroem

method), 2062
fit() (sklearn.kernel_approximation.RBFSampler

method), 2064
fit() (sklearn.kernel_approximation.SkewedChi2Sampler

method), 2066
fit() (sklearn.kernel_ridge.KernelRidge method),

2069
fit() (sklearn.linear_model.ARDRegression method),

2134
fit() (sklearn.linear_model.BayesianRidge method),

2137
fit() (sklearn.linear_model.ElasticNet method), 2114
fit() (sklearn.linear_model.ElasticNetCV method),

498

fit() (sklearn.linear_model.GammaRegressor
method), 2165

fit() (sklearn.linear_model.HuberRegressor method),
2151

fit() (sklearn.linear_model.Lars method), 2119
fit() (sklearn.linear_model.LarsCV method), 503
fit() (sklearn.linear_model.Lasso method), 2122
fit() (sklearn.linear_model.LassoCV method), 507
fit() (sklearn.linear_model.LassoLars method), 2127
fit() (sklearn.linear_model.LassoLarsCV method),

512
fit() (sklearn.linear_model.LassoLarsIC method), 543
fit() (sklearn.linear_model.LinearRegression

method), 2100
fit() (sklearn.linear_model.LogisticRegression

method), 2075
fit() (sklearn.linear_model.LogisticRegressionCV

method), 518
fit() (sklearn.linear_model.MultiTaskElasticNet

method), 2141
fit() (sklearn.linear_model.MultiTaskElasticNetCV

method), 523
fit() (sklearn.linear_model.MultiTaskLasso method),

2146
fit() (sklearn.linear_model.MultiTaskLassoCV

method), 528
fit() (sklearn.linear_model.OrthogonalMatchingPursuit

method), 2130
fit() (sklearn.linear_model.OrthogonalMatchingPursuitCV

method), 533
fit() (sklearn.linear_model.PassiveAggressiveClassifier

method), 2081
fit() (sklearn.linear_model.Perceptron method), 2086
fit() (sklearn.linear_model.PoissonRegressor

method), 2160
fit() (sklearn.linear_model.RANSACRegressor

method), 2155
fit() (sklearn.linear_model.Ridge method), 2104
fit() (sklearn.linear_model.RidgeClassifier method),

2090
fit() (sklearn.linear_model.RidgeClassifierCV

method), 540
fit() (sklearn.linear_model.RidgeCV method), 536
fit() (sklearn.linear_model.SGDClassifier method),

2095
fit() (sklearn.linear_model.SGDRegressor method),

2109
fit() (sklearn.linear_model.TheilSenRegressor

method), 2158
fit() (sklearn.linear_model.TweedieRegressor

method), 2163
fit() (sklearn.manifold.Isomap method), 2181
fit() (sklearn.manifold.LocallyLinearEmbedding

method), 2185

Index 2715

scikit-learn user guide, Release 0.23.2

fit() (sklearn.manifold.MDS method), 2188
fit() (sklearn.manifold.SpectralEmbedding method),

2190
fit() (sklearn.manifold.TSNE method), 2194
fit() (sklearn.mixture.BayesianGaussianMixture

method), 2292
fit() (sklearn.mixture.GaussianMixture method), 2297
fit() (sklearn.model_selection.GridSearchCV

method), 2332
fit() (sklearn.model_selection.RandomizedSearchCV

method), 2341
fit() (sklearn.multiclass.OneVsOneClassifier method),

2360
fit() (sklearn.multiclass.OneVsRestClassifier

method), 2356
fit() (sklearn.multiclass.OutputCodeClassifier

method), 2362
fit() (sklearn.multioutput.ClassifierChain method),

2365
fit() (sklearn.multioutput.MultiOutputClassifier

method), 2370
fit() (sklearn.multioutput.MultiOutputRegressor

method), 2368
fit() (sklearn.multioutput.RegressorChain method),

2373
fit() (sklearn.naive_bayes.BernoulliNB method), 2376
fit() (sklearn.naive_bayes.CategoricalNB method),

2380
fit() (sklearn.naive_bayes.ComplementNB method),

2383
fit() (sklearn.naive_bayes.GaussianNB method), 2386
fit() (sklearn.naive_bayes.MultinomialNB method),

2390
fit() (sklearn.neighbors.KernelDensity method), 2405
fit() (sklearn.neighbors.KNeighborsClassifier

method), 2409
fit() (sklearn.neighbors.KNeighborsRegressor

method), 2414
fit() (sklearn.neighbors.KNeighborsTransformer

method), 2419
fit() (sklearn.neighbors.LocalOutlierFactor method),

2424
fit() (sklearn.neighbors.NearestCentroid method),

2443
fit() (sklearn.neighbors.NearestNeighbors method),

2446
fit() (sklearn.neighbors.NeighborhoodComponentsAnalysis

method), 2452
fit() (sklearn.neighbors.RadiusNeighborsClassifier

method), 2429
fit() (sklearn.neighbors.RadiusNeighborsRegressor

method), 2434
fit() (sklearn.neighbors.RadiusNeighborsTransformer

method), 2439

fit() (sklearn.neural_network.BernoulliRBM method),
2457

fit() (sklearn.neural_network.MLPClassifier method),
2463

fit() (sklearn.neural_network.MLPRegressor
method), 2468

fit() (sklearn.pipeline.FeatureUnion method), 2471
fit() (sklearn.pipeline.Pipeline method), 2474
fit() (sklearn.preprocessing.Binarizer method), 2480
fit() (sklearn.preprocessing.FunctionTransformer

method), 2482
fit() (sklearn.preprocessing.KBinsDiscretizer

method), 2485
fit() (sklearn.preprocessing.KernelCenterer method),

2488
fit() (sklearn.preprocessing.LabelBinarizer method),

2490
fit() (sklearn.preprocessing.LabelEncoder method),

2493
fit() (sklearn.preprocessing.MaxAbsScaler method),

2498
fit() (sklearn.preprocessing.MinMaxScaler method),

2501
fit() (sklearn.preprocessing.MultiLabelBinarizer

method), 2495
fit() (sklearn.preprocessing.Normalizer method),

2503
fit() (sklearn.preprocessing.OneHotEncoder method),

2507
fit() (sklearn.preprocessing.OrdinalEncoder method),

2510
fit() (sklearn.preprocessing.PolynomialFeatures

method), 2513
fit() (sklearn.preprocessing.PowerTransformer

method), 2516
fit() (sklearn.preprocessing.QuantileTransformer

method), 2519
fit() (sklearn.preprocessing.RobustScaler method),

2522
fit() (sklearn.preprocessing.StandardScaler method),

2525
fit() (sklearn.random_projection.GaussianRandomProjection

method), 2538
fit() (sklearn.random_projection.SparseRandomProjection

method), 2541
fit() (sklearn.semi_supervised.LabelPropagation

method), 2545
fit() (sklearn.semi_supervised.LabelSpreading

method), 2548
fit() (sklearn.svm.LinearSVC method), 2553
fit() (sklearn.svm.LinearSVR method), 2557
fit() (sklearn.svm.NuSVC method), 2561
fit() (sklearn.svm.NuSVR method), 2565
fit() (sklearn.svm.OneClassSVM method), 2569

2716 Index

scikit-learn user guide, Release 0.23.2

fit() (sklearn.svm.SVC method), 2574
fit() (sklearn.svm.SVR method), 2578
fit() (sklearn.tree.DecisionTreeClassifier method),

2586
fit() (sklearn.tree.DecisionTreeRegressor method),

2593
fit() (sklearn.tree.ExtraTreeClassifier method), 2600
fit() (sklearn.tree.ExtraTreeRegressor method), 2606
fit_grid_point() (in module

sklearn.model_selection), 2641
fit_predict, 736
fit_predict() (sklearn.base.ClusterMixin method),

1618
fit_predict() (sklearn.cluster.AffinityPropagation

method), 1631
fit_predict() (sklearn.cluster.AgglomerativeClustering

method), 1634
fit_predict() (sklearn.cluster.Birch method), 1637
fit_predict() (sklearn.cluster.DBSCAN method),

1641
fit_predict() (sklearn.cluster.FeatureAgglomeration

property), 1644
fit_predict() (sklearn.cluster.KMeans method),

1648
fit_predict() (sklearn.cluster.MeanShift method),

1657
fit_predict() (sklearn.cluster.MiniBatchKMeans

method), 1653
fit_predict() (sklearn.cluster.OPTICS method),

1661
fit_predict() (sklearn.cluster.SpectralClustering

method), 1664
fit_predict() (sklearn.covariance.EllipticEnvelope

method), 1699
fit_predict() (sklearn.ensemble.IsolationForest

method), 1883
fit_predict() (sklearn.mixture.BayesianGaussianMixture

method), 2292
fit_predict() (sklearn.mixture.GaussianMixture

method), 2297
fit_predict() (sklearn.neighbors.LocalOutlierFactor

property), 2424
fit_predict() (sklearn.pipeline.Pipeline method),

2474
fit_predict() (sklearn.svm.OneClassSVM method),

2569
fit_transform, 737
fit_transform() (sklearn.base.TransformerMixin

method), 1620
fit_transform() (sklearn.cluster.Birch method),

1637
fit_transform() (sklearn.cluster.FeatureAgglomeration

method), 1644
fit_transform() (sklearn.cluster.KMeans method),

1648
fit_transform() (sklearn.cluster.MiniBatchKMeans

method), 1653
fit_transform() (sklearn.compose.ColumnTransformer

method), 1686
fit_transform() (sklearn.cross_decomposition.CCA

method), 1728
fit_transform() (sklearn.cross_decomposition.PLSCanonical

method), 1733
fit_transform() (sklearn.cross_decomposition.PLSRegression

method), 1737
fit_transform() (sklearn.cross_decomposition.PLSSVD

method), 1740
fit_transform() (sklearn.decomposition.DictionaryLearning

method), 1793
fit_transform() (sklearn.decomposition.FactorAnalysis

method), 1795
fit_transform() (sklearn.decomposition.FastICA

method), 1799
fit_transform() (sklearn.decomposition.IncrementalPCA

method), 1803
fit_transform() (sklearn.decomposition.KernelPCA

method), 1807
fit_transform() (sklearn.decomposition.LatentDirichletAllocation

method), 1811
fit_transform() (sklearn.decomposition.MiniBatchDictionaryLearning

method), 1815
fit_transform() (sklearn.decomposition.MiniBatchSparsePCA

method), 1819
fit_transform() (sklearn.decomposition.NMF

method), 1822
fit_transform() (sklearn.decomposition.PCA

method), 1827
fit_transform() (sklearn.decomposition.SparseCoder

method), 1835
fit_transform() (sklearn.decomposition.SparsePCA

method), 1832
fit_transform() (sklearn.decomposition.TruncatedSVD

method), 1838
fit_transform() (sklearn.discriminant_analysis.LinearDiscriminantAnalysis

method), 1850
fit_transform() (sklearn.ensemble.RandomTreesEmbedding

method), 1888
fit_transform() (sklearn.ensemble.StackingClassifier

method), 1892
fit_transform() (sklearn.ensemble.StackingRegressor

method), 1896
fit_transform() (sklearn.ensemble.VotingClassifier

method), 1900
fit_transform() (sklearn.ensemble.VotingRegressor

method), 1903
fit_transform() (sklearn.feature_extraction.DictVectorizer

method), 1920
fit_transform() (sklearn.feature_extraction.FeatureHasher

Index 2717

scikit-learn user guide, Release 0.23.2

method), 1924
fit_transform() (sklearn.feature_extraction.text.CountVectorizer

method), 1934
fit_transform() (sklearn.feature_extraction.text.HashingVectorizer

method), 1939
fit_transform() (sklearn.feature_extraction.text.TfidfTransformer

method), 1942
fit_transform() (sklearn.feature_extraction.text.TfidfVectorizer

method), 1948
fit_transform() (sklearn.feature_selection.GenericUnivariateSelect

method), 1951
fit_transform() (sklearn.feature_selection.RFE

method), 1972
fit_transform() (sklearn.feature_selection.RFECV

method), 1977
fit_transform() (sklearn.feature_selection.SelectFdr

method), 1963
fit_transform() (sklearn.feature_selection.SelectFpr

method), 1960
fit_transform() (sklearn.feature_selection.SelectFromModel

method), 1966
fit_transform() (sklearn.feature_selection.SelectFwe

method), 1969
fit_transform() (sklearn.feature_selection.SelectKBest

method), 1957
fit_transform() (sklearn.feature_selection.SelectorMixin

method), 1620
fit_transform() (sklearn.feature_selection.SelectPercentile

method), 1954
fit_transform() (sklearn.feature_selection.VarianceThreshold

method), 1980
fit_transform() (sklearn.impute.IterativeImputer

method), 2039
fit_transform() (sklearn.impute.KNNImputer

method), 2044
fit_transform() (sklearn.impute.MissingIndicator

method), 2041
fit_transform() (sklearn.impute.SimpleImputer

method), 2035
fit_transform() (sklearn.isotonic.IsotonicRegression

method), 2055
fit_transform() (sklearn.kernel_approximation.AdditiveChi2Sampler

method), 2059
fit_transform() (sklearn.kernel_approximation.Nystroem

method), 2062
fit_transform() (sklearn.kernel_approximation.RBFSampler

method), 2064
fit_transform() (sklearn.kernel_approximation.SkewedChi2Sampler

method), 2066
fit_transform() (sklearn.manifold.Isomap

method), 2182
fit_transform() (sklearn.manifold.LocallyLinearEmbedding

method), 2185
fit_transform() (sklearn.manifold.MDS method),

2188
fit_transform() (sklearn.manifold.SpectralEmbedding

method), 2190
fit_transform() (sklearn.manifold.TSNE method),

2194
fit_transform() (sklearn.neighbors.KNeighborsTransformer

method), 2419
fit_transform() (sklearn.neighbors.NeighborhoodComponentsAnalysis

method), 2452
fit_transform() (sklearn.neighbors.RadiusNeighborsTransformer

method), 2439
fit_transform() (sklearn.neural_network.BernoulliRBM

method), 2458
fit_transform() (sklearn.pipeline.FeatureUnion

method), 2471
fit_transform() (sklearn.pipeline.Pipeline

method), 2475
fit_transform() (sklearn.preprocessing.Binarizer

method), 2480
fit_transform() (sklearn.preprocessing.FunctionTransformer

method), 2482
fit_transform() (sklearn.preprocessing.KBinsDiscretizer

method), 2486
fit_transform() (sklearn.preprocessing.KernelCenterer

method), 2488
fit_transform() (sklearn.preprocessing.LabelBinarizer

method), 2490
fit_transform() (sklearn.preprocessing.LabelEncoder

method), 2493
fit_transform() (sklearn.preprocessing.MaxAbsScaler

method), 2498
fit_transform() (sklearn.preprocessing.MinMaxScaler

method), 2501
fit_transform() (sklearn.preprocessing.MultiLabelBinarizer

method), 2496
fit_transform() (sklearn.preprocessing.Normalizer

method), 2504
fit_transform() (sklearn.preprocessing.OneHotEncoder

method), 2507
fit_transform() (sklearn.preprocessing.OrdinalEncoder

method), 2510
fit_transform() (sklearn.preprocessing.PolynomialFeatures

method), 2513
fit_transform() (sklearn.preprocessing.PowerTransformer

method), 2516
fit_transform() (sklearn.preprocessing.QuantileTransformer

method), 2519
fit_transform() (sklearn.preprocessing.RobustScaler

method), 2522
fit_transform() (sklearn.preprocessing.StandardScaler

method), 2525
fit_transform() (sklearn.random_projection.GaussianRandomProjection

method), 2539
fit_transform() (sklearn.random_projection.SparseRandomProjection

2718 Index

scikit-learn user guide, Release 0.23.2

method), 2541
FitFailedWarning (class in sklearn.exceptions),

1916
fitted, 727
fitting, 727
fixed (sklearn.gaussian_process.kernels.Hyperparameter

attribute), 2010
fowlkes_mallows_score() (in module

sklearn.metrics), 2254
function, 727
FunctionTransformer (class in

sklearn.preprocessing), 2481

G
gallery, 728
GammaRegressor (class in sklearn.linear_model),

2164
GaussianMixture (class in sklearn.mixture), 2294
GaussianNB (class in sklearn.naive_bayes), 2385
GaussianProcessClassifier (class in

sklearn.gaussian_process), 1986
GaussianProcessRegressor (class in

sklearn.gaussian_process), 1990
GaussianRandomProjection (class in

sklearn.random_projection), 2537
gen_even_slices() (in module sklearn.utils), 2625
GenericUnivariateSelect (class in

sklearn.feature_selection), 1950
get_arrays() (sklearn.neighbors.BallTree method),

2395
get_arrays() (sklearn.neighbors.KDTree method),

2402
get_config() (in module sklearn), 1623
get_covariance() (sklearn.decomposition.FactorAnalysis

method), 1796
get_covariance() (sklearn.decomposition.IncrementalPCA

method), 1803
get_covariance() (sklearn.decomposition.PCA

method), 1827
get_data_home() (in module sklearn.datasets), 1756
get_depth() (sklearn.tree.DecisionTreeClassifier

method), 2586
get_depth() (sklearn.tree.DecisionTreeRegressor

method), 2593
get_depth() (sklearn.tree.ExtraTreeClassifier

method), 2600
get_depth() (sklearn.tree.ExtraTreeRegressor

method), 2607
get_feature_names, 737
get_feature_names()

(sklearn.compose.ColumnTransformer
method), 1686

get_feature_names()
(sklearn.feature_extraction.DictVectorizer

method), 1921
get_feature_names()

(sklearn.feature_extraction.text.CountVectorizer
method), 1934

get_feature_names()
(sklearn.feature_extraction.text.TfidfVectorizer
method), 1948

get_feature_names()
(sklearn.pipeline.FeatureUnion method),
2472

get_feature_names()
(sklearn.preprocessing.OneHotEncoder
method), 2508

get_feature_names()
(sklearn.preprocessing.PolynomialFeatures
method), 2513

get_indices() (sklearn.base.BiclusterMixin
method), 1617

get_indices() (sklearn.cluster.SpectralBiclustering
method), 1667

get_indices() (sklearn.cluster.SpectralCoclustering
method), 1670

get_metric() (sklearn.neighbors.DistanceMetric
method), 2399

get_n_calls() (sklearn.neighbors.BallTree method),
2395

get_n_calls() (sklearn.neighbors.KDTree method),
2402

get_n_leaves() (sklearn.tree.DecisionTreeClassifier
method), 2586

get_n_leaves() (sklearn.tree.DecisionTreeRegressor
method), 2593

get_n_leaves() (sklearn.tree.ExtraTreeClassifier
method), 2600

get_n_leaves() (sklearn.tree.ExtraTreeRegressor
method), 2607

get_n_splits, 737
get_n_splits() (sklearn.model_selection.GroupKFold

method), 2301
get_n_splits() (sklearn.model_selection.GroupShuffleSplit

method), 2303
get_n_splits() (sklearn.model_selection.KFold

method), 2305
get_n_splits() (sklearn.model_selection.LeaveOneGroupOut

method), 2306
get_n_splits() (sklearn.model_selection.LeaveOneOut

method), 2310
get_n_splits() (sklearn.model_selection.LeavePGroupsOut

method), 2308
get_n_splits() (sklearn.model_selection.LeavePOut

method), 2311
get_n_splits() (sklearn.model_selection.PredefinedSplit

method), 2312
get_n_splits() (sklearn.model_selection.RepeatedKFold

Index 2719

scikit-learn user guide, Release 0.23.2

method), 2314
get_n_splits() (sklearn.model_selection.RepeatedStratifiedKFold

method), 2316
get_n_splits() (sklearn.model_selection.ShuffleSplit

method), 2317
get_n_splits() (sklearn.model_selection.StratifiedKFold

method), 2319
get_n_splits() (sklearn.model_selection.StratifiedShuffleSplit

method), 2321
get_n_splits() (sklearn.model_selection.TimeSeriesSplit

method), 2323
get_params, 737
get_params() (sklearn.base.BaseEstimator method),

1616
get_params() (sklearn.calibration.CalibratedClassifierCV

method), 1626
get_params() (sklearn.cluster.AffinityPropagation

method), 1631
get_params() (sklearn.cluster.AgglomerativeClustering

method), 1634
get_params() (sklearn.cluster.Birch method), 1637
get_params() (sklearn.cluster.DBSCAN method),

1641
get_params() (sklearn.cluster.FeatureAgglomeration

method), 1644
get_params() (sklearn.cluster.KMeans method),

1649
get_params() (sklearn.cluster.MeanShift method),

1657
get_params() (sklearn.cluster.MiniBatchKMeans

method), 1653
get_params() (sklearn.cluster.OPTICS method),

1661
get_params() (sklearn.cluster.SpectralBiclustering

method), 1668
get_params() (sklearn.cluster.SpectralClustering

method), 1665
get_params() (sklearn.cluster.SpectralCoclustering

method), 1671
get_params() (sklearn.compose.ColumnTransformer

method), 1686
get_params() (sklearn.compose.TransformedTargetRegressor

method), 1689
get_params() (sklearn.covariance.EllipticEnvelope

method), 1699
get_params() (sklearn.covariance.EmpiricalCovariance

method), 1695
get_params() (sklearn.covariance.GraphicalLasso

method), 1703
get_params() (sklearn.covariance.GraphicalLassoCV

method), 1707
get_params() (sklearn.covariance.LedoitWolf

method), 1711
get_params() (sklearn.covariance.MinCovDet

method), 1715
get_params() (sklearn.covariance.OAS method),

1718
get_params() (sklearn.covariance.ShrunkCovariance

method), 1721
get_params() (sklearn.cross_decomposition.CCA

method), 1729
get_params() (sklearn.cross_decomposition.PLSCanonical

method), 1733
get_params() (sklearn.cross_decomposition.PLSRegression

method), 1737
get_params() (sklearn.cross_decomposition.PLSSVD

method), 1741
get_params() (sklearn.decomposition.DictionaryLearning

method), 1793
get_params() (sklearn.decomposition.FactorAnalysis

method), 1796
get_params() (sklearn.decomposition.FastICA

method), 1799
get_params() (sklearn.decomposition.IncrementalPCA

method), 1803
get_params() (sklearn.decomposition.KernelPCA

method), 1807
get_params() (sklearn.decomposition.LatentDirichletAllocation

method), 1811
get_params() (sklearn.decomposition.MiniBatchDictionaryLearning

method), 1816
get_params() (sklearn.decomposition.MiniBatchSparsePCA

method), 1819
get_params() (sklearn.decomposition.NMF method),

1822
get_params() (sklearn.decomposition.PCA method),

1828
get_params() (sklearn.decomposition.SparseCoder

method), 1835
get_params() (sklearn.decomposition.SparsePCA

method), 1832
get_params() (sklearn.decomposition.TruncatedSVD

method), 1838
get_params() (sklearn.discriminant_analysis.LinearDiscriminantAnalysis

method), 1851
get_params() (sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis

method), 1854
get_params() (sklearn.dummy.DummyClassifier

method), 1858
get_params() (sklearn.dummy.DummyRegressor

method), 1860
get_params() (sklearn.ensemble.AdaBoostClassifier

method), 1865
get_params() (sklearn.ensemble.AdaBoostRegressor

method), 1870
get_params() (sklearn.ensemble.BaggingClassifier

method), 1874
get_params() (sklearn.ensemble.BaggingRegressor

2720 Index

scikit-learn user guide, Release 0.23.2

method), 1878
get_params() (sklearn.ensemble.ExtraTreesClassifier

method), 564
get_params() (sklearn.ensemble.ExtraTreesRegressor

method), 571
get_params() (sklearn.ensemble.GradientBoostingClassifier

method), 578
get_params() (sklearn.ensemble.GradientBoostingRegressor

method), 586
get_params() (sklearn.ensemble.HistGradientBoostingClassifier

method), 1912
get_params() (sklearn.ensemble.HistGradientBoostingRegressor

method), 1907
get_params() (sklearn.ensemble.IsolationForest

method), 1883
get_params() (sklearn.ensemble.RandomForestClassifier

method), 551
get_params() (sklearn.ensemble.RandomForestRegressor

method), 558
get_params() (sklearn.ensemble.RandomTreesEmbedding

method), 1888
get_params() (sklearn.ensemble.StackingClassifier

method), 1892
get_params() (sklearn.ensemble.StackingRegressor

method), 1896
get_params() (sklearn.ensemble.VotingClassifier

method), 1900
get_params() (sklearn.ensemble.VotingRegressor

method), 1903
get_params() (sklearn.feature_extraction.DictVectorizer

method), 1921
get_params() (sklearn.feature_extraction.FeatureHasher

method), 1924
get_params() (sklearn.feature_extraction.image.PatchExtractor

method), 1929
get_params() (sklearn.feature_extraction.text.CountVectorizer

method), 1934
get_params() (sklearn.feature_extraction.text.HashingVectorizer

method), 1939
get_params() (sklearn.feature_extraction.text.TfidfTransformer

method), 1942
get_params() (sklearn.feature_extraction.text.TfidfVectorizer

method), 1948
get_params() (sklearn.feature_selection.GenericUnivariateSelect

method), 1951
get_params() (sklearn.feature_selection.RFE

method), 1972
get_params() (sklearn.feature_selection.RFECV

method), 1977
get_params() (sklearn.feature_selection.SelectFdr

method), 1963
get_params() (sklearn.feature_selection.SelectFpr

method), 1960
get_params() (sklearn.feature_selection.SelectFromModel

method), 1966
get_params() (sklearn.feature_selection.SelectFwe

method), 1969
get_params() (sklearn.feature_selection.SelectKBest

method), 1957
get_params() (sklearn.feature_selection.SelectPercentile

method), 1954
get_params() (sklearn.feature_selection.VarianceThreshold

method), 1980
get_params() (sklearn.gaussian_process.GaussianProcessClassifier

method), 1988
get_params() (sklearn.gaussian_process.GaussianProcessRegressor

method), 1993
get_params() (sklearn.gaussian_process.kernels.CompoundKernel

method), 1997
get_params() (sklearn.gaussian_process.kernels.ConstantKernel

method), 2000
get_params() (sklearn.gaussian_process.kernels.DotProduct

method), 2003
get_params() (sklearn.gaussian_process.kernels.Exponentiation

method), 2009
get_params() (sklearn.gaussian_process.kernels.ExpSineSquared

method), 2006
get_params() (sklearn.gaussian_process.kernels.Kernel

method), 2012
get_params() (sklearn.gaussian_process.kernels.Matern

method), 2015
get_params() (sklearn.gaussian_process.kernels.PairwiseKernel

method), 2018
get_params() (sklearn.gaussian_process.kernels.Product

method), 2020
get_params() (sklearn.gaussian_process.kernels.RationalQuadratic

method), 2026
get_params() (sklearn.gaussian_process.kernels.RBF

method), 2023
get_params() (sklearn.gaussian_process.kernels.Sum

method), 2029
get_params() (sklearn.gaussian_process.kernels.WhiteKernel

method), 2032
get_params() (sklearn.impute.IterativeImputer

method), 2039
get_params() (sklearn.impute.KNNImputer method),

2044
get_params() (sklearn.impute.MissingIndicator

method), 2042
get_params() (sklearn.impute.SimpleImputer

method), 2035
get_params() (sklearn.isotonic.IsotonicRegression

method), 2055
get_params() (sklearn.kernel_approximation.AdditiveChi2Sampler

method), 2059
get_params() (sklearn.kernel_approximation.Nystroem

method), 2062
get_params() (sklearn.kernel_approximation.RBFSampler

Index 2721

scikit-learn user guide, Release 0.23.2

method), 2064
get_params() (sklearn.kernel_approximation.SkewedChi2Sampler

method), 2067
get_params() (sklearn.kernel_ridge.KernelRidge

method), 2069
get_params() (sklearn.linear_model.ARDRegression

method), 2134
get_params() (sklearn.linear_model.BayesianRidge

method), 2137
get_params() (sklearn.linear_model.ElasticNet

method), 2114
get_params() (sklearn.linear_model.ElasticNetCV

method), 499
get_params() (sklearn.linear_model.GammaRegressor

method), 2165
get_params() (sklearn.linear_model.HuberRegressor

method), 2151
get_params() (sklearn.linear_model.Lars method),

2119
get_params() (sklearn.linear_model.LarsCV

method), 503
get_params() (sklearn.linear_model.Lasso method),

2122
get_params() (sklearn.linear_model.LassoCV

method), 507
get_params() (sklearn.linear_model.LassoLars

method), 2128
get_params() (sklearn.linear_model.LassoLarsCV

method), 513
get_params() (sklearn.linear_model.LassoLarsIC

method), 544
get_params() (sklearn.linear_model.LinearRegression

method), 2100
get_params() (sklearn.linear_model.LogisticRegression

method), 2076
get_params() (sklearn.linear_model.LogisticRegressionCV

method), 518
get_params() (sklearn.linear_model.MultiTaskElasticNet

method), 2141
get_params() (sklearn.linear_model.MultiTaskElasticNetCV

method), 523
get_params() (sklearn.linear_model.MultiTaskLasso

method), 2146
get_params() (sklearn.linear_model.MultiTaskLassoCV

method), 528
get_params() (sklearn.linear_model.OrthogonalMatchingPursuit

method), 2130
get_params() (sklearn.linear_model.OrthogonalMatchingPursuitCV

method), 533
get_params() (sklearn.linear_model.PassiveAggressiveClassifier

method), 2081
get_params() (sklearn.linear_model.Perceptron

method), 2086
get_params() (sklearn.linear_model.PoissonRegressor

method), 2161
get_params() (sklearn.linear_model.RANSACRegressor

method), 2155
get_params() (sklearn.linear_model.Ridge method),

2104
get_params() (sklearn.linear_model.RidgeClassifier

method), 2090
get_params() (sklearn.linear_model.RidgeClassifierCV

method), 541
get_params() (sklearn.linear_model.RidgeCV

method), 537
get_params() (sklearn.linear_model.SGDClassifier

method), 2096
get_params() (sklearn.linear_model.SGDRegressor

method), 2109
get_params() (sklearn.linear_model.TheilSenRegressor

method), 2158
get_params() (sklearn.linear_model.TweedieRegressor

method), 2163
get_params() (sklearn.manifold.Isomap method),

2182
get_params() (sklearn.manifold.LocallyLinearEmbedding

method), 2185
get_params() (sklearn.manifold.MDS method), 2188
get_params() (sklearn.manifold.SpectralEmbedding

method), 2191
get_params() (sklearn.manifold.TSNE method),

2194
get_params() (sklearn.mixture.BayesianGaussianMixture

method), 2292
get_params() (sklearn.mixture.GaussianMixture

method), 2297
get_params() (sklearn.model_selection.GridSearchCV

method), 2332
get_params() (sklearn.model_selection.RandomizedSearchCV

method), 2341
get_params() (sklearn.multiclass.OneVsOneClassifier

method), 2360
get_params() (sklearn.multiclass.OneVsRestClassifier

method), 2357
get_params() (sklearn.multiclass.OutputCodeClassifier

method), 2363
get_params() (sklearn.multioutput.ClassifierChain

method), 2366
get_params() (sklearn.multioutput.MultiOutputClassifier

method), 2371
get_params() (sklearn.multioutput.MultiOutputRegressor

method), 2368
get_params() (sklearn.multioutput.RegressorChain

method), 2374
get_params() (sklearn.naive_bayes.BernoulliNB

method), 2377
get_params() (sklearn.naive_bayes.CategoricalNB

method), 2380

2722 Index

scikit-learn user guide, Release 0.23.2

get_params() (sklearn.naive_bayes.ComplementNB
method), 2384

get_params() (sklearn.naive_bayes.GaussianNB
method), 2387

get_params() (sklearn.naive_bayes.MultinomialNB
method), 2391

get_params() (sklearn.neighbors.KernelDensity
method), 2406

get_params() (sklearn.neighbors.KNeighborsClassifier
method), 2409

get_params() (sklearn.neighbors.KNeighborsRegressor
method), 2414

get_params() (sklearn.neighbors.KNeighborsTransformer
method), 2419

get_params() (sklearn.neighbors.LocalOutlierFactor
method), 2424

get_params() (sklearn.neighbors.NearestCentroid
method), 2443

get_params() (sklearn.neighbors.NearestNeighbors
method), 2447

get_params() (sklearn.neighbors.NeighborhoodComponentsAnalysis
method), 2453

get_params() (sklearn.neighbors.RadiusNeighborsClassifier
method), 2429

get_params() (sklearn.neighbors.RadiusNeighborsRegressor
method), 2435

get_params() (sklearn.neighbors.RadiusNeighborsTransformer
method), 2439

get_params() (sklearn.neural_network.BernoulliRBM
method), 2458

get_params() (sklearn.neural_network.MLPClassifier
method), 2463

get_params() (sklearn.neural_network.MLPRegressor
method), 2468

get_params() (sklearn.pipeline.FeatureUnion
method), 2472

get_params() (sklearn.pipeline.Pipeline method),
2475

get_params() (sklearn.preprocessing.Binarizer
method), 2480

get_params() (sklearn.preprocessing.FunctionTransformer
method), 2483

get_params() (sklearn.preprocessing.KBinsDiscretizer
method), 2486

get_params() (sklearn.preprocessing.KernelCenterer
method), 2488

get_params() (sklearn.preprocessing.LabelBinarizer
method), 2491

get_params() (sklearn.preprocessing.LabelEncoder
method), 2493

get_params() (sklearn.preprocessing.MaxAbsScaler
method), 2498

get_params() (sklearn.preprocessing.MinMaxScaler
method), 2501

get_params() (sklearn.preprocessing.MultiLabelBinarizer
method), 2496

get_params() (sklearn.preprocessing.Normalizer
method), 2504

get_params() (sklearn.preprocessing.OneHotEncoder
method), 2508

get_params() (sklearn.preprocessing.OrdinalEncoder
method), 2510

get_params() (sklearn.preprocessing.PolynomialFeatures
method), 2513

get_params() (sklearn.preprocessing.PowerTransformer
method), 2516

get_params() (sklearn.preprocessing.QuantileTransformer
method), 2520

get_params() (sklearn.preprocessing.RobustScaler
method), 2523

get_params() (sklearn.preprocessing.StandardScaler
method), 2526

get_params() (sklearn.random_projection.GaussianRandomProjection
method), 2539

get_params() (sklearn.random_projection.SparseRandomProjection
method), 2542

get_params() (sklearn.semi_supervised.LabelPropagation
method), 2545

get_params() (sklearn.semi_supervised.LabelSpreading
method), 2548

get_params() (sklearn.svm.LinearSVC method),
2553

get_params() (sklearn.svm.LinearSVR method),
2557

get_params() (sklearn.svm.NuSVC method), 2562
get_params() (sklearn.svm.NuSVR method), 2566
get_params() (sklearn.svm.OneClassSVM method),

2569
get_params() (sklearn.svm.SVC method), 2574
get_params() (sklearn.svm.SVR method), 2578
get_params() (sklearn.tree.DecisionTreeClassifier

method), 2586
get_params() (sklearn.tree.DecisionTreeRegressor

method), 2593
get_params() (sklearn.tree.ExtraTreeClassifier

method), 2600
get_params() (sklearn.tree.ExtraTreeRegressor

method), 2607
get_precision() (sklearn.covariance.EllipticEnvelope

method), 1700
get_precision() (sklearn.covariance.EmpiricalCovariance

method), 1695
get_precision() (sklearn.covariance.GraphicalLasso

method), 1704
get_precision() (sklearn.covariance.GraphicalLassoCV

method), 1708
get_precision() (sklearn.covariance.LedoitWolf

method), 1711

Index 2723

scikit-learn user guide, Release 0.23.2

get_precision() (sklearn.covariance.MinCovDet
method), 1715

get_precision() (sklearn.covariance.OAS method),
1718

get_precision() (sklearn.covariance.ShrunkCovariance
method), 1722

get_precision() (sklearn.decomposition.FactorAnalysis
method), 1796

get_precision() (sklearn.decomposition.IncrementalPCA
method), 1803

get_precision() (sklearn.decomposition.PCA
method), 1828

get_scorer() (in module sklearn.metrics), 2200
get_shape() (sklearn.base.BiclusterMixin method),

1617
get_shape() (sklearn.cluster.SpectralBiclustering

method), 1668
get_shape() (sklearn.cluster.SpectralCoclustering

method), 1671
get_stop_words() (sklearn.feature_extraction.text.CountVectorizer

method), 1934
get_stop_words() (sklearn.feature_extraction.text.HashingVectorizer

method), 1939
get_stop_words() (sklearn.feature_extraction.text.TfidfVectorizer

method), 1948
get_submatrix() (sklearn.base.BiclusterMixin

method), 1617
get_submatrix() (sklearn.cluster.SpectralBiclustering

method), 1668
get_submatrix() (sklearn.cluster.SpectralCoclustering

method), 1671
get_support() (sklearn.feature_selection.GenericUnivariateSelect

method), 1952
get_support() (sklearn.feature_selection.RFE

method), 1972
get_support() (sklearn.feature_selection.RFECV

method), 1977
get_support() (sklearn.feature_selection.SelectFdr

method), 1963
get_support() (sklearn.feature_selection.SelectFpr

method), 1960
get_support() (sklearn.feature_selection.SelectFromModel

method), 1966
get_support() (sklearn.feature_selection.SelectFwe

method), 1969
get_support() (sklearn.feature_selection.SelectKBest

method), 1957
get_support() (sklearn.feature_selection.SelectorMixin

method), 1621
get_support() (sklearn.feature_selection.SelectPercentile

method), 1954
get_support() (sklearn.feature_selection.VarianceThreshold

method), 1980
get_tree_stats() (sklearn.neighbors.BallTree

method), 2395
get_tree_stats() (sklearn.neighbors.KDTree

method), 2402
gibbs() (sklearn.neural_network.BernoulliRBM

method), 2458
GradientBoostingClassifier (class in

sklearn.ensemble), 573
GradientBoostingRegressor (class in

sklearn.ensemble), 581
graph_shortest_path() (in module

sklearn.utils.graph_shortest_path), 2626
graphical_lasso() (in module

sklearn.covariance), 1723
GraphicalLasso (class in sklearn.covariance), 1701
GraphicalLassoCV (class in sklearn.covariance),

1705
grid_to_graph() (in module

sklearn.feature_extraction.image), 1926
GridSearchCV (class in sklearn.model_selection),

2327
GroupKFold (class in sklearn.model_selection), 2300
groups, 742
GroupShuffleSplit (class in

sklearn.model_selection), 2302

H
hamming_loss() (in module sklearn.metrics), 2217
has_fit_parameter() (in module

sklearn.utils.validation), 2639
HashingVectorizer (class in

sklearn.feature_extraction.text), 1936
haversine_distances() (in module

sklearn.metrics.pairwise), 2268
hinge_loss() (in module sklearn.metrics), 2218
HistGradientBoostingClassifier (class in

sklearn.ensemble), 1909
HistGradientBoostingRegressor (class in

sklearn.ensemble), 1905
homogeneity_completeness_v_measure() (in

module sklearn.metrics), 2255
homogeneity_score() (in module sklearn.metrics),

2256
HuberRegressor (class in sklearn.linear_model),

2149
hyper-parameter, 728
hyperparameter, 728
Hyperparameter (class in

sklearn.gaussian_process.kernels), 2010
hyperparameter_length_scale()

(sklearn.gaussian_process.kernels.ExpSineSquared
property), 2006

hyperparameters()
(sklearn.gaussian_process.kernels.CompoundKernel
property), 1997

2724 Index

scikit-learn user guide, Release 0.23.2

hyperparameters()
(sklearn.gaussian_process.kernels.ConstantKernel
property), 2000

hyperparameters()
(sklearn.gaussian_process.kernels.DotProduct
property), 2003

hyperparameters()
(sklearn.gaussian_process.kernels.Exponentiation
property), 2009

hyperparameters()
(sklearn.gaussian_process.kernels.ExpSineSquared
property), 2006

hyperparameters()
(sklearn.gaussian_process.kernels.Kernel
property), 2012

hyperparameters()
(sklearn.gaussian_process.kernels.Matern
property), 2015

hyperparameters()
(sklearn.gaussian_process.kernels.PairwiseKernel
property), 2018

hyperparameters()
(sklearn.gaussian_process.kernels.Product
property), 2020

hyperparameters()
(sklearn.gaussian_process.kernels.RationalQuadratic
property), 2027

hyperparameters()
(sklearn.gaussian_process.kernels.RBF prop-
erty), 2023

hyperparameters()
(sklearn.gaussian_process.kernels.Sum prop-
erty), 2029

hyperparameters()
(sklearn.gaussian_process.kernels.WhiteKernel
property), 2032

I
if_delegate_has_method() (in module

sklearn.utils.metaestimators), 2627
img_to_graph() (in module

sklearn.feature_extraction.image), 1927
imputation, 728
impute, 728
incr_mean_variance_axis() (in module

sklearn.utils.sparsefuncs), 2634
IncrementalPCA (class in sklearn.decomposition),

1800
index() (sklearn.gaussian_process.kernels.Hyperparameter

method), 2010
indexable, 728
indexable() (in module sklearn.utils), 2627
induction, 728
inductive, 728

inplace_column_scale() (in module
sklearn.utils.sparsefuncs), 2634

inplace_csr_column_scale() (in module
sklearn.utils.sparsefuncs), 2636

inplace_csr_row_normalize_l1() (in module
sklearn.utils.sparsefuncs_fast), 2636

inplace_csr_row_normalize_l2() (in module
sklearn.utils.sparsefuncs_fast), 2636

inplace_row_scale() (in module
sklearn.utils.sparsefuncs), 2635

inplace_swap_column() (in module
sklearn.utils.sparsefuncs), 2635

inplace_swap_row() (in module
sklearn.utils.sparsefuncs), 2635

inverse_transform()
(sklearn.cluster.FeatureAgglomeration
method), 1644

inverse_transform()
(sklearn.cross_decomposition.CCA method),
1729

inverse_transform()
(sklearn.cross_decomposition.PLSCanonical
method), 1733

inverse_transform()
(sklearn.cross_decomposition.PLSRegression
method), 1738

inverse_transform()
(sklearn.decomposition.FastICA method),
1799

inverse_transform()
(sklearn.decomposition.IncrementalPCA
method), 1803

inverse_transform()
(sklearn.decomposition.KernelPCA method),
1807

inverse_transform()
(sklearn.decomposition.NMF method), 1823

inverse_transform()
(sklearn.decomposition.PCA method), 1828

inverse_transform()
(sklearn.decomposition.TruncatedSVD
method), 1838

inverse_transform()
(sklearn.feature_extraction.DictVectorizer
method), 1921

inverse_transform()
(sklearn.feature_extraction.text.CountVectorizer
method), 1935

inverse_transform()
(sklearn.feature_extraction.text.TfidfVectorizer
method), 1948

inverse_transform()
(sklearn.feature_selection.GenericUnivariateSelect
method), 1952

Index 2725

scikit-learn user guide, Release 0.23.2

inverse_transform()
(sklearn.feature_selection.RFE method),
1972

inverse_transform()
(sklearn.feature_selection.RFECV method),
1977

inverse_transform()
(sklearn.feature_selection.SelectFdr method),
1963

inverse_transform()
(sklearn.feature_selection.SelectFpr method),
1960

inverse_transform()
(sklearn.feature_selection.SelectFromModel
method), 1966

inverse_transform()
(sklearn.feature_selection.SelectFwe method),
1969

inverse_transform()
(sklearn.feature_selection.SelectKBest
method), 1958

inverse_transform()
(sklearn.feature_selection.SelectorMixin
method), 1621

inverse_transform()
(sklearn.feature_selection.SelectPercentile
method), 1955

inverse_transform()
(sklearn.feature_selection.VarianceThreshold
method), 1981

inverse_transform()
(sklearn.model_selection.GridSearchCV
method), 2333

inverse_transform()
(sklearn.model_selection.RandomizedSearchCV
method), 2341

inverse_transform() (sklearn.pipeline.Pipeline
property), 2475

inverse_transform()
(sklearn.preprocessing.FunctionTransformer
method), 2483

inverse_transform()
(sklearn.preprocessing.KBinsDiscretizer
method), 2486

inverse_transform()
(sklearn.preprocessing.LabelBinarizer
method), 2491

inverse_transform()
(sklearn.preprocessing.LabelEncoder method),
2493

inverse_transform()
(sklearn.preprocessing.MaxAbsScaler method),
2498

inverse_transform()

(sklearn.preprocessing.MinMaxScaler
method), 2501

inverse_transform()
(sklearn.preprocessing.MultiLabelBinarizer
method), 2496

inverse_transform()
(sklearn.preprocessing.OneHotEncoder
method), 2508

inverse_transform()
(sklearn.preprocessing.OrdinalEncoder
method), 2511

inverse_transform()
(sklearn.preprocessing.PowerTransformer
method), 2516

inverse_transform()
(sklearn.preprocessing.QuantileTransformer
method), 2520

inverse_transform()
(sklearn.preprocessing.RobustScaler method),
2523

inverse_transform()
(sklearn.preprocessing.StandardScaler
method), 2526

is_classifier() (in module sklearn.base), 1622
is_multilabel() (in module

sklearn.utils.multiclass), 2629
is_regressor() (in module sklearn.base), 1622
is_stationary() (sklearn.gaussian_process.kernels.CompoundKernel

method), 1997
is_stationary() (sklearn.gaussian_process.kernels.ConstantKernel

method), 2000
is_stationary() (sklearn.gaussian_process.kernels.DotProduct

method), 2003
is_stationary() (sklearn.gaussian_process.kernels.Exponentiation

method), 2009
is_stationary() (sklearn.gaussian_process.kernels.ExpSineSquared

method), 2006
is_stationary() (sklearn.gaussian_process.kernels.Kernel

method), 2012
is_stationary() (sklearn.gaussian_process.kernels.Matern

method), 2015
is_stationary() (sklearn.gaussian_process.kernels.PairwiseKernel

method), 2018
is_stationary() (sklearn.gaussian_process.kernels.Product

method), 2020
is_stationary() (sklearn.gaussian_process.kernels.RationalQuadratic

method), 2027
is_stationary() (sklearn.gaussian_process.kernels.RBF

method), 2023
is_stationary() (sklearn.gaussian_process.kernels.Sum

method), 2029
is_stationary() (sklearn.gaussian_process.kernels.WhiteKernel

method), 2032
IsolationForest (class in sklearn.ensemble), 1880

2726 Index

scikit-learn user guide, Release 0.23.2

Isomap (class in sklearn.manifold), 2180
isotonic_regression() (in module

sklearn.isotonic), 2057
IsotonicRegression (class in sklearn.isotonic),

2053
IterativeImputer (class in sklearn.impute), 2036

J
jaccard_score() (in module sklearn.metrics), 2219
joblib, 728
johnson_lindenstrauss_min_dim() (in mod-

ule sklearn.random_projection), 2543

K
k_means() (in module sklearn.cluster), 1678
KBinsDiscretizer (class in sklearn.preprocessing),

2484
KDTree (class in sklearn.neighbors), 2400
kernel, 739
Kernel (class in sklearn.gaussian_process.kernels),

2011
kernel_density() (sklearn.neighbors.BallTree

method), 2395
kernel_density() (sklearn.neighbors.KDTree

method), 2402
kernel_metrics() (in module

sklearn.metrics.pairwise), 2269
KernelCenterer (class in sklearn.preprocessing),

2487
KernelDensity (class in sklearn.neighbors), 2404
KernelPCA (class in sklearn.decomposition), 1805
KernelRidge (class in sklearn.kernel_ridge), 2068
KFold (class in sklearn.model_selection), 2304
KMeans (class in sklearn.cluster), 1645
kneighbors() (sklearn.neighbors.KNeighborsClassifier

method), 2409
kneighbors() (sklearn.neighbors.KNeighborsRegressor

method), 2415
kneighbors() (sklearn.neighbors.KNeighborsTransformer

method), 2419
kneighbors() (sklearn.neighbors.LocalOutlierFactor

method), 2425
kneighbors() (sklearn.neighbors.NearestNeighbors

method), 2447
kneighbors_graph() (in module

sklearn.neighbors), 2454
kneighbors_graph()

(sklearn.neighbors.KNeighborsClassifier
method), 2410

kneighbors_graph()
(sklearn.neighbors.KNeighborsRegressor
method), 2415

kneighbors_graph()
(sklearn.neighbors.KNeighborsTransformer

method), 2420
kneighbors_graph()

(sklearn.neighbors.LocalOutlierFactor
method), 2425

kneighbors_graph()
(sklearn.neighbors.NearestNeighbors method),
2447

KNeighborsClassifier (class in
sklearn.neighbors), 2407

KNeighborsRegressor (class in sklearn.neighbors),
2412

KNeighborsTransformer (class in
sklearn.neighbors), 2417

KNNImputer (class in sklearn.impute), 2042

L
l1_min_c() (in module sklearn.svm), 2580
label indicator matrix, 728
label_binarize() (in module

sklearn.preprocessing), 2529
label_ranking_average_precision_score()

(in module sklearn.metrics), 2246
label_ranking_loss() (in module

sklearn.metrics), 2247
LabelBinarizer (class in sklearn.preprocessing),

2489
LabelEncoder (class in sklearn.preprocessing), 2492
LabelPropagation (class in

sklearn.semi_supervised), 2544
labels_, 742
LabelSpreading (class in sklearn.semi_supervised),

2547
laplacian_kernel() (in module

sklearn.metrics.pairwise), 2269
Lars (class in sklearn.linear_model), 2117
lars_path() (in module sklearn.linear_model), 2170
lars_path_gram() (in module

sklearn.linear_model), 2172
LarsCV (class in sklearn.linear_model), 501
Lasso (class in sklearn.linear_model), 2120
lasso_path() (in module sklearn.linear_model),

2173
LassoCV (class in sklearn.linear_model), 504
LassoLars (class in sklearn.linear_model), 2125
LassoLarsCV (class in sklearn.linear_model), 510
LassoLarsIC (class in sklearn.linear_model), 542
LatentDirichletAllocation (class in

sklearn.decomposition), 1808
leakage, 728
learning_curve() (in module

sklearn.model_selection), 2350
LeaveOneGroupOut (class in

sklearn.model_selection), 2306
LeaveOneOut (class in sklearn.model_selection), 2309

Index 2727

scikit-learn user guide, Release 0.23.2

LeavePGroupsOut (class in sklearn.model_selection),
2307

LeavePOut (class in sklearn.model_selection), 2310
ledoit_wolf() (in module sklearn.covariance), 1725
LedoitWolf (class in sklearn.covariance), 1709
linear_kernel() (in module

sklearn.metrics.pairwise), 2270
LinearDiscriminantAnalysis (class in

sklearn.discriminant_analysis), 1848
LinearRegression (class in sklearn.linear_model),

2098
LinearSVC (class in sklearn.svm), 2550
LinearSVR (class in sklearn.svm), 2555
load_boston() (in module sklearn.datasets), 1756
load_breast_cancer() (in module

sklearn.datasets), 1757
load_diabetes() (in module sklearn.datasets), 1758
load_digits() (in module sklearn.datasets), 1759
load_files() (in module sklearn.datasets), 1762
load_iris() (in module sklearn.datasets), 1763
load_linnerud() (in module sklearn.datasets), 1765
load_sample_image() (in module

sklearn.datasets), 1766
load_sample_images() (in module

sklearn.datasets), 1767
load_svmlight_file() (in module

sklearn.datasets), 1767
load_svmlight_files() (in module

sklearn.datasets), 1769
load_wine() (in module sklearn.datasets), 1770
locally_linear_embedding() (in module

sklearn.manifold), 2195
LocallyLinearEmbedding (class in

sklearn.manifold), 2183
LocalOutlierFactor (class in sklearn.neighbors),

2421
log_loss() (in module sklearn.metrics), 2221
log_marginal_likelihood()

(sklearn.gaussian_process.GaussianProcessClassifier
method), 1989

log_marginal_likelihood()
(sklearn.gaussian_process.GaussianProcessRegressor
method), 1993

LogisticRegression (class in
sklearn.linear_model), 2071

LogisticRegressionCV (class in
sklearn.linear_model), 514

M
mahalanobis() (sklearn.covariance.EllipticEnvelope

method), 1700
mahalanobis() (sklearn.covariance.EmpiricalCovariance

method), 1695

mahalanobis() (sklearn.covariance.GraphicalLasso
method), 1704

mahalanobis() (sklearn.covariance.GraphicalLassoCV
method), 1708

mahalanobis() (sklearn.covariance.LedoitWolf
method), 1711

mahalanobis() (sklearn.covariance.MinCovDet
method), 1715

mahalanobis() (sklearn.covariance.OAS method),
1719

mahalanobis() (sklearn.covariance.ShrunkCovariance
method), 1722

make_biclusters() (in module sklearn.datasets),
1772

make_blobs() (in module sklearn.datasets), 1773
make_checkerboard() (in module

sklearn.datasets), 1775
make_circles() (in module sklearn.datasets), 1775
make_classification() (in module

sklearn.datasets), 1776
make_column_selector() (in module

sklearn.compose), 1692
make_column_transformer() (in module

sklearn.compose), 1690
make_friedman1() (in module sklearn.datasets),

1778
make_friedman2() (in module sklearn.datasets),

1779
make_friedman3() (in module sklearn.datasets),

1780
make_gaussian_quantiles() (in module

sklearn.datasets), 1780
make_hastie_10_2() (in module sklearn.datasets),

1781
make_low_rank_matrix() (in module

sklearn.datasets), 1782
make_moons() (in module sklearn.datasets), 1783
make_multilabel_classification() (in mod-

ule sklearn.datasets), 1784
make_pipeline() (in module sklearn.pipeline), 2477
make_regression() (in module sklearn.datasets),

1785
make_s_curve() (in module sklearn.datasets), 1786
make_scorer() (in module sklearn.metrics), 2200
make_sparse_coded_signal() (in module

sklearn.datasets), 1787
make_sparse_spd_matrix() (in module

sklearn.datasets), 1787
make_sparse_uncorrelated() (in module

sklearn.datasets), 1788
make_spd_matrix() (in module sklearn.datasets),

1789
make_swiss_roll() (in module sklearn.datasets),

1789

2728 Index

scikit-learn user guide, Release 0.23.2

make_union() (in module sklearn.pipeline), 2478
manhattan_distances() (in module

sklearn.metrics.pairwise), 2270
Matern (class in sklearn.gaussian_process.kernels),

2013
matthews_corrcoef() (in module sklearn.metrics),

2222
max_error() (in module sklearn.metrics), 2238
max_iter, 739
maxabs_scale() (in module sklearn.preprocessing),

2530
MaxAbsScaler (class in sklearn.preprocessing), 2497
MDS (class in sklearn.manifold), 2186
mean_absolute_error() (in module

sklearn.metrics), 2238
mean_gamma_deviance() (in module

sklearn.metrics), 2244
mean_poisson_deviance() (in module

sklearn.metrics), 2244
mean_shift() (in module sklearn.cluster), 1680
mean_squared_error() (in module

sklearn.metrics), 2239
mean_squared_log_error() (in module

sklearn.metrics), 2241
mean_tweedie_deviance() (in module

sklearn.metrics), 2245
mean_variance_axis() (in module

sklearn.utils.sparsefuncs), 2636
MeanShift (class in sklearn.cluster), 1655
median_absolute_error() (in module

sklearn.metrics), 2241
memmapping, 728
memory, 740
memory map, 728
memory mapping, 728
meta-estimator, 733
meta-estimators, 733
metaestimator, 733
metaestimators, 733
metric, 740
min_pos() (in module sklearn.utils.arrayfuncs), 2614
MinCovDet (class in sklearn.covariance), 1712
MiniBatchDictionaryLearning (class in

sklearn.decomposition), 1813
MiniBatchKMeans (class in sklearn.cluster), 1650
MiniBatchSparsePCA (class in

sklearn.decomposition), 1817
minmax_scale() (in module sklearn.preprocessing),

2531
MinMaxScaler (class in sklearn.preprocessing), 2499
missing values, 728
MissingIndicator (class in sklearn.impute), 2040
MLPClassifier (class in sklearn.neural_network),

2459

MLPRegressor (class in sklearn.neural_network),
2465

multi-output, 736
multiclass, 735
multiclass multioutput, 735
multilabel, 736
multilabel indicator matrices, 728
multilabel indicator matrix, 728
multilabel_() (sklearn.multiclass.OneVsRestClassifier

property), 2357
multilabel_confusion_matrix() (in module

sklearn.metrics), 2223
MultiLabelBinarizer (class in

sklearn.preprocessing), 2494
MultinomialNB (class in sklearn.naive_bayes), 2389
multioutput, 736
multioutput continuous, 735
multioutput multiclass, 735
MultiOutputClassifier (class in

sklearn.multioutput), 2370
MultiOutputRegressor (class in

sklearn.multioutput), 2367
MultiTaskElasticNet (class in

sklearn.linear_model), 2139
MultiTaskElasticNetCV (class in

sklearn.linear_model), 520
MultiTaskLasso (class in sklearn.linear_model),

2144
MultiTaskLassoCV (class in sklearn.linear_model),

526
murmurhash3_32() (in module sklearn.utils), 2630
mutual_info_classif() (in module

sklearn.feature_selection), 1984
mutual_info_regression() (in module

sklearn.feature_selection), 1985
mutual_info_score() (in module sklearn.metrics),

2257

N
n_components, 740
n_dims() (sklearn.gaussian_process.kernels.CompoundKernel

property), 1997
n_dims() (sklearn.gaussian_process.kernels.ConstantKernel

property), 2000
n_dims() (sklearn.gaussian_process.kernels.DotProduct

property), 2003
n_dims() (sklearn.gaussian_process.kernels.Exponentiation

property), 2009
n_dims() (sklearn.gaussian_process.kernels.ExpSineSquared

property), 2006
n_dims() (sklearn.gaussian_process.kernels.Kernel

property), 2012
n_dims() (sklearn.gaussian_process.kernels.Matern

property), 2015

Index 2729

scikit-learn user guide, Release 0.23.2

n_dims() (sklearn.gaussian_process.kernels.PairwiseKernel
property), 2018

n_dims() (sklearn.gaussian_process.kernels.Product
property), 2020

n_dims() (sklearn.gaussian_process.kernels.RationalQuadratic
property), 2027

n_dims() (sklearn.gaussian_process.kernels.RBF
property), 2023

n_dims() (sklearn.gaussian_process.kernels.Sum
property), 2029

n_dims() (sklearn.gaussian_process.kernels.WhiteKernel
property), 2032

n_elements (sklearn.gaussian_process.kernels.Hyperparameter
attribute), 2010

n_features, 728
n_features_in_() (sklearn.ensemble.StackingClassifier

property), 1892
n_features_in_() (sklearn.ensemble.StackingRegressor

property), 1896
n_iter_, 742
n_iter_no_change, 740
n_jobs, 740
n_outputs, 728
n_samples, 728
n_targets, 729
name (sklearn.gaussian_process.kernels.Hyperparameter

attribute), 2010
named_transformers_()

(sklearn.compose.ColumnTransformer prop-
erty), 1686

nan_euclidean_distances() (in module
sklearn.metrics.pairwise), 2271

narrative docs, 729
narrative documentation, 729
ndcg_score() (in module sklearn.metrics), 2224
NearestCentroid (class in sklearn.neighbors), 2442
NearestNeighbors (class in sklearn.neighbors),

2445
NeighborhoodComponentsAnalysis (class in

sklearn.neighbors), 2450
NMF (class in sklearn.decomposition), 1820
non_negative_factorization() (in module

sklearn.decomposition), 1844
NonBLASDotWarning (class in sklearn.exceptions),

1917
normalize() (in module sklearn.preprocessing), 2531
normalized_mutual_info_score() (in module

sklearn.metrics), 2258
Normalizer (class in sklearn.preprocessing), 2502
NotFittedError (class in sklearn.exceptions), 1916
np, 729
NuSVC (class in sklearn.svm), 2558
NuSVR (class in sklearn.svm), 2564
Nystroem (class in sklearn.kernel_approximation),

2060

O
OAS (class in sklearn.covariance), 1716
oas() (in module sklearn.covariance), 1725
OneClassSVM (class in sklearn.svm), 2567
OneHotEncoder (class in sklearn.preprocessing),

2505
OneVsOneClassifier (class in sklearn.multiclass),

2358
OneVsRestClassifier (class in sklearn.multiclass),

2355
online learning, 729
OPTICS (class in sklearn.cluster), 1658
OrdinalEncoder (class in sklearn.preprocessing),

2509
orthogonal_mp() (in module sklearn.linear_model),

2176
orthogonal_mp_gram() (in module

sklearn.linear_model), 2177
OrthogonalMatchingPursuit (class in

sklearn.linear_model), 2129
OrthogonalMatchingPursuitCV (class in

sklearn.linear_model), 531
out-of-core, 729
outlier detector, 733
outlier detectors, 733
OutputCodeClassifier (class in

sklearn.multiclass), 2361
outputs, 729

P
pair, 729
paired_cosine_distances() (in module

sklearn.metrics.pairwise), 2275
paired_distances() (in module

sklearn.metrics.pairwise), 2275
paired_euclidean_distances() (in module

sklearn.metrics.pairwise), 2274
paired_manhattan_distances() (in module

sklearn.metrics.pairwise), 2274
pairwise metric, 730
pairwise metrics, 730
pairwise() (sklearn.neighbors.DistanceMetric

method), 2400
pairwise_distances() (in module

sklearn.metrics), 2276
pairwise_distances_argmin() (in module

sklearn.metrics), 2277
pairwise_distances_argmin_min() (in mod-

ule sklearn.metrics), 2278
pairwise_distances_chunked() (in module

sklearn.metrics), 2279

2730 Index

scikit-learn user guide, Release 0.23.2

pairwise_kernels() (in module
sklearn.metrics.pairwise), 2272

PairwiseKernel (class in
sklearn.gaussian_process.kernels), 2016

parallel_backend() (in module sklearn.utils),
2640

param, 729
parameter, 729
ParameterGrid (class in sklearn.model_selection),

2334
parameters, 729
ParameterSampler (class in

sklearn.model_selection), 2335
parametrize_with_checks() (in module

sklearn.utils.estimator_checks), 2621
params, 729
partial_dependence() (in module

sklearn.inspection), 2045
partial_fit, 737
partial_fit() (sklearn.cluster.Birch method), 1637
partial_fit() (sklearn.cluster.MiniBatchKMeans

method), 1653
partial_fit() (sklearn.decomposition.IncrementalPCA

method), 1804
partial_fit() (sklearn.decomposition.LatentDirichletAllocation

method), 1811
partial_fit() (sklearn.decomposition.MiniBatchDictionaryLearning

method), 1816
partial_fit() (sklearn.feature_extraction.text.HashingVectorizer

method), 1940
partial_fit() (sklearn.feature_selection.SelectFromModel

method), 1966
partial_fit() (sklearn.linear_model.PassiveAggressiveClassifier

method), 2082
partial_fit() (sklearn.linear_model.Perceptron

method), 2086
partial_fit() (sklearn.linear_model.SGDClassifier

method), 2096
partial_fit() (sklearn.linear_model.SGDRegressor

method), 2109
partial_fit() (sklearn.multiclass.OneVsOneClassifier

method), 2360
partial_fit() (sklearn.multiclass.OneVsRestClassifier

method), 2357
partial_fit() (sklearn.multioutput.MultiOutputClassifier

method), 2371
partial_fit() (sklearn.multioutput.MultiOutputRegressor

method), 2368
partial_fit() (sklearn.naive_bayes.BernoulliNB

method), 2377
partial_fit() (sklearn.naive_bayes.CategoricalNB

method), 2380
partial_fit() (sklearn.naive_bayes.ComplementNB

method), 2384

partial_fit() (sklearn.naive_bayes.GaussianNB
method), 2387

partial_fit() (sklearn.naive_bayes.MultinomialNB
method), 2391

partial_fit() (sklearn.neural_network.BernoulliRBM
method), 2458

partial_fit() (sklearn.neural_network.MLPClassifier
property), 2463

partial_fit() (sklearn.neural_network.MLPRegressor
property), 2468

partial_fit() (sklearn.preprocessing.MaxAbsScaler
method), 2498

partial_fit() (sklearn.preprocessing.MinMaxScaler
method), 2502

partial_fit() (sklearn.preprocessing.StandardScaler
method), 2526

PartialDependenceDisplay (class in
sklearn.inspection), 2048

PassiveAggressiveClassifier (class in
sklearn.linear_model), 2078

PassiveAggressiveRegressor() (in module
sklearn.linear_model), 2167

PatchExtractor (class in
sklearn.feature_extraction.image), 1928

path() (sklearn.linear_model.ElasticNet static
method), 2114

path() (sklearn.linear_model.ElasticNetCV static
method), 499

path() (sklearn.linear_model.Lasso static method),
2123

path() (sklearn.linear_model.LassoCV static method),
507

path() (sklearn.linear_model.MultiTaskElasticNet
static method), 2142

path() (sklearn.linear_model.MultiTaskElasticNetCV
static method), 523

path() (sklearn.linear_model.MultiTaskLasso static
method), 2146

path() (sklearn.linear_model.MultiTaskLassoCV static
method), 528

PCA (class in sklearn.decomposition), 1824
pd, 730
Perceptron (class in sklearn.linear_model), 2083
permutation_importance() (in module

sklearn.inspection), 2047
permutation_test_score() (in module

sklearn.model_selection), 2351
perplexity() (sklearn.decomposition.LatentDirichletAllocation

method), 1812
Pipeline (class in sklearn.pipeline), 2472
plot() (sklearn.inspection.PartialDependenceDisplay

method), 2050
plot() (sklearn.metrics.ConfusionMatrixDisplay

method), 2285

Index 2731

scikit-learn user guide, Release 0.23.2

plot() (sklearn.metrics.PrecisionRecallDisplay
method), 2286

plot() (sklearn.metrics.RocCurveDisplay method),
2287

plot_confusion_matrix() (in module
sklearn.metrics), 2281

plot_partial_dependence() (in module
sklearn.inspection), 2050

plot_precision_recall_curve() (in module
sklearn.metrics), 2283

plot_roc_curve() (in module sklearn.metrics),
2283

plot_tree() (in module sklearn.tree), 2611
PLSCanonical (class in

sklearn.cross_decomposition), 1730
PLSRegression (class in

sklearn.cross_decomposition), 1735
PLSSVD (class in sklearn.cross_decomposition), 1739
PoissonRegressor (class in sklearn.linear_model),

2160
polynomial_kernel() (in module

sklearn.metrics.pairwise), 2273
PolynomialFeatures (class in

sklearn.preprocessing), 2511
pos_label, 740
power_transform() (in module

sklearn.preprocessing), 2536
PowerTransformer (class in sklearn.preprocessing),

2514
precision_recall_curve() (in module

sklearn.metrics), 2226
precision_recall_fscore_support() (in

module sklearn.metrics), 2227
precision_score() (in module sklearn.metrics),

2229
PrecisionRecallDisplay (class in

sklearn.metrics), 2285
precomputed, 730
PredefinedSplit (class in sklearn.model_selection),

2312
predict, 737
predict() (sklearn.calibration.CalibratedClassifierCV

method), 1626
predict() (sklearn.cluster.AffinityPropagation

method), 1631
predict() (sklearn.cluster.Birch method), 1638
predict() (sklearn.cluster.KMeans method), 1649
predict() (sklearn.cluster.MeanShift method), 1657
predict() (sklearn.cluster.MiniBatchKMeans

method), 1654
predict() (sklearn.compose.TransformedTargetRegressor

method), 1689
predict() (sklearn.covariance.EllipticEnvelope

method), 1700

predict() (sklearn.cross_decomposition.CCA
method), 1729

predict() (sklearn.cross_decomposition.PLSCanonical
method), 1734

predict() (sklearn.cross_decomposition.PLSRegression
method), 1738

predict() (sklearn.discriminant_analysis.LinearDiscriminantAnalysis
method), 1851

predict() (sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis
method), 1854

predict() (sklearn.dummy.DummyClassifier method),
1858

predict() (sklearn.dummy.DummyRegressor
method), 1860

predict() (sklearn.ensemble.AdaBoostClassifier
method), 1865

predict() (sklearn.ensemble.AdaBoostRegressor
method), 1870

predict() (sklearn.ensemble.BaggingClassifier
method), 1875

predict() (sklearn.ensemble.BaggingRegressor
method), 1879

predict() (sklearn.ensemble.ExtraTreesClassifier
method), 565

predict() (sklearn.ensemble.ExtraTreesRegressor
method), 571

predict() (sklearn.ensemble.GradientBoostingClassifier
method), 579

predict() (sklearn.ensemble.GradientBoostingRegressor
method), 586

predict() (sklearn.ensemble.HistGradientBoostingClassifier
method), 1912

predict() (sklearn.ensemble.HistGradientBoostingRegressor
method), 1908

predict() (sklearn.ensemble.IsolationForest method),
1883

predict() (sklearn.ensemble.RandomForestClassifier
method), 551

predict() (sklearn.ensemble.RandomForestRegressor
method), 558

predict() (sklearn.ensemble.StackingClassifier
method), 1892

predict() (sklearn.ensemble.StackingRegressor
method), 1896

predict() (sklearn.ensemble.VotingClassifier
method), 1900

predict() (sklearn.ensemble.VotingRegressor
method), 1903

predict() (sklearn.feature_selection.RFE method),
1973

predict() (sklearn.feature_selection.RFECV
method), 1978

predict() (sklearn.gaussian_process.GaussianProcessClassifier
method), 1989

2732 Index

scikit-learn user guide, Release 0.23.2

predict() (sklearn.gaussian_process.GaussianProcessRegressor
method), 1993

predict() (sklearn.isotonic.IsotonicRegression
method), 2055

predict() (sklearn.kernel_ridge.KernelRidge
method), 2070

predict() (sklearn.linear_model.ARDRegression
method), 2134

predict() (sklearn.linear_model.BayesianRidge
method), 2138

predict() (sklearn.linear_model.ElasticNet method),
2116

predict() (sklearn.linear_model.ElasticNetCV
method), 500

predict() (sklearn.linear_model.GammaRegressor
method), 2165

predict() (sklearn.linear_model.HuberRegressor
method), 2151

predict() (sklearn.linear_model.Lars method), 2119
predict() (sklearn.linear_model.LarsCV method),

503
predict() (sklearn.linear_model.Lasso method), 2124
predict() (sklearn.linear_model.LassoCV method),

509
predict() (sklearn.linear_model.LassoLars method),

2128
predict() (sklearn.linear_model.LassoLarsCV

method), 513
predict() (sklearn.linear_model.LassoLarsIC

method), 544
predict() (sklearn.linear_model.LinearRegression

method), 2100
predict() (sklearn.linear_model.LogisticRegression

method), 2076
predict() (sklearn.linear_model.LogisticRegressionCV

method), 518
predict() (sklearn.linear_model.MultiTaskElasticNet

method), 2143
predict() (sklearn.linear_model.MultiTaskElasticNetCV

method), 525
predict() (sklearn.linear_model.MultiTaskLasso

method), 2148
predict() (sklearn.linear_model.MultiTaskLassoCV

method), 530
predict() (sklearn.linear_model.OrthogonalMatchingPursuit

method), 2131
predict() (sklearn.linear_model.OrthogonalMatchingPursuitCV

method), 533
predict() (sklearn.linear_model.PassiveAggressiveClassifier

method), 2082
predict() (sklearn.linear_model.Perceptron method),

2087
predict() (sklearn.linear_model.PoissonRegressor

method), 2161

predict() (sklearn.linear_model.RANSACRegressor
method), 2155

predict() (sklearn.linear_model.Ridge method), 2104
predict() (sklearn.linear_model.RidgeClassifier

method), 2090
predict() (sklearn.linear_model.RidgeClassifierCV

method), 541
predict() (sklearn.linear_model.RidgeCV method),

537
predict() (sklearn.linear_model.SGDClassifier

method), 2096
predict() (sklearn.linear_model.SGDRegressor

method), 2110
predict() (sklearn.linear_model.TheilSenRegressor

method), 2158
predict() (sklearn.linear_model.TweedieRegressor

method), 2163
predict() (sklearn.mixture.BayesianGaussianMixture

method), 2292
predict() (sklearn.mixture.GaussianMixture

method), 2298
predict() (sklearn.model_selection.GridSearchCV

method), 2333
predict() (sklearn.model_selection.RandomizedSearchCV

method), 2341
predict() (sklearn.multiclass.OneVsOneClassifier

method), 2360
predict() (sklearn.multiclass.OneVsRestClassifier

method), 2357
predict() (sklearn.multiclass.OutputCodeClassifier

method), 2363
predict() (sklearn.multioutput.ClassifierChain

method), 2366
predict() (sklearn.multioutput.MultiOutputClassifier

method), 2371
predict() (sklearn.multioutput.MultiOutputRegressor

method), 2368
predict() (sklearn.multioutput.RegressorChain

method), 2374
predict() (sklearn.naive_bayes.BernoulliNB

method), 2377
predict() (sklearn.naive_bayes.CategoricalNB

method), 2381
predict() (sklearn.naive_bayes.ComplementNB

method), 2384
predict() (sklearn.naive_bayes.GaussianNB

method), 2387
predict() (sklearn.naive_bayes.MultinomialNB

method), 2391
predict() (sklearn.neighbors.KNeighborsClassifier

method), 2411
predict() (sklearn.neighbors.KNeighborsRegressor

method), 2416
predict() (sklearn.neighbors.LocalOutlierFactor

Index 2733

scikit-learn user guide, Release 0.23.2

property), 2426
predict() (sklearn.neighbors.NearestCentroid

method), 2444
predict() (sklearn.neighbors.RadiusNeighborsClassifier

method), 2430
predict() (sklearn.neighbors.RadiusNeighborsRegressor

method), 2435
predict() (sklearn.neural_network.MLPClassifier

method), 2463
predict() (sklearn.neural_network.MLPRegressor

method), 2469
predict() (sklearn.pipeline.Pipeline method), 2475
predict() (sklearn.semi_supervised.LabelPropagation

method), 2546
predict() (sklearn.semi_supervised.LabelSpreading

method), 2548
predict() (sklearn.svm.LinearSVC method), 2553
predict() (sklearn.svm.LinearSVR method), 2557
predict() (sklearn.svm.NuSVC method), 2562
predict() (sklearn.svm.NuSVR method), 2566
predict() (sklearn.svm.OneClassSVM method), 2570
predict() (sklearn.svm.SVC method), 2574
predict() (sklearn.svm.SVR method), 2579
predict() (sklearn.tree.DecisionTreeClassifier

method), 2586
predict() (sklearn.tree.DecisionTreeRegressor

method), 2593
predict() (sklearn.tree.ExtraTreeClassifier method),

2601
predict() (sklearn.tree.ExtraTreeRegressor method),

2607
predict_log_proba, 738
predict_log_proba()

(sklearn.discriminant_analysis.LinearDiscriminantAnalysis
method), 1851

predict_log_proba()
(sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis
method), 1855

predict_log_proba()
(sklearn.dummy.DummyClassifier method),
1858

predict_log_proba()
(sklearn.ensemble.AdaBoostClassifier method),
1865

predict_log_proba()
(sklearn.ensemble.BaggingClassifier method),
1875

predict_log_proba()
(sklearn.ensemble.ExtraTreesClassifier
method), 565

predict_log_proba()
(sklearn.ensemble.GradientBoostingClassifier
method), 579

predict_log_proba()

(sklearn.ensemble.RandomForestClassifier
method), 551

predict_log_proba()
(sklearn.feature_selection.RFE method),
1973

predict_log_proba()
(sklearn.feature_selection.RFECV method),
1978

predict_log_proba()
(sklearn.linear_model.LogisticRegression
method), 2076

predict_log_proba()
(sklearn.linear_model.LogisticRegressionCV
method), 519

predict_log_proba()
(sklearn.linear_model.SGDClassifier prop-
erty), 2096

predict_log_proba()
(sklearn.model_selection.GridSearchCV
method), 2333

predict_log_proba()
(sklearn.model_selection.RandomizedSearchCV
method), 2342

predict_log_proba()
(sklearn.naive_bayes.BernoulliNB method),
2377

predict_log_proba()
(sklearn.naive_bayes.CategoricalNB method),
2381

predict_log_proba()
(sklearn.naive_bayes.ComplementNB method),
2384

predict_log_proba()
(sklearn.naive_bayes.GaussianNB method),
2388

predict_log_proba()
(sklearn.naive_bayes.MultinomialNB method),
2391

predict_log_proba()
(sklearn.neural_network.MLPClassifier
method), 2464

predict_log_proba() (sklearn.pipeline.Pipeline
method), 2475

predict_log_proba() (sklearn.svm.NuSVC prop-
erty), 2562

predict_log_proba() (sklearn.svm.SVC property),
2575

predict_log_proba()
(sklearn.tree.DecisionTreeClassifier method),
2587

predict_log_proba()
(sklearn.tree.ExtraTreeClassifier method),
2601

predict_proba, 738

2734 Index

scikit-learn user guide, Release 0.23.2

predict_proba() (sklearn.calibration.CalibratedClassifierCV
method), 1626

predict_proba() (sklearn.discriminant_analysis.LinearDiscriminantAnalysis
method), 1851

predict_proba() (sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis
method), 1855

predict_proba() (sklearn.dummy.DummyClassifier
method), 1858

predict_proba() (sklearn.ensemble.AdaBoostClassifier
method), 1866

predict_proba() (sklearn.ensemble.BaggingClassifier
method), 1875

predict_proba() (sklearn.ensemble.ExtraTreesClassifier
method), 565

predict_proba() (sklearn.ensemble.GradientBoostingClassifier
method), 579

predict_proba() (sklearn.ensemble.HistGradientBoostingClassifier
method), 1912

predict_proba() (sklearn.ensemble.RandomForestClassifier
method), 552

predict_proba() (sklearn.ensemble.StackingClassifier
method), 1892

predict_proba() (sklearn.ensemble.VotingClassifier
property), 1900

predict_proba() (sklearn.feature_selection.RFE
method), 1973

predict_proba() (sklearn.feature_selection.RFECV
method), 1978

predict_proba() (sklearn.gaussian_process.GaussianProcessClassifier
method), 1989

predict_proba() (sklearn.linear_model.LogisticRegression
method), 2076

predict_proba() (sklearn.linear_model.LogisticRegressionCV
method), 519

predict_proba() (sklearn.linear_model.SGDClassifier
property), 2097

predict_proba() (sklearn.mixture.BayesianGaussianMixture
method), 2293

predict_proba() (sklearn.mixture.GaussianMixture
method), 2298

predict_proba() (sklearn.model_selection.GridSearchCV
method), 2333

predict_proba() (sklearn.model_selection.RandomizedSearchCV
method), 2342

predict_proba() (sklearn.multiclass.OneVsRestClassifier
method), 2357

predict_proba() (sklearn.multioutput.ClassifierChain
method), 2366

predict_proba() (sklearn.multioutput.MultiOutputClassifier
property), 2371

predict_proba() (sklearn.naive_bayes.BernoulliNB
method), 2378

predict_proba() (sklearn.naive_bayes.CategoricalNB
method), 2381

predict_proba() (sklearn.naive_bayes.ComplementNB
method), 2384

predict_proba() (sklearn.naive_bayes.GaussianNB
method), 2388

predict_proba() (sklearn.naive_bayes.MultinomialNB
method), 2391

predict_proba() (sklearn.neighbors.KNeighborsClassifier
method), 2411

predict_proba() (sklearn.neighbors.RadiusNeighborsClassifier
method), 2430

predict_proba() (sklearn.neural_network.MLPClassifier
method), 2464

predict_proba() (sklearn.pipeline.Pipeline
method), 2476

predict_proba() (sklearn.semi_supervised.LabelPropagation
method), 2546

predict_proba() (sklearn.semi_supervised.LabelSpreading
method), 2549

predict_proba() (sklearn.svm.NuSVC property),
2563

predict_proba() (sklearn.svm.SVC property), 2575
predict_proba() (sklearn.tree.DecisionTreeClassifier

method), 2587
predict_proba() (sklearn.tree.ExtraTreeClassifier

method), 2601
predictor, 733
predictors, 733
Product (class in sklearn.gaussian_process.kernels),

2018

Q
QuadraticDiscriminantAnalysis (class in

sklearn.discriminant_analysis), 1852
quantile_transform() (in module

sklearn.preprocessing), 2532
QuantileTransformer (class in

sklearn.preprocessing), 2518
query() (sklearn.neighbors.BallTree method), 2396
query() (sklearn.neighbors.KDTree method), 2403
query_radius() (sklearn.neighbors.BallTree

method), 2396
query_radius() (sklearn.neighbors.KDTree

method), 2403

R
r2_score() (in module sklearn.metrics), 2242
radius_neighbors()

(sklearn.neighbors.NearestNeighbors method),
2448

radius_neighbors()
(sklearn.neighbors.RadiusNeighborsClassifier
method), 2430

radius_neighbors()
(sklearn.neighbors.RadiusNeighborsRegressor

Index 2735

scikit-learn user guide, Release 0.23.2

method), 2435
radius_neighbors()

(sklearn.neighbors.RadiusNeighborsTransformer
method), 2440

radius_neighbors_graph() (in module
sklearn.neighbors), 2455

radius_neighbors_graph()
(sklearn.neighbors.NearestNeighbors method),
2449

radius_neighbors_graph()
(sklearn.neighbors.RadiusNeighborsClassifier
method), 2431

radius_neighbors_graph()
(sklearn.neighbors.RadiusNeighborsRegressor
method), 2436

radius_neighbors_graph()
(sklearn.neighbors.RadiusNeighborsTransformer
method), 2441

RadiusNeighborsClassifier (class in
sklearn.neighbors), 2427

RadiusNeighborsRegressor (class in
sklearn.neighbors), 2432

RadiusNeighborsTransformer (class in
sklearn.neighbors), 2438

random_state, 740
RandomForestClassifier (class in

sklearn.ensemble), 546
RandomForestRegressor (class in

sklearn.ensemble), 553
randomized_range_finder() (in module

sklearn.utils.extmath), 2622
randomized_svd() (in module

sklearn.utils.extmath), 2623
RandomizedSearchCV (class in

sklearn.model_selection), 2336
RandomTreesEmbedding (class in

sklearn.ensemble), 1884
RANSACRegressor (class in sklearn.linear_model),

2153
RationalQuadratic (class in

sklearn.gaussian_process.kernels), 2024
RBF (class in sklearn.gaussian_process.kernels), 2021
rbf_kernel() (in module sklearn.metrics.pairwise),

2273
RBFSampler (class in sklearn.kernel_approximation),

2063
rdist_to_dist() (sklearn.neighbors.DistanceMetric

method), 2400
recall_score() (in module sklearn.metrics), 2231
reconstruct_from_patches_2d() (in module

sklearn.feature_extraction.image), 1927
reconstruction_error()

(sklearn.manifold.Isomap method), 2182
rectangular, 730

register_parallel_backend() (in module
sklearn.utils), 2640

regressor, 734
RegressorChain (class in sklearn.multioutput), 2372
RegressorMixin (class in sklearn.base), 1619
regressors, 734
RepeatedKFold (class in sklearn.model_selection),

2313
RepeatedStratifiedKFold (class in

sklearn.model_selection), 2315
requires_vector_input()

(sklearn.gaussian_process.kernels.CompoundKernel
property), 1997

requires_vector_input()
(sklearn.gaussian_process.kernels.ConstantKernel
property), 2000

requires_vector_input()
(sklearn.gaussian_process.kernels.DotProduct
property), 2003

requires_vector_input()
(sklearn.gaussian_process.kernels.Exponentiation
property), 2009

requires_vector_input()
(sklearn.gaussian_process.kernels.ExpSineSquared
property), 2006

requires_vector_input()
(sklearn.gaussian_process.kernels.Kernel
property), 2012

requires_vector_input()
(sklearn.gaussian_process.kernels.Matern
property), 2015

requires_vector_input()
(sklearn.gaussian_process.kernels.PairwiseKernel
property), 2018

requires_vector_input()
(sklearn.gaussian_process.kernels.Product
property), 2020

requires_vector_input()
(sklearn.gaussian_process.kernels.RationalQuadratic
property), 2027

requires_vector_input()
(sklearn.gaussian_process.kernels.RBF prop-
erty), 2023

requires_vector_input()
(sklearn.gaussian_process.kernels.Sum prop-
erty), 2029

requires_vector_input()
(sklearn.gaussian_process.kernels.WhiteKernel
property), 2032

resample() (in module sklearn.utils), 2630
reset_n_calls() (sklearn.neighbors.BallTree

method), 2397
reset_n_calls() (sklearn.neighbors.KDTree

method), 2404

2736 Index

scikit-learn user guide, Release 0.23.2

restrict() (sklearn.feature_extraction.DictVectorizer
method), 1921

reweight_covariance()
(sklearn.covariance.EllipticEnvelope method),
1700

reweight_covariance()
(sklearn.covariance.MinCovDet method),
1715

RFE (class in sklearn.feature_selection), 1970
RFECV (class in sklearn.feature_selection), 1974
Ridge (class in sklearn.linear_model), 2102
ridge_regression() (in module

sklearn.linear_model), 2178
RidgeClassifier (class in sklearn.linear_model),

2088
RidgeClassifierCV (class in

sklearn.linear_model), 538
RidgeCV (class in sklearn.linear_model), 535
robust_scale() (in module sklearn.preprocessing),

2534
RobustScaler (class in sklearn.preprocessing), 2521
roc_auc_score() (in module sklearn.metrics), 2233
roc_curve() (in module sklearn.metrics), 2234
RocCurveDisplay (class in sklearn.metrics), 2286

S
safe_indexing() (in module sklearn.utils), 2642
safe_mask() (in module sklearn.utils), 2632
safe_sparse_dot() (in module

sklearn.utils.extmath), 2622
safe_sqr() (in module sklearn.utils), 2632
sample, 730
sample properties, 730
sample property, 730
sample() (sklearn.mixture.BayesianGaussianMixture

method), 2293
sample() (sklearn.mixture.GaussianMixture method),

2298
sample() (sklearn.neighbors.KernelDensity method),

2406
sample_weight, 742
sample_without_replacement() (in module

sklearn.utils.random), 2636
sample_y() (sklearn.gaussian_process.GaussianProcessRegressor

method), 1994
samples, 730
scale() (in module sklearn.preprocessing), 2535
scikit-learn enhancement proposals, 730
scikit-learn-contrib, 730
score, 738
score() (sklearn.base.ClassifierMixin method), 1617
score() (sklearn.base.DensityMixin method), 1618
score() (sklearn.base.RegressorMixin method), 1619

score() (sklearn.calibration.CalibratedClassifierCV
method), 1627

score() (sklearn.cluster.KMeans method), 1649
score() (sklearn.cluster.MiniBatchKMeans method),

1654
score() (sklearn.compose.TransformedTargetRegressor

method), 1689
score() (sklearn.covariance.EllipticEnvelope method),

1700
score() (sklearn.covariance.EmpiricalCovariance

method), 1695
score() (sklearn.covariance.GraphicalLasso method),

1704
score() (sklearn.covariance.GraphicalLassoCV

method), 1708
score() (sklearn.covariance.LedoitWolf method), 1711
score() (sklearn.covariance.MinCovDet method),

1715
score() (sklearn.covariance.OAS method), 1719
score() (sklearn.covariance.ShrunkCovariance

method), 1722
score() (sklearn.cross_decomposition.CCA method),

1729
score() (sklearn.cross_decomposition.PLSCanonical

method), 1734
score() (sklearn.cross_decomposition.PLSRegression

method), 1738
score() (sklearn.decomposition.FactorAnalysis

method), 1796
score() (sklearn.decomposition.LatentDirichletAllocation

method), 1812
score() (sklearn.decomposition.PCA method), 1828
score() (sklearn.discriminant_analysis.LinearDiscriminantAnalysis

method), 1851
score() (sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis

method), 1855
score() (sklearn.dummy.DummyClassifier method),

1858
score() (sklearn.dummy.DummyRegressor method),

1861
score() (sklearn.ensemble.AdaBoostClassifier

method), 1866
score() (sklearn.ensemble.AdaBoostRegressor

method), 1870
score() (sklearn.ensemble.BaggingClassifier method),

1875
score() (sklearn.ensemble.BaggingRegressor method),

1879
score() (sklearn.ensemble.ExtraTreesClassifier

method), 565
score() (sklearn.ensemble.ExtraTreesRegressor

method), 571
score() (sklearn.ensemble.GradientBoostingClassifier

method), 579

Index 2737

scikit-learn user guide, Release 0.23.2

score() (sklearn.ensemble.GradientBoostingRegressor
method), 587

score() (sklearn.ensemble.HistGradientBoostingClassifier
method), 1912

score() (sklearn.ensemble.HistGradientBoostingRegressor
method), 1908

score() (sklearn.ensemble.RandomForestClassifier
method), 552

score() (sklearn.ensemble.RandomForestRegressor
method), 558

score() (sklearn.ensemble.StackingClassifier method),
1893

score() (sklearn.ensemble.StackingRegressor
method), 1896

score() (sklearn.ensemble.VotingClassifier method),
1900

score() (sklearn.ensemble.VotingRegressor method),
1903

score() (sklearn.feature_selection.RFE method), 1973
score() (sklearn.feature_selection.RFECV method),

1978
score() (sklearn.gaussian_process.GaussianProcessClassifier

method), 1989
score() (sklearn.gaussian_process.GaussianProcessRegressor

method), 1994
score() (sklearn.isotonic.IsotonicRegression method),

2055
score() (sklearn.kernel_ridge.KernelRidge method),

2070
score() (sklearn.linear_model.ARDRegression

method), 2134
score() (sklearn.linear_model.BayesianRidge

method), 2138
score() (sklearn.linear_model.ElasticNet method),

2116
score() (sklearn.linear_model.ElasticNetCV method),

500
score() (sklearn.linear_model.GammaRegressor

method), 2166
score() (sklearn.linear_model.HuberRegressor

method), 2151
score() (sklearn.linear_model.Lars method), 2119
score() (sklearn.linear_model.LarsCV method), 504
score() (sklearn.linear_model.Lasso method), 2124
score() (sklearn.linear_model.LassoCV method), 509
score() (sklearn.linear_model.LassoLars method),

2128
score() (sklearn.linear_model.LassoLarsCV method),

513
score() (sklearn.linear_model.LassoLarsIC method),

544
score() (sklearn.linear_model.LinearRegression

method), 2100
score() (sklearn.linear_model.LogisticRegression

method), 2076
score() (sklearn.linear_model.LogisticRegressionCV

method), 519
score() (sklearn.linear_model.MultiTaskElasticNet

method), 2143
score() (sklearn.linear_model.MultiTaskElasticNetCV

method), 525
score() (sklearn.linear_model.MultiTaskLasso

method), 2148
score() (sklearn.linear_model.MultiTaskLassoCV

method), 531
score() (sklearn.linear_model.OrthogonalMatchingPursuit

method), 2131
score() (sklearn.linear_model.OrthogonalMatchingPursuitCV

method), 534
score() (sklearn.linear_model.PassiveAggressiveClassifier

method), 2082
score() (sklearn.linear_model.Perceptron method),

2087
score() (sklearn.linear_model.PoissonRegressor

method), 2161
score() (sklearn.linear_model.RANSACRegressor

method), 2156
score() (sklearn.linear_model.Ridge method), 2104
score() (sklearn.linear_model.RidgeClassifier

method), 2091
score() (sklearn.linear_model.RidgeClassifierCV

method), 541
score() (sklearn.linear_model.RidgeCV method), 537
score() (sklearn.linear_model.SGDClassifier

method), 2097
score() (sklearn.linear_model.SGDRegressor

method), 2110
score() (sklearn.linear_model.TheilSenRegressor

method), 2158
score() (sklearn.linear_model.TweedieRegressor

method), 2163
score() (sklearn.mixture.BayesianGaussianMixture

method), 2293
score() (sklearn.mixture.GaussianMixture method),

2298
score() (sklearn.model_selection.GridSearchCV

method), 2333
score() (sklearn.model_selection.RandomizedSearchCV

method), 2342
score() (sklearn.multiclass.OneVsOneClassifier

method), 2361
score() (sklearn.multiclass.OneVsRestClassifier

method), 2358
score() (sklearn.multiclass.OutputCodeClassifier

method), 2363
score() (sklearn.multioutput.ClassifierChain method),

2366
score() (sklearn.multioutput.MultiOutputClassifier

2738 Index

scikit-learn user guide, Release 0.23.2

method), 2372
score() (sklearn.multioutput.MultiOutputRegressor

method), 2369
score() (sklearn.multioutput.RegressorChain method),

2374
score() (sklearn.naive_bayes.BernoulliNB method),

2378
score() (sklearn.naive_bayes.CategoricalNB method),

2381
score() (sklearn.naive_bayes.ComplementNB

method), 2385
score() (sklearn.naive_bayes.GaussianNB method),

2388
score() (sklearn.naive_bayes.MultinomialNB

method), 2392
score() (sklearn.neighbors.KernelDensity method),

2406
score() (sklearn.neighbors.KNeighborsClassifier

method), 2411
score() (sklearn.neighbors.KNeighborsRegressor

method), 2416
score() (sklearn.neighbors.NearestCentroid method),

2444
score() (sklearn.neighbors.RadiusNeighborsClassifier

method), 2432
score() (sklearn.neighbors.RadiusNeighborsRegressor

method), 2437
score() (sklearn.neural_network.MLPClassifier

method), 2464
score() (sklearn.neural_network.MLPRegressor

method), 2469
score() (sklearn.pipeline.Pipeline method), 2476
score() (sklearn.semi_supervised.LabelPropagation

method), 2546
score() (sklearn.semi_supervised.LabelSpreading

method), 2549
score() (sklearn.svm.LinearSVC method), 2554
score() (sklearn.svm.LinearSVR method), 2558
score() (sklearn.svm.NuSVC method), 2563
score() (sklearn.svm.NuSVR method), 2566
score() (sklearn.svm.SVC method), 2575
score() (sklearn.svm.SVR method), 2579
score() (sklearn.tree.DecisionTreeClassifier method),

2587
score() (sklearn.tree.DecisionTreeRegressor method),

2594
score() (sklearn.tree.ExtraTreeClassifier method),

2601
score() (sklearn.tree.ExtraTreeRegressor method),

2607
score_samples, 738
score_samples() (sklearn.covariance.EllipticEnvelope

method), 1701
score_samples() (sklearn.decomposition.FactorAnalysis

method), 1796
score_samples() (sklearn.decomposition.PCA

method), 1828
score_samples() (sklearn.ensemble.IsolationForest

method), 1884
score_samples() (sklearn.mixture.BayesianGaussianMixture

method), 2293
score_samples() (sklearn.mixture.GaussianMixture

method), 2298
score_samples() (sklearn.neighbors.KernelDensity

method), 2406
score_samples() (sklearn.neighbors.LocalOutlierFactor

property), 2426
score_samples() (sklearn.neural_network.BernoulliRBM

method), 2458
score_samples() (sklearn.pipeline.Pipeline

method), 2476
score_samples() (sklearn.svm.OneClassSVM

method), 2570
scorer, 734
scoring, 741
SelectFdr (class in sklearn.feature_selection), 1961
SelectFpr (class in sklearn.feature_selection), 1958
SelectFromModel (class in

sklearn.feature_selection), 1964
SelectFwe (class in sklearn.feature_selection), 1967
SelectKBest (class in sklearn.feature_selection),

1955
SelectorMixin (class in sklearn.feature_selection),

1620
SelectPercentile (class in

sklearn.feature_selection), 1953
semi-supervised, 731
semi-supervised learning, 731
semisupervised, 731
set_config() (in module sklearn), 1624
set_params, 738
set_params() (sklearn.base.BaseEstimator method),

1616
set_params() (sklearn.calibration.CalibratedClassifierCV

method), 1627
set_params() (sklearn.cluster.AffinityPropagation

method), 1631
set_params() (sklearn.cluster.AgglomerativeClustering

method), 1634
set_params() (sklearn.cluster.Birch method), 1638
set_params() (sklearn.cluster.DBSCAN method),

1641
set_params() (sklearn.cluster.FeatureAgglomeration

method), 1645
set_params() (sklearn.cluster.KMeans method),

1649
set_params() (sklearn.cluster.MeanShift method),

1657

Index 2739

scikit-learn user guide, Release 0.23.2

set_params() (sklearn.cluster.MiniBatchKMeans
method), 1654

set_params() (sklearn.cluster.OPTICS method),
1661

set_params() (sklearn.cluster.SpectralBiclustering
method), 1668

set_params() (sklearn.cluster.SpectralClustering
method), 1665

set_params() (sklearn.cluster.SpectralCoclustering
method), 1671

set_params() (sklearn.compose.ColumnTransformer
method), 1686

set_params() (sklearn.compose.TransformedTargetRegressor
method), 1690

set_params() (sklearn.covariance.EllipticEnvelope
method), 1701

set_params() (sklearn.covariance.EmpiricalCovariance
method), 1696

set_params() (sklearn.covariance.GraphicalLasso
method), 1704

set_params() (sklearn.covariance.GraphicalLassoCV
method), 1708

set_params() (sklearn.covariance.LedoitWolf
method), 1711

set_params() (sklearn.covariance.MinCovDet
method), 1716

set_params() (sklearn.covariance.OAS method),
1719

set_params() (sklearn.covariance.ShrunkCovariance
method), 1722

set_params() (sklearn.cross_decomposition.CCA
method), 1730

set_params() (sklearn.cross_decomposition.PLSCanonical
method), 1734

set_params() (sklearn.cross_decomposition.PLSRegression
method), 1739

set_params() (sklearn.cross_decomposition.PLSSVD
method), 1741

set_params() (sklearn.decomposition.DictionaryLearning
method), 1793

set_params() (sklearn.decomposition.FactorAnalysis
method), 1796

set_params() (sklearn.decomposition.FastICA
method), 1799

set_params() (sklearn.decomposition.IncrementalPCA
method), 1804

set_params() (sklearn.decomposition.KernelPCA
method), 1808

set_params() (sklearn.decomposition.LatentDirichletAllocation
method), 1812

set_params() (sklearn.decomposition.MiniBatchDictionaryLearning
method), 1816

set_params() (sklearn.decomposition.MiniBatchSparsePCA
method), 1819

set_params() (sklearn.decomposition.NMF method),
1823

set_params() (sklearn.decomposition.PCA method),
1829

set_params() (sklearn.decomposition.SparseCoder
method), 1835

set_params() (sklearn.decomposition.SparsePCA
method), 1832

set_params() (sklearn.decomposition.TruncatedSVD
method), 1838

set_params() (sklearn.discriminant_analysis.LinearDiscriminantAnalysis
method), 1851

set_params() (sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis
method), 1855

set_params() (sklearn.dummy.DummyClassifier
method), 1859

set_params() (sklearn.dummy.DummyRegressor
method), 1861

set_params() (sklearn.ensemble.AdaBoostClassifier
method), 1866

set_params() (sklearn.ensemble.AdaBoostRegressor
method), 1871

set_params() (sklearn.ensemble.BaggingClassifier
method), 1876

set_params() (sklearn.ensemble.BaggingRegressor
method), 1879

set_params() (sklearn.ensemble.ExtraTreesClassifier
method), 566

set_params() (sklearn.ensemble.ExtraTreesRegressor
method), 572

set_params() (sklearn.ensemble.GradientBoostingClassifier
method), 580

set_params() (sklearn.ensemble.GradientBoostingRegressor
method), 587

set_params() (sklearn.ensemble.HistGradientBoostingClassifier
method), 1913

set_params() (sklearn.ensemble.HistGradientBoostingRegressor
method), 1908

set_params() (sklearn.ensemble.IsolationForest
method), 1884

set_params() (sklearn.ensemble.RandomForestClassifier
method), 552

set_params() (sklearn.ensemble.RandomForestRegressor
method), 559

set_params() (sklearn.ensemble.RandomTreesEmbedding
method), 1888

set_params() (sklearn.ensemble.StackingClassifier
method), 1893

set_params() (sklearn.ensemble.StackingRegressor
method), 1897

set_params() (sklearn.ensemble.VotingClassifier
method), 1901

set_params() (sklearn.ensemble.VotingRegressor
method), 1904

2740 Index

scikit-learn user guide, Release 0.23.2

set_params() (sklearn.feature_extraction.DictVectorizer
method), 1922

set_params() (sklearn.feature_extraction.FeatureHasher
method), 1924

set_params() (sklearn.feature_extraction.image.PatchExtractor
method), 1929

set_params() (sklearn.feature_extraction.text.CountVectorizer
method), 1935

set_params() (sklearn.feature_extraction.text.HashingVectorizer
method), 1940

set_params() (sklearn.feature_extraction.text.TfidfTransformer
method), 1943

set_params() (sklearn.feature_extraction.text.TfidfVectorizer
method), 1948

set_params() (sklearn.feature_selection.GenericUnivariateSelect
method), 1952

set_params() (sklearn.feature_selection.RFE
method), 1973

set_params() (sklearn.feature_selection.RFECV
method), 1978

set_params() (sklearn.feature_selection.SelectFdr
method), 1963

set_params() (sklearn.feature_selection.SelectFpr
method), 1961

set_params() (sklearn.feature_selection.SelectFromModel
method), 1967

set_params() (sklearn.feature_selection.SelectFwe
method), 1969

set_params() (sklearn.feature_selection.SelectKBest
method), 1958

set_params() (sklearn.feature_selection.SelectPercentile
method), 1955

set_params() (sklearn.feature_selection.VarianceThreshold
method), 1981

set_params() (sklearn.gaussian_process.GaussianProcessClassifier
method), 1990

set_params() (sklearn.gaussian_process.GaussianProcessRegressor
method), 1995

set_params() (sklearn.gaussian_process.kernels.CompoundKernel
method), 1997

set_params() (sklearn.gaussian_process.kernels.ConstantKernel
method), 2000

set_params() (sklearn.gaussian_process.kernels.DotProduct
method), 2003

set_params() (sklearn.gaussian_process.kernels.Exponentiation
method), 2009

set_params() (sklearn.gaussian_process.kernels.ExpSineSquared
method), 2006

set_params() (sklearn.gaussian_process.kernels.Kernel
method), 2012

set_params() (sklearn.gaussian_process.kernels.Matern
method), 2015

set_params() (sklearn.gaussian_process.kernels.PairwiseKernel
method), 2018

set_params() (sklearn.gaussian_process.kernels.Product
method), 2020

set_params() (sklearn.gaussian_process.kernels.RationalQuadratic
method), 2027

set_params() (sklearn.gaussian_process.kernels.RBF
method), 2023

set_params() (sklearn.gaussian_process.kernels.Sum
method), 2029

set_params() (sklearn.gaussian_process.kernels.WhiteKernel
method), 2032

set_params() (sklearn.impute.IterativeImputer
method), 2039

set_params() (sklearn.impute.KNNImputer method),
2044

set_params() (sklearn.impute.MissingIndicator
method), 2042

set_params() (sklearn.impute.SimpleImputer
method), 2035

set_params() (sklearn.isotonic.IsotonicRegression
method), 2056

set_params() (sklearn.kernel_approximation.AdditiveChi2Sampler
method), 2060

set_params() (sklearn.kernel_approximation.Nystroem
method), 2062

set_params() (sklearn.kernel_approximation.RBFSampler
method), 2065

set_params() (sklearn.kernel_approximation.SkewedChi2Sampler
method), 2067

set_params() (sklearn.kernel_ridge.KernelRidge
method), 2070

set_params() (sklearn.linear_model.ARDRegression
method), 2135

set_params() (sklearn.linear_model.BayesianRidge
method), 2138

set_params() (sklearn.linear_model.ElasticNet
method), 2116

set_params() (sklearn.linear_model.ElasticNetCV
method), 501

set_params() (sklearn.linear_model.GammaRegressor
method), 2166

set_params() (sklearn.linear_model.HuberRegressor
method), 2152

set_params() (sklearn.linear_model.Lars method),
2120

set_params() (sklearn.linear_model.LarsCV
method), 504

set_params() (sklearn.linear_model.Lasso method),
2125

set_params() (sklearn.linear_model.LassoCV
method), 510

set_params() (sklearn.linear_model.LassoLars
method), 2128

set_params() (sklearn.linear_model.LassoLarsCV
method), 513

Index 2741

scikit-learn user guide, Release 0.23.2

set_params() (sklearn.linear_model.LassoLarsIC
method), 545

set_params() (sklearn.linear_model.LinearRegression
method), 2101

set_params() (sklearn.linear_model.LogisticRegression
method), 2077

set_params() (sklearn.linear_model.LogisticRegressionCV
method), 519

set_params() (sklearn.linear_model.MultiTaskElasticNet
method), 2144

set_params() (sklearn.linear_model.MultiTaskElasticNetCV
method), 525

set_params() (sklearn.linear_model.MultiTaskLasso
method), 2149

set_params() (sklearn.linear_model.MultiTaskLassoCV
method), 531

set_params() (sklearn.linear_model.OrthogonalMatchingPursuit
method), 2131

set_params() (sklearn.linear_model.OrthogonalMatchingPursuitCV
method), 534

set_params() (sklearn.linear_model.PassiveAggressiveClassifier
method), 2082

set_params() (sklearn.linear_model.Perceptron
method), 2087

set_params() (sklearn.linear_model.PoissonRegressor
method), 2161

set_params() (sklearn.linear_model.RANSACRegressor
method), 2156

set_params() (sklearn.linear_model.Ridge method),
2105

set_params() (sklearn.linear_model.RidgeClassifier
method), 2091

set_params() (sklearn.linear_model.RidgeClassifierCV
method), 541

set_params() (sklearn.linear_model.RidgeCV
method), 538

set_params() (sklearn.linear_model.SGDClassifier
method), 2097

set_params() (sklearn.linear_model.SGDRegressor
method), 2110

set_params() (sklearn.linear_model.TheilSenRegressor
method), 2159

set_params() (sklearn.linear_model.TweedieRegressor
method), 2164

set_params() (sklearn.manifold.Isomap method),
2182

set_params() (sklearn.manifold.LocallyLinearEmbedding
method), 2185

set_params() (sklearn.manifold.MDS method), 2188
set_params() (sklearn.manifold.SpectralEmbedding

method), 2191
set_params() (sklearn.manifold.TSNE method),

2194
set_params() (sklearn.mixture.BayesianGaussianMixture

method), 2293
set_params() (sklearn.mixture.GaussianMixture

method), 2299
set_params() (sklearn.model_selection.GridSearchCV

method), 2334
set_params() (sklearn.model_selection.RandomizedSearchCV

method), 2342
set_params() (sklearn.multiclass.OneVsOneClassifier

method), 2361
set_params() (sklearn.multiclass.OneVsRestClassifier

method), 2358
set_params() (sklearn.multiclass.OutputCodeClassifier

method), 2363
set_params() (sklearn.multioutput.ClassifierChain

method), 2366
set_params() (sklearn.multioutput.MultiOutputClassifier

method), 2372
set_params() (sklearn.multioutput.MultiOutputRegressor

method), 2369
set_params() (sklearn.multioutput.RegressorChain

method), 2374
set_params() (sklearn.naive_bayes.BernoulliNB

method), 2378
set_params() (sklearn.naive_bayes.CategoricalNB

method), 2382
set_params() (sklearn.naive_bayes.ComplementNB

method), 2385
set_params() (sklearn.naive_bayes.GaussianNB

method), 2388
set_params() (sklearn.naive_bayes.MultinomialNB

method), 2392
set_params() (sklearn.neighbors.KernelDensity

method), 2407
set_params() (sklearn.neighbors.KNeighborsClassifier

method), 2411
set_params() (sklearn.neighbors.KNeighborsRegressor

method), 2417
set_params() (sklearn.neighbors.KNeighborsTransformer

method), 2421
set_params() (sklearn.neighbors.LocalOutlierFactor

method), 2427
set_params() (sklearn.neighbors.NearestCentroid

method), 2444
set_params() (sklearn.neighbors.NearestNeighbors

method), 2450
set_params() (sklearn.neighbors.NeighborhoodComponentsAnalysis

method), 2453
set_params() (sklearn.neighbors.RadiusNeighborsClassifier

method), 2432
set_params() (sklearn.neighbors.RadiusNeighborsRegressor

method), 2437
set_params() (sklearn.neighbors.RadiusNeighborsTransformer

method), 2442
set_params() (sklearn.neural_network.BernoulliRBM

2742 Index

scikit-learn user guide, Release 0.23.2

method), 2459
set_params() (sklearn.neural_network.MLPClassifier

method), 2464
set_params() (sklearn.neural_network.MLPRegressor

method), 2469
set_params() (sklearn.pipeline.FeatureUnion

method), 2472
set_params() (sklearn.pipeline.Pipeline method),

2476
set_params() (sklearn.preprocessing.Binarizer

method), 2481
set_params() (sklearn.preprocessing.FunctionTransformer

method), 2483
set_params() (sklearn.preprocessing.KBinsDiscretizer

method), 2486
set_params() (sklearn.preprocessing.KernelCenterer

method), 2488
set_params() (sklearn.preprocessing.LabelBinarizer

method), 2491
set_params() (sklearn.preprocessing.LabelEncoder

method), 2494
set_params() (sklearn.preprocessing.MaxAbsScaler

method), 2499
set_params() (sklearn.preprocessing.MinMaxScaler

method), 2502
set_params() (sklearn.preprocessing.MultiLabelBinarizer

method), 2496
set_params() (sklearn.preprocessing.Normalizer

method), 2504
set_params() (sklearn.preprocessing.OneHotEncoder

method), 2508
set_params() (sklearn.preprocessing.OrdinalEncoder

method), 2511
set_params() (sklearn.preprocessing.PolynomialFeatures

method), 2513
set_params() (sklearn.preprocessing.PowerTransformer

method), 2517
set_params() (sklearn.preprocessing.QuantileTransformer

method), 2520
set_params() (sklearn.preprocessing.RobustScaler

method), 2523
set_params() (sklearn.preprocessing.StandardScaler

method), 2526
set_params() (sklearn.random_projection.GaussianRandomProjection

method), 2539
set_params() (sklearn.random_projection.SparseRandomProjection

method), 2542
set_params() (sklearn.semi_supervised.LabelPropagation

method), 2546
set_params() (sklearn.semi_supervised.LabelSpreading

method), 2549
set_params() (sklearn.svm.LinearSVC method),

2554
set_params() (sklearn.svm.LinearSVR method),

2558
set_params() (sklearn.svm.NuSVC method), 2563
set_params() (sklearn.svm.NuSVR method), 2567
set_params() (sklearn.svm.OneClassSVM method),

2570
set_params() (sklearn.svm.SVC method), 2576
set_params() (sklearn.svm.SVR method), 2579
set_params() (sklearn.tree.DecisionTreeClassifier

method), 2588
set_params() (sklearn.tree.DecisionTreeRegressor

method), 2594
set_params() (sklearn.tree.ExtraTreeClassifier

method), 2602
set_params() (sklearn.tree.ExtraTreeRegressor

method), 2608
SGDClassifier (class in sklearn.linear_model), 2091
SGDRegressor (class in sklearn.linear_model), 2105
show_versions() (in module sklearn), 1624
shrunk_covariance() (in module

sklearn.covariance), 1726
ShrunkCovariance (class in sklearn.covariance),

1720
shuffle() (in module sklearn.utils), 2633
ShuffleSplit (class in sklearn.model_selection),

2316
sigmoid_kernel() (in module

sklearn.metrics.pairwise), 2274
silhouette_samples() (in module

sklearn.metrics), 2260
silhouette_score() (in module sklearn.metrics),

2259
SimpleImputer (class in sklearn.impute), 2033
single_source_shortest_path_length() (in

module sklearn.utils.graph), 2626
SkewedChi2Sampler (class in

sklearn.kernel_approximation), 2065
sklearn.base (module), 1615
sklearn.calibration (module), 1625
sklearn.cluster (module), 1628
sklearn.compose (module), 1683
sklearn.covariance (module), 1693
sklearn.cross_decomposition (module), 1726
sklearn.datasets (module), 1741
sklearn.decomposition (module), 1790
sklearn.discriminant_analysis (module),

1847
sklearn.dummy (module), 1856
sklearn.ensemble (module), 1862
sklearn.exceptions (module), 1913
sklearn.experimental (module), 1918
sklearn.experimental.enable_hist_gradient_boosting

(module), 1918
sklearn.experimental.enable_iterative_imputer

(module), 1918

Index 2743

scikit-learn user guide, Release 0.23.2

sklearn.feature_extraction (module), 1919
sklearn.feature_extraction.image (mod-

ule), 1925
sklearn.feature_extraction.text (module),

1930
sklearn.feature_selection (module), 1949
sklearn.gaussian_process (module), 1986
sklearn.impute (module), 2033
sklearn.inspection (module), 2045
sklearn.isotonic (module), 2053
sklearn.kernel_approximation (module),

2058
sklearn.kernel_ridge (module), 2067
sklearn.linear_model (module), 2071
sklearn.manifold (module), 2179
sklearn.metrics (module), 2199
sklearn.metrics.cluster (module), 2248
sklearn.metrics.pairwise (module), 2263
sklearn.mixture (module), 2288
sklearn.model_selection (module), 2299
sklearn.multiclass (module), 2354
sklearn.multioutput (module), 2364
sklearn.naive_bayes (module), 2375
sklearn.neighbors (module), 2392
sklearn.neural_network (module), 2456
sklearn.pipeline (module), 2470
sklearn.preprocessing (module), 2478
sklearn.random_projection (module), 2537
sklearn.semi_supervised (module), 2544
sklearn.svm (module), 2550
sklearn.tree (module), 2580
sklearn.utils (module), 2612
SLEP, 730
SLEPs, 730
smacof() (in module sklearn.manifold), 2196
sparse graph, 731
sparse matrix, 731
sparse_coef_() (sklearn.linear_model.ElasticNet

property), 2117
sparse_coef_() (sklearn.linear_model.Lasso prop-

erty), 2125
sparse_coef_() (sklearn.linear_model.MultiTaskElasticNet

property), 2144
sparse_coef_() (sklearn.linear_model.MultiTaskLasso

property), 2149
sparse_encode() (in module

sklearn.decomposition), 1846
SparseCoder (class in sklearn.decomposition), 1833
SparsePCA (class in sklearn.decomposition), 1830
SparseRandomProjection (class in

sklearn.random_projection), 2540
sparsify() (sklearn.linear_model.LogisticRegression

method), 2077

sparsify() (sklearn.linear_model.LogisticRegressionCV
method), 520

sparsify() (sklearn.linear_model.PassiveAggressiveClassifier
method), 2082

sparsify() (sklearn.linear_model.Perceptron
method), 2087

sparsify() (sklearn.linear_model.SGDClassifier
method), 2097

sparsify() (sklearn.linear_model.SGDRegressor
method), 2110

sparsify() (sklearn.svm.LinearSVC method), 2554
spectral_clustering() (in module

sklearn.cluster), 1681
spectral_embedding() (in module

sklearn.manifold), 2198
SpectralBiclustering (class in sklearn.cluster),

1665
SpectralClustering (class in sklearn.cluster),

1662
SpectralCoclustering (class in sklearn.cluster),

1669
SpectralEmbedding (class in sklearn.manifold),

2189
split, 738
split() (sklearn.model_selection.GroupKFold

method), 2301
split() (sklearn.model_selection.GroupShuffleSplit

method), 2303
split() (sklearn.model_selection.KFold method),

2305
split() (sklearn.model_selection.LeaveOneGroupOut

method), 2307
split() (sklearn.model_selection.LeaveOneOut

method), 2310
split() (sklearn.model_selection.LeavePGroupsOut

method), 2308
split() (sklearn.model_selection.LeavePOut method),

2311
split() (sklearn.model_selection.PredefinedSplit

method), 2313
split() (sklearn.model_selection.RepeatedKFold

method), 2314
split() (sklearn.model_selection.RepeatedStratifiedKFold

method), 2316
split() (sklearn.model_selection.ShuffleSplit method),

2318
split() (sklearn.model_selection.StratifiedKFold

method), 2320
split() (sklearn.model_selection.StratifiedShuffleSplit

method), 2322
split() (sklearn.model_selection.TimeSeriesSplit

method), 2324
StackingClassifier (class in sklearn.ensemble),

1889

2744 Index

scikit-learn user guide, Release 0.23.2

StackingRegressor (class in sklearn.ensemble),
1894

staged_decision_function()
(sklearn.ensemble.AdaBoostClassifier method),
1866

staged_decision_function()
(sklearn.ensemble.GradientBoostingClassifier
method), 580

staged_predict() (sklearn.ensemble.AdaBoostClassifier
method), 1867

staged_predict() (sklearn.ensemble.AdaBoostRegressor
method), 1871

staged_predict() (sklearn.ensemble.GradientBoostingClassifier
method), 580

staged_predict() (sklearn.ensemble.GradientBoostingRegressor
method), 587

staged_predict_proba()
(sklearn.ensemble.AdaBoostClassifier method),
1867

staged_predict_proba()
(sklearn.ensemble.GradientBoostingClassifier
method), 580

staged_score() (sklearn.ensemble.AdaBoostClassifier
method), 1867

staged_score() (sklearn.ensemble.AdaBoostRegressor
method), 1871

StandardScaler (class in sklearn.preprocessing),
2523

StratifiedKFold (class in sklearn.model_selection),
2318

StratifiedShuffleSplit (class in
sklearn.model_selection), 2320

Sum (class in sklearn.gaussian_process.kernels), 2027
supervised, 731
supervised learning, 731
SVC (class in sklearn.svm), 2571
SVR (class in sklearn.svm), 2576

T
target, 731
targets, 731
TfidfTransformer (class in

sklearn.feature_extraction.text), 1940
TfidfVectorizer (class in

sklearn.feature_extraction.text), 1944
TheilSenRegressor (class in

sklearn.linear_model), 2156
theta() (sklearn.gaussian_process.kernels.CompoundKernel

property), 1998
theta() (sklearn.gaussian_process.kernels.ConstantKernel

property), 2000
theta() (sklearn.gaussian_process.kernels.DotProduct

property), 2003

theta() (sklearn.gaussian_process.kernels.Exponentiation
property), 2009

theta() (sklearn.gaussian_process.kernels.ExpSineSquared
property), 2007

theta() (sklearn.gaussian_process.kernels.Kernel
property), 2012

theta() (sklearn.gaussian_process.kernels.Matern
property), 2015

theta() (sklearn.gaussian_process.kernels.PairwiseKernel
property), 2018

theta() (sklearn.gaussian_process.kernels.Product
property), 2021

theta() (sklearn.gaussian_process.kernels.RationalQuadratic
property), 2027

theta() (sklearn.gaussian_process.kernels.RBF prop-
erty), 2024

theta() (sklearn.gaussian_process.kernels.Sum prop-
erty), 2030

theta() (sklearn.gaussian_process.kernels.WhiteKernel
property), 2032

TimeSeriesSplit (class in sklearn.model_selection),
2322

train_test_split() (in module
sklearn.model_selection), 2325

transduction, 731
transductive, 731
transform, 738
transform() (sklearn.cluster.Birch method), 1638
transform() (sklearn.cluster.FeatureAgglomeration

method), 1645
transform() (sklearn.cluster.KMeans method), 1649
transform() (sklearn.cluster.MiniBatchKMeans

method), 1654
transform() (sklearn.compose.ColumnTransformer

method), 1686
transform() (sklearn.cross_decomposition.CCA

method), 1730
transform() (sklearn.cross_decomposition.PLSCanonical

method), 1734
transform() (sklearn.cross_decomposition.PLSRegression

method), 1739
transform() (sklearn.cross_decomposition.PLSSVD

method), 1741
transform() (sklearn.decomposition.DictionaryLearning

method), 1793
transform() (sklearn.decomposition.FactorAnalysis

method), 1797
transform() (sklearn.decomposition.FastICA

method), 1800
transform() (sklearn.decomposition.IncrementalPCA

method), 1804
transform() (sklearn.decomposition.KernelPCA

method), 1808
transform() (sklearn.decomposition.LatentDirichletAllocation

Index 2745

scikit-learn user guide, Release 0.23.2

method), 1812
transform() (sklearn.decomposition.MiniBatchDictionaryLearning

method), 1816
transform() (sklearn.decomposition.MiniBatchSparsePCA

method), 1819
transform() (sklearn.decomposition.NMF method),

1823
transform() (sklearn.decomposition.PCA method),

1829
transform() (sklearn.decomposition.SparseCoder

method), 1835
transform() (sklearn.decomposition.SparsePCA

method), 1833
transform() (sklearn.decomposition.TruncatedSVD

method), 1838
transform() (sklearn.discriminant_analysis.LinearDiscriminantAnalysis

method), 1852
transform() (sklearn.ensemble.RandomTreesEmbedding

method), 1888
transform() (sklearn.ensemble.StackingClassifier

method), 1893
transform() (sklearn.ensemble.StackingRegressor

method), 1897
transform() (sklearn.ensemble.VotingClassifier

method), 1901
transform() (sklearn.ensemble.VotingRegressor

method), 1904
transform() (sklearn.feature_extraction.DictVectorizer

method), 1922
transform() (sklearn.feature_extraction.FeatureHasher

method), 1925
transform() (sklearn.feature_extraction.image.PatchExtractor

method), 1929
transform() (sklearn.feature_extraction.text.CountVectorizer

method), 1935
transform() (sklearn.feature_extraction.text.HashingVectorizer

method), 1940
transform() (sklearn.feature_extraction.text.TfidfTransformer

method), 1943
transform() (sklearn.feature_extraction.text.TfidfVectorizer

method), 1949
transform() (sklearn.feature_selection.GenericUnivariateSelect

method), 1952
transform() (sklearn.feature_selection.RFE

method), 1974
transform() (sklearn.feature_selection.RFECV

method), 1978
transform() (sklearn.feature_selection.SelectFdr

method), 1964
transform() (sklearn.feature_selection.SelectFpr

method), 1961
transform() (sklearn.feature_selection.SelectFromModel

method), 1967
transform() (sklearn.feature_selection.SelectFwe

method), 1970
transform() (sklearn.feature_selection.SelectKBest

method), 1958
transform() (sklearn.feature_selection.SelectorMixin

method), 1621
transform() (sklearn.feature_selection.SelectPercentile

method), 1955
transform() (sklearn.feature_selection.VarianceThreshold

method), 1981
transform() (sklearn.impute.IterativeImputer

method), 2040
transform() (sklearn.impute.KNNImputer method),

2045
transform() (sklearn.impute.MissingIndicator

method), 2042
transform() (sklearn.impute.SimpleImputer method),

2035
transform() (sklearn.isotonic.IsotonicRegression

method), 2056
transform() (sklearn.kernel_approximation.AdditiveChi2Sampler

method), 2060
transform() (sklearn.kernel_approximation.Nystroem

method), 2062
transform() (sklearn.kernel_approximation.RBFSampler

method), 2065
transform() (sklearn.kernel_approximation.SkewedChi2Sampler

method), 2067
transform() (sklearn.manifold.Isomap method),

2183
transform() (sklearn.manifold.LocallyLinearEmbedding

method), 2186
transform() (sklearn.model_selection.GridSearchCV

method), 2334
transform() (sklearn.model_selection.RandomizedSearchCV

method), 2342
transform() (sklearn.neighbors.KNeighborsTransformer

method), 2421
transform() (sklearn.neighbors.NeighborhoodComponentsAnalysis

method), 2453
transform() (sklearn.neighbors.RadiusNeighborsTransformer

method), 2442
transform() (sklearn.neural_network.BernoulliRBM

method), 2459
transform() (sklearn.pipeline.FeatureUnion

method), 2472
transform() (sklearn.pipeline.Pipeline property),

2476
transform() (sklearn.preprocessing.Binarizer

method), 2481
transform() (sklearn.preprocessing.FunctionTransformer

method), 2483
transform() (sklearn.preprocessing.KBinsDiscretizer

method), 2486
transform() (sklearn.preprocessing.KernelCenterer

2746 Index

scikit-learn user guide, Release 0.23.2

method), 2488
transform() (sklearn.preprocessing.LabelBinarizer

method), 2492
transform() (sklearn.preprocessing.LabelEncoder

method), 2494
transform() (sklearn.preprocessing.MaxAbsScaler

method), 2499
transform() (sklearn.preprocessing.MinMaxScaler

method), 2502
transform() (sklearn.preprocessing.MultiLabelBinarizer

method), 2496
transform() (sklearn.preprocessing.Normalizer

method), 2504
transform() (sklearn.preprocessing.OneHotEncoder

method), 2508
transform() (sklearn.preprocessing.OrdinalEncoder

method), 2511
transform() (sklearn.preprocessing.PolynomialFeatures

method), 2514
transform() (sklearn.preprocessing.PowerTransformer

method), 2517
transform() (sklearn.preprocessing.QuantileTransformer

method), 2520
transform() (sklearn.preprocessing.RobustScaler

method), 2523
transform() (sklearn.preprocessing.StandardScaler

method), 2527
transform() (sklearn.random_projection.GaussianRandomProjection

method), 2539
transform() (sklearn.random_projection.SparseRandomProjection

method), 2542
TransformedTargetRegressor (class in

sklearn.compose), 1687
transformer, 734
TransformerMixin (class in sklearn.base), 1620
transformers, 734
TruncatedSVD (class in sklearn.decomposition), 1836
trustworthiness() (in module sklearn.manifold),

2199
TSNE (class in sklearn.manifold), 2191
TweedieRegressor (class in sklearn.linear_model),

2162
two_point_correlation()

(sklearn.neighbors.BallTree method), 2397
two_point_correlation()

(sklearn.neighbors.KDTree method), 2404
type_of_target() (in module

sklearn.utils.multiclass), 2628

U
UndefinedMetricWarning (class in

sklearn.exceptions), 1917
unique_labels() (in module

sklearn.utils.multiclass), 2629

unlabeled, 731
unlabeled data, 731
unsupervised, 732
unsupervised learning, 732

V
v_measure_score() (in module sklearn.metrics),

2261
validation_curve() (in module

sklearn.model_selection), 2353
value_type (sklearn.gaussian_process.kernels.Hyperparameter

attribute), 2010
VarianceThreshold (class in

sklearn.feature_selection), 1979
vectorizer, 734
vectorizers, 734
verbose, 741
VotingClassifier (class in sklearn.ensemble), 1897
VotingRegressor (class in sklearn.ensemble), 1901

W
ward_tree() (in module sklearn.cluster), 1682
warm_start, 741
weighted_mode() (in module sklearn.utils.extmath),

2624
WhiteKernel (class in

sklearn.gaussian_process.kernels), 2030
with_traceback() (sklearn.exceptions.ChangedBehaviorWarning

method), 1914
with_traceback() (sklearn.exceptions.ConvergenceWarning

method), 1914
with_traceback() (sklearn.exceptions.DataConversionWarning

method), 1915
with_traceback() (sklearn.exceptions.DataDimensionalityWarning

method), 1915
with_traceback() (sklearn.exceptions.EfficiencyWarning

method), 1916
with_traceback() (sklearn.exceptions.FitFailedWarning

method), 1916
with_traceback() (sklearn.exceptions.NonBLASDotWarning

method), 1917
with_traceback() (sklearn.exceptions.NotFittedError

method), 1917
with_traceback() (sklearn.exceptions.UndefinedMetricWarning

method), 1918

X
X, 742
Xt, 742

Y
Y, 742
y, 742

Index 2747

scikit-learn user guide, Release 0.23.2

Z
zero_one_loss() (in module sklearn.metrics), 2236

2748 Index

	Welcome to scikit-learn
	Installing scikit-learn
	Frequently Asked Questions
	Support
	Related Projects
	About us
	Who is using scikit-learn?
	Release History
	Roadmap
	Scikit-learn governance and decision-making

	scikit-learn Tutorials
	An introduction to machine learning with scikit-learn
	A tutorial on statistical-learning for scientific data processing
	Working With Text Data
	Choosing the right estimator
	External Resources, Videos and Talks

	Getting Started
	Fitting and predicting: estimator basics
	Transformers and pre-processors
	Pipelines: chaining pre-processors and estimators
	Model evaluation
	Automatic parameter searches
	Next steps

	User Guide
	Supervised learning
	Unsupervised learning
	Model selection and evaluation
	Inspection
	Visualizations
	Dataset transformations
	Dataset loading utilities
	Computing with scikit-learn

	Glossary of Common Terms and API Elements
	General Concepts
	Class APIs and Estimator Types
	Target Types
	Methods
	Parameters
	Attributes
	Data and sample properties

	Examples
	Release Highlights
	Biclustering
	Calibration
	Classification
	Clustering
	Covariance estimation
	Cross decomposition
	Dataset examples
	Decision Trees
	Decomposition
	Ensemble methods
	Examples based on real world datasets
	Feature Selection
	Gaussian Mixture Models
	Gaussian Process for Machine Learning
	Generalized Linear Models
	Inspection
	Manifold learning
	Miscellaneous
	Missing Value Imputation
	Model Selection
	Multioutput methods
	Nearest Neighbors
	Neural Networks
	Pipelines and composite estimators
	Preprocessing
	Semi Supervised Classification
	Support Vector Machines
	Tutorial exercises
	Working with text documents

	API Reference
	sklearn.base: Base classes and utility functions
	sklearn.calibration: Probability Calibration
	sklearn.cluster: Clustering
	sklearn.compose: Composite Estimators
	sklearn.covariance: Covariance Estimators
	sklearn.cross_decomposition: Cross decomposition
	sklearn.datasets: Datasets
	sklearn.decomposition: Matrix Decomposition
	sklearn.discriminant_analysis: Discriminant Analysis
	sklearn.dummy: Dummy estimators
	sklearn.ensemble: Ensemble Methods
	sklearn.exceptions: Exceptions and warnings
	sklearn.experimental: Experimental
	sklearn.feature_extraction: Feature Extraction
	sklearn.feature_selection: Feature Selection
	sklearn.gaussian_process: Gaussian Processes
	sklearn.impute: Impute
	sklearn.inspection: inspection
	sklearn.isotonic: Isotonic regression
	sklearn.kernel_approximation Kernel Approximation
	sklearn.kernel_ridge Kernel Ridge Regression
	sklearn.linear_model: Linear Models
	sklearn.manifold: Manifold Learning
	sklearn.metrics: Metrics
	sklearn.mixture: Gaussian Mixture Models
	sklearn.model_selection: Model Selection
	sklearn.multiclass: Multiclass and multilabel classification
	sklearn.multioutput: Multioutput regression and classification
	sklearn.naive_bayes: Naive Bayes
	sklearn.neighbors: Nearest Neighbors
	sklearn.neural_network: Neural network models
	sklearn.pipeline: Pipeline
	sklearn.preprocessing: Preprocessing and Normalization
	sklearn.random_projection: Random projection
	sklearn.semi_supervised Semi-Supervised Learning
	sklearn.svm: Support Vector Machines
	sklearn.tree: Decision Trees
	sklearn.utils: Utilities
	Recently deprecated

	Developer’s Guide
	Contributing
	Developing scikit-learn estimators
	Developers’ Tips and Tricks
	Utilities for Developers
	How to optimize for speed
	Installing the development version of scikit-learn
	Maintainer / core-developer information
	Developing with the Plotting API

	Bibliography
	Index

