sklearn.metrics
.max_error¶
-
sklearn.metrics.
max_error
(y_true, y_pred)[source]¶ max_error metric calculates the maximum residual error.
Read more in the User Guide.
Parameters: - y_true : array-like of shape = (n_samples)
Ground truth (correct) target values.
- y_pred : array-like of shape = (n_samples)
Estimated target values.
Returns: - max_error : float
A positive floating point value (the best value is 0.0).
Examples
>>> from sklearn.metrics import max_error >>> y_true = [3, 2, 7, 1] >>> y_pred = [4, 2, 7, 1] >>> max_error(y_true, y_pred) 1