sklearn.pipeline
.make_pipeline¶
-
sklearn.pipeline.
make_pipeline
(*steps, **kwargs)[source]¶ Construct a Pipeline from the given estimators.
This is a shorthand for the Pipeline constructor; it does not require, and does not permit, naming the estimators. Instead, their names will be set to the lowercase of their types automatically.
Parameters: - *steps : list of estimators.
- memory : None, str or object with the joblib.Memory interface, optional
Used to cache the fitted transformers of the pipeline. By default, no caching is performed. If a string is given, it is the path to the caching directory. Enabling caching triggers a clone of the transformers before fitting. Therefore, the transformer instance given to the pipeline cannot be inspected directly. Use the attribute
named_steps
orsteps
to inspect estimators within the pipeline. Caching the transformers is advantageous when fitting is time consuming.- verbose : boolean, optional
If True, the time elapsed while fitting each step will be printed as it is completed.
Returns: - p : Pipeline
See also
sklearn.pipeline.Pipeline
- Class for creating a pipeline of transforms with a final estimator.
Examples
>>> from sklearn.naive_bayes import GaussianNB >>> from sklearn.preprocessing import StandardScaler >>> make_pipeline(StandardScaler(), GaussianNB(priors=None)) ... Pipeline(memory=None, steps=[('standardscaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('gaussiannb', GaussianNB(priors=None, var_smoothing=1e-09))], verbose=False)